
CUDA FORTRAN PROGRAMMING
GUIDE

PG-09857-001 -V 23.11 | November 2023

CUDA Fortran Programming Guide Version 23.11 | ii

TABLE OF CONTENTS

Preface..ix
Intended Audience... ix
Organization... ix
Conventions.. ix
Related Publications...x

Chapter 1. Introduction.. 1
Chapter 2. Programming Guide.. 3

2.1. CUDA Fortran Host and Device Code..3
2.2. CUDA Fortran Kernels..5
2.3. Thread Blocks... 5
2.4. Memory Hierarchy...6
2.5. Subroutine / Function Qualifiers..7

2.5.1. Attributes(host)... 7
2.5.2. Attributes(global).. 7
2.5.3. Attributes(device)..7
2.5.4. Attributes(host,device)..7
2.5.5. Attributes(grid_global)... 8
2.5.6. Restrictions...8

2.6. Variable Qualifiers...8
2.6.1. Attributes(device)..8
2.6.2. Attributes(managed)...9
2.6.3. Attributes(constant)..9
2.6.4. Attributes(shared)...9
2.6.5. Attributes(pinned)... 9
2.6.6. Attributes(texture).. 9

2.7. Datatypes in Device Subprograms...10
2.7.1. Half-precision Floating Point.. 10

2.8. Predefined Variables in Device Subprograms...11
2.9. Execution Configuration..11
2.10. Asynchronous Concurrent Execution...12

2.10.1. Concurrent Host and Device Execution.. 12
2.10.2. Concurrent Stream Execution...12

2.11. Kernel Loop Directive... 12
2.11.1. Syntax.. 13
2.11.2. Restrictions on the CUF kernel directive... 14
2.11.3. Summation Example..15
2.11.4. Explicit Reductions...15

2.12. Using Fortran Modules... 16
2.12.1. Accessing Data from Other Modules..16
2.12.2. Call Routines from Other Modules... 17

CUDA Fortran Programming Guide Version 23.11 | iii

2.12.3. Declaring Device Pointer and Target Arrays..18
2.12.4. Declaring Textures... 19

2.13. CUDA Fortran Conditional Compilation...21
2.14. Building a CUDA Fortran Program..22
2.15. Managed and Unified Memory Options and Interoperability.. 22

Chapter 3. Reference... 24
3.1. New Subroutine and Function Attributes.. 24

3.1.1. Host Subroutines and Functions...24
3.1.2. Global and Grid_Global Subroutines...24
3.1.3. Device Subroutines and Functions... 25
3.1.4. Restrictions on Device Subprograms... 25

3.2. Variable Attributes...26
3.2.1. Device data... 26
3.2.2. Managed data... 27
3.2.3. Pinned arrays... 28
3.2.4. Constant data... 28
3.2.5. Shared data.. 29
3.2.6. Texture data..30
3.2.7. Value dummy arguments.. 31

3.3. Allocating Device Memory, Pinned Memory, and Managed Memory... 31
3.3.1. Allocating Device Memory... 31
3.3.2. Allocating Device Memory Using Runtime Routines..32
3.3.3. Allocate Pinned Memory..32
3.3.4. Allocating Managed Memory...32
3.3.5. Allocating Managed Memory Using Runtime Routines... 33
3.3.6. Allocating Device Memory Asynchronously..33
3.3.7. Allocating Device Memory Asynchronously Using Runtime Routines...................................33
3.3.8. Controlling Device Data is Managed...34

3.4. Data transfer between host and device memory.. 34
3.4.1. Data Transfer Using Assignment Statements..34
3.4.2. Implicit Data Transfer in Expressions.. 35
3.4.3. Data Transfer Using Runtime Routines..36

3.5. Invoking a kernel subroutine..36
3.6. Device code..37

3.6.1. Datatypes Allowed..37
3.6.2. Built-in variables..37
3.6.3. Fortran Intrinsics... 38
3.6.4. Synchronization Functions...40
3.6.5. Warp-Vote Operations..42
3.6.6. Load and Store Functions Using Cache Hints... 44
3.6.7. Atomic Functions... 45
3.6.8. Fortran I/O.. 47
3.6.9. PRINT Example.. 47

CUDA Fortran Programming Guide Version 23.11 | iv

3.6.10. Shuffle Functions... 47
3.6.11. Restrictions...49

3.7. Host code...50
3.7.1. SIZEOF Intrinsic..50

3.8. Fortran Device Modules..50
3.8.1. LIBM Device Module.. 51
3.8.2. Cooperative Groups Device Module.. 52
3.8.3. WMMA (Warp Matrix Multiply Add) Module..54

3.9. Fortran Host Modules...56
3.9.1. Overloaded Fortran Reduction Intrinsics in CUDAFOR..57

3.9.1.1. Fortran SUM Intrinsic Function... 58
3.9.1.2. Fortran MAXVAL Intrinsic Function..58
3.9.1.3. Fortran MINVAL Intrinsic Function.. 58
3.9.1.4. Fortran MAXLOC Intrinsic Function...59
3.9.1.5. Fortran MINLOC Intrinsic Function... 59

3.9.2. Fortran Sorting Subroutines Module.. 59
3.9.3. Overloaded Fortran Reduction Intrinsics in CUTENSOREX... 61

3.9.3.1. Overloaded Logical Array Assignment in CUTENSOREX.. 61
3.9.3.2. Fortran ALL Intrinsic Function...62
3.9.3.3. Fortran ANY Intrinsic Function.. 62
3.9.3.4. Fortran COUNT Intrinsic Function... 62

3.9.4. Overloaded Fortran Array Intrinsics in CUTENSOREX...63
3.9.4.1. Fortran MERGE Intrinsic Function...63
3.9.4.2. Fortran PACK Intrinsic Function..63
3.9.4.3. Fortran PACKLOC Function..64
3.9.4.4. Fortran UNPACK Intrinsic Function.. 64
3.9.4.5. Fortran COUNT_PREFIX Intrinsic Function...65
3.9.4.6. Fortran SUM_PREFIX Intrinsic Function... 65
3.9.4.7. Fortran RESHAPE Intrinsic Function...66
3.9.4.8. Fortran TRANSPOSE Intrinsic Function.. 66
3.9.4.9. Fortran SPREAD Intrinsic Function... 67
3.9.4.10. Fortran MATMUL Intrinsic Function.. 67
3.9.4.11. Fortran DOT_PRODUCT Intrinsic Function..68
3.9.4.12. Fortran RANDOM_NUMBER Intrinsic Function.. 69

3.9.5. Other CUDA Library Host Modules...70
Chapter 4. Runtime APIs... 73

4.1. Initialization..73
4.2. Device Management..73

4.2.1. cudaChooseDevice..73
4.2.2. cudaDeviceGetAttribute..74
4.2.3. cudaDeviceGetCacheConfig... 74
4.2.4. cudaDeviceGetLimit..74
4.2.5. cudaDeviceGetSharedMemConfig... 74

CUDA Fortran Programming Guide Version 23.11 | v

4.2.6. cudaDeviceGetStreamPriorityRange... 74
4.2.7. cudaDeviceReset.. 75
4.2.8. cudaDeviceSetCacheConfig... 75
4.2.9. cudaDeviceSetLimit..75
4.2.10. cudaDeviceSetSharedMemConfig..75
4.2.11. cudaDeviceSynchronize..75
4.2.12. cudaGetDevice.. 75
4.2.13. cudaGetDeviceCount.. 76
4.2.14. cudaGetDeviceProperties...76
4.2.15. cudaSetDevice...76
4.2.16. cudaSetDeviceFlags... 76
4.2.17. cudaSetValidDevices...76

4.3. Thread Management... 76
4.3.1. cudaThreadExit... 77
4.3.2. cudaThreadSynchronize...77

4.4. Error Handling...77
4.4.1. cudaGetErrorString.. 77
4.4.2. cudaGetLastError... 77
4.4.3. cudaPeekAtLastError...77

4.5. Stream Management.. 78
4.5.1. cudaforGetDefaultStream.. 78
4.5.2. cudaforSetDefaultStream.. 78
4.5.3. cudaStreamAttachMemAsync..78
4.5.4. cudaStreamCreate... 79
4.5.5. cudaStreamCreateWithFlags...79
4.5.6. cudaStreamCreateWithPriority..79
4.5.7. cudaStreamDestroy..79
4.5.8. cudaStreamGetPriority...79
4.5.9. cudaStreamQuery...79
4.5.10. cudaStreamSynchronize.. 80
4.5.11. cudaStreamWaitEvent.. 80

4.6. Event Management... 80
4.6.1. cudaEventCreate.. 80
4.6.2. cudaEventCreateWithFlags..80
4.6.3. cudaEventDestroy...80
4.6.4. cudaEventElapsedTime.. 81
4.6.5. cudaEventQuery..81
4.6.6. cudaEventRecord..81
4.6.7. cudaEventSynchronize... 81

4.7. Execution Control..81
4.7.1. cudaFuncGetAttributes.. 82
4.7.2. cudaFuncSetAttribute...82
4.7.3. cudaFuncSetCacheConfig.. 82

CUDA Fortran Programming Guide Version 23.11 | vi

4.7.4. cudaFuncSetSharedMemConfig.. 82
4.7.5. cudaSetDoubleForDevice... 82
4.7.6. cudaSetDoubleForHost.. 82

4.8. Occupancy..83
4.8.1. cudaOccupancyMaxActiveBlocksPerMultiprocessor..83
4.8.2. cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags... 83
4.8.3. cudaOccupancyMaxPotentialClusterSize.. 84
4.8.4. cudaOccupancyMaxActiveClusters.. 84

4.9. Memory Management... 84
4.9.1. cudaFree... 84
4.9.2. cudaFreeArray.. 85
4.9.3. cudaFreeAsync... 85
4.9.4. cudaFreeHost... 85
4.9.5. cudaGetSymbolAddress... 85
4.9.6. cudaGetSymbolSize.. 85
4.9.7. cudaHostAlloc...86
4.9.8. cudaHostGetDevicePointer.. 86
4.9.9. cudaHostGetFlags.. 86
4.9.10. cudaHostRegister... 86
4.9.11. cudaHostUnregister... 86
4.9.12. cudaMalloc..86
4.9.13. cudaMallocArray...87
4.9.14. cudaMallocAsync.. 87
4.9.15. cudaMallocManaged...87
4.9.16. cudaMallocPitch... 87
4.9.17. cudaMalloc3D... 87
4.9.18. cudaMalloc3DArray.. 88
4.9.19. cudaMemAdvise..88
4.9.20. cudaMemcpy... 88
4.9.21. cudaMemcpyArrayToArray... 88
4.9.22. cudaMemcpyAsync... 89
4.9.23. cudaMemcpyFromArray...89
4.9.24. cudaMemcpyFromSymbol..89
4.9.25. cudaMemcpyFromSymbolAsync..89
4.9.26. cudaMemcpyPeer... 90
4.9.27. cudaMemcpyPeerAsync... 90
4.9.28. cudaMemcpyToArray..90
4.9.29. cudaMemcpyToSymbol...90
4.9.30. cudaMemcpyToSymbolAsync...90
4.9.31. cudaMemcpy2D.. 90
4.9.32. cudaMemcpy2DArrayToArray.. 91
4.9.33. cudaMemcpy2DAsync...91
4.9.34. cudaMemcpy2DFromArray.. 91

CUDA Fortran Programming Guide Version 23.11 | vii

4.9.35. cudaMemcpy2DToArray... 92
4.9.36. cudaMemcpy3D.. 92
4.9.37. cudaMemcpy3DAsync...92
4.9.38. cudaMemGetInfo...92
4.9.39. cudaMemPrefetchAsync.. 92
4.9.40. cudaMemset... 92
4.9.41. cudaMemsetAsync..93
4.9.42. cudaMemset2D...93
4.9.43. cudaMemset3D...93

4.10. Unified Addressing and Peer Device Memory Access.. 93
4.10.1. cudaDeviceCanAccessPeer..94
4.10.2. cudaDeviceDisablePeerAccess..94
4.10.3. cudaDeviceEnablePeerAccess...94
4.10.4. cudaPointerGetAttributes...94

4.11. Version Management.. 94
4.11.1. cudaDriverGetVersion...94
4.11.2. cudaRuntimeGetVersion...95

4.12. Profiling Management...95
4.12.1. cudaProfilerStart.. 95
4.12.2. cudaProfilerStop...95

Chapter 5. Examples..96
5.1. Matrix Multiplication Example..96

5.1.1. Source Code Listing...96
5.1.2. Source Code Description... 98

5.2. Mapped Memory Example.. 99
5.3. Cublas Module Example... 100
5.4. CUDA Device Properties Example... 102
5.5. CUDA Asynchronous Memory Transfer Example..103
5.6. Managed Memory Example.. 105
5.7. WMMA Tensor Core Example...105
5.8. OpenACC Interoperability Example.. 106

CUDA Fortran Programming Guide Version 23.11 | viii

LIST OF TABLES

Table 1 Intrinsic Datatypes ..10

Table 2 Device Code Intrinsic Datatypes .. 37

Table 3 Fortran Numeric and Logical Intrinsics ..38

Table 4 Fortran Mathematical Intrinsics ..39

Table 5 Fortran Numeric Inquiry Intrinsics ..39

Table 6 Fortran Bit Manipulation Intrinsics ... 39

Table 7 Fortran Reduction and Array Intrinsics .. 40

Table 8 Load Functions Using Cache Hints ... 44

Table 9 Store Subroutines Using Cache Hints ...45

Table 10 Arithmetic and Bitwise Atomic Functions ...45

Table 11 Counting Atomic Functions ..46

Table 12 Compare and Swap Atomic Function ..47

Table 13 CUDA Built-in Routines ..50

Table 14 CUDA Device libm Routines ...52

CUDA Fortran Programming Guide Version 23.11 | ix

PREFACE

This document describes CUDA Fortran, a small set of extensions to Fortran that
supports and is built upon the CUDA computing architecture.

Intended Audience
This guide is intended for application programmers, scientists and engineers proficient
in programming with the Fortran, C, and/or C++ languages. The tools are available on
a variety of operating systems for the x86-64, OpenPOWER and Arm server hardware
platforms. This guide assumes familiarity with basic operating system usage.

Organization
The organization of this document is as follows:
Introduction

contains a general introduction
Programming Guide

serves as a programming guide for CUDA Fortran
Reference

describes the CUDA Fortran language reference
Runtime APIs

describes the interface between CUDA Fortran and the CUDA Runtime API
Examples

provides sample code and an explanation of the simple example.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Preface

CUDA Fortran Programming Guide Version 23.11 | x

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The NVIDIA HPC compilers are supported on 64-bit variants of the Linux operating
system on a variety of x86-compatible, OpenPOWER, and Arm processors.

Related Publications
The following documents contain additional information related to CUDA Fortran
programming.

‣ ISO/IEC 1539-1:1997, Information Technology – Programming Languages –
FORTRAN, Geneva, 1997 (Fortran 95).

‣ NVIDIA CUDA Programming Guides, NVIDIA, Version 11, 11/23/2021. Available
online at docs.nvidia.com/cuda.

‣ NVIDIA HPC Compiler User’s Guide, Release 2023. Available online at
docs.nvidia.com/hpc-sdk.

‣ NVIDIA Fortran CUDA Interfaces, Release 2023. Available online at
docs.nvidia.com/hpc-sdk/fortran-cuda-interfaces.

https://docs.nvidia.com/cuda/#programming-guides
https://docs.nvidia.com/hpc-sdk/
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces

CUDA Fortran Programming Guide Version 23.11 | 1

Chapter 1.
INTRODUCTION

Welcome to Release 2023 of NVIDIA CUDA Fortran, a small set of extensions to Fortran
that supports and is built upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel
computational units with very high memory bandwidth, and tremendous potential for
many applications. GPU designs are optimized for the computations found in graphics
rendering, but are general enough to be useful in many data-parallel, compute-intensive
programs.

NVIDIA introduced CUDA®, a general purpose parallel programming architecture,
with compilers and libraries to support the programming of NVIDIA GPUs. CUDA
comes with an extended C compiler, here called CUDA C, allowing direct programming
of the GPU from a high level language. The programming model supports four key
abstractions: cooperating threads organized into thread groups, shared memory and
barrier synchronization within thread groups, and coordinated independent thread
groups organized into a grid. A CUDA programmer must partition the program into
coarse grain blocks that can be executed in parallel. Each block is partitioned into fine
grain threads, which can cooperate using shared memory and barrier synchronization. A
properly designed CUDA program will run on any CUDA-enabled GPU, regardless of
the number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming
NVIDIA GPUs using Fortran. NVIDIA 2023 includes support for CUDA Fortran on
Linux. CUDA Fortran is an analog to NVIDIA's CUDA C compiler. Compared to the
NVIDIA OpenACC directives-based model and compilers, CUDA Fortran is a lower-
level explicit programming model with substantial runtime library components that give
expert programmers direct control of all aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following
operations in a Fortran program:

‣ Declaring variables that are allocated in the GPU device memory
‣ Allocating dynamic memory in the GPU device memory
‣ Copying data from the host memory to the GPU memory, and back
‣ Writing subroutines and functions to execute on the GPU
‣ Invoking GPU subroutines from the host

Introduction

CUDA Fortran Programming Guide Version 23.11 | 2

‣ Allocating pinned memory on the host
‣ Using asynchronous transfers between the host and GPU
‣ Using zero-copy and CUDA Unified Virtual Addressing features.
‣ Accessing read-only data through texture memory caches.
‣ Automatically generating GPU kernels using the kernel loop directive.
‣ Launching GPU kernels from other GPU subroutines running on the device using

dynamic parallelism features.
‣ Relocatable device code: Creating and linking device libraries and calling functions

defined in other modules and files.
‣ Interfacing to CUDA C.
‣ Programming access to Tensor Core hardware.

CUDA Fortran Programming Guide Version 23.11 | 3

Chapter 2.
PROGRAMMING GUIDE

This section introduces the CUDA programming model through examples written in
CUDA Fortran. For a reference for CUDA Fortran, refer to Reference.

2.1. CUDA Fortran Host and Device Code
All CUDA programs, and in general any program which uses a GPU for computation,
must perform the following steps:

 1. Initialize and select the GPU to run on. Oftentimes this is implicit in the program
and defaults to NVIDIA device 0.

 2. Allocate space for data on the GPU.
 3. Move data from the host to the GPU, or in some cases, initialize the data on the

GPU.
 4. Launch kernels from the host to run on the GPU.
 5. Gather results back from the GPU for further analysis our output from the host

program.
 6. Deallocate the data on the GPU allocated in step 2. This might be implicitly

performed when the host program exits.

Here is a simple CUDA Fortran example which performs the required steps:

Explicit Device Selection

Host code Device Code

program t1
use cudafor
use mytests
integer, parameter :: n = 100
integer, allocatable, device :: iarr(:)
integer h(n)
istat = cudaSetDevice(0)
allocate(iarr(n))
h = 0; iarr = h
call test1<<<1,n>>> (iarr)
h = iarr
print *,&
"Errors: ", count(h.ne.(/ (i,i=1,n) /))

module mytests
contains
attributes(global) &
subroutine test1(a)
integer, device :: a(*)
i = threadIdx%x
a(i) = i
return
end subroutine test1
end module mytests

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 4

Host code Device Code

deallocate(iarr)
end program t1

In the CUDA Fortran host code on the left, device selection is explicit, performed
by an API call on line 7. The provided cudafor module, used in line 2, contains
interfaces to the full CUDA host runtime library, and in this case exposes the interface
to cudaSetDevice() and ensures it is called correctly. An array is allocated on the
device at line 8. Line 9 of the host code initializes the data on the host and the device,
and, in line 10, a device kernel is launched. The interface to the device kernel is explicit,
in the Fortran sense, because the module containing the kernel is used in line 3. At line
11 of the host code, the results from the kernel execution are moved back to a host array.
Deallocation of the GPU array occurs on line 14.

Implicit Device Selection

Here is a CUDA Fortran example which is slightly more complicated than the preceding
one.

Host code Device Code

program testramp
use cublas
use ramp
integer, parameter :: N = 20000
real, device :: x(N)
twopi = atan(1.0)*8
call buildramp<<<(N-1)/512+1,512>>>(x,N)
!$cuf kernel do
do i = 1, N
x(i) = 2.0 * x(i) * x(i)
end do
print *,"float(N) = ",sasum(N,x,1)
end program

module ramp
real, constant :: twopi
contains
attributes(global) &
subroutine buildramp(x, n)
real, device :: x(n)
integer, value :: n
real, shared :: term
if (threadidx%x == 1) term = &
twopi / float(n)
call syncthreads()
i = (blockidx%x-1)*blockdim%x &
+ threadidx%x
if (i <= n) then
x(i) = cos(float(i-1)*term)
end if
return
end subroutine
end module

In this case, the device selection is implicit, and defaults to NVIDIA device 0. The device
array allocation in the host code at line 5 looks static, but actually occurs at program init
time. Larger array sizes are handled, both in the kernel launch at line 7 in the host code,
and in the device code at line 10. The device code contains examples of constant and
shared data, which are described in Reference. There are actually two kernels launched
from the host code: one explicitly provided and called from line 10, and a second,
generated using the CUDA Fortran kernel loop directive, starting at line 11. Finally, this
example demonstrates the use of the cublas module, used at line 2 in the host code,
and called at line 12.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 5

As these two examples demonstrate, all the steps listed at the beginning of this section
for using a GPU are contained within the host code. It is possible to program GPUs
without writing any kernels and device code, through library calls and CUDA Fortran
kernel loop directives as shown, or by using higher-level directive-based models;
however, programming in a lower-level model like CUDA provides the programmer
control over device resource utilization and kernel execution.

2.2. CUDA Fortran Kernels
CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on
the GPU when called from the Fortran program which has been invoked and is running
on the host or, starting in CUDA 5.0, on the device. Such a subroutine is called a device
kernel or kernel.

A call to a kernel specifies how many parallel instances of the kernel must be executed;
each instance will be executed by a different CUDA thread. The CUDA threads are
organized into thread blocks, and each thread has a global thread block index, and a
local thread index within its thread block.

A kernel is defined using the attributes(global) specifier on the subroutine
statement; a kernel is called using special chevron syntax to specify the number of
thread blocks and threads within each thread block:

! Kernel definition
attributes(global) subroutine ksaxpy(n, a, x, y)
 real, dimension(*) :: x,y
 real, value :: a
 integer, value :: n, i
 i = (blockidx%x-1) * blockdim%x + threadidx%x
 if(i <= n) y(i) = a * x(i) + y(i)
end subroutine

! Host subroutine
subroutine solve(n, a, x, y)
 real, device, dimension(*) :: x, y
 real :: a
 integer :: n
 ! call the kernel
 call ksaxpy<<<n/64, 64>>>(n, a, x, y)
end subroutine

In this case, the call to the kernel ksaxpy specifies n/64 thread blocks, each with 64
threads. Each thread is assigned a thread block index accessed through the built-in
blockidx variable, and a thread index accessed through threadidx. In this example,
each thread performs one iteration of the common SAXPY loop operation.

2.3. Thread Blocks
Each thread is assigned a thread block index accessed through the built-in blockidx
variable, and a thread index accessed through threadidx. The thread index may be
a one-, two-, or three-dimensional index. In CUDA Fortran, the thread index for each
dimension starts at one.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 6

Threads in the same thread block may cooperate by using shared memory, and by
synchronizing at a barrier using the SYNCTHREADS() intrinsic. Each thread in the block
waits at the call to SYNCTHREADS() until all threads have reached that call. The shared
memory acts like a low-latency, high bandwidth software managed cache memory.
Currently, the maximum number of threads in a thread block is 1024.

A kernel may be invoked with many thread blocks, each with the same thread block
size. The thread blocks are organized into a one-, two-, or three-dimensional grid of
blocks, so each thread has a thread index within the block, and a block index within the
grid. When invoking a kernel, the first argument in the chevron <<<>>> syntax is the grid
size, and the second argument is the thread block size. Thread blocks must be able to
execute independently; two thread blocks may be executed in parallel or one after the
other, by the same core or by different cores.

The dim3 derived type, defined in the cudafor module, can be used to declare
variables in host code which can conveniently hold the launch configuration values if
they are not scalars; for example:

type(dim3) :: blocks, threads
...
blocks = dim3(n/256, n/16, 1)
threads = dim3(16, 16, 1)
call devkernel<<<blocks, threads>>>(...)

2.4. Memory Hierarchy
CUDA Fortran programs have access to several memory spaces. On the host side, the
host program can directly access data in the host main memory. It can also directly copy
data to and from the device global memory; such data copies require DMA access to the
device, so are slow relative to the host memory. The host can also set the values in the
device constant memory, again implemented using DMA access.

On the device side, data in global device memory can be read or written by all threads.
Data in constant memory space is initialized by the host program; all threads can read
data in constant memory. Accesses to constant memory are typically faster than accesses
to global memory, but it is read-only to the threads and limited in size. Threads in the
same thread block can access and share data in shared memory; data in shared memory
has a lifetime of the thread block. Each thread can also have private local memory; data
in thread local memory may be implemented as processor registers or may be allocated
in the global device memory; best performance will often be obtained when thread local
data is limited to a small number of scalars that can be allocated as processor registers.

Through use of the CUDA API as exposed by the cudafor module, access to CUDA
features such as mapped memory, peer-to-peer memory access, and the unified virtual
address space are supported. Users should check the relevant CUDA documentation
for compute capability restrictions for these features. For an example of device array
mapping, refer to Mapped Memory Example.

Starting with CUDA 6.0, managed or unified memory programming is available on
certain platforms. For a complete description of unified memory programming, see
Appendix J. of the CUDA_C_Programming_Guide. Managed memory provides a

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 7

common address space, and migrates data between the host and device as it is used by
each set of processors. On the host side, the data is resident in host main memory. On the
device side, it is accessed as resident in global device memory.

2.5. Subroutine / Function Qualifiers
A subroutine or function in CUDA Fortran has an additional attribute, designating
whether it is executed on the host or on the device, and if the latter, whether it is a
kernel, called from the host, or called from another device subprogram.

‣ A subprogram declared with attributes(host), or with the host attribute by
default, is called a host subprogram.

‣ A subprogram declared with attributes(global) or attributes(device) is
called a device subprogram.

‣ A subroutine declared with attributes(global) is also called a kernel subroutine.
‣ A subroutine declared with attributes(grid_global) is supported starting on

cc70 hardware or greater. Threads within the grid in these kernels are co-resident on
the same device and can be synchronized.

2.5.1. Attributes(host)
The host attribute, specified on the subroutine or function statement, declares that the
subroutine or function is to be executed on the host. Such a subprogram can only be
called from another host subprogram. The default is attributes(host), if none of the
host, global, or device attributes is specified.

2.5.2. Attributes(global)
The global attribute may only be specified on a subroutine statement; it declares
that the subroutine is a kernel subroutine, to be executed on the device, and may only
be called using a kernel call containing the chevron syntax and runtime mapping
parameters.

2.5.3. Attributes(device)
The device attribute, specified on the subroutine or function statement, declares that
the subprogram is to be executed on the device; such a routine must be called from a
subprogram with the global or device attribute.

2.5.4. Attributes(host,device)
The host,device attribute, specified on the subroutine or function statement, declares
that the subprogram can be executed on both the host and device; such a routine can be
called from host code, or from a subprogram with the global or device attribute. It is
typically used for small target-independent functions.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 8

2.5.5. Attributes(grid_global)
The grid_global attribute may only be specified on a subroutine statement; it declares
that the subroutine is a kernel subroutine, to be executed on the device, and may only
be launched using a kernel call containing the chevron syntax and runtime mapping
parameters. The kernel is launched such that all threads within the grid group are
guaranteed to be co-resident on the device. This allow a grid synchronization operation
on cc70 hardware and greater.

2.5.6. Restrictions
The following restrictions apply to subprograms.

‣ A device subprogram must not contain variables with the SAVE attribute, or with
data initialization.

‣ A kernel subroutine may not also have the device or host attribute.
‣ Calls to a kernel subroutine must specify the execution configuration, as described

in "Predefined Variables in Device Subprograms," on page 9. Such a call is
asynchronous, that is, the calling routine making the call continues to execute before
the device has completed its execution of the kernel subroutine.

‣ Device subprograms may not be contained in a host subroutine or function, and
may not contain any subroutines or functions.

2.6. Variable Qualifiers
Variables in CUDA Fortran have a new attribute that declares in which memory the data
is allocated. By default, variables declared in modules or host subprograms are allocated
in the host main memory. At most one of the device, managed, constant, shared, or
pinned attributes may be specified for a variable.

2.6.1. Attributes(device)
A variable with the device attribute is called a device variable, and is allocated in the
device global memory.

‣ If declared in a module, the variable may be accessed by any subprogram in that
module and by any subprogram that uses the module.

‣ If declared in a host subprogram, the variable may be accessed by that subprogram
or subprograms contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or an assumed-
shape dummy array. An allocatable device variable has a dynamic lifetime, from when
it is allocated until it is deallocated. Other device variables have a lifetime of the entire
application.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 9

2.6.2. Attributes(managed)
Starting with CUDA 6.0, on certain platforms, a variable with the managed attribute is
called a managed variable. Managed variables may be used in both host and device code.
Variables with the managed attribute migrate between the host and device, depending
on where the accesses to the memory originate. Managed variables may be read and
written by the host, but there are access restrictions on the managed variables if kernels
are active on the device. On the device, managed variables have characteristics similar to
device variables, but managed variables cannot be allocated from the device, as device
variables can be, starting in CUDA 5.0 in support of dynamic parallelism.

2.6.3. Attributes(constant)
A variable with the constant attribute is called a device constant variable. Device
constant variables are allocated in the device constant memory space. When declared
in a module, the variable may be accessed by any subprogram in that module and by
any subprogram that uses the module. Device constant data may not be assigned or
modified in any device subprogram, but may be modified in host subprograms. Device
constant variables may not be allocatable, and have a lifetime of the entire application.

2.6.4. Attributes(shared)
A variable with the shared attribute is called a device shared variable or a shared
variable. A shared variable may only be declared in a device subprogram, and may
only be accessed within that subprogram, or by other device subprograms to which
it is passed as an argument. A shared variable may not be data initialized. A shared
variable is allocated in the device shared memory for a thread block, and has a lifetime
of the thread block. It can be read or written by all threads in the block, though a write
in one thread is only guaranteed to be visible to other threads after the next call to the
SYNCTHREADS() intrinsic.

2.6.5. Attributes(pinned)
A variable with the pinned attribute is called a pinned variable. A pinned variable
must be an allocatable array. When a pinned variable is allocated, it will be allocated in
host pagelocked memory. The advantage of using pinned variables is that copies from
page-locked memory to device memory are faster than copies from normal paged host
memory. Some operating systems or installations may restrict the use, availability, or size
of page-locked memory; if the allocation in page-locked memory fails, the variable will
be allocated in the normal host paged memory and required for asynchronous moves.

2.6.6. Attributes(texture)
Reading values through the texture memory interface is no longer recommended or
necessary on newer GPUs and support for this feature has been dropped in CUDA 12.0.

A variable with the texture attribute is called a texture variable. A texture variable must
be an F90 pointer, and can be of type real or integer. Texture variables may be accessed

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 10

only in device subprograms, and can only be read, not written. The advantage of using
texture variables is that the accesses to texture data goes through a separate cache on the
device, which may result in improved performance for many codes. Texture variables
are bound to underlying device arrays in host code using F90 pointer assignments.

2.7. Datatypes in Device Subprograms
The following intrinsic datatypes are allowed in device subprograms and device data:

Table 1 Intrinsic Datatypes

Type Type Kind

integer 1,2,4,8

logical 1,2,4,8

real 2,4,8

double precision equivalent to real(kind=8)

complex 4,8

character(len=1) 1

Derived types may contain members with these intrinsic datatypes or other allowed
derived types.

2.7.1. Half-precision Floating Point
On NVIDIA GPUs which support CUDA Compute Capability 6.0 and above, it is
possible to create variables and arrays as half precision floating point. CUDA Fortran
offers support for using the kind attribute on real data types; allowing data to be
declared as real(2). The following operators are supported for this data type: + ,
-, *, /, .lt., .le., .gt., .ge., .eq.,.ne.. The compiler will emit an error
message when using real(2) and targeting a GPU with compute capability lower than
6.0.

Half precision is represented as IEEE 754 binary16. Out of the 16-bits available to
represent the floating point value, one bit is used for sign, five bits are used for
exponent, and ten bits are used for significand. When encountering values that cannot
be precisely represented in the format, such as when adding two real(2) numbers,
IEEE 754 defines rounding rules. In the case of real(2), the default rule is round-to-
nearest with ties-to-even property which is described in detail in the IEEE 754-2008
standard in section 4.3.1. This format has a small dynamic range and thus values greater
than 65520 are rounded to infinity.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 11

2.8. Predefined Variables in Device Subprograms
Device subprograms have access to block and grid indices and dimensions through
several built-in read-only variables. These variables are of type dim3; the module
cudafor defines the derived type dim3 as follows:
type(dim3)
 integer(kind=4) :: x,y,z
end type

These predefined variables are not accessible in host subprograms.

‣ The variable threadidx contains the thread index within its thread block; for
one- or two-dimensional thread blocks, the threadidx%y and/or threadidx%z
components have the value one.

‣ The variable blockdim contains the dimensions of the thread block; blockdim has
the same value for all thread blocks in the same grid.

‣ The variable blockidx contains the block index within the grid; as with threadidx,
for one-dimensional grids, blockidx%y and/or blockidx%z has the value one.

‣ The variable griddim contains the dimensions of the grid.
‣ The constant warpsize is declared to be type integer. Threads are executed in

groups of 32, called warps; warpsize contains the number of threads in a warp, and
is currently 32.

2.9. Execution Configuration
A call to a kernel subroutine must specify an execution configuration. The execution
configuration defines the dimensionality and extent of the grid and thread blocks that
execute the subroutine. It may also specify a dynamic shared memory extent, in bytes,
and a stream identifier, to support concurrent stream execution on the device.

A kernel subroutine call looks like this:
call kernel<<<grid,block[,bytes][,streamid]>>>(arg1,arg2,...)

where

‣ grid and block are either integer expressions (for one-dimensional grids and
thread blocks), or are type(dim3), for one- or two-dimensional grids and thread
blocks.

‣ If grid is type(dim3), the value of each component must be equal to or greater
than one, and the product is usually limited by the compute capability of the device.

‣ If block is type(dim3), the value of each component must be equal to or greater
than one, and the product of the component values must be less than or equal to
1024.

‣ The value of bytes must be an integer; it specifies the number of bytes of shared
memory to be allocated for each thread block, in addition to the statically allocated
shared memory. This memory is used for the assumed-size shared variables in the
thread block; refer to Shared data for more information. If the value of bytes is not
specified, its value is treated as zero.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 12

‣ The value of streamid must be an integer greater than or equal to zero; it
specifies the stream to which this call is associated. Nonzero stream values can be
created with a call to cudaStreamCreate. Starting in CUDA 7.0, the constant
cudaStreamPerThread can be specified to use a unique default stream for each
CPU thread.

2.10. Asynchronous Concurrent Execution
There are two components to asynchronous concurrent execution with CUDA Fortran.

2.10.1. Concurrent Host and Device Execution
When a host subprogram calls a kernel subroutine, the call actually returns to the host
program before the kernel subroutine begins execution. The call can be treated as a kernel
launch operation, where the launch actually corresponds to placing the kernel on a queue
for execution by the device. In this way, the host can continue executing, including
calling or queueing more kernels for execution on the device. By calling the runtime
routine cudaDeviceSynchronize, the host program can synchronize and wait for all
previously launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases
where the host program reads or modifies device or constant data, the host program
should synchronize with the device to avoid erroneous results.

2.10.2. Concurrent Stream Execution
Operations involving the device, including kernel execution and data copies to and from
device memory, are implemented using stream queues. An operation is placed at the
end of the stream queue, and will only be initiated when all previous operations on that
queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-
created stream manages its own queue; operations on different stream queues may
execute out-of-order with respect to when they were placed on the queues, and may
execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream
zero is special in that operations on the stream zero queue will begin only after all
preceding operations on all queues are complete, and no subsequent operations on any
queue begin until the stream zero operation is complete.

2.11. Kernel Loop Directive
CUDA Fortran allows automatic kernel generation and invocation from a region of host
code containing one or more tightly nested loops. Launch configuration and mapping of
the loop iterations onto the hardware is controlled and specified as part of the directive
body using the familiar CUDA chevron syntax. As with any kernel, the launch is

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 13

asynchronous. The program can use cudaDeviceSynchronize() or CUDA Events to wait
for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the
thread blocks and grid; it is the programmer's responsibility to ensure that parallel
execution is legal and produces the correct answer. The one exception to this rule is a
scalar reduction operation, such as summing the values in a vector or matrix. For these
operations, the compiler handles the generation of the final reduction kernel, inserting
synchronization into the kernel as appropriate.

2.11.1. Syntax
The general form of the kernel directive is:
 !$cuf kernel do[(n)] <<< grid, block [optional stream] >>>

The compiler maps the launch configuration specified by the grid and block values onto
the outermost n loops, starting at loop n and working out. The grid and block values
can be an integer scalar or a parenthesized list. Alternatively, using asterisks tells the
compiler to choose a thread block shape and/or compute the grid shape from the thread
block shape and the loop limits. Loops which are not mapped onto the grid and block
values are run sequentially on each thread.

There are two ways to specify the optional stream argument:
 !$cuf kernel do[(n)] <<< grid, block, 0, streamid >>>

Or
 !$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>

Kernel Loop Directive Example 1
 !$cuf kernel do(2) <<< (*,*), (32,4) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) + c(i,j)
 end do
 end do

In this example, the directive defines a two-dimensional thread block of size 32x4.

The body of the doubly-nested loop is turned into the kernel body:

‣ ThreadIdx%x runs from 1 to 32 and is mapped onto the inner i loop.
‣ ThreadIdx%y runs from 1 to 4 and is mapped onto the outer j loop.

The grid shape, specified as (*,*), is computed by the compiler and runtime by dividing
the loop trip counts n and m by the thread block size, so all iterations are computed.

Kernel Loop Directive Example 2
 !$cuf kernel do <<< *, 256 >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) + c(i,j)
 end do
 end do

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 14

Without an explicit n on the do, the schedule applies just to the outermost loop, that is,
the default value is 1. In this case, only the outer j loop is run in parallel with a thread
block size of 256. The inner i dimension is run sequentially on each thread.

You might consider if the code in Kernel Loop Directive Example 2 would perform better
if the two loops were interchanged. Alternatively, you could specify a configuration like
the following in which the threads read and write the matrices in coalesced fashion.
 !$cuf kernel do(2) <<< *, (256,1) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) + c(i,j)
 end do
 end do

Kernel Loop Directive Example 3

In Kernel Loop Directive Example 2, the 256 threads in each block each do one element of
the matrix addition. Further expansion of the work along the i direction and all work
across the j dimension is handled by the mapping onto the grid dimensions.

To "unroll" more work into each thread, specify non-asterisk values for the grid, as
illustrated here:
 !$cuf kernel do(2) <<< (1,*), (256,1) >>>
 do j = 1, m
 do i = 1, n
 a(i,j) = b(i,j) + c(i,j)
 end do
 end do

Now the threads in a thread block handle all values in the i direction, in concert,
incrementing by 256. One thread block is created for each j. Specifically, the j loop is
mapped onto the grid x-dimension, because the compiler skips over the constant 1 in the
i loop grid size. In CUDA built-in language, gridDim%x is equal to m.

2.11.2. Restrictions on the CUF kernel directive
The following restrictions apply to CUF kernel directives:

‣ If the directive specifies n dimensions, it must be followed by at least that many
tightly-nested DO loops.

‣ The tightly-nested DO loops must have invariant loop limits: the lower limit, upper
limit, and increment must be invariant with respect to any other loop in the kernel
do.

‣ The invariant loop limits cannot be a value from an array expression, unless those
arrays have the managed attribute.

‣ There can be no GOTO or EXIT statements within or between any loops that have
been mapped onto the grid and block configuration values.

‣ The body of the loops may contain assignment statements, IF statements, loops, and
GOTO statements.

‣ Only CUDA Fortran data types are allowed within the loops.
‣ Fortran intrinsic functions are allowed, if they are allowed and supported in device

code.

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 15

‣ Device-specific intrinsics such as the CUDA atomic functions are allowed, but
require the interfaces from the cudadevice module be explicitly used to compile
correctly.

‣ Device-specific intrinsics such as the syncthreads and other warp or block-level
cooperating, syncing, or barrier functions should be avoided except in very limited
situations.

‣ Subroutine and function calls to attributes(device) subprograms are allowed if they
are in the same module as the code containing the directive.

‣ Arrays used or assigned in the loop must have the device or managed attribute.
‣ Implicit loops and F90 array syntax are not allowed within the directive loops.
‣ Scalars used or assigned in the loop must either have the device attribute, or the

compiler will make a device copy of that variable live for the duration of the loops,
one for each thread. Except in the case of reductions; when a reduction has a scalar
target, the compiler generates a correct sequence of synchronized operations to
produce one copy either in device global memory or on the host.

2.11.3. Summation Example
The simplest directive form for performing a dot product on two device arrays takes
advantage of the properties for scalar use outlined previously.
 rsum = 0.0
 !$cuf kernel do <<< *, * >>>
 do i = 1, n
 rsum = rsum + x(i)* y(i)
 end do

For reductions, the compiler recognizes the use of the scalar and generates just one final
result.

This CUF kernel can be followed by another CUF kernel in the same subprogram:
 !$cuf kernel do <<< *, * >>>
 do i = 1, n
 rsum= x(i) * y(i)
 z(i) = rsum
 end do

In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be
allocated locally on every thread. However, use of rsum on the host following this loop is
undefined.

2.11.4. Explicit Reductions
The CUDA Fortran compiler generally does a good job of identifying reductions in
simple loops. When the reduction is not detected by the compiler, due to complicated
control flow or other issues, starting in version 21.7, it is possible to specify explicit
reductions using syntax similar to that used in the OpenACC and OpenMP
programming models.
 value = 0.0
 !$cuf kernel do <<< *, * >>> reduce(+:value)
 do i = 1, n
 a(i) = real(int(a(i) * 100.0 - 50.0),kind=4)
 if (a(i) .ge. 0.0) then
 value = value + a(i)

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 16

 else
 value = value + a(i) + 50.0
 end if
 end do

Both the reduce and reduction keywords are accepted. Generally, all data types and types
of reductions that are accepted in OpenACC Fortran are accepted in CUF kernels. That
includes +, *, max, min, iand, ior, and ieor for the Fortran integer type; +, *, max, min for
the Fortran real type; + for the Fortran complex type, and finally .and., .or. for the Fortran
logical type.

2.12. Using Fortran Modules
Modern Fortran uses modules to package global data, definitions, derived types, and
interface blocks. In CUDA Fortran these modules can be used to easily communicate
data and definitions between host and device code. This section includes a few examples
of using Fortran Modules.

2.12.1. Accessing Data from Other Modules
in the following example, a set of modules are defined in one file which are accessed by
another module.

Accessing data from other modules.

In one file, moda.cuf, you could define a set of modules:
module moda
 real, device, allocatable :: a(:)
end module

module modb
 real, device, allocatable :: b(:)
end module

In another module or file, modc.cuf, you could define another module which uses the
two modules moda and modb:
module modc
 use moda
 use modb
 integer, parameter :: n = 100
 real, device, allocatable :: c(:)
 contains
 subroutine vadd()
 !$cuf kernel do <<<*,*>>>
 do i = 1, n
 c(i) = a(i) + b(i)
 end do
 end subroutine
end module

In the host program, you use the top-level module, and get the definition of n and the
interface to vadd. You can also rename the device arrays so they do not conflict with the
host naming conventions:
program t
use modc, a_d => a, b_d => b, c_d => c
real a,b,c(n)

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 17

allocate(a_d(n),b_d(n),c_d(n))
a_d = 1.0
b_d = 2.0
call vadd()
c = c_d
print *,all(c.eq.3.0)
end

2.12.2. Call Routines from Other Modules
Starting with CUDA 5.0, in addition to being able to access data declared in another
module, you can also call device functions which are contained in another module. In
the following example, the file ffill.cuf contains a device function to fill an array:

Calling routines from other modules using relocatable device code.
module ffill
 contains
 attributes(device) subroutine fill(a)
 integer, device :: a(*)
 i = (blockidx%x-1)*blockdim%x + threadidx%x
 a(i) = i
 end subroutine
end module

To generate relocatable device code, compile this file with the -gpu=rdc flag:
% nvfortran -cuda -gpu=rdc -c ffill.cuf

Now write another module and test program that calls the subroutine in this module.
Since you are calling an attributes(device) subroutine, you do not use the chevron
syntax. For convenience, an overloaded Fortran sum function is included in the file
tfill.cuf which, in this case, takes 1-D integer device arrays.
module testfill
 use ffill
 contains
 attributes(global) subroutine Kernel(arr)
 integer, device :: arr(*)
 call fill(arr)
 end subroutine Kernel

 integer function sum(arr)
 integer, device :: arr(:)
 sum = 0
 !$cuf kernel do <<<*,*>>>
 do i = 1, size(arr)
 sum = sum + arr(i)
 end do
 end function sum
end module testfill

program tfill
use testfill
integer, device :: iarr(100)
iarr = 0
call Kernel<<<1,100>>>(iarr)
print *,sum(iarr)==100*101/2
end program tfill

This file also needs to be compiled with the -gpu=rdc flag and then can be linked with
the previous object file:
% nvfortran -cuda -gpu=rdc tfill.cuf ffill.o

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 18

The -gpu=rdc option has been the default for many releases. The -gpu=nordc flag will
override the current default.

2.12.3. Declaring Device Pointer and Target Arrays
Recently, NVIDIA added support for F90 pointers that point to device data. Currently,
this is limited to pointers that are declared at module scope. The pointers can be
accessed through module association, or can be passed in to global subroutines. The
associated() function is also supported in device code. The following code shows
many examples of using F90 pointers. These pointers can also be used in CUF kernels.

Declaring device pointer and target arrays in CUDA Fortran modules
module devptr
! currently, pointer declarations must be in a module
 real, device, pointer, dimension(:) :: mod_dev_ptr
 real, device, pointer, dimension(:) :: arg_dev_ptr
 real, device, target, dimension(4) :: mod_dev_arr
 real, device, dimension(4) :: mod_res_arr
contains
 attributes(global) subroutine test(arg_ptr)
 real, device, pointer, dimension(:) :: arg_ptr
 ! copy 4 elements from one of two spots
 if (associated(arg_ptr)) then
 mod_res_arr = arg_ptr
 else
 mod_res_arr = mod_dev_ptr
 end if
 end subroutine test
end module devptr

program test
use devptr
real, device, target, dimension(4) :: a_dev
real result(20)

a_dev = (/ 1.0, 2.0, 3.0, 4.0 /)

! Pointer assignment to device array declared on host,
! passed as argument. First four result elements.
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(1:4) = mod_res_arr

!$cuf kernel do <<<*,*>>>
do i = 1, 4
 mod_dev_arr(i) = arg_dev_ptr(i) + 4.0
 a_dev(i) = arg_dev_ptr(i) + 8.0
end do

! Pointer assignment to module array, argument nullified
! Second four result elements
mod_dev_ptr => mod_dev_arr
arg_dev_ptr => null()
call test<<<1,1>>>(arg_dev_ptr)
result(5:8) = mod_res_arr

! Pointer assignment to updated device array, now associated
! Third four result elements
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(9:12) = mod_res_arr

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 19

!$cuf kernel do <<<*,*>>>
do i = 1, 4
 mod_dev_arr(i) = 25.0 - mod_dev_ptr(i)
 a_dev(i) = 25.0 - arg_dev_ptr(i)
end do

! Non-contiguous pointer assignment to updated device array
! Fourth four element elements
arg_dev_ptr => a_dev(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(13:16) = mod_res_arr

! Non-contiguous pointer assignment to updated module array
! Last four elements of the result
nullify(arg_dev_ptr)
mod_dev_ptr => mod_dev_arr(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(17:20) = mod_res_arr

print *,all(result==(/(real(i),i=1,20)/))
end

2.12.4. Declaring Textures
Reading values through the texture memory interface is no longer recommended or
necessary on newer GPUs and support for this feature has been dropped in CUDA 12.0.

CUDA texture memory can be fetched through a special texture attribute ascribed
to F90 pointers that point to device data with the target attribute. In CUDA Fortran,
textures are currently just for read-only data that travel through the texture cache.
Since there is separate hardware to support this cache, in many cases using the texture
attribute is a performance boost, especially in cases where the accesses are irregular
and noncontiguous amongst threads. The following simple example demonstrates this
capability:

Declaring textures in CUDA Fortran modules
module memtests
 real(8), texture, pointer :: t(:) ! declare the texture
 contains
 attributes(device) integer function bitrev8(i)
 integer ix1, ix2, ix
 ix = i
 ix1 = ishft(iand(ix,z'0aa'),-1)
 ix2 = ishft(iand(ix,z'055'), 1)
 ix = ior(ix1,ix2)
 ix1 = ishft(iand(ix,z'0cc'),-2)
 ix2 = ishft(iand(ix,z'033'), 2)
 ix = ior(ix1,ix2)
 ix1 = ishft(ix,-4)
 ix2 = ishft(ix, 4)
 bitrev8 = iand(ior(ix1,ix2),z'0ff')
 end function bitrev8

 attributes(global) subroutine without(a, b)
 real(8), device :: a(*), b(*)
 i = blockDim%x*(blockIdx%x-1) + threadIdx%x
 j = bitrev8(threadIdx%x-1) + 1
 b(i) = a(j)
 return
 end subroutine

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 20

 attributes(global) subroutine withtex(a, b)
 real(8), device :: a(*), b(*)
 i = blockDim%x*(blockIdx%x-1) + threadIdx%x
 j = bitrev8(threadIdx%x-1) + 1
 b(i) = t(j) ! This subroutine accesses a through the texture
 return
 end subroutine
end module memtests

program t
use cudafor
use memtests
real(8), device, target, allocatable :: da(:)
real(8), device, allocatable :: db(:)
integer, parameter :: n = 1024*1024
integer, parameter :: nthreads = 256
integer, parameter :: ntimes = 1000
type(cudaEvent) :: start, stop
real(8) b(n)

allocate(da(nthreads))
allocate(db(n))

istat = cudaEventCreate(start)
istat = cudaEventCreate(stop)

db = 100.0d0
da = (/ (dble(i),i=1,nthreads) /)

call without<<<n/nthreads, nthreads>>> (da, db)
istat = cudaEventRecord(start,0)
do j = 1, ntimes
 call without<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord(stop,0)
istat = cudaDeviceSynchronize()
istat = cudaEventElapsedTime(time1, start, stop)
time1 = time1 / (ntimes*1.0e3)
b = db
print *,sum(b)==(n*(nthreads+1)/2)

db = 100.0d0
t => da ! assign the texture to da using f90 pointer assignment

call withtex<<<n/nthreads, nthreads>>> (da, db)
istat = cudaEventRecord(start,0)
do j = 1, ntimes
 call withtex<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord(stop,0)
istat = cudaDeviceSynchronize()
istat = cudaEventElapsedTime(time2, start, stop)
time2 = time2 / (ntimes*1.0e3)
b = db
print *,sum(b)==(n*(nthreads+1)/2)

print *,"Time with textures",time2
print *,"Time without textures",time1
print *,"Speedup with textures",time1 / time2

deallocate(da)
deallocate(db)
end

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 21

2.13. CUDA Fortran Conditional Compilation
This section describes several ways that CUDA Fortran can be enabled in your
application while minimizing the changes made for maintaining a single CPU/GPU code
base.

If CUDA Fortran is enabled in compilation, either by specifying -cuda on the command
line or renaming the file with the .cuf or .CUF extension, then for a source line that
begins with the !@cuf sentinel the rest of the line appears as a statement, otherwise the
entire line is a comment.

If CUDA Fortran is enabled in compilation, either by specifying -cuda on the command
line, and pre-processing is enabled by either the -Mpreprocess compiler option or by
using capital letters in the filename extension (.CUF, .F90, etc.) then the _CUDA macro is
defined.

If CUDA Fortran is enabled in compilation, then the CUF kernel directive (denoted by !
$cuf kernel) will generate device code for that loop. Otherwise, the code will run on
the CPU.

Variable renaming can be accomplished through a combination of the above
techniques, and the use ..., only: Fortran statements to rename module variables.
For instance, you could rename device arrays contained in a module with use
device_declaration_mod, only : a => a_dev, b => b_dev in combination
with either the CUF sentinel or the _CUDA macro. Fortran associate blocks can used
similarly and offer more fine-grained control of variable renaming.

This example shows a number of these techniques, and can be compiled and run with or
without CUDA Fortran enabled.
program p
!@cuf use cudafor
real a(1000)
!@cuf attributes(managed) :: a
real b(1000)
!@cuf real, device :: b_dev(1000)
b = 2.0
!@cuf b_dev = b
!@cuf associate(b=>b_dev)
!$cuf kernel do(1) <<<*,*>>>
do i = 1, 1000
 a(i) = real(i) * b(i)
end do
!@cuf end associate
#ifdef _CUDA
print *,"GPU sum passed? ",sum(a).eq.1000*1001
#else
print *,"CPU sum passed? ",sum(a).eq.1000*1001
#endif
end program

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 22

2.14. Building a CUDA Fortran Program
CUDA Fortran is supported by the NVIDIA Fortran compiler when the filename uses
a CUDA Fortran extension. The .cuf extension specifies that the file is a free-format
CUDA Fortran program; the .CUF extension may also be used, in which case the
program is processed by the preprocessor before being compiled. To compile a fixed-
format program, add the command line option -Mfixed. CUDA Fortran extensions can
be enabled in any Fortran source file by adding the -cuda command line option. It is
important to remember that if you compile a file with the -cuda command line option,
you must also link the file with the -cuda command line option. If you compile with
-cuda, but do not link with -cuda, you will receive an undefined reference to the symbol
cuda_compiled.

To change the version of the CUDA Toolkit used from the default, specify -cuda
-gpu=cudaX.Y; CUDA Toolkit version X.Y must be installed.

Relocatable device code is generated by default. You can override this option by
specifying -cuda -gpu=nordc.

If you are using many instances of the CUDA kernel loop directives, that is, CUF
kernels, you may want to add the -Minfo switch to verify that CUDA kernels are being
generated where you expect and whether you have followed the restrictions outlined in
the preceding sections.

2.15. Managed and Unified Memory Options and
Interoperability
CUDA Fortran is one of several GPU programming models available for Fortran
developers. Other models make use of compiler options which CUDA Fortran
developers may find useful. A general discussion of the memory models which are now
supported can be found in the NVIDIA HPC Compiler User’s Guide, available online at
docs.nvidia.com/hpc-sdk.

One nvfortran compiler option that has been supported for many years is
-gpu=managed. This has been especially useful in the stdpar programming models. For
CUDA Fortran, what this option does is to use cudaMallocManaged() for all Fortran
allocatable data, in essence treating allocatable arrays as though they have the managed
attribute (See 2.6.2). This allows these arrays to be used in global subroutines, in CUF
kernels, and to be passed into library functions which normally take device arrays.

A drawback of this is that the Fortran compiler can lose the information, as arrays are
passed through levels of subroutines, that the array was originally allocatable. Therefore
the managed attribute behavior can get lost; it works one way in the top-level functions
but not in the leaf functions where you really want it. There are a few ways to work
around this, but they are usually unwanted changes to the code. Unlike OpenACC or
stdpar, CUDA Fortran has no implicit data movement. It is all explicit, under the control

https://docs.nvidia.com/hpc-sdk/

Programming Guide

CUDA Fortran Programming Guide Version 23.11 | 23

of the developer, through data attributes, assignment statements, and API calls like
cudaMemcpy.

Starting with the 23.11 release, on systems which support HMM/ATS and unified
memory, the NVHPC compilers now support an option named -gpu=unified. This
is similar to the managed option, but this applies to not just allocatable data, but all
host data: allocatable, local stack data, and global static data. All program data can be
accessed on the GPU. In some respect, all this option does for CUDA Fortran is removes
compiler errors and warnings that host data is being used where device data is expected.
All the low-level movement of data back-and-forth between CPU and GPU accesses is
handled by the operating system and CUDA driver, and a separate host and device copy
of the data is not required.

Of course, CUDA programs which have been tuned for two discrete memories,
and that make use of asynchronous operations, multiple streams, and concurrent
operation of CPUs and GPUs, may experience race conditions when using these
options and there is now one copy of the data, not two. To help debug these issues, the
NVCOMPILER_ACC_SYNCHRONOUS environment variable now accepts a bit field. Setting
the value of this environment variable to 2 will insert a synchronization point at the end
of each CUF kernel, and setting it to 4 will insert a synchronization point at the end of
each global kernel launch.

Here is an example of a simple CUDA Fortran program that can now act on unified
memory when compiled with the -gpu=unified option:
module m1
integer, parameter :: N = 5
integer :: m(N)

contains
 attributes(global) subroutine g1(a)
 integer :: a(*)
 i = threadIdx%x
 if (i .le. N) a(i) = m(i)
 return
 end subroutine g1
end module m1

program t1
 use m1
 use cudafor
 integer :: istat, a(N)
 m = [((i),i=1,N)] ! Init global data
 call g1 <<<1,N>>> (a)
 istat = cudaDeviceSynchronize()
 print *,a(1:N)
end program t1

Note that we have added a call to cudaDeviceSynchronize(), as the unified data
is read and written on the device, printed from the host, and global kernel launches are
still asynchronous with respect to the host.

When using the Managed Memory Model or the Unified Memory Model, refer to
cudaMemAdvise or cudaMemPrefetchAsync for memory hints which have been
shown to improve application performance in many cases.

There are some known bugs and limitations in the 23.11 release using unified memory in
CUF kernels. These will be addressed in a future release.

CUDA Fortran Programming Guide Version 23.11 | 24

Chapter 3.
REFERENCE

This section is the CUDA Fortran Language Reference.

3.1. New Subroutine and Function Attributes
CUDA Fortran adds new attributes to subroutines and functions. This section describes
how to specify the new attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host
and device attribute. A Function may have the host or device attribute, or both. These
attributes are specified using the attributes(attr) prefix on the Subroutine or
Function statement; if there is no attributes prefix on the subprogram statement, then
default rules are used, as described in the following sections.

3.1.1. Host Subroutines and Functions
The host attribute may be explicitly specified on the Subroutine or Function statement as
follows:
attributes(host) subroutine sub(...)
attributes(host) integer function func(...)
integer attributes(host) function func(...)

The host attributes prefix may be preceded or followed by any other allowable
subroutine or function prefix specifiers (recursive, pure, elemental, function return
datatype). A subroutine or function with the host attribute is called a host subroutine or
function, or a host subprogram. A host subprogram is compiled for execution on the host
processor. A subprogram with no attributes prefix has the host attribute by default.

3.1.2. Global and Grid_Global Subroutines
The global and grid_global attribute may be explicitly specified on the Subroutine
statement as follows:
attributes(global) subroutine sub(...)

attributes(grid_global) subroutine subg(...)

Reference

CUDA Fortran Programming Guide Version 23.11 | 25

Functions may not have a global attribute. A subroutine with either global attribute is
called a kernel subroutine. A kernel subroutine may not be recursive, pure, or elemental,
so no other subroutine prefixes are allowed. A kernel subroutine is compiled as a
kernel for execution on the device, to be called from a host routine using an execution
configuration. A kernel subroutine may not be contained in another subroutine or
function, and may not contain any other subprogram. A grid_global subroutine is
supported on cc70 hardware or greater, and specifies that the kernel should be launched
in such a way that all threads in the grid can synchronize.

Launch bounds can optionally be specified as part of the global subroutine definition
to provide optimization hints to the compiler. This will mainly aid register usage,
spilling, and occupancy heuristics used in the low-level code generation. See the CUDA
C Programming Guide for more information. The form used in CUDA Fortran is:
attributes(global) launch_bounds(maxTPB, minBPM) subroutine sub(...)

where maxTPB is the maxThreadsPerBlock, the maximum number of threads per block
with which the application will ever launch, and minBPM is the desired minimum
number of resident blocks per multiprocessor. Both values must be numeric constants.

Beginning with the 23.3 release, support for thread block clusters is enabled for Hopper
(cc90) and later targets. To specify the dimensions of the cluster, use the cluster_dims
syntax and specify each x, y, and z dimension. Values must be numeric constants. See
the CUDA C Programming Guide for more information. For instance, this example in
CUDA Fortran:
attributes(global) cluster_dims(2,2,1) subroutine sub(...)

will set up a 2x2 (x and y) set of thread blocks in a cluster. The launch to these kernels
using the chevron syntax will be adjusted appropriately at the call site.

Also, as part of the Hopper support, the launch_bounds syntax has been extended to
accept a third argument, an upper bound on the cluster size.

3.1.3. Device Subroutines and Functions
The device attribute may be explicitly specified on the Subroutine or Function statement
as follows:
attributes(device) subroutine sub(...)
attributes(device) datatype function func(...)
datatype attributes(device) function func(...)

A subroutine or function with the device attribute may not be recursive, pure, or
elemental, so no other subroutine or function prefixes are allowed, except for the
function return datatype. A subroutine or function with the device or kernel attribute is
called a device subprogram. A device subprogram is compiled for execution on the device.
A subroutine or function with the device attribute must appear within a Fortran module,
and may only be called from device subprograms in the same module.

3.1.4. Restrictions on Device Subprograms
A subroutine or function with the device or global attribute must satisfy the following
restrictions:

‣ It may not be recursive, nor have the recursive prefix on the subprogram statement.

Reference

CUDA Fortran Programming Guide Version 23.11 | 26

‣ It may not be pure or elemental, nor have the pure or elemental prefix on the
subprogram statement.

‣ It may not contain another subprogram.
‣ It may not be contained in another subroutine or function.

For more information, refer to Device Code.

3.2. Variable Attributes
CUDA Fortran adds new attributes for variables and arrays. This section describes how
to specify the new attributes and their meaning and restrictions.

Variables declared in a host subprogram may have one of three new attributes: they may
be declared to be in device global memory, in managed memory, or in pinned memory.

Variables in modules may be declared to be in device global memory, in the managed
memory space, or in constant memory space.

Variables declared in a device program units may have one of three new attributes:
they may be declared to be in device global memory, in constant memory space, in the
thread block shared memory, or without any additional attribute they will be allocated
in thread local memory. For performance and useability reasons, the value attribute can
also be used on scalar dummy arguments so they are passed by value, rather than the
Fortran default to pass arguments by reference.

3.2.1. Device data
A variable or array with the device attribute is defined to reside in the device global
memory. The device attribute can be specified with the attributes statement, or as an
attribute on the type declaration statement. The following example declares two arrays,
a and b, to be device arrays of size 100.
real :: a(100)
attributes(device) :: a
real, device :: b(100)

These rules apply to device data:

‣ An allocatable device array dynamically allocates device global memory.
‣ Device variables and arrays may appear in modules, but may not be in a Common

block or an Equivalence statement.
‣ Members of a derived type may not have the device attribute unless they are

allocatable.
‣ Device variables and arrays may be passed as actual arguments to host and device

subprograms; in that case, the subprogram interface must be explicit (in the Fortran
sense), and the matching dummy argument must also have the device attribute.

‣ Device variables and arrays declared in a host subprogram cannot have the Save
attribute unless they are allocatable.

In host subprograms, device data may only be used in the following manner:

‣ In declaration statements

Reference

CUDA Fortran Programming Guide Version 23.11 | 27

‣ In Allocate and Deallocate statements
‣ As an argument to the Allocated intrinsic function
‣ As the source or destination in a data transfer assignment statement
‣ As an actual argument to a kernel subroutine
‣ As an actual argument to another host subprogram or runtime API call
‣ As a dummy argument in a host subprogram

A device array may have the allocatable attribute, or may have adjustable extent.

3.2.2. Managed data
A variable or array with the managed attribute is managed by the unified memory
system and migrates between host main memory and device global memory. The
managed attribute can be specified with the attributes statement, or as an attribute
on the type declaration statement. Managed arrays can be automatic or allocatable. The
following example declares two arrays, a and b, to be managed arrays of size 100, and
allocates a third array, c with size 200.
real :: a(100)
attributes(managed) :: a
real, managed :: b(100)
real, allocatable, managed :: c(:)
. . .
allocate(c(200))

These rules apply to managed data on the host:

‣ Managed variables and arrays may appear in host subprograms and modules, but
may not be in a Common block or an Equivalence statement.

‣ Managed variables and arrays declared in a host subprogram cannot have the Save
attribute unless they are allocatable.

‣ Derived types may have the managed attribute.
‣ Members of a derived type may have the managed attribute.
‣ Managed derived types may also contain allocatable device arrays.
‣ Managed variables and arrays may be passed as actual arguments to other host

subprograms; if the subprogram interface is overloaded, the generic matching
priority is match another managed dummy argument first, match a dummy with the
device attribute next, and match a dummy with no (or host) attribute last.

‣ Passing a non-managed actual argument to a managed dummy argument will
result in either a compilation error if the interface is explicit, or unexpected behavior
otherwise.

‣ Managed variables and arrays may be passed as actual arguments to global
subroutines just as device variables and arrays are.

‣ By default, managed data is allocated with global scope, i.e. the flag passed to
cudaMallocManaged is cudaMemAttachGlobal.

‣ The scope of a managed variable can be changed with a call
tocudaStreamAttachMemAsync.

‣ Individual managed variables can be associated with a given stream by calling
cudaforSetDefaultStream.

‣ All subsequently allocated managed variables can also be associated with a given
stream by calling cudaforSetDefaultStream.

Reference

CUDA Fortran Programming Guide Version 23.11 | 28

‣ Accessing managed data on the host while a running kernel is accessing managed
data within the same scope on the device will result in a segmentation fault.

These rules apply to managed data on the device:

‣ The managed attribute may be used on dummy arguments.
‣ Managed data is treated as if it were device data.
‣ There is no support for allocating or deallocating managed data on the device.

Even if your application only uses a single GPU, if you are running on systems which have
multiple GPUs that are not peer-to-peer enabled, managed memory will be allocated
as zero-copy memory and performance will suffer accordingly. A workaround is to set
the environment variable CUDA_VISIBLE_DEVICES so only one GPU is seen, or to
force allocation on the GPU by setting CUDA_MANAGED_FORCE_DEVICE_ALLOC.
The CUDA C Programming Guide has more details on this in Appendix J, section J.2.5.1.

3.2.3. Pinned arrays
An allocatable array with the pinned attribute will be allocated in special page-
locked host memory, when such memory is available. The advantage of using pinned
memory is that transfers between the device and pinned memory are faster and can
be asynchronous. An array with the pinned attribute may be declared in a module or
in a host subprogram. The pinned attribute can be specified with the attributes
statement, or as an attribute on the type declaration statement. The following example
declares two arrays, p and q, to be pinned allocatable arrays.
real :: p(:)
allocatable :: p
attributes(pinned) :: p
real, allocatable, pinned :: q(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether
the interface is explicit, or whether the dummy argument has the pinned and allocatable
attributes. Where the array is deallocated, the declaration for the array must still have
the pinned attribute, or the deallocation may fail.

3.2.4. Constant data
A variable or array with the constant attribute is defined to reside in the device
constant memory space. The constant attribute can be specified with the attributes
statement, or as an attribute on the type declaration statement. The following example
declares two arrays, c and d, to be constant arrays of size 100.
real :: c(100)
attributes(constant) :: c
real, constant :: d(100)

These rules apply to constant data:

‣ Constant variables and arrays can appear in modules, but may not be in a Common
block or an Equivalence statement. Constant variables appearing in modules may
be accessed via the use statement in both host and device subprograms.

‣ Constant data may not have the Pointer, Target, or Allocatable attributes.
‣ Members of a derived type may not have the constant attribute.

Reference

CUDA Fortran Programming Guide Version 23.11 | 29

‣ Arrays with the constant attribute must have fixed size.
‣ Constant variables and arrays may be passed as actual arguments to host and device

subprograms, as long as the subprogram interface is explicit, and the matching
dummy argument also has the constant attribute. Constant variables cannot
be passed as actual arguments between a host subprogram and a device global
subprogram.

‣ Within device subprograms, variables and arrays with the constant attribute may
not be assigned or modified.

‣ Within host subprograms, variables and arrays with the constant attribute may be
read and written.

In host subprograms, data with the constant attribute may only be used in the
following manner:

‣ As a named entity within a USE statement.
‣ As the source or destination in a data transfer assignment statement
‣ As an actual argument to another host subprogram
‣ As a dummy argument in a host subprogram

3.2.5. Shared data
A variable or array with the shared attribute is defined to reside in the shared memory
space of a thread block. A shared variable or array may only be declared and used
inside a device subprogram. The shared attribute can be specified with the attributes
statement, or as an attribute on the type declaration statement. The following example
declares two arrays, s and t, to be shared arrays of size 100.
real :: c(100)
attributes(shared) :: c
real, shared :: d(100)

These rules apply to shared data:

‣ Shared data may not have the Pointer, Target, or Allocatable attributes.
‣ Shared variables may not be in a Common block or Equivalence statement.
‣ Members of a derived type may not have the shared attribute.
‣ Shared variables and arrays may be passed as actual arguments to from a device

subprogram to another device subprogram, as long as the interface is explicit and
the matching dummy argument has the shared attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays;
that is, the last dimension of a shared array may have an asterisk as its upper bound:
real, shared :: x(*)

Such an array has special significance. Its size is determined at run time by the call
to the kernel. When the kernel is called, the value of the bytes argument in the
execution configuration is used to specify the number of bytes of shared memory that
is dynamically allocated for each thread block. This memory is used for the assumed-
size shared memory arrays in that thread block; if there is more than one assumed-size
shared memory array, they are all implicitly equivalenced, starting at the same shared
memory address. Programmers must take this into account when coding.

Reference

CUDA Fortran Programming Guide Version 23.11 | 30

Shared arrays may be declared as Fortran automatic arrays. For automatic arrays, the
bounds are declared as an expression containing constants, parameters, blockdim
variables, and integer arguments passed in by value. The allocation of automatic arrays
also comes from the dynamic area specified via the chevron launch configuration. If
more than one automatic array is declared, the compiler and runtime manage the offsets
into the dynamic area. Programmers must provide a sufficient number of bytes in
the chevron launch configuration shared memory value to cover all automatic arrays
declared in the global subroutine.
attributes(global) subroutine sub(A, n,
integer, value :: n, nb
real, shared :: s(nb*blockdim%x,nb)

If a shared array is not a dummy argument and not assumed-size or automatic, it must
be fixed size. In this case, the allocation for the shared array does not come from the
dynamically allocated shared memory area specified in the launch configuration, but
rather it is declared statically within the function. If the global routine uses only fixed
size shared arrays, or none at all, no shared memory amount needs to be specified at the
launch.

3.2.6. Texture data
Reading values through the texture memory interface is no longer recommended or
necessary on newer GPUs and support for this feature has been dropped in CUDA 12.0.

Read-only real and integer device data can be accessed in device subprograms through
the texture memory by assigning an F90 pointer variable to the underlying device array.
To use texture memory in this manner, follow these steps:

 1. Add a declaration to a module declaration section that contains the device code,
such that the declaration is available to the device subprogram through host
association, and available to the host code via either host or use association:
 real, texture, pointer :: t(:)

 2. In your host code, add the target attribute to the device data that you wish to access
via texture memory:

Change: real, device :: a(n)
To: real, target, device :: a(n)

The target attribute is standard F90/F2003 syntax to denote an array or other data
structure that may be "pointed to" by another entity.

 3. Tie the texture declaration to the device array by using the F90 pointer assignment
operator in your host code. A simple expression like the following one performs all
the underlying CUDA texture binding operations.
 t => a

The CUDA Fortran device code that can refer to t through host association can now
access the elements of t without any change in syntax.

In the following example, accesses of t, targeting a, go through the texture cache.
 ! Vector add, s through device memory, t is through texture memory
 i = threadIdx%x + (blockIdx%x-1)*blockDim%x
 s(i) = s(i) + t(i)

Reference

CUDA Fortran Programming Guide Version 23.11 | 31

3.2.7. Value dummy arguments
In device subprograms, following the rules of Fortran, dummy arguments are passed
by default by reference. This means the actual argument must be stored in device
global memory, and the address of the argument is passed to the subprogram. Scalar
arguments can be passed by value, as is done in C, by adding the value attribute to the
variable declaration.
attributes(global) subroutine madd(a, b, n)
 real, dimension(n,n) :: a, b
 integer, value :: n

In this case, the value of n can be passed from the host without needing to reside in
device memory. The variable arrays corresponding to the dummy arguments a and b
must be set up before the call to reside on the device.

3.3. Allocating Device Memory, Pinned Memory, and
Managed Memory
This section describes extensions to the Allocate statement, specifically for dynamically
allocating device arrays, host pinned arrays, managed arrays, and other supported
methods for allocating memory specific to CUDA Fortran.

3.3.1. Allocating Device Memory
Device arrays can have the allocatable attribute. These arrays are dynamically allocated
in host subprograms using the Allocate statement, and dynamically deallocated using
the Deallocate statement. If a device array declared in a host subprogram does not have
the Save attribute, it will be automatically deallocated when the subprogram returns.
real, allocatable, device :: b(:)
allocate(b(5024),stat=istat)
...
if(allocated(b)) deallocate(b)

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar
feature. To use these, declare and initialize the scalar on the host as:
integer, allocatable, device :: ndev
allocate(ndev)
ndev = 100

The language also supports the ability to create the equivalent of automatic and local
device arrays without using the allocate statement. These arrays will also have a lifetime
of the subprogram as is usual with the Fortran language:
subroutine vfunc(a,c,n)
 real, device :: adev(n)
 real, device :: atmp(4)
 ...
end subroutine vfunc ! adev and atmp are deallocated

Automatic and local arrays declared in this way, not containing the allocatable attribute,
cannot have the Save attribute.

Reference

CUDA Fortran Programming Guide Version 23.11 | 32

3.3.2. Allocating Device Memory Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran
interfaces to the CUDA memory management runtime routines are provided. These
functions return memory which will bypass certain Fortran allocatable properties such
as automatic deallocation, and thus the arrays are treated more like C malloc’ed areas.
Mixing standard Fortran allocate/deallocate with the runtime Malloc/Free for a given
array is not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the
supported intrinsic data-types, and cudaFree can be used to free it:
real, allocatable, device :: v(:)
istat = cudaMalloc(v, 100)
...
istat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to Memory
Management.

3.3.3. Allocate Pinned Memory
Allocatable arrays with the pinned attribute are dynamically allocated using the
Allocate statement. The compiler will generate code to allocate the array in host page-
locked memory, if available. If no such memory space is available, or if it is exhausted,
the compiler allocates the array in normal paged host memory. Otherwise, pinned
allocatable arrays work and act like any other allocatable array on the host.
real, allocatable, pinned :: p(:)
allocate(p(5000),stat=istat)
...
if(allocated(p)) deallocate(p)

To determine whether or not the allocation from page-locked memory was successful,
an additional PINNED keyword is added to the allocate statement. It returns a logical
success value.
logical plog
allocate(p(5000), stat=istat, pinned=plog)
if (.not. plog) then
. . .

3.3.4. Allocating Managed Memory
Managed arrays may or may not have the allocatable attribute. These arrays are all
dynamically allocated just as device arrays are.
real, allocatable, managed :: b(:)
allocate(b(5024),stat=istat)
...
if(allocated(b)) deallocate(b)

CUDA Fortran supports the ability to create the equivalent of automatic and local
managed arrays without using the allocate statement. These arrays will also have a
lifetime of the subprogram as is usual with the Fortran language:
subroutine vfunc(a,c,n)
 real, managed :: aman(n)

Reference

CUDA Fortran Programming Guide Version 23.11 | 33

 real, managed :: atmp(4)
 ...
end subroutine vfunc ! aman and atmp are deallocated

3.3.5. Allocating Managed Memory Using Runtime
Routines
The cudaMallocManaged function can be used to allocate single-dimensional managed
arrays of the supported intrinsic data-types, and cudaFree can be used to free it:
use cudafor
real, allocatable, managed :: v(:)
istat = cudaMallocManaged(v, 100, cudaMemAttachHost)
...
istat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to Memory
Management.

3.3.6. Allocating Device Memory Asynchronously
Beginning in CUDA 11.2, allocatable device arrays can be dynamically allocated in host
subprograms using the Allocate statement, asynchronously, on a specified stream.
real, allocatable, device :: b(:)
integer(kind=cuda_stream_kind) :: istream
...
allocate(b(5024),stream=istream)

These arrays can also be dynamically deallocated using the Deallocate statement. It
is not necessary, or allowed, to specify a stream during deallocation. If a device array
declared in a host subprogram does not have the Save attribute, it will be automatically
deallocated when the subprogram returns. Given the allocation above, this statement
will deallocate the array b on the stream specified by istream.
if(allocated(b)) deallocate(b)

Arrays declared using the Allocate statement with a stream are associated with
that stream as if the cudaforSetDefaultStream function were called for that
combination of device data and stream. To use this data in operations outside of this
stream, users should call cudaStreamSynchronize first to block host execution until
all stream operations have completed.

3.3.7. Allocating Device Memory Asynchronously Using
Runtime Routines
The cudaMallocAsync function can be used to allocate single-dimensional arrays
of the supported intrinsic data-types, and cudaFreeAsync can be used to free it,
asynchronously, on a given stream:
real, allocatable, device :: v(:)
integer(kind=cuda_stream_kind) :: istream
istat = cudaMallocAsync(v, 100, istream)
...
istat = cudaFreeAsync(v, istream)

Reference

CUDA Fortran Programming Guide Version 23.11 | 34

For a complete list of the memory management runtime routines, refer to Memory
Management.

3.3.8. Controlling Device Data is Managed
Beginning in the HPC SDK compiler version 21.9, it is possible to change the CUDA
Fortran device data allocation behavior to actually allocate managed memory instead of
device memory, with potentially no coding changes.

This can be useful in order to oversubscribe the available GPU memory, and allow the
OS and driver to page memory to and from the GPU as needed, either as an experiment
or for running larger problem sizes than normally available.

All CUDA Fortran device allocations go through a small wrapper layer before making
the actual CUDA API call. By setting the environment variable
NV_CUDAFOR_DEVICE_IS_MANAGED=1

allocations in the form of the first two subsections in this section, Allocating
Device Memory and Allocating Device Memory Using Runtime Routines
will eventually call cudaMallocManaged rather than cudaMalloc. In addition, some
prefetching hints are added to make the accesses to the newly allocated data most
efficient from the GPU (the current device).

3.4. Data transfer between host and device memory
This section provides methods to transfer data between the host and device memory.

3.4.1. Data Transfer Using Assignment Statements
You can copy variables and arrays from the host memory to the device memory by
using simple assignment statements in host subprograms. By default, using assignment
statements to read or write device, managed, or constant data implicitly uses CUDA
stream zero. This means such data copies are synchronous, and the data copy waits
until all previous kernels and data copies complete. Alternatively, you can use the
cudaforSetDefaultStream call to associate one or more device and managed
variables to a particular stream. After this call has occurred, assignment statements on
those variables will run asynchronously on the specified stream.

Specific information on assignment statements:

‣ An assignment statement where the left hand side is a device variable or device
array or array section, and the right hand side is a host variable or host array or
array section, copies data from the host memory to the device global memory.

‣ An assignment statement where the left hand side is a host variable or host array or
array section, and the right hand side is a device variable or device array or array
section, copies data from the device global memory to the host memory.

‣ An assignment statement with a device variable or device array or array section on
both sides of the assignment statement copies data between two device variables or
arrays.

Reference

CUDA Fortran Programming Guide Version 23.11 | 35

Similarly, you can use simple assignment statements to copy or assign variables or
arrays with the constant attribute.

Specific information on assignment statements and managed data:

‣ An assignment statement where the left hand side is a managed variable or
managed array, and the right hand side is a conforming scalar constant, host
variable, host array or array section, copies data from the host memory to the device
global memory using cudaMemcpy, memset, or a similar operation.

‣ An assignment statement where the left hand side is a managed array section and
the right hand side is any host variable copies data using generated host code.

‣ An assignment statement where the left hand side is a managed variable, managed
array or array section, and the right hand side is a device variable or device array or
array section, copies data from the device global memory to the host memory using
cudaMemcpy or a similar operation.

‣ An assignment statement where the right hand side is a managed variable or
managed array, and the left hand side is a host variable, host array or array section,
copies data from the device global memory to the host memory using cudaMemcpy
or a similar operation.

‣ An assignment statement where the right hand side is a managed array section and
the left hand side is any host or managed variable copies data using generated host
code.

‣ An assignment statement where the right hand side is a managed variable, managed
array or array section, and the left hand side is a device variable or device array or
array section, copies data using cudaMemcpy and accesses the data from the device.

More information on Memcpy and Memset behavior with managed memory can be
found in Appendix J. of the CUDA_C_Programming_Guide.

3.4.2. Implicit Data Transfer in Expressions
Some limited data transfer can be enclosed within expressions. In general, the rule
of thumb is all arithmetic or operations must occur on the host, which normally only
allows one device array to appear on the right-hand-side of an expression. Temporary
arrays are generated to accommodate the host copies of device data as needed. For
instance, if a, b, and c are conforming host arrays, and adev, bdev, and cdev are
conforming device arrays, the following expressions are legal:
a = adev

adev = a

b = a + adev

c = x * adev + b

The following expressions are not legal as they either promote a false impression of
where the actual computation occurs, or would be more efficient written in another way,
or both:
c = adev + bdev

adev = adev + a

b = sqrt(adev)

Reference

CUDA Fortran Programming Guide Version 23.11 | 36

Elemental transfers are supported by the language but perform poorly. Array slices are
also supported, and their performance is dependent on the size of the slice, the amount
of contiguous data in the slices, and the implementation.

3.4.3. Data Transfer Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran
interfaces to the CUDA memory management runtime routines are provided. These
functions can transfer data either from the host to device, device to host, or from one
device array to another.

The cudaMemcpy function can be used to copy data between the host and the GPU:
real, device :: wrk(1024)
real cur(512)
istat = cudaMemcpy(wrk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy
routines is optional in Fortran because the attributes of the arrays are explicitly declared.
Counts expressed in arguments to the Fortran runtime routines are expressed in terms of
data type elements, not bytes.

For a complete list of memory management runtime routines, refer to Memory
Management.

3.5. Invoking a kernel subroutine
A call to a kernel subroutine must give the execution configuration for the call. The
execution configuration gives the size and shape of the grid and thread blocks that
execute the function as well as the amount of shared memory to use for assumed-size
shared memory arrays and the associated stream.

The execution configuration is specified after the subroutine name in the call statement;
it has the form:
<<< grid, block, bytes, stream >>>

‣ grid is an integer, or of type(dim3). If it is type(dim3), the value of grid%z
must be one. The product grid%x*grid%y gives the number of thread blocks to
launch. If grid is an integer, it is converted to dim3(grid,1,1). bl

‣ block is an integer, or of type(dim3). If it is type(dim3), the number of threads
per thread block is block%x*block%y*block%z, which must be less than
the maximum supported by the device. If block is an integer, it is converted to
dim3(block,1,1).

‣ bytes is optional; if present, it must be a scalar integer, and specifies the number
of bytes of shared memory to be allocated for each thread block to use for assumed-
size shared memory arrays. For more information, refer to Shared Data. If not
specified, the value zero is used.

‣ stream is optional; if present, it must be an integer, and have a value of zero, or
a value returned by a call to cudaStreamCreate. See Section 4.5 on page 41. It
specifies the stream to which this call is enqueued. The stream constant value

Reference

CUDA Fortran Programming Guide Version 23.11 | 37

cudaStreamPerThread may be specified. This will use a unique stream for each
CPU thread.

For instance, a kernel subroutine
attributes(global) subroutine sub(a)

can be called like:
call sub <<< DG, DB, bytes >>> (A)

The function call fails if the grid or block arguments are greater than the maximum
sizes allowed, or if bytes is greater than the shared memory available. Shared memory
may also be consumed by fixed-sized shared memory declarations in the kernel and
for other dedicated uses, such as function arguments and execution configuration
arguments.

3.6. Device code

3.6.1. Datatypes Allowed
Variables and arrays with the device, constant, or shared attributes, or declared in device
subprograms, are limited to the types described in this section. They may have any of
the intrinsic datatypes in the following table.

Table 2 Device Code Intrinsic Datatypes

Type Type Kind

integer 1,2,4(default),8

logical 1,2,4(default),8

real 2,4(default),8

double precision equivalent to real(kind=8)

complex 4(default),8

character(len=1) 1 (default)

Additionally, they may be of derived type, where the members of the derived type have
one of the allowed intrinsic datatypes, or another allowed derived type.

The system module cudafor includes definitions of the derived type dim3, defined as
type(dim3)
 integer(kind=4) :: x,y,z
end type

3.6.2. Built-in variables
Several CUDA Fortran read-only predefined variables are available in device code. They
are declared as follows:
type(dim3) :: threadidx, blockdim, blockidx, griddim
integer(4), parameter :: warpsize = 32

Reference

CUDA Fortran Programming Guide Version 23.11 | 38

‣ The variable threadidx contains the thread index within its thread block; for
one- or two-dimensional thread blocks, the threadidx%y and/or threadidx%z
components have the value one.

‣ The variable blockdim contains the dimensions of the thread block; blockdim has
the same value for all threads in the same grid; for one- or two-dimensional thread
blocks, the blockdim%y and/or blockdim%z components have the value one.

‣ The variable blockidx contains the block index within the grid; as with
threadidx, for one-dimensional grids, blockidx%y has the value one. The value
of blockidx%z is always one. The value of blockidx is the same for all threads in
the same thread block.

‣ The variable griddim contains the dimensions of the grid; the value of griddim
%z is always one. The value of griddim is the same for all threads in the same grid;
the value of griddim%z is always one; the value of griddim%y is one for one-
dimensional grids.

‣ The variables threadidx, blockdim, blockidx, and griddim are available only
in device subprograms.

‣ The constant warpsize contains the number of threads in a warp. It is currently
defined to be 32.

3.6.3. Fortran Intrinsics
This section lists the Fortran intrinsic functions allowed in device subprograms.

The use of system module wmma is required to call mathematical and some numeric
intrinsics using real(2) data type. Information about which intrinsics are only
available via wmma module can be found in WMMA Module description section.

Table 3 Fortran Numeric and Logical Intrinsics

Name Argument Datatypes Name Argument Datatypes

abs integer, real(2,4,8),
complex

int integer, real(2,4,8),
complex

aimag complex logical logical

aint real(4,8) max integer, real(2,4,8)

anint real(4,8) min integer, real(2,4,8)

ceiling real(4,8) mod integer, real(4,8)

cmplx real(2,4,8) or (real,real) modulo integer, real(4,8)

conjg complex nint real(4,8)

dim integer, real(4,8) real integer, real(2,4,8),
complex

floor real(4,8) sign integer, real(4,8)

Reference

CUDA Fortran Programming Guide Version 23.11 | 39

Table 4 Fortran Mathematical Intrinsics

Name Argument Datatypes Name Argument Datatypes

acos real(2,4,8) cosh real(2,4,8)

acosh real(4,8) erf real(4,8)

asin real(2,4,8) erfc real(4,8)

asinh real(4,8) exp real(2,4,8), complex

atan real(2,4,8) gamma real(4,8)

atanh real(4,8) hypot (real(4,8),real(4,8))

atan2 (real,real) log real(2,4,8), complex

bessel_j0 real(4,8) log10 real(2,4,8)

bessel_j1 real(4,8) log_gamma real(4,8)

bessel_jn (int,real(4,8)) sin real(2,4,8), complex

bessel_y0 real(4,8) sinh real(2,4,8)

bessel_y1 real(4,8) sqrt real(2,4,8), complex

bessel_yn (int,real(4,8)) tan real(2,4,8)

cos real(2,4,8), complex tanh real(2,4,8)

Table 5 Fortran Numeric Inquiry Intrinsics

Name Argument Datatypes Name Argument Datatypes

bit_size integer precision real(2,4,8), complex

digits integer, real(2,4,8) radix integer, real(2,4,8)

epsilon real(2,4,8) range integer, real(2,4,8),
complex

huge integer, real(2,4,8) selected_int_kind integer

maxexponent real(2,4,8) selected_real_kind(integer,integer)

minexponent real(2,4,8) tiny real(2,4,8)

Table 6 Fortran Bit Manipulation Intrinsics

Name Argument Datatypes Name Argument Datatypes

btest integer ishft integer

iand integer ishftc integer

ibclr integer leadz integer

ibits integer mvbits integer

ibset integer not integer

ieor integer popcnt integer

Reference

CUDA Fortran Programming Guide Version 23.11 | 40

Name Argument Datatypes Name Argument Datatypes

ior integer poppar integer

Table 7 Fortran Reduction and Array Intrinsics

Name Argument Datatypes Name Argument Datatypes

all logical maxval integer, real(2,4,8)

any logical minloc integer, real(4,8)

count logical minval integer, real(2,4,8)

dot_product real(4,8) norm2 real(4,8)

matmul real(4,8), complex product integer, real(4,8), complex

maxloc integer, real(4,8) sum integer, real(4,8), complex

3.6.4. Synchronization Functions
This section describes the synchronization functions and subroutines supported in
device subprograms.

Synchronization Functions

The synchronization functions control the synchronization of various threads during
execution of thread blocks.

syncthreads

syncthreads_count

syncthreads_and

syncthread_or

syncwarp

threadfence

threadfence_block

threadfence_system

For detailed information on these functions, refer to Thread Management.

SYNCTHREADS

The syncthreads intrinsic subroutine acts as a barrier synchronization for all threads
in a single thread block; it has no arguments:
subroutine syncthreads()

Sometimes threads within a block access the same addresses in shared or global
memory, thus creating potential read-after-write, write-after-read, or write-after-
write hazards for some of these memory accesses. To avoid these potential issues, use
syncthreads()to specify synchronization points in the kernel. This intrinsic acts
as a barrier at which all threads in the block must wait before any thread is allowed
to proceed. Threads within a block cooperate and share data by synchronizing their
execution to coordinate memory accesses.

Reference

CUDA Fortran Programming Guide Version 23.11 | 41

Each thread in a thread block pauses at the syncthreads call until all threads have
reached that call. If any thread in a thread block issues a call to syncthreads, all
threads must also reach and execute the same call statement, or the kernel fails to
complete correctly.

SYNCTHREADS_AND
integer syncthreads_and(int_value)

syncthreads_and. like syncthreads, acts as a barrier at which all threads
in the block must wait before any thread is allowed to proceed. In addition,
syncthreads_and evaluates the integer argument int_value for all threads of the block
and returns non-zero if and only if int_value evaluates to non-zero for all of them.

SYNCTHREADS_COUNT
integer syncthreads_count(int_value)

syncthreads_count, like syncthreads, acts as a barrier at which all threads
in the block must wait before any thread is allowed to proceed. In addition,
syncthreads_count evaluates the integer argument int_value for all threads of the
block and returns the number of threads for which int_value evaluates to non-zero.

SYNCTHREADS_OR
integer syncthreads_or(int_value)

syncthreads_or, like syncthreads, acts as a barrier at which all threads in the block
must wait before any thread is allowed to proceed. In addition, syncthreads_or
evaluates the integer argument int_value for all threads of the block and returns non-zero
if and only if int_value evaluates to non-zero for any of them.

SYNCWARP
subroutine syncwarp(int_mask)

syncwarp will cause all executing threads witin a warp, and specified in the mask
argument, to reach a barrier, at which point all threads in the mask must execute
syncwarp before any thread is allowed to proceed.

Memory Fences

In general, when a thread issues a series of writes to memory in a particular order, other
threads may see the effects of these memory writes in a different order. You can use
threadfence(), threadfence_block(), and threadfence_system() to create a
memory fence to enforce ordering.

For example, suppose you use a kernel to compute the sum of an array of N numbers
in one call. Each block first sums a subset of the array and stores the result in global
memory. When all blocks are done, the last block done reads each of these partial sums
from global memory and sums them to obtain the final result. To determine which block

Reference

CUDA Fortran Programming Guide Version 23.11 | 42

is finished last, each block atomically increments a counter to signal that it is done with
computing and storing its partial sum. If no fence is placed between storing the partial
sum and incrementing the counter, the counter might increment before the partial sum is
stored.

THREADFENCE
subroutine threadfence()

threadfence acts as a memory fence, creating a wait. Typically, when a thread issues
a series of writes to memory in a particular order, other threads may see the effects of
these memory writes in a different order. threadfence() is one method to enforce a
specific order. All global and shared memory accesses made by the calling thread prior
to threadfence() are visible to:

‣ All threads in the thread block for shared memory accesses
‣ All threads in the device for global memory accesses

THREADFENCE_BLOCK
subroutine threadfence_block()

threadfence_block acts as a memory fence, creating a wait until all global and
shared memory accesses made by the calling thread prior to threadfence_block()
are visible to all threads in the thread block for all accesses.

THREADFENCE_SYSTEM
subroutine threadfence_system()

threadfence_system acts as a memory fence, creating a wait until all global and
shared memory accesses made by the calling thread prior to threadfence_system()
are visible to:

‣ All threads in the thread block for shared memory accesses
‣ All threads in the device for global memory accesses
‣ Host threads for page-locked host memory accesses

threadfence_system() is only supported by devices of compute capability 2.0 or
higher.

3.6.5. Warp-Vote Operations
New warp-vote and warp match operations have been added to NVIDIA CUDA
Fortran. The older versions remain for legacy reasons; they will invoke the newer
functionality with a mask specifying all threads in the warp.

Reference

CUDA Fortran Programming Guide Version 23.11 | 43

ALLTHREADS

The allthreads function is a warp-vote operation with a single scalar logical
argument:
if(allthreads(a(i)<0.0)) allneg = .true.

The function allthreads evaluates its argument for all threads in the current warp.
The value of the function is .true. only if the value of the argument is .true. for all
threads in the warp.

ANYTHREAD

The anythread function is a warp-vote operation with a single scalar logical argument:
if(anythread(a(i)<0.0)) allneg = .true.

The function anythread evaluates its argument for all threads in the current warp. The
value of the function is .false. only if the value of the argument is .false. for all
threads in the warp.

BALLOT

The ballot function is a warp-vote operation with a single integer argument:
unsigned integer ballot(int_value)

The function ballot evaluates the argument int_value for all threads of the warp
and returns an integer whose Nth bit is set if and only if int_value evaluates to non-
zero for the Nth thread of the warp.

This function is only supported by devices of compute capability 2.0.

Example:
if(ballot(int_value)) allneg = .true.

ACTIVEMASK
unsigned integer activemask()

The activemask function returns a 32-bit integer mask of all the currently active
threads in the calling warp. The Nth bit is set if the Nth lane in the warp is active when
activemask is called.

ALL_SYNC
integer all_sync(int_mask, int_predicate)

The all_sync function evaluates the predicate argument for all non-exited threads in
the mask and returns non-zero if the predicate is non-zero for all threads.

ANY_SYNC
integer any_sync(int_mask, int_predicate)

Reference

CUDA Fortran Programming Guide Version 23.11 | 44

The any_sync function evaluates the predicate argument for all non-exited threads in
the mask and returns non-zero if the predicate is non-zero for any of them.

BALLOT_SYNC
unsigned integer ballot_sync(int_mask, int_predicate)

The ballot_sync function evaluates the predicate argument for all non-exited threads
set by the mask in the calling warp. The Nth bit is set in the Nth lane if the predicate is
non-zero for the Nth thread.

MATCH_ALL_SYNC
unsigned integer match_all_sync(int_mask, value, int_predicate)

The match_all_sync function performs a broadcast and compare of the value for
all threads within a warp specified by the mask argument. It returns int_mask if all
threads have the same value, otherwise 0. The int_predicate is set to true in the
former case, false in the latter. This function currently accepts the type of value to be
integer(4), integer(8), real(4), or real(8).

MATCH_ANY_SYNC
unsigned integer match_any_sync(int_mask, value)

The match_any_sync function performs a broadcast and compare of the value for all
threads within a warp specified by the mask argument. It returns a mask of threads that
have the same value as value. This function currently accepts the type of value to be
integer(4), integer(8), real(4), or real(8).

3.6.6. Load and Store Functions Using Cache Hints
These load and store functions can provide finer control over the caching behavior and
act as optimization hints. They do not change the memory consistency behavior of the
program. These functions and subroutines can operate on most supported data types,
including integer(4), integer(8), real(2), real(4), real(8), complex(4), and complex(8).
There is also support for integer(4) and real(4) of dimension(4), and integer(8) and
real(8) of dimension(2), i.e. 128-bit loads and stores..

The cache load functions are:

Table 8 Load Functions Using Cache Hints

Function Caching Behavior

value = __ldca(mem) Cache at all levels

value = __ldcg(mem) Cache at global level

value = __ldcs(mem) Cache streaming, accessed once

value = __ldlu(mem) Last use

value = __ldcv(mem) Don't cache, treat as volatile

Reference

CUDA Fortran Programming Guide Version 23.11 | 45

The cache store subroutines are:

Table 9 Store Subroutines Using Cache Hints

Subroutine Caching Behavior

call __stwb(mem, value) Cache write-back all coherent
levels

call __stcg(mem, value) Cache at global level

call __stcs(mem, value) Cache streaming, accessed once

call __stwt(mem, value) Cache write-through

3.6.7. Atomic Functions
The atomic functions read and write the value of their first operand, which must be
a variable or array element in shared memory (with the shared attribute) or in device
global memory (with the device attribute). Atomic functions are only supported by
devices with compute capability 1.1 and higher. Compute capability 1.2 or higher is
required if the first argument has the shared attribute. Certain real(4) and real(8) atomic
functions may require compute capability 2.0 and higher.

The atomic functions return correct values even if multiple threads in the same
or different thread blocks try to read and update the same location without any
synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also
combine that value with the value of the second argument, depending on the function,
and store the combined value back to the first argument location. For atomicadd,
atomicsub, atomicmax, atomicmin, and atomicexch, the data types may be integer(4),
integer(8), real(4), or real(8). For atomicand, atomicor, and atomicxor, only integer(4)
arguments are supported.

The return value for each of these functions is the first argument, mem.

These functions are:

Table 10 Arithmetic and Bitwise Atomic Functions

Function Additional Atomic Update

atomicadd(mem, value) mem = mem + value

atomicsub(mem, value) mem = mem − value

atomicmax(mem, value) mem = max(mem,value)

Reference

CUDA Fortran Programming Guide Version 23.11 | 46

Function Additional Atomic Update

atomicmin(mem, value) mem = min(mem,value)

atomicand(mem, value) mem = iand(mem,value)

atomicor(mem, value) mem = ior(mem,value)

atomicxor(mem, value) mem = ieor(mem,value)

atomicexch(mem, value) mem = value

Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also
compare the first argument with the second argument, and stores a new value back to
the first argument location, depending on the result of the comparison. These functions
are intended to implement circular counters, counting up to or down from a maximum
value specified in the second argument. Both arguments must be of type integer(kind=4).

The return value for each of these functions is the first argument, mem.

These functions are:

Table 11 Counting Atomic Functions

Function Additional Atomic Update

atomicinc(mem, imax) if (mem<imax) then
 mem = mem+1
else
 mem = 0
endif

atomicdec(mem, imax) if (mem<imax .and. mem>0) then
 mem = mem-1
else
 mem = imax
endif

Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares
the first argument with the second argument, and atomically stores a new value
back to the first argument location if the first and second argument are equal. All
three arguments must be of the same type, either integer(kind=4), integer(kind=8),
real(kind=4), or real(kind=8).

The return value for this function is the first argument, mem.

Reference

CUDA Fortran Programming Guide Version 23.11 | 47

The function is:

Table 12 Compare and Swap Atomic Function

Function Additional Atomic Update

atomiccas(mem,comp,val) if (mem == comp) then
mem = val
endif

3.6.8. Fortran I/O
The NVIDIA Fortran compiler includes limited support for PRINT statements in GPU
device code. The Fortran GPU runtime library, which is shared between CUDA Fortran
and OpenACC for NVIDIA GPU targets, buffers up the output and prints an entire line
in one operation. Integer, character, logical, real and complex data types are supported.

The underlying CUDA printf implementation limits the number of print statements
in a kernel launch to 4096. Users should take this limit into account when making use of
this feature.

3.6.9. PRINT Example
By adding the compiler option -cuda=charstring, some limited support for character
strings, character substrings, character variables, and string assignment is also now
available in CUDA Fortran device code. Here is a short example:
attributes(global) subroutine printtest()
character*12 c
i = threadIdx%x
if (i/2*2.eq.i) then
 c = "Even Thread:"
else
 c = " Odd Thread:"
endif
print *,c,c(6:11),i
end subroutine

3.6.10. Shuffle Functions
CUDA Fortran device code can access compute capability 3.x shuffle functions. These
functions enable access to variables between threads within a warp, referred to as lanes.
In CUDA Fortran, lanes use Fortran's 1-based numbering scheme.

__shfl()

__shfl() returns the value of var held by the thread whose ID is given by srcLane.
If the srcLane is outside the range of 1:width, then the thread's own value of var
is returned. The width argument is optional in all shuffle functions and has a default
value of 32, the current warp size.
 integer(4) function __shfl(var, srcLane, width)
 integer(4) var, srcLane

Reference

CUDA Fortran Programming Guide Version 23.11 | 48

 integer(4), optional :: width

 integer(8) function __shfl(var, srcLane, width)
 integer(8) :: var
 integer(4) :: srcLane
 integer(4), optional :: width

 real(4) function __shfl(var, srcLane, width)
 real(4) :: var
 integer(4) :: srcLane
 integer(4), optional :: width

 real(8) function __shfl(var, srcLane, width)
 real(8) :: var
 integer(4) :: srcLane
 integer(4), optional :: width

__shfl_up()

__shfl_up() calculates a source lane ID by subtracting delta from the caller's thread
ID. The value of var held by the resulting thread ID is returned; in effect, var is shifted
up the warp by delta lanes.

The source lane index will not wrap around the value of width, so the lower delta
lanes are unchanged.
 integer(4) function __shfl_up(var, delta, width)
 integer(4) var, delta
 integer(4), optional :: width

 integer(8) function __shfl_up(var, delta, width)
 integer(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

 real(4) function __shfl_up(var, delta, width)
 real(4) :: var
 integer(4) :: delta
 integer(4), optional :: width

 real(8) function __shfl_up(var, delta, width)
 real(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

__shfl_down()

__shfl_down() calculates a source lane ID by adding delta to the caller's thread
ID. The value of var held by the resulting thread ID is returned: this has the effect of
shifting var down the warp by delta lanes. The ID number of the source lane will not
wrap around the value of width, so the upper delta lanes remain unchanged.
 integer(4) function __shfl_down(var, delta, width)
 integer(4) var, delta
 integer(4), optional :: width

 integer(8) function __shfl_down(var, delta, width)
 integer(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

 real(4) function __shfl_down(var, delta, width)
 real(4) :: var
 integer(4) :: delta

Reference

CUDA Fortran Programming Guide Version 23.11 | 49

 integer(4), optional :: width

 real(8) function __shfl_down(var, delta, width)
 real(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

__shfl_xor()

__shfl_xor() uses ID-1 to calculate the source lane ID by performing a bitwise XOR
of the caller's lane ID with the laneMask. The value of var held by the resulting lane
ID is returned. If the resulting lane ID falls outside the range permitted by width, the
thread's own value of var is returned. This mode implements a butterfly addressing
pattern such as is used in tree reduction and broadcast.
 integer(4) function __shfl_xor(var, laneMask, width)
 integer(4) var, laneMask
 integer(4), optional :: width

 integer(8) function __shfl_xor(var, laneMask, width)
 integer(8) :: var
 integer(4) :: laneMask
 integer(4), optional :: width

 real(4) function __shfl_xor(var, laneMask, width)
 real(4) :: var
 integer(4) :: laneMask
 integer(4), optional :: width

 real(8) function __shfl_xor(var, laneMask, width)
 real(8) :: var
 integer(4) :: laneMask
 integer(4), optional :: width

Here is an example using __shfl_xor() to compute the sum of each thread's variable
contribution within a warp:
 j = . . .
 k = __shfl_xor(j,1); j = j + k
 k = __shfl_xor(j,2); j = j + k
 k = __shfl_xor(j,4); j = j + k
 k = __shfl_xor(j,8); j = j + k
 k = __shfl_xor(j,16); j = j + k

3.6.11. Restrictions
This section lists restrictions on statements and features that can appear in device
subprograms.

‣ Recursive subroutines and functions are not allowed.
‣ PAUSE statements are not allowed.
‣ Most Input/Output statements are not allowed at all: READ, FORMAT, NAMELIST,

OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE, INQUIRE.
‣ List-directed PRINT and WRITE statements to the default unit may be used when

compiling for compute capability 2.0 and higher; all other uses of PRINT and
WRITE are disallowed.

‣ Alternate return specifications are not allowed.
‣ ENTRY statements are not allowed.
‣ Floating point exception handling is not supported.

Reference

CUDA Fortran Programming Guide Version 23.11 | 50

‣ Fortran intrinsic functions not listed in Section 3.6.3 are not supported.
‣ Cray pointers are not supported.

3.7. Host code
Host subprograms may use intrinsic functions, such as the sizeof intrinsic function, to
find the size in bytes of Fortran data structures.

3.7.1. SIZEOF Intrinsic
A call to sizeof(A), where A is a variable or expression, returns the number of bytes
required to hold the value of A.
integer(kind=4) :: i, j
j = sizeof(i) ! this assigns the value 4 to j

3.8. Fortran Device Modules
NVIDIA provides a device module by default which allows access and interfaces to
many of the CUDA device built-in routines.

To access this module explicitly, do one of the following:

‣ Add this line to your Fortran program:
use cudadevice

‣ Add this line to your C program:
#include <cudadevice.h>

You can use these routines in CUDA Fortran global and device subprograms, in CUF
kernels, and in NVIDIA Accelerator compute regions in Fortran as well as in C. Further,
the NVIDIA HPC compilers come with implementations of these routines for host code,
though these implementations are not specifically optimized for the host. In uses other
than CUDA Fortran global and device subprograms, you must explicitly use the module
in the host subprogram unit.

CUDA Built-in Routines lists the CUDA built-in routines that are available:

Table 13 CUDA Built-in Routines

__brev __brevll clock clock64

__clz __clzll __cosf cospi

cospif __dadd_rd __dadd_rn __dadd_ru

__dadd_rz __ddiv_rd __ddiv_rn __ddiv_ru

__ddiv_rz __dmul_rd __dmul_rn __dmul_ru

__dmul_rz __double2float_rd __double2float_rn __double2float_ru

__double2float_rz __double2hiint __double2int_rd __double2int_rn

__double2int_ru __double2int_rz __double2loint __double2ll_rd

Reference

CUDA Fortran Programming Guide Version 23.11 | 51

__double2ll_rn __double2ll_ru __double2ll_rz __double2uint_rd

__double2uint_rn __double2uint_ru __double2uint_rz __double2ull_rd

__double2ull_rn __double2ull_ru __double2ull_rz __double_as_longlong

__drcp_rd __drcp_rn __drcp_ru __drcp_rz

__dsqrt_rd __dsqrt_rn __dsqrt_ru __dsqrt_rz

__exp10f __expf __fadd_rd __fadd_rn

__fadd_ru __fadd_rz __fdiv_rd __fdiv_rn

__fdiv_ru __fdiv_rz fdivide fdividef

__fdividef __ffs __ffsll __float2half_rn

__float2int_rd __float2int_rn __float2int_ru __float2int_rz

__float2ll_rd __float2ll_rn __float2ll_ru __float2ll_rz

__float_as_int __fma_rd __fma_rn __fma_ru

__fma_rz __fmaf_rd __fmaf_rn __fmaf_ru

__fmaf_rz __fmul_rd __fmul_rn __fmul_ru

__fmul_rz __frcp_rd __frcp_rn __frcp_ru

__frcp_rz __fsqrt_rd __fsqrt_rn __fsqrt_ru

__fsqrt_rz __half2float __hiloint2double __int2double_rn

__int2float_rd __int2float_rn __int2float_ru __int2float_rz

__int_as_float __ll2double_rd __ll2double_rn __ll2double_ru

__ll2double_rz __ll2float_rd __ll2float_rn __ll2float_ru

__ll2float_rz __log10f __log2f __logf

__longlong_as_double __mul24 __mulhi __popc

__popcll __powf __sad __saturatef

sincos sincosf sincospi sincospif

__sinf sinpi sinpif __tanf

__uint2double_rn __uint2float_rd __uint2float_rn __uint2float_ru

__uint2float_rz __ull2double_rd __ull2double_rn __ull2double_ru

__ull2double_rz __ull2float_rd __ull2float_rn __ull2float_ru

__ull2float_rz __umul24 __umulhi __usad

3.8.1. LIBM Device Module
NVIDIA also provides a device module which provides interfaces to standard libm
functions which are not in the Fortran intrinsic library.

To access this module, add this line to your Fortran subprogram:
use libm

These interfaces are defined in the libm device module:

Reference

CUDA Fortran Programming Guide Version 23.11 | 52

Table 14 CUDA Device libm Routines

Name Argument Datatypes Name Argument Datatypes

cbrt,cbrtf real(8),real(4) returns real llround,llroundf real(8),real(4) returns
integer

ceil,ceilf real(8),real(4) returns real lrint,lrintf real(8),real(4) returns
integer

copysign,copysignf 2*real(8),real(4) returns
real

lround,lroundf real(8),real(4) returns
integer

expm1,expm1f real(8),real(4) returns real logb,logbf real(8),real(4) returns real

exp10,exp10f real(8),real(4) returns real log1p,log1pf real(8),real(4) returns real

exp2,exp2f real(8),real(4) returns real log2,log2f real(8),real(4) returns real

fabs,fabsf real(8),real(4) returns real modf,modff 2*real(8),real(4) returns
real

floor,floorf real(8),real(4) returns real nearbyint,nearbyintfreal(8),real(4) returns real

fma,fmaf 3*real(8),real(4) returns
real

nextafter,nextafterf 2*real(8),real(4) returns
real

fmax,fmaxf 2*real(8),real(4) returns
real

remainder,remainderf2*real(8),real(4) returns
real

fmin,fminf 2*real(8),real(4) returns
real

remquo,remquof 2*real(8),real(4) integer
returns real

frexp,frexpf real(8),real(4) integer
returns real

rint,rintf real(8),real(4) returns real

ilogb,ilogbf real(8),real(4) returns real scalbn,scalbnf real(8),real(4) integer
returns real

ldexp,ldexpf real(8),real(4) integer
returns real

scalbln,scalblnf real(8),real(4) integer
returns real

llrint,llrintf real(8),real(4) returns
integer

trunc,truncf real(8),real(4) returns real

Here is a simple example of using the LIBM device module:
attributes(global) subroutine testlibm(a, b)
 use libm
 real, device :: a(*), b(*)
 i = threadIdx%x
 b(i) = cbrt(a(i))
 end subroutine

3.8.2. Cooperative Groups Device Module
On NVIDIA GPUs which support CUDA Compute Capability 7.0 and above, NVIDIA
provides a device module which provides interfaces to cooperative group functionality
which is provided by NVIDIA starting in CUDA 9.0. In our 23.3 release, the cooperative
group module also supports thread block cluster programming for Hopper (cc90) and
newer architectures.

Reference

CUDA Fortran Programming Guide Version 23.11 | 53

To access this module, add this line to your Fortran subprogram:
use cooperative_groups

Here is a simple example of using the cooperative_groups device module which enables
a cooperative grid kernel:
attributes(grid_global) subroutine g1(a,b,n,some_offset)
 use cooperative_groups
 real, device :: a(n), b(n)
 integer, value :: n, some_offset
 type(grid_group) :: gg
 gg = this_grid()
 do i = gg%rank, n, gg%size
 a(i) = min(max(a(i),0.0),100.0) + 0.5
 end do
 call syncthreads(gg)
 do i = gg%rank, n, gg%size
 j = i + some_offset
 if (j.gt.n) j = j - n
 b(i) = a(i) + a(j)
 end do
return
end subroutine

There is currently limited functionality for cooperative groups of size less than or equal
to a thread block. More functionality will be added in an upcoming release. Currently,
the following types are defined within the module: grid_group, thread_group,
coalesced_group, and cluster_group. Each type has two public members, the size
and rank. The syncthreads subroutine is overloaded in the cooperative_groups module
to take the type as an argument, to appropriately synchronize the threads in that group.
Minimal code sequences supported are:

Cooperative group equal to a thread block:
 . . .
 use cooperative_groups
 type(thread_group) :: tg
 tg = this_thread_block()
 call syncthreads(tg)

Cooperative group equal to a warp:
 . . .
 use cooperative_groups
 type(coalesced_group) :: wg
 wg = this_warp()
 call syncthreads(wg)

Cooperative group equal to a thread block cluster:
 . . .
 use cooperative_groups
 type(cluster_group) :: clg
 clg = this_cluster()
 call syncthreads(clg)

The major benefit of a thread block cluster is to take advantage of distributed shared
memory, which enables keeping a larger portion of data close to the processing
elements. We recommend using cray pointer syntax in accessing neighboring shared
memory to keep register pressure as low as possible. Here is a short example:
attributes(global) cluster_dims(2,1,1) subroutine t1(rnks)
 use cooperative_groups
 integer, device :: rnks(32,*)
 type(cluster_group) :: clg ! Defined in cooperative_groups

Reference

CUDA Fortran Programming Guide Version 23.11 | 54

 integer, shared :: smem(*)
 integer, shared :: dmem(*); pointer(pmem,dmem)
 i = threadIdx%x; j = blockIdx%x
 clg = this_cluster() ! Defined in cooperative_groups
 nrank = clg%rank
 rnks(i,j) = clg%rank ! Initialize rnks to 1 or 2
 call syncthreads(clg) ! Sync both blocks
 if (nrank.eq.1) then ! Get a pointer to the other
 pmem = cluster_map_shared_rank(smem, 2)
 else
 pmem = cluster_map_shared_rank(smem, 1)
 end if
 dmem(i) = 100*nrank + i ! Write to the other blocks shared memory
 call syncthreads(clg) ! Sync both blocks
 rnks(i,j) = rnks(i,j) + smem(i) ! Read what the other block wrote
end subroutine

The cooperative groups module also defines new shfl_sync() functions. These
functions are similar to the shfl() functions discussed in an earlier section of this
document, but take an extra mask first argument. The 32-bit mask argument specifies
which threads in the warp take part in the shuffle operation, and can be passed as
an integer(4) with value z'ffffffff' for most use cases. Note that, if you use the legacy
shfl() functions with CUDA 9.0 or higher, we implicitly use shlf_sync() with a
mask of z'ffffffff'. This may not be correct if you have thread divergence within the warp.
In that case, do use the new shfl_sync() functions and provide the proper mask,
which can be generated using the ballot() device function.

3.8.3. WMMA (Warp Matrix Multiply Add) Module
On NVIDIA GPUs that support CUDA Compute Capability 7.0 and above, NVIDIA
includes a device module that provides interfaces to matrix operations that leverage
Tensor Cores to accelerate matrix problems. This enables scientific programmers using
Fortran to take advantage of real(2) matrix operations.

To access the module, add this line to your Fortran subprogram:
use wmma

Among the API routines provided in the wmma module are matrix multiply operations of
form C = Matmul(A, B), where:

‣ A is a 2 dimensional real(2) array dimensioned A(m,k)
‣ B is a 2 dimensional real(2) array dimensioned B(k,n)
‣ C is a 2 dimensional real(2) or real(4) array dimensioned C(m,n)

Using the Fortran kind attribute, it is possible to declare and use data in half precision
format. Details on representation and requirements for use can be found in Half-
precision Floating Point section.

Here is a simple example using the wmma device module to do matrix multiplication
using a single warp of threads. There are two 16×16 real(2) matrices being multiplied
and accumulated into a 16×16 real(4) matrix:
#include "cuf_macros.CUF"
 module m
 integer, parameter :: wmma_m = 16
 integer, parameter :: wmma_n = 16
 integer, parameter :: wmma_k = 16

Reference

CUDA Fortran Programming Guide Version 23.11 | 55

 contains
 ! kernel for 16 x16 matrices (a, b, and c) using wmma
 ! Should be launched with one block of 32 threads
 attributes(global) subroutine wmma_single(a, b, c)
 use wmma
 implicit none
 real(2), intent(in) :: a(wmma_m,*) , b(wmma_k,*)
 real(4) :: c(wmma_m,*)
 WMMASubMatrix(WMMAMatrixA, 16, 16, 16, Real, WMMAColMajor) :: sa
 WMMASubMatrix(WMMAMatrixB, 16, 16, 16, Real, WMMAColMajor) :: sb
 WMMASubMatrix(WMMAMatrixC, 16, 16, 16, Real, WMMAKind4) :: sc
 integer :: lda, ldb, ldc

 lda = wmma_m
 ldb = wmma_k
 ldc = wmma_m

 sc = 0.0_4
 call wmmaLoadMatrix(sa, a(1, 1), lda)
 call wmmaLoadMatrix(sb, b(1, 1), ldb)
 call wmmaMatMul(sc, sa, sb, sc)
 call wmmaStoreMatrix(c(1, 1), sc, ldc)

 end subroutine wmma_single
 end module m

The call site looks as follows to invoke with a single warp of threads:
call wmma_single<<<1,32>>>(ah_d, bh_d, c_d)

For this simple example, the matrices passed in as arguments to the kernel are the same
size as the WMMA submatrices. Thus, to perform the matrix multiplication we simply
initialize the C WMMA submatrix to 0.0, load the A and B matrices from global memory
to WMMA submatrices, perform the matrix multiplication on the submatrices, and store
the result from the WMMA submatrix to global memory.

You may have noticed that the thread index threadIdx does not appear at all in
this code. This underlies the important concept to take away from this example: the
threads in a warp work collectively to accomplish these tasks. So when dealing with the
WMMA submatrices, we are doing warp-level programming rather than thread-level
programming. This kernel is launched with a single warp of 32 threads, yet each of our
WMMA submatrices has 16×16 or 256 elements. When the initialization statement:
sc = 0.0_4

is executed, each thread sets 8 elements in the 16×16 submatrix to zero. The mapping
of threads to submatrix elements is opaque for this and other operations involving
WMMA submatrices - from a programming standpoint we only address what happens
collectively by a warp of threads on WMMA submatrices.

The statements that load the A and B from global memory to WMMA submatrices:
call wmmaLoadMatrix(sa, a(1, 1), lda)
 call wmmaLoadMatrix(sb, b(1, 1), ldb)

also work collectively. In these calls, the WMMA submatrices are specified as the first
argument, and the second arguments contain the addresses of the upper left element
of the tiles in global (or shared) memory to be loaded to the WMMA submatrices.
The leading dimension of the the matrices in global (or shared) memory is the third
argument. Note that the arguments passed to wmmaLoadMatrix() are the same for all
threads in the warp. Because the mapping of elements to threads in a warp is opaque,
each thread just passes the address of the first element in the 16×16 matrix along with the

Reference

CUDA Fortran Programming Guide Version 23.11 | 56

leading dimension as the third parameter, and the load operation is distributed amongst
the threads in the warp.

The matrix multiplication on the WMMA submatrices is performed by the statement:
call wmmaMatMul(sc, sa, sb, sc)

which is again performed collectively by a warp of threads. Here used the same
accumulator submatrix for the first and last arguments in the wmmaMatMul() call, which
is why its initialization to zero is required.

The wmmaStoreMatrix() call:
call wmmaStoreMatrix(c(1, 1), sc, ldc)

is analogous to the prior wmmaLoadMatrix calls, but here the first argument is
the address of the upper left element of the tile in global (or shared) memory and
the second argument is the WMMA submatrix whose values are stored. When
both wmmaLoadMatrix() and wmmaStoreMatrix() are called with accumulator
(WMMAMatrixC) arguments, there is an optional fourth argument that specifies the
storage order. In CUDA Fortran, the default is the WMMAColMajor or column-major
storage order.

One final note on arguments to the wmmaLoadMatrix() and wmmaStoreMatrix()
routines. There is a requirement that the leading dimension of the matrices, specified
by the third argument of these routines, must be a multiple of 16 bytes (e.g. 8 real(2)
words or 4 real(4) words).

More details about data declaration and wmma operations are available at Tensor Core
Programming Using CUDA Fortran

The wmma module also provides access to the following half precision mathematical
intrinsics and requires use wmma in order to access them: abs, sin, cos, tan, acos,
asin, atan, atan2, sinh, cosh, tanh, log, log10, exp, and sqrt. It is expected that in
a future release, these intrinsics will be available without having to mention use wmma.

3.9. Fortran Host Modules
The primary Fortran module which NVIDIA provides for CUDA Fortran is named
cudafor. This module contains all of the supported interfaces to the CUDA Runtime
API listed in the next chapter. In addition, it contains interfaces to some Fortran array
intrinsics which are described in sections below.

There are a number of other Fortran modules which interface to CUDA Libraries.
Those are described thoroughly in the NVIDIA Fortran CUDA Interfaces document.
These include libraries for computation, like CUBLAS, CUFFT, and CUSPARSE, for
communication, NCCL, NVSHMEM, and for profiling, NVTX.

One other host module, which we will describe in this chapter, is CUTENSOR. It has been
extended in a module named cutensorex and contains overloaded interfaces to many
more Fortran array intrinsics, some of which call into the NVIDIA CUTENSOR library,
and some which do not, but they use the same deferred evaluation techniques. These
implementations operate on device (or managed) data, and are called from the host.

https://devblogs.nvidia.com/tensor-core-programming-using-cuda-fortran/
https://devblogs.nvidia.com/tensor-core-programming-using-cuda-fortran/

Reference

CUDA Fortran Programming Guide Version 23.11 | 57

3.9.1. Overloaded Fortran Reduction Intrinsics in
CUDAFOR
The SUM, MAXVAL, MINVAL, MAXLOC, and MINLOC Fortran intrinsics are overloaded to
accept device or managed arrays when the cudafor module is used, from host code. If
the mask optional argument is used, the mask argument must be either a device logical
array, or an expression containing managed operands and constants, i.e. the mask must
be computable on the host but readable on the device. As in standard Fortran, the mask
shape and size, if present, must conform to the data array.

Here is a complete example which performs the sum and maxval reductions on the
GPU:
 program multidimred
 use cudafor
 real(8), managed :: a(5,5,5,5,5)
 real(8), managed :: b(5,5,5,5)
 real(8) :: c
 call random_number(a)
 do idim = 1, 5
 b = sum(a, dim=idim)
 c = max(maxval(b), c)
 end do
 print *,"Max along any dimension",c
 end program

Array slices are also supported. This may run less efficiently on the GPU, but is very
powerful nonetheless, and useful for debugging:
 real(4), managed :: a(n,m)
 reslt(ix) = sum(a(2:n-1,:))
 reslt(ix) = sum(a(:,3:m-2))
 reslt(ix) = sum(a(n2:n,m2:m))
 reslt(ix) = sum(a(1:n3,1:m3))
 reslt(ix) = sum(a(n2:n3,m2:m3))

By default, intrinsic reductions that are supported on the device will be executed on the
device for (large enough) managed arrays. There may be occasions where one would
like to perform reductions on managed data on the host. This can be accomplished using
the rename feature of the "use" statement, for example:
 program reductionRename
 use cudafor, gpusum => sum
 implicit none
 integer, managed :: m(3000)
 integer :: istat
 m = 1
 istat = cudaDeviceSynchronize()
 write(*,*) sum(m) ! executes on host
 write(*,*) gpusum(m) ! executes on device
 end program

Beginning in the NVHPC 23.1 release, all five functions, SUM, MAXVAL, MINVAL, MAXLOC,
and MINLOC can now accept an optional stream argument. If a unique per-thread default
stream was set via a call to cudaforSetDefaultStream, the reduction operation will
pick that up and run on that stream. Given the new, simpler functionality, support for
cudaforReductionSetStream() and cudaforReductionGetStream() has been
dropped starting in 23.1 as well. For instance:
integer(kind=cuda_stream_kind) :: istrm

Reference

CUDA Fortran Programming Guide Version 23.11 | 58

 x = sum(a, stream=istrm)

is now the simplest way to run a sum reduction on a specific stream.

The following sections describe each function, with current support and limitations, in
more detail.

3.9.1.1. Fortran SUM Intrinsic Function
The overloaded interface for SUM is in the cudafor module. It can return either a scalar,
which is most common, or an array, if the optional dim argument is used. The real(4),
real(8), integer(4), and integer(8) data types are supported. Complex types may be
added in a future release. The input array can be between one and seven dimensions.
The two forms are:
function sum (array, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, intent(out) :: res ! same type as array

function sum (array, dim, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 integer(4), intent(in) :: dim
 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, allocatable, managed, intent(out) :: res(...) ! same type as array
 ! rank is one less than array

3.9.1.2. Fortran MAXVAL Intrinsic Function
The overloaded interface for MAXVAL, which returns the maximum value of an element
in the array, is in the cudafor module. It can return either a scalar, which is most
common, or an array, if the optional dim argument is used. The real(4), real(8),
integer(4), and integer(8) data types are supported. The input array can be between one
and seven dimensions. The two forms are:
function maxval (array, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, intent(out) :: res ! same type as array

function maxval (array, dim, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 integer(4), intent(in) :: dim
 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, allocatable, managed, intent(out) :: res(...) ! same type as array
 ! rank is one less than array

3.9.1.3. Fortran MINVAL Intrinsic Function
The overloaded interface for MINVAL, which returns the minimum value of an element in
the array, is in the cudafor module. It can return either a scalar, which is most common,
or an array, if the optional dim argument is used. The real(4), real(8), integer(4), and
integer(8) data types are supported. The input array can be between one and seven
dimensions. The two forms are:
function minval (array, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8

Reference

CUDA Fortran Programming Guide Version 23.11 | 59

 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, intent(out) :: res ! same type as array

function minval (array, dim, mask, stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 integer(4), intent(in) :: dim
 logical(4), device, optional, intent(in) :: mask(...)
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 type, allocatable, managed, intent(out) :: res(...) ! same type as array
 ! rank is one less than array

3.9.1.4. Fortran MAXLOC Intrinsic Function
The overloaded interface for MAXLOC, which returns an array of indices, starting at 1,
identifying the maximum value of an element in the array which appears first, is in the
cudafor module. The size of the function result is equal to the rank of the input array,
and is an integer host array. The real(4), real(8), integer(4), and integer(8) data types
are supported. The input array can be between one and seven dimensions. The dim
argument is only supported for 1-D arrays, in which case the result is a scalar rather
than an array of size=1. There are also optional kind, back, and stream arguments,
the first two of those being standard Fortran, and the latter being a CUDA Fortran
extension.
function maxloc (array, mask, kind, back stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 logical(4), device, optional, intent(in) :: mask(...)
 integer, optional, intent(in) :: kind
 logical, optional, intent(in) :: back
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 integer, intent(out) :: res(*) ! Size of res is equal to rank of array

3.9.1.5. Fortran MINLOC Intrinsic Function
The overloaded interface for MINLOC, which returns an array of indices, starting at 1,
identifying the minimum value of an element in the array which appears first, is in the
cudafor module. The size of the function result is equal to the rank of the input array,
and is an integer host array. The real(4), real(8), integer(4), and integer(8) data types
are supported. The input array can be between one and seven dimensions. The dim
argument is only supported for 1-D arrays, in which case the result is a scalar rather
than an array of size=1. There are also optional kind, back, and stream arguments,
the first two of those being standard Fortran, and the latter being a CUDA Fortran
extension.
function minloc (array, mask, kind, back stream) result(res)
 type, device :: array(...) ! type is real or integer, kind = 4 or 8
 logical(4), device, optional, intent(in) :: mask(...)
 integer, optional, intent(in) :: kind
 logical, optional, intent(in) :: back
 integer(kind=cuda_stream_kind), optional, intent(in) :: stream
 integer, intent(out) :: res(*) ! Size of res is equal to rank of array

3.9.2. Fortran Sorting Subroutines Module
Typically, for best performance, we recommend generating sort routines using CUDA
Thrust, the nvcc compiler, and calling those functions from Fortran. Starting with the
23.5 release, we also include basic sort subroutines as part of the CUDA Fortran libraries,
which are readily available and may provide "good enough" performance.

Reference

CUDA Fortran Programming Guide Version 23.11 | 60

The interfaces to the library functions can be accessed by adding use sort to your code,
and the overloaded sorting subroutine is named fsort(). The library provides a radix
sort implementation for integer(4), integer(8), real(4), and real(8) arrays. The subroutines
can accept either host, managed, or device arrays. The subroutines can also accept an
index array, to return the sort permutations. Other optional arguments are listed below.

Here is a simple example which sorts an array of reals on the GPU:
 program sortit
 use sort
 real(4), managed :: a(1000)
 call random_number(a)
 call fsort(a, 1000)
 print *,all(a(1:999) .le. a(2:1000))
 end program

The host and device functionality is divided into four types of calls, and the arguments
for each are:
 ! Host arrays, no indices
 subroutine fsort(array, n, stream)
 type(kind) :: array(*) ! Type is integer or real, kind is 4 or 8
 integer(kind) :: n ! kind is 4 or 8
 integer(kind=cuda_stream_kind), optional :: stream
 end subroutine

 ! Host arrays, with indices
 subroutine fsort(array, indices, n, init_index, stream)
 type(kind) :: array(*) ! Type is integer or real, kind is 4 or 8
 integer(4) :: indices(*)
 integer(kind) :: n ! kind is 4 or 8
 logical(4), optional :: init_index ! Flag to initialize the indices to 1..n
 integer(kind=cuda_stream_kind), optional :: stream
 end subroutine

 ! Managed or device arrays, no indices
 subroutine fsort(array, n, workspace, worksize, stream)
 type(kind), device :: array(*) ! Type is integer or real, kind is 4 or 8
 integer(kind) :: n ! kind is 4 or 8
 type(kind), device, optional :: workspace(*) ! Same type as array
 integer(8), optional :: worksize ! Size of workspace in elements
 integer(kind=cuda_stream_kind), optional :: stream
 end subroutine

 ! Managed or device arrays, with indices
 subroutine fsort(array, indices, n, init_index, workspace, worksize, stream)
 type(kind), device :: array(*) ! Type is integer or real, kind is 4 or 8
 integer(4), device :: indices(*)
 integer(kind) :: n ! kind is 4 or 8
 logical(4), optional :: init_index ! Flag to initialize the indices to 1..n
 type(kind), device, optional :: workspace(*) ! Same type as array
 integer(8), optional :: worksize ! Size of workspace in elements
 integer(kind=cuda_stream_kind), optional :: stream
 end subroutine

Without a provided workspace argument, the subroutines will allocate temporary
work space using either cudaMalloc(), or cudaMallocAsync(), depending on the CUDA
version support and whether the stream is specified. The amount of workspace required
to avoid temporary allocations for the subroutines which take the worksize argument
is roughly N elements, kind equal to 4 or 8, plus up to another 2 MBytes above that. For
instance, sorting an integer(4) array of size 10 million will use workspace of roughly 42
MBytes or 10.5 million elements.

Reference

CUDA Fortran Programming Guide Version 23.11 | 61

3.9.3. Overloaded Fortran Reduction Intrinsics in
CUTENSOREX
The ALL, ANY, and COUNT Fortran intrinsics are overloaded to accept device or managed
arrays when the cutensorex module is used, from host code. As these three functions
operate only on a mask, a different tact was chosen to make these functions more
flexible, and recognize and efficiently evaluate commonly-used mask expressions.

Using the same deferred evaluation and assignment techniques that were used in
cutensorex for matmul(), spread(), transpose(), and reshape(), beginning in the 23.1
release we now support more F90 array intrinsic operations.

These three functions do not call into the cuTensor library, but build upon and extend
the software infrastructure developed previously for those wrappers.

First, here are the mask expressions which are recognized for deferred evaluation:

For A, B, x, dx, alpha, beta
 A is a device array of real(4), real(8), integer(4), or integer(8)
 B is a device array with the same type as A.
 A and B are 1-3 dimensional, (conforming arrays)
 x is a scalar with the same type as A
 dx is a device scalar with the same type as A
 alpha and beta are host scalars with the same type as A

In one kernel launch, we support these mask expressions:
 A .relop. B
 A .relop. x
 A .relop. dx
 abs(A) .relop. B
 abs(A) .relop. x
 abs(A) .relop. dx
 (A +/- B) .relop. x
 (A +/- B) .relop. dx
 abs(A +/- B) .relop. x
 abs(A +/- B) .relop. dx
 (alpha*A + beta*B) .relop. x
 (alpha*A + beta*B) .relop. dx
 abs(alpha*A + beta*B) .relop. x
 abs(alpha*A + beta*B) .relop. dx

For relop in EQ, NE, LE, LT, GE, GT

One exception, for convenience, is if the operation is "A .relop. x", x can be kind=4 if A is
kind=8

In most cases, the B array can also be the result of the spread() or transpose() intrinsic
function, to make B conform to the shape of A. General reshape() support for mask
operands is not available at this time.

3.9.3.1. Overloaded Logical Array Assignment in CUTENSOREX
The result of a logical expression from the section above can be assigned to an array of
type logical(4). For example:

Reference

CUDA Fortran Programming Guide Version 23.11 | 62

A and B are conforming device arrays of type real(4), x is a real(4) scalar, and L a device
arrray of type logical(4):
 block; use cutensorex
 L = A .LT. B
 L = ABS(A) .GE. 1.0
 L = ABS(A - B) .LE. x
 end block

Of course, a logical array can be generated using any means: CUDA kernels, CUF
kernels, or computed/copied from the host. These are provided as a convenience, but
note that if a mask is constant over many uses, it is probably faster to compute it once
and pass it into these functions rather than to re-evalute it many times.

3.9.3.2. Fortran ALL Intrinsic Function
The interface for ALL is in the cutensorex module.

The Fortran array reduction ALL returns true if every element of the mask is true,
otherwise it returns false. The mask can be a logical array, array slice, or any of the
logical expressions described above. The optional dim argument to ALL() is not
supported at this time.
logical(4) function all (mask)
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

For example, if A and B are conforming arrays with the device or managed attribute,
and X is a scalar of the same type:
 IF (ALL(A .EQ. B)) PRINT *,"PASSED"
 IF (ALL(ABS(A - B) .GT. X)) CALL REDO()

3.9.3.3. Fortran ANY Intrinsic Function
The interface for ANY is in the cutensorex module.

The Fortran array reduction ANY returns true if any element of the mask is true, and
returns false if none are true. The mask can be a logical array, array slice, or any of
the logical expressions described above. The optional dim argument to ANY() is not
supported at this time.
logical(4) function any (mask)
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

For example, if A and B are conforming arrays with the device or managed attribute,
and X is a scalar of the same type:
 IF (ANY(A .EQ. B)) PRINT *,"FAILED"
 IF (ANY(ABS(A) .GT. X)) CALL REDO()

3.9.3.4. Fortran COUNT Intrinsic Function
The interface for COUNT is in the cutensorex module.

The Fortran array reduction COUNT returns the number of true elements of the mask. The
mask can be a logical array, array slice, or any of the logical expressions described above.
The optional dim argument to COUNT() is not supported at this time.
integer function count (mask)
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

Reference

CUDA Fortran Programming Guide Version 23.11 | 63

For example, if A and B are conforming real(4) arrays with the device or managed
attribute, EPS is a real(4) scalar, and ICNT1 and ICNT2 are integer scalars:
 ICNT1 = COUNT(A .EQ. B)
 ICNT2 = COUNT(ABS(A - B) .LE. EPS)

3.9.4. Overloaded Fortran Array Intrinsics in
CUTENSOREX
This section lists the other overloaded functions available in the cutensorex module.
Similar to the last section, these Fortran intrinsics accept device or managed arrays when
the cutensorex module is used, from host code.

The first five functions in this section also take a mask argument, and accept the same
mask arrays or expressions described in the previous section. The more complicated
functions in this group use a scan algorithm described in this paper: "Single-pass
Parallel Prefix Scan with Decoupled Look-Back", by Duane Merrill and
Michael Garland.

The second set of functions call into either the cuTensor or cuRand library, and are
included here for completeness. They were previously documented in the NVIDIA
Fortran CUDA Interfaces document.

3.9.4.1. Fortran MERGE Intrinsic Function
The interface for MERGE is in the cutensorex module.

The Fortran merge() intrinsic is an elemental selection based on the mask evaluation.
It takes three arguments, an array of "true" values, one or more "false" values, and a
mask. The merge() intrinsic function can take a mask expression in the form specified
above as an argument, or a logical(4) device array. In the current implementation, only
the second argument (the false selection) can be a scalar. Only real(4), real(8), integer(4),
and integer(8) arrays are supported, and only for arrays of 1 - 3 dimensions. The tsource
argument and mask argument must be conforming arrays, and if fsource is an array, it
must conform as well.
function merge (tsource, fsource, mask) result(res)
 type, intent(in) :: tsource(...) ! type is real or integer, kind = 4 or 8
 type, intent(in) :: fsource(...) ! type same as tsource, array or scalar
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
 type, intent(out) :: res(...) ! type, kind, rank same as tsource

For example: For A, B, C, arrays of type integer(4), and K a scalar of type integer(4):
 C = MERGE(A, B, A .GT. B)
 C = MERGE(A, 0, ABS(A) .LT. K)

3.9.4.2. Fortran PACK Intrinsic Function
The interface for PACK is in the cutensorex module.

The Fortran pack() intrinsic is useful for gathering selected data from a multiple-
dimensional array into a rank-1 array. The pack intrinsic is unique in that the size of
the output array is not known until the function has been completely evaluated. This
Fortran pack() intrinsic function is an efficient parallel implementation and can take a
mask expression specified above as the mask argument.

Reference

CUDA Fortran Programming Guide Version 23.11 | 64

Currently, as part of our emphasis on performance, we do not re-allocate the LHS
destination to fit the result; it is the user's responsibility to make sure the LHS
destination array is large enough.

Only real(4), real(8), integer(4), and integer(8) arrays are supported, and only for arrays
of 1 - 3 dimensions. This implementation does not support the vector optional argument
to pack(). This implementation does add a new optional argument, "count" which can
return the count of passing mask results, basically the number of elements written into
the LHS result:
function pack (array, mask, count) result(res)
 type, intent(in) :: array(...) ! type is real or integer, kind = 4 or 8
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
 integer, optional, intent(in) :: count
 type, intent(out) :: res(*) ! type is same as array, rank is 1-D

For example: A and B are device arrays of type real(4), and x is a scalar of type real(4). C
and D are device arrays of the same type, where C conforms to both A and B, and D is a
1-dimensional array:
 D = PACK(C, ABS(A - B) .GT. x)
 D = PACK(C, MASK=(A .EQ. B), COUNT=ICNT)

3.9.4.3. Fortran PACKLOC Function
The interface for PACKLOC is in the cutensorex module.

The Fortran packloc() function is an extension of the PACK intrinsic, but does not take
a source array. Instead, it produces a packed array of indices, or locations, where the
mask evaluates to true. This Fortran packloc() function uses the same efficient parallel
implementation as PACK, and can take a mask expression specified above as the mask
argument.

Currently, as part of our emphasis on performance, we do not re-allocate the LHS
destination to fit the result; it is the user's responsibility to make sure the LHS
destination array is large enough.

Only mask expressions involving 1D arrays are currently supported. This
implementation does support the optional argument, "count" which can return the count
of passing mask results, basically the number of elements written into the LHS result:

Similar to maxloc and other location functions, the indices begin at 1, and are not
affected by non-unary strides or lower bounds of the arrays passed to the function.
function packloc (mask, count) result(res)
 logical, intent(in) :: mask(:) ! mask is a 1D logical array or supported
 expression
 integer(4), optional, intent(out) :: count
 integer(4), intent(out) :: res(*)

For example: A and B are device arrays of type real(4), and x is a scalar of type real(4). D
is an integer(4) device array:
 D = PACKLOC(ABS(A - B) .GT. x, COUNT=ICNT)

3.9.4.4. Fortran UNPACK Intrinsic Function
The interface for UNPACK is in the cutensorex module.

Reference

CUDA Fortran Programming Guide Version 23.11 | 65

The Fortran unpack() intrinsic function is the complement of pack(), and can take a
mask expression specified above as the mask argument. There are some limitations
in the current implementation for unpack() related to the field argument. In this
implementation, the field argument is optional, and if it is left off, the LHS destination
is treated as the field. If the field argument is a scalar, unpack works according to the
standard. If the field argument is an array, the mask operation must be a logical array,
not a mask expression, and of course the mask and field must be conforming in size and
shape.

Only real(4), real(8), integer(4), and integer(8) arrays are supported, and only for arrays
of 1 - 3 dimensions. The output array and mask argument must be conforming arrays.
function unpack (array, mask, field) result(res)
 type, intent(in) :: array(*) ! type is real or integer, kind = 4 or 8
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
 type, optional, intent(in) :: field(...) ! array or scalar
 type, intent(out) :: res(...) ! type same as array, rank same as mask

For example: For A and B device arrays of type real(4), x and y are scalars of type real(4),
C and D of the same type, where C conforms to both A and B, and D is a 1-dimensional
array:
 C = UNPACK(D, ABS(A - B) .GT. x)
 C = UNPACK(D, MASK=(ABS(A - B) .GT. x), FIELD=y)

3.9.4.5. Fortran COUNT_PREFIX Intrinsic Function
The interface for COUNT_PREFIX is in the cutensorex module.

The count_prefix function was defined in High Performance Fortran (HPF). It computes
a running count of the number of true mask values, in array storage order. An optional
logical argument, EXCLUSIVE, specifies that the current mask result does not contribute
to the current output, only to succeeding counts. Another optional argument, the integer
DIM, specifies to compute the counts for a multi-dimensional array only across the
specific dimension.

The complete function declaration and argument list is:
function count_prefix (mask, dim, exclusive) result(res)
 logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
 integer, optional, intent(in) :: dim ! 1 - 3 depending on rank of mask
 logical, optional, intent(in) :: exclusive ! Default is .false. (inclusive)
 integer, intent(out) :: res(...) ! same size and rank as mask

For example: For A, B, and x of type real(4), C of type integer(4):
 C = COUNT_PREFIX(A .GT. 0)
 C = COUNT_PREFIX(A .EQ. B, DIM=1)
 C = COUNT_PREFIX(MASK=ABS(A - B) .LE. x, DIM=2, EXCLUSIVE=.true.)

HPF also specified a SEGMENT optional argument, but that functionality is not in the
current release.

3.9.4.6. Fortran SUM_PREFIX Intrinsic Function
The interface for SUM_PREFIX is in the cutensorex module.

The sum_prefix function was also defined in HPF. It computes a running sum of array
element values, for which the corresponding mask is true, in array storage order.
An optional logical argument, EXCLUSIVE, specifies that the array value does not

Reference

CUDA Fortran Programming Guide Version 23.11 | 66

contribute to the current output, only to succeeding sums. Another optional argument,
the integer DIM, specifies to compute the counts for a multi-dimensional array only
across the specific dimension. For this function, the MASK is also optional; without it,
every array element contributes to the sums.

The complete function declaration and argument list is:
function sum_prefix (array, mask, dim, exclusive) result(res)
 type, intent(in) :: array(...) ! type is real or integer, kind = 4 or 8
 logical, optional, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
 integer, optional, intent(in) :: dim ! 1 - 3 depending on rank of array
 logical, optional, intent(in) :: exclusive ! Default is .false. (inclusive)
 type, intent(out) :: res(...) ! same size and rank as array

For example: For A, B, C, D, and x of type real(4):
 D = SUM_PREFIX(C, A .GT. 0)
 D = SUM_PREFIX(C, MASK=(A .NE. B), DIM=2)
 D = SUM_PREFIX(C, MASK=ABS(A - B) .LE. x, EXCLUSIVE=.true.)

3.9.4.7. Fortran RESHAPE Intrinsic Function
The interface for RESHAPE is in the cutensorex module. This function is also
documented thoroughly in the NVIDIA Fortran CUDA Interfaces document in the
cuTensor chapter.

The Fortran reshape() intrinsic changes the shape of an array and possibly permutes the
dimensions and layout. It is invoked as:

D = alpha * func(reshape(A, shape=[...], order=[...]))

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The
rank (number of dimensions) of A and D can be from 1 to 7. The alpha value is expected
to be the same type as A, or as func(reshape(A)), if that differs. Accepted functions
which can be applied to the result of reshape are listed in the Fortran CUDA Interfaces
document referred to above. The pad argument to the F90 reshape function is not
currently supported. This Fortran call, besides initialization and setting up cuTENSOR
descriptors, maps to cutensorPermutation().
function reshape (source, shape, order) result(res)
 type, intent(in) :: source(...) ! type is real or complex
 integer, intent(in) :: shape(:)
 integer, optional, intent(in) :: order(*)
 type, intent(out) :: res(...) ! type, kind same as source

! Example to switch the 2nd and 3rd dimension layout
D = reshape(a,shape=[ni,nk,nj], order=[1,3,2])
! Same example, take the absolute value and scale by 2.5
D = 2.5 * abs(reshape(a,shape=[ni,nk,nj], order=[1,3,2]))

3.9.4.8. Fortran TRANSPOSE Intrinsic Function
The interface for TRANSPOSE is in the cutensorex module. This function is also
documented thoroughly in the NVIDIA Fortran CUDA Interfaces document in the
cuTensor chapter.

The Fortran transpose() intrinsic transposes a matrix (a 2-dimensional array). It is
invoked as:

D = alpha * func(transpose(A))

Reference

CUDA Fortran Programming Guide Version 23.11 | 67

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The
rank (number of dimensions) of A and D is 2. Applying scaling (the alpha argument)
or applying a function to the transpose result is optional. The alpha value is expected to
be the same type as A, or as func(transpose(A)), if that differs. Accepted functions which
can be applied to the result of the transpose are listed in the Fortran CUDA Interfaces
document referred to above. This Fortran call, besides initialization and setting up
cuTENSOR descriptors, maps to cutensorPermutation().
! Example of transpose
D = transpose(A)
! Same example, take the absolute value and scale by 2.5
D = 2.5 * abs(tranpose(A))

The transpose() function is also supported as part of the "B" argument in mask
expressions described above. For example, if A is a 2-dimension mxn array, and B is
nxm:
 ICNT = COUNT(A .GT. TRANSPOSE(B))

3.9.4.9. Fortran SPREAD Intrinsic Function
The interface for SPREAD is in the cutensorex module. This function is also
documented in the NVIDIA Fortran CUDA Interfaces document in the cuTensor chapter.

The Fortran spread() intrinsic increases the rank of an array by one across the specified
dimension and broadcasts the values over the new dimension. It is invoked as:

D = alpha * func(spread(A, dim=i, ncopies=n))

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8).
The rank (number of dimensions) of A and D can be from 1 to 7. The alpha value is
expected to be the same type as A. Accepted functions which can be applied to the
result of spread are listed in the Fortran CUDA Interfaces document referred to above.
This Fortran call, besides initialization and setting up cuTENSOR descriptors, maps to
cutensorPermutation().
! Example to add and broadcast values over the new first dimension
D = spread(A, dim=1, ncopies=n1)
! Same example, take the absolute value and scale by 2.5
D = 2.5 * abs(spread(A, dim=1, ncopies=n1))

The spread() function is also supported as part of the "B" argument in mask expressions
described above. For example, if A is a 2-dimension mxn array, and B is 1-dimensional
array of length m:
 ICNT = COUNT(A .GT. SPREAD(B, dim=2, ncopies=n))

3.9.4.10. Fortran MATMUL Intrinsic Function
The interface for MATMUL is in the cutensorex module. This function is also
documented thoroughly in the NVIDIA Fortran CUDA Interfaces document in the
cuTensor chapter.

The Fortran matmul() intrinsic performs matrix multiplication, one instance of tensor
contractions. Either operand to matmul can be a permuted array, the result of a call to
reshape(), transpose(), or spread(). The cuTENSOR library does not currently support
applying an elemental function to the array operands, but the result and accumlator can
be scaled. Here are some supported forms:

Reference

CUDA Fortran Programming Guide Version 23.11 | 68

D = matmul(A, B)

D = matmul(permute(A), B)

D = matmul(A, permute(B))

D = matmul(permute(A), permute(B))

D = C + matmul(A, B)

D = C - matmul(A, B)

D = alpha * matmul(A, B) + beta * C

The arrays A, B, C, and D can be of type real(2), real(4), real(8), complex(4), or
complex(8). The rank (number of dimensions) of A, B, C, and D must be 2, after any
permutations. Arrays C and D must currently have the same shape, strides, and type.
The alpha value is expected to be the same type as A and B. The beta value should
have the same type as C. The Fortran wrapper does no type conversion, though
cuTENSOR may. Compile-time checking of array conformance is limited. Other runtime
checks for unsupported combinations may come from either the Fortran wrapper or
from cuTENSOR. Fortran support for Matmul, besides initialization and setting up
cuTENSOR descriptors, maps to cutensorContraction().
! Example to multiply two matrices together
D = matmul(A, B)
! Same example, accumulate into C
C = C + matmul(A, B)
! Same example, transpose the first argument
C = C + matmul(transpose(A), B)

3.9.4.11. Fortran DOT_PRODUCT Intrinsic Function
The interface for DOT_PRODUCT is in the cutensorex module. This function is also
documented thoroughly in the NVIDIA Fortran CUDA Interfaces document in the
cuTensor chapter.

The Fortran dot_product() intrinsic performs the dot product of two vectors, one specific
instance of a tensor contraction. In the standard form, it returns a scalar of the same type
as the input arguments, and the destination on the LHS of the assignment must have the
device or managed attribute. Either operand to dot_product can be a permuted array,
the result of a call to reshape(), creating a 1-D array. Note that the Fortran definition of
dot_product for complex variables performs a conjugate of the first argument. Here are
some supported forms:

S = dot_product(A, B)

S = dot_product(reshape(T, shape=[m*n]), B)

S = dot_product(ABS(A), B)

ZC = dot_product(ZX,ZY) ! BLAS ZDOTC equivalent

ZU = dot_product(CONJG(ZX),ZY) ! BLAS ZDOTU equivalent

The input arrays can be of type real(2), real(4), real(8), complex(4), or complex(8).
Fortran support for DOT_PRODUCT, besides initialization and setting up cuTENSOR
descriptors, maps to cutensorContraction().

Reference

CUDA Fortran Programming Guide Version 23.11 | 69

This implementation has been extended to expose more of the
cutensorContraction() functionality at a high level. The extended interface to
DOT_PRODUCT accepts multi-dimensional arrays and a dim argument. The dot_product
will be computed only along the specified dimension, resulting in an array with rank
one fewer than the input arrays.

Most of the same permutations, functions and accumulation operations that are
provided with MATMUL are provided with DOT_PRODUCT. Here are a few examples: For A
and B an NxN matrix, X and V are vectors of length N, and alpha a scalar:

X = dot_product(A, B, dim=1)

X = X + dot_product(A, transpose(B), dim=1)

X = X - alpha * dot_product(spread(V, dim=1, ncopies=N), B, dim=2)

3.9.4.12. Fortran RANDOM_NUMBER Intrinsic Function
The interface for RANDOM_NUMBER is actually in the curandex module, but that is
included/used within the cutensorex module.

The Fortran subroutine RANDOM_NUMBER returns random numbers between the values of
0.0 and 1.0. This interface is provided as a convenience, and has not undergone extensive
testing. When you pass arrays with the device or managed attribute, the subroutine will
invoke a cuRAND library function to generate the values. Some additional work was
done to support the types real(2), real(4), real(8), complex(4), and complex(8), some of
which is non-standard. Only arrays of 1 - 3 dimensions are supported.

For example, if A is a real array and has the device or managed attribute:
 block; use cutensorex
 CALL RANDOM_NUMBER(A)
 end block

The default generator used by the curandex module is
CURAND_RNG_PSEUDO_XORWOW.

Some helper functions are provided in the curandex module to fine-tune the cuRAND
library random number generator, which should be self-explanatory:
 integer(4) function curandExSetCurandGenerator(g)
 type(curandGenerator) :: g
 end function

 function curandExGetCurandGenerator() result(s)
 type(curandGenerator) :: s
 end function

 integer(4) function curandExSetStream(stream)
 integer(kind=cuda_stream_kind), value :: stream
 end function

 function curandExGetStream() result(s)
 integer(kind=cuda_stream_kind) :: s
 end function

Reference

CUDA Fortran Programming Guide Version 23.11 | 70

3.9.5. Other CUDA Library Host Modules
Please refer to the NVIDIA Fortran CUDA Interfaces document for more detailed
information on the Fortran interfaces to CUDA libraries. This section discusses some of
the more-commonly used interfaces and libraries.

NVIDIA provides a module which defines interfaces to the CUBLAS Library from
NVIDIA CUDA Fortran. These interfaces are made accessible by placing the following
statement in the CUDA Fortran host-code program unit.
use cublas

The interfaces are currently in three forms:

‣ Overloaded traditional BLAS interfaces which take device arrays as arguments
rather than host arrays, i.e.
 call saxpy(n, a, x, incx, y, incy)

where the arguments x and y have the device attribute.
‣ Portable legacy CUBLAS interfaces which interface directly with CUBLAS versions <

4.0, i.e.
 call cublasSaxpy(n, a, x, incx, y, incy)

where the arguments x and y must have the device attribute.
‣ New CUBLAS 4.0+ interfaces with access to all features of the new library.

These interfaces are all in the form of function calls, take a handle as the first
argument, and pass many scalar arguments and results by reference, i.e.
 istat = cublasSaxpy_v2(h, n, a, x, incx, y, incy)

In the case of saxpy, users now have the option of having "a" reside either on
the host or device. Functions which traditionally return a scalar, such as sdot()
and isamax(), now take an extra argument for returning the result. Functions
which traditionally take a character*1 argument, such as 't' or 'n' to control
transposing, now take an integer value defined in the cublas module.

To support the third form, a derived type named cublasHandle is defined in the
cublas module. You can define a variable of this type using
type(cublasHandle) :: h

Initialize it by passing it to the cublasCreate function.

When using CUBLAS 4.0 and higher, the cublas module properly generates handles for
the first two forms from serial and OpenMP parallel regions.

Intermixing the three forms is permitted. To access the handles used internally in the
cublas module use:
h = cublasGetHandle()

The following form "istat = cublasGetHandle(h)" is also supported.
istat = cublasGetHandle(h)

Assignment and tests for equality and inequality are supported for the cublasHandle
type.

Reference

CUDA Fortran Programming Guide Version 23.11 | 71

CUDA 4.0+ helper functions defined in the cublas module:
integer function cublasCreate(handle)
integer function cublasDestroy(handle)
integer function cublasGetVersion(handle, version)
integer function cublasSetStream(handle, stream)
integer function cublasGetStream(handle, stream)
integer function cublasGetPointerMode(handle, mode)
integer function cublasSetPointerMode(handle, mode)

Refer to Cublas Module Example for an example that demonstrates the use of the
cublas module, the cublasHandle type, and the three forms of calls.

NVIDIA provides another module which defines interfaces to the CUFFT Library from
NVIDIA CUDA Fortran. These interfaces are made accessible by placing the following
statement in the CUDA Fortran host-code program unit.
use cufft

Here is an example of some code which uses the cufft interfaces:
program cufft2dTest
 use cufft
 integer, parameter :: n=450
 complex :: a(n,n),b(n,n)
 complex, device :: a_d(n,n), b_d(n,n)
 integer :: plan, ierr
 real, dimension(3) :: res, exp

 a = 1; a_d = a

 ierr = cufftPlan2D(plan,n,n,CUFFT_C2C)
 ierr = ierr + cufftExecC2C(plan,a_d,b_d,CUFFT_FORWARD)
 ierr = ierr + cufftExecC2C(plan,b_d,b_d,CUFFT_INVERSE)

 b = b_d
 res(1) = maxval(abs(a-b/(n*n)))
 print *,'Max error C2C: ', res(1)

The distribution also contains a module which defines interfaces to the CUSPARSE
Library from NVIDIA CUDA Fortran. These interfaces are made explicit by placing the
following statement in the CUDA Fortran host-code program unit.
use cusparse

In addition to the function interfaces, there are several important derived types and
constants which are defined in the cusparse module. Here is an example of their use:
! Compile with "nvfortran testLevel3.cuf -cudalib=cusparse"
program testLevel3
 use cudafor
 use cusparse

 implicit none

 integer, parameter :: nd = 20 ! # rows/cols in dense matrix

 type(cusparseHandle) :: h
 type(cusparseMatDescr) :: descrA
 type(cusparseSolveAnalysisInfo) :: saInfo
 integer :: status, version, mode, i

 ! D-data
 ! dense
 real(8) :: DAde(nd,nd), DBde(nd,nd), DCde(nd,nd), DmaxErr
 real(8), device :: DAde_d(nd,nd), DBde_d(nd,nd), DCde_d(nd,nd)
 ! csr

Reference

CUDA Fortran Programming Guide Version 23.11 | 72

 real(8) :: csrValDA(nd)
 real(8), device :: csrValDA_d(nd)
 real(8) :: Dalpha, Dbeta
 real(8), device :: Dalpha_d, Dbeta_d

 ! integer data common to all data types
 integer :: nnz
 integer :: nnzPerRowA(nd), csrRowPtrA(nd+1), csrColIndA(nd)
 integer, device :: nnzPerRowA_d(nd), csrRowPtrA_d(nd+1), csrColIndA_d(nd)

 ! initalization

 status = cusparseCreate(h)
 status = cusparseGetVersion(h, version)
 write(*,*) '... version:', version

 status = cusparseCreateMatDescr(descrA)
 status = cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL)
 status = cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE)
 status = cusparseCreateSolveAnalysisInfo(saInfo)

 ! Initialize matrix (Identity)

 DAde = 0.0
 i = 1, nd
 DAde(i,i) = 1.0
 end do
 DAde_d = DAde
 call random_number(DBde)
 DBde_d = DBde

 ! convert from dense to csr
 status = cusparseDnnz_v2(h, CUSPARSE_DIRECTION_ROW, nd, nd, descrA, &
 DAde_d, nd, nnzPerRowA_d, nnz)
 status = cusparseDdense2csr(h, nd, nd, descrA, DAde_d, nd, nnzPerRowA_d, &
 csrValDA_d, csrRowPtrA_d, csrColIndA_d)

 ! csrmm HPM
 Dalpha = 1.0
 Dbeta = 0.0
 status = cusparseDcsrmm(h, CUSPARSE_OPERATION_NON_TRANSPOSE, nd, nd, nd, &
 nnz, Dalpha, descrA, csrValDA_d, csrRowPtrA_d, csrColIndA_d, DBde_d, &
 nd, Dbeta, DCde_d, nd)
 if (status /= CUSPARSE_STATUS_SUCCESS) write (*,*) 'CSRMM Error:',status

 DCde = DCde_d
 DmaxErr = maxval(abs(DCde-DBde))

 status = cusparseDestroy(h)
 write(*,*) 'cusparseDestroy', status, DmaxErr

end program testLevel3

CUDA Fortran Programming Guide Version 23.11 | 73

Chapter 4.
RUNTIME APIS

The system module cudafor defines the interfaces to the Runtime API routines.

For a complete explanation of the purpose and function of each routine in this chapter,
refer to docs.nvidia.com/cuda/cuda-runtime-api.

Most of the runtime API routines are integer functions that return an error code; they
return a value of zero if the call was successful, and a nonzero value if there was an
error. To interpret the error codes, refer to Error Handling.

Unless a specific kind is provided, the plain integer type implies integer(4) and the plain
real type implies real(4).

4.1. Initialization
No explicit initialization is required; the runtime initializes and connects to the device
the first time a runtime routine is called or a device array is allocated.

Tip

When doing timing runs, be aware that initialization can add some overhead.

4.2. Device Management
Use the functions in this section for device management.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Device Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.2.1. cudaChooseDevice
integer function cudaChooseDevice (devnum, prop)
 integer, intent(out) :: devnum
 type(cudadeviceprop), intent(in) :: prop

https://docs.nvidia.com/cuda/cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 74

cudaChooseDevice assigns the device number that best matches the properties given
in prop to its first argument.

4.2.2. cudaDeviceGetAttribute
integer function cudaDeviceGetAttribute (val, attribute, devicenum)
 integer, intent(out) :: val
 integer, intent(in) :: attribute
 integer, intent(in) :: devicenum

cudaDeviceGetAttribute returns information about the device. Specific information
returned is determined by the attribute argument, for the specified device number.

4.2.3. cudaDeviceGetCacheConfig
integer function cudaDeviceGetCacheConfig (cacheconfig)
 integer, intent(out) :: cacheconfig

cudaDeviceGetCacheConfig returns the preferred cache configuration
for the current device. Current possible cache configurations are defined to
be cudaFuncCachePreferNone, cudaFuncCachePreferShared, and
cudaFuncCachePreferL1.

cudaDeviceGetCacheConfig is available in device code starting in CUDA 5.0.

4.2.4. cudaDeviceGetLimit
integer function cudaDeviceGetLimit(val, limit)
 integer(kind=cuda_count_kind) :: val
 integer :: limit

cudaGetDeviceGetLimit returns in val the current size of limit. Current possible
limit arguments are cudaLimitStackSize, cudaLimitPrintfSize, and
cudaLimitMallocHeapSize.

cudaGetDeviceGetLimit is available in device code starting in CUDA 5.0.

4.2.5. cudaDeviceGetSharedMemConfig
integer function cudaDeviceGetSharedMemConfig (config)
integer, intent(out) :: config

cudaDeviceGetSharedMemConfig returns the current size of the shared memory
banks on the current device. This routine is for use with devices with configurable
shared memory banks, and is supported starting with CUDA 4.2. Current possible
shared memory configurations are defined to be cudaSharedMemBankSizeDefault,
cudaSharedMemBankSizeFourByte, and cudaSharedMemBankSizeEightByte.

4.2.6. cudaDeviceGetStreamPriorityRange
integer function cudaDeviceGetStreamPriorityRange (leastpriority,
 greatestpriority)
integer, intent(out) :: leastpriority, greatestpriority

cudaDeviceGetStreamPriorityRange returns the numerical values that
correspond to the least and greatest stream priorities for the current context and device.

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 75

4.2.7. cudaDeviceReset
integer function cudaDeviceReset()

cudaDeviceReset resets the current device attached to the current process.

4.2.8. cudaDeviceSetCacheConfig
integer function cudaDeviceSetCacheConfig (cacheconfig)
 integer, intent(in) :: cacheconfig

cudaDeviceSetCacheConfig sets the current device preferred cache configuration.
Current possible cache configurations are defined to be cudaFuncCachePreferNone,
cudaFuncCachePreferShared, and cudaFuncCachePreferL1.

4.2.9. cudaDeviceSetLimit
integer function cudaDeviceSetLimit(limit, val)
 integer :: limit

 integer(kind=cuda_count_kind) :: val

cudaGetDeviceSetLimit sets the limit of the current device to val. Current
possible limit arguments are cudaLimitStackSize, cudaLimitPrintfSize, and
cudaLimitMallocHeapSize.

4.2.10. cudaDeviceSetSharedMemConfig
integer function cudaDeviceSetSharedMemConfig (config)
 integer, intent(in) :: config

cudaDeviceSetSharedMemConfig sets the size of the shared memory banks on
the current device. This routine is for use with devices with configurable shared
memory banks, and is supported starting with CUDA 4.2. Current possible shared
memory configurations are defined to be cudaSharedMemBankSizeDefault,
cudaSharedMemBankSizeFourByte, and cudaSharedMemBankSizeEightByte.

4.2.11. cudaDeviceSynchronize
integer function cudaDeviceSynchronize()

cudaDeviceSynchronize blocks the current device until all preceding requested
tasks have completed.

cudaDeviceSynchronize was available in device code starting in CUDA 5.0.

cudaDeviceSynchronize has been removed from CUDA Fortran device code
starting with the NVHPC 22.11 Release as it is no longer supported there in the CUDA
Programming Model.

4.2.12. cudaGetDevice
integer function cudaGetDevice(devnum)
 integer, intent(out) :: devnum

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 76

cudaGetDevice assigns the device number associated with this host thread to its first
argument.

cudaGetDevice is available in device code starting in CUDA 5.0.

4.2.13. cudaGetDeviceCount
integer function cudaGetDeviceCount(numdev)
 integer, intent(out) :: numdev

cudaGetDeviceCount assigns the number of available devices to its first argument.

cudaGetDeviceCount is available in device code starting in CUDA 5.0.

4.2.14. cudaGetDeviceProperties
integer function cudaGetDeviceProperties(prop, devnum)
 type(cudadeviceprop), intent(out) :: prop
 integer, intent(in) :: devnum

cudaGetDeviceProperties returns the properties of a given device.

cudaGetDeviceProperties is available in device code starting in CUDA 5.0.

4.2.15. cudaSetDevice
integer function cudaSetDevice(devnum)
 integer, intent(in) :: devnum

cudaSetDevice selects the device to associate with this host thread.

4.2.16. cudaSetDeviceFlags
integer function cudaSetDevice(flags)
 integer, intent(in) :: flags

cudaSetDeviceFlags records how the CUDA runtime interacts with this host thread.

4.2.17. cudaSetValidDevices
integer function cudaSetValidDevices(devices, numdev)
 integer :: numdev, devices(numdev)

cudaSetValidDevices sets a list of valid devices for CUDA execution in priority
order as specified in the devices array.

4.3. Thread Management
Sometimes threads within a block access the same addresses in shared or global
memory, thus creating potential read-after-write, write-after-read, or write-after-write
hazards for some of these memory accesses. To avoid these potential issues, use the
functions in this section for thread management. These functions have been deprecated
beginning in CUDA 4.0.

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 77

4.3.1. cudaThreadExit
integer function cudaThreadExit()

cudaThreadExit explicitly cleans up all runtime-related CUDA resources associated
with the host thread. Any subsequent CUDA calls or operations will reinitialize the
runtime.

Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

4.3.2. cudaThreadSynchronize
integer function cudaThreadSynchronize()

cudaThreadSynchronize blocks execution of the host subprogram until all preceding
kernels and operations are complete. It may return an error condition if one of the
preceding operations fails.

This function is deprecated because its name does not reflect its
behavior. Its functionality is identical to the non-deprecated function
cudaDeviceSynchronize(), which you should use instead.

4.4. Error Handling
Use the functions in this section for error handling.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Error Handling section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.4.1. cudaGetErrorString
function cudaGetErrorString(errcode)
 integer, intent(in) :: errcode
 character*(*) :: cudaGetErrorString

cudaGetErrorString returns the message string associated with the given error code.

4.4.2. cudaGetLastError
integer function cudaGetLastError()

cudaGetLastError returns the error code that was most recently returned from any
runtime call in this host thread.

4.4.3. cudaPeekAtLastError
integer function cudaPeekAtLastError()

cudaPeekAtLastError returns the last error code that has been produced
by the CUDA runtime without resetting the error code to cudaSuccess like
cudaGetLastError.

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 78

4.5. Stream Management
Use the functions in this section for stream management.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Stream Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.5.1. cudaforGetDefaultStream
integer(kind=cuda_stream_kind) function cudaforGetDefaultStream(devptr)

cudaforGetDefaultStream returns the default stream which has been
associated with a thread, managed variable, or device variable via a call to
cudaforSetDefaultStream. devptr may be any managed or device scalar or array
of a supported type specified in Device Code Intrinsic Datatypes. The devptr argument
is optional; if it is not specified, the function returns the stream tied to the thread, or zero
(the default stream).

Streams values returned from cudaforGetDefaultStream can be used as the
argument to other CUDA libraries, such as the routines cublasSetStream(),
cufftSetStream(), and cusparseSetStream().

4.5.2. cudaforSetDefaultStream
integer function cudaforSetDefaultStream(devptr, stream)
 integer(kind=cuda_stream_kind), intent(in) :: stream

cudaforSetDefaultStream sets the default stream for all subsequent high-level
CUDA Fortran operations on managed or device data initiated by that CPU thread. The
specific operations affected with managed data are allocatation via the Fortran allocate
statement, assignment (both memset and memcpy types), CUF Kernel and global kernel
launches, and sum(), maxval(), and minval() reduction operations. devptr may be any
managed or device scalar or array of a supported type specified in Device Code Intrinsic
Datatypes. The devptr argument is optional; if it is not specified, the function ties the
specified stream to all subsequent, allowable, high-level operations executing on that
thread.

4.5.3. cudaStreamAttachMemAsync
integer function cudaStreamAttachMemAsync(stream, devptr, length, flags)
 integer(kind=cuda_stream_kind), intent(in) :: stream
 integer(kind=cuda_count_kind), optional, intent(in) :: length
 integer, optional, intent(in) :: flags

cudaStreamAttachMemAsync initiates a stream operation to attach the managed
allocation starting at address devptr to the specified stream. devptr may
be any managed scalar or array of a supported type specified in Device Code
Intrinsic Datatypes. The argument len is optional, but currently must be zero.
The flags argument must be cudaMemAttachGlobal, cudMemAttachHost, or
cudMemAttachSingle.

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 79

cudaStreamAttachMemAsync is available starting in CUDA 6.0.

4.5.4. cudaStreamCreate
integer function cudaStreamCreate(stream)
 integer(kind=cuda_stream_kind), intent(out) :: stream

cudaStreamCreate creates an asynchronous stream and assigns its identifier to its
first argument.

4.5.5. cudaStreamCreateWithFlags
integer function cudaStreamCreateWithFlags(stream, flags)
 integer(kind=cuda_stream_kind), intent(out) :: stream
 integer, intent(in) :: flags

cudaStreamCreateWithFlags creates an asynchronous stream and assigns its
identifier to its first argument. Valid values for flags are cudaStreamDefault or
cudaStreamNonBlocking.

cudaStreamCreateWithFlags is available in device code starting in CUDA 5.0.

4.5.6. cudaStreamCreateWithPriority
integer function cudaStreamCreateWithPriority(stream, flags, priority)
 integer(kind=cuda_stream_kind), intent(out) :: stream
 integer, intent(in) :: flags, priority

cudaStreamCreateWithPriority creates an asynchronous stream and assigns
its identifier to its first argument. Valid values for flags are cudaStreamDefault or
cudaStreamNonBlocking. Lower values for priority represent higher priorities.
Work in a higher priority stream may preempt work already executing in a low priority
stream.

4.5.7. cudaStreamDestroy
integer function cudaStreamDestroy(stream)
 integer(kind=cuda_stream_kind), intent(in) :: stream

cudaStreamDestroy releases any resources associated with the given stream.

cudaStreamDestroy is available in device code starting in CUDA 5.0.

4.5.8. cudaStreamGetPriority
integer function cudaStreamGetPriority(stream, priority)
 integer(kind=cuda_stream_kind), intent(in) :: stream
 integer, intent(out) :: priority

cudaStreamGetPriority queries and returns the priority of the given stream in
priority.

4.5.9. cudaStreamQuery
integer function cudaStreamQuery(stream)
 integer(kind=cuda_stream_kind), intent(in) :: stream

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 80

cudaStreamQuery tests whether all operations enqueued to the selected stream
are complete; it returns zero (success) if all operations are complete, and the value
cudaErrorNotReady if not. It may also return another error condition if some
asynchronous operations failed.

4.5.10. cudaStreamSynchronize
integer function cudaStreamSynchronize(stream)
 integer(kind=cuda_stream_kind), intent(in) :: stream

cudaStreamSynchronize blocks execution of the host subprogram until all preceding
kernels and operations associated with the given stream are complete. It may return
error codes from previous, asynchronous operations.

4.5.11. cudaStreamWaitEvent
integer function cudaStreamWaitEvent(stream, event, flags)
 integer(kind=cuda_stream_kind) :: stream
 type(cudaEvent), intent(in) :: event
 integer :: flags

cudaStreamWaitEvent blocks execution on all work submitted on the stream until
the event reports completion.

cudaStreamWaitEvent is available in device code starting in CUDA 5.0.

4.6. Event Management
Use the functions in this section to manage events.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Event Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.6.1. cudaEventCreate
integer function cudaEventCreate(event)
 type(cudaEvent), intent(out) :: event

cudaEventCreate creates an event object and assigns the event identifier to its first
argument

4.6.2. cudaEventCreateWithFlags
integer function cudaEventCreateWithFlags(event, flags)
 type(cudaEvent), intent(out) :: event
 integer :: flags

cudaEventCreateWithFlags creates an event object with the specified flags.
Current flags supported are cudaEventDefault, cudaEventBlockingSync, and
cudaEventDisableTiming.

cudaEventCreateWithFlags is available in device code starting in CUDA 5.0.

4.6.3. cudaEventDestroy
integer function cudaEventDestroy(event)

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 81

 type(cudaEvent), intent(in) :: event

cudaEventDestroy destroys the resources associated with an event object.

cudaEventDestroy is available in device code starting in CUDA 5.0.

4.6.4. cudaEventElapsedTime
integer function cudaEventElapsedTime(time, start, end)
 real :: time
 type(cudaEvent), intent() :: start, end

cudaEventElapsedTime computes the elapsed time between two events (in
milliseconds). It returns cudaErrorInvalidValue if either event has not yet been
recorded. This function is only valid with events recorded on stream zero.

4.6.5. cudaEventQuery
integer function cudaEventQuery(event)
 type(cudaEvent), intent(in) :: event

cudaEventQuery tests whether an event has been recorded. It returns success (zero)
if the event has been recorded, and cudaErrorNotReady if it has not. It returns
cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

4.6.6. cudaEventRecord
integer function cudaEventRecord(event, stream)
 type(cudaEvent), intent(in) :: event
 integer, intent(in) :: stream

cudaEventRecord issues an operation to the given stream to record an event. The
event is recorded after all preceding operations in the stream are complete. If stream is
zero, the event is recorded after all preceding operations in all streams are complete.

cudaEventRecord is available in device code starting in CUDA 5.0.

4.6.7. cudaEventSynchronize
integer function cudaEventSynchronize(event)
 type(cudaEvent), intent(in) :: event

cudaEventSynchronize blocks until the event has been recorded. It returns a value
of cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

4.7. Execution Control
CUDA Fortran does not support all API routines which duplicate the functionality of the
chevron syntax. Additional functionality which has been provided with later versions of
CUDA is available.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Execution Control section at https://docs.nv idia.com/cuda/cuda-runtime-api.

https://docs.nv idia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 82

4.7.1. cudaFuncGetAttributes
integer function cudaFuncGetAttributes(attr, func)
 type(cudaFuncAttributes), intent(out) :: attr
 external :: func

cudaFuncGetAttributes gets the attributes for the function named by the func
argument, which must be a global function.

cudaFuncGetAttributes is available in device code starting in CUDA 5.0.

4.7.2. cudaFuncSetAttribute
integer function cudaFuncSetAttribute(func, attribute, value)
 external :: func
 integer :: attribute
 integer :: value

cudaFuncSetAttribute sets the attribute for the function named by the func
argument, which must be a global function.

4.7.3. cudaFuncSetCacheConfig
integer function cudaFuncSetCacheConfig(func, cacheconfig)
 character*(*) :: func
 integer :: cacheconfig

cudaFuncSetCacheConfig sets the preferred cache configuration for the
function named by the func argument, which must be a global function. Current
possible cache configurations are defined to be cudaFuncCachePreferNone,
cudaFuncCachePreferShared, and cudaFuncCachePreferL1.

4.7.4. cudaFuncSetSharedMemConfig
integer function cudaFuncSetSharedMemConfig(func, cacheconfig)
character*(*) :: func
integer :: cacheconfig

cudaFuncSetSharedMemConfig sets the size of the shared memory banks for the
function named by the func argument, which must be a global function. This routine is
for use with devices with configurable shared memory banks, and is supported starting
with CUDA 4.2. Current possible shared memory configurations are defined to be
cudaSharedMemBankSizeDefault, cudaSharedMemBankSizeFourByte, and
cudaSharedMemBankSizeEightByte

4.7.5. cudaSetDoubleForDevice
integer function cudaSetDoubleForDevice(d)
 real(8) :: d

cudaSetDoubleForDevice sets the argument d to an internal representation suitable
for devices which do not support double precision arithmetic.

4.7.6. cudaSetDoubleForHost
integer function cudaSetDoubleForHost(d)
 real(8) :: d

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 83

cudaSetDoubleForHost sets the argument d from an internal representation
on devices which do not support double precision arithmetic to the normal host
representation.

4.8. Occupancy
The occupancy routines take a global subroutine as an argument and return values
related to occupancy, available to be used in kernel launch configurations.

CUDA Fortran has extended the chevron syntax to take a * argument which will call
these functions within the runtime, i.e. under the hood. This convenience may not be
desirable if the kernel is launched many times as it does invoke some overhead for each
call.

Use of the occupancy calls, either explicitly or via the * syntax, is particularly useful
when launching grid_global kernels as the launch parameters must be sized to fit on the
current device.

Use the functions in this section for explicit occupancy calculations.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Occupancy section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.8.1. cudaOccupancyMaxActiveBlocksPerMultiprocessor
integer function cudaOccupancyMaxActiveBlocksPerMultiprocessor(numBlocks, func,
 blockSize, dynamicSMemSize)
 integer :: numBlocks
 external :: func
 integer :: blockSize
 integer :: dynamicSMemSize

cudaOccupancyMaxActiveBlocksPerMultiprocessor returns the occupancy,
as the number of blocks per multiprocessor, given the global subroutine named by the
func argument, the block size (number of threads) the kernel is intended to be launched
with, and the amount of dynamic shared memory, in bytes, the kernel is intended to be
launched with.

4.8.2. cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
integer function
 cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(numBlocks, func,
 blockSize, dynamicSMemSize, flags)
 integer :: numBlocks
 external :: func
 integer :: blockSize
 integer :: dynamicSMemSize
 integer :: flags

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags returns the
occupancy, as the number of blocks per multiprocessor, given the global subroutine
named by the func argument, the block size (number of threads) the kernel is intended
to be launched with, and the amount of dynamic shared memory, in bytes, the kernel is
intended to be launched with, for the specified flags.

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 84

4.8.3. cudaOccupancyMaxPotentialClusterSize
integer function cudaOccupancyMaxPotentialClusterSize(csize, func, config)
 integer :: csize
 external :: func
 type(cudaLaunchConfig) :: config

cudaOccupancyMaxPotentialClusterSize returns the maximum cluster size that
can be launched, given the input kernel, func, and launch configuration specified in the
config argument.

4.8.4. cudaOccupancyMaxActiveClusters
integer function cudaOccupancyMaxActiveClusters(maxc, func, config)
 integer :: maxc
 external :: func
 type(cudaLaunchConfig) :: config

cudaOccupancyMaxActiveClusters returns the maximum number of clusters that
could co-exist on the target device. The cluster size can be set in the config argument.

4.9. Memory Management
Many of the memory management routines can take device arrays as arguments. Some
can also take C types, provided through the Fortran 2003 iso_c_binding module, as
arguments to simplify interfacing to existing CUDA C code.

CUDA Fortran has extended the F2003 derived type TYPE(C_PTR) by providing a C
device pointer, defined in the cudafor module, as TYPE(C_DEVPTR). Consistent use
of TYPE(C_PTR) and TYPE(C_DEVPTR), as well as consistency checks between Fortran
device arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of a TYPE(C_DEVPTR)
by using an extension of the iso_c_binding subroutine c_f_pointer. Under
CUDA Fortran, c_f_pointer will take a TYPE(C_DEVPTR) as the first argument, an
allocatable device array as the second argument, a shape as the third argument, and
in effect transfer the allocation to the Fortran array. Similarly, there is also a function
C_DEVLOC() defined which will create a TYPE(C_DEVPTR) that holds the C address of
the Fortran device array argument. Both of these features are subject to change when, in
the future, proper Fortran pointers for device data are supported.

Use the functions in this section for memory management.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Memory Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.9.1. cudaFree
integer function cudaFree(devptr)

cudaFree deallocates data on the device. devptr may be any allocatable device array
of a supported type specified in Device Code Intrinsic Datatypes. Or, devptr may be of
TYPE(C_DEVPTR).

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 85

cudaFree is available in device code starting in CUDA 5.0.

4.9.2. cudaFreeArray
integer function cudaFreeArray(carray)
 type(cudaArrayPtr) :: carray

cudaFreeArray frees an array that was allocated on the device.

4.9.3. cudaFreeAsync
integer function cudaFreeAsync(devptr, stream)

cudaFreeAsync deallocates data on the device, asynchronously, on the specified
stream. devptr may be any allocatable device array of a supported type specified in
Device Code Intrinsic Datatypes. Or, devptr may be of TYPE(C_DEVPTR). The stream
argument is an integer of kind=cuda_stream_kind.

cudaFreeAsync is available starting in CUDA 11.2.

4.9.4. cudaFreeHost
integer function cudaFreeHost(hostptr)
 type(C_PTR) :: hostptr

cudaFreeHost deallocates pinned memory on the host allocated with
cudaMalloHost.

4.9.5. cudaGetSymbolAddress
integer function cudaGetSymbolAddress(devptr, symbol)
 type(C_DEVPTR) :: devptr
 type(c_ptr) :: symbol

cudaGetSymbolAddress returns in the devptr argument the address of symbol on
the device. A symbol can be set to an external device name via a character string.

The following code sequence initializes a global device array ‘vx’ from a CUDA C
kernel:
type(c_ptr) :: csvx
type(c_devptr) :: cdvx
real, allocatable, device :: vx(:)
csvx = ‘vx’
Istat = cudaGetSymbolAddress(cdvx, csvx)
Call c_f_pointer(cdvx, vx, 100)
Vx = 0.0

4.9.6. cudaGetSymbolSize
integer function cudaGetSymbolSize(size, symbol)
 integer :: size
 type(c_ptr) :: symbol

cudaGetSymbolSize sets the variable size to the size of a device area in global or
constant memory space referenced by the symbol.

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 86

4.9.7. cudaHostAlloc
integer function cudaHostAlloc(hostptr, size, flags)
 type(C_PTR) :: hostptr
 integer :: size, flags

cudaHostAlloc allocates pinned memory on the host. It returns in hostptr the
address of the page-locked allocation, or returns an error if the memory is unavailable.
Size is in bytes. The flags argument enables different options to be specified that
affect the allocation. The normal iso_c_binding subroutine c_f_pointer can be used to
move the type(c_ptr) to a Fortran pointer.

4.9.8. cudaHostGetDevicePointer
integer function cudaHostGetDevicePointer(devptr, hostptr, flags)
 type(C_DEVPTR) :: devptr
 type(C_PTR) :: hostptr
 integer :: flags

cudaHostGetDevicePointer returns a pointer to a device memory address
corresponding to the pinned memory on the host. hostptr is a pinned memory
buffer that was allocated via cudaHostAlloc(). It returns in devptr an address
that can be passed to, and read and written by, a kernel which runs on the device. The
flags argument is provided for future releases. The normal iso_c_binding subroutine
c_f_pointer can be used to move the type(c_devptr)to a device array.

4.9.9. cudaHostGetFlags
integer function cudaHostGetFlags(flags, hostptr)
 integer :: flags
 type(C_PTR) :: hostptr

cudaHostGetFlags returns the flags associated with a host pointer.

4.9.10. cudaHostRegister
integer function cudaHostRegister(hostptr, count, flags)
 integer :: flags
 type(C_PTR) :: hostptr

cudaHostRegister page-locks the memory associated with the host pointer and of
size provided by the count argument, according to the flags argument.

4.9.11. cudaHostUnregister
integer function cudaHostRegister(hostptr)
 type(C_PTR) :: hostptr

cudaHostUnregister unmaps the memory associated with the host pointer and
makes it page-able again. The argument hostptr must be the same as was used with
cudaHostRegister.

4.9.12. cudaMalloc
integer function cudaMalloc(devptr, count)

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 87

cudaMalloc allocates data on the device. devptr may be any allocatable, one-
dimensional device array of a supported type specified in Device Code Intrinsic
Datatypes. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR),
in which case the count is in bytes.

cudaMalloc is available in device code starting in CUDA 5.0.

4.9.13. cudaMallocArray
integer function cudaMallocArray(carray, cdesc, width, height)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 integer :: width, height

cudaMallocArray allocates a data array on the device.

4.9.14. cudaMallocAsync
integer function cudaMallocAsync(devptr, count, stream)

cudaMallocAsync allocates data on the device, asynchronously, on the specified
stream. devptr may be any allocatable, one-dimensional device array of a supported
type specified in Device Code Intrinsic Datatypes. The count is in terms of elements.
Or, devptr may be of TYPE(C_DEVPTR), in which case the count is in bytes. The
stream argument is an integer of kind=cuda_stream_kind.

cudaFreeAsync is available starting in CUDA 11.2.

4.9.15. cudaMallocManaged
integer function cudaMallocManaged(devptr, count, flags)

cudaMallocManaged allocates data that will be managed by the unified memory
system. devptr may be any allocatable, one-dimensional managed array of a supported
type specified in Device Code Intrinsic Datatypes. The count is in terms of elements.
Or, devptr may be of TYPE(C_DEVPTR), in which case the count is in bytes. The flags
argument must be either cudaMemAttachGlobal or cudaMemAttachHost.

cudaMallocManaged is available starting in CUDA 6.0.

4.9.16. cudaMallocPitch
integer function cudaMallocPitch(devptr, pitch, width, height)

cudaMallocPitch allocates data on the device. devptr may be any allocatable,
two-dimensional device array of a supported type specified in Device Code Intrinsic
Datatypes. The width is in terms of number of elements. The height is an integer.

cudaMallocPitch may pad the data, and the padded width is returned in the
variable pitch. Pitch is an integer of kind=cuda_count_kind. devptr may also be of
TYPE(C_DEVPTR), in which case the integer values are expressed in bytes.

4.9.17. cudaMalloc3D
integer function cudaMalloc3D(pitchptr, cext)
 type(cudaPitchedPtr), intent(out) :: pitchptr
 type(cudaExtent), intent(in) :: cext

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 88

cudaMalloc3D allocates data on the device. pitchptr is a derived type defined in the
cudafor module. cext is also a derived type which holds the extents of the allocated
array. Alternatively, pitchptr may be any allocatable, three-dimensional device array
of a supported type specified in Datatypes Allowed.

4.9.18. cudaMalloc3DArray
integer function cudaMalloc3DArray(carray, cdesc, cext)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 type(cudaExtent) :: cext

cudaMalloc3DArray allocates array data on the device.

4.9.19. cudaMemAdvise
integer function cudaMemAdvise(devptr, count, advice, device)

cudaMemAdvise lends advice to the Unified Memory subsystem about the expected
usage pattern for the specified memory range. devptr may be any managed memory
scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The
count is in terms of elements. Alternatively, devptr may be of TYPE(C_DEVPTR), in
which case the count is in terms of bytes.

Current possible values for advice, defined in the
cudafor module, are cudaMemAdviseSetReadMostly,
cudaMemAdviseUnsetReadMostly, cudaMemAdviseSetPreferredLocation,
cudaMemAdviseUnsetPreferredLocation, cudaMemAdviseSetAccessedBy,
and cudaMemAdviseUnsetAccessedBy

The device argument specifies the destination device. Passing in cudaCpuDeviceId
for the device, which is defined as a parameter in the cudafor module, will set advice for
the CPU.

4.9.20. cudaMemcpy
integer function cudaMemcpy(dst, src, count, kdir)

cudaMemcpy copies data from one location to another. dst and src may be
any device or host, scalar or array, of a supported type specified in Device Code
Intrinsic Datatypes. The count is in terms of elements. kdir may be optional;
for more information, refer to Data Transfer Using Runtime Routines. If kdir
is specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst
and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in
term of bytes.

cudaMemcpy is available in device code starting in CUDA 5.0.

4.9.21. cudaMemcpyArrayToArray
integer function cudaMemcpyArrayToArray(dsta, dstx, dsty,
 srca, srcx, srcy, count, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, count, kdir

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 89

cudaMemcpyArrayToArray copies array data to and from the device.

4.9.22. cudaMemcpyAsync
integer function cudaMemcpyAsync(dst, src, count, kdir, stream)

cudaMemcpyAsync copies data from one location to another. dst and src may
be any device or host, scalar or array, of a supported type specified in Device Code
Intrinsic Datatypes. The count is in terms of elements. kdir may be optional;
for more information, refer to Data Transfer Using Runtime Routines. If kdir
is specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst
and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in
term of bytes.

This function operates on page-locked host memory only. The copy can be associated
with a stream by passing a non-zero stream argument; otherwise the stream argument
is optional and defaults to zero.

cudaMemcpyAsync is available in device code starting in CUDA 5.0.

4.9.23. cudaMemcpyFromArray
integer function cudaMemcpyFromArray(dst, srca, srcx, srcy, count, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dstx, dsty, count, kdir

cudaMemcpyFromArray copies array data to and from the device.

4.9.24. cudaMemcpyFromSymbol
integer function cudaMemcpyFromSymbol(dst, symbol, count, offset, kdir, stream)
 type(c_ptr) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyFromSymbol copies data from a device area in global or constant memory
space referenced by a symbol to a destination on the host. dst may be any host scalar
or array of a supported type specified in Datatypes Allowed. The count is in terms of
elements.

4.9.25. cudaMemcpyFromSymbolAsync
integer function cudaMemcpyFromSymbolAsync(dst, symbol, count, offset, kdir,
 stream)
 type(c_ptr) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyFromSymbolASYNC copies data from a device area in global or constant
memory space referenced by a symbol to a destination on the host. dst may be any
host scalar or array of a supported type specified in Datatypes Allowed. The count is in
terms of elements.

cudaMemcpyFromSymbolASYNCis asynchronous with respect to the host, This function
operates on page-locked host memory only. The copy can be associated with a stream by
passing a non-zero stream argument.

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 90

4.9.26. cudaMemcpyPeer
integer function cudaMemcpyPeer(dst, dstdev, src, srcdev, count)

cudaMemcpyPeer copies data from one device to another. dst and src may be
any device scalar or array, of a supported type specified in Device Code Intrinsic
Datatypes. The count is in terms of elements. Alternatively, dst and src may be of
TYPE(C_DEVPTR), in which case the count is in term of bytes.

4.9.27. cudaMemcpyPeerAsync
integer function cudaMemcpyPeerAsync(dst, dstdev, src, srcdev, count, stream)

cudaMemcpyPeerAsync copies data from one device to another. dst and src may
be any device scalar or array, of a supported type specified in Device Code Intrinsic
Datatypes. The count is in terms of elements. Alternatively, dst and src may be of
TYPE(C_DEVPTR), in which case the count is in term of bytes. The copy can be
associated with a stream by passing a non-zero stream argument.

4.9.28. cudaMemcpyToArray
integer function cudaMemcpyToArray(dsta, dstx, dsty, src, count, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, count, kdir

cudaMemcpyToArray copies array data to and from the device.

4.9.29. cudaMemcpyToSymbol
integer function cudaMemcpyToSymbol(symbol, src, count, offset, kdir)
 type(c_ptr) :: symbol
 integer :: count, offset, kdir

cudaMemcpyToSymbol copies data from the source to a device area in global or
constant memory space referenced by a symbol. src may be any host scalar or array of
a supported type as specified in Device Code Intrinsic Datatypes. The count is in terms
of elements.

4.9.30. cudaMemcpyToSymbolAsync
integer function cudaMemcpyToSymbolAsync(symbol, src, count, offset, kdir,
 stream)
 type(c_ptr) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyToSymbolAsync copies data from the source to a device area in global or
constant memory space referenced by a symbol. src may be any host scalar or array of
a supported type specified in Datatypes Allowed. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated
with a stream by passing a non-zero stream argument.

4.9.31. cudaMemcpy2D
integer function cudaMemcpy2D(dst, dpitch, src, spitch, width, height, kdir)

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 91

cudaMemcpy2D copies data from one location to another. dst and src may be
any device or host array, of a supported type specified in Device Code Intrinsic
Datatypes. The width and height are in terms of elements. Contrary to how Fortran
programmers might view memory layout, and in order to keep compatibility with
CUDA C, the width specifies the number of contiguous elements in the leading
dimension, and the height is the number of such contiguous sections. kdir may be
optional; for more information, refer to Data Transfer Using Runtime Routines. If
kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst
and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and
height are in term of bytes.

cudaMemcpy2D is available in device code starting in CUDA 5.0.

4.9.32. cudaMemcpy2DArrayToArray
integer function cudaMemcpy2DArrayToArray(dsta, dstx, dsty,
 srca, srcx, srcy, width, height, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMemcpy2DArrayToArray copies array data to and from the device.

4.9.33. cudaMemcpy2DAsync
integer function cudaMemcpy2DAsync(dst, dpitch, src, spitch, width,
 height, kdir, stream)

cudaMemcpy2D copies data from one location to another. dst and src may be
any device or host array, of a supported type specified in Device Code Intrinsic
Datatypes. The width and height are in terms of elements. Contrary to how Fortran
programmers might view memory layout, and in order to keep compatibility with
CUDA C, the width specifies the number of contiguous elements in the leading
dimension, and the height is the number of such contiguous sections. kdir may be
optional; for more information, refer to Data Transfer Using Runtime Routines. If
kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst
and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and
height are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated
with a stream by passing a non-zero stream argument, otherwise the stream
argument is optional and defaults to zero.

cudaMemcpy2DAsync is available in device code starting in CUDA 5.0.

4.9.34. cudaMemcpy2DFromArray
integer function cudaMemcpy2DFromArray(dst, dpitch, srca, srcx, srcy,
 width, height, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array data to and from the device.

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 92

4.9.35. cudaMemcpy2DToArray
integer function cudaMemcpy2DToArray(dsta, dstx, dsty, src,
 spitch, width, height, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array data to and from the device.

4.9.36. cudaMemcpy3D
integer function cudaMemcpy3D(p)
 type(cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the data
held in the derived type p.

4.9.37. cudaMemcpy3DAsync
integer function cudaMemcpy3D(p, stream)
 type(cudaMemcpy3DParms) :: p
 integer :: stream

cudaMemcpy3DAsync copies elements from one 3D array to another as specified by the
data held in the derived type p.

This function operates on page-locked host memory only. The copy can be associated
with a stream by passing a non-zero stream argument.

4.9.38. cudaMemGetInfo
integer function cudaMemGetInfo(free, total)
 integer(kind=cuda_count_kind) :: free, total

cudaMemGetInfo returns the amount of free and total memory available for allocation
on the device. The returned values units are in bytes.

4.9.39. cudaMemPrefetchAsync
integer function cudaMemPrefetchAsync(devptr, count, device, stream)

cudaMemPrefetchAsync prefetches memory to the specified destination device.
devptr may be any managed memory scalar or array, of a supported type specified
in Device Code Intrinsic Datatypes. The count is in terms of elements. Alternatively,
devptr may be of TYPE(C_DEVPTR), in which case the count is in terms of bytes.

The device argument specifies the destination device. The stream argument specifies
which stream to enqueue the prefetch operation on.

Passing in cudaCpuDeviceId for the device, which is defined as a parameter in the
cudafor module, will prefetch the data to CPU memory.

4.9.40. cudaMemset
integer function cudaMemset(devptr, value, count)

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 93

cudaMemset sets a location or array to the specified value. devptr may be any device
scalar or array of a supported type specified in Device Code Intrinsic Datatypes. The
value must match in type and kind. The count is in terms of elements. Or, devptr
may be of TYPE(C_DEVPTR), in which case the count is in term of bytes, and the
lowest byte of value is used.

4.9.41. cudaMemsetAsync
integer function cudaMemsetAsync(devptr, value, count, stream)

cudaMemsetAsync sets a location or array to the specified value. devptr may be any
device scalar or array of a supported type specified in Device Code Intrinsic Datatypes.
The value must match in type and kind. The count is in terms of elements. Or,
devptr may be of TYPE(C_DEVPTR), in which case the count is in term of bytes,
and the lowest byte of value is used. The memory set operation is associated with the
stream specified.

4.9.42. cudaMemset2D
integer function cudaMemset2D(devptr, pitch, value, width, height)

cudaMemset2D sets an array to the specified value. devptr may be any device array
of a supported type specified in Device Code Intrinsic Datatypes. The value must
match in type and kind. The pitch, width, and height are in terms of elements.
Or, devptr may be of TYPE(C_DEVPTR), in which case the pitch, width, and
height are in terms of bytes, and the lowest byte of value is used. Contrary to how
Fortran programmers might view memory layout, and in order to keep compatibility
with CUDA C, the width specifies the number of contiguous elements in the leading
dimension, and the height is the number of such contiguous sections.

4.9.43. cudaMemset3D
integer function cudaMemset3D(pitchptr, value, cext)
 type(cudaPitchedPtr) :: pitchptr
 integer :: value
 type(cudaExtent) :: cext

cudaMemset3D sets elements of an array, the extents in each dimension specified by
cext, which was allocated with cudaMalloc3D to a specified value.

4.10. Unified Addressing and Peer Device Memory
Access
Use the functions in this section for managing multiple devices from the same process
and threads.

For a complete explanation of the purpose and function of each routine listed here,
refer to the Unified Addressing and Peer Device Memory Access sections at https://
docs.nvidia.com/cuda/cuda-runtime-api.

https://docs.nvidia.com/cuda/cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 94

4.10.1. cudaDeviceCanAccessPeer
integer function cudaDeviceCanAccessPeer(canAccessPeer, device, peerDevice)
 integer :: canAccessPeer, device, peerDevice

cudaDeviceCanAccessPeer returns in canAccessPeer the value 1 if the device
argument can access memory in the device specified by the peerDevice argument.

4.10.2. cudaDeviceDisablePeerAccess
integer function cudaDeviceDisablePeerAccess (peerDevice)
 integer :: peerDevice

cudaDeviceDisablePeerAccess disables the ability to access memory on the device
specified by the peerDevice argument by the current device.

4.10.3. cudaDeviceEnablePeerAccess
integer function cudaDeviceEnablePeerAccess (peerDevice, flags)
 integer :: peerDevice, flags

cudaDeviceEnablePeerAccess enables the ability to access memory on the device
specified by the peerDevice argument by the current device. Currently, flags must be
zero.

4.10.4. cudaPointerGetAttributes
integer function cudaPointerGetAttributes(attr, ptr)
 type(cudaPointerAttributes), intent(out) :: attr

cudaPointerGetAttributes returns the attributes of a device or host pointer in
the attributes type. ptr may be any host or device scalar or array of a supported type
specified in Datatypes Allowed. It may also be of type C_PTR or C_DEVPTR. It may
have the host, device, managed, or pinned attribute.

4.11. Version Management
Use the functions in this section for version management.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Version Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.11.1. cudaDriverGetVersion
integer function cudaDriverGetVersion(iversion)
 integer :: iversion

cudaDriverGetVersion returns the version number of the installed CUDA driver as
iversion. If no driver is installed, then it returns 0 as iversion.

This function automatically returns cudaErrorInvalidValue if the iversion
argument is NULL.

https://docs.nvidia.com/cuda/cuda-runtime-api

Runtime APIs

CUDA Fortran Programming Guide Version 23.11 | 95

4.11.2. cudaRuntimeGetVersion
integer function cudaRuntimeGetVersion(iversion)
 integer :: iversion

cudaRuntimeGetVersion returns the version number of the installed CUDA Runtime
as iversion.

This function automatically returns cudaErrorInvalidValue if the iversion
argument is NULL.

4.12. Profiling Management
Use the functions in this section for profiling management.

For a complete explanation of the purpose and function of each routine listed here, refer
to the Profiler Control section at https://docs.nvidia.com/cuda/cuda-runtime-api.

4.12.1. cudaProfilerStart
integer function cudaProfilerStart()

cudaProfilerStart enables profile collection by the active profilng tool.

4.12.2. cudaProfilerStop
integer function cudaProfilerStop()

cudaProfilerStop disables profile collection by the active profilng tool.

https://docs.nvidia.com/cuda/cuda-runtime-api

CUDA Fortran Programming Guide Version 23.11 | 96

Chapter 5.
EXAMPLES

This section contains examples with source code.

5.1. Matrix Multiplication Example
This example shows a program to compute the product C of two matrices A and B, as
follows:

‣ Each thread block computes one 16x16 submatrix of C;
‣ Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the
warp size (32) and is less than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The
program computes the products by accumulating submatrix products; it reads a block
submatrix of A and a block submatrix of B, accumulates the submatrix product, then
moves to the next submatrix of A rowwise and of B columnwise. The program caches
the submatrices of A and B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not
been highly optimized for execution time.

5.1.1. Source Code Listing
Matrix Multiplication
! start the module containing the matmul kernel
module mmul_mod
 use cudafor
contains
 ! mmul_kernel computes A*B into C where
 ! A is NxM, B is MxL, C is then NxL
 attributes(global) subroutine mmul_kernel(A, B, C, N, M, L)
 real :: A(N,M), B(M,L), C(N,L)
 integer, value :: N, M, L
 integer :: i, j, kb, k, tx, ty
 ! submatrices stored in shared memory
 real, shared :: Asub(16,16), Bsub(16,16)
 ! the value of C(i,j) being computed

Examples

CUDA Fortran Programming Guide Version 23.11 | 97

 real :: Cij
 ! Get the thread indices
 tx = threadidx%x
 ty = threadidx%y

 ! This thread computes C(i,j) = sum(A(i,:) * B(:,j))
 i = (blockidx%x-1) * 16 + tx
 j = (blockidx%y-1) * 16 + ty
 Cij = 0.0
 ! Do the k loop in chunks of 16, the block size
 do kb = 1, M, 16
 ! Fill the submatrices
 ! Each of the 16x16 threads in the thread block
 ! loads one element of Asub and Bsub
 Asub(tx,ty) = A(i,kb+ty-1)
 Bsub(tx,ty) = B(kb+tx-1,j)
 ! Wait until all elements are filled
 call syncthreads()
 ! Multiply the two submatrices
 ! Each of the 16x16 threads accumulates the
 ! dot product for its element of C(i,j)
 do k = 1,16
 Cij = Cij + Asub(tx,k) * Bsub(k,ty)
 enddo
 ! Synchronize to make sure all threads are done
 ! reading the submatrices before overwriting them
 ! in the next iteration of the kb loop
 call syncthreads()
 enddo
 ! Each of the 16x16 threads stores its element
 ! to the global C array
 C(i,j) = Cij
 end subroutine mmul_kernel

! The host routine to drive the matrix multiplication
 subroutine mmul(A, B, C)
 real, dimension(:,:) :: A, B, C
 ! allocatable device arrays
 real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
 ! dim3 variables to define the grid and block shapes
 type(dim3) :: dimGrid, dimBlock

 ! Get the array sizes
 N = size(A, 1)
 M = size(A, 2)
 L = size(B, 2)
 ! Allocate the device arrays
 allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))

 ! Copy A and B to the device
 Adev = A(1:N,1:M)
 Bdev(:,:) = B(1:M,1:L)

 ! Create the grid and block dimensions
 dimGrid = dim3(N/16, L/16, 1)
 dimBlock = dim3(16, 16, 1)
 call mmul_kernel<<<dimGrid,dimBlock>>>(Adev, Bdev, Cdev, N, M, L)

 ! Copy the results back and free up memory
 C(1:N,1:L) = Cdev
 deallocate(Adev, Bdev, Cdev)
 end subroutine mmul
 end module mmul_mod

Examples

CUDA Fortran Programming Guide Version 23.11 | 98

5.1.2. Source Code Description
This source code module mmul_mod has two subroutines. The host subroutine mmul is a
wrapper for the kernel routine mmul_kernel.

MMUL

This host subroutine has two input arrays, A and B, and one output array, C, passed as
assumed-shape arrays. The routine performs the following operations:

‣ It determines the size of the matrices in N, M, and L.
‣ It allocates device memory arrays Adev, Bdev, and Cdev.
‣ It copies the arrays A and B to Adev and Bdev using array assignments.
‣ It fills dimGrid and dimBlock to hold the grid and thread block sizes.
‣ It calls mmul_kernel to compute Cdev on the device.
‣ It copies Cdev back from device memory to C.
‣ It frees the device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed
between the copy operations and the kernel launch.

MMUL_KERNEL

This kernel subroutine has two device memory input arrays, A and B, one device
memory output array, C, and three scalars giving the array sizes. The thread executing
this routine is one of 16x16 threads cooperating in a thread block. This routine computes
the dot product of A(i,:)*B(:,j) for a particular value of i and j, depending on the
block and thread index.

It performs the following operations:

‣ It determines the thread indices for this thread.
‣ It determines the i and j indices, for which element of C(i,j) it is computing.
‣ It initializes a scalar in which it will accumulate the dot product.
‣ It steps through the arrays A and B in blocks of size 16.
‣ For each block, it does the following steps:

‣ It loads one element of the submatrices of A and B into shared memory.
‣ It synchronizes to make sure both submatrices are loaded by all threads in the

block.
‣ It accumulates the dot product of its row and column of the submatrices.
‣ It synchronizes again to make sure all threads are done reading the submatrices

before starting the next block.
‣ Finally, it stores the computed value into the correct element of C.

Examples

CUDA Fortran Programming Guide Version 23.11 | 99

5.2. Mapped Memory Example
This example demonstrates the use of CUDA API supported in the cudafor module for
mapping page-locked host memory into the address space of the device. It makes use of
the iso_c_binding c_ptr type and the cudafor c_devptr types to interface to the
C routines, then the Fortran c_f_pointer call to map the types to Fortran arrays.

Mapped Memory
module atest
 contains
 attributes(global) subroutine matrixinc(a,n)
 real, device :: a(n,n)
 integer, value :: n
 i = (blockidx%x-1)*10 + threadidx%x
 j= (blockidx%y-1)*10 + threadidx%y
 if ((i .le. n) .and. (j .le. n)) then
 a(i,j) = a(i,j) + 1.0
 endif
 return
 end subroutine
end module

program test
use cudafor
use atest
use, intrinsic :: iso_c_binding

type(c_ptr) :: a
type(c_devptr) :: a_d
real, dimension(:,:), pointer :: fa
real, dimension(:,:), allocatable, device :: fa_d
type(dim3) :: blcks, thrds

istat= cudaSetDeviceFlags(cudadevicemaphost)

istat = cudaHostAlloc(a,100*100*sizeof(1.0),cudaHostAllocMapped)

! can move the c_ptr to an f90 pointer
call c_f_pointer(a, fa, (/ 100, 100 /))

! update the data on the host
do j = 1, 100
 do i = 1, 100
 fa(i,j)= real(i) + j*;100.0
 end do
end do

! get a device pointer to the same array
istat= cudaHostGetDevicePointer(a_d, a, 0)

! can move the c_devptr to an device allocatable array
call c_f_pointer(a_d, fa_d, (/ 100, 100 /))
!
blcks = dim3(10,10,1)
thrds = dim3(10,10,1)
!
call matrixinc <<<blcks, thrds>>>(fa_d, 100)

! need to synchronize
istat = cudaDeviceSynchronize()
!
do j = 1, 100

Examples

CUDA Fortran Programming Guide Version 23.11 | 100

 do i = 1, 100
 if (fa(i,j) .ne. (real(i) + j*100.0 + 1.0)) print *,"failure",i,j
 end do
end do
!
istat = cudaFreeHost(a)
end

5.3. Cublas Module Example
This example demonstrates the use of the cublas module, the cublasHandle type,
the three forms of cublas calls, and the use of mapped pinned memory, all within the
framework of an multi-threaded OpenMP program.

Cublas Module
program tdot
! Compile with "nvfortran -mp tdot.cuf -cudalib=cublas -lblas
! Set OMP_NUM_THREADS environment variable to run with
! up to 2 threads, currently.
!
use cublas
use cudafor
use omp_lib
!
integer, parameter :: N = 10000
real*8 x(N), y(N), z
real*8, device, allocatable :: xd0(:), yd0(:)
real*8, device, allocatable :: xd1(:), yd1(:)
real*8, allocatable :: zh(:)
real*8, allocatable, device :: zd(:)
integer, allocatable :: istats(:), offs(:)
real*8 reslt(3)
type(C_DEVPTR) :: zdptr
type(cublasHandle) :: h

! Max at 2 threads for now
nthr = omp_get_max_threads()
if (nthr .gt. 2) nthr = 2
call omp_set_num_threads(nthr)
! Run on host
call random_number(x)
call random_number(y)
z = ddot(N,x,1,y,1)
print *,"HostSerial",z

! Create a pinned memory spot
!$omp PARALLEL private(i,istat)
 i = omp_get_thread_num()
 istat = cudaSetDeviceFlags(cudaDeviceMapHost)
 istat = cudaSetDevice(i)
!$omp end parallel
allocate(zh(512),align=4096)
zh = 0.0d0
istat = cudaHostRegister(C_LOC(zh(1)), 4096, cudaHostRegisterMapped)
istat = cudaHostGetDevicePointer(zdptr, C_LOC(zh(1)), 0)
call c_f_pointer(zdptr, zd, 512)

! CUDA data allocation, run on one card, blas interface
allocate(xd0(N),yd0(N))
xd0 = x
yd0 = y
z = ddot(N,xd0,1,yd0,1)
ii = 1

Examples

CUDA Fortran Programming Guide Version 23.11 | 101

reslt(ii) = z
ii = ii + 1
deallocate(xd0)
deallocate(yd0)

! Break up the array into sections
nsec = N / nthr
allocate(istats(nthr),offs(nthr))
offs = (/ (i*nsec,i=0,nthr-1) /)

! Allocate and initialize the arrays
!$omp PARALLEL private(i,istat)
 i = omp_get_thread_num() + 1
 if (i .eq. 1) then
 allocate(xd0(nsec), yd0(nsec))
 xd0 = x(offs(i)+1:offs(i)+nsec)
 yd0 = y(offs(i)+1:offs(i)+nsec)
 else
 allocate(xd1(nsec), yd1(nsec))
 xd1 = x(offs(i)+1:offs(i)+nsec)
 yd1 = y(offs(i)+1:offs(i)+nsec)
 endif
!$omp end parallel

! Run the blas kernel using cublas name
!$omp PARALLEL private(i,istat,z)
 i = omp_get_thread_num() + 1
 if (i .eq. 1) then
 z = cublasDdot(nsec,xd0,1,yd0,1)
 else
 z = cublasDdot(nsec,xd1,1,yd1,1)
 endif
 zh(i) = z
!$omp end parallel

z = zh(1) + zh(2)
reslt(ii) = z
ii = ii + 1

zh = 0.0d0

! Now write to our pinned area with the v2 blas
!$omp PARALLEL private(h,i,istat)
 i = omp_get_thread_num() + 1
 h = cublasGetHandle()
 istat = cublasSetPointerMode(h, CUBLAS_POINTER_MODE_DEVICE)
 if (i .eq. 1) then
 istats(i) = cublasDdot_v2(h, nsec, xd0, 1, yd0, 1, zd(1))
 else
 istats(i) = cublasDdot_v2(h, nsec, xd1, 1, yd1, 1, zd(2))
 endif
 istat = cublasSetPointerMode(h, CUBLAS_POINTER_MODE_HOST)
 istat = cudaDeviceSynchronize()
!$omp end parallel

z = zh(1) + zh(2)
reslt(ii) = z

print *,"Device, 3 ways:",reslt

! Deallocate the arrays
!$omp PARALLEL private(i)
 i = omp_get_thread_num() + 1
 if (i .eq. 1) then
 deallocate(xd0,yd0)
 else
 deallocate(xd1,yd1)
 endif
!$omp end parallel

Examples

CUDA Fortran Programming Guide Version 23.11 | 102

deallocate(istats,offs)

end

5.4. CUDA Device Properties Example
This example demonstrates how to access the device properties from CUDA Fortran.

CUDA Device Properties
! An example of getting device properties in CUDA Fortran
! Build with
! nvfortran cufinfo.cuf
!
program cufinfo
use cudafor
integer istat, num, numdevices
type(cudadeviceprop) :: prop
istat = cudaGetDeviceCount(numdevices)
do num = 0, numdevices-1
 istat = cudaGetDeviceProperties(prop, num)
 call printDeviceProperties(prop, num)
end do
end
!
subroutine printDeviceProperties(prop, num)
use cudafor
type(cudadeviceprop) :: prop
integer num
ilen = verify(prop%name, ' ', .true.)
write (*,900) "Device Number: " ,num
write (*,901) "Device Name: " ,prop%name(1:ilen)
write (*,903) "Total Global Memory: ",real(prop%totalGlobalMem)/1e9," Gbytes"
write (*,902) "sharedMemPerBlock: " ,prop%sharedMemPerBlock," bytes"
write (*,900) "regsPerBlock: " ,prop%regsPerBlock
write (*,900) "warpSize: " ,prop%warpSize
write (*,900) "maxThreadsPerBlock: " ,prop%maxThreadsPerBlock
write (*,904) "maxThreadsDim: " ,prop%maxThreadsDim
write (*,904) "maxGridSize: " ,prop%maxGridSize
write (*,903) "ClockRate: " ,real(prop%clockRate)/1e6," GHz"
write (*,902) "Total Const Memory: " ,prop%totalConstMem," bytes"
write (*,905) "Compute Capability Revision: ",prop%major,prop%minor
write (*,902) "TextureAlignment: " ,prop%textureAlignment," bytes"
write (*,906) "deviceOverlap: " ,prop%deviceOverlap
write (*,900) "multiProcessorCount: ",prop%multiProcessorCount
write (*,906) "integrated: " ,prop%integrated
write (*,906) "canMapHostMemory: " ,prop%canMapHostMemory
write (*,906) "ECCEnabled: " ,prop%ECCEnabled
write (*,906) "UnifiedAddressing: " ,prop%unifiedAddressing
write (*,900) "L2 Cache Size: " ,prop%l2CacheSize
write (*,900) "maxThreadsPerSMP: " ,prop%maxThreadsPerMultiProcessor
900 format (a,i0)
901 format (a,a)
902 format (a,i0,a)
903 format (a,f5.3,a)
904 format (a,2(i0,1x,'x',1x),i0)
905 format (a,i0,'.',i0)
906 format (a,l0)
return
end

Examples

CUDA Fortran Programming Guide Version 23.11 | 103

5.5. CUDA Asynchronous Memory Transfer
Example
This example demonstrates how to perform asynchronous copies to and from the device
using the CUDA API from CUDA Fortran.

CUDA Asynchronous Memory Transfer
! This code demonstrates strategies hiding data transfers via
! asynchronous data copies in multiple streams

module kernels_m
contains
 attributes(global) subroutine kernel(a, offset)
 implicit none
 real :: a(*)
 integer, value :: offset
 integer :: i
 real :: c, s, x
 i = offset + threadIdx%x + (blockIdx%x-1)*blockDim%x
 x = threadIdx%x + (blockIdx%x-1)*blockDim%x
 s = sin(x); c = cos(x)
 a(i) = a(i) + sqrt(s**2+c**2)
 end subroutine kernel
end module kernels_m

program testAsync
 use cudafor
 use kernels_m
 implicit none
 integer, parameter :: blockSize = 256, nStreams = 8
 integer, parameter :: n = 16*1024*blockSize*nStreams
 real, pinned, allocatable :: a(:)
 real, device :: a_d(n)
 integer(kind=cuda_Stream_Kind) :: stream(nStreams)
 type (cudaEvent) :: startEvent, stopEvent, dummyEvent
 real :: time
 integer :: i, istat, offset, streamSize = n/nStreams
 logical :: pinnedFlag
 type (cudaDeviceProp) :: prop

 istat = cudaGetDeviceProperties(prop, 0)
 write(*,"(' Device: ', a,/)") trim(prop%name)

 ! allocate pinned host memory
 allocate(a(n), STAT=istat, PINNED=pinnedFlag)
 if (istat /= 0) then
 write(*,*) 'Allocation of a failed'
 stop
 else
 if (.not. pinnedFlag) write(*,*) 'Pinned allocation failed'
 end if

 ! create events and streams
 istat = cudaEventCreate(startEvent)
 istat = cudaEventCreate(stopEvent)
 istat = cudaEventCreate(dummyEvent)
 do i = 1, nStreams
 istat = cudaStreamCreate(stream(i))
 enddo

 ! baseline case - sequential transfer and execute

Examples

CUDA Fortran Programming Guide Version 23.11 | 104

 a = 0
 istat = cudaEventRecord(startEvent,0)

 a_d = a
 call kernel<<<n/blockSize, blockSize>>>(a_d, 0)
 a = a_d
 istat = cudaEventRecord(stopEvent, 0)
 istat = cudaEventSynchronize(stopEvent)
 istat = cudaEventElapsedTime(time, startEvent, stopEvent)
 write(*,*) 'Time for sequential transfer and execute (ms): ', time
 write(*,*) ' max error: ', maxval(abs(a-1.0))

 ! asynchronous version 1: loop over {copy, kernel, copy}
 a = 0
 istat = cudaEventRecord(startEvent,0)

 do i = 1, nStreams
 offset = (i-1)*streamSize
 istat = cudaMemcpyAsync(a_d(offset+1),a(offset+1),streamSize,stream(i))
 call kernel<<<streamSize/blockSize, blockSize, &
 0, stream(i)>>>(a_d,offset)
 istat = cudaMemcpyAsync(a(offset+1),a_d(offset+1),streamSize,stream(i))
 enddo
 istat = cudaEventRecord(stopEvent, 0)
 istat = cudaEventSynchronize(stopEvent)
 istat = cudaEventElapsedTime(time, startEvent, stopEvent)
 write(*,*) 'Time for asynchronous V1 transfer and execute (ms): ', time
 write(*,*) ' max error: ', maxval(abs(a-1.0))

 ! asynchronous version 2:
 ! loop over copy, loop over kernel, loop over copy
 a = 0
 istat = cudaEventRecord(startEvent,0)
 do i = 1, nStreams
 offset = (i-1)*streamSize
 istat = cudaMemcpyAsync(a_d(offset+1),a(offset+1),streamSize,stream(i))
 enddo
 do i = 1, nStreams
 offset = (i-1)*streamSize
 call kernel<<<streamSize/blockSize, blockSize, &
 0, stream(i)>>>(a_d,offset)
 enddo
 do i = 1, nStreams
 offset = (i-1)*streamSize
 istat = cudaMemcpyAsync(a(offset+1),a_d(offset+1),streamSize,stream(i))
 enddo
 istat = cudaEventRecord(stopEvent, 0)
 istat = cudaEventSynchronize(stopEvent)
 istat = cudaEventElapsedTime(time, startEvent, stopEvent)
 write(*,*) 'Time for asynchronous V2 transfer and execute (ms): ', time
 write(*,*) ' max error: ', maxval(abs(a-1.0))

 ! cleanup
 istat = cudaEventDestroy(startEvent)
 istat = cudaEventDestroy(stopEvent)
 istat = cudaEventDestroy(dummyEvent)

 do i = 1, nStreams
 istat = cudaStreamDestroy(stream(i))
 enddo
 deallocate(a)

 end program testAsync

Examples

CUDA Fortran Programming Guide Version 23.11 | 105

5.6. Managed Memory Example
This example demonstrates the use of CUDA managed memory in an OpenMP
program. In the main program, one stream is created for each OpenMP thread.
A call to cudaforSetDefaultStream is made to set that as the default stream for all
subsequent high-level language constructs. The default stream is used explicitly in the
launch configuration of the CUF kernel, and also as the thread's input argument for
synchronization. Once the cudaStreamSynchronize has occurred, this thread can safely
access the managed data on the host, in this case in the any() function, even while other
threads may be in the middle of their kernel launch.

Managed Memory and OpenMP in CUDA Fortran
program ompcuf
use cudafor
use omp_lib
integer(kind=cuda_stream_kind) :: mystream

!$omp parallel private(istat,mystream)
istat = cudaStreamCreate(mystream)
istat = cudaforSetDefaultstream(mystream)
call ompworker()
!$omp end parallel
end

subroutine ompworker()
use cudafor
use omp_lib
real, managed :: a(10000)
j = omp_get_thread_num()
a = real(j)

!$cuf kernel do <<< *, *, stream=cudaforGetDefaultStream() >>>
do i = 1, 10000
 a(i) = a(i) + 1.0
end do
istat = cudaStreamSynchronize(cudaforGetDefaultStream())

if (any(a.ne.real(j+1))) then
 print *,"Found error on ",j
else
 print *,"Looks good on ",j
endif
end

5.7. WMMA Tensor Core Example
This example demonstrates the use of NVIDIA Volta tensor cores to perform real(2)
matrix multiply. The result is a real(4) matrix. This example utilizes the definitions in
cuf_macros.CUF, a file which is shipped in the examples directory of the NVIDIA
packages. The actual derived types currently used in Fortran tensor core programming
may change at a later date, but these macros will always be supported. The program
shows the use of the Fortran real(2) data type, both in host and device code. Further
examples, highlighting overloaded device functions which take the WMMASubMatrix

Examples

CUDA Fortran Programming Guide Version 23.11 | 106

types, and which use a vector of real(2) data for improved performance, can be found in
the examples directory of NVIDIA packages.

Tensor Core Programming in CUDA Fortran
#include "cuf_macros.CUF"

module params
 integer, parameter :: m = 16
 integer, parameter :: n = 16
 integer, parameter :: k = 16
end module

module mod1
use params ! Define matrix m, n, k
contains
 attributes(global) subroutine test1(a,b,c)
 use wmma
 real(2), device :: a(m,k)
 real(2), device :: b(k,n)
 real(4), device :: c(m,n)
 WMMASubMatrix(WMMAMatrixA, 16, 16, 16, Real, WMMAColMajor) :: sa
 WMMASubMatrix(WMMAMatrixB, 16, 16, 16, Real, WMMAColMajor) :: sb
 WMMASubMatrix(WMMAMatrixC, 16, 16, 16, Real, WMMAKind4) :: sc
 sc = 0.0
 call wmmaLoadMatrix(sa, a(1,1), m)
 call wmmaLoadMatrix(sb, b(1,1), k)
 call wmmaMatmul(sc, sa, sb)
 call wmmaStoreMatrix(c(1,1), sc, m)
 end subroutine
end module

program main
use cudafor
use mod1
real(2), managed :: a(m,k)
real(2), managed :: b(k,n)
real(4), managed :: c(m,n)
a = real(1.0,kind=2)
b = 2.0_2
c = 0.0
call test1 <<<1,32>>> (a,b,c)
istat = cudaDeviceSynchronize()
print *,all(c.eq.2*k)
end program

5.8. OpenACC Interoperability Example
This example demonstrates two ways that CUDA Fortran and OpenACC can be used
together in the same program, both in sharing data, and in control flow. At the lowest
level, we have slightly modified the BLAS daxpy subroutine by inserting it in a module,
making it an OpenACC vector routine, and adding OpenACC vector loop directives.
The second file contains pure CUDA Fortran, a global subroutine which calls daxpy
with the same arguments for each thread block. At the highest level, we have a Fortran
main program which uses OpenACC for data management, but calls both a CUDA
Fortran global function and overloaded CUDA Fortran reductions via the host_data
directive. This directive instructs the compiler to pass the corresponding device pointers,
which are managed implicitly by the OpenACC runtime, for the x and y arguments.

Examples

CUDA Fortran Programming Guide Version 23.11 | 107

Mixing CUDA Fortran and OpenACC
 module daxpy_mod
 contains
 subroutine daxpy(n,da,dx,incx,dy,incy)
!$acc routine vector nohost
!
! constant times a vector plus a vector.
! uses unrolled loops for increments equal to one.
! jack dongarra, linpack, 3/11/78.
! modified 12/3/93, array(1) declarations changed to array(*)
!
 integer, value :: n, incx, incy
 double precision, value :: da
 double precision dx(*),dy(*)
 integer i,ix,iy
!
 if(n.le.0)return
 if (da .eq. 0.0d0) return
 if(incx.eq.1.and.incy.eq.1) then
!
! code for both increments equal to 1
!
!$acc loop vector
 do i = 1, n
 dy(i) = dy(i) + da*dx(i)
 end do
 else
!
! code for unequal increments or equal increments
! not equal to 1
!
!$acc loop vector
 do i = 1, n
 if(incx.lt.0) then
 ix = 1 + (-n+i) * incx
 else
 ix = 1 + (i-1) * incx
 end if
 if(incy.lt.0) then
 iy = 1 + (-n+i) * incy
 else
 iy = 1 + (i-1) * incy
 end if
 dy(iy) = dy(iy) + da*dx(ix)
 end do
 end if
 return
 end
 end module daxpy_mod

module mdaxpy
use daxpy_mod
contains
 attributes(global) subroutine mdaxpy(x,y,n)
 integer, value :: n
 real(8), device :: x(n), y(n,n)
 real(8) :: a
 a = 0.5d0
 j = blockIdx%x
 call daxpy(n, a, x, 1, y(1,j), 1)
 return
 end subroutine
end module

Care must be taken in the CUDA code, where the programming model allows much
flexibility in how the threads are applied, to follow what OpenACC expects when

Examples

CUDA Fortran Programming Guide Version 23.11 | 108

calling into an OpenACC routine. Calling an OpenACC vector routine from every
thread in a thread block, passing the same parameters, is usually safe. Calling OpenACC
sequential routines from a CUDA thread is also safe. This is a generally a new feature
and has not yet been thoroughly tested.
program tdaxpy
! Compile with "nvfortran -cuda daxpy.F mdaxpy.CUF tdaxpy.F90"
use cudafor
use mdaxpy
integer, parameter :: n = 100
real(8) :: x(n), y(n,n)
x = 2.0d0
y = 3.0d0
!$acc data copyin(x), copy(y)
!$acc host_data use_device(x,y)
call mdaxpy <<<n, n>>> (x, y, n)
print *,sum(y),maxval(y).eq.minval(y)
!$acc end host_data
!$acc end data
end program

There are many examples of calling CUDA code from within OpenACC compute
regions. The examples directory in the NVIDIA package has several, from Fortran, C,
and C++. There are also many examples of using the OpenACC host_data directive.
More information on that directive, and other directives, can be found in the OpenACC
Specification.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties that
may result from its use. No license is granted by implication of otherwise under any
patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all other
information previously supplied. NVIDIA Corporation products are not authorized
as critical components in life support devices or systems without express written
approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta,
NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other
company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2013–2023 NVIDIA Corporation. All rights reserved.

NVIDIA HPC Compilers

	Table of Contents
	List of Tables
	Preface
	Intended Audience
	Organization
	Conventions
	Related Publications

	Introduction
	Programming Guide
	2.1. CUDA Fortran Host and Device Code
	2.2. CUDA Fortran Kernels
	2.3. Thread Blocks
	2.4. Memory Hierarchy
	2.5. Subroutine / Function Qualifiers
	2.5.1. Attributes(host)
	2.5.2. Attributes(global)
	2.5.3. Attributes(device)
	2.5.4. Attributes(host,device)
	2.5.5. Attributes(grid_global)
	2.5.6. Restrictions

	2.6. Variable Qualifiers
	2.6.1. Attributes(device)
	2.6.2. Attributes(managed)
	2.6.3. Attributes(constant)
	2.6.4. Attributes(shared)
	2.6.5. Attributes(pinned)
	2.6.6. Attributes(texture)

	2.7. Datatypes in Device Subprograms
	2.7.1. Half-precision Floating Point

	2.8. Predefined Variables in Device Subprograms
	2.9. Execution Configuration
	2.10. Asynchronous Concurrent Execution
	2.10.1. Concurrent Host and Device Execution
	2.10.2. Concurrent Stream Execution

	2.11. Kernel Loop Directive
	2.11.1. Syntax
	2.11.2. Restrictions on the CUF kernel directive
	2.11.3. Summation Example
	2.11.4. Explicit Reductions

	2.12. Using Fortran Modules
	2.12.1. Accessing Data from Other Modules
	2.12.2. Call Routines from Other Modules
	2.12.3. Declaring Device Pointer and Target Arrays
	2.12.4. Declaring Textures

	2.13. CUDA Fortran Conditional Compilation
	2.14. Building a CUDA Fortran Program
	2.15. Managed and Unified Memory Options and Interoperability

	Reference
	3.1. New Subroutine and Function Attributes
	3.1.1. Host Subroutines and Functions
	3.1.2. Global and Grid_Global Subroutines
	3.1.3. Device Subroutines and Functions
	3.1.4. Restrictions on Device Subprograms

	3.2. Variable Attributes
	3.2.1. Device data
	3.2.2. Managed data
	3.2.3. Pinned arrays
	3.2.4. Constant data
	3.2.5. Shared data
	3.2.6. Texture data
	3.2.7. Value dummy arguments

	3.3. Allocating Device Memory, Pinned Memory, and Managed Memory
	3.3.1. Allocating Device Memory
	3.3.2. Allocating Device Memory Using Runtime Routines
	3.3.3. Allocate Pinned Memory
	3.3.4. Allocating Managed Memory
	3.3.5. Allocating Managed Memory Using Runtime Routines
	3.3.6. Allocating Device Memory Asynchronously
	3.3.7. Allocating Device Memory Asynchronously Using Runtime Routines
	3.3.8. Controlling Device Data is Managed

	3.4. Data transfer between host and device memory
	3.4.1. Data Transfer Using Assignment Statements
	3.4.2. Implicit Data Transfer in Expressions
	3.4.3. Data Transfer Using Runtime Routines

	3.5. Invoking a kernel subroutine
	3.6. Device code
	3.6.1. Datatypes Allowed
	3.6.2. Built-in variables
	3.6.3. Fortran Intrinsics
	3.6.4. Synchronization Functions
	3.6.5. Warp-Vote Operations
	3.6.6. Load and Store Functions Using Cache Hints
	3.6.7. Atomic Functions
	3.6.8. Fortran I/O
	3.6.9. PRINT Example
	3.6.10. Shuffle Functions
	3.6.11. Restrictions

	3.7. Host code
	3.7.1. SIZEOF Intrinsic

	3.8. Fortran Device Modules
	3.8.1. LIBM Device Module
	3.8.2. Cooperative Groups Device Module
	3.8.3. WMMA (Warp Matrix Multiply Add) Module

	3.9. Fortran Host Modules
	3.9.1. Overloaded Fortran Reduction Intrinsics in CUDAFOR
	3.9.1.1. Fortran SUM Intrinsic Function
	3.9.1.2. Fortran MAXVAL Intrinsic Function
	3.9.1.3. Fortran MINVAL Intrinsic Function
	3.9.1.4. Fortran MAXLOC Intrinsic Function
	3.9.1.5. Fortran MINLOC Intrinsic Function

	3.9.2. Fortran Sorting Subroutines Module
	3.9.3. Overloaded Fortran Reduction Intrinsics in CUTENSOREX
	3.9.3.1. Overloaded Logical Array Assignment in CUTENSOREX
	3.9.3.2. Fortran ALL Intrinsic Function
	3.9.3.3. Fortran ANY Intrinsic Function
	3.9.3.4. Fortran COUNT Intrinsic Function

	3.9.4. Overloaded Fortran Array Intrinsics in CUTENSOREX
	3.9.4.1. Fortran MERGE Intrinsic Function
	3.9.4.2. Fortran PACK Intrinsic Function
	3.9.4.3. Fortran PACKLOC Function
	3.9.4.4. Fortran UNPACK Intrinsic Function
	3.9.4.5. Fortran COUNT_PREFIX Intrinsic Function
	3.9.4.6. Fortran SUM_PREFIX Intrinsic Function
	3.9.4.7. Fortran RESHAPE Intrinsic Function
	3.9.4.8. Fortran TRANSPOSE Intrinsic Function
	3.9.4.9. Fortran SPREAD Intrinsic Function
	3.9.4.10. Fortran MATMUL Intrinsic Function
	3.9.4.11. Fortran DOT_PRODUCT Intrinsic Function
	3.9.4.12. Fortran RANDOM_NUMBER Intrinsic Function

	3.9.5. Other CUDA Library Host Modules

	Runtime APIs
	4.1. Initialization
	4.2. Device Management
	4.2.1. cudaChooseDevice
	4.2.2. cudaDeviceGetAttribute
	4.2.3. cudaDeviceGetCacheConfig
	4.2.4. cudaDeviceGetLimit
	4.2.5. cudaDeviceGetSharedMemConfig
	4.2.6. cudaDeviceGetStreamPriorityRange
	4.2.7. cudaDeviceReset
	4.2.8. cudaDeviceSetCacheConfig
	4.2.9. cudaDeviceSetLimit
	4.2.10. cudaDeviceSetSharedMemConfig
	4.2.11. cudaDeviceSynchronize
	4.2.12. cudaGetDevice
	4.2.13. cudaGetDeviceCount
	4.2.14. cudaGetDeviceProperties
	4.2.15. cudaSetDevice
	4.2.16. cudaSetDeviceFlags
	4.2.17. cudaSetValidDevices

	4.3. Thread Management
	4.3.1. cudaThreadExit
	4.3.2. cudaThreadSynchronize

	4.4. Error Handling
	4.4.1. cudaGetErrorString
	4.4.2. cudaGetLastError
	4.4.3. cudaPeekAtLastError

	4.5. Stream Management
	4.5.1. cudaforGetDefaultStream
	4.5.2. cudaforSetDefaultStream
	4.5.3. cudaStreamAttachMemAsync
	4.5.4. cudaStreamCreate
	4.5.5. cudaStreamCreateWithFlags
	4.5.6. cudaStreamCreateWithPriority
	4.5.7. cudaStreamDestroy
	4.5.8. cudaStreamGetPriority
	4.5.9. cudaStreamQuery
	4.5.10. cudaStreamSynchronize
	4.5.11. cudaStreamWaitEvent

	4.6. Event Management
	4.6.1. cudaEventCreate
	4.6.2. cudaEventCreateWithFlags
	4.6.3. cudaEventDestroy
	4.6.4. cudaEventElapsedTime
	4.6.5. cudaEventQuery
	4.6.6. cudaEventRecord
	4.6.7. cudaEventSynchronize

	4.7. Execution Control
	4.7.1. cudaFuncGetAttributes
	4.7.2. cudaFuncSetAttribute
	4.7.3. cudaFuncSetCacheConfig
	4.7.4. cudaFuncSetSharedMemConfig
	4.7.5. cudaSetDoubleForDevice
	4.7.6. cudaSetDoubleForHost

	4.8. Occupancy
	4.8.1. cudaOccupancyMaxActiveBlocksPerMultiprocessor
	4.8.2. cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
	4.8.3. cudaOccupancyMaxPotentialClusterSize
	4.8.4. cudaOccupancyMaxActiveClusters

	4.9. Memory Management
	4.9.1. cudaFree
	4.9.2. cudaFreeArray
	4.9.3. cudaFreeAsync
	4.9.4. cudaFreeHost
	4.9.5. cudaGetSymbolAddress
	4.9.6. cudaGetSymbolSize
	4.9.7. cudaHostAlloc
	4.9.8. cudaHostGetDevicePointer
	4.9.9. cudaHostGetFlags
	4.9.10. cudaHostRegister
	4.9.11. cudaHostUnregister
	4.9.12. cudaMalloc
	4.9.13. cudaMallocArray
	4.9.14. cudaMallocAsync
	4.9.15. cudaMallocManaged
	4.9.16. cudaMallocPitch
	4.9.17. cudaMalloc3D
	4.9.18. cudaMalloc3DArray
	4.9.19. cudaMemAdvise
	4.9.20. cudaMemcpy
	4.9.21. cudaMemcpyArrayToArray
	4.9.22. cudaMemcpyAsync
	4.9.23. cudaMemcpyFromArray
	4.9.24. cudaMemcpyFromSymbol
	4.9.25. cudaMemcpyFromSymbolAsync
	4.9.26. cudaMemcpyPeer
	4.9.27. cudaMemcpyPeerAsync
	4.9.28. cudaMemcpyToArray
	4.9.29. cudaMemcpyToSymbol
	4.9.30. cudaMemcpyToSymbolAsync
	4.9.31. cudaMemcpy2D
	4.9.32. cudaMemcpy2DArrayToArray
	4.9.33. cudaMemcpy2DAsync
	4.9.34. cudaMemcpy2DFromArray
	4.9.35. cudaMemcpy2DToArray
	4.9.36. cudaMemcpy3D
	4.9.37. cudaMemcpy3DAsync
	4.9.38. cudaMemGetInfo
	4.9.39. cudaMemPrefetchAsync
	4.9.40. cudaMemset
	4.9.41. cudaMemsetAsync
	4.9.42. cudaMemset2D
	4.9.43. cudaMemset3D

	4.10. Unified Addressing and Peer Device Memory Access
	4.10.1. cudaDeviceCanAccessPeer
	4.10.2. cudaDeviceDisablePeerAccess
	4.10.3. cudaDeviceEnablePeerAccess
	4.10.4. cudaPointerGetAttributes

	4.11. Version Management
	4.11.1. cudaDriverGetVersion
	4.11.2. cudaRuntimeGetVersion

	4.12. Profiling Management
	4.12.1. cudaProfilerStart
	4.12.2. cudaProfilerStop

	Examples
	5.1. Matrix Multiplication Example
	5.1.1. Source Code Listing
	5.1.2. Source Code Description

	5.2. Mapped Memory Example
	5.3. Cublas Module Example
	5.4. CUDA Device Properties Example
	5.5. CUDA Asynchronous Memory Transfer Example
	5.6. Managed Memory Example
	5.7. WMMA Tensor Core Example
	5.8. OpenACC Interoperability Example

