
C++ PARALLEL ALGORITHMS

PR-10011-001-V20.9 | September 2020

C++ Parallel Algorithms Version 20.9 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
Chapter 2. NVC++ Compiler Parallel Algorithms Support... 3

2.1. Enabling Parallel Algorithms with the -stdpar option...3
Chapter 3. Simple Example..4
Chapter 4. Coding guidelines for GPU-accelerating Parallel Algorithms... 5

4.1. Parallel Algorithms and device function annotations..5
4.2. Parallel Algorithms and CUDA Unified Memory..5
4.3. Parallel Algorithms and function pointers...6
4.4. Random access iterators.. 8
4.5. Interoperability with the C++ Standard Library..8
4.6. No exceptions in GPU code.. 8

Chapter 5. Larger example: LULESH..9
Chapter 6. Getting started with Parallel Algorithms for GPUs.. 11

6.1. Supported NVIDIA GPUs..11
6.2. Supported CUDA versions... 12

C++ Parallel Algorithms Version 20.9 | 1

Chapter 1.
INTRODUCTION

The C++17 Standard introduced higher-level parallelism features that allow users to
request parallelization of Standard Library algorithms.

This higher-level parallelism is expressed by adding an execution policy as the first
parameter to any algorithm that supports execution policies. Most of the existing
Standard C++ algorithms were enhanced to support execution policies. C++17
defined several new parallel algorithms, including the useful std::reduce and
std::transform_reduce.

C++17 defines three execution policies:

‣ std::execution::seq: Sequential execution. No parallelism is allowed.
‣ std::execution::par: Parallel execution on one or more threads.
‣ std::execution::par_unseq: Parallel execution on one or more threads, with

each thread possibly vectorized.

When you use an execution policy other than std::execution::seq, you are
communicating two important things to the compiler:

‣ You prefer but do not require that the algorithm be run in parallel. A conforming C
++17 implementation may ignore the hint and run the algorithm sequentially, but a
high-quality implementation takes the hint and executes in parallel when possible
and prudent.

‣ The algorithm is safe to run in parallel. For the std::execution::par and
std::execution::par_unseq policies, any user-provided code—such
as iterators, lambdas, or function objects passed into the algorithm—must
not introduce data races if run concurrently on separate threads. For the
std::execution::par_unseq policy, any user-provided code must not introduce
data races or deadlocks if multiple calls are interleaved on the same thread, which
is what happens when a loop is vectorized. For more information about potential
deadlocks, see the forward progress guarantees provided by the parallel policies or
watch CppCon 2018: Bryce Adelstein Lelbach “The C++ Execution Model”.

The C++ Standard grants compilers great freedom to choose if, when, and how
to execute algorithms in parallel as long as the forward progress guarantees the
user requests are honored. For example, std::execution::par_unseq may be
implemented with vectorization and std::execution::par may be implemented with

https://en.cppreference.com/w/cpp/algorithm/reduce
https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag
https://en.cppreference.com/w/cpp/language/memory_model#Progress_guarantee
https://www.youtube.com/watch?v=FJIn1YhPJJc

Introduction

C++ Parallel Algorithms Version 20.9 | 2

a CPU thread pool. It is also possible to execute parallel algorithms on a GPU, which
is a good choice for invocations with sufficient parallelism to take advantage of the
processing power and memory bandwidth of NVIDIA GPU processors.

C++ Parallel Algorithms Version 20.9 | 3

Chapter 2.
NVC++ COMPILER PARALLEL
ALGORITHMS SUPPORT

The NVIDIA HPC C++ compiler, NVC++, supports C++17, C++ Standard Parallelism
(stdpar) for NVIDIA GPUs, OpenACC for multicore CPUs and NVIDIA GPUs, and
OpenMP for multicore CPUs.

NVC++ can compile Standard C++ algorithms with the parallel execution policies
std::execution::par or std::execution::par_unseq for execution on NVIDIA
GPUs. An NVC++ command-line option, -stdpar, is used to enable GPU-accelerated
C++ Parallel Algorithms. Lambdas, including generic lambdas, are fully supported in
parallel algorithm invocations. No language extensions or non-standard libraries are
required to enable GPU acceleration. All data movement between host memory and
GPU device memory is performed implicitly and automatically under the control of
CUDA Unified Memory.

It's easy to automatically GPU accelerate C++ Parallel Algorithms with NVC++.
However, there are some restrictions and limitations you need to be aware of as
explained below.

2.1. Enabling Parallel Algorithms with the -stdpar
option
GPU acceleration of C++ Parallel Algorithms is enabled with the -stdpar command-
line option to NVC++. If -stdpar is specified, almost all algorithms that use a parallel
execution policy are compiled for offloading to run in parallel on an NVIDIA GPU:
 nvc++ -stdpar program.cpp -o program

C++ Parallel Algorithms Version 20.9 | 4

Chapter 3.
SIMPLE EXAMPLE

Here are a few simple examples to get a feel for how the C++ Parallel Algorithms work.

From the early days of C++, sorting items stored in an appropriate container has been
relatively easy using a single call like the following:
 std::sort(employees.begin(), employees.end(),
 CompareByLastName());

Assuming the comparison class CompareByLastName is thread-safe, which is true
for most comparison functions, parallelizing this sort is simple with C++ Parallel
Algorithms. Include <execution> and add an execution policy to the function call:
 std:sort(std::execution::par,
 employees.begin(), employees.end(),
 CompareByLastName());

Calculating the sum of all the elements in a container is also simple with the
std::accumulate algorithm. Prior to C++17, transforming the data in some way while
taking the sum was somewhat awkward. For example, to compute the average age of
your employees, you might write the following code:
 int ave_age =
 std::accumulate(employees.begin(), employees.end(), 0,
 [](int sum, const Employee& emp){
 return sum + emp.age();
 })
 / employees.size();

The std::transform_reduce algorithm introduced in C++17 makes it simple to
parallelize this code. It also results in cleaner code by separating the reduction operation,
in this case std::plus, from the transformation operation, in this case emp.age():
 int ave_age =
 std::transform_reduce(std::execution::par_unseq,
 employees.begin(), employees.end(),
 0, std::plus<int>(),
 [](const Employee& emp){
 return emp.age();
 })
 / employees.size();

C++ Parallel Algorithms Version 20.9 | 5

Chapter 4.
CODING GUIDELINES FOR GPU-
ACCELERATING PARALLEL ALGORITHMS

GPUs are not simply CPUs with more threads. To effectively take advantage of the
massive parallelism and memory bandwidth available on GPUs, it is typical for GPU
programming models to put some limitations on code executed on the GPU. The NVC+
+ implementation of C++ Parallel Algorithms is no exception in this regard. The sections
which follow detail the limitations that apply in the current release.

4.1. Parallel Algorithms and device function
annotations
Functions to be executed on the GPU within parallel algorithms do not need any
__device__ annotations or other special markings to be compiled for GPU execution.
The NVC++ compiler walks the call graph for each source file and automatically infers
which functions must be compiled for GPU execution.

However, this only works when the compiler can see the function definition in the
same source file where the function is called. This is true for most inline functions and
template functions but may fail when functions are defined in a different source file
or linked in from an external library. You need to be aware of this when formulating
parallel algorithms invocations that you expect to be offloaded and accelerated on
NVIDIA GPUs.

4.2. Parallel Algorithms and CUDA Unified Memory
NVC++ relies on CUDA Unified Memory for all data movement between CPU and
GPU memory. Through support in both the CUDA device driver and the NVIDIA GPU
hardware, the CUDA Unified Memory manager automatically moves some types of data
based on usage.

Currently, only data dynamically allocated on the heap in CPU code that was compiled
by NVC++ can be managed automatically. Memory dynamically allocated in GPU code

Coding guidelines for GPU-accelerating Parallel Algorithms

C++ Parallel Algorithms Version 20.9 | 6

is only visible from GPU code and can never be accessed by the CPU. Likewise, CPU
and GPU stack memory and memory used for global objects on most systems cannot be
automatically managed. Likewise, data that is dynamically allocated in program units
not compiled by NVC++ with the -stdpar option is not automatically managed by CUDA
Unified Memory, even though it is on the CPU heap.

As a result, any pointer that is dereferenced and any C++ object that is referenced within
a Parallel Algorithm invocation must refer to data on the CPU heap that is allocated in
a program unit compiled by NVC++. Dereferencing a pointer to a CPU stack or a global
object results in a memory violation in GPU code.

For example, std::vector uses dynamically allocated memory, which is accessible
from the GPU when using stdpar. Iterating over the contents of a std::vector in a Parallel
Algorithm works as expected:
 std::vector<int> v = ...;
 std::sort(std::execution::par,
 v.begin(), v.end()); // Okay, accesses heap memory.

On the other hand, std::array performs no dynamic allocations. Its contents are
stored within the std::array object itself, which is often on a CPU stack. Iterating over
the contents of a std::array won’t work unless the std::array itself is allocated on
the heap:
 std::array<int, 1024> a = ...;
 std::sort(std::execution::par,
 a.begin(), a.end()); // Fails, array is on a CPU stack.

Pay particular attention to lambda captures, especially capturing data objects by
reference, which may contain non-obvious pointer dereferences:
 void saxpy(float* x, float* y, int N, float a) {
 std::transform(std::execution::par_unseq, x, x + N, y, y,
 [&](float xi, float yi){ return a * xi + yi; });
 }

In the earlier example, the function parameter a is captured by reference. The code
within the body of the lambda, which is running on the GPU, tries to access a, which is
in the CPU stack memory. This results in a memory violation and undefined behavior. In
this case, the problem can easily be fixed by changing the lambda to capture by value:
 void saxpy(float* x, float* y, int N, float a) {
 std::transform(std::execution::par_unseq, x, x + N, y, y,
 [=](float xi, float yi){ return a * xi + yi; });
 }

With this one-character change, the lambda makes a copy of a, which is then copied to
the GPU, and there are no attempts to reference CPU stack memory from GPU code.

4.3. Parallel Algorithms and function pointers
Functions compiled to run on either the CPU or the GPU must be compiled into two
different versions, one with the CPU machine instructions and one with the GPU
machine instructions.

In the current implementation, a function pointer either points to the CPU or the GPU
version of the functions. This causes problems if you attempt to pass function pointers
between CPU and GPU code. You might inadvertently pass a pointer to the CPU version

Coding guidelines for GPU-accelerating Parallel Algorithms

C++ Parallel Algorithms Version 20.9 | 7

of the function to GPU code. In the future, it may be possible to automatically and
seamlessly support the use of function pointers across CPU and GPU code boundaries,
but it is not supported in the current implementation.

Function pointers can’t be passed to Parallel Algorithms to be run on the GPU, and
functions may not be called through a function pointer within GPU code. For example,
the following code example won’t work correctly:
 void square(int& x) { x = x * x; }
 void square_all(std::vector<int>& v) {
 std::for_each(std::execution::par_unseq,
 v.begin(), v.end(), &square);
 }

It passes a pointer to the CPU version of the function square to a parallel for_each
algorithm invocation. When the algorithm is parallelized and offloaded to the GPU, the
program fails to resolve the function pointer to the GPU version of square.

You can often solve this issue by using a function object, which is an object with a
function call operator. The function object's call operator is resolved at compile time to
the GPU version of the function, instead of being resolved at run time to the incorrect
CPU version of the function as in the previous example. For example, the following code
example works:
 struct squared {
 void operator()(int& x) const { x = x * x; }
 };
 void square_all(std::vector<int>& v) {
 std::for_each(std::execution::par_unseq,
 v.begin(), v.end(), squared{});
 }

Another possible workaround is to change the function to a lambda, because a lambda is
implemented as a nameless function object:
 void square_all(std::vector<int>& v) {
 std::for_each(std::execution::par_unseq, v.begin(), v.end(),
 [](int& x) { x = x * x; });
 }

If the function in question is too big to be converted to a function object or a lambda,
then it should be possible to wrap the call to the function in a lambda:
 void compute(int& x) {
 // Assume lots and lots of code here.
 }
 void compute_all(std::vector<int>& v) {
 std::for_each(std::execution::par_unseq, v.begin(), v.end(),
 [](int& x) { compute(x); });
 }

No function pointers are used in this example.

The restriction on calling a function through a function pointer unfortunately means
passing polymorphic objects from CPU code to GPU-accelerated Parallel Algorithms is
not currently supported, as virtual tables are implemented using function pointers.

Coding guidelines for GPU-accelerating Parallel Algorithms

C++ Parallel Algorithms Version 20.9 | 8

4.4. Random access iterators
The C++ Standard requires that the iterators passed to most C++ Parallel Algorithms
be forward iterators. However, C++ Parallel Algorithms on GPUs only works with
random access iterators. Passing a forward iterator or a bidirectional iterator to a GPU-
accelerated Parallel Algorithm results in a compilation error. Passing raw pointers that
point to the heap or Standard Library random access iterators to the algorithms has the
best performance, but most other random-access iterators work correctly.

4.5. Interoperability with the C++ Standard Library
Large parts of the C++ Standard Library can be used with stdpar on GPUs.

‣ std::atomic<T> objects within GPU code work provided that T is a four-byte or
eight-byte integer type. std::atomic<T> objects can be accessed from both CPU
and GPU code provided the object is on the heap.

‣ Math functions that operate on floating-point types—such as sin, cos, log, and
most of the other functions declared in <cmath> —can be used in GPU code and
resolve to the same implementations that are used in CUDA C++ programs.

‣ std::complex, std::tuple, std::pair, std::optional, std::variant, and
<type_traits>, are supported and work as expected in GPU code.

The parts of the C++ Standard Library that aren’t supported in GPU code include I/O
functions and in general any function that accesses the CPU operating system. As a
special case, basic printf calls can be used within GPU code and leverage the same
implementation that is used in NVIDIA CUDA C++.

4.6. No exceptions in GPU code
As with most other GPU programming models, throwing and catching C++ exceptions is
not supported within Parallel Algorithm invocations that are offloaded to the GPU.

Unlike some other GPU programming models where try/catch blocks and throw
expressions are compilation errors, exception code does compile but with non-standard
behavior. Catch clauses are ignored, and throw expressions abort the GPU kernel if
actually executed. Exceptions in CPU code work without restrictions.

C++ Parallel Algorithms Version 20.9 | 9

Chapter 5.
LARGER EXAMPLE: LULESH

The LULESH hydrodynamics mini-app was developed at Lawrence Livermore
National Laboratory to stress test compilers and model performance of hydrodynamics
applications. It is about 9,000 lines of C++ code, of which 2,800 lines are the core
computation that should be parallelized.

We ported LULESH to C++ Parallel Algorithms and made the port available on
LULESH's GitHub repository. To compile it, install the NVIDIA HPC SDK, check out the
2.0.2-dev branch of the LULESH repository, go to the correct directory, and run make.

git clone --branch 2.0.2-dev https://github.com/LLNL/LULESH.git
cd LULESH/stdpar/build
make run

While LULESH is too large to show the entire source code here, there are some key code
sequences that demonstrate the use of stdpar.

The LULESH code has many loops with large bodies and no loop-carried dependencies,
making them good candidates for parallelization. Most of these were easily converted
into calls to std::for_each_n with the std::execution::par policy, where the body
of the lambda passed to std::for_each_n is identical to the original loop body.

The function CalcMonotonicQRegionForElems is an example of this. The loop header
written for OpenMP looks as follows:
 #pragma omp parallel for firstprivate(qlc_monoq, qqc_monoq, \
 monoq_limiter_mult, monoq_max_slope, ptiny)
 for (Index_t i = 0 ; i < domain.regElemSize(r); ++i) {

This loop header in the C++ Parallel Algorithms version becomes the following:
 std::for_each_n(
 std::execution::par, counting_iterator(0), domain.regElemSize(r),
 [=, &domain](Index_t i) {

The loop body, which in this case is almost 200 lines long, becomes the body of the
lambda but is otherwise unchanged from the OpenMP version.

In a number of places, an explicit for loop was changed to use C++ Parallel Algorithms
that better express the intent of the code, such as the function CalcPressureForElems:
 #pragma omp parallel for firstprivate(length)
 for (Index_t i = 0; i < length ; ++i) {

https://github.com/LLNL/LULESH
https://github.com/LLNL/LULESH/tree/2.0.2-dev/stdpar
https://developer.nvidia.com/hpc-sdk
https://github.com/LLNL/LULESH/blob/2.0.2-dev/stdpar/src/lulesh.cc#L1555-L1756

Larger example: LULESH

C++ Parallel Algorithms Version 20.9 | 10

 Real_t c1s = Real_t(2.0)/Real_t(3.0) ;
 bvc[i] = c1s * (compression[i] + Real_t(1.));
 pbvc[i] = c1s;
 }

This function was rewritten as as follows:
 constexpr Real_t cls = Real_t(2.0) / Real_t(3.0);
 std::transform(std::execution::par,
 compression, compression + length, bvc,
 [=](Real_t compression_i) {
 return cls * (compression_i + Real_t(1.0));
 });
 std::fill(std::execution::par, pbvc, pbvc + length, cls);

https://github.com/LLNL/LULESH/blob/2.0.2-dev/stdpar/src/lulesh.cc#L1825-L1830

C++ Parallel Algorithms Version 20.9 | 11

Chapter 6.
GETTING STARTED WITH PARALLEL
ALGORITHMS FOR GPUS

To get started, download and install the NVIDIA HPC SDK on your x86-64,
OpenPOWER, or Arm CPU-based system running a supported version of Linux.

The NVIDIA HPC SDK is freely downloadable and includes a perpetual use license for
all NVIDIA Registered Developers, including access to future release updates as they
are issued. After you have the NVIDIA HPC SDK installed on your system, the nvc++
compiler is available under the /opt/nvidia/hpc_sdk directory structure.

‣ To use the 20.7 GA version of the compilers including nvc++ on a Linux/x86-64
system, add the directory /opt/nvidia/hpc_sdk/Linux_x86_64/20.7/
compilers/bin to your path.

‣ On an OpenPOWER or Arm CPU-based system, replace Linux_x86_64 with
Linux_ppc64le or Linux_aarch64, respectively.

6.1. Supported NVIDIA GPUs
The NVC++ compiler can automatically offload C++ Parallel Algorithms to NVIDIA
GPUs based on the Volta, Turing, or Ampere architectures. These architectures include
features—such as independent thread scheduling and hardware optimizations for
CUDA Unified Memory—that were specifically designed to support high-performance,
general-purpose parallel programming models like the C++ Parallel Algorithms.

The NVC++ compiler provides limited support for C++ Parallel Algorithms on
the Pascal architecture, which does not have the independent thread scheduling
necessary to properly support the std::execution::par policy. When compiling
for the Pascal architecture (-gpu=cc60), NVC++ compiles algorithms with the
std::execution::par policy for serial execution on the CPU. Only algorithms with
the std::execution::par_unseq policy will be scheduled to run on Pascal GPUs.

By default, NVC++ auto-detects and generates GPU code for the type of GPU that is
installed on the system on which the compiler is running. To generate code for a specific
GPU architecture, which may be necessary when the application is compiled and run
on different systems, add the -gpu=ccXX command-line option. Currently, the compiler

https://developer.nvidia.com/hpc-sdk
https://devblogs.nvidia.com/inside-volta/

Getting started with Parallel Algorithms for GPUs

C++ Parallel Algorithms Version 20.9 | 12

can generate executables targeted for only one GPU architecture. The use of multiple
-gpu=ccXX options in a single compilation results in an error from the compiler.

6.2. Supported CUDA versions
The NVC++ compiler is built on CUDA libraries and technologies and uses CUDA to
accelerate C++ Parallel Algorithms on NVIDIA GPUs. A GPU-accelerated system on
which NVC++-compiled applications are to be run must have a CUDA 10.1 or newer
device driver installed.

The NVIDIA HPC SDK compilers ship with an integrated CUDA toolchain, header files,
and libraries to use during compilation, so it is not necessary to have a CUDA Toolkit
installed on the system.

When -stdpar is specified, NVC++ compiles using the CUDA toolchain version that
matches the CUDA driver installed on the system on which compilation is performed.
To compile using a different version of the CUDA toolchain, use the -gpu=cudaX.Y
option. For example, use the -gpu=cuda11.0 option to specify that your program should
be compiled for a CUDA 11.0 system using the CUDA 11.0 toolchain.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties that
may result from its use. No license is granted by implication of otherwise under any
patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all other
information previously supplied. NVIDIA Corporation products are not authorized
as critical components in life support devices or systems without express written
approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta,
NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other
company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

NVIDIA HPC Compilers

	Table of Contents
	Introduction
	NVC++ Compiler Parallel Algorithms Support
	2.1. Enabling Parallel Algorithms with the -stdpar option

	Simple Example
	Coding guidelines for GPU-accelerating Parallel Algorithms
	4.1. Parallel Algorithms and device function annotations
	4.2. Parallel Algorithms and CUDA Unified Memory
	4.3. Parallel Algorithms and function pointers
	4.4. Random access iterators
	4.5. Interoperability with the C++ Standard Library
	4.6. No exceptions in GPU code

	Larger example: LULESH
	Getting started with Parallel Algorithms for GPUs
	6.1. Supported NVIDIA GPUs
	6.2. Supported CUDA versions

