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Chapter 1.
INTRODUCTION

Welcome to the HPC SDK Container Documentation.

This book is designed to provide you with information on NVIDIA's HPC application
containers.

1.1. Introduction to Containers
Containers are a lighter weight virtualization technology based on Linux namespaces.
Unlike virtual machines, containers share the kernel and other services with the host. As
a result, containers can startup very quickly and have negligible performance overhead,
but they do not provide the full isolation of virtual machines.

Containers bundle the entire application user space environment into a single image.
This way, the application environment is both portable and consistent, and agnostic
to the underlying host system software configuration. Container images can be
deployed widely, and even shared with others, with confidence that the results will be
reproducible.

Containers make life simpler for developers, users, and system administrators.
Developers can distribute software in a container to provide a consistent runtime
environment and reduce support overhead. Container images from repositories such
as NGC can help users start up quickly on any system and avoid the complexities of
building from source. Containers can also help IT staff tame environment module
complexity and support legacy workloads that are no longer compatible with host
operating system.

There are many container runtimes; two of the most significant are Docker and
Singularity.

‣ Docker, described further in the section Docker Containers, helped popularize Linux
containers and is used widely.

‣ Singularity, described further in the section Singularity Containers, addresses some
of the challenges with using containers in HPC environments and is available at
most HPC centers.

https://ngc.nvidia.com/
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Chapter 2.
DEVELOPING WITH CONTAINERS

All the examples in this section are shown for both Docker and Singularity, and are also
generally applicable to other container runtimes. The CloverLeaf mini application is
used as a demonstration workflow.

Using containers for development is an alternative to the traditional host-based
development workflow. With a container, the development environment can be precisely
defined by the user. For instance, the container can use a different libc than the host or
include additional libraries not available on the host.

The examples use the HPC SDK container images available from NGC. These freely
available images are the best way to get started using the HPC SDK and containers.

2.1. Docker Containers
To start an interactive Docker development environment run:

$ sudo docker run --rm -it --runtime=nvidia --user $(id -u):$(id -g) --volume
 $(pwd):/source --workdir /source nvcr.io/nvidia/nvhpc:20.7-devel-centos7
  

Since containers are ephemeral, this command mounts the source code directory from
the host as /source inside the container (--volume) and defaults to this directory when
the container starts (--workdir). This assumes the command to start the container is
run from the location where the CloverLeaf source code was checked out. Any changes
to the source code or builds made from inside the container will be stored in the source
directory on the host and persist even when the container exits.

By default, the user inside a Docker container is root. The --user option modifies this
so the user inside the container is the same as the user outside the container. Without
this option object files and other files created inside the container in the /source
directory would be owned by root.

The other options tell Docker to cleanup the container when the container exits (--rm),
to enable NVIDIA GPUs (--runtime=nvidia), and that this is an interactive session (-
it).

https://github.com/UoB-HPC/CloverLeaf-OpenACC
https://ngc.nvidia.com/catalog/containers/nvidia:nvhpc
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2.2. Singularity Containers
To start an interactive Singularity development environment:
$ singularity shell --nv docker://nvcr.io/nvidia/nvhpc:20.7-devel-centos7

Starting a Singularity container does not require superuser privileges, unlike
Docker. Also, the user inside a Singularity container is the same as the user outside
the container and the user's home directory, current directory, and /tmp are
automatically mounted inside the container.

The only additional option needed is --nv to enable NVIDIA GPU support. This
assumes the command to start the container is run from the location where the
CloverLeaf source code was checked out. If the CloverLeaf source is located somewhere
else, start the container using

$ singularity shell --nv -B <path-to-source>/CloverLeaf-OpenACC:/source --pwd /
source docker://nvcr.io/nvidia/nvhpc:20.7-devel-centos7
  

2.3. Example Using CloverLeaf
From the shell inside the Docker or Singularity container, run make COMPILER=PGI
to build CloverLeaf, and then run it with the default small dataset (mpirun -n 1
clover_leaf).

By default, CloverLeaf is configured to build for Pascal (i.e., compute capability 6.0)
devices. Running CloverLeaf on non-Pascal GPUs will generate an error similar to the
following. Refer to the section  Multi-Architecture Support for more information.

This file was compiled: -ta=tesla:cc60
Rebuild the application with -ta=tesla:cc70 to use NVIDIA Tesla GPU 0 

The clover_leaf binary will most likely not run on the host outside the container
due to library dependencies that are only satisfied inside the container. To distribute
the resulting binary outside a container libraries could be linked statically, or the
necessary libraries could be redistributed with the binary. However, please see the
section on building containerized applications for a better solution.
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Chapter 3.
PROFILING WITH CONTAINERS

In general, profiling a workload running in a container is not significantly different than
profiling a workload on bare metal. The Nsight Compute and Nsight Systems profilers
are part of the HPC SDK.

A typical workflow is to iterate profiling and code modifications until the desired
performance is achieved. Nsight Systems provides low overhead, comprehensive
workload-level performance analysis and is the place to start profiling. Once the macro
level performance is understood, detailed CUDA kernel performance is available from
Nsight Compute.

To start an interactive Docker profiling environment run using CloverLeaf source
located on the host:

$ sudo docker run --rm --runtime=nvidia --cap-add=SYS_ADMIN --volume $(pwd):/
source --workdir /source nvcr.io/nvidia/nvhpc:20.7-devel-centos7
        

Docker containers need to be started with the command line option --cap-
add=SYS_ADMIN to enable capabilities required for profiling. No additional options
are needed when profiling workloads running in Singularity containers.

To start an interactive Singularity profiling environment run:

$ singularity shell --nv docker://nvcr.io/nvidia/nvhpc:20.7-devel-centos7
        

From the shell inside the Docker or Singularity container, run make COMPILER=PGI to
build CloverLeaf, if it was not built in the previous section.

Also from the shell inside the container, the Nsight Systems command line interface can
be used to profile CloverLeaf with the default dataset:

$ mpirun -n 1 nsys profile --stats=true -t openacc,cuda,nvtx,osrt ./clover_leaf
        

Nsight Systems will output some high level statistics such as the top CUDA kernels, in
addition to a qdrep report that can be visualized using the Nsight Systems graphical
user interface.

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
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Similarly, the Nsight Compute command line interface can be used to profile CloverLeaf
from a shell inside the Docker or Singularity container. Nsight Systems revealed that the
update_halo_kernel kernel is one the top CloverLeaf kernels. To profile the first 20
instances of the kernel run:

$ mpirun -n 1 nv-nsight-cu-cli -k update_halo_kernel -c 20 ./clover_leaf
        

For more information, please consult the Nsight Systems or Nsight Compute
documentation.

https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/
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Chapter 4.
BUILDING CONTAINERIZED
APPLICATIONS

When the interactive development cycle is complete, a container is an excellent way
to broadly distribute the result. Container images are generated from container
specification files

‣ Dockerfiles for Docker and other container builders,
‣ Singularity definition files for Singularity.

The set of instructions are mostly the same for Docker and Singularity, but the syntax is
different.

To minimize the container image size and adhere to the permissible redistribution of the
HPC SDK, only the application itself and its runtime dependencies should be included
in the container. Docker and Singularity both support multi-stage container builds. A
multi-stage container specification typically consists of 2 parts:

 1. A build stage based on a full development environmentand application source code,
and

 2. A distribution stage based on a smaller runtime environment that cherry picks
content from the build stage such as the application binary and other build artifacts.

For CloverLeaf, a multi-stage build can reduce the Singularity container image size by
over 32X, from 4.7 GB to 146 MB.

4.1. Building Containerized Applications with
Docker
To build a container image with Docker:

$ sudo docker build -t <tag> -f Dockerfile .
   

The -t option specifies the name to give the container image, in the name:tag format.
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The following Dockerfile builds a container from the local CloverLeaf source checkout:

# Build stage
FROM nvcr.io/nvidia/nvhpc:20.7-devel-centos7 AS build

# build CloverLeaf
COPY CloverLeaf-OpenACC /source
RUN cd /source && make COMPILER=PGI

# Runtime stage
FROM nvcr.io/nvidia/nvhpc:20.7-runtime-cuda11.0-centos7 

COPY --from=build /source/clover_leaf /opt/CloverLeaf-OpenACC/bin/
COPY --from=build /source/InputDecks /opt/CloverLeaf-OpenACC/InputDecks

ENV PATH=/opt/CloverLeaf-OpenACC/bin:$PATH
   

The build stage of the Dockerfile is based on the HPC SDK development image from
NGC. The local CloverLeaf source code is copied into the container at /source, and
then built. The runtime stage is based on the smaller HPC SDK runtime image, also
from NGC. Three HPC SDK runtime images are available, for CUDA 10.1, 10.2, and
11.0; select the version corresponding to the CUDA version used to build CloverLeaf,
assumed here to be CUDA 11.0. The clover_leaf binary and the sample input datasets
are copied from the build stage.

The dataset should be typically mounted from the host into the running container.
Including datasets in the container image is bad practice and is not recommended.
Datasets can be large and bloat the size of the container image and are often specific
to a particular usage. However, neither of these conditions are true for CloverLeaf:
the CloverLeaf input files are tiny and they are standard.

Finally, the directory /opt/CloverLeaf-OpenACC/bin is added to the default PATH for
convenience.

To generate the container image from this Dockerfile:

$ sudo docker build -t cloverleaf:local -f Dockerfile .
   

Alternatively, the CloverLeaf source could be checked out from the GitHub repository:

# Build stage
FROM nvcr.io/nvidia/nvhpc:20.7-devel-centos7 AS build

# build CloverLeaf
RUN mkdir /source && \
    cd /source && \
    git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git && \
    cd CloverLeaf-OpenACC && \
    make COMPILER=PGI

# Runtime stage
FROM nvcr.io/nvidia/nvhpc:20.7-runtime-cuda11.0-centos7

COPY --from=build /source/CloverLeaf-OpenACC/clover_leaf /opt/CloverLeaf-
OpenACC/bin/
COPY --from=build /source/CloverLeaf-OpenACC/InputDecks /opt/CloverLeaf-OpenACC/
InputDecks
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ENV PATH=/opt/CloverLeaf-OpenACC/bin:$PATH
   

After checking out the git repository, the rest of the Dockerfile is virtually identical to the
one using the local CloverLeaf checkout.

To generate the container image from this Dockerfile:

$ sudo docker build -t cloverleaf:git -f Dockerfile .
   

In either the local source directory or git repository cases, the containerized CloverLeaf
can be run using the following command, where <tag> is either local or git:

$ sudo docker run --rm --runtime=nvidia cloverleaf:<tag> mpirun -n 1 --allow-
run-as-root clover_leaf
    

This will run the small built-in dataset; to use one of the sample datasets mount it from
the host into the working directory (/) as clover.in.

$ sudo docker run --rm --runtime=nvidia --volume $(pwd)/clover_bm32_short.in:/
clover.in cloverleaf:<tag>  mpirun -n 1 --allow-run-as-root clover_leaf
     

4.2. Building Containerized Applications with
Singularity
To build a container image with Singularity:

$ sudo singularity build <image> Singularity.def

<image> is the name of the resulting Singularity image file (SIF).

The following Singularity.def builds a container from the local CloverLeaf source
checkout:

# Build stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:20.7-devel-centos7
Stage: build

%files
  CloverLeaf-OpenACC /source

%post
  . /.singularity.d/env/10-docker*.sh

  # build CloverLeaf
  cd /source
  make COMPILER=PGI

# Runtime stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:20.7-runtime-cuda11.0-centos7

%files from build
  /source/clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf
  /source/InputDecks  /opt/CloverLeaf-OpenACC/InputDecks
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%environment
  export PATH=/opt/CloverLeaf-OpenACC/bin:$PATH

The instructions are virtually identical to the corresponding Dockerfile in the previous
section, although the syntax differs. The key difference is the step to configure the
container environment; when building containers Singularity does not automatically
setup the environment inherited from Docker base images and this must be done
manually.

To generate the container image from this Singularity definition file:

$ sudo singularity build cloverleaf-local.sif Singularity.def

Alternatively, the CloverLeaf source could be checked out from the GitHub repository:

# Build stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:20.7-devel-centos7
Stage: build

%post
  . /.singularity.d/env/10-docker*.sh

  # build CloverLeaf
  mkdir /source
  cd /source
  git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git
  cd CloverLeaf-OpenACC
  make COMPILER=PGI

# Runtime stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:20.7-runtime-cuda11.0-centos7

%files from build
  /source/CloverLeaf-OpenACC/clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf
  /source/CloverLeaf-OpenACC/InputDecks  /opt/CloverLeaf-OpenACC/InputDecks

%environment
  export PATH=/opt/CloverLeaf-OpenACC/bin:$PATH

To generate the container image from this Singularity definition file:

$ sudo singularity build cloverleaf-git.sif Singularity.def

In either the local source directory or git repository cases, the containerized CloverLeaf
can be run using the following command, where <label> is either local or git:

$ singularity run --nv cloverleaf-<label>.sif mpirun -n 1 clover_leaf

This will run the small built-in dataset; to use one of the sample datasets copy it to the
current working directory on the host as clover.in.

$ cp CloverLeaf-OpenACC/InputDecks/clover_bm32_short.in clover.in
$ singularity run --nv cloverleaf-<label>.sif mpirun -n 1 clover_leaf
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4.3. HPC Container Maker
CloverLeaf, like nearly all mini-apps, is intentionally simple and has a very limited set of
build dependencies, essentially a compiler and an MPI library. Real world applications
are typically much more complex and may have dependencies on third-party software
components. As a result, containerizing real world application may require considerably
more effort than a mini-app like CloverLeaf.

HPC Container Maker (HPCCM) is an open source tool to make it easier to generate
container specification files. HPCCM generates Dockerfiles or Singularity definition files
from a high level Python recipe. HPCCM recipes have some distinct advantages over
"native" container specification formats.

 1. A library of HPC building blocks that separate the choice of what to include in a
container image from the details of how it's done. The building blocks transparently
provide the latest component and container best practices.

 2. Python provides increased flexibility over static container specification formats.
Python-based recipes can branch, validate user input, etc. - the same recipe can
generate multiple container specifications.

 3. Generate either Dockerfiles or Singularity definition files from the same recipe.

The following is the HPCCM Python recipe for the scenario where CloverLeaf is checked
out from the GitHub repository:

# Build stage
Stage0 += baseimage(image='nvcr.io/nvidia/nvhpc:20.7-devel-centos7',
 _as='build')

# build CloverLeaf
Stage0 += generic_build(build=['make COMPILER=PGI'],
    install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
      'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
      'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
      'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],
    prefix='/opt/CloverLeaf-OpenACC',
    repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

# Runtime stage
Stage1 += baseimage(image='nvcr.io/nvidia/nvhpc:20.7-runtime-cuda11.0-centos7')

Stage1 += Stage0.runtime()
Stage1 += environment(variables={'PATH': '/opt/CloverLeaf-OpenACC/bin:$PATH'})

The HPCCM recipe is mostly descriptive, rather than prescriptive like the Dockerfile
and Singularity definition files. For instance, the recipe specifies the CloverLeaf git
repository, but does not define the details of how it should be downloaded. Since the
CloverLeaf Makefile does not provide an install target, a basic install method needs to be
specified. HPCCM also includes generic_autotools and generic_cmake building blocks
for packages that use GNU Autotools or CMake, respectively.

The hpccm command line tool processes the recipe and outputs either a Dockerfile or
a Singularity definition file. The resulting container specification file should be used as
shown in the above sections to generate a container image.

https://github.com/NVIDIA/hpc-container-maker
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$ hpccm --recipe cloverleaf.py

$ hpccm --recipe cloverleaf.py --format singularity --singularity-version 3.2

Multi-stage container builds were added to Singularity in version 3.2. However, the
multi-stage Singularity definition file syntax is incompatible with earlier Singularity
versions. The HPCCM --singularity-version flag is currently necessary to
generate multi-stage Singularity definition files; otherwise the output is a single stage
Singularity definition file compatible with all versions.

HPCCM includes building blocks for many common HPC software components
such as HDF5, FFTW, OpenMPI, and many more that may be required for real world
applications. One of the building blocks covers the HPC SDK, making it easy to
customize the set of HPC SDK packages to install in the container or use a professional
edition in place of the community edition that will be available via NGC.

For example, the following recipe first installs the HPC SDK into a container, then builds
CloverLeaf, and finally automatically generates the container instructions to copy the
HPC SDK runtime into the runtime container stage. The size of the final container image
is considerably smaller than the previous examples using the NGC runtime images
because a smaller subset of the runtime is included in the final image.

# Build stage
Stage0 += baseimage(image='centos:7', _as='build')

# NVIDIA HPC SDK
Stage0 += nvhpc(eula=True, redist=['compilers/lib/*'])

# Additional development tools
Stage0 += packages(ospackages=['git', 'make'])

# CloverLeaf
Stage0 += generic_build(build=['make COMPILER=PGI'],
    install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
        'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
        'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
        'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],
    prefix='/opt/CloverLeaf-OpenACC',
    repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

# Runtime stage
Stage1 += baseimage(image='centos:7')
Stage1 += Stage0.runtime()
Stage1 += environment(variables={'PATH': '/opt/CloverLeaf-OpenACC/bin:$PATH'})

# nvidia-container-runtime
Stage1 += environment(variables={
  'NVIDIA_VISIBLE_DEVICES': 'all',
  'NVIDIA_DRIVER_CAPABILITIES': 'compute,utility',
  'NVIDIA_REQUIRE_CUDA': '"cuda>=10.1 brand=tesla,driver>=384,driver<385
 brand=tesla,driver>=396,driver<397 brand=tesla,driver>=410,driver<411"'})

The HPCCM GitHub repository includes sample recipes for real world applications such
as GROMACS, LAMMPS, and MILC.



Using the NVIDIA HPC SDK with Containers Version 2020 | 12

Chapter 5.
BEST PRACTICES

The following sections discuss some of the best practices when using HPC SDK
Containers.

5.1. Multi Stage Builds
Multi-stage builds are a way to control the size of container images. In the same
Dockerfile, you can define a second stage that is a completely separate container image
and copy just the binary and any runtime dependencies from preceding stages into the
image. The output of a multi-stage build is a single container image corresponding to
the last stage of the Dockerfile. This method can also be used to prevent redistribution of
source code. Multi-stage builds have been used extensively in the preceding sections.

5.2. Layering
The OCI image format used by Docker is layered. OCI container images are composed of
a series of layers. The layers are applied sequentially, one on top of another, to form the
container image that you ultimately see when running a container.

The layers are cached and the Docker container builder can take advantage of the layer
cache to speed up builds of container with common layers. Also, builds that were
interrupted can be resumed from the previous point in the cache rather than having to
start over from scratch.

However, care must be taken when specifying the Dockerfile instructions not to
inadvertently bloat the container image size. The OCI image specification employs file
level deduplication to handle conflicts. When a build instruction creates or modifies
a file, the entire file is saved in the corresponding layer. For example, the following
Dockerfile instructions generate seven (7) separate layers.

RUN mkdir /source
RUN cd /source && git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git &&
 \
RUN cd /source/CloverLeaf-OpenACC && make COMPILER=PGI
RUN mkdir -p /opt/CloverLeaf-OpenACC
RUN install -m 755 -d /opt/CloverLeaf-OpenACC/bin
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RUN install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf
RUN install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks
RUN install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks
RUN rm -rf /source/CloverLeaf-OpenACC

Despite the final instruction to remove the git checkout of the CloverLeaf source code,
the source code is still actually present in the image - the final layer is just a whiteout file
entry.

A best practice arising from file level deduplication of layers is to put all actions
modifying the same set of files in the same Dockerfile instruction. For example, remove
any temporary files in the same instruction in which they are created. Generally, put all
instructions relating to the same component in the same layer, but use separate layers for
different components. HPCCM automatically generates container specification files that
follow this best practice.

For instance, HPCCM generates a single layer to download, build, install, and cleanup
CloverLeaf:

RUN mkdir -p /var/tmp && cd /var/tmp && git clone --depth=1 https://github.com/
UoB-HPC/CloverLeaf-OpenACC.git CloverLeaf-OpenACC && cd - && \
    cd /var/tmp/CloverLeaf-OpenACC && \
    make COMPILER=PGI && \
    mkdir -p /opt/CloverLeaf-OpenACC && \
    cd /var/tmp/CloverLeaf-OpenACC && \
    install -m 755 -d /opt/CloverLeaf-OpenACC/bin && \
    install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf && \
    install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks && \
    install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks && \
    rm -rf /var/tmp/CloverLeaf-OpenACC

5.3. Multi Architecture Support
One of the goals of containerizing an application is to allow it to run on a wide variety of
systems, including across different CPU and GPU generations. However, the CloverLeaf
Makefile sets the GPU compute capability to cc60, i.e., Pascal. The default CloverLeaf
binary may not run on older or newer GPUs. Similarly, the NVIDIA compiler implicitly
optimizes for the build system CPU architecture. If the container was built on a system
with the latest CPU microarchitecture, it would not run on systems with older CPUs,
or conversely if built on a system with an older CPU microarchitecture, it may not run
optimally on newer CPUs.

An approach to deal with the tension between supporting a wide range of systems and
delivering optimal performance is to build fat or unified binaries. Support for multiple
compute capabilities and instruction sets can be embedded in a single binary and the
optimal code path will be used automatically at runtime.

To support multiple GPU compute capabilities, replace cc60 in the CloverLeaf Makefile
with ccall. The default values in the CloverLeaf Makefile can be overridden on the
command line, as shown in this HPCCM recipe snippet.

Stage0 += generic_build(build=['make COMPILER=PGI FLAGS_PGI="-Mpreprocess -fast
 -acc -Minfo=acc -ta=tesla,ccall"'],
    install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
        'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
        'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
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        'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],
    prefix='/opt/CloverLeaf-OpenACC',
    repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

The resulting container will run optimally on any GPU.

Unfortunately the build systems of some real world applications do not allow the
unified binary approach. An alternative is to build and redistribute multiple binaries
in the same container image. A container entry point can be used to detect the system
architecture at runtime and setup the environment (PATH, LD_LIBRARY_PATH, etc.)
inside the container accordingly. Since HPCCM recipes are Python, building multiple
binaries is as simple as a for loop. For example, to build for multiple CPU architectures:

for cpu_arch in ['sandybridge', 'haswell', 'skylake']:
  Stage0 += generic_build(build=['make COMPILER=PGI FLAGS_PGI="-Mpreprocess -
fast -acc -Minfo=acc -ta=tesla,ccall -tp={}"'.format(cpu_arch)],
        install=['install -m 755 -d /opt/CloverLeaf-OpenACC-{}/
bin'.format(cpu_arch),
            'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC-{}/
bin'.format(cpu_arch)],
        prefix='/opt/CloverLeaf-OpenACC-{}'.format(cpu_arch),
        repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

In general, the same recipe can also be used for Arm, Power, and X86 processors. The
base image is processor architecture specific, but HPCCM handles the other differences
automatically. By using conditionals in the recipe, the few differences can be handled in
a single recipe. For example, a single recipe capable of generating CloverLeaf containers
for X86 (default) and Power (if the HPCCM command line argument --userarg
power=True is specified):

# Build stage
if USERARG.get('power', None):
  image='ppc64le/centos:7'
else:
  image='centos:7'

Stage0 += baseimage(image=image, _as='build')

# NVIDIA HPC SDK
Stage0 += nvhpc(eula=True, redist=['compilers/lib/*'])

# Additional development packages
Stage0 += packages(ospackages=['git', 'make'])

# build CloverLeaf
Stage0 += generic_build(build=['make COMPILER=PGI'],
    install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
        'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
        'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
        'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],
    prefix='/opt/CloverLeaf-OpenACC',
    repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

# Runtime stage
Stage1 += baseimage(image=image)
Stage1 += Stage0.runtime()
Stage1 += environment(variables={'PATH': '/opt/CloverLeaf-OpenACC/bin:$PATH'})

# nvidia-container-runtime
Stage1 += environment(variables={
  'NVIDIA_VISIBLE_DEVICES': 'all',
  'NVIDIA_DRIVER_CAPABILITIES': 'compute,utility',
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  'NVIDIA_REQUIRE_CUDA': '"cuda>=10.1 brand=tesla,driver>=384,driver<385
 brand=tesla,driver>=396,driver<397 brand=tesla,driver>=410,driver<411"'})

5.4. Version Tagging and Reproducibility
Container specification files often download content from online repositories such
as GitHub. That content can change from one point in time to another. For instance,
the master branch of the CloverLeaf GitHub repository could change in a way that
invalidates the container specification. To avoid this scenario, specify a tag or commit to
ensure that the container image build is reproducible

A HPCCM recipe can checkout a specific commit or tag to increase the reproducibility of
the recipe.

 Stage0 += generic_build(build=['make COMPILER=PGI'],
        commit='23b8e81b5234474757e44418e78ce91c8d050363',
        install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
            'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/
clover_leaf',
            'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
            'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],
        prefix='/opt/CloverLeaf-OpenACC',
        repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')
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