
USER'S GUIDE

DU-09862-001-V2023 | July 2023

User's Guide Version 2023 | ii

TABLE OF CONTENTS

Preface...x
Audience Description..x
Compatibility and Conformance to Standards..x
Organization... xi
Hardware and Software Constraints...xii
Conventions... xii
Terms..xiii
Related Publications.. xiv

Chapter 1. Getting Started...1
1.1. Overview... 1
1.2. Creating an Example.. 1
1.3. Invoking the Command-level NVIDIA HPC Compilers..2

1.3.1. Command-line Syntax..2
1.3.2. Command-line Options..3

1.4. Filename Conventions...3
1.4.1. Input Files...4
1.4.2. Output Files.. 5

1.5. Fortran, C++ and C Data Types..6
1.6. Platform-specific considerations... 7

1.6.1. Using the NVIDIA HPC Compilers on Linux... 7
1.7. Site-Specific Customization of the Compilers...7

1.7.1. Use siterc Files.. 7
1.7.2. Using User rc Files..7

1.8. Common Development Tasks.. 8
Chapter 2. Use Command-line Options..10

2.1. Command-line Option Overview...10
2.1.1. Command-line Options Syntax..10
2.1.2. Command-line Suboptions.. 11
2.1.3. Command-line Conflicting Options...11

2.2. Help with Command-line Options..11
2.3. Getting Started with Performance... 12

2.3.1. Using -fast.. 12
2.3.2. Other Performance-Related Options.. 13

2.4. Frequently-used Options.. 13
2.5. Floating-point Subnormal...15

Chapter 3. Multicore CPU Optimization..17
3.1. Overview of Optimization.. 17

3.1.1. Local Optimization..18
3.1.2. Global Optimization.. 18
3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization... 18

User's Guide Version 2023 | iii

3.1.4. Interprocedural Analysis (IPA) and Optimization... 18
3.1.5. Function Inlining...19

3.2. Getting Started with Optimization.. 19
3.2.1. -help.. 20
3.2.2. -Minfo..20
3.2.3. -Mneginfo..21
3.2.4. -dryrun.. 21
3.2.5. -v..21

3.3. Local and Global Optimization... 21
3.3.1. -Msafeptr.. 21
3.3.2. -O...22

3.4. Loop Unrolling using -Munroll...24
3.5. Vectorization using -Mvect... 25

3.5.1. Vectorization Sub-options..25
3.5.2. Vectorization Example Using SIMD Instructions..27

3.6. Interprocedural Analysis and Optimization using -Mipa...29
3.6.1. Building a Program Without IPA – Single Step..30
3.6.2. Building a Program Without IPA – Several Steps..30
3.6.3. Building a Program Without IPA Using Make.. 30
3.6.4. Building a Program with IPA.. 31
3.6.5. Building a Program with IPA – Single Step... 31
3.6.6. Building a Program with IPA – Several Steps..32
3.6.7. Building a Program with IPA Using Make..33
3.6.8. Questions about IPA...33

Chapter 4. Using Function Inlining... 35
4.1. Automatic function inlining in C++ and C..35
4.2. Invoking Procedure Inlining..36
4.3. Using an Inline Library... 37
4.4. Creating an Inline Library...37

4.4.1. Working with Inline Libraries.. 38
4.4.2. Dependencies... 39
4.4.3. Updating Inline Libraries – Makefiles...39

4.5. Error Detection during Inlining.. 39
4.6. Examples..40
4.7. Restrictions on Inlining...40

Chapter 5. Using GPUs.. 42
5.1. Overview... 42
5.2. Terminology... 43
5.3. Execution Model.. 45

5.3.1. Host Functions... 45
5.4. Memory Model...45

5.4.1. Separate Host and Accelerator Memory Considerations.. 46
5.4.2. Accelerator Memory...46

User's Guide Version 2023 | iv

5.4.3. Cache Management... 46
5.4.4. CUDA Unified Memory... 46

5.5. Environment Variables Controlling Device Memory Management...48
5.6. Fortran pointers in device code... 49
5.7. Calling routines in a compute kernel..50
5.8. Supported Processors and GPUs.. 50
5.9. CUDA Versions.. 50
5.10. Compute Capability... 51
5.11. PTX JIT Compilation..52

Chapter 6. Using OpenACC..56
6.1. OpenACC Programming Model.. 56

6.1.1. Levels of Parallelism... 56
6.1.2. Enable OpenACC Directives...57
6.1.3. OpenACC Support...57
6.1.4. OpenACC Extensions..57

6.2. Compiling an OpenACC Program...58
6.2.1. -[no]acc... 58
6.2.2. -gpu... 59

6.3. OpenACC for Multicore CPUs.. 61
6.4. Running an OpenACC Program... 61
6.5. OpenACC Error Handling..62
6.6. Environment Variables..65
6.7. Profiling Accelerator Kernels...66
6.8. OpenACC Runtime Libraries.. 67

6.8.1. Runtime Library Definitions.. 68
6.8.2. Runtime Library Routines..68

6.9. Supported Intrinsics..69
6.9.1. Supported Fortran Intrinsics Summary Table..69
6.9.2. Supported C Intrinsics Summary Table..71

Chapter 7. Using OpenMP... 73
7.1. Environment Variables..73
7.2. Fallback Mode... 75
7.3. Loop..75
7.4. OpenMP Subset... 78
7.5. Using metadirective.. 88
7.6. Mapping target constructs to CUDA streams... 89
7.7. Noncontiguous Array Sections... 92
7.8. Multiple Device Support..93
7.9. Interoperability with CUDA... 93
7.10. Interoperability with Other OpenMP Compilers.. 93
7.11. GNU STL.. 94

Chapter 8. PCAST...95
8.1. Overview... 95

User's Guide Version 2023 | v

8.2. PCAST with a "Golden" File... 96
8.3. PCAST with OpenACC... 99
8.4. Limitations... 104
8.5. Environment Variables.. 104

Chapter 9. Using MPI...106
9.1. Using Open MPI on Linux...106
9.2. Using MPI Compiler Wrappers.. 107
9.3. Testing and Benchmarking.. 107

Chapter 10. Creating and Using Libraries..108
10.1. Using builtin Math Functions in C++ and C...108
10.2. Using System Library Routines..109
10.3. Creating and Using Shared Object Files on Linux.. 109

10.3.1. Procedure to create a use a shared object file..109
10.3.2. ldd Command... 110

10.4. Using LIB3F... 111
10.5. LAPACK, BLAS and FFTs..111
10.6. Linking with ScaLAPACK.. 111
10.7. The C++ Standard Template Library..111

Chapter 11. Environment Variables.. 112
11.1. Setting Environment Variables... 112

11.1.1. Setting Environment Variables on Linux...112
11.2. HPC Compiler Related Environment Variables... 113
11.3. HPC Compilers Environment Variables... 113

11.3.1. FORTRANOPT... 114
11.3.2. FORT_FMT_RECL... 114
11.3.3. GMON_OUT_PREFIX...114
11.3.4. LD_LIBRARY_PATH.. 115
11.3.5. MANPATH... 115
11.3.6. NO_STOP_MESSAGE..115
11.3.7. PATH..115
11.3.8. NVCOMPILER_FPU_STATE..115
11.3.9. NVCOMPILER_TERM.. 117
11.3.10. NVCOMPILER_TERM_DEBUG..118
11.3.11. PWD...119
11.3.12. STATIC_RANDOM_SEED.. 119
11.3.13. TMP... 119
11.3.14. TMPDIR... 119

11.4. Using Environment Modules on Linux...119
11.5. Stack Traceback and JIT Debugging... 120

Chapter 12. Distributing Files – Deployment... 122
12.1. Deploying Applications on Linux.. 122

12.1.1. Runtime Library Considerations... 122
12.1.2. 64-bit Linux Considerations...123

User's Guide Version 2023 | vi

12.1.3. Linux Redistributable Files..123
12.1.4. Restrictions on Linux Portability... 123
12.1.5. Licensing for Redistributable (REDIST) Files... 124

Chapter 13. Inter-language Calling...125
13.1. Overview of Calling Conventions.. 125
13.2. Inter-language Calling Considerations.. 125
13.3. Functions and Subroutines...126
13.4. Upper and Lower Case Conventions, Underscores.. 127
13.5. Compatible Data Types... 127

13.5.1. Fortran Named Common Blocks.. 128
13.6. Argument Passing and Return Values...129

13.6.1. Passing by Value (%VAL)... 129
13.6.2. Character Return Values... 129
13.6.3. Complex Return Values... 130

13.7. Array Indices..130
13.8. Examples..131

13.8.1. Example – Fortran Calling C...131
13.8.2. Example – C Calling Fortran...132
13.8.3. Example – C++ Calling C... 133
13.8.4. Example – C Calling C ++..133
13.8.5. Example – Fortran Calling C++... 134
13.8.6. Example – C++ Calling Fortran... 135

Chapter 14. Programming Considerations for 64-Bit Environments..137
14.1. Data Types in the 64-Bit Environment...137

14.1.1. C++ and C Data Types..137
14.1.2. Fortran Data Types.. 137

14.2. Large Static Data in Linux..138
14.3. Large Dynamically Allocated Data... 138
14.4. 64-Bit Array Indexing.. 138
14.5. Compiler Options for 64-bit Programming..139
14.6. Practical Limitations of Large Array Programming..140
14.7. Medium Memory Model and Large Array in C.. 140
14.8. Medium Memory Model and Large Array in Fortran.. 141
14.9. Large Array and Small Memory Model in Fortran..142

Chapter 15. C++ and C Inline Assembly and Intrinsics..144
15.1. Inline Assembly... 144
15.2. Extended Inline Assembly...145

15.2.1. Output Operands.. 146
15.2.2. Input Operands... 147
15.2.3. Clobber List.. 149
15.2.4. Additional Constraints..150
15.2.5. Simple Constraints...150
15.2.6. Machine Constraints.. 151

User's Guide Version 2023 | vii

15.2.7. Multiple Alternative Constraints..153
15.2.8. Constraint Modifiers...154

15.3. Operand Aliases.. 155
15.4. Assembly String Modifiers..155
15.5. Extended Asm Macros.. 157
15.6. Intrinsics.. 157

User's Guide Version 2023 | viii

LIST OF TABLES

Table 1 NVIDIA HPC Compilers and Commands .. xiii

Table 2 Option Descriptions .. 6

Table 3 Examples of Using siterc and User rc Files ...8

Table 4 Typical -fast Options ...12

Table 5 Additional -fast Options ..13

Table 6 Commonly Used Command-Line Options ...14

Table 7 Default settings of -Mdaz and -Mflushz ... 15

Table 8 Typical -fast Options ... 19

Table 9 Additional -fast Options .. 20

Table 10 Example of Effect of Code Unrolling ...24

Table 11 -Mvect Suboptions .. 26

Table 12 Pool Allocator Environment Variables .. 48

Table 13 Memory Management Environment Variables ..48

Table 14 Supported Environment Variables ... 65

Table 15 Accelerator Runtime Library Routines ..68

Table 16 Supported Fortran Intrinsics ..70

Table 17 Supported C Intrinsic Double Functions ... 71

Table 18 Supported C Intrinsic Float Functions .. 71

Table 19 Supported Types for Tolerance Measurements .. 96

Table 20 PCAST_COMPARE Options ..104

Table 21 NVIDIA HPC Compilers Environment Variable Summary .. 113

Table 22 Supported NVCOMPILER_FPU_STATE options ...116

Table 23 Supported NVCOMPILER_TERM Values ..117

Table 24 Fortran and C/C++ Data Type Compatibility ... 127

User's Guide Version 2023 | ix

Table 25 Fortran and C/C++ Representation of the COMPLEX Type .. 128

Table 26 64-bit Compiler Options ... 139

Table 27 Effects of Options on Memory and Array Sizes .. 139

Table 28 64-Bit Limitations ... 140

Table 29 Simple Constraints ... 150

Table 30 x86_64 Machine Constraints .. 152

Table 31 Multiple Alternative Constraints .. 153

Table 32 Constraint Modifier Characters ... 154

Table 33 Assembly String Modifier Characters ... 156

Table 34 Intrinsic Header File Organization ...158

User's Guide Version 2023 | x

PREFACE

This guide is part of a set of manuals that describe how to use the NVIDIA HPC Fortran,
C++ and C compilers. These compilers include the NVFORTRAN, NVC++ and NVC
compilers. They work in conjunction with an assembler, linker, libraries and header
files on your target system, and include a CUDA toolchain, libraries and header files
for GPU computing. You can use the NVIDIA HPC compilers to develop, optimize and
parallelize applications for NVIDIA GPUs and x86-64, OpenPOWER and Arm Server
multicore CPUs.

The NVIDIA HPC Compilers User’s Guide provides operating instructions for the NVIDIA
HPC compilers command-level development environment. The NVIDIA HPC Compilers
Reference Manual contains details concerning the NVIDIA compilers' interpretation of
the Fortran, C++ and C language standards, implementation of language extensions,
and command-level compilation. Users are expected to have previous experience with
or knowledge of the Fortran, C++ and C programming languages. These guides do not
teach the Fortran, C++ or C programming languages.

Audience Description
This manual is intended for scientists and engineers using the NVIDIA HPC compilers.
To use these compilers, you should be aware of the role of high-level languages, such as
Fortran, C++ and C as well as parallel programming models such as CUDA, OpenACC
and OpenMP in the software development process, and you should have some level
of understanding of programming. The NVIDIA HPC compilers are available on a
variety of NVIDIA GPUs and x86-64, OpenPOWER and Arm CPU-based platforms and
operating systems. You need to be familiar with the basic commands available on your
system.

Compatibility and Conformance to Standards
Your system needs to be running a properly installed and configured version of the
NVIDIA HPC compilers. For information on installing NVIDIA HPC compilers, refer to
the Release Notes and Installation Guide included with your software.

For further information, refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

Preface

User's Guide Version 2023 | xi

‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,
Geneva, 1991 (Fortran 90).

‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,
Geneva, 1997 (Fortran 95).

‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,
Geneva, 2004 (Fortran 2003).

‣ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran,
Geneva, 2010 (Fortran 2008).

‣ ISO/IEC 1539-1 : 2018, Information technology – Programming Languages – Fortran,
Geneva, 2018 (Fortran 2018).

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ The Fortran 2003 Handbook, Adams et al, Springer, 2009.
‣ OpenACC Application Program Interface, Version 2.7, November 2018, http://

www.openacc.org.
‣ OpenMP Application Program Interface, Version 4.5, November 2015, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard

Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).
‣ American National Standard Programming Language C, ANSI X3.159-1989.
‣ ISO/IEC 9899:1990, Information technology – Programming Languages – C, Geneva,

1990 (C90).
‣ ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva,

1999 (C99).
‣ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva,

2011 (C11).
‣ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++,

Geneva, 2011 (C++11).
‣ ISO/IEC 14882:2014, Information Technology – Programming Languages – C++,

Geneva, 2014 (C++14).
‣ ISO/IEC 14882:2017, Information Technology – Programming Languages – C++,

Geneva, 2017 (C++17).

Organization
This guide contains the essential information on how to use the NVIDIA HPC compilers
and is divided into these sections:

Getting Started provides an introduction to the NVIDIA HPC compilers and describes
their use and overall features.

Use Command-line Options provides an overview of the command-line options as well
as task-related lists of options.

http://www.openacc.org
http://www.openacc.org
http://www.openmp.org
http://www.openmp.org

Preface

User's Guide Version 2023 | xii

Multicore CPU Optimization describes multicore CPU optimizations and related
compiler options.

Using Function Inlining describes how to use function inlining and shows how to create
an inline library.

Using OpenMP describes how to use OpenMP for multicore CPU programming.

Using OpenACC describes how to use an NVIDIA GPU and gives an introduction to
using OpenACC.

PCAST describes how to use the Parallel Compiler Assisted Testing features of the HPC
Compilers.

Using MPI describes how to use MPI with the NVIDIA HPC compilers.

Creating and Using Libraries discusses NVIDIA HPC compiler support libraries, shared
object files, and environment variables that affect the behavior of the compilers.

Environment Variables describes the environment variables that affect the behavior of
the NVIDIA HPC compilers.

Distributing Files – Deployment describes the deployment of your files once you have
built, debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language calls in a
Fortran program and Fortran language calls in a C program.

Programming Considerations for 64-Bit Environments discusses issues of which
programmers should be aware when targeting 64-bit processors.

C++ and C Inline Assembly and Intrinsics describes how to use inline assembly code
in C++ and C programs, as well as how to use intrinsic functions that map directly to
assembly machine instructions.

Hardware and Software Constraints
This guide describes versions of the NVIDIA HPC compilers that target NVIDIA GPUs
and x86-64, OpenPOWER and Arm CPUs. Details concerning environment-specific
values and defaults and system-specific features or limitations are presented in the
release notes delivered with the NVIDIA HPC compilers.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

Preface

User's Guide Version 2023 | xiii

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C++ and C
C++ and C language statements are shown in the test of this guide using a reduced
fixed point size.

Terms
A number of terms related to systems, processors, compilers and tools are used
throughout this guide. For example:

accelerator FMA -mcmodel=medium shared library

AVX host -mcmodel=small SIMD

CUDA hyperthreading (HT) MPI SSE

device large arrays MPICH static linking

driver linux86-64 NUMA x86-64

DWARF LLVM OpenPOWER Arm

dynamic library multicore ppc64le Aarch64

The following table lists the NVIDIA HPC compilers and their corresponding
commands:

Table 1 NVIDIA HPC Compilers and Commands

Compiler or Tool Language or Function Command

NVFORTRAN ISO/ANSI Fortran 2003 nvfortran

NVC++ ISO/ANSI C++17 with GNU
compatibility

nvc++

NVC ISO/ANSI C11 nvc

In general, the designation NVFORTRAN is used to refer to the NVIDIA Fortran
compiler, and nvfortran is used to refer to the command that invokes the compiler. A
similar convention is used for each of the NVIDIA HPC compilers.

Preface

User's Guide Version 2023 | xiv

For simplicity, examples of command-line invocation of the compilers generally
reference the nvfortran command, and most source code examples are written
in Fortran. Use of NVC++ and NVC is consistent with NVFORTRAN, though there
are command-line options and features of these compilers that do not apply to
NVFORTRAN, and vice versa.

There are a wide variety of x86-64 CPUs in use. Most of these CPUs are forward-
compatible, but not backward-compatible, meaning that code compiled to target a given
processor will not necessarily execute correctly on a previous-generation processor.

A table listing the processor options that NVIDIA HPC compilers support is available
in the Release Notes. The table also includes the features utilized by the compilers that
distinguish them from a compatibility standpoint.

In this manual, the convention is to use "x86-64" to specify the group of CPUs that are
x86-compatible, 64-bit enabled, and run a 64-bit operating system. x86-64 processors can
differ in terms of their support for various prefetch, SSE and AVX instructions. Where
such distinctions are important with respect to a given compiler option or feature, it is
explicitly noted in this manual.

Related Publications
The following documents contain additional information related to the NVIDIA HPC
compilers.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

‣ System V Application Binary Interface X86-64 Architecture Processor Supplement.
‣ OpenPOWER ABI for Linux Supplement, Power Architecture 64-Bit ELF V2 ABI

Specification, http://openpowerfoundation.org/wp-content/uploads/2016/03/
ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf.

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ The C Programming Language by Kernighan and Ritchie (Prentice Hall).
‣ C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall,

1987).
‣ The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T

Bell Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf
http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf

User's Guide Version 2023 | 1

Chapter 1.
GETTING STARTED

This section describes how to use the NVIDIA HPC compilers.

1.1. Overview
The command used to invoke a compiler, such as the nvfortran command, is called
a compiler driver. The compiler driver controls the following phases of compilation:
preprocessing, compiling, assembling, and linking. Once a file is compiled and an
executable file is produced, you can execute, debug, or profile the program on your
system.

In general, using an NVIDIA HPC compiler involves three steps:

 1. Produce program source code in a file containing a .f extension or another
appropriate extension, as described in Input Files. This program may be one that
you have written or one that you are modifying.

 2. Compile the program using the appropriate compiler command.
 3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The NVIDIA HPC compilers allow many variations on these general program
development steps. These variations include the following:

‣ Stop the compilation after preprocessing, compiling or assembling to save and
examine intermediate results.

‣ Provide options to the driver that control compiler optimization or that specify
various features or limitations.

‣ Include as input intermediate files such as preprocessor output, compiler output, or
assembler output.

1.2. Creating an Example
Let's look at a simple example of using the NVIDIA Fortran compiler to create, compile,
and execute a program that prints:

Getting Started

User's Guide Version 2023 | 2

hello

 1. Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello.f:
print *, "hello"
end

 2. Compile the program.
When you created your program, you called it hello.f. In this example, we compile
it from a shell command prompt using the default nvfortran driver option. Use the
following syntax:
$ nvfortran hello.f

By default, the executable output is placed in the file a.out. However, you can
specify an output file name by using the -o option.

To place the executable output in the file hello, use this command:
$ nvfortran -o hello hello.f

 3. Execute the program.
To execute the resulting hello program, simply type the filename at the command
prompt and press the Return or Enter key on your keyboard:

$ hello

Below is the expected output:
hello

1.3. Invoking the Command-level NVIDIA HPC
Compilers
To translate and link a Fortran, C, or C++ program, the nvfortran, nvc and nvc++
commands do the following:

 1. Preprocess the source text file.
 2. Check the syntax of the source text.
 3. Generate an assembly language file.
 4. Pass control to the subsequent assembly and linking steps.

1.3.1. Command-line Syntax
The compiler command-line syntax, using nvfortran as an example, is:
nvfortran [options] [path]filename [...]

Where:
options

is one or more command-line options, all of which are described in detail in Use
Command-line Options.

Getting Started

User's Guide Version 2023 | 3

path
is the pathname to the directory containing the file named by filename. If you do not
specify the path for a filename, the compiler uses the current directory. You must
specify the path separately for each filename not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object
file, or library to be processed by the compilation system. You can specify more than
one [path]filename.

1.3.2. Command-line Options
The command-line options control various aspects of the compilation process. For a
complete alphabetical listing and a description of all the command-line options, refer to
Use Command-Line Options.

The following list provides important information about proper use of command-line
options.

‣ Command-line options and their arguments are case sensitive.
‣ The compiler drivers recognize characters preceded by a hyphen (-) as command-

line options. For example, the -Mlist option specifies that the compiler creates a
listing file.

The convention for the text of this manual is to show command-line options using a
dash instead of a hyphen; for example, you see -Mlist.

‣ The order of options and the filename is flexible. That is, you can place options
before and after the filename argument on the command line. However, the
placement of some options is significant, such as the -l option, in which the order of
the filenames determines the search order.

If two or more options contradict each other, the last one in the command line
takes precedence.

‣ You may write linker options into a text file prefixed with the '@' symbol, e.g. @file,
and pass that file to the compiler as an option. The contents of @file are passed to
the linker.

$ echo "foo.o bar.o" > ./option_file.rsp

$ nvc++ @./option_files.rsp

The above will pass "foo.o bar.o" to the compiler as linker arguments.

1.4. Filename Conventions
The NVIDIA HPC compilers use the filenames that you specify on the command line
to find and to create input and output files. This section describes the input and output
filename conventions for the phases of the compilation process.

Getting Started

User's Guide Version 2023 | 4

1.4.1. Input Files
You can specify assembly-language files, preprocessed source files, Fortran/C/C++
source files, object files, and libraries as inputs on the command line. The compiler
driver determines the type of each input file by examining the filename extensions.

The drivers use the following conventions:
filename.f

indicates a Fortran source file.
filename.F

indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).

filename.F90
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.f90
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and
that can contain macros and preprocessor directives (to be preprocessed).

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.i
indicates a preprocessed C or C++ source file.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.cpp
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux) indicates an object file.

Getting Started

User's Guide Version 2023 | 5

filename.a
(Linux) indicates a library of object files.

filename.so
(Linux only) indicates a library of shared object files.

The driver passes files with .s extensions to the assembler and files with .o, .so and
.a extensions to the linker. Input files with unrecognized extensions, or no extension,
are also passed to the linker.

Files with a .F (Capital F) or .FOR suffix are first preprocessed by the Fortran
compilers and the output is passed to the compilation phase. The Fortran preprocessor
functions like cpp for C programs, but is built in to the Fortran compilers rather than
implemented through an invocation of cpp. This design ensures consistency in the
preprocessing step regardless of the type or revision of operating system under which
you are compiling.

Any input files not needed for a particular phase of processing are not processed. For
example, if on the command line you specify an assembly-language file (filename.s)
and the -S option to stop before the assembly phase, the compiler takes no action on
the assembly language file. Processing stops after compilation and the assembler does
not run. In this scenario, the compilation must have been completed in a previous pass
which created the .s file. For a complete description of the -S option, refer to Output
Files.

In addition to specifying primary input files on the command line, code within other
files can be compiled as part of include files using the INCLUDE statement in a Fortran
source file or the preprocessor #include directive in Fortran source files that use a .F
extension or C++ and C source files.

When linking a program with a library, the linker extracts only those library components
that the program needs. The compiler drivers link in several libraries by default. For
more information about libraries, refer to Create and Use Libraries.

1.4.2. Output Files
By default, an executable output file produced by one of the NVIDIA HPC compilers
is placed in the file a.out. As the Hello example shows, you can use the -o option to
specify the output file name.

If you use option -F (Fortran only), -P (C/C++ only), -S or -c, the compiler produces a file
containing the output of the last completed phase for each input file, as specified by the
option supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked
object file respectively. Similarly, the -E option does not produce a file, but displays
the preprocessed source file on the standard output. Using any of these options,
the -o option is valid only if you specify a single input file. If no errors occur during
processing, you can use the files created by these options as input to a future invocation
of any of the NVIDIA compiler drivers.

The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also indicates the accepted input files.

Getting Started

User's Guide Version 2023 | 6

Table 2 Option Descriptions

Option Stop After Input Output

-E preprocessing Source files preprocessed file to standard out

-F preprocessing Source files. This option is not
valid for nvc or nvc++.

preprocessed file (.f)

-P preprocessing Source files. This option is not
valid for nvfortran.

preprocessed file (.i)

-S compilation Source files or preprocessed files assembly-language file (.s)

-c assembly Source files, or preprocessed
files, or assembly-language files

unlinked object file (.o or .obj)

none linking Source files, or preprocessed
files, assembly-language files,
object files, or libraries

executable file (a.out)

If you specify multiple input files or do not specify an object filename, the compiler uses
the input filenames to derive corresponding default output filenames of the following
form, where filename is the input filename without its extension:
filename.f

indicates a preprocessed file, if you compiled a Fortran file using the -F option.
filename.i

indicates a preprocessed file, if you compiled using the -P option.
filename.lst

indicates a listing file from the -Mlist option.
filename.o or filename.obj

indicates a object file from the -c option.
filename.s

indicates an assembly-language file from the -S option.

Unless you specify otherwise, the destination directory for any output file is the current
working directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ nvfortran -c proto.f proto1.F

This produces the output files proto.o and proto1.o, which are binary object files.
Prior to compilation, the file proto1.F is preprocessed because it has a .F filename
extension.

1.5. Fortran, C++ and C Data Types
The NVIDIA Fortran, C++ and C compilers recognize scalar and aggregate data types. A
scalar data type holds a single value, such as the integer value 42 or the real value 112.6.
An aggregate data type consists of one or more scalar data type objects, such as an array
of integer values.

Getting Started

User's Guide Version 2023 | 7

1.6. Platform-specific considerations
The NVIDIA HPC Compilers are supported on x86-64, OpenPOWER and 64-bit Arm
multicore CPUs running Linux.

1.6.1. Using the NVIDIA HPC Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. The NVIDIA HPC C
++ and C compilers support many of these extensions and can compile most programs
that the GNU compilers can compile. A few header files not interoperable with the
NVIDIA compilers have been rewritten.

If you are using the NVIDIA HPC C++ or C compilers, please make sure that the
supplied versions of these include files are found before the system versions. This
hierarchy happens by default unless you explicitly add a -I option that references one of
the system include directories.

1.7. Site-Specific Customization of the Compilers
If you are using the NVIDIA HPC Compilers and want all your users to have access
to specific libraries or other files, there are special files that allow you to customize the
compilers for your site.

1.7.1. Use siterc Files
The NVIDIA HPC Compiler command-level drivers utilize a file named siterc to
enable site-specific customization of the behavior of the NVIDIA compilers. The siterc
file is located in the bin subdirectory of the NVIDIA HPC Compilers installation
directory. Using siterc, you can control how the compiler drivers invoke the various
components in the compilation tool chain.

1.7.2. Using User rc Files
In addition to the siterc file, user rc files can reside in a given user's home directory, as
specified by the user's HOME environment variable. You can use these files to control
the respective NVIDIA HPC Compilers. All of these files are optional.

On Linux, these files are named .mynvfortranrc, .mynvcrc, and .mynvc++rc.

The following examples show how you can use these rc files to tailor a given installation
for a particular purpose on Linux_x86_64 targets. The process is similar with obvious
substitutions for ppc64le and aarch64 targets.

Getting Started

User's Guide Version 2023 | 8

Table 3 Examples of Using siterc and User rc Files

To do this... Add the line shown to the indicated file(s)

Make available to all linux

compilations the libraries found in

/opt/newlibs/64

set SITELIB=/opt/newlibs/64; to /opt/nv/
Linux_x86_64/23.7/compilers/bin/siterc

Add to all linux compilations

a new library path: /opt/
local/fast

append SITELIB=/opt/local/fast; to /opt/nv/
Linux_x86_64/23.7/compilers/bin/siterc

With linux compilations, change

-Mmpi to link in /opt/
mympi/64/libmpix.a

set MPILIBDIR=/opt/mympi/64; set MPILIBNAME=mpix; to

/opt/nv/Linux_x86_64/23.7/compilers/bin/
siterc

Build a Fortran executable for

linux that resolves shared objects

in the relative directory ./
REDIST

set RPATH=./REDIST; to ~/.mynvfortranrc

1.8. Common Development Tasks
Now that you have a brief introduction to the compiler, let's look at some common
development tasks that you might wish to perform.

‣ When you compile code you can specify a number of options on the command
line that define specific characteristics related to how the program is compiled and
linked, typically enhancing or overriding the default behavior of the compiler. For a
list of the most common command line options and information on all the command
line options, refer to Use Command-line Options.

‣ Code optimization for multicore CPUs allows the compiler to organize your code
for efficient execution. While possibly increasing compilation time and making the
code more difficult to debug, these techniques typically produce code that runs
significantly faster than code that does not use them. For more information on
optimization refer to Multicore CPU Optimization.

‣ Function inlining, a special type of optimization, replaces a call to a function or a
subroutine with the body of the function or subroutine. This process can speed up
execution by eliminating parameter passing and the function or subroutine call and
return overhead. In addition, function inlining allows the compiler to optimize the
function with the rest of the code. However, function inlining may also result in
much larger code size with no increase in execution speed. For more information on
function inlining, refer to Using Function Inlining.

‣ A library is a collection of functions or subprograms used to develop software.
Libraries contain "helper" code and data, which provide services to independent
programs, allowing code and data to be shared and changed in a modular fashion.
The functions and programs in a library are grouped for ease of use and linking.

Getting Started

User's Guide Version 2023 | 9

When creating your programs, it is often useful to incorporate standard libraries or
proprietary ones. For more information on this topic, refer to Creating and Using
Libraries.

‣ Environment variables define a set of dynamic values that can affect the way
running processes behave on a computer. It is often useful to use these variables
to set and pass information that alters the default behavior of the NVIDIA HPC
Compilers and the executables which they generate. For more information on these
variables, refer to Environment Variables.

‣ Deployment, though possibly an infrequent task, can present some unique issues
related to concerns of porting the code to other systems. Deployment, in this context,
involves distribution of a specific file or set of files that are already compiled and
configured. The distribution must occur in such a way that the application executes
accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you
might need to know to successfully deploy your code, refer to Distributing Files –
Deployment.

‣ An intrinsic is a function available in a given language whose implementation
is handled specially by the compiler. Intrinsics make using processor-specific
enhancements easier because they provide a C++ and C language interface to
assembly instructions. In doing so, the compiler manages details that the user would
normally have to be concerned with, such as register names, register allocations, and
memory locations of data.

User's Guide Version 2023 | 10

Chapter 2.
USE COMMAND-LINE OPTIONS

A command line option allows you to control specific behavior when a program is
compiled and linked. This section describes the syntax for properly using command-line
options and provides a brief overview of a few of the more common options.

2.1. Command-line Option Overview
Before looking at all the command-line options, first become familiar with the syntax for
these options. There are a large number of options available to you, yet most users only
use a few of them. So, start simple and progress into using the more advanced options.

By default, the NVIDIA HPC Compilers generate code that is optimized for the
type of processor on which compilation is performed, the compilation host. Before
adding options to your command-line, review Help with Command-line Options and
Frequently-used Options.

2.1.1. Command-line Options Syntax
On a command-line, options need to be preceded by a hyphen (-). If the compiler
does not recognize an option, you get an unknown switch error. The error can be
downgraded to a warning by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical
bar (|) separates the choices.

...

Horizontal ellipses indicate that zero or more instances of the preceding item are
valid.

Use Command-line Options

User's Guide Version 2023 | 11

2.1.2. Command-line Suboptions
Some options accept several suboptions. You can specify these suboptions either by
using the full option statement multiple times or by using a comma-separated list for the
suboptions.

The following two command lines are equivalent:
nvfortran -Mvect=simd -Mvect=noaltcode

nvfortran -Mvect=simd,noaltcode

2.1.3. Command-line Conflicting Options
Some options have an opposite or negated counterpart. For example, both -Mvect and
-Mnovect are available. -Mvect enables vectorization and -Mnovect disables it. If you
used both of these commands on a command line, they would conflict.

When you use conflicting options on a command line, the last encountered option takes
precedence over any previous one.

The conflicting options rule is important for a number of reasons.

‣ Some options, such as -fast, include other options. Therefore, it is possible for you
to be unaware that you have conflicting options.

‣ You can use this rule to create makefiles that apply specific flags to a set of files, as
shown in the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the
flags defined for CCFLAGS but disables vectorization.
CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$(CCFLAGS) -Mnovect

2.2. Help with Command-line Options
If you are just getting started with the NVIDIA HPC Compilers, it is helpful to know
which options are available, when to use them, and which options most users find
effective.

Using -help

The -help option is useful because it provides information about all options supported
by a given compiler.

You can use -help in one of three ways:

‣ Use -help with no parameters to obtain a list of all the available options with a
brief one-line description of each.

Use Command-line Options

User's Guide Version 2023 | 12

‣ Add a parameter to -help to restrict the output to information about a specific
option. The syntax for this usage is:
-help <command line option>

Suppose you use the following command to restrict the output to information about
the -fast option:
$ nvfortran -help -fast

The output you see is similar to:
-fast Common optimizations; includes -O2 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the -help parameter to restrict the output to
information about the help command. The usage information for -help shows how
groups of options can be listed or examined according to function.
$ nvfortran -help -help
 -help[=groups|asm|debug|language|linker|opt|other|overall|phase|
prepro|
 suffix|switch|target|variable]

‣ Add a parameter to -help to restrict the output to a specific set of options or to a
building process. The syntax for this usage is this:
-help=<subgroup>

2.3. Getting Started with Performance
This section provides a quick overview of a few of the command-line options that are
useful in improving multicore CPU performance.

2.3.1. Using -fast
The NVIDIA HPC Compilers implement a wide range of options that allow users a
fine degree of control on each optimization phase. When it comes to optimization of
code, the quickest way to start is to use the option -fast. These options create a generally
optimal set of flags. They incorporate optimization options to enable use of vector
streaming SIMD instructions for 64-bit targets. They enable vectorization with SIMD
instructions, cache alignment, and flush to zero mode.

The contents of the -fast option are host-dependent. Further, you should use these
options on both compile and link command lines.

The following table shows the typical -fast options.

Table 4 Typical -fast Options

Use this option... To do this...

-O2 Specifies a code optimization level of 2.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each
iteration.

Use Command-line Options

User's Guide Version 2023 | 13

Use this option... To do this...

-Mnoframe Do not generate code to set up a stack frame. Note: With this option, a stack
trace does not work.

-Mlre Enable loop-carried redundancy elimination.

-Mpre Enable partial redundancy elimination

On most modern CPUs the -fast also includes the options shown in this table:

Table 5 Additional -fast Options

Use this option... To do this...

-Mvect=simd Generates packed SIMD instructions.

-Mcache_align Aligns long objects on cache-line boundaries.

-Mflushz Sets flush-to-zero mode.

-M[no]vect Controls automatic vector pipelining.

To see the specific behavior of -fast for your target, use the following command:

$ nvfortran -help -fast

2.3.2. Other Performance-Related Options
While -fast is designed to be the quickest route to best performance, it is limited to
routine boundaries. Depending on the nature and writing style of the source code,
the compiler often can perform further optimization by knowing the global context of
usage of a given routine. For instance, determining the possible value range of actual
parameters of a routine could enable a loop to be vectorized; similarly, determining
static occurrence of calls helps to decide which routine is beneficial to inline.

These types of global optimizations are under control of Interprocedural Analysis (IPA)
in NVIDIA HPC Compilers. Option -Mipa enables Interprocedural Analysis. -Mipa=fast
is the recommended option to get best performances for global optimization. You can
also add the suboption inline to enable automatic global inlining across files. You might
consider using -Mipa=fast,inline. This option for interprocedural analysis and global
optimization can improve performance.

For more information on optimization, refer to Multicore CPU Optimization. For
specific information about these options, refer to the ‘Optimization Controls’ section
of the HPC Compilers Reference User Guide, docs.nvidia.com/hpc-sdk/compilers/pdf/
hpc237ref.pdf.

2.4. Frequently-used Options
In addition to overall performance, there are a number of other options that many users
find useful when getting started. The following table provides a brief summary of these
options.

Use Command-line Options

User's Guide Version 2023 | 14

Table 6 Commonly Used Command-Line Options

Use this option... To do this...

-acc Enable parallelization using OpenACC directives. By default the
compilers will parallelize and offload OpenACC regions to an NVIDIA
GPU. Use -acc=multicore to parallelize OpenACC regions for
execution on all the cores of a multicore CPU.

-fast This option creates a generally optimal set of flags for targets that
support SIMD capability. It incorporates optimization options to enable
use of vector streaming SIMD instructions, cache alignment and
flushz.

-g Instructs the compiler to include symbolic debugging information
in the object module; sets the optimization level to zero unless a -O
option is present on the command line. Conversely, to prevent the
generation of DWARF information, use the -Mnodwarf option.

-gopt Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when -g is not specified.

-gpu Control the type of GPU for which code is generated, the version
of CUDA to be targeted, and several other aspects of GPU code
generation.

-help Provides information about available options.

-mcmodel=medium Enables medium=model code generation for 64-bit targets, which is
useful when the data space of the program exceeds 4GB.

-mp Enable parallelization using OpenMP directives. By default the
compilers will parallelize OpenMP regions for execution on all the
cores of a multicore CPU. Use -mp=gpu to parallelize OpenMP regions
for offload to an NVIDIA GPU.

-Mconcur Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple CPU cores to execute loops that
it determines to be parallelizable; thus, loop iterations are split to
execute optimally in a multithreaded execution context.

-Minfo Instructs the compiler to produce information on standard error.

-Minline Enables function inlining.

-Mipa=fast,inline Enables interprocedural analysis and optimization. Also enables
automatic procedure inlining.

-Mkeepasm Keeps the generated assembly files.

-Munroll Invokes the loop unroller to unroll loops, executing multiple instances
of the loop during each iteration. This also sets the optimization
level to 2 if the level is set to less than 2, or if no -O or -g options are
supplied.

-M[no]vect Enables [Disables] the code vectorizer.

--[no_]exceptions Removes exception handling from user code. For C++, declares that
the functions in this file generate no C++ exceptions, allowing more
optimal code generation.

-o Names the output file.

-O <level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

Use Command-line Options

User's Guide Version 2023 | 15

Use this option... To do this...

-stdpar Enable parallelization and offloading of Standard C++ and Fortran
parallel constructs to NVIDIA GPUs; default is -stdpar=gpu.

-tp <target> Specify a CPU target other than the compilation host CPU.

-Wl, <option> Compiler driver passes the specified options to the linker.

2.5. Floating-point Subnormal
Starting with the 22.7 release of the NV HPC SDK the default setting of how floating-
point denormal (IEEE 754 terminology "subnormal") values are processed at runtime
across both x86_64 and aarch64 processors has been changed to be more consistent.

Denormal values can be both operands to, and results of, floating-point operations.
The x86_64 ISA differentiate between the two categories, operands and results, and
use the terminology "daz" denormals are zeros for operands, and "flushz" flush to zero
for results. The Arm V8 ISA as defined can differentiate between the two categories,
but currently the processors that NV HPC SDK support only have a single setting for
both operands and results and is defined as "fz" in the floating-point status and control
register.

The NV HPC SDK C, C++, and Fortran compilers have command line switches
-M[no]daz and -M[no]flushz, which when specified for the C/C++ main function or the
Fortran main program affect how denormals are handled by the processor at runtime.
The values of these two command line switches are passed to the runtime library to
configure the floating-point status and control register at program startup.

NV HPC SDK supports x86_64 processors from both Intel and AMD, and ArmV8.1 and
later processors. The following table summarizes the default settings of the -Mdaz and
-Mflushz command line switches pre and post the 22.7 release.

Table 7 Default settings of -Mdaz and -Mflushz

Pre 22.7 defaults 22.7 defaults

Intel -Mdaz

-Mnoflushz

-Mdaz

-Mflushz

AMD -Mnodaz

-Mnoflushz

-Mdaz

-Mflushz

Arm processors -Mnodaz -Mdaz

With the NV HPC SDK 22.7 release, the default handling of denormals operands and
results is to treat them as zero, as if the main function/program were compiled with
-Mdaz -Mflushz. Consequently, these changes can potentially affect applications that are
dependent on subnormal values being non-zero.

Along with the change to the default treatment of denormal values, users now have
the ability to configure the floating-point status and control register through the

Use Command-line Options

User's Guide Version 2023 | 16

NVCOMPILER_FPU_STATE environment variable - effectively overriding how the
program was originally compiled. For further information, see the description of the
NVCOMPILER_FPU_STATE environment variable.

User's Guide Version 2023 | 17

Chapter 3.
MULTICORE CPU OPTIMIZATION

Source code that is readable, maintainable, and produces correct results is not always
organized for efficient execution. Normally, the first step in the program development
process involves producing code that executes and produces the correct results. This first
step usually involves compiling without much worry about optimization. After code is
compiled and debugged, code optimization and parallelization become an issue.

Invoking one of the NVIDIA HPC Compiler commands with certain options instructs
the compiler to generate optimized code. Optimization is not always performed since it
increases compilation time and may make debugging difficult. However, optimization
produces more efficient code that usually runs significantly faster than code that is not
optimized.

The compilers optimize code according to the specified optimization level. You can use
a number of options to specify the optimization levels, including -O, -Mvect, -Mipa and
-Mconcur. In addition, you can use several of the -M<nvflag> switches to control specific
types of optimization.

This chapter describes the overall effect of the optimization options supported by the
NVIDIA HPC Compilers, and basic usage of several options.

3.1. Overview of Optimization
In general, optimization involves using transformations and replacements that generate
more efficient code. This is done by the compiler and involves replacements that are
independent of the particular target processor's architecture as well as replacements that
take advantage of the x86-64OpenPOWER architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization
Global Optimization
Loop Optimization
Interprocedural Analysis (IPA) and Optimization
Optimization Through Function Inlining

Multicore CPU Optimization

User's Guide Version 2023 | 18

3.1.1. Local Optimization
A basic block is a sequence of statements in which the flow of control enters at the
beginning and leaves at the end without the possibility of branching, except at the end.
Local optimization is performed on a block-by-block basis within a program’s basic
blocks.

The NVIDIA HPC Compilers perform many types of local optimization including:
algebraic identity removal, constant folding, common sub-expression elimination,
redundant load and store elimination, scheduling, strength reduction, and peephole
optimizations.

3.1.2. Global Optimization
This optimization is performed on a subprogram/function over all its basic blocks. The
optimizer performs control-flow and data-flow analysis for an entire program unit. All
loops, including those formed by ad hoc branches such as IFs or GOTOs, are detected
and optimized.

Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable
elimination.

3.1.3. Loop Optimization: Unrolling, Vectorization and
Parallelization
The performance of certain classes of loops may be improved through vectorization
or unrolling options. Vectorization transforms loops to improve memory access
performance and make use of packed SSEvector instructions which perform the same
operation on multiple data items concurrently. Unrolling replicates the body of loops to
reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with
multiple processors may also improve using the parallelization features of the NVIDIA
HPC Compilers.

3.1.4. Interprocedural Analysis (IPA) and Optimization
Interprocedural analysis (IPA) allows use of information across function call boundaries
to perform optimizations that would otherwise be unavailable. For example, if the
actual argument to a function is in fact a constant in the caller, it may be possible to
propagate that constant into the callee and perform optimizations that are not valid if
the dummy argument is treated as a variable. A wide range of optimizations are enabled
or improved by using IPA, including but not limited to data alignment optimizations,
argument removal, constant propagation, pointer disambiguation, pure function
detection, F90/F95 array shape propagation, data placement, empty function removal,
automatic function inlining, inlining of functions from pre-compiled libraries, and
interprocedural optimization of functions from pre-compiled libraries.

Multicore CPU Optimization

User's Guide Version 2023 | 19

3.1.5. Function Inlining
This optimization allows a call to a function to be replaced by a copy of the body of
that function. This optimization will sometimes speed up execution by eliminating
the function call and return overhead. Function inlining may also create opportunities
for other types of optimization. Function inlining is not always beneficial. When used
improperly it may increase code size and generate less efficient code.

3.2. Getting Started with Optimization
The first concern should be getting the program to execute and produce correct results.
To get the program running, start by compiling and linking without optimization. Add
-O0 to the compile line to select no optimization; or add -g to debug the program easily
and isolate any coding errors exposed during porting.

To get started quickly with optimization, a good set of options to use with any of the
NVIDIA HPC compilers is -fast. For example:
$ nvfortran -fast -Mipa=fast,inline prog.f

For all of the NVIDIA HPC Fortran, C++ and C compilers, the -fast -Mipa=fast,inline
options generally produce code that is well-optimized without the possibility of
significant slowdowns due to pathological cases.

‣ The-fast option is an aggregate option that includes a number of individual NVIDIA
compiler options; which compiler options are included depends on the target for
which compilation is performed.

‣ The -Mipa=fast,inline option invokes interprocedural analysis (IPA), including
several IPA suboptions. The inline suboption enables automatic inlining with IPA. If
you do not wish to use automatic inlining, you can compile with -Mipa=fast and use
several IPA suboptions without inlining.

These aggregate options incorporate a generally optimal set of flags for targets that
support SIMD capability, including vectorization with SIMD instructions, cache
alignment, and flushz.

The following table shows the typical -fast options.

Table 8 Typical -fast Options

Use this option... To do this...

-O2 Specifies a code optimization level of 2 and -Mvect=SIMD.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each
iteration.

-Mnoframe Indicates to not generate code to set up a stack frame. Note With this option, a
stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

-Mautoinline Enables automatic function inlining in C & C++.

Multicore CPU Optimization

User's Guide Version 2023 | 20

Use this option... To do this...

-Mpre Indicates partial redundancy elimination

On modern multicore CPUs the -fast also typically includes the options shown in the
following table:

Table 9 Additional -fast Options

Use this option... To do this...

-Mvect=simd Generates packed SSE and AVX instructions.

-Mcache_align Aligns long objects on cache-line boundaries.

-Mflushz Sets flush-to-zero mode.

By experimenting with individual compiler options on a file-by-file basis, further
significant performance gains can sometimes be realized. However, depending on the
coding style, individual optimizations can sometimes cause slowdowns, and must be
used carefully to ensure performance improvements.

There are other useful command line options related to optimization and parallelization,
such as -help, -Minfo, -Mneginfo, -dryrun, and -v.

3.2.1. -help
As described in Help with Command-Line Options, you can see a specification of any
command-line option by invoking any of the NVIDIA HPC Compilers with -help in
combination with the option in question, without specifying any input files.

For example, you might want information on -O:
$ nvfortran -help -O

The resulting output is similar to this:
-O Set opt level. All -O1 optimizations plus traditional scheduling and
 global scalar optimizations performed

Or you can see the full functionality of -help itself, which can return information on
either an individual option or groups of options:
$ nvfortran -help -help

The resulting output is similar to this:
-help[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

3.2.2. -Minfo
You can use the -Minfo option to display compile-time optimization listings. When this
option is used, the NVIDIA HPC Compilers issue informational messages to standard
error (stderr) as compilation proceeds. From these messages, you can determine
which loops are optimized using unrolling, SIMD vectorization, parallelization, GPU

Multicore CPU Optimization

User's Guide Version 2023 | 21

offloading, interprocedural optimizations and various miscellaneous optimizations. You
can also see where and whether functions are inlined.

3.2.3. -Mneginfo
You can use the -Mneginfo option to display informational messages to standard error
(stderr) that explain why certain optimizations are inhibited.

3.2.4. -dryrun
The -dryrun option can be useful as a diagnostic tool if you need to see the steps used
by the compiler driver to preprocess, compile, assemble and link in the presence of a
given set of command line inputs. When you specify the -dryrun option, these steps
are printed to standard error (stderr) but are not actually performed. For example, you
can use this option to inspect the default and user-specified libraries that are searched
during the link phase, and the order in which they are searched by the linker.

3.2.5. -v
The -v option is similar to -dryrun, except each compilation step is performed and not
simply printed.

3.3. Local and Global Optimization
This section describes local and global optimization.

3.3.1. -Msafeptr
The -Msafeptr option can significantly improve performance of C++ and C programs
in which there is known to be no pointer aliasing. For obvious reasons, this command-
line option must be used carefully. There are a number of suboptions for -Msafeptr:

‣ -Msafeptr=all – All pointers are safe. Equivalent to the default setting:
-Msafeptr.

‣ -Msafeptr=arg – Function formal argument pointers are safe. Equivalent to
-Msafeptr=dummy.

‣ -Msafeptr=global – Global pointers are safe.
‣ -Msafeptr=local – Local pointers are safe. Equivalent to -Msafeptr=auto.
‣ -Msafeptr=static – Static local pointers are safe.

If your C++ or C program has pointer aliasing and you also want automating inlining,
then compiling with -Mipa=fast or -Mipa=fast,inline includes pointer aliasing
optimizations. IPA may be able to optimize some of the alias references in your program
and leave intact those that cannot be safely optimizied.

Multicore CPU Optimization

User's Guide Version 2023 | 22

3.3.2. -O
Using the NVIDIA HPC Compiler commands with the -O<level> option (the capital O is
for Optimize), you can specify any integer level from 0 to 4.

-O0

Level zero specifies no optimization. A basic block is generated for each language
statement. At this level, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. This level
is useful for the initial execution of a program. It is also useful for debugging, since
there is a direct correlation between the program text and the code generated. To enable
debugging, include -g on your compile line.

-O1

Level one specifies local optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

Local optimization is a good choice when the code is very irregular, such as code that
contains many short statements containing IF statements and does not contain loops
(DO or DO WHILE statements). Although this case rarely occurs, for certain types of
code, this optimization level may perform better than level-two (-O2).

-O

When no level is specified, level two global optimizations are performed, including
traditional scalar optimizations, induction recognition, and loop invariant motion. No
SIMD vectorization is enabled.

-O2

Level two specifies global optimization. This level performs all level-one local
optimization as well as level two global optimization described in -O. In addition, more
advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination are enabled.

-O3

Level three specifies aggressive global optimization. This level performs all level-
one and level-two optimizations and enables more aggressive hoisting and scalar
replacement optimizations that may or may not be profitable.

Multicore CPU Optimization

User's Guide Version 2023 | 23

-O4

Level four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

Types of Optimizations

The NVIDIA HPC Compilers perform many different types of local optimizations,
including but not limited to:

Algebraic identity removal
Constant folding
Common subexpression elimination
Local register optimization
Peephole optimizations
Redundant load and store elimination
Strength reductions

Level-two optimization (-O2 or -O) specifies global optimization. The -fast option
generally specifies global optimization; however, the -fast switch varies from release
to release, depending on a reasonable selection of switches for any one particular
release. The -O or -O2 level performs all level-one local optimizations as well as global
optimizations. Control flow analysis is applied and global registers are allocated for
all functions and subroutines. Loop regions are given special consideration. This
optimization level is a good choice when the program contains loops, the loops are
short, and the structure of the code is regular.

The NVIDIA HPC Compilers perform many different types of global optimizations,
including but not limited to:

Branch to branch elimination
Constant propagation
Copy propagation
Dead store elimination
Global register allocation
Induction variable elimination
Invariant code motion

You can explicitly select the optimization level on the command line. For example,
the following command line specifies level-two optimization which results in global
optimization:
$ nvfortran -O2 prog.f

The default optimization level changes depending on which options you select on the
command line. For example, when you select the -g debugging option, the default
optimization level is set to level-zero (-O0). However, if you need to debug optimized
code, you can use the -gopt option to generate debug information without perturbing

Multicore CPU Optimization

User's Guide Version 2023 | 24

optimization. For a description of the default levels, refer to Default Optimization
Levels.

The -fast option includes -O2 on all targets. If you want to override the default for
-fast with -O3 while maintaining all other elements of -fast, simply compile as
follows:
$ nvfortran -fast -O3 prog.f

3.4. Loop Unrolling using -Munroll
This optimization unrolls loops, which reduces branch overhead, and can improve
execution speed by creating better opportunities for instruction scheduling. A loop
with a constant count may be completely unrolled or partially unrolled. A loop with a
non-constant count may also be unrolled. A candidate loop must be an innermost loop
containing one to four blocks of code.

The following example shows the use of the -Munroll option:
$ nvfortran -Munroll prog.f

The -Munroll option is included as part of -fast on all targets. The loop unroller
expands the contents of a loop and reduces the number of times a loop is executed.
Branching overhead is reduced when a loop is unrolled two or more times, since each
iteration of the unrolled loop corresponds to two or more iterations of the original loop;
the number of branch instructions executed is proportionately reduced. When a loop is
unrolled completely, the loop’s branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is
completely unrolled or unrolled two or more times, opportunities for improved
scheduling may be presented. The code generator can take advantage of more
possibilities for instruction grouping or filling instruction delays found within the loop.

Examples Showing Effect of Unrolling

The following side-by-side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop;
it is not meant to imply that the programmer needs to manually change code. In
fact, manually unrolling your code can sometimes inhibit the compiler’s analysis and
optimization.

Table 10 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

 REAL*4 A(100), B(100), Z
 INTEGER I
 DO I=1, 100
 Z = Z + A(i) * B(i)

 REAL*4 A(100), B(100), Z
 INTEGER I
 DO I=1, 100, 2
 Z = Z + A(i) * B(i)

Multicore CPU Optimization

User's Guide Version 2023 | 25

Dot Product Code Unrolled Dot Product Code

 END DO
 END

 Z = Z + A(i+1) * B(i+1)
 END DO
 END

Using the -Minfo option, the compiler informs you when a loop is being unrolled. For
example, a message similar to the following, indicating the line number, and the number
of times the code is unrolled, displays when a loop is unrolled:
dot:
 5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-options to -Munroll, or using -Mnounroll, you can
control whether and how loops are unrolled on a file-by-file basis. For more information
on -Munroll, refer to Use Command-line Options.

3.5. Vectorization using -Mvect
The -Mvect option is included as part of -fast on all multicore CPU targets. If your
program contains computationally-intensive loops, the -Mvect option may be helpful. If
in addition you specify -Minfo, and your code contains loops that can be vectorized, the
compiler reports relevant information on the optimizations applied.

When an NVIDIA HPC Compiler command is invoked with the -Mvect option,
the vectorizer scans code searching for loops that are candidates for high-level
transformations such as loop distribution, loop interchange, cache tiling, and idiom
recognition (replacement of a recognizable code sequence, such as a reduction
loop, with optimized code sequences or function calls). When the vectorizer finds
vectorization opportunities, it internally rearranges or replaces sections of loops (the
vectorizer changes the code generated; your source code’s loops are not altered). In
addition to performing these loop transformations, the vectorizer produces extensive
data dependence information for use by other phases of compilation and detects
opportunities to use vector or packed SIMD instructions on processors where these are
supported.

The -Mvect option can speed up code which contains well-behaved countable
loops which operate on large floating point arrays in Fortran and their C++ and
C counterparts. However, it is possible that some codes will show a decrease in
performance when compiled with the -Mvect option due to the generation of
conditionally executed code segments, inability to determine data alignment, and other
code generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled
with this option enabled.

3.5.1. Vectorization Sub-options
The vectorizer performs high-level loop transformations on countable loops. A loop
is countable if the number of iterations is set only before loop execution and cannot
be modified during loop execution. Some of the vectorizer transformations can be

Multicore CPU Optimization

User's Guide Version 2023 | 26

controlled by arguments to the -Mvect command line option. The following sections
describe the arguments that affect the operation of the vectorizer. In addition, some of
these vectorizer operations can be controlled from within code using directives and
pragmas.

The vectorizer performs the following operations:

‣ Loop interchange
‣ Loop splitting
‣ Loop fusion
‣ Generation of SIMD instructions on CPUs where these are supported
‣ Generation of prefetch instructions on processors where these are supported
‣ Loop iteration peeling to maximize vector alignment
‣ Alternate code generation

The following table lists and briefly describes some of the -Mvect suboptions.

Table 11 -Mvect Suboptions

Use this option ... To instruct the vectorizer to do this ...

-Mvect=altcode Generate appropriate code for vectorized loops.

-Mvect=[no]assoc Perform[disable] associativity conversions that
can change the results of a computation due to a
round-off error. For example, a typical optimization
is to change one arithmetic operation to another
arithmetic operation that is mathematically correct,
but can be computationally different and generate
faster code. This option is provided to enable or
disable this transformation, since a round-off error
for such associativity conversions may produce
unacceptable results.

-Mvect=fuse Enable loop fusion.

-Mvect=gather Enable vectorization of indirect array references.

-Mvect=idiom Enable idiom recognition.

-Mvect=levels:<n> Set the maximum next level of loops to optimize.

-Mvect=nocond Disable vectorization of loops with conditions.

-Mvect=partial Enable partial loop vectorization via inner loop
distribution.

-Mvect=prefetch Automatically generate prefetch instructions when
vectorizable loops are encountered, even in cases
where SSESIMD instructions are not generated.

-Mvect=short Enable short vector operations.

-Mvect=simd Automatically generate packed SSE (Streaming
SIMD Extensions)SIMD, and prefetch instructions
when vectorizable loops are encountered. SIMD
instructions, first introduced on Pentium III and
AthlonXP processors, operate on single-precision
floating-point data.

Multicore CPU Optimization

User's Guide Version 2023 | 27

Use this option ... To instruct the vectorizer to do this ...

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to -Mvect=simd.

-Mvect=uniform Perform consistent optimizations in both vectorized
and residual loops. Be aware that this may affect the
performance of the residual loop.

Inserting no in front of an option disables the option. For example, to disable the
generation of SIMD instructions, compile with -Mvect=nosimd.

3.5.2. Vectorization Example Using SIMD Instructions
One of the most important vectorization options is -Mvect=simd. When you use this
option, the compiler automatically generates SIMD vector instructions, where possible,
when targeting processors on which these instructions are supported. This process can
improve performance by several factors compared with the equivalent scalar code. All of
the NVIDIA HPC Fortran, C++ and C compilers support this capability.

In the program in Vector operation using SIMD instructions, the vectorizer recognizes
the vector operation in subroutine 'loop' when either compiler switch -Mvect=simd or
-fast is used. This example shows the compilation, informational messages, and runtime
results using SIMD instructions on an Intel Core i7 7800X Skylake system, along with
issues that affect SIMD performance.

Loops vectorized using SIMD instructions operate much more efficiently when
processing vectors that are aligned to a cache-line boundary. You can cause
unconstrained data objects of size 16 bytes or greater to be cache-aligned by compiling
with the -Mcache_align switch. An unconstrained data object is a data object that is not a
common block member and not a member of an aggregate data structure.

For stack-based local variables to be properly aligned, the main program or function
must be compiled with -Mcache_align.

The -Mcache_align switch has no effect on the alignment of Fortran allocatable or
automatic arrays. If you have arrays that are constrained, such as vectors that are
members of Fortran common blocks, you must specifically pad your data structures
to ensure proper cache alignment. You can use -Mcache_align for only the beginning
address of each common block to be cache-aligned.

The following examples show the results of compiling the sample code in Vector
operation using SIMD instructions both with and without the option -Mvect=simd .

Vector operation using SIMD instructions
program vector_op
 parameter (N = 9999)
 real*4 x(N), y(N), z(N), W(N)
 do i = 1, n
 y(i) = i
 z(i) = 2*i
 w(i) = 4*i

Multicore CPU Optimization

User's Guide Version 2023 | 28

 enddo
 do j = 1, 200000
 call loop(x,y,z,w,1.0e0,N)
 enddo
 print *, x(1),x(771),x(3618),x(6498),x(9999)
end

subroutine loop(a,b,c,d,s,n)
 integer i, n
 real*4 a(n), b(n), c(n), d(n),s
 do i = 1, n
 a(i) = b(i) + c(i) - s * d(i)
 enddo
end

Assume the preceding program is compiled as follows, where -Mvect=nosimd disables
SIMD vectorization:
% nvfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector_op:
 4, Loop unrolled 16 times
 Generated 1 prefetches in scalar loop
 9, Loop not vectorized/parallelized: contains call
loop:
 18, Loop unrolled 8 times
 FMA (fused multiply-add) instruction(s) generated

The following output shows a sample result if the generated executable is run and timed
on an Intel Core i7 7800X Skylake system:
$ /bin/time vadd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
0.99user 0.01system 0:01.18elapsed 84%CPU (0avgtext+0avgdata 3120maxresident)k
7736inputs+0outputs (4major+834minor)pagefaults 0swaps

$ /bin/time vadd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
2.31user 0.00system 0:02.57elapsed 89%CPU (0avgtext+0avgdata 6976maxresident)k
8192inputs+0outputs (4major+149minor)pagefaults 0swaps

Now, recompile with vectorization enabled, and you see results similar to these:
% nvfortran -fast -Minfo vadd.f -Mfree -o vadd
vector_op:
 4, Loop not vectorized: may not be beneficial
 Unrolled inner loop 8 times
 Residual loop unrolled 7 times (completely unrolled)
 Generated 1 prefetches in scalar loop
 9, Loop not vectorized/parallelized: contains call
loop:
 18, Generated 2 alternate versions of the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 FMA (fused multiply-add) instruction(s) generated

Notice the informational messages for the loop at line 18. The first line of the message
indicates that two alternate versions of the loop were generated. The loop count and
alignments of the arrays determine which of these versions is executed. The next several

Multicore CPU Optimization

User's Guide Version 2023 | 29

lines indicate the loop was vectorized and that prefetch instructions have been generated
for three loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:
$ /bin/time vadd-simd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
0.27user 0.00system 0:00.29elapsed 93%CPU (0avgtext+0avgdata 3124maxresident)k
0inputs+0outputs (0major+838minor)pagefaults 0swaps

$ /bin/time vadd-simd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
0.62user 0.00system 0:00.65elapsed 95%CPU (0avgtext+0avgdata 6976maxresident)k
0inputs+0outputs (0major+151minor)pagefaults 0swaps

The SIMD result is 3.7 times faster than the equivalent non-SIMD version of the
program.

Speed-up realized by a given loop or program can vary widely based on a number of
factors:

‣ When the vectors of data are resident in the data cache, performance improvement
using SIMD instructions is most effective.

‣ If data is aligned properly, performance will be better in general than when using
SIMD operations on unaligned data.

‣ If the compiler can guarantee that data is aligned properly, even more efficient
sequences of SIMD instructions can be generated.

‣ The efficiency of loops that operate on single-precision data can be higher. SIMD
instructions can operate on four single-precision elements concurrently, but only two
double-precision elements.

Compiling with -Mvect=simd can result in numerical differences from the executables
generated with less optimization. Certain vectorizable operations, for example dot
products, are sensitive to order of operations and the associative transformations
necessary to enable vectorization (or parallelization).

3.6. Interprocedural Analysis and Optimization
using -Mipa
The NVIDIA HPC Fortran, C++ and C compilers use interprocedural analysis (IPA) that
results in minimal changes to makefiles and the standard edit-build-run application
development cycle. Other than adding -Mipa to the command line, no other changes
are required. For reference and background, the process of building a program without
IPA is described later in this section, followed by the minor modifications required to
use IPA with the NVIDIA compilers. While the NVC compiler is used here to show how
IPA works, similar capabilities apply to each of the NVIDIA HPC Fortran, C++ and C
compilers.

Multicore CPU Optimization

User's Guide Version 2023 | 30

3.6.1. Building a Program Without IPA – Single Step
Using the nvc command-level compiler driver, multiple source files can be compiled and
linked into a single executable with one command. The following example compiles and
links three source files:
% nvc -o a.out file1.c file2.c file3.c

In actuality, the nvc driver executes several steps to produce the assembly code and
object files corresponding to each source file, and subsequently to link the object
files together into a single executable file. This command is roughly equivalent to the
following commands performed individually:
% nvc -S -o file1.s file1.c
% as -o file1.o file1.s
% nvc -S -o file2.s file2.c
% as -o file2.o file2.s
% nvc -S -o file3.s file3.c
% as -o file3.o file3.s
% nvc -o a.out file1.o file2.o file3.o

If any of the three source files is edited, the executable can be rebuilt with the same
command line:
% nvc -o a.out file1.c file2.c file3.c

This always works as intended, but has the side-effect of recompiling all of the source
files, even if only one has changed. For applications with a large number of source files,
this can be time-consuming and inefficient.

3.6.2. Building a Program Without IPA – Several Steps
It is also possible to use individual nvc commands to compile each source file into a
corresponding object file, and one to link the resulting object files into an executable:
% nvc -c file1.c
% nvc -c file2.c
% nvc -c file3.c
% nvc -o a.out file1.o file2.o file3.o

The nvc driver invokes the compiler and assembler as required to process each source
file, and invokes the linker for the final link command. If you modify one of the source
files, the executable can be rebuilt by compiling just that file and then relinking:
% nvc -c file1.c
% nvc -o a.out file1.o file2.o file3.o

3.6.3. Building a Program Without IPA Using Make
The program compilation and linking process can be simplified greatly using the make
utility on systems where it is supported. Suppose you create a makefile containing the
following lines:
a.out: file1.o file2.o file3.o
 nvc $(OPT) -o a.out file1.o file2.o file3.o
file1.o: file1.c
 nvc $(OPT) -c file1.c
file2.o: file2.c
 nvc $(OPT) -c file2.c

Multicore CPU Optimization

User's Guide Version 2023 | 31

file3.o: file3.c
nvc $(OPT) -c file3.c

It is then possible to type a single make command:
% make

The make utility determines which object files are out of date with respect to their
corresponding source files, and invokes the compiler to recompile only those source
files and to relink the executable. If you subsequently edit one or more source files, the
executable can be rebuilt with the minimum number of recompilations using the same
single make command.

3.6.4. Building a Program with IPA
Interprocedural analysis and optimization (IPA) by the NVIDIA HPC Compilers alters
the standard and make utility command-level interfaces as little as possible. IPA occurs
in three phases:

‣ Collection: Create a summary of each function or procedure, collecting the useful
information for interprocedural optimizations. This is done during the compile
step if the -Mipa switch is present on the command line; summary information is
collected and stored in the object file.

‣ Propagation: Process all the object files to propagate the interprocedural summary
information across function and file boundaries. This is done during the link step,
when all the object files are combined, if the -Mipa switch is present on the link
command line.

‣ Recompile/Optimization: Recompile each of the object files with the propagated
interprocedural information, producing a specialized object file. This process is
also performed during the link step when the -Mipa switch is present on the link
command line.

When linking with -Mipa, the NVIDIA HPC Compilers automatically regenerate IPA-
optimized versions of each object file, essentially recompiling each file. If there are IPA-
optimized objects from a previous build, the compilers will minimize the recompile time
by reusing those objects if they are still valid. They will still be valid if the IPA-optimized
object is newer than the original object file, and the propagated IPA information for that
file has not changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the
application with the IPA-optimized object files. The IPA-optimized object files are saved
in the same directory as the original object files, for use in subsequent program builds.

3.6.5. Building a Program with IPA – Single Step
By adding the -Mipa command line switch, several source files can be compiled and
linked with interprocedural optimizations with one command:
% nvc -Mipa=fast -o a.out file1.c file2.c file3.c

Just like compiling without -Mipa, the driver executes several steps to produce the
assembly and object files to create the executable:
% nvc -Mipa=fast -S -o file1.s file1.c
% as -o file1.o file1.s

Multicore CPU Optimization

User's Guide Version 2023 | 32

% nvc -Mipa=fast -S -o file2.s file2.c
% as -o file2.o file2.s
% nvc -Mipa=fast -S -o file3.s file3.c
% as -o file3.o file3.s
% nvc -Mipa=fast -o a.out file1.o file2.o file3.o

In the last step, an IPA linker is invoked to read all the IPA summary information and
perform the interprocedural propagation. The IPA linker reinvokes the compiler on each
of the object files to recompile them with interprocedural information. This creates three
new objects with mangled names:
file1_ipa5_a.out.oo.o, file2_ipa5_a.out.oo.o, file3_ipa5_a.out.oo.o

The system linker is then invoked to link these IPA-optimized objects into the final
executable. Later, if one of the three source files is edited, the executable can be rebuilt
with the same command line:
% nvc -Mipa=fast -o a.out file1.c file2.c file3.c

This works, but again has the side-effect of compiling each source file, and recompiling
each object file at link time.

3.6.6. Building a Program with IPA – Several Steps
Just by adding the -Mipa command-line switch, it is possible to use individual nvc
commands to compile each source file, followed by a command to link the resulting
object files into an executable:
% nvc -Mipa=fast -c file1.c
% nvc -Mipa=fast -c file2.c
% nvc -Mipa=fast -c file3.c
% nvc -Mipa=fast -o a.out file1.o file2.o file3.o

The nvc driver invokes the compiler and assembler as required to process each source
file, and invokes the IPA linker for the final link command. If you modify one of the
source files, the executable can be rebuilt by compiling just that file and then relinking:
% nvc -Mipa=fast -c file1.c
% nvc -Mipa=fast -o a.out file1.o file2.o file3.o

When the IPA linker is invoked, it will determine that the IPA-optimized object
for file1.o (file1_ipa5_a.out.oo.o) is stale, since it is older than the object
file1.o; and hence it needs to be rebuilt, and reinvokes the compiler to generate it.
In addition, depending on the nature of the changes to the source file file1.c, the
interprocedural optimizations previously performed for file2 and file3 may now
be inaccurate. For instance, IPA may have propagated a constant argument value in a
call from a function in file1.c to a function in file2.c; if the value of the argument
has changed, any optimizations based on that constant value are invalid. The IPA linker
determines which, if any, of the previously created IPA-optimized objects need to be
regenerated; and, as appropriate, reinvokes the compiler to regenerate them. Only those
objects that are stale or which have new or different IPA information are regenerated.
This approach saves compile time.

Multicore CPU Optimization

User's Guide Version 2023 | 33

3.6.7. Building a Program with IPA Using Make
As shown earlier, programs can be built with IPA using the make utility. Just add the
command-line switch -Mipa, as shown here:
OPT=-Mipa=fast
a.out: file1.o file2.o file3.o
 nvc $(OPT) -o a.out file1.o file2.o file3.o
file1.o: file1.c
 nvc $(OPT) -c file1.c
file2.o: file2.c
 nvc $(OPT) -c file2.c
file3.o: file3.c
 nvc $(OPT) -c file3.c

Using the single make command invokes the compiler to generate any of the object files
that are out-of-date, then invokes nvc to link the objects into the executable. At link time,
nvc calls the IPA linker to regenerate any stale or invalid IPA-optimized objects.
% make

3.6.8. Questions about IPA
Question: Why is the object file so large?

Answer: An object file created with -Mipa contains several additional sections. One is
the summary information used to drive the interprocedural analysis. In addition, the
object file contains the compiler internal representation of the source file, so the file can
be recompiled at link time with interprocedural optimizations. There may be additional
information when inlining is enabled. The total size of the object file may be 5-10 times
its original size. The extra sections are not added to the final executable.

Question: What if I compile with -Mipa and link without -Mipa?

Answer: The NVIDIA HPC Compilers generate a legal object file, even when the source
file is compiled with -Mipa. If you compile with -Mipa and link without -Mipa, the
linker is invoked on the original object files. A legal executable is generated. While
this executable does not have the benefit of interprocedural optimizations, any other
optimizations do apply.

Question: What if I compile without -Mipa and link with -Mipa?

Answer: At link time, the IPA linker must have summary information about all the
functions or routines used in the program. This information is created only when
a file is compiled with -Mipa. If you compile a file without -Mipa and then try to
get interprocedural optimizations by linking with -Mipa, the IPA linker will issue a
message that some routines have no IPA summary information, and will proceed to run
the system linker using the original object files. If some files were compiled with -Mipa
and others were not, it will determine the safest approximation of the IPA summary
information for those files not compiled with -Mipa, and use that to recompile the other
files using interprocedural optimizations.

Question: Can I build multiple applications in the same directory with -Mipa?

Multicore CPU Optimization

User's Guide Version 2023 | 34

Answer: Yes. Suppose you have three source files: main1.c, main2.c, and sub.c,
where sub.c is shared between the two applications. Suppose you build the first
application with -Mipa, using this command:
% nvc -Mipa=fast -o app1 main1.c sub.c

The IPA linker creates two IPA-optimized object files and uses them to build the first
application.
main1_ipa4_app1.oo sub_ipa4_app1.oo

Now suppose you build the second application using this command:
% nvc -Mipa=fast -o app2 main2.c sub.c

The IPA linker creates two more IPA-optimized object files:
main2_ipa4_app2.oo sub_ipa4_app2.oo

There are now three object files for sub.c: the original sub.o, and two IPA-optimized
objects, one for each application in which it appears.

Question: How is the mangled name for the IPA-optimized object files generated?

Answer: The mangled name has ‘_ipa’ appended, followed by the decimal number of
the length of the executable file name, followed by an underscore and the executable
file name itself. The suffix is changed to .oo so that linking *.o does not pull in the IPA-
optimized objects. If the IPA linker determines that the file would not benefit from any
interprocedural optimizations, it does not have to recompile the file at link time, and
uses the original object.

Question: Can I use parallel make environments (e.g., pmake) with IPA?

Answer: No. IPA is not compatible with parallel make environments.

User's Guide Version 2023 | 35

Chapter 4.
USING FUNCTION INLINING

Function inlining replaces a call to a function or a subroutine with the body of the
function or subroutine. This can speed up execution by eliminating parameter passing
and function/subroutine call and return overhead. It also allows the compiler to
optimize the function with the rest of the code. Note that using function inlining
indiscriminately can result in much larger code size and no increase in execution speed.

The NVIDIA HPC compilers provide two categories of inlining:

‣ Automatic function inlining – In C++ and C, you can inline static functions with
the inline keyword by using the -Mautoinline option, which is included with
-fast.

‣ Function inlining – You can inline functions which were extracted to the inline
libraries in Fortran, C++ and C. There are two ways of enabling function inlining:
with and without the lib suboption. For the latter, you create inline libraries, for
example using the nvfortran compiler driver and the -o and -Mextract options.

There are important restrictions on inlining. Inlining only applies to certain types
of functions. Refer to Restrictions on Inlining for more details on function inlining
limitations.

This section describes how to use the following options related to function inlining:

-Mautoinline

-Mextract

-Minline

-Mnoinline

-Mrecursive

4.1. Automatic function inlining in C++ and C
To enable automatic function inlining in C++ and C for static functions with the inline
keyword, use the -Mautoinline option (included in -fast). Use -Mnoautoinline
to disable it.

Using Function Inlining

User's Guide Version 2023 | 36

These -Mautoinline suboptions let you determine the selection criteria, where n
loosely corresponds to the number of lines in the procedure:
maxsize:n

Automatically inline functions size n and less
totalsize:n

Limit automatic inlining to total size of n

4.2. Invoking Procedure Inlining
To invoke the procedure inliner, use the -Minline option. If you do not specify an
inline library, the compiler performs a special prepass on all source files named on the
compiler command line before it compiles any of them. This pass extracts procedures
that meet the requirements for inlining and puts them in a temporary inline library for
use by the compilation pass.

Several -Minline suboptions let you determine the selection criteria for procedures to
be inlined. These suboptions include:
except:func

Inlines all eligible procedures except func, a procedure in the source text. You can
use a comma-separated list to specify multiple procedure.

[name:]func
Inlines all procedures in the source text whose name matches func. You can use a
comma-separated list to specify multiple procedures.

[maxsize:]n
A numeric option is assumed to be a size. Procedures of size n or less are inlined,
where n loosely corresponds to the number of lines in the procedure. If both n and
func are specified, then procedures matching the given name(s) or meeting the size
requirements are inlined.

reshape
Fortran subprograms with array arguments are not inlined by default if the array
shape does not match the shape in the caller. Use this option to override the default.

smallsize:n
Always inline procedures of size smaller than n regardless of other size limits.

totalsize:n
Stop inlining in a procedure when the procedure's total size with inlining reaches the
n specified.

[lib:]file.ext
Instructs the inliner to inline the procedures within the library file file.ext. If no
inline library is specified, procedures are extracted from a temporary library created
during an extract prepass.

Tip Create the library file using the -Mextract option.

If you specify both a procedure name and a maxsize n, the compiler inlines procedures
that match the procedure name or have n or fewer statements.

Using Function Inlining

User's Guide Version 2023 | 37

If a name is used without a keyword, then a name with a period is assumed to be an
inline library and a name without a period is assumed to be a procedure name. If a
number is used without a keyword, the number is assumed to be a size.

Inlining can be disabled with -Mnoinline.

In the following example, the compiler inlines procedures with fewer than
approximately 100 statements in the source file myprog.f and writes the executable
code in the default output file a.out.
 $ nvfortran -Minline=maxsize:100 myprog.f

4.3. Using an Inline Library
If you specify one or more inline libraries on the command line with the -Minline
option, the compiler does not perform an initial extract pass. The compiler selects
functions to inline from the specified inline library. If you also specify a size or function
name, all functions in the inline library meeting the selection criteria are selected for
inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the -Minline option, the
compiler tries to inline every function in the inline library that matches a function in the
source text.

In the following example, the compiler inlines the function proc from the inline library
lib.il and writes the executable code in the default output file a.out.
$ nvfortran -Minline=name:proc,lib:lib.il myprog.f

The following command line is equivalent to the preceding line, with the exception that
in the following example does not use the keywords name: and lib:. You typically use
keywords to avoid name conflicts when you use an inline library name that does not
contain a period. Otherwise, without the keywords, a period informs the compiler that
the file on the command line is an inline library.
$ nvfortran -Minline=proc,lib.il myprog.f

4.4. Creating an Inline Library
You can create or update an inline library using the -Mextract command-line option. If
you do not specify selection criteria with the -Mextract option, the compiler attempts
to extract all procedures.

Several -Mextract options let you determine the selection criteria for creating or
updating an inline library. These selection criteria include:
func

Extracts the procedure func. you can use a comma-separated list to specify multiple
procedures.

[name:]func
Extracts the procedure whose name matches func, a procedure in the source text.

Using Function Inlining

User's Guide Version 2023 | 38

[size:]n
Limits the size of the extracted procedures to those with a statement count less than
or equal to n, the specified size.

The size n may not exactly equal the number of statements in a selected procedure;
the size parameter is merely a rough gauge.

[lib:]ext.lib
Stores the extracted information in the library directory ext.lib.

If no inline library is specified, procedures are extracted to a temporary library
created during an extract prepass for use during the compilation stage.

When you use the -Mextract option, only the extract phase is performed; the
compile and link phases are not performed. The output of an extract pass is a library of
procedures available for inlining. This output is placed in the inline library file specified
on the command line with the -o filename specification. If the library file exists, new
information is appended to it. If the file does not exist, it is created. You can use a
command similar to the following:
$ nvfortran -Mextract=lib:lib.il myfunc.f

You can use the -Minline option with the -Mextract option. In this case, the
extracted library of procedures can have other procedures inlined into the library. Using
both options enables you to obtain more than one level of inlining. In this situation, if
you do not specify a library with the -Minline option, the inline process consists of two
extract passes. The first pass is a hidden pass implied by the -Minline option, during
which the compiler extracts procedures and places them into a temporary library. The
second pass uses the results of the first pass but puts its results into the library that you
specify with the -o option.

4.4.1. Working with Inline Libraries
An inline library is implemented as a directory with each inline function in the library
stored as a file using an encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents
for the inline library. This is a printable, ASCII file which you can examine to locate
information about the library contents, such as names and sizes of functions, the source
file from which they were extracted, the version number of the extractor which created
the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

‣ Inline libraries can be copied or renamed.
‣ Elements of libraries can be deleted or copied from one library to another.
‣ The ls or dir command can be used to determine the last-change date of a library

entry.

Using Function Inlining

User's Guide Version 2023 | 39

4.4.2. Dependencies
When a library is created or updated using one of the NVIDIA HPC compilers, the last-
change date of the library directory is updated. This allows a library to be listed as a
dependence in a makefile and ensures that the necessary compilations are performed
when a library is changed.

4.4.3. Updating Inline Libraries – Makefiles
If you use inline libraries you must be certain that they remain up-to-date with the
source files into which they are inlined. One way to assure inline libraries are updated is
to include them in a makefile.

The makefile fragment in the following example assumes the file utils.f contains a
number of small functions used in the files parser.f and alloc.f.

This portion of the makefile:

‣ Maintains the inline library utils.il.
‣ Updates the library whenever you change utils.f or one of the include files it

uses.
‣ Compiles parser.f and alloc.f whenever you update the library.

Sample Makefile
SRC = mydir
FC = nvfortran
FFLAGS = -O2
main.o: $(SRC)/main.f $(SRC)/global.h
 $(FC) $(FFLAGS) -c $(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -c $(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
 $(FC) -o myprog main.o utils.o parser.o alloc.o

4.5. Error Detection during Inlining
You can specify the -Minfo=inline option to request inlining information from the
compiler when you invoke the inliner. For example:
$ nvfortran -Minline=mylib.il -Minfo=inline myext.f

Using Function Inlining

User's Guide Version 2023 | 40

4.6. Examples
Assume the program dhry consists of a single source file dhry.f. The following
command line builds an executable file for dhry in which proc7 is inlined wherever it is
called:
$ nvfortran dhry.f -Minline=proc7

The following command lines build an executable file for dhry in which proc7 plus any
functions of approximately 10 or fewer statements are inlined (one level only).

The specified functions are inlined only if they are previously placed in the inline library,
temp.il, during the extract phase.

$ nvfortran dhry.f -Mextract=lib:temp.il
$ nvfortran dhry.f -Minline=10,proc7,temp.il

Using the same source file dhry.f, the following example builds an executable for
dhry in which all functions of roughly ten or fewer statements are inlined. Two levels of
inlining are performed. This means that if function A calls function B, and B calls C, and
both B and C are inlinable, then the version of B which is inlined into A will have had C
inlined into it.
$ nvfortran dhry.f -Minline=maxsize:10

4.7. Restrictions on Inlining
The following Fortran subprograms cannot be extracted:

‣ Main or BLOCK DATA programs.
‣ Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or

EQUIVALENCE statements.
‣ Subprograms containing FORMAT statements.
‣ Subprograms containing multiple entries.

A Fortran subprogram is not inlined if any of the following applies:

‣ It is referenced in a statement function.
‣ A common block mismatch exists; in other words, the caller must contain all

common blocks specified in the callee, and elements of the common blocks must
agree in name, order, and type (except that the caller's common block can have
additional members appended to the end of the common block).

‣ An argument mismatch exists; in other words, the number and type (size) of actual
and formal parameters must be equal.

‣ A name clash exists, such as a call to subroutine xyz in the extracted subprogram
and a variable named xyz in the caller.

The following types of C and C++ functions cannot be inlined:

‣ Functions which accept a variable number of arguments

Using Function Inlining

User's Guide Version 2023 | 41

Certain C/C++ functions can only be inlined into the file that contains their definition:

‣ Static functions
‣ Functions which call a static function
‣ Functions which reference a static variable

User's Guide Version 2023 | 42

Chapter 5.
USING GPUS

An NVIDIA GPU can be used as an accelerator to which a CPU can offload data and
executable kernels to perform compute-intensive calculations. This section gives an
overview of options for programming NVIDIA GPUs with NVIDIA's HPC Compilers
and covers topics that affect GPU programming when using one or more of the GPU
programming models.

5.1. Overview
With the NVIDIA HPC Compilers you can program NVIDIA GPUs using certain
standard language constructs, OpenACC directives, OpenMP directives, or CUDA
Fortran language extensions. GPU programming with standard language constructs
or directives allows you to create high-level GPU-accelerated programs without the
need to explicitly initialize the GPU, manage data or program transfers between the
host and GPU, or initiate GPU startup and shutdown. Rather, all of these details are
implicit in the programming model and are managed by the NVIDIA HPC SDK Fortran,
C++ and C compilers. GPU programming with CUDA extensions gives you access to
all NVIDIA GPU features and full control over data management and offloading of
compute-intensive loops and kernels.

The NVC++ compiler supports automatic offload of C++17 Parallel Algorithms
invocations to NVIDIA GPUs under control of the -stdpar compiler option. See
the Blog post Accelerating Standard C++ with GPUs for details on using this feature.
The NVFORTRAN compiler supports automatic offload to NVIDIA GPUs of certain
Fortran array intrinsics and patterns of array syntax, including use of Volta and Ampere
architecture Tensor Cores for appropriate intrinsics. See the Blog post Bringing Tensor
Cores to Standard Fortran for details on using this feature.

The NVFORTRAN compiler supports CUDA programming in Fortran. See the NVIDIA
CUDA Fortran Programming Guide for complete details on how to use CUDA Fortran.
The NVCC compiler supports CUDA programming in C and C++ in combination with
a host C++ compiler on your system. See the CUDA C++ Programming Guide for an
introduction and overview of how to use NVCC and CUDA C++.

The NVFORTRAN, NVC++ and NVC compilers all support directive-based
programming of NVIDIA GPUs using OpenACC. OpenACC is an accelerator

Using GPUs

User's Guide Version 2023 | 43

programming model that is portable across operating systems and various host CPUs
and types of accelerators, including both NVIDIA GPUs and multicore CPUs. OpenACC
directives allow a programmer to migrate applications incrementally to accelerator
targets using standards-compliant Fortran, C++ or C that remains completely portable
to other compilers and systems. It allows the programmer to augment information
available to the compilers, including specification of data local to an accelerator region,
guidance on mapping of loops onto an accelerator, and similar performance-related
details.

The NVFORTRAN, NVC++, and NVC compilers support a subset of the OpenMP
Application Program Interface for CPUs and GPUs. OpenMP applications properly
structured for GPUs, meaning they expose massive parallelism and have relatively little
or no synchronization in GPU-side code segments, should compile and execute with
performance on par with or close to equivalent OpenACC. Codes that are not well-
structured for GPUs may perform poorly but should execute correctly.

In user-directed accelerator programming the user specifies the regions of a host
program to be targeted for offloading to an accelerator. The bulk of a user's program, as
well as regions containing constructs that are not supported on the targeted accelerator,
are executed on the host.

5.2. Terminology
Clear and consistent terminology is important in describing any programming model.
This section provides definitions of the terms required for you to effectively use this
section and the associated programming model.
Accelerator

a parallel processor, such as a GPU or a CPU running in multicore mode, to which
a CPU can offload data and executable kernels to perform compute-intensive
calculations.

Compute intensity
for a given loop, region, or program unit, the ratio of the number of arithmetic
operations performed on computed data divided by the number of memory transfers
required to move that data between two levels of a memory hierarchy.

Compute region
a structured block defined by a compute construct. A compute construct is a structured
block containing loops which are compiled for the accelerator. A compute region
may require device memory to be allocated and data to be copied from host to device
upon region entry, and data to be copied from device to host memory and device
memory deallocated upon exit. The dynamic range of a compute construct, including
any code in procedures called from within the construct, is the compute region. In
this release, compute regions may not contain other compute regions or data regions.

Construct
a structured block identified by the programmer or implicitly defined by the
language. Certain actions may occur when program execution reaches the start and
end of a construct, such as device memory allocation or data movement between the
host and device memory. Loops in a compute construct are targeted for execution on

Using GPUs

User's Guide Version 2023 | 44

the accelerator. The dynamic range of a construct including any code in procedures
called from within the construct, is called a region.

CUDA
stands for Compute Unified Device Architecture; CUDA C++ and Fortran language
extensions and API calls can be used to explicitly control and program an NVIDIA
GPU.

Data region
a region defined by a data construct, or an implicit data region for a function or
subroutine containing directives. Data regions typically require device memory to
be allocated and data to be copied from host to device memory upon entry, and data
to be copied from device to host memory and device memory deallocated upon exit.
Data regions may contain other data regions and compute regions.

Device
a general reference to any type of accelerator.

Device memory
memory attached to an accelerator which is physically separate from the host
memory.

Directive
in C, a #pragma, or in Fortran, a specially formatted comment statement that is
interpreted by a compiler to augment information about or specify the behavior of the
program.

DMA
Direct Memory Access, a method to move data between physically separate
memories; this is typically performed by a DMA engine, separate from the host CPU,
that can access the host physical memory as well as an IO device or GPU physical
memory.

GPU
a Graphics Processing Unit; one type of accelerator device.

Host
the main CPU that in this context has an attached accelerator device. The host CPU
controls the program regions and data loaded into and executed on the device.

Loop trip count
the number of times a particular loop executes.

Private data
with respect to an iterative loop, data which is used only during a particular loop
iteration. With respect to a more general region of code, data which is used within the
region but is not initialized prior to the region and is re-initialized prior to any use
after the region.

Region
the dynamic range of a construct, including any procedures invoked from within the
construct.

Structured block
in C++ or C, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom. In Fortran, a block of executable statements with a
single entry at the top and a single exit at the bottom.

Vector operation
a single operation or sequence of operations applied uniformly to each element of an
array.

Using GPUs

User's Guide Version 2023 | 45

Visible device copy
a copy of a variable, array, or subarray allocated in device memory, that is visible to
the program unit being compiled.

5.3. Execution Model
The execution model targeted by the NVIDIA HPC Compilers is host-directed execution
with an attached accelerator device, such as a GPU. The bulk of a user application
executes on the host. Compute intensive regions are offloaded to the accelerator device
under control of the host. The accelerator device executes kernels, which may be as
simple as a tightly-nested loop, or as complex as a subroutine, depending on the
accelerator hardware.

5.3.1. Host Functions
Even in accelerator-targeted regions, the host must orchestrate the execution; it

‣ allocates memory on the accelerator device
‣ initiates data transfer
‣ sends the kernel code to the accelerator
‣ passes kernel arguments
‣ queues the kernel
‣ waits for completion
‣ transfers results back to the host
‣ deallocates memory

In most cases, the host can queue a sequence of kernels to be executed on the device,
one after the other.

5.4. Memory Model
The most significant difference between a host-only program and a host+accelerator
program is that the memory on the accelerator can be completely separate from host
memory, which is the case on most current GPUs. For example:

‣ The host cannot read or write accelerator memory directly because it is not mapped
into the virtual memory space of the host.

‣ All data movement between host memory and accelerator memory must be
performed by the host through runtime library calls that explicitly move data
between the separate memories.

‣ In general it is not valid to assume the accelerator can read or write host memory
directly. This is well-defined starting with the OpenACC 2.7 and OpenMP 5.0
specifications. The NVIDIA HPC Compilers support this for allocatable data when
the accelerator target is a GPU, and for all data when the accelerator target is a
multicore CPU.

Using GPUs

User's Guide Version 2023 | 46

5.4.1. Separate Host and Accelerator Memory
Considerations
The programmer must be aware of the potentially separate memories for many reasons,
including but not limited to:

‣ Memory bandwidth between host memory and accelerator memory determines the
compute intensity required to effectively accelerate a given region of code.

‣ Limited size of accelerator memory may prohibit offloading of regions of code that
operate on very large amounts of data.

5.4.2. Accelerator Memory
On the accelerator side, current GPUs implement a weak memory model. In particular,
they do not support memory coherence between threads unless those threads are
parallel only at the synchronous level and the memory operations are separated by
an explicit barrier. Otherwise, if one thread updates a memory location and another
reads the same location, or two threads store a value to the same location, the hardware
does not guarantee the results. While the results of running such a program might be
inconsistent, it is not accurate to say that the results are incorrect. By definition, such
programs are defined as being in error. While a compiler can detect some potential
errors of this nature, it is nonetheless possible to write an accelerator region that
produces inconsistent numerical results.

5.4.3. Cache Management
Some current GPUs have a software-managed cache, some have hardware-managed
caches, and most have hardware caches that can be used only in certain situations
and are limited to read-only data. In low-level programming models such as CUDA,
it is up to the programmer to manage these caches. The OpenACC programming
model provides directives the programmer can use as hints to the compiler for cache
management.

5.4.4. CUDA Unified Memory
The NVIDIA HPC Compilers support interoperability between with CUDA Unified
Memory. This feature, described in detail in OpenACC and CUDA Unified Memory,
https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm is available with
the x86-64, OpenPOWER and Arm Server compilers. To enable this feature, add the
options -acc -gpu=managed to the compiler and linker command lines.

In the presence of -acc -gpu=managed, all Fortran, C++ and C explicit allocation
statements in a program unit are replaced by equivalent "managed" data allocation calls
that place the data in CUDA Unified Memory. Managed data share a single address for
CPU/GPU and data movement between CPU and GPU memories is implicitly handled
by the CUDA driver. Therefore, OpenACC data clauses and directives are not needed
for "managed" data. They are essentially ignored, and in fact can be omitted.

https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm
https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm

Using GPUs

User's Guide Version 2023 | 47

When a program allocates managed memory, it allocates host pinned memory as well
as device memory thus making allocate and free operations somewhat more expensive
and data transfers somewhat faster. A memory pool allocator is used to mitigate the
overhead of the allocate and free operations. The pool allocator is enabled by default in
the presence of the -gpu=managed or -gpu=pinned. compiler options.

Data movement of managed data is controlled by the NVIDIA CUDA GPU driver;
whenever data is accessed on the CPU or the GPU, it could trigger a data transfer if the
last time it was accessed was not on the same device. In some cases, page thrashing may
occur and impact performance. An introduction to CUDA Unified Memory is available
on Parallel Forall.

This feature has the following limitations:

‣ Use of managed memory applies only to dynamically-allocated data. Static data (C
static and extern variables, Fortran module, common block and save variables) and
function local data is still handled by the OpenACC runtime. Dynamically allocated
Fortran local variables and Fortran allocatable arrays are implicitly managed but
Fortran array pointers are not.

‣ Given an allocatable aggregate with a member that points to local, global or static
data, compiling with -gpu=managed and attempting to access memory through
that pointer from the compute kernel will cause a failure at runtime.

‣ C++ virtual functions are not supported.
‣ The -gpu=managed compiler option must be used to compile the files in which

variables are allocated, even if there is no OpenACC code in the file.

This feature has the following additional limitations when used with NVIDIA Kepler
GPUs:

‣ Data motion on Kepler GPUs is achieved through fast pinned asynchronous data
transfers; from the program's perspective, however, the transfers are synchronous.

‣ The NVIDIA HPC Compilers runtime enforces synchronous execution of kernels
when -gpu=managed is used on a system with a Kepler GPU. This situation may
result in slower performance because of the extra synchronizations and decreased
overlap between CPU and GPU.

‣ The total amount of managed memory is limited to the amount of available device
memory on Kepler GPUs.

CUDA Unified Memory Pool Allocator

Dynamic memory allocations are made using cudaMallocManaged(), a routine which
has higher overhead than allocating non-unified memory using cudaMalloc(). The more
calls to cudaMallocManaged(), the more significant the impact on performance.

To mitigate the overhead of cudaMallocManaged() calls, both -gpu=managed and -
gpu=pinned use a CUDA Unified Memory pool allocator to minimize the number

https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners

Using GPUs

User's Guide Version 2023 | 48

of calls to cudaMallocManaged(). The pool allocator is enabled by default. It can be
disabled, or its behavior modified, using these environment variables:

Table 12 Pool Allocator Environment Variables

Environment Variable Use

NVCOMPILER_ACC_POOL_ALLOC Disable the pool allocator. The pool allocator is enabled by default; to

disable it, set NVCOMPILER_ACC_POOL_ALLOC to 0.

NVCOMPILER_ACC_POOL_SIZE Set the size of the pool. The default size is 1GB but other sizes

(i.e., 2GB, 100MB, 500KB, etc.) can be used. The actual pool size

is set such that the size is the nearest, smaller number in the

Fibonacci series compared to the provided or default size. If

necessary, the pool allocator will add more pools but only up to the

NVCOMPILER_ACC_POOL_THRESHOLD value.

NVCOMPILER_ACC_POOL_ALLOC_MAXSIZESet the maximum size for allocations. The default maximum size for

allocations is 500MB but another size (i.e., 100KB, 10MB, 250MB, etc.)

can be used as long as it is greater than or equal to 16B.

NVCOMPILER_ACC_POOL_ALLOC_MINSIZESet the minimum size for allocation blocks. The default size is 128B

but other sizes can be used. The size must be greater than or equal to

16B.

NVCOMPILER_ACC_POOL_THRESHOLDSet the percentage of total device memory that the pool allocator can

occupy. Values from 0 to 100 are accepted. The default value is 50,

corresponding to 50% of device memory.

5.5. Environment Variables Controlling Device
Memory Management
This section summarizes the environment variables that NVIDIA HPC Compilers use to
control device memory management.

The following table contains the environment variables that are currently supported and
provides a brief description of each.

Table 13 Memory Management Environment Variables

Environment Variable Use

NVCOMPILER_ACC_BUFFERSIZE For NVIDIA CUDA devices, this defines the size of the pinned
buffer used to transfer data between host and device.

NVCOMPILER_ACC_CUDA_NOCOPY Disables the use of the pinned buffer when transferring
user data between host and NVIDIA CUDA devices. When
this variable is set to a non-zero integer value, user data
will be transferred directly bypassing the pinned buffer.

Using GPUs

User's Guide Version 2023 | 49

Environment Variable Use

Asynchronous execution of such data transfers can be
limited when this setting is in effect.

NVCOMPILER_ACC_CUDA_STACKSIZE For NVIDIA CUDA devices, sets the stack size limit for device
threads.

NVCOMPILER_ACC_CUDA_HEAPSIZE For NVIDIA CUDA devices, sets the heap size limit for
malloc() when called on device.

NVCOMPILER_ACC_CUDA_PRINTFIFOSIZE For NVIDIA CUDA devices, sets the buffer size for formatted
output calls on device. In particular, it controls the buffer
size for the 'printf' C function.

NVCOMPILER_ACC_DEV_MEMORY For NVIDIA CUDA devices, when set to a valid non-zero size
value, enables the use of a device memory pool and sets its
size. By default, the device memory pool is not used.

NVCOMPILER_ACC_MEM_MANAGE For NVIDIA CUDA devices, when set to the integer value 0,
disables the use of an internal device memory manager. By
default, the device memory manager is enabled. It maintains
a list of deallocated chunks of device memory in an attempt
to efficiently reuse them for future allocations.

5.6. Fortran pointers in device code
A Fortran pointer variable is implemented with a pointer and a descriptor, where the
descriptor (often called a "dope vector") holds the array bounds and strides for each
dimension, among other information, such as the size for each element and whether the
pointer is associated. A Fortran scalar pointer has no bounds information, but does have
a minimal descriptor. In Fortran, referring to the pointer variable always refers to the
pointer target. There is no syntax to explicitly refer to the pointer and descriptor that
implement the pointer variable.

Fortran allocatable arrays and variables are implemented much the same way as pointer
arrays and variables. Much of the discussion below applies both to allocatables and
pointers.

In OpenACC and OpenMP, when a pointer variable reference appears in a data clause,
it's the pointer target that gets allocated or moved to device memory. The pointer and
descriptor are neither allocated nor moved.

When a pointer variable is declared in a module declaration section and appears in
an !$acc declare create() or !$omp declare target to() directive, then the
pointer and descriptor are statically allocated in device memory. When the pointer
variable appears in a data clause, the pointer target is allocated or copied to the device,
and the pointer and descriptor are 'attached' to the device copy of the data. If the pointer
target is already present in device memory, no new memory is allocated or copied,
but the pointer and descriptor are still 'attached', making the pointer valid in device
memory. An important side effect of adding declare create in the module declaration
section is that when the program executes an 'allocate' statement for the pointer (or
allocatable), memory is allocated in both CPU and device memory. This means the
newly allocated data is already present in device memory. To get values from CPU to
device memory or back, you'll have to use update directives.

Using GPUs

User's Guide Version 2023 | 50

When a pointer variable is used in an OpenACC or OpenMP compute construct, the
compiler creates a private copy of the pointer and descriptor for each thread, unless the
pointer variable was in a module as described above. The private pointer and descriptor
will contain information about the device copy of the pointer target. In the compute
construct, the pointer variables may be used pretty much as they can in host code
outside a compute construct. However, there are some limitations. The program can do
a pointer assignment to the pointer, changing the pointer, but that will only change the
private pointer for that thread. The modified pointer in the compute construct will not
change the corresponding pointer and descriptor in host memory.

5.7. Calling routines in a compute kernel
Using explicit interfaces is a common occurrence when writing Fortran applications.
Here are some cases where doing so is required for GPU programming.

‣ Explicit interfaces are required when using OpenACC routine bind or OpenMP
declare variant.

‣ Fortran do concurrent requires routines to be pure which creates the need for an
explicit interface.

5.8. Supported Processors and GPUs
This NVIDIA HPC Compilers release supports x86-64, OpenPOWER and Arm Server
CPUs. Cross-compilation across the different families of CPUs is not supported, but you
can use the -tp=<target> flag as documented in the man pages to specify a target
processor within a family.

To direct the compilers to generate code for NVIDIA GPUs, use the -acc flag to enable
OpenACC directives, the -mp=gpu flag to enable OpenMP directives, the -stdpar flag
for standard language parallelism, and the -cuda flag for CUDA Fortran. Use the -gpu
flag to select specific options for GPU code generation. You can then use the generated
code on any supported system with CUDA installed that has a CUDA-enabled GeForce,
Quadro, or Tesla card.

For more information on these flags as they relate to accelerator technology, refer to
Compiling an OpenACC Program.

For a complete list of supported CUDA GPUs, refer to the NVIDIA website at: http://
www.nvidia.com/object/cuda_learn_products.html

5.9. CUDA Versions
The NVIDIA HPC compilers use components from NVIDIA's CUDA Toolkit to build
programs for execution on an NVIDIA GPU. The NVIDIA HPC SDK puts the CUDA
Toolkit components into an HPC SDK installation sub-directory; the HPC SDK typically
bundles three versions of recently-released Toolkits.

http://www.nvidia.com/object/cuda_learn_products.html
http://www.nvidia.com/object/cuda_learn_products.html

Using GPUs

User's Guide Version 2023 | 51

You can compile a program for an NVIDIA GPU on any system supported by the HPC
compilers. You will be able to run that program only on a system with an NVIDIA GPU
and an installed NVIDIA CUDA driver. NVIDIA HPC SDK products do not contain
CUDA device drivers. You must download and install the appropriate CUDA Driver
from NVIDIA.

The NVIDIA HPC SDK utility nvaccelinfo prints the driver version as its first line of
output. You can use it to find out which version of the CUDA Driver is installed on your
system.

The NVIDIA HPC SDK 23.7 includes components from the following versions of the
CUDA Toolkit:

‣ CUDA 11.0
‣ CUDA 11.8
‣ CUDA 12.2

If you are compiling a program for GPU execution on a system without an installed
CUDA driver, the compiler selects the version of the CUDA Toolkit to use based on
the value of the DEFCUDAVERSION variable contained in a file called localrc which is
created during installation of the HPC SDK.

If you are compiling a program for GPU execution on a system with an installed CUDA
driver, the compiler detects the version of the CUDA driver and selects the appropriate
CUDA Toolkit version to use from those bundled with the HPC SDK.

The compilers look for a CUDA Toolkit version in the /opt/nvidia/hpc_sdk/target/23.7/
cuda directory that matches the version of the CUDA Driver installed on the system.
If an exact match is not found, the compiler searches for the closest match. For CUDA
Driver versions up to and including 11.1, the compiler searches for the newest CUDA
Toolkit version that is not newer than the CUDA Driver version. For CUDA Driver
versions of 11.2 and later, the compiler searches for the closest version newer than the
CUDA Driver version within the same major release sequence.

You can change the compiler's default selection of CUDA Toolkit version using a
compiler option. Add the cudaX.Y sub-option to -gpu where X.Y denotes the CUDA
version. Using a compiler option changes the CUDA Toolkit version for one invocation
of the compiler. For example, to compile an OpenACC C file with the CUDA 11.0 Toolkit
you would use:
nvc -acc -gpu=cuda11.0

5.10. Compute Capability
The compilers can generate code for NVIDIA GPU compute capabilities 3.5 through 8.6.
The compilers construct a default list of compute capabilities that matches the compute
capabilities supported by the GPUs found on the system used in compilation. If there are
no GPUs detected, the compilers generate code for every supported compute capability.

You can override the default by specifying one or more compute capabilities using either
command-line options or an rcfile.

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

Using GPUs

User's Guide Version 2023 | 52

To change the default with a command-line option, provide a comma-separated list of
compute capabilities to the -gpu option.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-
separated list of compute capabilities in the siterc file located in your installation's bin
directory:
set DEFCOMPUTECAP=60 70;

Alternatively, if you don't have permissions to change the siterc file, you can add the
DEFCOMPUTECAP definition to a separate .mynvrc file in your home directory.

The generation of device code can be time consuming, so you may notice an increase in
compile time as the number of compute capabilities increases.

5.11. PTX JIT Compilation
As of HPC SDK 22.9, support for PTX JIT compilation is enabled in all compilers for
relocatable device code mode. This means that applications built with -gpu=rdc
(that is, with relocatable device code enabled, which is the default mode) are forward-
compatible with newer GPUs thanks to the embedded PTX code. The embedded PTX
code is dynamically compiled when the application runs on a GPU architecture newer
than the architecture specified at compile time.

The support for PTX JIT compilation is enabled automatically, which means that you do
not need to change the compiler invocation command lines for your existing projects.

Use scenarios

‣ As an example, you can compile your application targeting the Ampere GPU
without having to worry about the Hopper GPU architecture. Once the application
runs on a Hopper GPU, it will seamlessly use the embedded PTX code.

‣ In CUDA Fortran, or with the CUDA Interoperability mode enabled, you can mix
in object files compiled with the CUDA NVCC compiler containing PTX code.
This PTX code from NVCC will be handled by the JIT compiler alongside the
PTX code contained in object files produced by the HPC SDK compilers. When
using the CUDA NVCC compiler, the relocatable device code generation must
be enabled explicitly using the NVCC --relocatable-device-code true
switch, as explained in the CUDA Compiler Driver guide. For information about
CUDA Interoperability, please refer to https://docs.nvidia.com/hpc-sdk/compilers/
hpc-compilers-user-guide/index.html#openmp-interop-cuda. The CUDA Fortran
Programming Guide is available here: https://docs.nvidia.com/hpc-sdk/compilers/
cuda-fortran-prog-guide.

By default, the compiler will choose the compute capability that matches the GPU on the
system where the code is being compiled. For code that is going to run on the system
where it is compiled, we recommend letting the compiler set the compute capability.

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#using-separate-compilation-in-cuda
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-interop-cuda
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-interop-cuda
https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide
https://docs.nvidia.com/hpc-sdk/compilers/cuda-fortran-prog-guide

Using GPUs

User's Guide Version 2023 | 53

When the default won’t work, we recommend compiling applications for a range of
compute capabilities that the application is expected to run against, for example, using
the -gpu=ccall compiler option. When running the application on a system that
supports one of those compute capabilities, the CUDA driver minor version is allowed
to be less than the version of the CUDA toolkit used at compile time, as covered in
section CUDA Versions.

Performance considerations

PTX JIT compilation, when it occurs, can have a start-up overhead for the application.
The JIT compiler keeps a cached copy of the produced device code, which reduces
the overhead on subsequent runs. Please refer to the CUDA Programming Guide for
detailed information about how the JIT compiler works.

Known limitations

In general, in order for PTX JIT compilation to work, the CUDA driver installed on the
deployment system must be at least of the version that matches the CUDA toolkit used
to compile the application. This requirement is stricter than those explained in section
CUDA Versions.

For example, as explained in that section, the compilers will use the CUDA 11.8 toolkit
that is shipped as part of the HPC SDK toolkit when the CUDA driver installed in the
system is at least 11.2. However, while the CUDA 11.2 driver is commonly sufficient to
run the application, it will not be able to compile the PTX code produced by the CUDA
11.8 toolkit. This means that any deployment system where the PTX JIT compilation
is expected to be used must have at least the CUDA 11.8 driver installed. Please refer
to the CUDA Compatibility guide for further information about the CUDA Driver
compatibility with CUDA Toolkits.

When the application is expected to run on a newer GPU architecture than specified
at compile time, we recommend having a CUDA driver installed on the deployment
system matching the CUDA toolkit used to build the application. One way to achieve
that is to use the NVHPC_CUDA_HOME environment variable at compile time to provide a
specific CUDA toolkit.

Below are a few examples of how the PTX version incompatibility can be diagnosed
and fixed. As a general rule, if the CUDA driver is unable to run the application due to
incompatible PTX, the application will terminate with an error message indicating the
cause. OpenACC and OpenMP applications will in most cases suggest compiler flags to
target the current CUDA installation.

OpenACC

Consider this program that we will compile for Volta GPU and attempt to run on an
Ampere GPU, on a system that has CUDA 11.5 installed:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#application-considerations

Using GPUs

User's Guide Version 2023 | 54

#include <stdio.h>
#define N 1000
int array[N];
int main() {
#pragma acc parallel loop copy(array[0:N])
 for(int i = 0; i < N; i++) {
 array[i] = 3.0;
 }
 printf("Success!\n");
}

When we build the program, HPC SDK will choose the CUDA 11.8 toolkit that is
included as the default. When we attempt to run it, it fails because code generated with
11.8 does not work with the 11.5 driver:

$ nvc -acc -gpu=cc70 app.c
$./a.out
Accelerator Fatal Error: This file was compiled: -acc=gpu -gpu=cc70
Rebuild this file with -gpu=cc80 to use NVIDIA Tesla GPU 0
 File: /tmp/app.c
 Function: main:3
 Line: 3

From the error message it follows that the system is unable to execute the Volta GPU
instructions on the current system. The embedded Volta PTX could not be compiled,
which implies a CUDA driver incompatibility. A way to fix this is to use the installed
CUDA 11.5 toolkit at compile time:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-11.5
$ nvc -acc -gpu=cc70 app.c
$./a.out
Success!

OpenMP
Likewise, an OpenMP program will compile but not run:

#include <stdio.h>
#define N 1000
int array[N];
int main() {
#pragma omp target loop
 for(int i = 0; i < N; i++) {
 array[i] = 0;

 }
 printf("Success!\n");
}

$ nvc -mp=gpu -gpu=cc70 app.c
$./a.out
Accelerator Fatal Error: Failed to find device function 'nvkernel_main_F1L3_2'!
 File was compiled with: -gpu=cc70
Rebuild this file with -gpu=cc80 to use NVIDIA Tesla GPU 0
 File: /tmp/app.c
 Function: main:3
 Line: 3

Using GPUs

User's Guide Version 2023 | 55

We can also fix it by having NVHPC_CUDA_HOME point at the matching CUDA toolkit
location:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-11.5
$ nvc -acc -gpu=cc70 app.c
$./a.out
Success!

C++

In contrast to OpenACC and OpenMP applications that simply terminate when PTX
JIT encounters an insufficient CUDA driver version, C++ applications throw a system
exception when there is a PTX incompatibility:

#include <vector>
#include <algorithm>
#include <execution>
#include <iostream>
#include <assert.h>
int main() {
 std::vector<int> x(1000, 0);
 x[1] = -20;
 auto result = std::count(std::execution::par, x.begin(), x.end(), -20);
 assert(result == 1);
 std::cout << "Success!" << std::endl;
}

$ nvc++ -stdpar -gpu=cc70 app.cpp
$./a.out
terminate called after throwing an instance of 'thrust::system::system_error'
 what(): after reduction step 1: cudaErrorUnsupportedPtxVersion: the provided
 PTX was compiled with an unsupported toolchain.
Aborted (core dumped)

The exception message contains a direct reference to an incompatible PTX, which in turn
implies an mismatch between the CUDA toolkit and the CUDA driver version.

We can fix it similarly by setting NVHPC_CUDA_HOME:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-11.5
$ nvc++ -stdpar -gpu=cc70 app.cpp
$./a.out
Success!

User's Guide Version 2023 | 56

Chapter 6.
USING OPENACC

This chapter gives an overview of directive-based OpenACC programming in which
compiler directives are used to specify regions of code in Fortran, C and C++ programs
to be offloaded from a host CPU to an NVIDIA GPU. For complete details on using
OpenACC with NVIDIA GPUs, see the OpenACC Getting Started Guide.

6.1. OpenACC Programming Model
With the emergence of GPU architectures in high performance computing, programmers
want the ability to program using a familiar, high level programming model that
provides both high performance and portability to a wide range of computing
architectures. OpenACC emerged in 2011 as a programming model that uses high-level
compiler directives to expose parallelism in the code and parallelizing compilers to build
the code for a variety of parallel accelerators.

This chapter will not attempt to describe OpenACC itself. For that, please refer to the
OpenACC specification on the OpenACC www.openacc.org website. Here, we will
discuss differences between the OpenACC specification and its implementation by the
NVIDIA HPC Compilers.

Other resources to help you with your parallel programming including video tutorials,
course materials, code samples, a best practices guide and more are available on the
OpenACC website.

6.1.1. Levels of Parallelism
OpenACC supports three levels of parallelism:

‣ an outer doall (fully parallel) loop level
‣ a workgroup or threadblock (worker parallel) loop level
‣ an inner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be
strictly rectangular. The synchronous level may not be fully implemented with SIMD or
vector operations, so explicit synchronization is supported and required across this level.
No synchronization is supported between parallel threads across the doall level.

http://www.openacc.org

Using OpenACC

User's Guide Version 2023 | 57

The OpenACC execution model on the device side exposes these levels of parallelism
and the programmer is required to understand the difference between, for example,
a fully parallel loop and a loop that is vectorizable but requires synchronization
across iterations. All fully parallel loops can be scheduled for any of doall, workgroup
or synchronous parallel execution, but by definition SIMD vector loops that require
synchronization can only be scheduled for synchronous parallel execution.

6.1.2. Enable OpenACC Directives
NVIDIA HPC compilers enable OpenACC directives with the -acc and -gpu command
line options. For more information on these options refer to Compiling an OpenACC
Program.

_OPENACC macro

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year
and mm is the month designation of the version of the OpenACC directives supported
by the implementation. For example, the version for November, 2017 is 201711. All
OpenACC compilers define this macro when OpenACC directives are enabled.

6.1.3. OpenACC Support
The NVIDIA HPC Compilers implement most features of OpenACC 2.7 as defined in
The OpenACC Application Programming Interface, Version 2.7, November 2018, http://
www.openacc.org, with the exception that the following OpenACC 2.7 features are not
supported:

‣ nested parallelism
‣ declare link
‣ enforcement of the cache clause restriction that all references to listed variables

must lie within the region being cached
‣ Subarrays and composite variables in reduction clauses
‣ The self clause
‣ The default clause on data constructs

6.1.4. OpenACC Extensions
The NVIDIA Fortran compiler supports an extension to the collapse clause on the
loop construct. The OpenACC specification defines collapse:
collapse(n)

NVIDIA Fortran supports the use of the identifier force within collapse:
collapse(force:n)

Using collapse(force:n) instructs the compiler to enforce collapsing parallel loops
that are not perfectly nested.

http://www.openacc.org
http://www.openacc.org

Using OpenACC

User's Guide Version 2023 | 58

6.2. Compiling an OpenACC Program
Several compiler options are applicable specifically when working with OpenACC.
These options include -acc, -gpu, and -Minfo.

6.2.1. -[no]acc
Enable [disable] OpenACC directives. The following suboptions may be used following
an equals sign ("="), with multiple sub-options separated by commas:
gpu

(default) OpenACC directives are compiled for GPU execution only.
host

Compile for serial execution on the host CPU.
multicore

Compile for parallel execution on the host CPU.
legacy

Suppress warnings about deprecated NVIDIA accelerator directives.
[no]autopar

Enable [disable] loop autoparallelization within acc parallel. The default is to
autoparallelize, that is, to enable loop autoparallelization.

[no]routineseq
Compile every routine for the devicee. The default behavior is to not treat every
routine as a seq directive.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

sync
Ignore async clauses

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator
directive.

[no]wait
Wait for each device kernel to finish. Kernel launching is blocked by default unless
the async clause is used.

Usage

The following command-line requests that OpenACC directives be enabled and that an
error be issued for any non-OpenACC accelerator directive.
$ nvfortran -acc=verystrict prog.f

Using OpenACC

User's Guide Version 2023 | 59

6.2.2. -gpu
Used in combination with the -acc, -cuda, -mp, and -stdpar flags to specify options for
GPU code generation. The following sub-options may be used following an equals sign
("="), with multiple sub-options separated by commas:
autocompare

Automatically compare CPU vs GPU results at execution time: implies redundant
ccXY

Generate code for a device with compute capability X.Y. Multiple compute
capabilities can be specified, and one version will be generated for each. By default,
the compiler will detect the compute capability for each installed GPU. Use -help
-gpu to see the valid compute capabilities for your installation.

ccall
Generate code for all compute capabilities supported by this platform and by the
selected or default CUDA Toolkit.

ccall-major
Compile for all major supported compute capabilities.

ccnative
Detects the visible GPUs on the system and generates codes for them. If no device is
available, the compute capability matching NVCC's default will be used.

cudaX.Y
Use CUDA X.Y Toolkit compatibility, where installed

[no]debug
Enable [disable] debug information generation in device code

deepcopy
Enable full deep copy of aggregate data structures in OpenACC; Fortran only

fastmath
Use routines from the fast math library

[no]flushz
Enable [disable] flush-to-zero mode for floating point computations on the GPU

[no]fma
Generate [do not generate] fused multiply-add instructions; default at -O3

[no]implicitsections
Change [Do not change] array element references in a data clause into an array
section. In C++, the implicitsections option will change update device(a[n])
to update device(a[0:n]). In Fortran, it will change enter data copyin(a(n))
to enter data copyin(a(:n)). The default behavior, noimplicitsections, can also
be changed using rcfiles; for example, one could add set IMPLICITSECTIONS=0; to
siterc or another rcfile.

keep
Keep the kernel files (.bin, .ptx, source)

[no]lineinfo
Enable [disable] GPU line information generation

Using OpenACC

User's Guide Version 2023 | 60

loadcache:{L1|L2}
Choose what hardware level cache to use for global memory loads; options include
the default, L1, or L2

managed
Use CUDA Managed Memory for compiler-visible allocatable data objects

maxregcount:n
Specify the maximum number of registers to use on the GPU; leaving this blank
indicates no limit

pinned
Use CUDA Pinned Memory

ptxinfo
Print PTX info

[no]rdc
Generate [do not generate] relocatable device code.

redundant
Redundant CPU/GPU execution

safecache
Allow variable-sized array sections in cache directives; compiler assumes they fit into
CUDA shared memory

sm_XY
Generate code for a device with compute capability X.Y. Multiple compute
capabilities can be specified, and one version will be generated for each. By default,
the compiler will detect the compute capability for each installed GPU. Use -help
-gpu to see the valid compute capabilities for your installation.

stacklimit:<n>nostacklimit
Sets the limit (l) of stack variables in a procedure or kernel, in KB

[no]unroll
Enable [disable] automatic inner loop unrolling; default at -O3

zeroinit
Initialize allocated device memory with zero

Usage

In the following example, the compiler generates code for NVIDIA GPUs with compute
capabilities 6.0 and 7.0.
$ nvfortran -acc -gpu=cc60,cc70 myprog.f

The compiler automatically invokes the necessary software tools to create the kernel
code and embeds the kernels in the object file.

To link in the appropriate GPU libraries, you must link an OpenACC program with the
-acc flag, and similarly for -cuda, -mp, or -stdpar.

Using OpenACC

User's Guide Version 2023 | 61

DWARF Debugging Formats

Use the -g option to enable generation of full DWARF information on both the host and
device; in the absence of other optimization flags, -g sets the optimization level to zero.
If a -O option raises the optimization level to one or higher, only GPU line information is
generated in device code even when -g is specified. To enforce full DWARF generation
for device code at optimization levels above zero, use the debug sub-option to -gpu.
Conversely, to prevent the generation of dwarf information for device code, use the
nodebug sub-option to -gpu. Both debug and nodebug can be used independently of
-g.

6.3. OpenACC for Multicore CPUs
The NVIDIA OpenACC compilers support the option -acc=multicore, to set the
target accelerator for OpenACC programs to the host multicore CPU. This will compile
OpenACC compute regions for parallel execution across the cores of the host processor
or processors. The host multicore CPU will be treated as a shared-memory accelerator,
so the data clauses (copy, copyin, copyout, create) will be ignored and no data copies
will be executed.

By default, -acc=multicore will generate code that will use all the available cores
of the processor. If the compute region specifies a value in the num_gangs clause, the
minimum of the num_gangs value and the number of available cores will be used.
At runtime, the number of cores can be limited by setting the environment variable
ACC_NUM_CORES to a constant integer value. The number of cores can also be set with
the void acc_set_num_cores(int numcores) runtime call. If an OpenACC compute
construct appears lexically within an OpenMP parallel construct, the OpenACC
compute region will generate sequential code. If an OpenACC compute region appears
dynamically within an OpenMP region or another OpenACC compute region, the
program may generate many more threads than there are cores, and may produce poor
performance.

The -acc=multicore option differs from the -acc=host option in that -acc=host
generates sequential host CPU code for the OpenACC compute regions.

6.4. Running an OpenACC Program
Running a GPU-accelerated OpenACC program is straightforward:

‣ When a program includes code for NVIDIA GPUs, the program looks for and
dynamically loads the CUDA libraries. If the libraries are not available, or if they
are in a different directory than they were when the program was compiled, you
may need to append the appropriate library directory to your LD_LIBRARY_PATH
environment variable on Linux.

Using OpenACC

User's Guide Version 2023 | 62

‣ On Linux, when your program reaches its first OpenACC region, there may be a 0.5
to 1.5 second pause to warm up the GPU from a power-off state. You can avoid this
delay by running the nvcudainit utility in the background, which keeps the GPU
powered on.

‣ If you compile a program for a particular GPU compute capability, then run the
program on a system without a GPU that supports that compute capability, or on a
system where the target libraries are not in a directory where the runtime library can
find them, the program may fail at runtime with an error message.

‣ If you set the environment variable NVCOMPILER_ACC_NOTIFY to a nonzero integer
value, the runtime library prints a line to standard error every time it launches a
kernel on the accelerator.

6.5. OpenACC Error Handling
The OpenACC specification provides a mechanism to allow you to intercept errors
triggered during execution on a GPU and execute a specific routine in response before
the program exits. For example, if an MPI process fails while allocating memory on the
GPU, the application may want to call MPI_Abort to shut down all the other processes
before the program exits. This section explains how to take advantage of this feature.

To intercept errors the application must give a callback routine to the OpenACC
runtime. To provide the callback, the application calls acc_set_error_routine with a
pointer to the callback routine.

The interface is the following, where err_msg contains a description of the error:
typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

When the OpenACC runtime detects a runtime error, it will invoke the
callback_routine.

This feature is not the same as error recovery. If the callback routine returns to the
application, the behavior is decidedly undefined.

Let's look at this feature in more depth using an example.

Take the MPI program below and run it with two processes. Process 0 tries to allocate a
large array on the GPU, then sends a message to the second process to acknowledge the
success of the operation. Process 1 waits for the acknowledgment and terminates upon
receiving it.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

Using OpenACC

User's Guide Version 2023 | 63

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

 // do some more work

 MPI_Finalize();

 return 0;
}

We compile the program with:
$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

If we run this program with two MPI processes, the output will look like the following:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
call to cuMemAlloc returned error 2: Out of memory

Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.

--
mpirun detected that one or more processes exited with non-zero status,
thus causing the job to be terminated.

Process 0 failed while allocating memory on the GPU and terminated unexpectedly with
an error. In this case mpirun was able to identify that one of the processes failed, so it
shut down the remaining process and terminated the application. A simple two-process
program like this is straightforward to debug. In a real world application though, with
hundreds or thousands of processes, having a process exit prematurely may cause
the application to hang indefinitely. Therefore it would be ideal to catch the failure of
a process, control the termination of the other processes, and provide a useful error
message.

We can use the OpenACC error handling feature to improve the previous program and
correctly terminate the application in case of failure of an MPI process.

Using OpenACC

User's Guide Version 2023 | 64

In the following sample code, we have added an error handling callback routine that
will shut down the other processes if a process encounters an error while executing
on the GPU. Process 0 tries to allocate a large array into the GPU and, if the operation
is successful, process 0 will send an acknowledgment to process 1. Process 0 calls the
OpenACC function acc_set_error_routine to set the function handle_gpu_errors
as an error handling callback routine. This routine prints a message and calls MPI_Abort
to shut down all the MPI processes. If process 0 successfully allocates the array on the
GPU, process 1 will receive the acknowledgment. Otherwise, if process 0 fails, it will
terminate itself and trigger the call to handle_gpu_errors. Process 1 is then terminated
by the code executed in the callback routine.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

void handle_gpu_errors(char *err_msg) {
 printf("GPU Error: %s", err_msg);
 printf("Exiting...\n\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 exit(-1);
}

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

 acc_set_error_routine(&handle_gpu_errors);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 fflush(stdout);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

Using OpenACC

User's Guide Version 2023 | 65

 // more work

 MPI_Finalize();

 return 0;
}

Again, we compile the program with:
$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

We run the program with two MPI processes and obtain the output below:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
GPU Error: call to cuMemAlloc returned error 2: Out of memory
Exiting...

--
MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD
with errorcode 1.

This time the error on the GPU was intercepted by the application which managed
it with the error handling callback routine. In this case the routine printed some
information about the problem and called MPI_Abort to terminate the remaining
processes and avoid any unexpected behavior from the application.

6.6. Environment Variables
This section summarizes the environment variables that NVIDIA OpenACC supports.
These environment variables are user-setable environment variables that control
behavior of accelerator-enabled programs at execution. These environment variables
must comply with these rules:

‣ The names of the environment variables must be upper case.
‣ The values of environment variables are case insensitive and may have leading and

trailing white space.
‣ The behavior is implementation-defined if the values of the environment variables

change after the program has started, even if the program itself modifies the values.

The following table contains the environment variables that are currently supported and
provides a brief description of each.

Table 14 Supported Environment Variables

Use this environment
variable... To do this...

NVCOMPILER_ACC_CUDA_PROFSTOPSet to 1 (or any positive value) to tell the runtime environment to insert
an 'atexit(cuProfilerStop)' call upon exit. This behavior may be desired
in the case where a profile is incomplete or where a message is issued
to call cudaProfilerStop().

Using OpenACC

User's Guide Version 2023 | 66

Use this environment
variable... To do this...

NVCOMPILER_ACC_DEVICE_NUM Sets the default device number to use.
NVCOMPILER_ACC_DEVICE_NUM. Specifies the default device
number to use when executing accelerator regions. The value of this
environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

ACC_DEVICE_NUM Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_NUM.

NVCOMPILER_ACC_DEVICE_TYPE Sets the default device type to use for OpenACC regions.
NVCOMPILER_ACC_DEVICE_TYPE. Specifies which accelerator device
to use when executing accelerator regions when the program has
been compiled to use more than one different type of device. The
value of this environment variable is implementation-defined, and
in the NVIDIA OpenACC implementation may be the strings NVIDIA,
MULTICORE or HOST

ACC_DEVICE_TYPE Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_TYPE.

NVCOMPILER_ACC_GANGLIMIT For NVIDIA CUDA devices, this defines the maximum number of gangs
(CUDA thread blocks) that will be launched by a kernel.

NVCOMPILER_ACC_NOTIFY With no argument, a debug message will be written to stderr for each
kernel launch and/or data transfer. When set to an integer value, the
value is used as a bit mask to print information about:

1: kernel launches

2: data transfers

4: region entry/exit

8: wait operations or synchronizations with the device

16: device memory allocates and deallocates

NVCOMPILER_ACC_PROFLIB Enables 3rd party tools interface using the new profiler dynamic library
interface.

NVCOMPILER_ACC_SYNCHRONOUSDisables asynchronous launches and data movement.

NVCOMPILER_ACC_TIME Enables a lightweight profiler to measure data movement and
accelerator kernel execution time and print a summary at the end of
program execution.

6.7. Profiling Accelerator Kernels

Support for Profiler/Trace Tool Interface

The NVIDIA HPC Compilers support the OpenACC Profiler/Trace Tools Interface. This
is the interface used by the NVIDIA profilers to collect performance measurements of
OpenACC programs.

Using OpenACC

User's Guide Version 2023 | 67

Using NVCOMPILER_ACC_TIME

Setting the environment variable NVCOMPILER_ACC_TIME to a nonzero value enables
collection and printing of simple timing information about the accelerator regions and
generated kernels.

Turn off all CUDA Profilers (NVIDIA's Visual Profiler, NVPROF, CUDA_PROFILE,
etc) when enabling NVCOMPILER_ACC_TIME, they use the same library to gather
performance data and cannot be used concurently.

Accelerator Kernel Timing Data
bb04.f90
 s1
 15: region entered 1 times
 time(us): total=1490738
 init=1489138 region=1600
 kernels=155 data=1445
 w/o init: total=1600 max=1600
 min=1600 avg=1600
 18: kernel launched 1 times
 time(us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

‣ For each accelerator region, the file name bb04.f90 and subroutine or function
name s1 is printed, with the line number of the accelerator region, which in the
example is 15.

‣ The library counts how many times the region is entered (1 in the example) and
the microseconds spent in the region (in this example 1490738), which is split into
initialization time (in this example 1489138) and execution time (in this example
1600).

‣ The execution time is then divided into kernel execution time and data transfer time
between the host and GPU.

‣ For each kernel, the line number is given, (18 in the example), along with a count of
kernel launches, and the total, maximum, minimum, and average time spent in the
kernel, all of which are 155 in this example.

6.8. OpenACC Runtime Libraries
This section provides an overview of the user-callable functions and library routines that
are available for use by programmers to query the accelerator features and to control
behavior of accelerator-enabled programs at runtime.

In Fortran, none of the OpenACC runtime library routines may be called from a PURE or
ELEMENTAL procedure.

Using OpenACC

User's Guide Version 2023 | 68

6.8.1. Runtime Library Definitions
There are separate runtime library files for Fortran, and for C++ and C.

C++ and C Runtime Library Files

In C++ and C, prototypes for the runtime library routines are available in a header file
named accel.h. All the library routines are extern functions with ‘C’ linkage. This
file defines:

‣ The prototypes of all routines in this section.
‣ Any data types used in those prototypes, including an enumeration type to describe

types of accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named
accel_lib.h and in a Fortran module named accel_lib. These files define:

‣ Interfaces for all routines in this section.
‣ Integer parameters to define integer kinds for arguments to those routines.
‣ Integer parameters to describe types of accelerators.

6.8.2. Runtime Library Routines
Table 15 lists and briefly describes the runtime library routines supported by the
NVIDIA HPC Compilers in addition to the standard OpenACC runtine API routines.

Table 15 Accelerator Runtime Library Routines

This Runtime Library
Routine... Does this...

acc_allocs Returns the number of arrays allocated in data or compute regions.

acc_bytesalloc Returns the total bytes allocated by data or compute regions.

acc_bytesin Returns the total bytes copied in to the accelerator by data or compute
regions.

acc_bytesout Returns the total bytes copied out from the accelerator by data or compute
regions.

acc_copyins Returns the number of arrays copied in to the accelerator by data or compute
regions.

acc_copyouts Returns the number of arrays copied out from the accelerator by data or
compute regions.

acc_disable_time Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time Tells the runtime to start profiling accelerator regions and kernels, if it is not
already doing so.

Using OpenACC

User's Guide Version 2023 | 69

This Runtime Library
Routine... Does this...

acc_exec_time Returns the number of microseconds spent on the accelerator executing
kernels.

acc_frees Returns the number of arrays freed or deallocated in data or compute
regions.

acc_get_device Returns the type of accelerator device used to run the next accelerator region,
if one is selected.

acc_get_device_num Returns the number of the device being used to execute an accelerator
region.

acc_get_free_memory Returns the total available free memory on the attached accelerator device.

acc_get_memory Returns the total memory on the attached accelerator device.

acc_get_num_devices Returns the number of accelerator devices of the given type attached to the
host.

acc_kernels Returns the number of accelerator kernels launched since the start of the
program.

acc_present_dump Summarizes all data present on the current device.

acc_present_dump_all Summarizes all data present on all devices.

acc_regions Returns the number of accelerator regions entered since the start of the
program.

acc_total_time Returns the number of microseconds spent in accelerator compute regions
and in moving data for accelerator data regions.

6.9. Supported Intrinsics
An intrinsic is a function available in a given language whose implementation is
handled specifically by the compiler. Typically, an intrinsic substitutes a sequence of
automatically-generated instructions for the original function call. Since the compiler has
an intimate knowledge of the intrinsic function, it can better integrate it and optimize it
for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide
a language interface to assembly instructions. In doing so, the compiler manages things
that the user would normally have to be concerned with, such as register names, register
allocations, and memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accelerator
supports.

6.9.1. Supported Fortran Intrinsics Summary Table
Table 16 is an alphabetical summary of the supported Fortran intrinsics that the
accelerator supports. These functions are specific to Fortran 90/95 unless otherwise
specified.

Using OpenACC

User's Guide Version 2023 | 70

In most cases support is provided for all the data types for which the intrinsic is valid.
When support is available for only certain data types, the middle column of the table
specifies which ones, using the following codes:

I for integer S for single precision real C for single precision complex

D for double precision real Z for double precision complex

Table 16 Supported Fortran Intrinsics

This intrinsic Return value

ABS I,S,D absolute value of the argument.

ACOS arccosine of the specified argument.

AINT truncation of the argument to a whole number.

ANINT nearest whole number of the real argument.

ASIN arcsine of the argument.

ATAN arctangent of the argument.

ATAN2 angle in radians of the complex value first-argument + i*second-argument.

COS S,D,C,Z cosine of the argument.

COSH hyperbolic cosine of the argument.

DBLE S,D conversion of the argument to double precision real.

DPROD double precision product of two single precision arguments.

EXP S,D,C,Z natural exponential value of the argument.

IAND result of logical AND of the two integer arguments.

IEOR result of the boolean exclusive OR of the two integer arguments.

INT I,S,D conversion of the argument to integer type.

IOR result of the boolean inclusive OR of the two integer arguments.

LOG S,D,C,Z base-e (natural logarithm) of the argument.

LOG10 base-10 logarithm of the argument.

MAX maximum value of the arguments.

MIN minimum value of the arguments.

MOD I remainder of the first argument divided by the second argument.

NINT nearest integer of the real argument.

NOT logical complement of the integer argument.

REAL I,S,D conversion of the argument to real.

SIGN absolute value of first argument times the sign of second argument.

SIN S,D,C,Z sine of the argument.

SINH hyperbolic sine of the argument.

SQRT S,D,C,Z square root of the argument.

Using OpenACC

User's Guide Version 2023 | 71

This intrinsic Return value

TAN tangent of the argument.

TANH hyperbolic tangent of the argument.

6.9.2. Supported C Intrinsics Summary Table
This section contains two alphabetical summaries – one for double functions and a
second for float functions. These lists contain only those C intrinsics that the accelerator
supports.

Table 17 Supported C Intrinsic Double Functions

This intrinsic Return value

acos arccosine of the argument.

asin arcsine of the argument.

atan arctangent of the argument.

atan2 arctangent of y/x, where y is the first argument, x the second.

cos cosine of the argument.

cosh hyperbolic cosine of the argument.

exp exponential value of the argument.

fabs absolute value of the argument.

fmax maximum value of the two arguments

fmin minimum value of the two arguments

log natural logarithm of the argument.

log10 base-10 logarithm of the argument.

pow value of the first argument raised to the power of the second argument.

sin value of the sine of the argument.

sinh hyperbolic sine of the argument.

sqrt square root of the argument.

tan tangent of the argument.

tanh hyperbolic tangent of the argument.

Table 18 Supported C Intrinsic Float Functions

This intrinsic Return value

acosf arccosine of the argument.

asinf arcsine of the argument.

atanf arctangent of the argument.

atan2f arctangent of y/x, where y is the first argument, x the second.

Using OpenACC

User's Guide Version 2023 | 72

This intrinsic Return value

cosf cosine of the argument.

coshf hyperbolic cosine of the argument.

expf exponential value of the argument.

fabsf absolute value of the argument.

logf natural logarithm of the argument.

log10f base-10 logarithm of the argument.

powf value of the first argument raised to the power of the second argument.

sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrtf square root of the argument.

tanf tangent of the argument.

tanhf hyperbolic tangent of the argument.

User's Guide Version 2023 | 73

Chapter 7.
USING OPENMP

OpenMP is a specification for a set of compiler directives, an applications programming
interface (API), and a set of environment variables that can be used to specify parallel
execution in Fortran, C++, and C programs. For general information about using
OpenMP and to obtain a copy of the OpenMP specification, refer to the OpenMP
organization's website.

The NVFORTRAN, NVC++, and NVC compilers support a subset of the OpenMP
Application Program Interface for CPUs and GPUs. In defining this subset, we have
focused on OpenMP 5.0 features that will enable CPU and GPU targeting for OpenMP
applications with a goal of encouraging programming practices that are portable and
scalable. For features that are to be avoided, wherever possible, the directives and
API calls related to those features are parsed and ignored to maximize portability.
Where ignoring such features is not possible, or could result in ambiguous or incorrect
execution, the compilers emit appropriate error messages at compile- or run-time.

OpenMP applications properly structured for GPUs, meaning they expose massive
parallelism and have relatively little or no synchronization in GPU-side code segments,
should compile and execute with performance on par with or close to equivalent
OpenACC. Codes that are not well-structured for GPUs may perform poorly but should
execute correctly.

Use the -mp compiler switch to enable processing of OpenMP directives and pragmas.
The most important sub-options to -mp are the following:

‣ gpu: OpenMP directives are compiled for GPU execution plus multicore CPU
fallback; this feature is supported on NVIDIA V100 or later GPUs.

‣ multicore: OpenMP directives are compiled for multicore CPU execution only; this
sub-option is the default.

7.1. Environment Variables
The OpenMP specification includes many environment variables related to program
execution.

https://www.openmp.org
https://www.openmp.org

Using OpenMP

User's Guide Version 2023 | 74

Thread affinity

One important environment variable is OMP_PROC_BIND. It controls the OpenMP
CPU thread affinity policy. When thread affinity is disabled, the operating system
is free to move threads between the available CPU cores. When thread affinity is
enabled, each thread is bound to a subset of the available CPU cores. The environment
variable OMP_PLACES can be used to specify how a subset of the available CPU cores is
determined for each thread. When set to a valid value, this environment variable will
enable thread affinity and override the default thread affinity policy.

Binding threads to certain CPU cores is often beneficial for application performance,
because that can improve the CPU cache hit rate and limit memory transactions between
different NUMA nodes. Therefore, it is important to consider enabling thread affinity for
your application.

The default value of OMP_PROC_BIND is false. Thus, thread affinity is disabled by
default. This is a conservative setting that allows certain classes of applications (such as
OpenMP + MPI) to create multiple processes without taking special care of the thread
affinity policy to avoid binding threads in different processes to the same CPU cores.

The following table explains the simplest possible values of OMP_PROC_BIND. For the
comprehensive explanation of OMP_PROC_BIND and OMP_PLACES, please refer to the
OpenMP 5.0 specification.

Value Behavior

OMP_PROC_BIND=false Thread affinity is disabled unless OMP_PLACES is set to a

valid value. When thread affinity is disabled, the operating

system is free to assign threads to any available CPU

core at any time of the application execution. This is the

default value.

OMP_PROC_BIND=true Thread affinity is enabled. Unless OMP_PLACES is set, the

implementation attempts to assign threads optimally to

CPU cores to maximize the cache hit rate and minimize

the number of memory transactions between NUMA

nodes.

Device offload

Another important environment variable to understand is OMP_TARGET_OFFLOAD.
Use this environment variable to affect the behavior of execution on host and device
including host fallback. The following table explains the behavior determined by each of
the values to which you can set this environment variable.

Using OpenMP

User's Guide Version 2023 | 75

Value Behavior

OMP_TARGET_OFFLOAD=DEFAULT Try to execute on a GPU; if a supported GPU is not

available, fallback to the host

OMP_TARGET_OFFLOAD=DISABLED Do not execute on the GPU even if one is available;

execute on the host

OMP_TARGET_OFFLOAD=MANDATORY Execute on a GPU or terminate the program

7.2. Fallback Mode
The HPC compilers support host fallback of OpenMP target regions when no GPU
is present or OMP_TARGET_OFFLOAD is set to DISABLED. Execution should always be
correct but the performance of the target region may not always be optimal when run
on the host. OpenMP target regions prescriptively structured for optimal execution on
GPUs may not perform well when run on the dissimilar architecture of the CPU. To
provide performance portability between host and device, we recommend use of the
loop construct.

firstprivates with nowait not supported for host execution

There is currently a limitation on the use of the nowait clause on target
regions intended for execution on the host (-mp or -mp=gpu with
OMP_TARGET_OFFLOAD=DISABLED). If the target region references variables having the
firstprivate data-sharing attribute, their concurrent updates are not guaranteed
to be safe. To work around this limitation, when running on the host, we recommend
avoiding the nowait clause on such target regions or equivalently using the taskwait
construct immediately following the region.

7.3. Loop
The HPC compilers support the loop construct with an extension to the default binding
thread set mechanism specified by OpenMP in order to allow the compilers the freedom
to analyze loops and dependencies to generate highly parallel code for CPU and GPU
targets. In other words, the compilers map loop to either teams or to threads, as the
compiler chooses, unless the user explicitly specifies otherwise. The mapping selected
is specific to each target architecture even within the same executable (i.e., GPU offload
and host fallback) thereby facilitating performance portability.

The shape of the parallelism offered by NVIDIA's GPUs, consisting of thread blocks and
three dimensions of threads therein, differs from the multi-threaded vector parallelism
of modern CPUs. The following table summarizes the OpenMP mapping to NVIDIA
GPUs and multicore CPUs:

Using OpenMP

User's Guide Version 2023 | 76

Construct CPU GPU

!$omp target starts offload

!$omp teams single team CUDA thread blocks in grid

!$omp parallel CPU threads CUDA threads within thread block

!$omp simd hint for vector instructions simdlen(1)

HPC programs need to leverage all available parallelism to achieve performance.
The programmer can attempt to become an expert in the intricacies of each target
architecture and use that knowledge to structure programs accordingly. This
prescriptive model can be successful but tends to increase source code complexity and
often requires restructuring for each new target architecture. Here's an example where a
programmer explicitly requests the steps the compiler should take to map parallelism to
two targets:

#ifdef TARGET_GPU
 #pragma omp target teams distribute reduction(max:error)
#else
 #pragma omp parallel for reduction(max:error)
#endif
for(int j = 1; j < n-1; j++) {
#ifdef TARGET_GPU
 #pragma omp parallel for reduction(max:error)
#endif
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25f * (A[j][i+1] + A[j][i-1]
 + A[j-1][i] + A[j+1][i]);
 error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));
 }
}

An alternative is for the programmer to focus on exposing parallelism in a program
and allowing a compiler to do the mapping onto the target architectures. The HPC
compilers' implementation of loop supports this descriptive model. In this example,
the programmer specifies the loop regions to be parallelized by the compiler and the
compilers parallelize loop across teams and threads:

#pragma omp target teams loop reduction(max:error)
for(int j = 1; j < n-1; j++) {
 #pragma omp loop reduction(max:error)
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25f * (A[j][i+1] + A[j][i-1]
 + A[j-1][i] + A[j+1][i]);
 error = fmaxf(error, fabsf(Anew[j][i]-A[j][i]));
 }
}

The programmer's tuning tool with loop is the bind clause. The following table extends
the previous mapping example:

Construct CPU GPU

!$omp loop bind(teams) threads CUDA thread blocks and
threads

!$omp loop bind(parallel) threads CUDA threads

Using OpenMP

User's Guide Version 2023 | 77

Construct CPU GPU

!$omp loop bind(thread) single thread (useful for
vector instructions)

single thread

Orphaned loop constructs within a single file are supported; a binding region of
either parallel or thread must be specified with such loops via the bind clause. The
compilers support loop regions containing procedure calls as long as the callee does not
contain OpenMP directives.

Here are a few additional examples using loop. We also show examples of the type of
information the compiler would provide when using the -Minfo compiler option.

Use of loop in Fortran:

!$omp target teams loop
do n1loc_blk = 1, n1loc_blksize
 do igp = 1, ngpown
 do ig_blk = 1, ig_blksize
 do ig = ig_blk, ncouls, ig_blksize
 do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize
 !expensive computation codes
 enddo
 enddo
 enddo
 enddo
enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp
42, !$omp target teams loop
 42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel
 Generating Tesla code
 43, Loop parallelized across teams ! blockidx%x
 44, Loop run sequentially
 45, Loop run sequentially
 46, Loop run sequentially
 47, Loop parallelized across threads(128) ! threadidx%x
 42, Generating Multicore code
 43, Loop parallelized across threads

Use of loop, collapse, and bind:

!$omp target teams loop collapse(3)
do n1loc_blk = 1, n1loc_blksize
 do igp = 1, ngpown
 do ig_blk = 1, ig_blksize
 !$omp loop bind(parallel) collapse(2)
 do ig = ig_blk, ncouls, ig_blksize
 do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize
 !expensive computation codes
 enddo
 enddo
 enddo
 enddo
enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop
 42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel
 Generating Tesla code
 43, Loop parallelized across teams collapse(3) ! blockidx%x
 44, ! blockidx%x collapsed

Using OpenMP

User's Guide Version 2023 | 78

 45, ! blockidx%x collapsed
 47, Loop parallelized across threads(128) collapse(2) ! threadidx%x
 48, ! threadidx%x collapsed
 42, Generating Multicore code
 43, Loop parallelized across threads

Use of loop, collapse, and bind(thread):

!$omp target teams loop collapse(3)
do n1loc_blk = 1, n1loc_blksize
 do igp = 1, ngpown
 do ig_blk = 1, ig_blksize
 !$omp loop bind(thread) collapse(2)
 do ig = ig_blk, ncouls, ig_blksize
 do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize
 ! expensive computation codes
 enddo
 enddo
 enddo
 enddo
enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop
 42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel
 Generating Tesla code
 43, Loop parallelized across teams, threads(128) collapse(3) ! blockidx%x
 threadidx%x
 44, ! blockidx%x threadidx%x collapsed
 45, ! blockidx%x threadidx%x collapsed
 47, Loop run sequentially
 48, collapsed
 42, Generating Multicore code
 43, Loop parallelized across threads

7.4. OpenMP Subset
This section contains the subset of OpenMP 5.0 features that the HPC compilers support.
We have attempted to define this subset of features to be those that enable, where
possible, OpenMP-for-GPU application performance that closely mirrors the success
NVIDIA has seen with OpenACC. Almost every feature supported on NVIDIA GPUs
is also supported on multicore CPUs, although the reverse is not true. Most constructs
from OpenMP 3.1 and OpenMP 4.5 that apply to multicore CPUs are supported for CPU
targets, and some features from OpenMP 5.0 are supported as well.

OpenMP target offload to NVIDIA GPUs is supported on NVIDIA V100 or later GPUs.

The section numbers below correspond to the section numbers in the OpenMP
Application Programming Interface Version 5.0 November 2018 document.

2. Directives

2.3 Variant Directives

2.3.4 Metadirectives

Using OpenMP

User's Guide Version 2023 | 79

The target_device/device context selector is supported with the
kind(host|nohost|cpu|gpu) and arch(nvtpx|nvptx64) trait selectors. The arch trait
property nvptx is an alias for nvptx64; any other arch trait properties are treated as
not matching or are ignored. The isa selector is treated as not matching or is ignored; no
support is provided to select a context based on NVIDIA GPU compute capability.

The implementation context selector is supported with the vendor(nvidia) trait
selector.

The user context selector is supported with the condition(expression) trait selector
including dynamic user traits.

The syntax begin/end metadirective is not supported.

2.3.5 Declare Variant Directive

The device context selector is supported with the kind(host|nohost|cpu|gpu) and
arch(nvtpx|nvptx64) trait selectors. The arch trait property nvptx is an alias for
nvptx64; any other arch trait properties are treated as not matching or are ignored.
The isa selector is also treated as not matching or is ignored; no support is provided to
select a context based on NVIDIA GPU compute capability.

The implementation context selector is supported with the vendor(nvidia) trait
selector; all other implementation trait selectors are treated as not matching.

The syntax begin/end declare variant is supported for C/C++.

2.4 Requires Directive

The requires directive has limited support. The requirement clause unified_address
is accepted; unified_shared_memory is accepted in unified-memory mode.

2.5 Internal Control Variables

ICV support is as follows.

‣ dyn-var, nthread-var, thread-limit-var, max-active-levels-var, active-
levels-var, levels-var, run-sched-var, dyn-sched-var, and stacksize-
var are supported

‣ place-partition-var, bind-var, wait-policy-var, display-affinity-var,
default-device-var, and target-offload-var are supported only on the CPU

‣ affinity-format-var is supported only on the CPU; its value is immutable
‣ max-task-priority-var, def-allocator-var are not supported
‣ cancel-var is not supported; it always returns false

2.6 Parallel Construct

Support for parallel construct clauses is as follows.

‣ The num_threads, default, private, firstprivate, and shared clauses are
supported

Using OpenMP

User's Guide Version 2023 | 80

‣ The reduction clause is supported as described in 2.19.5
‣ The if and copyin clauses are supported only for CPU targets; the compiler emits

an error for GPU targets
‣ The proc_bind clause is supported only for CPU targets; it is ignored for GPU

targets
‣ The allocate clause is ignored

2.7 Teams Construct

The teams construct is supported only when nested within a target construct that
contains no statements, declarations, or directives outside the teams construct, or as a
combined target teams construct. The teams construct is supported for GPU targets.
If the target construct falls back to CPU mode, the number of teams is one. Support for
teams construct clauses is as follows.

‣ The num_teams, thread_limit, default, private, and firstprivate clauses
are supported

‣ The reduction clause is supported as described in 2.19.5
‣ The shared clause is supported for CPU targets and is supported for GPU targets in

unified-memory mode
‣ The allocate clause is ignored

2.8 Worksharing Constructs

2.8.1 Sections Construct

The sections construct is supported only for CPU targets; the compiler emits an error
for GPU targets. Support for sections construct clauses is as follows.

‣ The private and firstprivate clauses are supported
‣ The reduction clause is supported as described in 2.19.5
‣ The lastprivate clause is supported; the optional lastprivate modifier is not

supported
‣ The allocate clause is ignored

2.8.2 Single Construct

Support for single construct clauses is as follows.

‣ The private, firstprivate, and nowait clauses are supported
‣ The copyprivate clause is supported only for CPU targets; the compiler emits an

error for GPU targets
‣ The allocate clause is ignored

2.8.3 Workshare Construct

The workshare construct is supported in Fortran only for CPU targets; the compiler
emits an error for GPU targets.

Using OpenMP

User's Guide Version 2023 | 81

2.9 Loop-Related Constructs

2.9.2 Worksharing-Loop Construct (for/do)

Support for worksharing for and do construct clauses is as follows.

‣ The private, firstprivate, and collapse clauses are supported
‣ The reduction clause is supported as described in 2.19.5
‣ The schedule clause is supported; the optional modifiers are not supported
‣ The lastprivate clause is supported; the optional lastprivate modifier is not

supported
‣ The ordered clause is supported only for CPU targets; ordered(n) clause is not

supported
‣ The linear clause is not supported
‣ The order(concurrent) clause is ignored
‣ The allocate clause is ignored

2.9.3 SIMD Directives

The simd construct can be used to provide tuning hints for CPU targets; the simd
construct is ignored for GPU targets. Support for simd construct clauses is as follows.

‣ The reduction clause is supported as described in 2.19.5
‣ The lastprivate clause is supported; the optional lastprivate modifier is not

supported
‣ The if, simdlen, and linear clauses are not supported
‣ The safelen, aligned, nontemporal, and order(concurrent) clauses are

ignored

The composite for simd and do simd constructs are supported for CPU targets; they are
treated as for and do directives for GPU targets. Supported simd clauses are supported
on the composite constructs for the CPU. Any simd clauses are ignored for GPU targets.

The declare simd directive is ignored.

2.9.4 Distribute Directives

The distribute construct is supported within a teams construct. Support for
distribute construct clauses is as follows:

‣ The private, firstprivate, collapse, and dist_schedule(static
[,chunksize]) clauses are supported

‣ The lastprivate clause is not supported
‣ The allocate clause is ignored

The distribute simd construct is treated as a distribute construct and is supported
for GPU targets; valid supported distribute clauses are accepted; simd clauses are
ignored. The distribute simd construct is not supported for CPU targets.

Using OpenMP

User's Guide Version 2023 | 82

The distribute parallel for or distribute parallel do constructs are supported
for GPU targets. Valid supported distribute and parallel and for or do clauses are
accepted. The distribute parallel for or distribute parallel do constructs are
not supported for CPU targets.

The distribute parallel for simd or distribute parallel do simd constructs are
treated as distribute parallel for or distribute parallel do constructs and are
supported for GPU targets. These are not supported for CPU targets.

2.9.5 Loop Construct

Support for loop construct clauses is as follows.

‣ The private, bind, and collapse clauses are supported
‣ The reduction clause is supported as described in 2.19.5
‣ The order(concurrent) clause is assumed
‣ The lastprivate clause is not supported

2.10 Tasking Constructs

2.10.1 Task Construct

The task construct is supported for CPU targets. The compiler emits an error when it
encounters task within a target construct. Support for task construct clauses is as
follows:

‣ The if, final, default , private, firstprivate, and shared clauses are
supported

‣ The depend([dependmodifier,] dependtype : list) clause is supported as
described in 2.17.11

2.10.4 Taskyield Construct

The taskyield construct is supported for CPU targets; it is ignored for GPU targets.

2.11 Memory Management Directives

The memory management allocators, memory management API routines, and memory
management directives are not supported

2.12 Device Directives

2.12.1 Device Initialization

Depending on how the program is compiled and linked, device initialization may occur
at the first target construct or API routine call, or may occur implicitly at program
startup.

2.12.2 Target Data Construct

The target data construct is supported for GPU targets. Support for target data
construct clauses is as follows.

Using OpenMP

User's Guide Version 2023 | 83

‣ The if, device, use_device_ptr, and use_device_addr clauses are supported
‣ The map clause is supported as described in 2.19.7

2.12.3 Target Enter Data Construct

The target enter data construct is supported for GPU targets. Support for enter
data construct clauses is as follows.

‣ The if, device, and nowait clauses are supported
‣ The map clause is supported as described in 2.19.7.
‣ The depend([dependmodifier,] dependtype : list) clause is supported as

described in 2.17.11

2.12.4 Target Exit Data Construct

The target exit data construct is supported for GPU targets. Support for exit data
construct clauses is as follows.

‣ The if, device, and nowait clauses are supported
‣ The map clause is supported as described in 2.19.7.
‣ The depend([dependmodifier,] dependtype : list) clause is supported as

described in 2.17.11

2.12.5 Target Construct

The target construct is supported for GPU targets. If there is no GPU or GPU offload
is otherwise disabled, execution falls back to CPU mode. Support for target construct
clauses is as follows:

‣ The if, private, firstprivate, is_device_ptr, and nowait clauses are
supported

‣ The device clause is supported without the device-modifier ancestor keyword
‣ The map clause is supported as described in 2.19.7
‣ The defaultmap clause is supported using OpenMP 5.0 semantics
‣ The depend([dependmodifier,] dependtype : list) clause is supported as

described in 2.17.11
‣ The allocate and uses_allocate clauses are ignored

2.12.6 Target Update Construct

The target update construct is supported for GPU targets. Support for target
update construct clauses is as follows.

‣ The if, device, and nowait clauses are supported.
‣ The to and from clauses are supported without mapper or mapid
‣ The depend([dependmodifier,] dependtype : list) clause is supported as

described in 2.17.11

Using OpenMP

User's Guide Version 2023 | 84

Array sections are supported in to and from clauses, including noncontiguous array
sections. Array section strides are not supported. If the array section is noncontiguous,
the OpenMP runtime may have to use multiple host-to-device or device-to-host data
transfer operations, which increases the overhead. If the host data is in host-pinned
memory, then update data transfers with the nowait clause are asynchronous. This
means the data transfer for a target update to nowait may not occur immediately
or synchronously with the program thread, and any changes to the data may affect the
transfer, until a synchronizing operation is reached. Similarly, a target update from
nowait may not occur immediately or synchronously with the program thread, and
the downloaded data may not be available until a synchronizing operation is reached.
If the host data is not in host-pinned memory, then update data transfers with the
nowait clause require that the data transfer operation use an intermediate pinned buffer
managed by the OpenMP runtime library, and that a memory copy operation on the host
between the program memory and the pinned buffer is needed before starting or before
finishing the transfer operation, which affects overhead and performance.

2.12.7 Declare Target Construct

The declare target construct is supported for GPU targets.

‣ declare target ... end declare target is supported
‣ declare target(list) is supported
‣ The to(list) clause is supported
‣ The device_type clause is supported for C/C++

A function or procedure that is referenced in a function or procedure that appears
in a declare target to clause (explicitly or implicitly) is treated as if its name had
implicitly appeared in a declare target to clause.

2.13 Combined Constructs

Combined constructs are supported to the extent that the component constructs are
themselves supported.

2.14 Clauses on Combined and Composite Constructs

Clauses on combined constructs are supported to the extent that the clauses are
supported on the component constructs.

2.16 Master Construct

The master construct is supported for CPU and GPU targets.

2.17 Synchronization Constructs and Clauses

2.17.1 Critical Construct

The critical construct is supported only for CPU targets; the compiler emits an error
for GPU targets.

2.17.2 Barrier Construct

Using OpenMP

User's Guide Version 2023 | 85

The barrier construct is supported.

2.17.3 Implicit Barriers

Implicit barriers are implemented.

2.17.4 Implementation-Specific Barriers

There may be implementation-specific barriers, and they may be different for CPU
targets than for GPU targets.

2.17.5 Taskwait Construct

The taskwait construct is supported only for CPU targets; it is ignored for GPU targets.

‣ The depend([dependmodifier,] dependtype : list) clause is supported as
described in 2.17.11

2.17.6 Taskgroup Construct

The taskgroup construct is supported only for CPU targets. It is ignored for GPU
targets.

2.17.7 Atomic Construct

Support for atomic construct clauses is as follows.

‣ The read, write, update, and capture clauses are supported.
‣ The memory order clauses seq_cst, acq_rel, release, acquire, relaxed are not

supported
‣ The hint clause is ignored

2.17.8 Flush Construct

The flush construct is supported only for CPU targets.

2.17.9 Ordered Construct and Ordered Directive

The ordered block construct is supported only for CPU targets.

2.17.11 Depend Clause

The depend clause is supported on CPU targets. It is not supported on GPU
targets. The dependence types in, out, and inout are supported. The dependence
types mutexinoutset and depobj, dependence modifier iterator(iters),
depend(source), and depend(sink:vector) are not supported.

2.19 Data Environment

2.19.2 Threadprivate Directive

The threadprivate directive is supported only for CPU targets. It is not supported for
GPU targets; references to threadprivate variables in device code are not supported.

2.19.5 Reduction Clauses and Directives

Using OpenMP

User's Guide Version 2023 | 86

The reduction clause is supported. The optional modifier is not supported.

2.19.6 Data Copying Clauses

The data copying copyin and copyprivate clauses are supported only for CPU
targets; the compiler emits a compile-time error for GPU targets.

2.19.7 Data Mapping Attribute Rules, Clauses, and Directives

‣ The map([[mapmod[,]...] maptype:] datalist) clause is supported. Of the
map-type-modifiers, always is supported, close is ignored, and mapper(mapid) is
not supported.

‣ The defaultmap clause is supported using OpenMP 5.0 semantics.

2.20 Nesting of Regions

For constructs supported in this subset, restrictions on nesting of regions is observed.
Additionally, nested parallel regions on CPU are not supported and nested teams or
parallel regions in a target region are not supported.

Runtime Library Routines

3.2 Execution Environment Routines

The following execution environment runtime API routines are supported.

‣ omp_set_num_threads, omp_get_num_threads,
omp_get_max_threads, omp_get_thread_num, omp_get_thread_limit,
omp_get_supported_active_levels, omp_set_max_active_levels,
omp_get_max_active_levels, omp_get_level,
omp_get_ancestor_thread_num, omp_get_team_size, omp_get_num_teams,
omp_get_team_num, omp_is_initial_device

The following execution environment runtime API routines are supported only on the
CPU.

‣ omp_get_num_procs, omp_set_dynamic, omp_get_dynamic,
omp_set_schedule, omp_get_schedule, omp_in_final, omp_get_proc_bind,
omp_get_num_places, omp_get_affinity_format, omp_set_default_device,
omp_get_default_device, omp_get_num_devices, omp_get_device_num,
omp_get_initial_device

The following execution environment runtime API routines have limited support.

‣ omp_get_cancellation, omp_get_nested; supported only on the CPU; the value
returned is always false

‣ omp_display_affinity, omp_capture_affinity; supported only on the CPU;
the format specifier is ignored

‣ omp_set_nested; supported only on the CPU, the value is ignored

The following execution environment runtime API routines are not supported.

Using OpenMP

User's Guide Version 2023 | 87

‣ omp_get_place_num_procs, omp_get_place_proc_ids, omp_get_place_num,
omp_get_partition_num_places, omp_get_partition_place_nums,
omp_set_affinity_format, omp_get_max_task_priority,
omp_pause_resource, omp_pause_resource_all

3.3 Lock Routines

Lock runtime API routines are not supported on the GPU. The following lock runtime
API routines are supported on the CPU.

‣ omp_init_lock, omp_init_nest_lock, omp_destroy_lock,
omp_destroy_nest_lock, omp_set_lock, omp_set_nest_lock,
omp_unset_lock, omp_unset_nest_lock, omp_test_lock,
omp_test_nest_lock

The following lock runtime API routines are not supported.

‣ omp_init_lock_with_hint, omp_init_nest_lock_with_hint

3.4 Timing Routines

The following timing runtime API routines are supported.

‣ omp_get_wtime, omp_get_wtick

3.6 Device Memory Routines

The following device memory routines are supported only on the CPU.

‣ omp_target_is_present, omp_target_associate_ptr,
omp_target_disassociate_ptr

‣ omp_target_memcpy and omp_target_memcpy_rect are only supported when
copying to and from the same device.

The following device memory routines are supported on the CPU; we extend OpenMP
to support these in target regions on a GPU, but only allocation and deallocation on the
same device is supported.

‣ omp_target_alloc, omp_target_free

3.7 Memory Management Routines

The following memory management routines are supported.

‣ omp_alloc, omp_free

The following memory management routines are not supported.

‣ omp_init_allocator, omp_destroy_allocator,
omp_set_default_allocator, omp_get_default_allocator

6 Environment Variables

The following environment variables have limited support.

Using OpenMP

User's Guide Version 2023 | 88

‣ OMP_SCHEDULE, OMP_NUM_THREADS, OMP_DYNAMIC, OMP_PROC_BIND,
OMP_PLACES, OMP_STACKSIZE, OMP_WAIT_POLICY, OMP_MAX_ACTIVE_LEVELS,
OMP_NESTED, OMP_THREAD_LIMIT, OMP_DISPLAY_ENV, OMP_DISPLAY_AFFINITY,
OMP_DEFAULT_DEVICE, and OMP_TARGET_OFFLOAD are supported on CPU.

‣ OMP_CANCELLATION and OMP_MAX_TASK_PRIORITY are ignored.
‣ OMP_AFFINITY_FORMAT, OMP_TOOL, OMP_TOOL_LIBRARIES, OMP_DEBUG, and

OMP_ALLOCATOR are not supported

7.5. Using metadirective
This section contains limitations affecting metadirective along with a few guidelines
for its use.

The Fortran compiler does not support variants leading to an OpenMP directive for
which a corresponding end directive is required.

Nesting user conditions, while legal, may create situations that the HPC Compilers
do not handle gracefully. To avoid potential problems, use device traits inside user
conditions instead. The following example illustrates this best practice.

Avoid nesting dynamic user conditions like this:

#pragma omp metadirective \
 when(user={condition(use_offload)} : target teams distribute) \
 default(parallel for schedule(static))
 for (i = 0; i < N; i++) {
 ...
#pragma omp metadirective \
 when(user={condition(use_offload)} : parallel for)
 for (j = 0; j < N; j++) {
 ...
 }
 ...
 }

Instead, use target_device and device traits within dynamic user conditions like
this:

#pragma omp metadirective \
 when(target_device={kind(gpu)}, user={condition(use_offload)} : target teams
 distribute) \
 default(parallel for schedule(static))
 for (i = 0; i < N; i++) {
 ...
#pragma omp metadirective \
 when(device={kind(gpu)} : parallel for)
 for (j = 0; j < N; j++) {
 ...
 }
 ...
 }

The HPC compilers do not support nesting metadirective inside a target construct
applying to a syntactic block leading to a teams variant. Some examples:

Using OpenMP

User's Guide Version 2023 | 89

The compilers will emit an error given the following code:

#pragma omp target map(to:v1,v2) map(from:v3)
{
#pragma omp metadirective \
when(device={arch("nvptx")} : teams distribute parallel for) \
default(parallel for)
 for (int i = 0; i < N; i++) {
 v3[i] = v1[i] * v2[i];
 }
}

The compilers will always match device={arch("nvptx")} given the following code:

#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \
when(device={arch("nvptx")} : teams distribute parallel for) \
default(parallel for)
 for (int i = 0; i < N; i++) {
 v3[i] = v1[i] * v2[i];
 }

The compilers match device={"arch") for GPU code, and default for host fallback,
given the following code:

#pragma omp target teams distribute map(to:v1,v2) map(from:v3)
for (...)
{
#pragma omp metadirective \
when(device={arch("nvptx")} : parallel for) \
default(simd)
 for (int i = 0; i < N; i++) {
 v3[i] = v1[i] * v2[i];
 }
}

7.6. Mapping target constructs to CUDA streams
An OpenMP target task generating construct is executed on the GPU in a CUDA stream.
The following are target task generating constructs:

‣ target enter data

‣ target exit data

‣ target update

‣ target

This section explains how these target constructs are mapped to CUDA streams. The
relationship with the OpenACC queues is also explained below.

Keep in mind that the target data construct does not generate a task and is not
necessarily executed in a CUDA stream. It also cannot have the depend and nowait
clauses, thus its behavior cannot be directly controlled by the user application. The rest
of this section does not cover the behavior of the target data construct.

Using OpenMP

User's Guide Version 2023 | 90

Any task-generating target construct can have depend and nowait clauses. The NVIDIA
OpenMP Runtime takes these clauses as a guidance for how to map the construct to a
specific CUDA stream. Below is a breakdown of how the clauses affect the mapping
decisions.

'target' without 'depend', without 'nowait'

For these constructs, the per-thread default CUDA stream is normally used. The stream
is unique for each host thread, so target regions created by different host threads will
execute independently in different streams according to the CUDA rules described in
CUDA Runtime API; see the rules in the "Per-thread default stream" section.

The OpenACC queue acc_async_sync is initially associated with the same per-
thread default CUDA stream. The user is allowed to change the association by calling
acc_set_cuda_stream(acc_async_sync, stream). This will change accordingly
the stream used for target without nowait.

The CUDA stream handle can be directly obtained via the
ompx_get_cuda_stream(int device, int nowait) function, with the nowait
parameter set to 0. The per-thread default stream can be obtained with the CUDA
handle CU_STREAM_PER_THREAD or cudaStreamPerThread.

Here is an example of how a custom CUDA stream can be used to substitute the default
stream:

extern __global__ void kernel(int *data);

 CUstream stream;
 cuStreamCreate(&stream, CU_STREAM_DEFAULT);
 acc_set_cuda_stream(acc_async_sync, stream);
#pragma omp target enter data map(to:data[:N])
#pragma omp target data use_device_ptr(data)
 kernel<<<N/32, 32, 0, stream>>>(data);
#pragma omp target teams distribute parallel for
 for (int i = 0; i < N; i++) {
 data[i]++;
 }
#pragma omp target exit data map(from:data[:N])

Note there is no explicit stream synchronization after the CUDA kernel is launched.
The stream is synchronized automatically at the target constructs that follow.

'target' with 'depend', without 'nowait'

For this construct, the runtime will block the current thread until all dependencies listed
in the depend clause are resolved. Then, the target construct will be executed in the
default per-thread CUDA stream as described in the previous section (that is, as if there
is no depend clause).

https://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html

Using OpenMP

User's Guide Version 2023 | 91

'target' with 'nowait', without 'depend'

By default, the runtime will select a CUDA stream for each new target nowait
construct. The selected stream may be the same that was used for a prior target
nowait construct. That is, there is no guarantee of uniqueness of the selected stream.

This is different from the OpenACC model that uses the same CUDA stream
associated with the acc_async_noval queue for any asynchronous construct with
the async clause without an argument. To change this behavior, the user can call the
ompx_set_cuda_stream_auto(int enable) function with the enable parameter set
to 0. In this case, the CUDA stream associated with the acc_async_noval OpenACC
queue will be used for all OpenMP target nowait constructs. Another way to enable
this behavior is to set the environment variable NV_OMP_AUTO_STREAMS to FALSE.

To access the stream used for the next target nowait construct, the user can call the
ompx_get_cuda_stream(int device, int nowait) function, with the nowait
parameter set to 1.

'target' with both 'depend' and 'nowait'

The decision on which CUDA stream to use in this case relies on previously scheduled
target and host tasks sharing a subset of the dependencies listed in the depend clause:

‣ If the target construct has only one dependency, which is of the type inout or
out, and that dependency maps to a previously scheduled target depend(...)
nowait construct, and the same device is used for both target constructs, then the
CUDA stream which the previous target task was scheduled to will be used.

‣ Otherwise, a CUDA stream will be selected for this target construct according to the
stream selection policy.

Note that target constructs with a single in dependency can be scheduled on a newly
selected CUDA stream. This is to allow parallel execution of multiple target nowait
constructs that depend on data produced by another previously scheduled target
nowait construct.

Here is a simplified example of how a target construct, a CUDA library function and
a CUDA kernel can be executed on the GPU in the same stream asynchronously with
respect to the host thread:

extern __global__ void kernel(int *data);

cudaStream_t stream =
 (cudaStream_t)ompx_get_cuda_stream(omp_get_default_device(), 1);
cufftSetStream(cufft_plan, stream);

#pragma omp target enter data map(to:data[:N]) depend(inout:stream) nowait
#pragma omp target data use_device_ptr(data)
 {
 kernel<<<N/32, 32, 0, stream>>>(data);
 cufftExecC2C(cufft_plan, data, data, CUFFT_FORWARD);
 }
#pragma omp target teams distribute parallel for depend(inout:stream) nowait

Using OpenMP

User's Guide Version 2023 | 92

 for (int i = 0; i < N; i++) {
 data[i]++;
 }
#pragma omp target exit data map(from:data[:N]) depend(inout:stream) nowait

Note that the stream variable holds the CUDA stream handle and also serves as the
dependency for the target constructs. This dependency enforces the order of execution
and also guarantees the target constructs are on the same stream that was returned from
the ompx_get_cuda_stream function call.

NVIDIA OpenMP API to access and control CUDA streams

NVIDIA OpenMP Runtime provides the following API to access CUDA streams and to
control their use.

void *ompx_get_cuda_stream(int device, int nowait);

This function returns the handle of the CUDA stream that will be used for the next
target construct:

‣ If the nowait parameter is set to 0, it returns the CUDA stream associated with the
OpenACC queue acc_async_sync, which is initially mapped to the default per-
thread CUDA stream;

‣ Otherwise, it returns a CUDA stream which will be used for the next target
nowait construct that cannot be mapped to an existing stream according to the rules
for the depend clause.

void ompx_set_cuda_stream_auto(int enable);

This function sets the policy for how CUDA streams are selected for target nowait
constructs:

‣ If the enable parameter is set to a non-zero value, an internally selected CUDA
stream will be used for each target nowait construct that follows. This is the
default behavior;

‣ Otherwise, the CUDA stream associated with the OpenACC queue
acc_async_noval will be used for all target nowait constructs that follow. This
becomes the default behavior if the environment variable NV_OMP_AUTO_STREAMS is
set to FALSE.

The setting is done only for the host thread which calls this function.

7.7. Noncontiguous Array Sections
Array sections can be used in to and from clauses, including noncontiguous array
sections. The noncontiguous array section must be specified in a single map clause; it
cannot be split between multiple directives. Although this feature may become a part of
a future OpenMP specification, at this time it is an NVIDIA HPC compilers extension.

Using OpenMP

User's Guide Version 2023 | 93

7.8. Multiple Device Support
A program can use multiple devices on a single node.

This functionality is supported using the omp_set_default_device API call and
the device() clause on the target constructs. Our experience is that most programs
use MPI parallelism with each MPI rank selecting a single GPU to which to offload.
Some programs assign multiple MPI ranks to each GPU, in order to keep the GPU fully
occupied, though the fixed memory size of the GPU limits how effective this strategy
can be. Similarly, other programs use OpenMP thread parallelism on the CPU, with each
thread selecting a single GPU to which to offload.

7.9. Interoperability with CUDA
The HPC Compilers support interoperability of OpenMP and CUDA to the same extent
they support CUDA interoperability with OpenACC.

If OpenMP and CUDA code coexist in the same program, the OpenMP runtime and the
CUDA runtime use the same CUDA context on each GPU. To enable this coexistence,
use the compilation and linking option -cuda. CUDA-allocated data is available for use
inside OpenMP target regions with the OpenMP analog is_device_ptr to OpenACC's
deviceptr() clause.

OpenMP-allocated data is available for use inside CUDA kernels directly if the data
was allocated with the omp_target_alloc() API call; if the OpenMP data was
created with a target data map clause, it can be made available for use inside CUDA
kernels using the target data use_device_addr() clause. Calling a CUDA device
function inside an OpenMP target region is supported, as long as the CUDA function
is a scalar function, that is, does not use CUDA shared memory or any inter-thread
synchronization. Calling an OpenMP declare target function inside a CUDA kernel
is supported as long as the declare target function has no OpenMP constructs or API
calls.

7.10. Interoperability with Other OpenMP Compilers
OpenMP CPU-parallel object files compiled with NVIDIA's HPC compilers are
interoperable with OpenMP CPU-parallel object files compiled by other compilers using
the KMPC OpenMP runtime interface. Compilers supporting KMPC OpenMP include
Intel and CLANG. The HPC compilers support a GNU OpenMP interface layer as well
which provides OpenMP CPU-parallel interoperability with the GNU compilers.

For OpenMP GPU computation, there is no similar formal or informal standard library
interface for launching GPU compute constructs or managing GPU memory. There is
also no standard way to manage the device context in such a way as to interoperate
between multiple offload libraries. The HPC compilers therefore do not support

Using OpenMP

User's Guide Version 2023 | 94

interoperability of device compute offload operations and similar operations generated
with another compiler.

7.11. GNU STL
When using nvc++ on Linux, the GNU STL is thread-safe to the extent listed in the
GNU documentation as required by the C++11 standard. If an STL thread-safe issue is
suspected, the suspect code can be run sequentially inside of an OpenMP region using
#pragma omp critical sections.

User's Guide Version 2023 | 95

Chapter 8.
PCAST

Parallel Compiler Assisted Software Testing (PCAST) is a set of API calls and compiler
directives useful in testing program correctness. Numerical results produced by a
program can diverge when parts of the program are mapped onto a GPU, when new
or additional compiler options are used, or when changes are made to the program
itself. PCAST can help you determine where these divergences begin, and pinpoint the
changes that cause them. It is useful in other situations as well, including when using
new libraries, determining whether parallel execution is safe, or porting programs from
one ISA or type of processor to another.

8.1. Overview
PCAST Comparisons can be performed in two ways. The first saves the initial run's data
into a file through the pcast_compare call or directive. Add the calls or directives to
your application where you want intermediate results to be compared. Then, execute
the program to save the "golden" results where the values are known to be correct.
During subsequent runs of the program, the same pcast_compare calls or directives will
compare the computed intermediate results to the saved "golden" results and report the
differences.

The second approach works in conjunction with the NVIDIA OpenACC implementation
to compare GPU computation against the same program running on a CPU. In this
case, all compute constructs are performed redundantly, both on the CPU and GPU.
GPU results are compared against the CPU results, and differences reported. This is
essentially like the first case where the CPU-calculated values are treated as the "golden"
results. GPU to CPU comparisons can be done implicitly at the end of data regions with
the autocompare flag or explicitly after kernels with the acc_compare call or directive.

With the autocompare flag, OpenACC regions will run redundantly on the CPU and
GPU. On an OpenACC region exit where data is to be downloaded from device to host,
PCAST will compare the values calculated on the CPU with those calculated in the GPU.
Comparisons done with autocompare or acc_compare are handled in memory and do
not write results to an intermediate file.

PCAST

User's Guide Version 2023 | 96

The following table outlines the supported data types that can be used with PCAST.
Short, integer, long, and half precision data types are not supported with ABS, REL, ULP,
or IEEE options; only a bit-for-bit comparison is supported.

For floating-point types, PCAST can calculate absolute, relative, and unit-last-place
differences. Absolute differences measures only the absolute value of the difference
(subtraction) between two values, i.e. abs(A-B). Relative differences are calculated as a
ratio between the difference of values, A-B, and the previous value A; abs((A-B)/A). Unit-
least precision (Unit-last place) is a measure of the smallest distance between two values
A and B. With the ULP option set, PCAST will report if the calculated ULP between two
numbers is greater than some threshold.

Table 19 Supported Types for Tolerance Measurements

C/C++ Type Fortran Type ABS REL ULP IEEE

float real, real(4) Yes Yes Yes Yes

double double precision, real(8) Yes Yes Yes Yes

float _Complex complex, complex(4) Yes Yes Yes Yes

double _Complex complex(8) Yes Yes Yes Yes

- real(2) No No No No

(un)signed short integer(2) N/A N/A N/A N/A

(un)signed int integer, integer(4) N/A N/A N/A N/A

(un)signed long integer(8) N/A N/A N/A N/A

8.2. PCAST with a "Golden" File
The run-time call pcast_compare highlights differences between successive program
runs. It has two modes of operation, depending on the presence of a data file named
pcast_compare.dat by default. If the file does not exist, pcast_compare assumes this is
the first "golden" run. It will create the file and fill it with the computed data at each call
to pcast_compare. If the file exists, pcast_compare assumes it is a test run. It will read
the file and compare the computed data with the saved data from the file. The default
behavior is to consider the first 50 differences to be a reportable error, no matter how
small.

By default, the pcast_compare.dat file is in the same directory as the executable.
The behavior of pcast_compare, and other comparison parameters, can be changed
at runtime with the PCAST_COMPARE environment variable discussed in the
Environment Variables section.

The signature of pcast_compare for C++ and C is:

 void pcast_compare(void*, char*, size_t, char*, char*, char*, int);

The signature of pcast_compare for Fortran is:

PCAST

User's Guide Version 2023 | 97

 subroutine pcast_compare(a, datatype, len, varname, filename, funcname, lineno)
 type(*), dimension(..) :: a
 character(*) :: datatype, varname, filename, funcname
 integer(8),value :: len
 integer(4),value :: lineno

The call takes seven arguments:

 1. The address of the data to be saved or compared.
 2. A string containing the data type.
 3. The number of elements to compare.
 4. A string treated as the variable name.
 5. A string treated as the source file name.
 6. A string treated as the function name.
 7. An integer treated as a line number.

For example, the pcast_compare runtime call can be invoked like the following:

 pcast_compare(a, "float", N, "a", "pcast_compare03.c", "main", 1);

 call pcast_compare(a, 'real', n, 'a', 'pcast_compare1.f90', 'program', 9)

The caller should give meaningful names to the last four arguments. They can be
anything, since they only serve to annotate the report. It is imperative that the identifiers
are not modified between comparisons; comparisons must be called in the same order
for each program run. If, for example, you are calling pcast_compare inside a loop, it is
reasonable to set the last argument to be the loop index.

There also exists a directive form of the pcast_compare, which is functionally the same
as the runtime call. It can be used at any point in the program to compare the current
value of data to that recorded in the golden file, same as the runtime call. There are two
benefits to using the directive over the API call:

 1. The directive syntax is much simpler than the API syntax. Most of what the compare
call needs to output data to the user can be gleaned by the compiler at compile-time
(The type, variable name, file name, function name, and line number).

 #pragma nvidia compare(a[0:n])

as opposed to:

 pcast_compare(a, "float", N, "a", "pcast_compare03.c", "main", 1);

 2. The directive is only enabled when the -Mpcast flag is set, so the source need not be
changed when testing is complete. Consider the following usage examples:

 #pragma nvidia compare(a[0:N]) // C++ and C
 !$nvf compare(a(1:N)) ! Fortran

PCAST

User's Guide Version 2023 | 98

The directive interface is given below in C++ or C style, and in Fortran. Note that for
Fortran, var-list is a variable name, a subarray specification, an array element, or a
composite variable member.

 #pragma nvidia compare (var-list) // C++ and C
 !$nvf compare (var-list) ! Fortran

Let's look at an example of

 #include <stdlib.h>
 #include <openacc.h>

 int main() {
 int size = 1000;
 int i, t;
 float *a1;
 float *a2;

 a1 = (float*)malloc(sizeof(float)*size);
 a2 = (float*)malloc(sizeof(float)*size);

 for (i = 0; i < size; i++) {
 a1[i] = 1.0f;
 a2[i] = 2.0f;
 }

 for (t = 0; t < 5; t++) {
 for(i = 0; i < size; i++) {
 a2[i] += a1[i];
 }
 pcast_compare(a2, "float", size, "a2", "example.c", "main", 23);
 }
 return 0;
 }

Compile the example using these compiler options:

 > nvc -fast -o a.out example.c

Compiling with redundant or autocompare options are not required to use
pcast_compare. Once again, running the compiled executable using the options below,
results in the following output:

 > PCAST_COMPARE=summary,rel=1 ./out.o
 datafile pcast_compare.dat created with 5 blocks, 5000 elements, 20000 bytes
 > PCAST_COMPARE=summary,rel=1 ./out.o
 datafile pcast_compare.dat compared with 5 blocks, 5000 elements, 20000 bytes
 no errors found
 relative tolerance = 0.100000, rel=1

Running the program for the first time, the data file "pcast_compare.dat" is created.
Subsequent runs compare calculated data against this file. Use the PCAST_COMPARE
environment variable to set the name of the file, or force the program to create a new file
on the disk with PCAST_COMPARE=create.

PCAST

User's Guide Version 2023 | 99

The same example above can be written with the compare directive. Notice how much
more concise the directive is to the update host and pcast_compare calls.

 #include <stdlib.h>
 #include <openacc.h>

 int main() {
 int size = 1000;
 int i, t;
 float *a1;
 float *a2;

 a1 = (float*)malloc(sizeof(float)*size);
 a2 = (float*)malloc(sizeof(float)*size);

 for (i = 0; i < size; i++) {
 a1[i] = 1.0f;
 a2[i] = 2.0f;
 }

 for (t = 0; t < 5; t++) {
 for(i = 0; i < size; i++) {
 a2[i] += a1[i];
 }
 #pragma nvidia compare(a2[0:size])
 }
 return 0;
 }

With the directive, you will want to add "-Mpcast" to the compilation line to enable
the directive. Other than that, the output from this program is identical to the runtime
example above.

8.3. PCAST with OpenACC
PCAST can also be used with the NVIDIA OpenACC implementation to compare GPU
computation against the same program running on a CPU. In this case, all compute
constructs are performed redundantly on both the CPU and GPU. The CPU results are
considered to be the "golden master" copy which GPU results are compared against.

There are two ways to perform comparisons with GPU-calculated results. The first
is with the explicit call or directive acc_compare. To use acc_compare, you must
compile with -acc -gpu=redundant to force the CPU and GPU to compute results
redundantly. Then, insert calls to acc_compare or put an acc compare directive at
points where you want to compare the GPU-computed values against those computed
by the CPU.

The second approach is to turn on autocompare mode by compiling with -acc -
gpu=autocompare. In autocompare mode, PCAST will automatically perform a
comparison at each point where data is moved from the device to the host. It does
not require the programmer to add any additional directives or runtime calls; it's a
convenient way to do all comparisons at the end of a data region. If there are multiple
compute kernels within a data region, and you're only interested in one specific kernel,
you should use the previously-mentioned acc_compare to target a specific kernel. Note
that autocompare mode implies -gpu=redundant.

PCAST

User's Guide Version 2023 | 100

During redundant execution, the compiler will generate both CPU and GPU code
for each compute construct. At runtime, both the CPU and GPU versions will
execute redundantly, with the CPU code reading and modifying values in system
memory and the GPU reading and modifying values in device memory. Insert calls to
acc_compare() calls (or the equivalent acc compare directive) at points where you
want to compare the GPU-computed values against CPU-computed values. PCAST
treats the values generated by the CPU code as the "golden" values. It will compare those
results against GPU values. Unlike pcast_compare, acc_compare does not write to an
intermediary file; the comparisons are done in-memory.

acc_compare only has two arguments: a pointer to the data to be compared, hostptr,
and the number of elements to compare, count. The type can be inferred in the
OpenACC runtime, so it doesn't need to be specified. The C++ and C interface is given
below:

 void acc_compare(void *, size_t);

And in Fortran:

 subroutine acc_compare(a)
 subroutine acc_compare(a, len)
 type(*), dimension(*) :: a
 integer(8), value :: len

You can call acc_compare on any variable or array that is present in device memory.
You can also call acc_compare_all (no arguments) to compare all values that are
present in device memory against the correponding values in host memory.

 void acc_compare_all()

 subroutine acc_compare_all()

Directive forms of the acc_compare calls exist. They work the same as the API calls
and can be used in lieu of them. Similar to PCAST compare directives, acc compare
directives are ignored when redundant or autocompare modes are not enabled on the
compilation line.

The acc compare directive takes one or more arguments, or the 'all' clause (which
corresponds to acc_compare_all(). The interfaces are given below in C++ or C,
and Fortran respectively. Argument "var-list" can be a variable name, a sub-array
specification, and array element, or a composite variable member.

 #pragma acc compare [(var-list) | all]

 $!acc compare [(var-list) | all]

For example:

 #pragma acc compare(a[0:N])
 #pragma acc compare all

PCAST

User's Guide Version 2023 | 101

 !$acc compare(a, b)
 !$acc compare(a(1:N))
 !$acc compare all

Consider the following OpenACC program that uses the acc_compare() API call and
an acc compare directive. This Fortran example uses real*4 and real*8 arrays.

 program main
 use openacc
 implicit none
 parameter N = 1000
 integer :: i
 real :: a(N)
 real*4 :: b(N)
 real(4) :: c(N)
 double precision :: d(N)
 real*8 :: e(N)
 real(8) :: f(N)

 d = 1.0d0
 e = 0.1d0

 !$acc data copyout(a, b, c, f) copyin(d, e)

 !$acc parallel loop
 do i = 1,N
 a(i) = 1.0
 b(i) = 2.0
 c(i) = 0.0
 enddo
 !$acc end parallel

 !$acc compare(a(1:N), b(1:N), c(1:N))

 !$acc parallel loop
 do i = 1,N
 f(i) = d(i) * e(i)
 enddo
 !$acc end parallel

 !$acc compare(f)

 !$acc parallel loop
 do i = 1,N
 a(i) = 1.0
 b(i) = 1.0
 c(i) = 1.0
 enddo
 !$acc end parallel

 call acc_compare(a, N)
 call acc_compare(b, N)
 call acc_compare(c, N)

 !$acc parallel loop
 do i = 1,N
 f(i) = 1.0D0
 enddo
 !$acc end parallel

 call acc_compare_all()

 !$acc parallel loop
 do i = 1,N
 a(i) = 3.14;
 b(i) = 3.14;

PCAST

User's Guide Version 2023 | 102

 c(i) = 3.14;
 f(i) = 3.14d0;
 enddo
 !$acc end parallel

 ! In redundant mode, no comparison is performed here. In
 ! autocompare mode, a comparison is made for a, b, c, and f (but
 ! not e and d), since they are copied out of the data region.

 !$acc end data

 call verify(N, a, b, c, f)
 end program

 subroutine verify(N, a, b, c, f)
 integer, intent(in) :: N
 real, intent(in) :: a(N)
 real*4, intent(in) :: b(N)
 real(4), intent(in) :: c(N)
 real(8), intent(in) :: f(N)
 integer :: i, errcnt

 errcnt = 0
 do i=1,N
 if(abs(a(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(b(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(c(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(f(i) - 3.14d0) .gt. 1.0d-06) then
 errcnt = errcnt + 1
 endif
 end do

 if(errcnt /= 0) then
 write (*, *) "FAILED"
 else
 write (*, *) "PASSED"
 endif
 end subroutine verify

The program can be compiled with the following command:

 > nvfortran -fast -acc -gpu=redundant -Minfo=accel example.F90
 main:
 16, Generating copyout(a(:),b(:))
 Generating copyin(e(:))
 Generating copyout(f(:),c(:))
 Generating copyin(d(:))
 18, Generating Tesla code
 19, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 26, Generating acc compare(c(:),b(:),a(:))
 28, Generating Tesla code
 29, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 34, Generating acc compare(f(:))
 36, Generating Tesla code

PCAST

User's Guide Version 2023 | 103

 37, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 48, Generating Tesla code
 49, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 56, Generating Tesla code
 57, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

Here, you can see where the acc compare directives are generated on lines 26 and 34.
The program can be run with the following command:

 > ./a.out
 PASSED

As you can see, no PCAST output is generated when the comparisons match. We can get
more information with the summary option:

 > PCAST_COMPARE=summary ./a.out
 PASSED
 compared 13 blocks, 13000 elements, 68000 bytes
 no errors found
 absolute tolerance = 0.00000000000000000e+00, abs=0

There are 13 blocks compared. Let's count the blocks in the compare calls.

 !$acc compare(a(1:N), b(1:N), c(1:N))

Compares three blocks, one each for a, b, and c.

 !$acc compare(f)

Compares one block for f.

 call acc_compare(a, N)
 call acc_compare(b, N)
 call acc_compare(c, N)

Each call compares one block for their respective array.

 call acc_compare_all()

Compares one block for each array present on the device (a, b, c, d, e, and f) for a total of
6 blocks.

If the same example is compiled with autocompare, we'll see four additional
comparisons, since the four arrays that are copied out (with the copyout clause) are
compared at the end of the data region.

 > nvfortran -fast -acc -gpu=autocompare example.F90
 > PCAST_COMPARE=summary ./a.out
 PASSED
 compared 17 blocks, 17000 elements, 88000 bytes
 no errors found
 absolute tolerance = 0.00000000000000000e+00, abs=0

PCAST

User's Guide Version 2023 | 104

8.4. Limitations
There are currently a few limitations with using PCAST that are worth keeping in mind.

‣ Comparisons are not thread-safe. If you are using PCAST with multiple threads,
ensure that only one thread is doing the comparisons. This is especially true if you
are using PCAST with MPI. If you use pcast_compare with MPI, you must make
sure that only one thread is writing to the comparison file. Or, use a script to set
PCAST_COMPARE to encode the file name with the MPI rank.

‣ Comparisons must be done with like types; you cannot compare one type with
another. It is not possible to, for example, check for differing results after changing
from double precision to single. Comparisons are limited to those present in table
Table 19. Currently there is no support for structured or derived types.

‣ The -gpu=managed option is incompatible with autocompare and acc_compare.
Both the CPU and GPU need to calculate result separately and to do so they must
have their own working memory spaces.

‣ If you do any data movement on the device, you must account for it on the host.
For example, if you are using CUDA-aware MPI or GPU-accelerated libraries that
modify device data, then you must also make the host aware of the changes. In
these cases it is helpful to use the host_data clause, which allows you to use device
addresses within host code.

8.5. Environment Variables
Behavior of PCAST/Autocompare is controlled through the PCAST_COMPARE
variable. Options can be specified in a comma-separated list:
PCAST_COMPARE=<opt1>,<opt2>,...

If no options are specified, the default is to perform comparisons with abs=0.
Comparison options are not mutually exclusive. PCAST can compare absolute
differences with some n=3 and relative differences with a different threshold, e.g. n=5;
PCAST_COMPARE=abs=3,rel=5,....

You can specify either an absolute or relative location to be used with the datafile option.
The parent directory should be owned by the same user executing the comparisons and
the datafile should have the appropriate read/write permissions set.

Table 20 PCAST_COMPARE Options

Option Description

abs=n Compare absolute difference; tolerate differences up to 10^(-n), only
applicable to floating point types. Default value is 0

create Specifies that this is the run that will produce the reference file
(pcast_compare only)

compare Specifies that the current run will be compared with a reference file
(pcast_compare only)

PCAST

User's Guide Version 2023 | 105

Option Description

datafile="name" Name of the file that data will be saved to, or compared against. If empty will
use the default, 'pcast_compare.dat' (pcast_compare only)

disable Calls to pcast_compare, acc_compare, acc_compare_all, and directives (pcast
compare, acc compare, and acc compare) all immediately return from the
runtime with no effect. Note that this doesn't disable redundant execution; that
will require a recompile.

ieee Compare IEEE NaN checks (only implemented for floats and doubles)

outputfile="name" Save comparison output to a specific file. Default behavior is to output to stderr

patch Patch errors (outside tolerance) with correct values

patchall Patch all differences (inside and outside tolerance) with correct values

rel=n Compare relative difference; tolerated differences up to 10^(-n), only
applicable to floating point types. Default value is 0.

report=n Report up to n (default of 50) passes/fails

reportall Report all passes and fails (overrides limit set in report=n)

reportpass Report passes; respects limit set with report=n

silent Suppress output - overrides all other output options, including summary and
verbose

stop Stop at first differences

summary Print summary of comparisons at end of run

ulp=n Compare Unit of Least Precision difference (only for floats and doubles)

verbose Outputs more details of comparison (including patches)

verboseautocompare Outputs verbose reporting of what and where the host is comparing
(autocompare only)

User's Guide Version 2023 | 106

Chapter 9.
USING MPI

MPI (the Message Passing Interface) is an industry-standard application programming
interface designed for rapid data exchange between processors in a distributed-memory
environment. MPI is computer software used in scalable computer systems that allows
the processes of a parallel application to communicate with one another.

The NVIDIA HPC SDK includes a pre-compiled version of Open MPI. You can build
using alternate versions of MPI with the -I, -L, and -l options.

This section describes how to use Open MPI with the NVIDIA HPC Compilers.

9.1. Using Open MPI on Linux
The NVIDIA HPC Compilers for Linux ship with a pre-compiled version of Open MPI
that includes everything required to compile, execute and debug MPI programs using
Open MPI.

To build an application using Open MPI, use the Open MPI compiler wrappers: mpicc,
mpic++ and mpifort. These wrappers automatically set up the compiler commands
with the correct include file search paths, library directories, and link libraries.

The following MPI example program uses Open MPI.

$ cd my_example_dir
$ cp -r /opt/nvidia/hpc_sdk/Linux_x86_64/2023/examples/MPI/samples/mpihello .
$ cd mpihello
$ export PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/23.7/mpi/openmpi/bin:$PATH
$ mpifort mpihello.f -o mpihello

$ mpiexec mpihello
Hello world! I'm node 0

$ mpiexec -np 4 mpihello
Hello world! I'm node 0
Hello world! I'm node 2
Hello world! I'm node 1
Hello world! I'm node 3

Using MPI

User's Guide Version 2023 | 107

To build an application using Open MPI for debugging, add -g to the compiler wrapper
command line arguments.

9.2. Using MPI Compiler Wrappers
When you use MPI compiler wrappers to build with the -fpic or -mcmodel=medium
options, then you must specify -fortranlibs to link with the correct libraries. Here
are a few examples:

For a static link to the MPI libraries, use this command:
% mpifort hello.f

For a dynamic link to the MPI libraries, use this command:
% mpifort hello.f -fortranlibs

To compile with -fpic, which, by default, invokes dynamic linking, use this command:
% mpifort -fpic -fortranlibs hello.f

To compile with -mcmodel=medium, use this command:
% mpifort -mcmodel=medium -fortranlibs hello.f

9.3. Testing and Benchmarking
The /opt/nvidia/hpc_sdk/Linux_x86_64/2023/examples/MPI directory
contains various benchmarks and tests. Copy this directory into a local working
directory by issuing the following command:
% cp -r /opt/nvidia/hpc_sdk/Linux_x86_64/2023/examples/MPI .

There are several example programs available in this directory.

User's Guide Version 2023 | 108

Chapter 10.
CREATING AND USING LIBRARIES

A library is a collection of functions or subprograms that are grouped for reference
and ease of linking. This section discusses issues related to NVIDIA-supplied compiler
libraries. Specifically, it addresses the use of C++ and C builtin functions in place of the
corresponding libc routines, creation of dynamically linked libraries, known as shared
objects or shared libraries, and math libraries.

This section does not duplicate material related to using libraries for inlining which are
described in Creating an Inline Library.

NVIDIA provides libraries that export C interfaces by using Fortran modules.

10.1. Using builtin Math Functions in C++ and C
The name of the math header file is math.h. Include the math header file in all of your
source files that use a math library routine as in the following example, which calculates
the inverse cosine of 3.5.
#include <math.h>
#include<stdio.h>
#define PI 3.1415926535
void main()
{
 double x, y;
 x = PI/3.0;
 y = acos(0.5);
 printf(‘%f %f\n’,x,y);
}

Including math.h causes the NVIDIA C++ and C compilers to use builtin functions,
which are much more efficient than library calls. In particular, if you include math.h,
the following intrinsics calls are processed using builtins:

abs acosf asinf atan atan2 atan2f

atanf cos cosf exp expf fabs

fabsf fmax fmaxf fmin fminf log

log10 log10f logf pow powf sin

Creating and Using Libraries

User's Guide Version 2023 | 109

sinf sqrt sqrtf tan tanf

10.2. Using System Library Routines
Release 23.7 of the NVIDIA HPC Compilers runtime libraries makes use of Linux
system libraries to implement, for example, OpenMP and Fortran I/O. The NVIDIA HPC
Compilers runtime libraries make use of several additional system library routines.

On 64-bit Linux systems, the system library routines used include these:

aio_error aio_write pthread_mutex_init sleep

aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock

aio_suspend pthread_attr_init setrlimit

10.3. Creating and Using Shared Object Files on
Linux
All of the NVIDIA HPC Fortran, C++ and C compilers support creation of shared object
files. Unlike statically-linked object and library files, shared object files link and resolve
references with an executable at runtime via a dynamic linker supplied with your
operating system. The NVIDIA HPC Compilers must generate position independent
code to support creation of shared objects by the linker. However, this is not the default.
You must create object files with position independent code and shared object files that
will include them.

10.3.1. Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

 1. Create an object file with position independent code.
To do this, compile your code with the appropriate NVIDIA HPC compiler using
the -fpic option, or one of the equivalent options, such as -fPIC, -Kpic, and
-KPIC, which are supported for compatibility with other systems. For example, use
the following command to create an object file with position independent code using
nvfortran:
% nvfortran -c -fpic tobeshared.f

 2. Produce a shared object file.

Creating and Using Libraries

User's Guide Version 2023 | 110

To do this, use the appropriate NVIDIA HPC compiler to invoke the linker supplied
with your system. It is customary to name such files using a .so filename extension.
On Linux, you do this by passing the -shared option to the linker:
% nvfortran -shared -o tobeshared.so tobeshared.o

Compilation and generation of the shared object can be performed in one step using
both the -fpic option and the appropriate option for generation of a shared object
file.

 3. Use a shared object file.
To do this, use the appropriate NVIDIA HPC compiler to compile and link the
program which will reference functions or subroutines in the shared object file, and
list the shared object on the link line, as shown here:
% nvfortran -o myprog myprog.f tobeshared.so

 4. Make the executable available.

You now have an executable myprog which does not include any code from functions
or subroutines in tobeshared.so, but which can be executed and dynamically
linked to that code. By default, when the program is linked to produce myprog, no
assumptions are made on the location of tobeshared.so. Therefore, for myprog to
execute correctly, you must initialize the environment variable LD_LIBRARY_PATH
to include the directory containing tobeshared.so. If LD_LIBRARY_PATH is
already initialized, it is important not to overwrite its contents. If you have placed
tobeshared.so in directory /home/myusername/bin, you can initialize
LD_LIBRARY_PATH to include that directory and preserve its existing contents, as
shown in the following:
% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":/home/myusername/bin

If you know that tobeshared.so always resides in a specific directory, you can
create the executable myprog in a form that assumes this directory by using the -R
link-time option. For example, you can link as follows:
% nvfortran -o myprog myprof.f tobeshared.so -R/home/myusername/bin

As with the -L option, there is no space between -R and the directory name. If the
-R option is used, it is not necessary to initialize LD_LIBRARY_PATH.

In the previous example, the dynamic linker always looks in /home/myusername/
bin to resolve references to tobeshared.so. By default, if the LD_LIBRARY_PATH
environment variable is not set, the linker only searches /usr/lib and /lib for
shared objects.

10.3.2. ldd Command
The ldd command is a useful tool when working with shared object files and
executables that reference them. When applied to an executable, as shown in the
following example, ldd lists all shared object files referenced in the executable along
with the pathname of the directory from which they will be extracted.
% ldd myprog

Creating and Using Libraries

User's Guide Version 2023 | 111

If the pathname is not hard-coded using the -R option, and if LD_LIBRARY_PATH is
not initialized, the pathname is listed as "not found". For more information on ldd, its
options and usage, see the online man page for ldd.

10.4. Using LIB3F
The NVFORTRAN compiler includes support for the de facto standard LIB3F library
routines. See the Fortran Language Reference manual for a complete list of available
routines in the NVIDIA implementation of LIB3F.

10.5. LAPACK, BLAS and FFTs
The NVIDIA HPC SDK includes a BLAS and LAPACK library based on the customized
OpenBLAS project source and built with the NVIDIA HPC Compilers. The LAPACK
library is called liblapack.a . The BLAS library is called libblas.a .

To use these libraries, simply link them in using the -l option when linking your main
program:
% nvfortran myprog.f -llapack -lblas

10.6. Linking with ScaLAPACK
The ScaLAPACK libraries are automatically installed with each MPI library version
which accompanies an NVIDIA HPC SDK installation. You can link with the
ScaLAPACK libraries by specifying -Mscalapack on any of the MPI wrapper
command lines. For example:
% mpifort myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the -Mscalapack
switch is specified. If you wish to use a different BLAS library, and still use the
-Mscalapack switch, then you can list the set of libraries explicitly on your link line.

10.7. The C++ Standard Template Library
On Linux, the GNU-compatible nvc++ compiler uses the GNU g++ header files and
Standard Template Library (STL) directly. The versions used are dependent on the
version of the GNU compilers installed on your system, or specified when makelocalrc
was run during installation of the NVIDIA HPC Compilers.

User's Guide Version 2023 | 112

Chapter 11.
ENVIRONMENT VARIABLES

Environment variables allow you to set and pass information that can alter the default
behavior of the NVIDIA HPC compilers and the executables which they generate. This
section includes explanations of the environment variables specific to the NVIDIA HPC
Compilers. .

‣ Standard OpenMP environment variables are used to control the behavior of
OpenMP programs; these environment variables are described in the OpenMP
Specification available online.

‣ Several NVIDIA-specific environment variables can be used to control the
behavior of OpenACC programs. OpenACC-related environment variables
are described in the OpenACC section: Environment Variables and the
OpenACC Getting Started Guide, docs.nvidia.com/hpc-sdk/compilers/pdf/
hpc23%RELEASE_VERSION_MINORopenacc_gs.pdf.

11.1. Setting Environment Variables
Before we look at the environment variables that you might use with the HPC compilers
and tools, let’s take a look at how to set environment variables. To illustrate how to set
these variables in various environments, let’s look at how a user might initialize a Linux
shell environment to enable use of the NVIDIA HPC Compilers.

11.1.1. Setting Environment Variables on Linux
Let's assume that you want access to the NVIDIA products when you log in, and that
you installed the NVIDIA HPC SDK in /opt/nvidia/hpc_sdk. For access at startup,
you can add the following lines to your shell startup files on a Linux_x86_64 system.

For csh, use these commands:
 % setenv NVHPCSDK /opt/nvidia/hpc_sdk
 % setenv MANPATH "$MANPATH":$NVHPCSDK/Linux_x86-64/23.7/compilers/man
 % set path = ($NVHPCSDK/Linux_x86_64/23.7/compilers/bin $path)

For bash, sh, zsh, or ksh, use these commands:
 $ NVHPCSDK=/opt/nvidia/hpc_sdk; export NVHPCSDK
 $ MANPATH=$MANPATH:$NVHPCSDK/Linux_x86_64/23.7/compilers/man; export MANPATH
 $ PATH=$NVHPCSDK/Linux_x86_64/23.7/compilers/bin:$PATH; export PATH

Environment Variables

User's Guide Version 2023 | 113

On a Linux/OpenPOWER system replace Linux_x86_64 with Linux_ppc64le, and on
a Linux/Arm Server system replace it with Linux_aarch64.

11.2. HPC Compiler Related Environment Variables
The following table provides a listing of environment variables that affect the behavior
of the NVIDIA HPC Compilers and the executables they generate.

Table 21 NVIDIA HPC Compilers Environment Variable Summary

Environment Variable Description

FORTRANOPT Allows the user to specify that the NVIDIA Fortran compiler should use
VAX I/O or other custom I/O conventions.

FORT_FMT_RECL Allows the user to change the default Fortran stdout (unit 6) line length
before a line break occurs. Default: 80 bytes.

GMON_OUT_PREFIX Specifies the name of the output file for programs that are compiled
and linked with the -pg option.

LD_LIBRARY_PATH Specifies a colon-separated set of directories where libraries should
first be searched, prior to searching the standard set of directories.

MANPATH Sets the directories that are searched for manual pages associated
with the command that the user types.

NO_STOP_MESSAGE If used, the execution of a plain STOP statement does not produce the
message FORTRAN STOP.

PATH Determines which locations are searched for commands the user may
type.

NVCOMPILER_FPU_STATE Manages the initial state of the processor's floating point control and
status register at program startup.

NVCOMPILER_TERM Controls the stack traceback and just-in-time debugging functionality.

NVCOMPILER_TERM_DEBUG Overrides the default behavior when NVCOMPILER_TERM is set to
debug.

PWD Allows you to display the current directory.

STATIC_RANDOM_SEED Forces the seed returned by RANDOM_SEED to be constant.

TMP Sets the directory to use for temporary files created during execution
of the HPC compilers and tools; interchangeable with TMPDIR.

TMPDIR Sets the directory to use for temporary files created during execution
of the HPC compilers and tools.

11.3. HPC Compilers Environment Variables
Use the environment variables listed in Table 21 to alter the default behavior of the
NVIDIA HPC Compilers and the executables which they generate. This section provides
more detailed descriptions about the variables in this table.

Environment Variables

User's Guide Version 2023 | 114

11.3.1. FORTRANOPT
FORTRANOPT allows the user to adjust the behavior of the NVIDIA Fortran compiler.

‣ If FORTRANOPT exists and contains the value vaxio, the record length in the open
statement is in units of 4-byte words, and the $ edit descriptor only has an effect for
lines beginning with a space or a plus sign (+).

‣ If FORTRANOPT exists and contains the value format_relaxed, an I/O item
corresponding to a numerical edit descriptor (such as F, E, I, and so on) is not
required to be a type implied by the descriptor.

‣ If FORTRANOPT exists and contains the value no_minus_zero, an I/O item
corresponding to a numerical edit descriptor (such as F, E, I, and so on) equal to
negative zero will be output as if it were positive zero.

‣ If FORTRANOPT exists and contains the value crif, a sequential formatted or list-
directed record is allowed to be terminated with the character sequence \r\n
(carriage return, newline). This approach is useful when reading records from a file
produced on a Windows system.

The following example causes the NVIDIA Fortran compiler to use VAX I/O
conventions:
% setenv FORTRANOPT vaxio

11.3.2. FORT_FMT_RECL
The FORT_FMT_RECL environment variable specifies the maximum line in bytes for
Fortran formatted output to standard out (unit 6) before a newline will be generated.

If the environment variable FORT_FMT_RECL is present, the Fortran runtime library will
use the value specified as the number of bytes to output before a newline is generated.

The default value of FORT_FMT_RECL is 80.

‣ In csh:
% setenv FORT_FMT_RECL length-in-bytes

‣ In bash, sh, zsh, or ksh:
$ FORT_FMT_RECL=length-in-bytes
$ export FORT_FMT_RECL

11.3.3. GMON_OUT_PREFIX
GMON_OUT_PREFIX specifies the name of the output file for programs that are compiled
and linked with the -pg option. The default name is gmon.out.

If GMON_OUT_PREFIX is set, the name of the output file has GMON_OUT_PREFIX as a
prefix. Further, the suffix is the pid of the running process. The prefix and suffix are
separated by a dot. For example, if the output file is mygmon, then the full filename may
look something similar to this: mygmon.0012348567.

The following example causes the NVIDIA Fortran compiler to use nvout as the output
file for programs compiled and linked with the -pg option.
% setenv GMON_OUT_PREFIX nvout

Environment Variables

User's Guide Version 2023 | 115

11.3.4. LD_LIBRARY_PATH
The LD_LIBRARY_PATH variable is a colon-separated set of directories specifying where
libraries should first be searched, prior to searching the standard set of directories. This
variable is useful when debugging a new library or using a nonstandard library for
special purposes.

The following csh example adds the current directory to your LD_LIBRARY_PATH
variable.
% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"./"

11.3.5. MANPATH
The MANPATH variable sets the directories that are searched for manual pages associated
with the commands that the user types. When using NVIDIA HPC Compilers, it is
important that you set your PATH to include the location of the compilers and then set
the MANPATH variable to include the man pages associated with the products.

The following csh example targets the Linux_x86_64 version of the compilers and
enables access to the manual pages associated with them. The settings are similar for
Linux_ppc64le or Linux_aarch64 targets:
% set path = (/opt/nvidia/hpc_sdk/Linux_x86_64/23.7/compilers/bin $path)
% setenv MANPATH "$MANPATH":/opt/nvidia/hpc_sdk/Linux_x86_64/23.7/compilers/man

11.3.6. NO_STOP_MESSAGE
If the NO_STOP_MESSAGE variable exists, the execution of a plain STOP statement does
not produce the message FORTRAN STOP. The default behavior of the NVIDIA Fortran
compiler is to issue this message.

11.3.7. PATH
The PATH variable determines the directories that are searched for commands that the
user types. When using the NVIDIA HPC compilers, it is important that you set your
PATH to include the location of the compilers.

The following csh example initializes path settings to use the Linux_x86_64 versions of
the NVIDIA HPC Compilers. Settings for Linux_ppc64le and Linux_aarch64 are done
similarly:
% set path = (/opt/nvidia/hpc_sdk/Linux_x86_64/23.7/compilers/bin $path)

11.3.8. NVCOMPILER_FPU_STATE
The NVCOMPILER_FPU_STATE environment variable manages the initial state of
the processor's floating point control and status register. NVCOMPILER_FPU_STATE
eliminates the need to compile the main entry point (c/c++/Fortran) of programs with -

Environment Variables

User's Guide Version 2023 | 116

M[no]daz, -M[no]flushz, or -Ktrap= command line options, as those options can
now be specified at runtime.

Linux only

If the environment variable NVCOMPILER_FPU_STATE is present, all settings from the
command line options -M[no]daz, -M[no]flushz, or -Ktrap= are ignored and
the FPU is initialized according to the options specified. NVCOMPILER_FPU_STATE with
no options resets the floating-point control and status register to the system defaults.

The value of NVCOMPILER_FPU_STATE is a comma-separated list of options. The
commands for setting the environment variable follow.

‣ In csh:
% setenv NVCOMPILER_FPU_STATE option[,option...]

‣ In bash, sh, zsh, or ksh:
$ NVCOMPILER_FPU_STATE=option[,option...]
$ export NVCOMPILER_FPU_STATE

Table 22 lists the supported values for option.

By default, these options are taken from the compiler command line options -
M[no]daz, -M[no]flushz, and -Ktrap=.

Table 22 Supported NVCOMPILER_FPU_STATE options

fp Shorthand for inv,divz,ovf

inv Raise exception on floating-point invalid operation (infinity - infinity, infinity / infinity,
0 / 0, ...)

invalid Alias for inv

denorm Raise exception with floating-point denormalized operands (x86_64 only)

divz Raise exception on floating-point divide-by-zero

zero Alias for divz

ovf Raise exception on floating-point overflow in result

overflow Alias for ovf

unf Raise exception on floating-point underflow in result

underflow Alias for unf

inexact Raise exception on floating-point inexact result

daz Convert denormal source operands to zero

nodaz Do not convert denormal source operands to zero

ftz Flush underflow results to zero

flushz Alias for ftz

noftz Do not flush underflow results to zero

noflushz Alias for noftz

Environment Variables

User's Guide Version 2023 | 117

print Print to stderr the state of floating point control and status register before and after
processing of environment variable NVCOMPILER_FPU_STATE

debug Alias for print

11.3.9. NVCOMPILER_TERM
The NVCOMPILER_TERM environment variable controls the stack traceback and just-in-
time debugging functionality. The runtime libraries use the value of NVCOMPILER_TERM
to determine what action to take when a program abnormally terminates.

The value of NVCOMPILER_TERM is a comma-separated list of options. The commands
for setting the environment variable follow.

‣ In csh:
% setenv NVCOMPILER_TERM option[,option...]

‣ In bash, sh, zsh, or ksh:
$ NVCOMPILER_TERM=option[,option...]
$ export NVCOMPILER_TERM

Table 23 lists the supported values for option. Following the table is a complete
description of each option that indicates specifically how you might apply the option.

By default, all of these options are disabled.

Table 23 Supported NVCOMPILER_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)

[no]trace Enables/disables stack traceback on error

[no]trace-fp Enables/disables stack traceback and printing of SIMD registers (ymm/zmm) on
error (Linux x86_64 only)

[no]signal Enables/disables establishment of signal handlers for common signals that cause
program termination

[no]abort Enables/disables calling the system termination routine abort()

[no]debug

This enables/disables just-in-time debugging. The default is nodebug.

When NVCOMPILER_TERM is set to debug, the command to which
NVCOMPILER_TERM_DEBUG is set is invoked on error.

[no]trace

This enables/disables stack traceback on error.

[no]trace-fp

This enables/disables stack traceback and printing of SIMD registers (ymm/zmm) on
error. (Linux x86_64 only)

Environment Variables

User's Guide Version 2023 | 118

[no]signal

This enables/disables establishing signal handlers for the most common signals that
cause program termination. The default is nosignal. Setting trace and debug
automatically enables signal. Specifically setting nosignal allows you to override
this behavior.

[no]abort

This enables/disables calling the system termination routine abort(). The default is
noabort. When noabort is in effect the process terminates by calling _exit(127).

On Linux, when abort is in effect, the abort routine creates a core file and exits with
code 127.

A few runtime errors just print an error message and call exit(127), regardless of
the status of NVCOMPILER_TERM. These are mainly errors such as specifying an invalid
environment variable value where a traceback would not be useful.

If it appears that abort() does not generate core files on a Linux system, be sure to
unlimit the coredumpsize. You can do this in these ways:

‣ Using csh:
% limit coredumpsize unlimited
% setenv NVCOMPILER_TERM abort

‣ Using bash, sh, zsh, or ksh:
$ ulimit -c unlimited
$ export NVCOMPILER_TERM=abort

To debug a core file with gdb, invoke gdb with the --core option. For example, to view a
core file named "core" for a program named "a.out":
$ gdb --core=core a.out

For more information on why to use this variable, refer to Stack Traceback and JIT
Debugging.

11.3.10. NVCOMPILER_TERM_DEBUG
The NVCOMPILER_TERM_DEBUG variable may be set to override the default behavior
when NVCOMPILER_TERM is set to debug.

The value of NVCOMPILER_TERM_DEBUG should be set to the command line used to
invoke the program. For example:
gdb --quiet --pid %d

The first occurrence of %d in the NVCOMPILER_TERM_DEBUG string is replaced by the
process id. The program named in the NVCOMPILER_TERM_DEBUG string must be found
on the current PATH or specified with a full path name.

Environment Variables

User's Guide Version 2023 | 119

11.3.11. PWD
The PWD variable allows you to display the current directory.

11.3.12. STATIC_RANDOM_SEED
You can use STATIC_RANDOM_SEED to force the seed returned by the Fortran 90/95
RANDOM_SEED intrinsic to be constant. The first call to RANDOM_SEED without
arguments resets the random seed to a default value, then advances the seed by a
variable amount based on time. Subsequent calls to RANDOM_SEED without arguments
reset the random seed to the same initial value as the first call. Unless the time is
exactly the same, each time a program is run a different random number sequence is
generated. Setting the environment variable STATIC_RANDOM_SEED to YES forces the
seed returned by RANDOM_SEED to be constant, thereby generating the same sequence of
random numbers at each execution of the program.

11.3.13. TMP
You can use TMP to specify the directory to use for placement of any temporary
files created during execution of the NVIDIA HPC Compilers. This variable is
interchangeable with TMPDIR.

11.3.14. TMPDIR
You can use TMPDIR to specify the directory to use for placement of any temporary files
created during execution of the NVIDIA HPC Compilers.

11.4. Using Environment Modules on Linux
On Linux, if you use the Environment Modules package, that is, the module load
command, the NVIDIA HPC Compilers include a script to set up the appropriate
module files. The install script will generate environment module files for you as part of
the set up process.

Assuming your installation base directory is /opt/nvidia/hpc_sdk, the environment
modules will be installed under /opt/nvidia/hpc_sdk/modulefiles. There will be
three sets of module files:

 1. nvhpc

Adds environment variable settings for the NVIDIA HPC Compilers, CUDA
libraries, and additional libraries such as MPI, NCCL, and NVSHMEM.

 2. nvhpc-nompi

Adds environment variable settings for the NVIDIA HPC Compilers, CUDA
libraries, and additional libraries such as NCCL and NVSHMEM. This will not
include MPI, if you wish to use an alternate MPI implementation.

 3. nvhpc-byo-compilers

Environment Variables

User's Guide Version 2023 | 120

Adds environment variable settings for the CUDA libraries and additional libraries
such as NCCL and NVSHMEM. This will not include the NVIDIA HPC Compilers
nor MPI, if you wish to use alternate compilers and MPI.

You can load the nvhpc environment module for the 20.11 release as follows:

 % module load nvhpc/23.7

To see what versions of nvhpc are available on this system, use this command:

 % module avail nvhpc

The module load command sets or modifies the environment variables as indicated in
the following table.

This Environment Variable... Is set or modified by the module load command

CC Full path to nvc (nvhpc and nvhpc-nompi only)

CPATH Prepends the math libraries include directory, the MPI include
directory (nvhpc only), and NCCL and NVSHMEM include
directories

CPP C preprocessor, normally cpp (nvhpc and nvhpc-nompi only)

CXX Path to nvc++ (nvhpc and nvhpc-nompi only)

FC Full path to nvfortran (nvhpc and nvhpc-nompi only)

F90 Full path to nvfortran (nvhpc and nvhpc-nompi only)

F77 Full path to nvfortran (nvhpc and nvhpc-nompi only)

LD_LIBRARY_PATH Prepends the CUDA library directory, the NVIDIA HPC Compilers
library directory (nvhpc and nvhpc-nompi only), math libraries
library directory, MPI library directory (nvhpc only), and NCCL
and NVSHMEM library directories

MANPATH Prepends the NVIDIA HPC Compilers man page directory (nvhpc
and nvhpc-nompi only)

OPAL_PREFIX Full path to the MPI directory (nvhpc only), e.g. /opt/nvidia/
hpc_sdk/Linux_x86_64/23.7/comm_libs/mpi

PATH Prepends the CUDA bin directory, the MPI bin directory (nvhpc
only), and the NVIDIA HPC Compilers bin directory (nvhpc and
nvhpc-nompi only)

NVIDIA does not provide support for the Environment Modules package. For more
information about the package, go to: http://modules.sourceforge.net.

11.5. Stack Traceback and JIT Debugging
When a programming error results in a runtime error message or an application
exception, a program will usually exit, perhaps with an error message. The NVIDIA

http://modules.sourceforge.net

Environment Variables

User's Guide Version 2023 | 121

HPC Compilers runtime library includes a mechanism to override this default action
and instead print a stack traceback, start a debugger, or, on Linux, create a core file for
post-mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an
environment variable, NVCOMPILER_TERM, described in NVCOMPILER_TERM. The
runtime libraries use the value of NVCOMPILER_TERM to determine what action to take
when a program abnormally terminates.

When the NVIDIA HPC Compilers runtime library detects an error or catches a signal,
it calls the routine nvcompiler_stop_here() prior to generating a stack traceback or
starting the debugger. The nvcompiler_stop_here() routine is a convenient spot to
set a breakpoint when debugging a program.

User's Guide Version 2023 | 122

Chapter 12.
DISTRIBUTING FILES – DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want
to distribute it to users who need to run it on a variety of systems. This section addresses
how to effectively distribute applications built using NVIDIA HPC Compilers. The
application must be installed in such a way that it executes accurately on a system other
than the one on which it was built, and which may be configured differently.

12.1. Deploying Applications on Linux
To successfully deploy your application on Linux, some of the issues to consider include:

‣ Runtime Libraries
‣ 64-bit Linux Systems
‣ Redistribution of Files

12.1.1. Runtime Library Considerations
On Linux systems, the system runtime libraries can be linked to an application either
statically or dynamically. For example, for the C runtime library, libc, you can use
either the static version libc.a or the shared object version libc.so. If the application
is intended to run on Linux systems other than the one on which it was built, it is
generally safer to use the shared object version of the library. This approach ensures that
the application uses a version of the library that is compatible with the system on which
the application is running. Further, it works best when the application is linked on a
system that has an equivalent or earlier version of the system software than the system
on which the application will be run.

Building on a newer system and running the application on an older system may not
produce the desired output.

To use the shared object version of a library, the application must also link to shared
object versions of the NVIDIA HPC Compilers runtime libraries. To execute an
application built in such a way on a system on which NVIDIA HPC Compilers are

Distributing Files – Deployment

User's Guide Version 2023 | 123

not installed, those shared objects must be available.To build using the shared object
versions of the runtime libraries, use the -Bdynamic option, as shown here:
$ nvfortran -Bdynamic myprog.f90

12.1.2. 64-bit Linux Considerations
On 64-bit Linux systems, 64-bit applications that use the -mcmodel=medium option
sometimes cannot be successfully linked statically. Therefore, users with executables
built with the -mcmodel=medium option may need to use shared libraries, linking
dynamically. Also, runtime libraries built using the -fpic option use 32-bit offsets,
so they sometimes need to reside near other runtime libs in a shared area of Linux
program memory.

If your application is linked dynamically using shared objects, then the shared object
versions of the NVIDIA HPC Compilers runtime are required.

12.1.3. Linux Redistributable Files
The method for installing the shared object versions of the runtime libraries required for
applications built with NVIDIA HPC Compilers is manual distribution.

When the NVIDIA HPC Compilers are installed, there are directories that have a name
that begins with REDIST; these directories contain the redistributed shared object
libraries. These may be redistributed by licensed NVIDIA HPC Compilers users under
the terms of the End-User License Agreement.

12.1.4. Restrictions on Linux Portability
You cannot expect to be able to run an executable on any given Linux machine.
Portability depends on the system you build on as well as how much your program
uses system routines that may have changed from Linux release to Linux release.
For example, an area of significant change between some versions of Linux is in
libpthread.so and libnuma.so. NVIDIA HPC Compilers use these dynamically
linked libraries for the options -acc (OpenACC), -mp (OpenMP) and -Mconcur
(multicore auto-parallel). Statically linking these libraries may not be possible, or may
result in failure at execution.

Typically, portability is supported for forward execution, meaning running a program
on the same or a later version of Linux. But not for backward compatibility, that is,
running on a prior release. For example, a user who compiles and links a program under
RHEL 7.2 should not expect the program to run without incident on a RHEL 5.2 system,
an earlier Linux version. It may run, but it is less likely. Developers might consider
building applications on earlier Linux versions for wider usage. Dynamic linking of
Linux and gcc system routines on the platform executing the program can also reduce
problems.

Distributing Files – Deployment

User's Guide Version 2023 | 124

12.1.5. Licensing for Redistributable (REDIST) Files
The files in the REDIST directories may be redistributed under the terms of the End-User
License Agreement for the product in which they were included.

User's Guide Version 2023 | 125

Chapter 13.
INTER-LANGUAGE CALLING

This section describes inter-language calling conventions for C, C++, and Fortran
programs using the HPC compilers. Fortran 2003 ISO_C_Binding provides a mechanism
to support the interoperability with C. This includes the ISO_C_Binding intrinsic
module, binding labels, and the BIND attribute. In the absence of this mechanism, the
following sections describe how to call a Fortran function or subroutine from a C or C++
program and how to call a C or C++ function from a Fortran program.

This section provides examples that use the following options related to inter-language
calling.

 -c -Mnomain -Miface -Mupcase

13.1. Overview of Calling Conventions
This section includes information on the following topics:

‣ Functions and subroutines in Fortran, C, and C++
‣ Naming and case conversion conventions
‣ Compatible data types
‣ Argument passing and special return values
‣ Arrays and indexes

The sections Inter-language Calling Considerations through Example – C++ Calling
Fortran describe how to perform inter-language calling using the Linux or Win64
convention.

13.2. Inter-language Calling Considerations
In general, when argument data types and function return values agree, you can call a
C or C++ function from Fortran as well as call a Fortran function from C or C++. When
data types for arguments do not agree, you may need to develop custom mechanisms
to handle them. For example, the Fortran COMPLEX type has a matching type in C99

Inter-language Calling

User's Guide Version 2023 | 126

but does not have a matching type in C89; however, it is still possible to provide inter-
language calls but there are no general calling conventions for such cases.

‣ If a C++ function contains objects with constructors and destructors, calling such a
function from either C or Fortran is not possible unless the initialization in the main
program is performed from a C++ program in which constructors and destructors
are properly initialized.

‣ In general, you can call a C or Fortran function from C++ without problems as long
as you use the extern "C" keyword to declare the function in the C++ program. This
declaration prevents name mangling for the C function name. If you want to call
a C++ function from C or Fortran, you also have to use the extern "C" keyword to
declare the C++ function. This keeps the C++ compiler from mangling the name of
the function.

‣ You can use the __cplusplus macro to allow a program or header file to work for
both C and C++. For example, the following defines in the header file stdio.h allow
this file to work for both C and C++.
#ifndef _STDIO_H
#define _STDIO_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
.
. /* Functions and data types defined... */
.
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif

‣ C++ member functions cannot be declared extern, since their names will always
be mangled. Therefore, C++ member functions cannot be called from C or Fortran.

13.3. Functions and Subroutines
Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value
convention:

‣ When a C or C++ function returns a value, call it from Fortran as a function.
‣ When a C or C++ function does not return a value, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar
type. Table 24, Fortran and C/C++ Data Type Compatibility, lists compatible types.
If the call is to a Fortran subroutine, or a Fortran CHARACTER function, or a Fortran
COMPLEX function, call it from C/C++ as a function that returns void. The exception
to this convention is when a Fortran subroutine has alternate returns; call such a
subroutine from C/C++ as a function returning int whose value is the value of the
integer expression specified in the alternate RETURN statement.

Inter-language Calling

User's Guide Version 2023 | 127

13.4. Upper and Lower Case Conventions,
Underscores
By default on Linux and Win64 systems, all Fortran symbol names are converted to
lower case. C and C++ are case sensitive, so upper-case function names stay upper-case.
When you use inter-language calling, you can either name your C/C++ functions with
lower-case names, or invoke the Fortran compiler command with the option -Mupcase,
in which case it will not convert symbol names to lower-case.

When programs are compiled using one of the HPC Fortran compilers on Linux and
Win64 systems, an underscore is appended to Fortran global names (names of functions,
subroutines and common blocks). This mechanism distinguishes Fortran name space
from C/C++ name space. Use these naming conventions:

‣ If you call a C/C++ function from Fortran, you should rename the C/C++ function by
appending an underscore or use bind(c) in the Fortran program.

‣ If you call a Fortran function from C/C++, you should append an underscore to the
Fortran function name in the calling program.

13.5. Compatible Data Types
Table 24 shows compatible data types between Fortran and C/C++. Table 25, Fortran
and C/C++ Representation of the COMPLEX Type shows how the Fortran COMPLEX type
may be represented in C/C++.

Tip If you can make your function/subroutine parameters as well as your return values
match types, you should be able to use inter-language calling.

Table 24 Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) C/C++ Type Size (bytes)

character x char x 1

character*n x char x[n] n

real x float x 4

real*4 x float x 4

real*8 x double x 8

double precision double x 8

integer x int x 4

integer*1 x signed char x 1

integer*2 x short x 2

integer*4 x int x 4

Inter-language Calling

User's Guide Version 2023 | 128

Fortran Type (lower case) C/C++ Type Size (bytes)

integer*8 x long long x 8

logical x int x 4

logical*1 x char x 1

logical*2 x short x 2

logical*4 int x 4

logical*8 long x 8

Table 25 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x
struct {float r,i;} x;
float complex x;

8
8

complex*8 x
struct {float r,i;} x;
float complex x;

8
8

double complex x
struct {double dr,di;} x;
double complex x;

16
16

complex *16 x
struct {double dr,di;} x;
double complex x;

16
16

For C/C++, the complex type implies C99 or later.

13.5.1. Fortran Named Common Blocks
A named Fortran common block can be represented in C/C++ by a structure whose
members correspond to the members of the common block. The name of the structure in
C/C++ must have the added underscore. For example, here is a Fortran common block:
INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:
extern struct {
 int i;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

This same Fortran Common Block is represented in C++ with the following equivalent:
extern "C" struct {
 int i;
 struct {float real, imag;} c;

Inter-language Calling

User's Guide Version 2023 | 129

 struct {double real, imag;} cd;
 double d;
} com_;

Tip For global or external data sharing, extern "C" is not required.

13.6. Argument Passing and Return Values
In Fortran, arguments are passed by reference, that is, the address of the argument is
passed, rather than the argument itself. In C/C++, arguments are passed by value, except
for strings and arrays, which are passed by reference. Due to the flexibility provided
in C/C++, you can work around these differences. Solving the parameter passing
differences generally involves intelligent use of the & and * operators in argument
passing when C/C++ calls Fortran and in argument declarations when Fortran calls C/C+
+.

For strings declared in Fortran as type CHARACTER, an argument representing the length
of the string is also passed to a calling function.

On the following systems, theThe compiler places the length argument(s) at the end of
the parameter list, following the other formal arguments:.

‣ On Linux systems
‣ On Win64 systems, except when using the option -Miface=cref

The length argument is passed by value, not by reference.

13.6.1. Passing by Value (%VAL)
When passing parameters from a Fortran subprogram to a C/C++ function, it is possible
to pass by value using the %VAL function. If you enclose a Fortran parameter with
%VAL(), the parameter is passed by value. For example, the following call passes the
integer i and the logical bvar by value.
integer*1 i
logical*1 bvar
call cvalue (%VAL(i), %VAL(bvar))

13.6.2. Character Return Values
Functions and Subroutines describes the general rules for return values for C/C++
and Fortran inter-language calling. There is a special return value to consider. When a
Fortran function returns a character, two arguments need to be added at the beginning
of the C/C++ calling function’s argument list:

‣ The address of the return character or characters
‣ The length of the return character

The following example illustrates the extra parameters, tmp and 10, supplied by the
caller:

Inter-language Calling

User's Guide Version 2023 | 130

Character Return Parameters
! Fortran function returns a character
CHARACTER*(*) FUNCTION CHF(C1,I)
 CHARACTER*(*) C1
 INTEGER I
END

/* C declaration of Fortran function */
extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

If the Fortran function is declared to return a character value of constant length, for
example CHARACTER*4 FUNCTION CHF(), the second extra parameter representing
the length must still be supplied, but is not used.

The value of the character function is not automatically NULL-terminated.

13.6.3. Complex Return Values
When a Fortran function returns a complex value, an argument needs to be added at
the beginning of the C/C++ calling function’s argument list; this argument is the address
of the complex return value. COMPLEX Return Values illustrates the extra parameter,
cplx, supplied by the caller.

COMPLEX Return Values
COMPLEX FUNCTION CF(C, I)
 INTEGER I
 . . .
END

extern void cf_();
typedef struct {float real, imag;} cplx;
cplx c1;
int i;
cf_(&c1, &i);

13.7. Array Indices
C/C++ arrays and Fortran arrays use different default initial array index values. By
default, arrays in C/C++ start at 0 and arrqays in Fortran start at 1. If you adjust your
array comparisons so that a Fortran second element is compared to a C/C++ first
element, and adjust similarly for other elements, you should not have problems working
with this difference. If this is not satisfactory, you can declare your Fortran arrays to start
at zero.

Another difference between Fortran and C/C++ arrays is the storage method used.
Fortran uses column-major order and C/C++ uses row-major order. For one-dimensional
arrays, this poses no problems. For two-dimensional arrays, where there are an equal
number of rows and columns, row and column indexes can simply be reversed. For

Inter-language Calling

User's Guide Version 2023 | 131

arrays other than single dimensional arrays, and square two-dimensional arrays, inter-
language function mixing is not recommended.

13.8. Examples
This section contains examples that illustrate inter-language calling.

13.8.1. Example – Fortran Calling C

There are other solutions to calling C from Fortran than the one presented in this
section. For example, you can use the iso_c_binding intrinsic module which NVIDIA
does support. For more information on this module and for examples of how to use it,
search the web using the keyword iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program
shown in Fortran Main Program f2c_main.f. Notice that each argument is defined as a
pointer, since Fortran passes by reference. Also notice that the C function name uses all
lower-case and a trailing "_".

Fortran Main Program f2c_main.f
logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external f2c_func

 call f2c_func(bool1, letter1, numint1, numint2, numfloat1, numdoub1, numshor1)

 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
 + bool1, letter1, numint1, numint2, numfloat1,numdoub1, numshor1

 end

C function f2c_func_
#define TRUE 0xff
#define FALSE 0
void f2c_func_(bool1, letter1, numint1, numint2, numfloat1,\
 numdoub1, numshor1, len_letter1)
 char *bool1, *letter1;
 int *numint1, *numint2;
 float *numfloat1;
 double *numdoub1;
 short *numshor1;
 int len_letter1;
{
 *bool1 = TRUE; *letter1 = 'v';
 *numint1 = 11; *numint2 = -44;
 *numfloat1 = 39.6 ;
 *numdoub1 = 39.2;
 *numshor1 = 981;
}

Inter-language Calling

User's Guide Version 2023 | 132

Compile and execute the program f2c_main.f with the call to f2c_func_ using the
following command lines:
$ nvc -c f2c_func.c
$ nvfortran f2c_func.o f2c_main.f

Executing the a.out file should produce the following output:
T v 11 -44 39.6 39.2 981

13.8.2. Example – C Calling Fortran
The example C Main Program c2f_main.c shows a C main program that calls the Fortran
subroutine shown in Fortran Subroutine c2f_sub.f.

‣ Each call uses the & operator to pass by reference.
‣ The call to the Fortran subroutine uses all lower-case and a trailing "_".

C Main Program c2f_main.c
void main () {
 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;
 short numshor1;
 extern void c2f_func_();
 c2f_sub_(&bool1,&letter1,&numint1,&numint2,&numfloat1,&numdoub1,&numshor1, 1);
 printf(" %s %c %d %d %3.1f %.0f %d\n",
 bool1?"TRUE":"FALSE", letter1, numint1, numint2,
 numfloat1, numdoub1, numshor1);
}

Fortran Subroutine c2f_sub.f
subroutine c2f_func (bool1, letter1, numint1, numint2,
+ numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1
 integer*2 numshor1

 bool1 = .true.
 letter1 = "v"
 numint1 = 11
 numint2 = -44
 numdoub1 = 902
 numfloat1 = 39.6
 numshor1 = 299
 return
end

To compile this Fortran subroutine and C program, use the following commands:
$ nvc -c c2f_main.c
$ nvfortran -Mnomain c2f_main.o c2_sub.f

Executing the resulting a.out file should produce the following output:
TRUE v 11 -44 39.6 902 299

Inter-language Calling

User's Guide Version 2023 | 133

13.8.3. Example – C++ Calling C
C++ Main Program cp2c_main.C Calling a C Function shows a C++ main program that
calls the C function shown in Simple C Function c2cp_func.c.

C++ Main Program cp2c_main.C Calling a C Function
extern "C" void cp2c_func(int n, int m, int *p);
#include <iostream>
main()
{
 int a,b,c;
 a=8;
 b=2;
 c=0;
 cout << "main: a = "<<a<<" b = "<<b<<"ptr c = "<<hex<<&c<< endl;
 cp2c_func(a,b,&c);
 cout << "main: res = "<<c<<endl;
 }

Simple C Function c2cp_func.c
void cp2c_func(num1, num2, res)
int num1, num2, *res;
{
 printf("func: a = %d b = %d ptr c = %x\n",num1,num2,res);
 *res=num1/num2;
 printf("func: res = %d\n",*res);
}

To compile this C function and C++ main program, use the following commands:
$ nvc -c cp2c_func.c
$ nvc++ cp2c_main.C cp2c_func.o

Executing the resulting a.out file should produce the following output:
main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

13.8.4. Example – C Calling C ++
The example in C Main Program c2cp_main.c Calling a C++ Function shows a C main
program that calls the C++ function shown in Simple C++ Function c2cp_func.C with
Extern C.

C Main Program c2cp_main.c Calling a C++ Function
extern void c2cp_func(int a, int b, int *c);
#include <stdio.h>
main() {
 int a,b,c;
 a=8; b=2;
 printf("main: a = %d b = %d ptr c = %x\n",a,b,&c);
 c2cp_func(a,b,&c);
 printf("main: res = %d\n",c);
 }

Simple C++ Function c2cp_func.C with Extern C
#include <iostream>
extern "C" void c2cp_func(int num1,int num2,int *res)

Inter-language Calling

User's Guide Version 2023 | 134

{
 cout << "func: a = "<<num1<<" b = "<<num2<<"ptr c ="<<res<<endl;
 *res=num1/num2;
 cout << "func: res = "<<res<<endl;
}

To compile this C function and C++ main program, use the following commands:
$ nvc -c c2cp_main.c
$ nvc++ c2cp_main.o c2cp_func.C

Executing the resulting a.out file should produce the following output:
main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

You cannot use the extern "C" form of declaration for an object’s member functions.

13.8.5. Example – Fortran Calling C++
The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++
function calls the C++ function shown in C++ function f2cp_func.C .

Notice:

‣ Each argument is defined as a pointer in the C++ function, since Fortran passes by
reference.

‣ The C++ function name uses all lower-case and a trailing "_":

Fortran Main Program f2cp_main.f calling a C++ function
 logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external f2cpfunc
 call f2cp_func (bool1, letter1, numint1,
 + numint2, numfloat1, numdoub1, numshor1)
 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
 + bool1, letter1, numint1, numint2, numfloat1,
 + numdoub1, numshor1
 end

C++ function f2cp_func.C
#define TRUE 0xff
#define FALSE 0
extern "C"
{
extern void f2cp_func_ (
 char *bool1, *letter1,
 int *numint1, *numint2,
 float *numfloat1,
 double *numdoub1,
 short *numshort1,
 int len_letter1)
{
 *bool1 = TRUE; *letter1 = 'v';
 *numint1 = 11; *numint2 = -44;

Inter-language Calling

User's Guide Version 2023 | 135

 *numfloat1 = 39.6; *numdoub1 = 39.2; *numshort1 = 981;
}
}

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file
cpfunc.C, create an executable, using the following command lines:
$ nvc++ -c f2cp_func.C
$ nvfortran f2cp_func.o f2cp_main.f -c++libs

Executing the a.out file should produce the following output:
T v 11 -44 39.6 39.2 981

13.8.6. Example – C++ Calling Fortran
Fortran Subroutine cp2f_func.f shows a Fortran subroutine called by the C++ main
program shown in C++ main program cp2f_main.C. Notice that each call uses the &
operator to pass by reference. Also notice that the call to the Fortran subroutine uses all
lower-case and a trailing "_":

C++ main program cp2f_main.C
#include <iostream>
extern "C" { extern void cp2f_func_(char *,char *,int *,int *,
 float *,double *,short *); }
main ()
{
 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;
 short numshor1;

 cp2f_func(&bool1,&letter1,&numint1,&numint2,&numfloat1, &numdoub1,&numshor1);
 cout << " bool1 = ";
 bool1?cout << "TRUE ":cout << "FALSE "; cout <<endl;
 cout << " letter1 = " << letter1 <<endl;
 cout << " numint1 = " << numint1 <<endl;
 cout << " numint2 = " << numint2 <<endl;
 cout << " numfloat1 = " << numfloat1 <<endl;
 cout << " numdoub1 = " << numdoub1 <<endl;
 cout << " numshor1 = " << numshor1 <<endl;
}

Fortran Subroutine cp2f_func.f
 subroutine cp2f_func (bool1, letter1, numint1,
 + numint2, numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1
 integer*2 numshor1
 bool1 = .true. ; letter1 = "v"
 numint1 = 11 ; numint2 = -44
 numdoub1 = 902 ; numfloat1 = 39.6 ; numshor1 = 299
 return
 end

To compile this Fortran subroutine and C++ program, use the following command lines:

$ nvfortran -c cp2f_func.f
$ nvc++ cp2f_func.o cp2f_main.C -fortranlibs

Inter-language Calling

User's Guide Version 2023 | 136

Executing this C++ main should produce the following output:
bool1 = TRUE letter1 = v numint1 = 11 numint2 = -44 numfloat1 = 39.6 numdoub1 = 902
numshor1 = 299

You must explicitly link in the NVFORTRAN runtime support libraries when linking
nvfortran-compiled program units into C++ or C main programs.

User's Guide Version 2023 | 137

Chapter 14.
PROGRAMMING CONSIDERATIONS FOR
64-BIT ENVIRONMENTS

NVIDIA provides 64-bit compilers for 64-bit Linux operating systems running on
x86-64 (Linux_x86_64), OpenPOWER (Linux_ppcle64) and Arm Server (Linux_aarch64)
architectures. You can use these compilers to create programs that use 64-bit memory
addresses. The GNU toolchain on 64-bit Linux systems implements an option to
control 32-bit vs 64-bit code generation, as described in Large Static Data in Linux. This
section describes the specifics of how to use the NVIDIA compilers to make use of 64-bit
memory addressing.

The NVIDIA HPC compilers themselves are 64-bit applications which can only run on 64-
bit CPUs running 64-bit Operating Systems.

This section describes how to use the following options related to 64-bit programming.

-fPIC -mcmodel=medium -Mlarge_arrays

-i8 -Mlargeaddressaware

14.1. Data Types in the 64-Bit Environment
The size of some data types can differ across 64-bit environments. This section describes
the major differences.

14.1.1. C++ and C Data Types
On 64-bit Linux operating systems, the size of an int is 4 bytes, a long is 8 bytes, a long
long is 8 bytes, and a pointer is 8 bytes.

14.1.2. Fortran Data Types
In Fortran, the default size of the INTEGER type is 4 bytes. The -i8 compiler option
may be used to make the default size of all INTEGER data in the program 8 bytes.

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 138

When using the -Mlarge_arrays option, described in 64-Bit Array Indexing, any
4-byte INTEGER variables that are used to index arrays are silently promoted by the
compiler to 8 bytes. This promotion can lead to unexpected consequences, so 8-byte
INTEGER variables are recommended for array indexing when using the option -
Mlarge_arrays.

14.2. Large Static Data in Linux
64-bit Linux operating systems support two different memory models. The default
model used by the NVIDIA HPC compilers on Linux_x86_64 and Linux_aarch64
targets is the small memory model, which can be specified using -mcmodel=small.
This is the 32-bit model, which limits the size of code plus statically allocated data,
including system and user libraries, to 2GB. The medium memory model, specified by -
mcmodel=medium, allows combined code and static data areas (.text and .bss sections)
larger than 2GB and is the default on Linux_ppc64le targets. The -mcmodel=medium
option must be used on both the compile command and the link command in order to
take effect.

There are implications to using -mcmodel=medium. The generated code requires
increased addressing overhead to support the large data range. This can affect
performance, though the compilers seek to minimize the added overhead through
careful instruction selection and optimization.

Linux_aarch64 does not support -mcmodel=medium. If the medium model is specified
on the command-line, the compiler driver will automatically select the large model.

14.3. Large Dynamically Allocated Data
Dynamically allocated data objects in programs compiled by the NVIDIA HPC
compilers can be larger than 2GB. No special compiler options are required to enable
this functionality. The size of the allocation is only limited by the system. However, to
correctly access dynamically allocated arrays with more than 2G elements you should
use the -Mlarge_arrays option, described in the following section.

14.4. 64-Bit Array Indexing
The NVIDIA Fortran compilers provide an option, -Mlarge_arrays, that enables 64-
bit indexing of arrays. This means that, as necessary, 64-bit INTEGER constants and
variables are used to index arrays.

In the presence of -Mlarge_arrays, the compiler may silently promote 32-bit
integers to 64 bits, which can have unexpected side effects.

On 64-bit Linux, the -Mlarge_arrays option also enables single static data objects
larger than 2 GB. This option is the default in the presence of -mcmodel=medium.

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 139

14.5. Compiler Options for 64-bit Programming
The usual switches that apply to 64-bit programmers seeking to increase the data range
of their applications are in the following table.

Table 26 64-bit Compiler Options

Option Purpose Considerations

-mcmodel=medium Allow for data
declarations larger
than 2GB. Default on
Linux_ppc64le.

Linux_aarch64 does not support -mcmodel=medium. If
the medium model is specified on the command-line, the
compiler driver will automatically select the large model.

-Mlarge_arrays Perform all array-
location-to-address
calculations using 64-
bit integer arithmetic.

Slightly slower execution. Is implicit with
-mcmodel=medium. Can be used with option
-mcmodel=small.

-fpic Position independent
code. Necessary for
shared libraries.

Dynamic linking restricted to a 32-bit offset. External
symbol references should refer to other shared lib
routines, rather than the program calling them.

-i8 All INTEGER functions,
data, and constants
not explicitly declared
INTEGER*4 are
assumed to be
INTEGER*8.

Users should take care to explicitly declare INTEGER
functions as INTEGER*4.

The following table summarizes the limits of these programming models under the
specified conditions. The compiler options you use vary by processor.

Table 27 Effects of Options on Memory and Array Sizes

Addr. Math Max Size Gbytes

Condition A I AS DS TS

64-bit addr limited by option -mcmodel=small 64 32 2 2 2

-fpic incompatible with -mcmodel=medium 64 32 2 2 2

Enable full support for 64-bit data addressing 64 64 >2 >2 >2

A Address Type – size in bits of data used for address calculations, 64-bits.

I Index Arithmetic -bit-size of data used to index into arrays and other aggregate data structures. If
32-bit, total range of any single data object is limited to 2GB.

AS Maximum Array Size - the maximum size in gigabytes of any single data object.

DS Maximum Data Size - max size in gigabytes combined of all data objects in .bss

TS Maximum Total Size - max size in gigabytes, in aggregate, of all executable code and data objects in
a running program.

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 140

14.6. Practical Limitations of Large Array
Programming
The 64-bit addressing capability of 64-bit Linux environments can cause unexpected
issues when data sizes are enlarged significantly. The following table describes the most
common occurrences of practical limitations of large array programming.

Table 28 64-Bit Limitations

array initialization Initializing a large array with a data statement may result in very large assembly
and object files, where a line of assembler source is required for each element in
the initialized array. Compilation and linking can be very time consuming as well. To
avoid this issue, consider initializing large arrays in a loop at runtime rather than in a
data statement.

stack space Stack space can be a problem for data that is stack-based. On Linux, stack size is
increased in your shell environment. If setting stacksize to unlimited is not large
enough, try setting the size explicitly:
limit stacksize new_size ! in csh

ulimit -s new_size ! in bash

page swapping If your executable is much larger than the physical size of memory, page swapping
can cause it to run dramatically slower; it may even fail. This is not a compiler
problem. Try smaller data sets to determine whether or not a problem is due to page
thrashing.

configured space Be sure your Linux system is configured with swap space sufficiently large to
support the data sets used in your application(s). If your memory+swap space is
not sufficiently large, your application will likely encounter a segmentation fault at
runtime.

support for large
address offsets in
object file format

Arrays that are not dynamically allocated are limited by how the compiler
can express the ‘distance’ between them when generating code. A field in the
object file stores this ‘distance’ value, which is limited to 32-bits on Linux with
-mcmodel=small. It is 64-bits on Linux with -mcmodel=medium.

Without the 64-bit offset support in the object file format, large
arrays cannot be declared statically, or locally on the stack.

14.7. Medium Memory Model and Large Array in C
Consider the following example, where the aggregate size of the arrays exceeds 2GB.

Medium Memory Model and Large Array in C
% cat bigadd.c
#include <stdio.h>
#define SIZE 600000000 /* > 2GB/4 */
static float a[SIZE], b[SIZE];
int
main()
{

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 141

 long long i, n, m;
 float c[SIZE]; /* goes on stack */
 n = SIZE;
 m = 0;
 for (i = 0; i < n; i += 10000) {
 a[i] = i + 1;
 b[i] = 2.0 * (i + 1);
 c[i] = a[i] + b[i];
 m = i;
 }
 printf("a[0]=%g b[0]=%g c[0]=%g\n", a[0], b[0], c[0]);
 printf("m=%lld a[%lld]=%g b[%lld]=%gc[%lld]=%g\n",m,m,a[m],m,b[m],m,c[m]);
 return 0;
}

% nvc -mcmodel=medium -o bigadd bigadd.c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes
per element, the size of each array is greater than 2GB. With nvc, using the
-mcmodel=medium switch, a static data object can now be > 2GB in size. If you execute
with these settings in your environment, you may see the following:
% bigadd
 Segmentation fault

Execution fails because the stack size is not large enough. You can most likely correct
this error by using the limit stacksize command to reset the stack size in your
environment:
% limit stacksize 3000M

The command limit stacksize unlimited probably does not provide as large a
stack as we are using in the this example.

% bigadd
a[0]=1 b[0]=2 c[0]=3
n=599990000 a[599990000]=5.9999e+08 b[599990000]=1.19998e+09
c[599990000]=1.79997e+09

14.8. Medium Memory Model and Large Array in
Fortran
The following example works with the NVFORTRAN compiler. It uses 64-bit addresses
and index arithmetic when the -mcmodel=medium option is used.

Consider the following example:

Medium Memory Model and Large Array in Fortran

% cat mat.f
program mat
 integer i, j, k, size, l, m, n
 parameter (size=16000) ! >2GB
 parameter (m=size,n=size)
 real*8 a(m,n),b(m,n),c(m,n),d
 do i = 1, m
 do j = 1, n
 a(i,j)=10000.0D0*dble(i)+dble(j)

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 142

 b(i,j)=20000.0D0*dble(i)+dble(j)
 enddo
 enddo
 !$omp parallel
 !$omp do
 do i = 1, m
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 !$omp do
 do i=1,m
 do j = 1, n
 d = 30000.0D0*dble(i)+dble(j)+dble(j)
 if (d .ne. c(i,j)) then
 print *,"err i=",i,"j=",j
 print *,"c(i,j)=",c(i,j)
 print *,"d=",d
 stop
 endif
 enddo
 enddo
 !$omp end parallel
 print *, "M =",M,", N =",N
 print *, "c(M,N) = ", c(m,n)
end

When compiled with the NVFORTRAN compiler using -mcmodel=medium:

% nvfortran -Mfree -mp -o mat mat.f -i8 -mcmodel=medium
% setenv OMP_NUM_THREADS 2
% mat
M = 16000 , N = 16000
c(M,N) = 480032000.0000000

14.9. Large Array and Small Memory Model in
Fortran
The following example uses large, dynamically-allocated arrays. The code is divided
into a main and subroutine so you could put the subroutine into a shared library.
Dynamic allocation of large arrays saves space in the size of executable and saves time
initializing data.

Large Array and Small Memory Model in Fortran
% cat mat_allo.f90

program mat_allo
 integer i, j
 integer size, m, n
 parameter (size=16000)
 parameter (m=size,n=size)
 double precision, allocatable::a(:,:),b(:,:),c(:,:)
 allocate(a(m,n), b(m,n), c(m,n))
 do i = 100, m, 1
 do j = 100, n, 1
 a(i,j) = 10000.0D0 * dble(i) + dble(j)
 b(i,j) = 20000.0D0 * dble(i) + dble(j)
 enddo
 enddo
 call mat_add(a,b,c,m,n)
 print *, "M =",m,",N =",n

Programming Considerations for 64-Bit Environments

User's Guide Version 2023 | 143

 print *, "c(M,N) = ", c(m,n)
end

subroutine mat_add(a,b,c,m,n)
 integer m, n, i, j
 double precision a(m,n),b(m,n),c(m,n)
 do i = 1, m
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 return
end

% nvfortran -o mat_allo mat_allo.f90 -i8 -Mlarge_arrays -mp -fast

User's Guide Version 2023 | 144

Chapter 15.
C++ AND C INLINE ASSEMBLY AND
INTRINSICS

The examples in this section are shown using x86-64 assembly instructions. Inline
assembly is supported on OpenPOWER and Arm Server platforms as well, but is not
documented in detail in this section.

15.1. Inline Assembly
Inline Assembly lets you specify machine instructions inside a "C" function. The format
for an inline assembly instruction is this:
{ asm | __asm__ } ("string");

The asm statement begins with the asm or __asm__ keyword. The __asm__ keyword is
typically used in header files that may be included in ISO "C" programs.

string is one or more machine specific instructions separated with a semi-colon (;) or
newline (\n) character. These instructions are inserted directly into the compiler’s
assembly-language output for the enclosing function.

Some simple asm statements are:
asm ("cli");
asm ("sti");

These asm statements disable and enable system interrupts respectively.

In the following example, the eax register is set to zero.
asm("pushl %eax\n\t" "movl $0, %eax\n\t" "popl %eax");

Notice that eax is pushed on the stack so that it is it not clobbered. When the statement is
done with eax, it is restored with the popl instruction.

Typically a program uses macros that enclose asm statements. The following two
examples use the interrupt constructs created previously in this section:
#define disableInt __asm__ ("cli");
#define enableInt __asm__ ("sti");

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 145

15.2. Extended Inline Assembly
Inline Assembly explains how to use inline assembly to specify machine specific
instructions inside a "C" function. This approach works well for simple machine
operations such as disabling and enabling system interrupts. However, inline assembly
has three distinct limitations:

 1. The programmer must choose the registers required by the inline assembly.
 2. To prevent register clobbering, the inline assembly must include push and pop code

for registers that get modified by the inline assembly.
 3. There is no easy way to access stack variables in an inline assembly statement.

Extended Inline Assembly was created to address these limitations. The format for
extended inline assembly, also known as extended asm, is as follows:
{ asm | __asm__ } [volatile | __volatile__]
("string" [: [output operands]] [: [input operands]] [: [clobberlist]]);

‣ Extended asm statements begin with the asm or __asm__ keyword. Typically the
__asm__ keyword is used in header files that may be included by ISO "C" programs.

‣ An optional volatile or __volatile__ keyword may appear after the asm keyword. This
keyword instructs the compiler not to delete, move significantly, or combine with
any other asm statement. Like __asm__, the __volatile__ keyword is typically used
with header files that may be included by ISO "C" programs.

‣ "string" is one or more machine specific instructions separated with a semi-colon
(;) or newline (\n) character. The string can also contain operands specified in the
[output operands], [input operands], and [clobber list]. The instructions are inserted
directly into the compiler's assembly-language output for the enclosing function.

‣ The [output operands], [input operands], and [clobber list] items each describe the effect
of the instruction for the compiler. For example:
asm("movl %1, %%eax\n" "movl %%eax, %0":"=r" (x) : "r" (y) : "%eax");

where

"=r" (x) is an output operand.
"r" (y) is an input operand.
"%eax" is the clobber list consisting of one register, "%eax".

The notation for the output and input operands is a constraint string surrounded by
quotes, followed by an expression, and surrounded by parentheses. The constraint
string describes how the input and output operands are used in the asm "string".
For example, "r" tells the compiler that the operand is a register. The "=" tells the
compiler that the operand is write only, which means that a value is stored in an
output operand's expression at the end of the asm statement.

Each operand is referenced in the asm "string" by a percent "%" and its number. The
first operand is number 0, the second is number 1, the third is number 2, and so on.
In the preceding example, "%0" references the output operand, and "%1" references
the input operand. The asm "string" also contains "%%eax", which references
machine register "%eax". Hard coded registers like "%eax" should be specified in the

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 146

clobber list to prevent conflicts with other instructions in the compiler's assembly-
language output. [output operands], [input operands], and [clobber list] items are
described in more detail in the following sections.

15.2.1. Output Operands
The [output operands] are an optional list of output constraint and expression pairs that
specify the result(s) of the asm statement. An output constraint is a string that specifies
how a result is delivered to the expression. For example, "=r" (x) says the output operand
is a write-only register that stores its value in the "C" variable x at the end of the asm
statement. An example follows:
int x;
void example()
{
 asm("movl $0, %0" : "=r" (x));
}

The previous example assigns 0 to the "C" variable x. For the function in this example,
the compiler produces the following assembly. If you want to produce an assembly
listing, compile the example with the nvc -S compiler option:
example:
..Dcfb0:
 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 8
 movl $0, %eax
 movl %eax, x(%rip)
lineno: 0
 popq %rbp
 ret

In the generated assembly shown, notice that the compiler generated two statements
for the asm statement at line number 5. The compiler generated "movl $0, %eax" from
the asm "string". Also notice that %eax appears in place of "%0" because the compiler
assigned the %eax register to variable x. Since item 0 is an output operand, the result
must be stored in its expression (x).

In addition to write-only output operands, there are read/write output operands
designated with a "+" instead of a "=". For example, "+r" (x) tells the compiler to initialize
the output operand with variable x at the beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:
int x=1;
void example2()
{
 asm("addl $1, %0" : "+r" (x));
}

To perform the increment, the output operand must be initialized with variable x.
The read/write constraint modifier ("+") instructs the compiler to initialize the output
operand with its expression. The compiler generates the following assembly code for the
example2() function:
example2:
..Dcfb0:

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 147

 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 5
 movl x(%rip), %eax
 addl $1, %eax
 movl %eax, x(%rip)
lineno: 0
 popq %rbp
 ret

From the example2() code, two extraneous moves are generated in the assembly: one
movl for initializing the output register and a second movl to write it to variable x. To
eliminate these moves, use a memory constraint type instead of a register constraint
type, as shown in the following example:
int x=1;
void example2()
{
 asm("addl $1, %0" : "+m" (x));
}

The compiler generates a memory reference in place of a memory constraint. This
eliminates the two extraneous moves. Because the assembly uses a memory reference to
variable x, it does not have to move x into a register prior to the asm statement; nor does
it need to store the result after the asm statement. Additional constraint types are found
in Additional Constraints.
example2:
..Dcfb0:
 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 5
 addl $1, x(%rip)
lineno: 0
 popq %rbp
 ret

The examples thus far have used only one output operand. Because extended asm
accepts a list of output operands, asm statements can have more than one result, as
shown in the following example:
void example4()
{
int x=1; int y=2;
asm("addl $1, %1\n" "addl %1, %0": "+r" (x), "+m" (y));
}

This example increments variable y by 1 then adds it to variable x. Multiple output
operands are separated with a comma. The first output operand is item 0 ("%0") and the
second is item 1 ("%1") in the asm "string". The resulting values for x and y are 4 and 3
respectively.

15.2.2. Input Operands
The [input operands] are an optional list of input constraint and expression pairs that
specify what "C" values are needed by the asm statement. The input constraints specify

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 148

how the data is delivered to the asm statement. For example, "r" (x) says that the input
operand is a register that has a copy of the value stored in "C" variable x. Another
example is "m" (x) which says that the input item is the memory location associated with
variable x. Other constraint types are discussed in Additional Constraints. An example
follows:
void example5()
{
 int x=1;
 int y=2;
 int z=3;
 asm("addl %2, %1\n" "addl %2, %0" : "+r" (x), "+m" (y) : "r" (z));
}

The previous example adds variable z, item 2, to variable x and variable y. The resulting
values for x and y are 4 and 5 respectively.

Another type of input constraint worth mentioning here is the matching constraint. A
matching constraint is used to specify an operand that fills both an input as well as an
output role. An example follows:
int x=1;
void example6()
{
asm("addl $1, %1"
 : "=r" (x)
 : "0" (x));
}

The previous example is equivalent to the example2() function shown in Output
Operands. The constraint/expression pair, "0" (x), tells the compiler to initialize output
item 0 with variable x at the beginning of the asm statement. The resulting value for x is
2. Also note that "%1" in the asm "string" means the same thing as "%0" in this case. That
is because there is only one operand with both an input and an output role.

Matching constraints are very similar to the read/write output operands mentioned
in Output Operands. However, there is one key difference between read/write output
operands and matching constraints. The matching constraint can have an input expression
that differs from its output expression.

The following example uses different values for the input and output roles:
int x;
int y=2;
void example7()
{
asm("addl $1, %1"
 : "=r" (x)
 : "0" (y));
}

The compiler generates the following assembly for example7():
example7:
..Dcfb0:
 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 8
 movl y(%rip), %eax
 addl $1, %eax
 movl %eax, x(%rip)

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 149

lineno: 0
 popq %rbp
 ret

Variable x gets initialized with the value stored in y, which is 2. After adding 1, the
resulting value for variable x is 3.

Because matching constraints perform an input role for an output operand, it does not
make sense for the output operand to have the read/write ("+") modifier. In fact, the
compiler disallows matching constraints with read/write output operands. The output
operand must have a write only ("=") modifier.

15.2.3. Clobber List
The [clobber list] is an optional list of strings that hold machine registers used in the asm
"string". Essentially, these strings tell the compiler which registers may be clobbered by
the asm statement. By placing registers in this list, the programmer does not have to
explicitly save and restore them as required in traditional inline assembly (described in
Inline Assembly). The compiler takes care of any required saving and restoring of the
registers in this list.

Each machine register in the [clobber list] is a string separated by a comma. The leading
'%' is optional in the register name. For example, "%eax" is equivalent to "eax". When
specifying the register inside the asm "string", you must include two leading '%'
characters in front of the name (for example., "%%eax"). Otherwise, the compiler will
behave as if a bad input/output operand was specified and generate an error message.
An example follows:
void example8()
{
int x;
int y=2;
asm("movl %1, %%eax\n"
 "movl %1, %%edx\n"
 "addl %%edx, %%eax\n"
 "addl %%eax, %0"
 : "=r" (x)
 : "0" (y)
 : "eax", "edx");
}

This code uses two hard-coded registers, eax and edx. It performs the equivalent of 3*y
and assigns it to x, producing a result of 6.

In addition to machine registers, the clobber list may contain the following special flags:
"cc"

The asm statement may alter the control code register.
"memory"

The asm statement may modify memory in an unpredictable fashion.

When the "memory" flag is present, the compiler does not keep memory values cached
in registers across the asm statement and does not optimize stores or loads to that
memory. For example:
asm("call MyFunc":::"memory");

This asm statement contains a "memory" flag because it contains a call. The callee may
otherwise clobber registers in use by the caller without the "memory" flag.

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 150

The following function uses extended asm and the "cc" flag to compute a power of 2 that
is less than or equal to the input parameter n.
#pragma noinline
int asmDivideConquer(int n)
{
 int ax = 0;
 int bx = 1;
 asm (
 "LogLoop:n"
 "cmp %2, %1n"
 "jnle Donen"
 "inc %0n"
 "add %1,%1n"
 "jmp LogLoopn"
 "Done:n"
 "dec %0n"
 :"+r" (ax), "+r" (bx) : "r" (n) : "cc");
 return ax;
}

The ‘cc’ flag is used because the asm statement contains some control flow that may alter
the control code register. The #pragma noinline statement prevents the compiler from
inlining the asmDivideConquer() function. If the compiler inlines asmDivideConquer(),
then it may illegally duplicate the labels LogLoop and Done in the generated assembly.

15.2.4. Additional Constraints
Operand constraints can be divided into four main categories:

‣ Simple Constraints
‣ Machine Constraints
‣ Multiple Alternative Constraints
‣ Constraint Modifiers

15.2.5. Simple Constraints
The simplest kind of constraint is a string of letters or characters, known as Simple
Constraints, such as the "r" and "m" constraints introduced in Output Operands. Table 29
describes these constraints.

Table 29 Simple Constraints

Constraint Description

whitespace Whitespace characters are ignored.

E An immediate floating point operand.

F Same as "E".

g Any general purpose register, memory, or immediate integer operand is allowed.

i An immediate integer operand.

m A memory operand. Any address supported by the machine is allowed.

n Same as "i".

o Same as "m".

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 151

Constraint Description

p An operand that is a valid memory address. The expression associated with the constraint
is expected to evaluate to an address (for example, "p" (&x)).

r A general purpose register operand.

X Same as "g".

0,1,2,..9 Matching Constraint. See Output Operands for a description.

The following example uses the general or "g" constraint, which allows the compiler to
pick an appropriate constraint type for the operand; the compiler chooses from a general
purpose register, memory, or immediate operand. This code lets the compiler choose the
constraint type for "y".
void example9()
{
 int x, y=2;
 asm("movl %1, %0\n" : "=r"
(x) : "g" (y));
}

This technique can result in more efficient code. For example, when compiling
example9() the compiler replaces the load and store of y with a constant 2. The compiler
can then generate an immediate 2 for the y operand in the example. The assembly
generated by nvc for our example is as follows:
example9:
..Dcfb0:
 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 3
 movl $2, %eax
lineno: 6
 popq %rbp
 ret

In this example, notice the use of $2 for the "y" operand.

Of course, if y is always 2, then the immediate value may be used instead of the variable
with the "i" constraint, as shown here:
void example10()
{
int x;
asm("movl %1, %0\n"
 : "=r" (x)
 : "i" (2));
}

Compiling example10() with nvc produces assembly similar to that produced for
example9().

15.2.6. Machine Constraints
Another category of constraints is Machine Constraints. The x86_64 architectures has
several classes of registers. To choose a particular class of register, you can use the
x86_64 machine constraints described in Table 30.

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 152

Table 30 x86_64 Machine Constraints

Constraint Description

a a register (e.g., %al, %ax, %eax, %rax)

A Specifies a or d registers. The d register holds the most significant bits and the a register
holds the least significant bits.

b b register (e.g, %bl, %bx, %ebx, %rbx)

c c register (e.g., %cl, %cx, %ecx, %rcx)

C Not supported.

d d register (e.g., %dl, %dx, %edx, %rdx)

D di register (e.g., %dil, %di, %edi, %rdi)

e Constant in range of 0xffffffff to 0x7fffffff

f Not supported.

G Floating point constant in range of 0.0 to 1.0.

I Constant in range of 0 to 31 (e.g., for 32-bit shifts).

J Constant in range of 0 to 63 (e.g., for 64-bit shifts)

K Constant in range of 0to 127.

L Constant in range of 0 to 65535.

M Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

N Constant in range of 0 to 255 (e.g., for out instruction).

q Same as "r" simple constraint.

Q Same as "r" simple constraint.

R Same as "r" simple constraint.

S si register (e.g., %sil, %si, %edi, %rsi)

t Not supported.

u Not supported.

x XMM SSE register

y Not supported.

Z Constant in range of 0 to 0x7fffffff.

The following example uses the "x" or XMM register constraint to subtract c from b and
store the result in a.
double example11()
{
 double a;
 double b = 400.99;
 double c = 300.98;
 asm ("subpd %2, %0;"
 :"=x" (a)
 : "0" (b), "x" (c)
);
 return a;
}

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 153

The generated assembly for this example is this:
example11:
..Dcfb0:
 pushq %rbp
..Dcfi0:
 movq %rsp, %rbp
..Dcfi1:
..EN1:
lineno: 4
 movsd .C00128(%rip), %xmm1
 movsd .C00130(%rip), %xmm2
 movapd %xmm1, %xmm0
 subpd %xmm2, %xmm0;
lineno: 10
lineno: 11
 popq %rbp
 ret

If a specified register is not available, the nvc and nvc++ compilers issue an error
message.

15.2.7. Multiple Alternative Constraints
Sometimes a single instruction can take a variety of operand types. For example, the
x86-64 permits register-to-memory and memory-to-register operations. To allow this
flexibility in inline assembly, use multiple alternative constraints. An alternative is a series
of constraints for each operand.

To specify multiple alternatives, separate each alternative with a comma.

Table 31 Multiple Alternative Constraints

Constraint Description

, Separates each alternative for a particular operand.

? Ignored

! Ignored

The following example uses multiple alternatives for an add operation.
void example13()
{
int x=1;
int y=1;
asm("addl %1, %0\n"
 : "+ab,cd" (x)
 : "db,cam" (y));
}

The preceding example13() has two alternatives for each operand: "ab,cd" for the output
operand and "db,cam" for the input operand. Each operand must have the same number
of alternatives; however, each alternative can have any number of constraints (for
example, the output operand in example13() has two constraints for its second alternative
and the input operand has three for its second alternative).

The compiler first tries to satisfy the left-most alternative of the first operand (for
example, the output operand in example13()). When satisfying the operand, the compiler
starts with the left-most constraint. If the compiler cannot satisfy an alternative with

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 154

this constraint (for example, if the desired register is not available), it tries to use any
subsequent constraints. If the compiler runs out of constraints, it moves on to the next
alternative. If the compiler runs out of alternatives, it issues an error similar to the
one mentioned in example12(). If an alternative is found, the compiler uses the same
alternative for subsequent operands. For example, if the compiler chooses the "c" register
for the output operand in example13(), then it will use either the "a" or "m" constraint for
the input operand.

15.2.8. Constraint Modifiers
Characters that affect the compiler's interpretation of a constraint are known as
Constraint Modifiers. Two constraint modifiers, the "=" and the "+", were introduced in
Output Operands. The following table summarizes each constraint modifier.

Table 32 Constraint Modifier Characters

Constraint
Modifier Description

= This operand is write-only. It is valid for output operands only. If specified, the "=" must
appear as the first character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output operands
only. The output operand is initialized with its expression before the first instruction in the
asm statement. If specified, the "+" must appear as the first character of the constraint
string.

& A constraint or an alternative constraint, as defined in Multiple Alternative Constraints,
containing an "&" indicates that the output operand is an early clobber operand. This type
operand is an output operand that may be modified before the asm statement finishes
using all of the input operands. The compiler will not place this operand in a register that
may be used as an input operand or part of any memory address.

% Ignored.

� Characters following a "�" up to the first comma (if present) are to be ignored in the
constraint.

* The character that follows the "*" is to be ignored in the constraint.

The "=" and "+" modifiers apply to the operand, regardless of the number of alternatives
in the constraint string. For example, the "+" in the output operand of example13()
appears once and applies to both alternatives in the constraint string. The "&", "#", and
"*" modifiers apply only to the alternative in which they appear.

Normally, the compiler assumes that input operands are used before assigning results to
the output operands. This assumption lets the compiler reuse registers as needed inside
the asm statement. However, if the asm statement does not follow this convention,
the compiler may indiscriminately clobber a result register with an input operand. To
prevent this behavior, apply the early clobber "&" modifier. An example follows:
void example15()
{
int w=1;
int z;
asm("movl $1, %0\n"
 "addl %2, %0\n"

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 155

 "movl %2, %1"
 : "=a" (w), "=r" (z) : "r" (w));
}

The previous code example presents an interesting ambiguity because "w" appears both
as an output and as an input operand. So, the value of "z" can be either 1 or 2, depending
on whether the compiler uses the same register for operand 0 and operand 2. The use of
constraint "r" for operand 2 allows the compiler to pick any general purpose register, so
it may (or may not) pick register "a" for operand 2. This ambiguity can be eliminated by
changing the constraint for operand 2 from "r" to "a" so the value of "z" will be 2, or by
adding an early clobber "&" modifier so that "z" will be 1. The following example shows
the same function with an early clobber "&" modifier:
void example16()
{
int w=1;
int z;
asm("movl $1, %0\n"
 "addl %2, %0\n"
 "movl %2, %1"
 : "=&a" (w), "=r" (z) : "r" (w));
}

Adding the early clobber "&" forces the compiler not to use the "a" register for anything
other than operand 0. Operand 2 will therefore get its own register with its own copy of
"w". The result for "z" in example16() is 1.

15.3. Operand Aliases
Extended asm specifies operands in assembly strings with a percent '%' followed by the
operand number. For example, "%0" references operand 0 or the output item "=&a" (w)
in function example16() in the previous example. Extended asm also supports operand
aliasing, which allows use of a symbolic name instead of a number for specifying
operands, as illustrated in this example:
void example17()
{
int w=1, z=0;
asm("movl $1, %[output1]\n"
 "addl %[input], %[output1]\n"
 "movl %[input], %[output2]"
 : [output1] "=&a" (w), [output2] "=r"
(z)
 : [input] "r" (w));
}

In example18(), "%0" and "%[output1]" both represent the output operand.

15.4. Assembly String Modifiers
Special character sequences in the assembly string affect the way the assembly is
generated by the compiler. For example, the "%" is an escape sequence for specifying an
operand, "%%" produces a percent for hard coded registers, and "\n" specifies a new
line. Table 33 summarizes these modifiers, known as Assembly String Modifiers.

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 156

Table 33 Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

%* Adds a '*' in the assembly string.

%% Adds a '%' in the assembly string.

%A Adds a '*' in front of an operand in the assembly string. (For example, %A0 adds a '*' in
front of operand 0 in the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0 produces 'b' on
x86-64.)

%L Produces the word op code suffix for this operand. (For example, %L0 produces 'l' on
x86-64.)

%P If producing Position Independent Code (PIC), the compiler adds the PIC suffix for this
operand. (For example, %P0 produces @PLT on x86-64.)

%Q Produces a quad word op code suffix for this operand if it is supported by the target.
Otherwise, it produces a word op code suffix. (For example, %Q0 produces 'q' on x86-64.)

%S Produces 's' suffix for this operand. (For example, %S0 produces 's' on x86-64.)

%T Produces 't' suffix for this operand. (For example, %S0 produces 't' on x86-64.)

%W Produces the half word op code suffix for this operand. (For example, %W0 produces 'w' on
x86-64.)

%a Adds open and close parentheses () around the operand.

%b Produces the byte register name for an operand. (For example, if operand 0 is in register
'a', then %b0 will produce '%al'.)

%c Cuts the '$' character from an immediate operand.

%k Produces the word register name for an operand. (For example, if operand 0 is in register
'a', then %k0 will produce '%eax'.)

%q Produces the quad word register name for an operand if the target supports quad word.
Otherwise, it produces a word register name. (For example, if operand 0 is in register 'a',
then %q0 produces %rax on x86-64.)

%w Produces the half word register name for an operand. (For example, if operand 0 is in
register 'a', then %w0 will produce '%ax'.)

%z Produces an op code suffix based on the size of an operand. (For example, 'b' for byte, 'w'
for half word, 'l' for word, and 'q' for quad word.)

%+ %C %D %F %O %X %f %h %l %n %s %y are not supported.

These modifiers begin with either a backslash "\" or a percent "%".

The modifiers that begin with a backslash "\" (e.g., "\n") have the same effect as they do
in a printf format string. The modifiers that are preceded with a "%" are used to modify a
particular operand.

These modifiers begin with either a backslash "\" or a percent "%" For example, "%b0"
means, "produce the byte or 8 bit version of operand 0". If operand 0 is a register, it will
produce a byte register such as %al, %bl, %cl, and so on.

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 157

15.5. Extended Asm Macros
As with traditional inline assembly, described in Inline Assembly, extended asm can be
used in a macro. For example, you can use the following macro to access the runtime
stack pointer.
#define GET_SP(x) \
asm("mov %%sp, %0": "=m" (##x):: "%sp");
void example20()
{
 void * stack_pointer;
 GET_SP(stack_pointer);
}

The GET_SP macro assigns the value of the stack pointer to whatever is inserted in
its argument (for example, stack_pointer). Another "C" extension known as statement
expressions is used to write the GET_SP macro another way:
#define GET_SP2 ({ \
void *my_stack_ptr; \
asm("mov %%sp, %0": "=m" (my_stack_ptr) :: "%sp"); \
my_stack_ptr; \
})
void example21()
{
 void * stack_pointer = GET_SP2;
}

The statement expression allows a body of code to evaluate to a single value. This value
is specified as the last instruction in the statement expression. In this case, the value is
the result of the asm statement, my_stack_ptr. By writing an asm macro with a statement
expression, the asm result may be assigned directly to another variable (for example,
void * stack_pointer = GET_SP2) or included in a larger expression, such as: void *
stack_pointer = GET_SP2 - sizeof(long).

Which style of macro to use depends on the application. If the asm statement needs to
be a part of an expression, then a macro with a statement expression is a good approach.
Otherwise, a traditional macro, like GET_SP(x), will probably suffice.

15.6. Intrinsics
Inline intrinsic functions map to actual x86-64 machine instructions. Intrinsics are
inserted inline to avoid the overhead of a function call. The compiler has special
knowledge of intrinsics, so with use of intrinsics, better code may be generated as
compared to extended inline assembly code.

The NVIDIA HPC Compilers intrinsics library implements MMX, SSE, SS2, SSE3, SSSE3,
SSE4a, ABM, and AVX instructions. The intrinsic functions are available to C and C+
+ programs. Unlike most functions which are in libraries, intrinsics are implemented
internally by the compiler. A program can call the intrinsic functions from C/C++ source
code after including the corresponding header file.

The intrinsics are divided into header files as follows:

C++ and C Inline Assembly and Intrinsics

User's Guide Version 2023 | 158

Table 34 Intrinsic Header File Organization

Instructions Header File Instructions Header File

ABM intrin.h SSE2 emmintrin.h

AVX immintrin.h SSE3 pmmintrin.h

MMX mmintrin.h SSSE3 tmmintrin.h

SSE xmmintrin.h SSE4a ammintrin.h

The following is a simple example program that calls XMM intrinsics.
#include <xmmintrin.h>
int main(){
 __m128 __A, __B, result;
 __A = _mm_set_ps(23.3, 43.7, 234.234, 98.746);
 __B = _mm_set_ps(15.4, 34.3, 4.1, 8.6);
 result = _mm_add_ps(__A,__B);
 return 0;
 }

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties that
may result from its use. No license is granted by implication of otherwise under any
patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all other
information previously supplied. NVIDIA Corporation products are not authorized
as critical components in life support devices or systems without express written
approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta,
NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other
company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2013–2023 NVIDIA Corporation. All rights reserved.

NVIDIA HPC Compilers

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Getting Started
	1.1. Overview
	1.2. Creating an Example
	1.3. Invoking the Command-level NVIDIA HPC Compilers
	1.3.1. Command-line Syntax
	1.3.2. Command-line Options

	1.4. Filename Conventions
	1.4.1. Input Files
	1.4.2. Output Files

	1.5. Fortran, C++ and C Data Types
	1.6. Platform-specific considerations
	1.6.1. Using the NVIDIA HPC Compilers on Linux

	1.7. Site-Specific Customization of the Compilers
	1.7.1. Use siterc Files
	1.7.2. Using User rc Files

	1.8. Common Development Tasks

	Use Command-line Options
	2.1. Command-line Option Overview
	2.1.1. Command-line Options Syntax
	2.1.2. Command-line Suboptions
	2.1.3. Command-line Conflicting Options

	2.2. Help with Command-line Options
	2.3. Getting Started with Performance
	2.3.1. Using -fast
	2.3.2. Other Performance-Related Options

	2.4. Frequently-used Options
	2.5. Floating-point Subnormal

	Multicore CPU Optimization
	3.1. Overview of Optimization
	3.1.1. Local Optimization
	3.1.2. Global Optimization
	3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization
	3.1.4. Interprocedural Analysis (IPA) and Optimization
	3.1.5. Function Inlining

	3.2. Getting Started with Optimization
	3.2.1. -help
	3.2.2. -Minfo
	3.2.3. -Mneginfo
	3.2.4. -dryrun
	3.2.5. -v

	3.3. Local and Global Optimization
	3.3.1. -Msafeptr
	3.3.2. -O

	3.4. Loop Unrolling using -Munroll
	3.5. Vectorization using -Mvect
	3.5.1. Vectorization Sub-options
	3.5.2. Vectorization Example Using SIMD Instructions

	3.6. Interprocedural Analysis and Optimization using -Mipa
	3.6.1. Building a Program Without IPA – Single Step
	3.6.2. Building a Program Without IPA – Several Steps
	3.6.3. Building a Program Without IPA Using Make
	3.6.4. Building a Program with IPA
	3.6.5. Building a Program with IPA – Single Step
	3.6.6. Building a Program with IPA – Several Steps
	3.6.7. Building a Program with IPA Using Make
	3.6.8. Questions about IPA

	Using Function Inlining
	4.1. Automatic function inlining in C++ and C
	4.2. Invoking Procedure Inlining
	4.3. Using an Inline Library
	4.4. Creating an Inline Library
	4.4.1. Working with Inline Libraries
	4.4.2. Dependencies
	4.4.3. Updating Inline Libraries – Makefiles

	4.5. Error Detection during Inlining
	4.6. Examples
	4.7. Restrictions on Inlining

	Using GPUs
	5.1. Overview
	5.2. Terminology
	5.3. Execution Model
	5.3.1. Host Functions

	5.4. Memory Model
	5.4.1. Separate Host and Accelerator Memory Considerations
	5.4.2. Accelerator Memory
	5.4.3. Cache Management
	5.4.4. CUDA Unified Memory

	5.5. Environment Variables Controlling Device Memory Management
	5.6. Fortran pointers in device code
	5.7. Calling routines in a compute kernel
	5.8. Supported Processors and GPUs
	5.9. CUDA Versions
	5.10. Compute Capability
	5.11. PTX JIT Compilation

	Using OpenACC
	6.1. OpenACC Programming Model
	6.1.1. Levels of Parallelism
	6.1.2. Enable OpenACC Directives
	6.1.3. OpenACC Support
	6.1.4. OpenACC Extensions

	6.2. Compiling an OpenACC Program
	6.2.1. -[no]acc
	6.2.2. -gpu

	6.3. OpenACC for Multicore CPUs
	6.4. Running an OpenACC Program
	6.5. OpenACC Error Handling
	6.6. Environment Variables
	6.7. Profiling Accelerator Kernels
	6.8. OpenACC Runtime Libraries
	6.8.1. Runtime Library Definitions
	6.8.2. Runtime Library Routines

	6.9. Supported Intrinsics
	6.9.1. Supported Fortran Intrinsics Summary Table
	6.9.2. Supported C Intrinsics Summary Table

	Using OpenMP
	7.1. Environment Variables
	7.2. Fallback Mode
	7.3. Loop
	7.4. OpenMP Subset
	7.5. Using metadirective
	7.6. Mapping target constructs to CUDA streams
	7.7. Noncontiguous Array Sections
	7.8. Multiple Device Support
	7.9. Interoperability with CUDA
	7.10. Interoperability with Other OpenMP Compilers
	7.11. GNU STL

	PCAST
	8.1. Overview
	8.2. PCAST with a "Golden" File
	8.3. PCAST with OpenACC
	8.4. Limitations
	8.5. Environment Variables

	Using MPI
	9.1. Using Open MPI on Linux
	9.2. Using MPI Compiler Wrappers
	9.3. Testing and Benchmarking

	Creating and Using Libraries
	10.1. Using builtin Math Functions in C++ and C
	10.2. Using System Library Routines
	10.3. Creating and Using Shared Object Files on Linux
	10.3.1. Procedure to create a use a shared object file
	10.3.2. ldd Command

	10.4. Using LIB3F
	10.5. LAPACK, BLAS and FFTs
	10.6. Linking with ScaLAPACK
	10.7. The C++ Standard Template Library

	Environment Variables
	11.1. Setting Environment Variables
	11.1.1. Setting Environment Variables on Linux

	11.2. HPC Compiler Related Environment Variables
	11.3. HPC Compilers Environment Variables
	11.3.1. FORTRANOPT
	11.3.2. FORT_FMT_RECL
	11.3.3. GMON_OUT_PREFIX
	11.3.4. LD_LIBRARY_PATH
	11.3.5. MANPATH
	11.3.6. NO_STOP_MESSAGE
	11.3.7. PATH
	11.3.8. NVCOMPILER_FPU_STATE
	11.3.9. NVCOMPILER_TERM
	11.3.10. NVCOMPILER_TERM_DEBUG
	11.3.11. PWD
	11.3.12. STATIC_RANDOM_SEED
	11.3.13. TMP
	11.3.14. TMPDIR

	11.4. Using Environment Modules on Linux
	11.5. Stack Traceback and JIT Debugging

	Distributing Files – Deployment
	12.1. Deploying Applications on Linux
	12.1.1. Runtime Library Considerations
	12.1.2. 64-bit Linux Considerations
	12.1.3. Linux Redistributable Files
	12.1.4. Restrictions on Linux Portability
	12.1.5. Licensing for Redistributable (REDIST) Files

	Inter-language Calling
	13.1. Overview of Calling Conventions
	13.2. Inter-language Calling Considerations
	13.3. Functions and Subroutines
	13.4. Upper and Lower Case Conventions, Underscores
	13.5. Compatible Data Types
	13.5.1. Fortran Named Common Blocks

	13.6. Argument Passing and Return Values
	13.6.1. Passing by Value (%VAL)
	13.6.2. Character Return Values
	13.6.3. Complex Return Values

	13.7. Array Indices
	13.8. Examples
	13.8.1. Example – Fortran Calling C
	13.8.2. Example – C Calling Fortran
	13.8.3. Example – C++ Calling C
	13.8.4. Example – C Calling C ++
	13.8.5. Example – Fortran Calling C++
	13.8.6. Example – C++ Calling Fortran

	Programming Considerations for 64-Bit Environments
	14.1. Data Types in the 64-Bit Environment
	14.1.1. C++ and C Data Types
	14.1.2. Fortran Data Types

	14.2. Large Static Data in Linux
	14.3. Large Dynamically Allocated Data
	14.4. 64-Bit Array Indexing
	14.5. Compiler Options for 64-bit Programming
	14.6. Practical Limitations of Large Array Programming
	14.7. Medium Memory Model and Large Array in C
	14.8. Medium Memory Model and Large Array in Fortran
	14.9. Large Array and Small Memory Model in Fortran

	C++ and C Inline Assembly and Intrinsics
	15.1. Inline Assembly
	15.2. Extended Inline Assembly
	15.2.1. Output Operands
	15.2.2. Input Operands
	15.2.3. Clobber List
	15.2.4. Additional Constraints
	15.2.5. Simple Constraints
	15.2.6. Machine Constraints
	15.2.7. Multiple Alternative Constraints
	15.2.8. Constraint Modifiers

	15.3. Operand Aliases
	15.4. Assembly String Modifiers
	15.5. Extended Asm Macros
	15.6. Intrinsics

