
OPENACC MPI TUTORIAL

DU-09865-001-V22.5 | May 2022

OpenACC MPI Tutorial Version 22.5 | ii

TABLE OF CONTENTS

5× in 5 Hours: Porting a 3D Elastic Wave Simulator to GPUs Using OpenACC...................................... iii
Chapter 1. Step 0: Evaluation.. 1
Chapter 2. Step 1: Adding Setup Code..3
Chapter 3. Step 2: Adding Compute Regions..5
Chapter 4. Step 3: Adding Data Regions...8
Chapter 5. Step 4: Optimizing Data Transfers.. 10
Chapter 6. Step 5: Loop Schedule Tuning...13
Chapter 7. Conclusion.. 14

OpenACC MPI Tutorial Version 22.5 | iii

5× IN 5 HOURS: PORTING A 3D ELASTIC
WAVE SIMULATOR TO GPUS USING
OPENACC

Scientists in the oil and gas industry often investigate large yet highly parallelizable
problems that can adapt well to accelerators. SEISMIC_CPML is an example case.
Developed by Dimitri Komatitsch and Roland Martin from University of Pau, France.
From their website: "SEISMIC_CPML is a set of ten open-source Fortran 90 programs
to solve the two-dimensional or three-dimensional isotropic or anisotropic elastic,
viscoelastic or poroelastic wave equation using a finite-difference method with
Convolutional or Auxiliary Perfectly Matched Layer (C-PML or ADE-PML) conditions."

In particular, we decided to accelerate the 3D Isotropic application which is "a 3D elastic
finite-difference code in velocity and stress formulation with Convolutional-PML (C-
PML) absorbing conditions." In addition to being highly compute intensive, the code
uses MPI and OpenMP to perform the domain decomposition, giving us an opportunity
to showcase the use of multi-GPU programming.

This tutorial will give you an understanding of the steps involved in porting
applications to GPUs using OpenACC, some optimization tips, and ways to identify
several potential pitfalls. It should be useful as a guide for how you can apply OpenACC
directives to your own code. All source code for this tutorial can be downloaded as
part of this tarball. After downloading, unpack and untar the file which will create a
directory where you can work along with the tutorial if you like.

./openacc-mpi-tutorial.tar.gz

5× in 5 Hours: Porting a 3D Elastic Wave Simulator to GPUs Using OpenACC

OpenACC MPI Tutorial Version 22.5 | iv

OpenACC MPI Tutorial Version 22.5 | 1

Chapter 1.
STEP 0: EVALUATION

The most difficult part of accelerator programing begins before the first line of code
is written. Having the right algorithm is essential for success. An accelerator is like an
army of ants. Individually the cores are weak, but taken together they can do great
things. If your program is not highly parallel, an accelerator won't be of much use.
Hence, the first step is to ensure that your algorithm is parallel. If it's not, you should
determine if there are alternate algorithms you might use or if your algorithm could be
reworked to be more parallel.

In evaluating the SEISMIC_CPML 3-D Isotropic code, we see the main time-step
loop contains eight parallel loops. However, being parallel may not be enough if the
loops are not computationally intensive. While computational intensity shouldn't be
your only metric, it is a good indicator of potential success. Using the compiler flag
-Minfo=intensity, we can see that the compute intensity, the ratio of computation to data
movement, of the various loops is between 2.5 and 2.64. These are average intensities. As
a rule, anything below 1.0 is generally not worth accelerating unless it is part of a larger
program. Ideally we would like the average intensity to be above 4, but 2.5 is sufficient
to move forward.

SEISMIC_CPML uses MPI to decompose the problem space across the Z dimension. This
will allow us to utilize more than one GPU, but it also adds extra data movement as the
program needs to pass halos (regions of the domain that overlap across processes). We
could use OpenMP threads as well, but doing so would add more programming effort
and complexity to our example. As a result, we chose to remove the OpenMP code from
the GPU version. We may revisit that decision in a future article.

As an aside, with the MPI portion of the code the programmer manually decomposes
the domain. With OpenMP, the compiler does that automatically if the program is
running in a shared memory environment. Currently, OpenMP compilers aren't able
to automatically decompose a problem across multiple discrete memory spaces as is
the case when using multiple devices. As a result, the programmer must manually
decompose the problem just like they would using MPI. Because this would basically
require us to duplicate our effort, we decided to forgo using OpenMP here.

To build and run the original MPI/OpenMP code on your system do the following (make
sure that the compiler (pgfortran) and MPI wrappers (mpif90) are in your path
before building and running):

Step 0: Evaluation

OpenACC MPI Tutorial Version 22.5 | 2

cd step0
make build
make run
make verify

OpenACC MPI Tutorial Version 22.5 | 3

Chapter 2.
STEP 1: ADDING SETUP CODE

Because this is an MPI code where each process will use its own GPU, we need to add
some utility code to ensure that happens. The setDevice routine first determines which
node the process is on (via a call to hostid) and then gathers the hostids from all other
processes. It then determines how many GPUs are available on the node and assigns the
devices to each process.

Note that in order to maintain portability with the CPU version, this section of code is
guarded by the preprocessor macro _OPENACC, which is defined when the OpenACC
directives are enabled in the HPC Fortran compiler through the use of the -acc
command-line compiler option.
#ifdef _OPENACC
#
function setDevice(nprocs,myrank)

 use iso_c_binding
 use openacc
 implicit none
 include 'mpif.h'

 interface
 function gethostid() BIND(C)
 use iso_c_binding
 integer (C_INT) :: gethostid
 end function gethostid
 end interface

 integer :: nprocs, myrank
 integer, dimension(nprocs) :: hostids, localprocs
 integer :: hostid, ierr, numdev, mydev, i, numlocal
 integer :: setDevice

! get the hostids so we can determine what other processes are on this node
 hostid = gethostid()
 CALL mpi_allgather(hostid,1,MPI_INTEGER,hostids,1,MPI_INTEGER, &
 MPI_COMM_WORLD,ierr)

! determine which processors are on this node
 numlocal=0
 localprocs=0
 do i=1,nprocs
 if (hostid .eq. hostids(i)) then
 localprocs(i)=numlocal
 numlocal = numlocal+1
 endif

Step 1: Adding Setup Code

OpenACC MPI Tutorial Version 22.5 | 4

 enddo

! get the number of devices on this node
 numdev = acc_get_num_devices(ACC_DEVICE_NVIDIA)

 if (numdev .lt. 1) then
 print *, 'ERROR: There are no devices available on this host. &
 ABORTING.', myrank
 stop
 endif

! print a warning if the number of devices is less then the number
! of processes on this node. Having multiple processes share devices is not
! recommended.
 if (numdev .lt. numlocal) then
 if (localprocs(myrank+1).eq.1) then
 ! print the message only once per node
 print *, 'WARNING: The number of process is greater then the number &
 of GPUs.', myrank
 endif
 mydev = mod(localprocs(myrank+1),numdev)
 else
 mydev = localprocs(myrank+1)
 endif

 call acc_set_device_num(mydev,ACC_DEVICE_NVIDIA)
 call acc_init(ACC_DEVICE_NVIDIA)
 setDevice = mydev

end function setDevice
#endif

To build and run the step1 code on your system do the following (make sure that the
compiler (pgfortran) and MPI wrappers (mpif90) are in your path before building
and running):

cd step1
make build
make run
make verify

OpenACC MPI Tutorial Version 22.5 | 5

Chapter 3.
STEP 2: ADDING COMPUTE REGIONS

Next, we spent a few minutes adding six compute regions around the eight parallel
loops. For example, here's the final reduction loop.
!$acc kernels
 do k = kmin,kmax
 do j = NPOINTS_PML+1, NY-NPOINTS_PML
 do i = NPOINTS_PML+1, NX-NPOINTS_PML

! compute kinetic energy first, defined as 1/2 rho ||v||^2
! in principle we should use rho_half_x_half_y instead of rho for vy
! in order to interpolate density at the right location in the staggered grid
! cell but in a homogeneous medium we can safely ignore it

 total_energy_kinetic = total_energy_kinetic + 0.5d0 * rho*(&
 vx(i,j,k)**2 + vy(i,j,k)**2 + vz(i,j,k)**2)

! add potential energy, defined as 1/2 epsilon_ij sigma_ij
! in principle we should interpolate the medium parameters at the right location
! in the staggered grid cell but in a homogeneous medium we can safely ignore it

! compute total field from split components
 epsilon_xx = ((lambda + 2.d0*mu) * sigmaxx(i,j,k) - lambda * &
 sigmayy(i,j,k) - lambda*sigmazz(i,j,k)) / (4.d0 * mu * (lambda + mu))
 epsilon_yy = ((lambda + 2.d0*mu) * sigmayy(i,j,k) - lambda * &
 sigmaxx(i,j,k) - lambda*sigmazz(i,j,k)) / (4.d0 * mu * (lambda + mu))
 epsilon_zz = ((lambda + 2.d0*mu) * sigmazz(i,j,k) - lambda * &
 sigmaxx(i,j,k) - lambda*sigmayy(i,j,k)) / (4.d0 * mu * (lambda + mu))
 epsilon_xy = sigmaxy(i,j,k) / (2.d0 * mu)
 epsilon_xz = sigmaxz(i,j,k) / (2.d0 * mu)
 epsilon_yz = sigmayz(i,j,k) / (2.d0 * mu)

 total_energy_potential = total_energy_potential + &
 0.5d0 * (epsilon_xx * sigmaxx(i,j,k) + epsilon_yy * sigmayy(i,j,k) + &
 epsilon_yy * sigmayy(i,j,k)+ 2.d0 * epsilon_xy * sigmaxy(i,j,k) + &
 2.d0*epsilon_xz * sigmaxz(i,j,k)+2.d0*epsilon_yz * sigmayz(i,j,k))

 enddo
 enddo
 enddo
!$acc end kernels

The -acc command line option to the HPC Accelerator Fortran compiler enables
OpenACC directives. Note that OpenACC is meant to model a generic class of devices.
While NVIDIA is the current market leader in HPC accelerators and default target for
NVIDIA's OpenACC implementation, the model can, and will in the future, target other
devices.

Step 2: Adding Compute Regions

OpenACC MPI Tutorial Version 22.5 | 6

Another compiler option you'll want to use during development is -Minfo, which causes
the compiler to output feedback on optimizations and transformations performed
on your code. For accelerator-specific information, use the -Minfo=accel sub-option.
Examples of feedback messages produced when compiling SEISMIC_CPML include:
1113, Generating copyin(vz(11:91,11:631,kmin:kmax)) Generating
copyin(vy(11:91,11:631,kmin:kmax)) Generating copyin(vx(11:91,11:631,kmin:kmax))
Generating copyin(sigmaxx(11:91,11:631,kmin:kmax))
Generating copyin(sigmayy(11:91,11:631,kmin:kmax))
Generating copyin(sigmazz(11:91,11:631,kmin:kmax)) Generating
copyin(sigmaxy(11:91,11:631,kmin:kmax)) Generating
copyin(sigmaxz(11:91,11:631,kmin:kmax)) Generating
copyin(sigmayz(11:91,11:631,kmin:kmax))

To compute on a GPU, the first step is to move data from host memory to GPU memory.
In the example above, the compiler tells you that it is copying over nine arrays. Note
the copyin statements. These mean that the compiler will only copy the data to the GPU
but not copy it back to the host. This is because line 1113 corresponds to the start of the
reduction loop compute region, where these arrays are used but never modified. Other
data movement clauses you may see include copy where the data is copied to the device
at the beginning of the region and copied back at the end of the region, and copyout
where the data is only copied back to the host.

Notice that the compiler is only copying an interior subsection of the arrays. By default,
the compiler is conservative and only copies the data that's actually required to perform
the necessary computations. Unfortunately, because the interior sub-arrays are not
contiguous in host memory, the compiler needs to generate multiple data transfers
for each array. Overall GPU performance is determined largely by how well we can
optimize memory transfers. That means not just how much data gets transferred, but
how many transfers occur. Transferring multiple sub-arrays is very costly. For now we
will just note it. Later, we'll look at improving performance by overriding the compiler
defaults and copying entire arrays in one large contiguous block.
1114, Loop is parallelizable 1115, Loop is parallelizable 1116, Loop is parallelizable
Accelerator kernel generated

Here the compiler has performed dependence analysis on the loops at lines 1114, 1115,
and 1116 (the reduction loop shown earlier). It finds that all three loops are parallelizable
so it generates an accelerator kernel. When the compiler encounters loops that can
not be parallelized, it generally reports a reason why so that you can adapt the code
accordingly. If inner loops are not parallelizable, a kernel may still be generated for outer
loops; in those cases the inner loop(s) will run sequentially on the GPU cores.

The compiler may attempt to work around dependences that prevent parallelization by
interchanging loops (i.e changing the order) where it's safe to do so. At least one outer
or interchanged loop must be parallel for an accelerator kernel to be generated. In some
cases you may be able to use the loop directive independent clause to work around
potential dependences, or the private clause to eliminate a dependence entirely. In other
cases, code may need to be restructured significantly to enable parallelization.

The generated accelerator kernel is just a serial bit of code that gets executed on the
GPU by many threads simultaneously. Every thread will be executing the same code
but operating on different data. How the threads are organized is called the loop

Step 2: Adding Compute Regions

OpenACC MPI Tutorial Version 22.5 | 7

schedule. Below we can see the loop schedule for our reduction loop. The do loops
have been replaced with a three-dimensional gang, which in turn is composed of a two-
dimensional vector section.
1114, !$acc loop gang ! blockidx%y 1115, !$acc loop gang, vector(4) ! blockidx%z
threadidx%y 1116, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

In CUDA terminology, the gang clause corresponds to a grid dimension and the vector
clause corresponds to a thread block dimension. For new or non-CUDA programmers,
we highly recommend reading Michael Wolfe's PGInsider article Understanding the Data
Parallel Threading Model for GPUs.

Don't feel too overwhelmed by loop schedules. It's just a way to organize how the
GPU threads act on data elements of an array. So here we have a 3-D array that's being
grouped into blocks of 32×4 elements where a single thread is working on a specific
element. Because the number of gangs is not specified in the loop schedule, it will be
determined dynamically when the kernel is launched. If the gang clause had a fixed
width, such as gang(16), then each kernel would be written to loop over multiple
elements.

With CUDA, programming reductions and managing shared memory can be a fairly
difficult task. In the example below, the compiler has automatically generated optimal
code using these features. By the way, the compiler is always looking for opportunities
to optimize your code.
1122, Sum reduction generated for total_energy_kinetic 1140, Sum reduction generated
for total_energy_potential

OK, so how are we doing?

To build and run the step2 code on your system do the following (as mention above,
make sure that the compiler (pgfortran) and MPI wrappers (mpif90) are in your path
before building and running):

cd step2
make build
make run
make verify

After ten minutes of programming time, we've managed to make the program really
really slow! Remember this is an article about speeding-up SEISMIC_CPML by 5× in 5
hours not slowing it down 3× in ten minutes. We'll soon overcome this slowdown but it's
not uncommon to see this type of one step back experience when programming GPUs.

Don't get discouraged if this happens to you. So why the slowdown and how can we fix
it?

OpenACC MPI Tutorial Version 22.5 | 8

Chapter 4.
STEP 3: ADDING DATA REGIONS

You may have guessed that the slowdown is caused by excessive data movement
between host memory and GPU memory. In looking at a section of our CUDA profile
information, we see that each compute region is spending a lot of time copying data
back and forth between the host and device. Because each compute region is executed
2500 times, this makes for a lot of data movement. Adding up all the data transfer times
in the profile output for Step 2 shows that the vast majority, over 99%, of the time was
spent copying data while only a small fraction was spent in the compute kernels. The
remaining time is spent either in host code or blocked waiting on data transfers (both
MPI processes must use the same PCIe bus to transfer data).

Note that the exact amout of time spent copying data or computing on the device will
vary between systems. To see the time for your system, set the environment variable
PGI_ACC_TIME=1 and run your executable. This option prints basic profile information
such as the kernel execution time, data transfer time, initialization time, the actual
launch configuration, and total time spent in a compute region. Note that the total time
is measured from the host and includes time spent executing host code within a region.

To improve performance, we need to find a way to minimize the amount of time
transferring data. Enter the data directive. You can use a data region to specify exact
points in your program where data should be copied from host memory to GPU
memory, and back again. Any compute region enclosed within a data region will use
the previously copied data, without the need to copy at the boundaries of the compute
region. A data region can span across host code and multiple compute regions, and even
across subroutine boundaries.

In looking at the arrays in SEISMIC_CMPL, there are 18 arrays with constant values.
Another 21 are used only within compute regions so are never needed on the host. Let's
start by adding a data region around the outer time step loop. The final three arrays do
need to be copied back to the host to pass their halos. For those cases, we use the update
directive.
!---
!--- beginning of time loop
!---
!$acc data &
!$acc copyin(a_x_half,b_x_half,k_x_half, &
!$acc a_y_half,b_y_half,k_y_half, &
!$acc a_z_half,b_z_half,k_z_half, &
!$acc a_x,a_y,a_z,b_x,b_y,b_z,k_x,k_y,k_z, &

Step 3: Adding Data Regions

OpenACC MPI Tutorial Version 22.5 | 9

!$acc sigmaxx,sigmaxz,sigmaxy,sigmayy,sigmayz,sigmazz, &
!$acc memory_dvx_dx,memory_dvy_dx,memory_dvz_dx, &
!$acc memory_dvx_dy,memory_dvy_dy,memory_dvz_dy, &
!$acc memory_dvx_dz,memory_dvy_dz,memory_dvz_dz, &
!$acc memory_dsigmaxx_dx, memory_dsigmaxy_dy, &
!$acc memory_dsigmaxz_dz, memory_dsigmaxy_dx, &
!$acc memory_dsigmaxz_dx, memory_dsigmayz_dy, &
!$acc memory_dsigmayy_dy, memory_dsigmayz_dz, &
!$acc memory_dsigmazz_dz)

 do it = 1,NSTEP

...

!$acc update host(sigmazz,sigmayz,sigmaxz)
! sigmazz(k+1), left shift
 call MPI_SENDRECV(sigmazz(:,:,1),number_of_values,MPI_DOUBLE_PRECISION, &
 receiver_left_shift,message_tag,sigmazz(:,:,NZ_LOCAL+1), &
 number_of_values,

...

!$acc update device(sigmazz,sigmayz,sigmaxz)

...

 ! --- end of time loop
 enddo
!$acc end data

Data regions can be nested, and in fact we used this feature in the time loop body for
the arrays vx, vy and vz as shown below. While these arrays are copied back and forth
at the inner data region boundary, and so are moved more often than the arrays moved
in the outer data region, they are used across multiple compute regions instead of
being copied at each compute region boundary. Note that we do not specify any array
dimensions in the copy clause. This instructs the compiler to copy each array in its
entirety as a contiguous block, and eliminates the inefficiency we noted earlier when
interior sub-arrays were being copied in multiple blocks.
!$acc data copy(vx,vy,vz)

... data region spans over 5 compute regions and host code

!$acc kernels

...

!$acc end kernels

!$acc end data

How are we doing on our timings?

To build and run the step3 code on your system do the following:

cd step3
make build
make run
make verify

This step took just about an hour of coding time and reduced our execution time
significantly. We're making good progress, but we can improve the performance even
further.

OpenACC MPI Tutorial Version 22.5 | 10

Chapter 5.
STEP 4: OPTIMIZING DATA TRANSFERS

For our next step we'll work to optimize the data transfers even further by migrating
as much of the computation as we can over to the GPU and moving only the absolute
minimum amount of data required. The first step is to move the start of the outer data
region up so that it occurs earlier in the code, and to put the data initialization loops into
compute kernels. This includes the vx, vy and vz arrays. Using this approach enables us
to remove the inner data region used in our previous optimization step.

In the following example code, notice the use of the create clause. This instructs the
compiler to allocate space for variables in GPU memory for local use but to perform no
data movement on those variables. Essentially they are used as scratch variables in GPU
memory.
!$acc data &
!$acc copyin(a_x_half,b_x_half,k_x_half, &
!$acc a_y_half,b_y_half,k_y_half, &
!$acc a_z_half,b_z_half,k_z_half, &
!$acc ix_rec,iy_rec, &
!$acc a_x,a_y,a_z,b_x,b_y,b_z,k_x,k_y,k_z), &
!$acc copyout(sisvx,sisvy), &
!$acc create(memory_dvx_dx,memory_dvy_dx,memory_dvz_dx, &
!$acc memory_dvx_dy,memory_dvy_dy,memory_dvz_dy, &
!$acc memory_dvx_dz,memory_dvy_dz,memory_dvz_dz, &
!$acc memory_dsigmaxx_dx, memory_dsigmaxy_dy, &
!$acc memory_dsigmaxz_dz, memory_dsigmaxy_dx, &
!$acc memory_dsigmaxz_dx, memory_dsigmayz_dy, &
!$acc memory_dsigmayy_dy, memory_dsigmayz_dz, &
!$acc memory_dsigmazz_dz, &
!$acc vx,vy,vz,vx1,vy1,vz1,vx2,vy2,vz2, &
!$acc sigmazz1,sigmaxz1,sigmayz1, &
!$acc sigmazz2,sigmaxz2,sigmayz2) &
!$acc copyin(sigmaxx,sigmaxz,sigmaxy,sigmayy,sigmayz,sigmazz)

...

! Initialize vx, vy and vz arrays on the device
!$acc kernels
 vx(:,:,:) = ZERO
 vy(:,:,:) = ZERO
 vz(:,:,:) = ZERO
!$acc end kernels

...

Step 4: Optimizing Data Transfers

OpenACC MPI Tutorial Version 22.5 | 11

One caveat to using data regions is that you must be aware of which copy (host or
device) of the data you are actually using in a given loop or computation. The host and
device copies of the data are not automatically kept coherent. That is the responsibility
of the programmer when using data regions. For example, any update to the copy
of a variable in device memory won't be reflected in the host copy until you specify
that it should be updated using either an update directive or a copy clause at a data or
compute region boundary.

Unintentional loss of coherence between the host and device copy of a variable is one
of the most common causes of validation errors in OpenACC programs. After making
the above change to SEISMIC_CPML, the code generated incorrect results. After nearly
a half hour of debugging, we determined that the section of the time step loop that
initializes boundary conditions was omitted from an OpenACC compute region. As
a result we were initializing the host copy of the data, rather than the device copy as
intended, which resulted in uninitialized variables in device memory.

The next challenge in optimizing the data transfers related to the handling of the halo
regions. SEISMIC_CPML passes halos from six 3-D arrays between MPI processes
during the course of the computations. Ideally we would simply copy back the 2-D halo
sub-arrays using update directives or copy clauses, but as we saw earlier copying non-
contiguous array sections between host and device memory is very inefficient. As a first
step, we tried copying the entire arrays from device memory back to the host before
passing the halos. This was also very inefficient, given that only a small amount of the
data moved between host and device memory was needed in the eventual MPI transfers.

After some experimentation, we settled on an approach whereby we added six new
temporary 2-D arrays to hold the halo data. Within a compute region we gathered the
2-D halos from the main 3-D arrays into the new temp arrays, copied the temporaries
back to the host in one contiguous block, passed the halos between MPI processes, and
finally copied the exchanged values back to device memory and scattered the halos back
into the 3-D arrays. While this approach does add to the kernel execution time, it saves a
considerable amount of data transfer time.

In the example code below, note that the source code added to support the halo gathers
and transfers is guarded by the preprocessor _OPENACC macro and will only be executed
if the code is compiled by an OpenACC-enabled compiler.
#ifdef _OPENACC
#
! Gather the sigma 3D arrays to a 2D slice to allow for faster
! copy from the device to host
!$acc kernels
 do i=1,NX
 do j=1,NY
 vx1(i,j)=vx(i,j,1)
 vy1(i,j)=vy(i,j,1)
 vz1(i,j)=vz(i,j,NZ_LOCAL)
 enddo
 enddo
!$acc end kernels
!$acc update host(vxl,vyl,vzl)

! vx(k+1), left shift
 call MPI_SENDRECV(vx1(:,:), number_of_values, MPI_DOUBLE_PRECISION, &
 receiver_left_shift, message_tag, vx2(:,:), number_of_values, &
 MPI_DOUBLE_PRECISION, sender_left_shift, message_tag, MPI_COMM_WORLD,&
 message_status, code)

Step 4: Optimizing Data Transfers

OpenACC MPI Tutorial Version 22.5 | 12

! vy(k+1), left shift
 call MPI_SENDRECV(vy1(:,:), number_of_values, MPI_DOUBLE_PRECISION, &
 receiver_left_shift,message_tag, vy2(:,:),number_of_values, &
 MPI_DOUBLE_PRECISION, sender_left_shift, message_tag, MPI_COMM_WORLD,&
 message_status, code)

! vz(k-1), right shift
 call MPI_SENDRECV(vz1(:,:), number_of_values, MPI_DOUBLE_PRECISION, &
 receiver_right_shift, message_tag, vz2(:,:), number_of_values, &
 MPI_DOUBLE_PRECISION, sender_right_shift, message_tag, MPI_COMM_WORLD, &
 message_status, code)

!$acc update device(vx2,vy2,vz2)
!$acc kernels
 do i=1,NX
 do j=1,NY
 vx(i,j,NZ_LOCAL+1)=vx2(i,j)
 vy(i,j,NZ_LOCAL+1)=vy2(i,j)
 vz(i,j,0)=vz2(i,j)
 enddo
 enddo
!$acc end kernels

#else

The above modifications required about two hours of coding time, but the total
execution time has been reduced significantly with only a small fraction of time spent
copying data!

To build and run the step4 code on your system do the following:

cd step4
make build
make run
make verify

OpenACC MPI Tutorial Version 22.5 | 13

Chapter 6.
STEP 5: LOOP SCHEDULE TUNING

The final step in our tuning process was to tune the OpenACC compute region loop
schedules using the gang, worker and vector clauses. In many cases, including this code,
the default kernel schedules chosen by the NVIDIA OpenACC compiler are quite good.
Manual tuning efforts often don't improve timings significantly. However, in some cases
the compiler doesn't do as well. It's always worthwhile to spend a little time examining
whether you can do better by overriding compiler-generated loop schedules using
explicit loop scheduling clauses. You can usually tell fairly quickly if the clauses are
having an effect.

Unfortunately, there is no well-defined method for finding an optimal kernel schedule
(short of trying all possible schedules). The best advice is to start with the compiler's
default schedule and try small adjustments to see if and how they affect execution time.
The kernel schedule you choose will affect whether and how shared memory is used,
global array accesses, and various types of optimizations. Typically, it's better to perform
gang scheduling of loops with large iteration counts.
!$acc loop gang
 do k = k2begin,NZ_LOCAL
 kglobal = k + offset_k
!$acc loop worker vector collapse(2)
 do j = 2,NY
 do i = 2,NX

To build and run the step5 code on your system do the following:

cd step5
make build
make run
make verify

OpenACC MPI Tutorial Version 22.5 | 14

Chapter 7.
CONCLUSION

In a little over five hours of programming time we achieved about a 7× speed-up
over the original MPI/OpenMP version running on our test system. On a much larger
cluster running a much larger dataset speed-up is not quite as good. There is additional
overhead in the form of inter-node communication, and the CPUs on the system have
more cores and run at a higher clock rate. Nonetheless, the speed-up is still nearly 5×.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties that
may result from its use. No license is granted by implication of otherwise under any
patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all other
information previously supplied. NVIDIA Corporation products are not authorized
as critical components in life support devices or systems without express written
approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta,
NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other
company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2022 NVIDIA Corporation. All rights reserved.

NVIDIA HPC Compilers

	Table of Contents
	5× in 5 Hours: Porting a 3D Elastic Wave Simulator to GPUs Using OpenACC
	Step 0: Evaluation
	Step 1: Adding Setup Code
	Step 2: Adding Compute Regions
	Step 3: Adding Data Regions
	Step 4: Optimizing Data Transfers
	Step 5: Loop Schedule Tuning
	Conclusion

