
HPC SDK Release Notes
Release 25.5

NVIDIA Corporation

May 19, 2025





Contents

1 Release Component Versions 3

2 Supported Platforms 5
2.1 Platform Requirements for the HPC SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Supported CUDA Toolchain Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Known Limitations 7

4 Deprecations and Changes 9

i



ii



HPC SDK Release Notes, Release 25.5

NVIDIA HPC SDK Release Notes

Welcome to version 25.5 of the NVIDIA HPC SDK, a comprehensive suite of compilers and libraries
enabling developers to program the entire HPC platform, from the GPU foundation to the CPU and
out through the interconnect. The 25.5 release of the HPC SDK includes component updates as well
as important functionality and performance improvements.

▶ nvfortran supports the -Minline=pragma and -Mextract=pragma options, which causes only
those procedures that have a !NVF$ INLINE pragma on the source line immediately before the
procedure’s SUBROUTINE or FUNCTION statement to be inlined/extracted.

▶ The HPC Compilers include preview support for the OpenACC capture clause to improve opti-
mizing asynchronous programs on unified memory systems.

▶ The HPC SDK 25.5 ships with support for CUDA 12.9 and CUDA 11.8.

Contents 1



HPC SDK Release Notes, Release 25.5

2 Contents



Chapter 1. Release Component Versions

The NVIDIA HPC SDK 25.5 release contains the following versions of each component:

Table 1: Table 1. HPC SDK Release Components

Linux_x86_64 Linux_aarch64

CUDA 11.8 CUDA 12.9 CUDA 11.8 CUDA 12.9

nvc++ 25.5 25.5

nvc 25.5 25.5

nvfortran 25.5 25.5

nvcc 11.8.89 12.9.37 11.8.89 12.9.37

NCCL 2.18.5 2.26.5 2.19.3 2.26.5

NVSHMEM 3.2.5 3.2.5 N/A 3.2.5

cuBLAS 11.11.4.17 12.9.0.13 11.11.3.6 12.9.0.13

cuBLASMp 0.2.1 0.4.0 0.2.1 0.4.0

cuFFT 10.9.0.58 11.4.0.6 10.9.0.58 11.4.0.6

cuFFTMp 11.2.6 11.4.0 N/A 11.4.0

cuRAND 10.3.0.86 10.3.10.19 10.3.0.86 10.3.10.19

cuSOLVER 11.4.1.48 11.7.4.40 11.4.1.48 11.7.4.40

cuSOLVERMp 0.5.1.0 0.6.0.0 0.5.1.0 0.6.0.0

cuSPARSE 11.7.5.86 12.5.9.5 11.7.5.86 12.5.9.5

cuTENSOR 2.2.0 2.2.0 2.2.0 2.2.0

Nsight Compute 2025.2.0 2025.2.0

Nsight Systems 2025.3.1 2025.3.1

HPC-X 2.14 2.22.1 2.14 2.22.1

OpenBLAS 0.3.23 0.3.23

Scalapack 2.2.0 2.2.0

Thrust 1.15.1 2.8.2 1.15.1 2.8.2

CUB 1.15.1 2.8.2 1.15.1 2.8.2

libcu++ 1.8.1 2.8.2 1.8.1 2.8.2

3



HPC SDK Release Notes, Release 25.5

4 Chapter 1. Release Component Versions



Chapter 2. Supported Platforms

2.1. Platform Requirements for the HPC SDK

Table 1: Table 2. HPC SDK Platform Requirements

Architecture Linux Distributions Minimum gcc/glibc
Toolchain

Minimum CUDA Driver

x86_64

RHEL/CentOS/Rocky
8.0 - 8.10
RHEL/Rocky 9.2 - 9.4
OpenSUSE Leap 15.4 -
15.4
SLES 15SP3, 15SP4,
15SP5, 15SP6
Ubuntu 20.04, 22.04,
24.04
Debian 12

Fortran, C, and up to
C++17: 7.5
C++20: 10.1
C++23: 12.1

450.36.06

aarch64

RHEL/CentOS/Rocky
8.0 - 8.10
Rocky 9.2 - 9.3
Ubuntu 20.04, 22.04,
24.04
SLES 15SP6
Amazon Linux 2023

Fortran, C, and up to
C++17: 7.5
C++20: 10.1
C++23: 12.1

450.36.06

Programs generated by the HPC Compilers for x86_64 processors require a minimum of AVX instruc-
tions, which includes Sandy Bridge and newer CPUs from Intel, as well as Bulldozer and newer CPUs
from AMD. The HPC SDK includes support for v8.1+ Server Class Arm CPUs that meet the require-
ments appendix E specified in the SBSA 7.1 specification.

TheHPCCompilers are compatiblewith gcc and g++ and use theGCCC andC++ libraries; theminimum
compatible versions of GCC are listed in the table in Section 3. The minimum system requirements for
CUDA and NVIDIAMath Library requirements are available in the NVIDIA CUDA Toolkit documentation.

5

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html


HPC SDK Release Notes, Release 25.5

2.2. Supported CUDA Toolchain Versions

The NVIDIA HPC SDK uses elements of the CUDA toolchain when building programs for execution
with NVIDIA GPUs. Every HPC SDK installation package puts the required CUDA components into an
installation directory called [install-prefix]/[arch]/[nvhpc-version]/cuda.

An NVIDIA CUDA GPU device driver must be installed on a system with a GPU before you can run a
program compiled for the GPU on that system. The NVIDIA HPC SDK does not contain CUDA drivers.
You must download and install the appropriate CUDA driver from NVIDIA , including the CUDA Com-
patibility Platform if that is required.

The nvaccelinfo tool prints the CUDA Driver version in its output. You can use it to find out which
version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 25.5 includes the following CUDA toolchain versions:

▶ CUDA 11.8

▶ CUDA 12.9

The minimum required CUDA driver versions are listed in the table in Section 3.1.

6 Chapter 2. Supported Platforms

http://www.nvidia.com/cuda
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-compatibility-platform
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-compatibility-platform


Chapter 3. Known Limitations

The following are recommendations for more effectively using the HPC SDK and its components when
unexpected behavior or suboptimal performance is encountered.

▶ HPC Compilers

▶ When using nvfortran with -g and mixing Blackwell and non-Blackwell compute capabilities
in the same fat binary, -gpu=nodebug is implied. Users can specify only Blackwell support
with -gpu=cc100 or -gpu=120 when -g support on the device is needed.

▶ For nvfortran, the IOSTAT argument of defined input/output procedures is expected to be
of default kind INTEGER. IOSTAT declared to be other than the default kind may experience
undefined behavior at runtime.

▶ When a pointer is assigned to an array dummy argument with the target attribute, nvfortran
may associate the pointer with a copy of the array argument instead of the actual argument.

▶ Passing an internal procedure as an actual argument to a Fortran subprogram is supported
by nvfortran provided that the dummy argument is declared as an interface block or as a
procedure dummy argument. nvfortran does not support internal procedures as actual ar-
guments to dummy arguments declared external.

▶ nvfortran only supports the Fortran 2003 standard maximum of 7 dimensions for arrays
(Fortran 2008 raised the standard maximum dimensions to 15). This limit is defined in the
standard CFI_MAX_RANK macro in the ISO_Fortran_binding.h C header file.

▶ Section “15.5.2.4 Ordinary dummy variables”, constraint C1540 and Note 5 in the For-
tran 2018 Standard allow Fortran compilers to avoid copy-in/copy-out argument pass-
ing provided that the actual and corresponding dummy arguments have the ASYN-
CHRONOUS/VOLATILE attribute, and the dummy arguments do not have the VALUE at-
tribute. This feature is fully supported in nvfortran with BIND(C) interfaces (i.e., Fortran call-
ing C). Copy-in/copy-out avoidance with asynchronous/volatile attributes may not be avail-
able in other cases with nvfortran.

▶ Fortran derived type objects with zero-size derived type allocatable components that are
used in sourced allocation or allocatable assignment may result in a runtime segmentation
violation.

▶ When using -stdpar to accelerate C++ parallel algorithms, the algorithm calls cannot in-
clude virtual function calls or function calls through a function pointer, cannot use C++ ex-
ceptions, andmust use random access iterators (raw pointers as iterators work best). When
unified memory is not enabled, the algorithm calls can only dereference pointers that point
to the heap. See the C++ parallel algorithms documentation for more details.

▶ MPI, HPC-X, and UCX

▶ The HPC SDK 25.5 ships with HPC-X version 2.22 which is incompatible with CUDA 12.0
driver (R525). HPC-X 2.20 is available as a fallback for users requiring CUDA 12.0. HPC-X

7

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#stdpar-use


HPC SDK Release Notes, Release 25.5

2.20 can be selected by loading the nvhpc-hpcx-2.20-cuda12 environment module. The
HPC-X UCC component can be re-enabled by setting OMPI_MCA_coll_ucc_enable=1 en-
vironment variable.

▶ Any program data specified in acc declare create (and related clauses such as copyin,
device_resident) can cause an application crash if used in an HPC-X MPI transport.

▶ TheMPI wrappers in comm_libs/mpi/bin automatically detect the CUDA driver and select
the matching MPI library from comm_libs/X.Y. Applications that require a full MPI direc-
tory hierarchy (e.g., bin, include, lib) or are launched via srun should bypass theMPI wrappers
by loading the nvhpc-hpcx-cuda11 or the nvhpc-hpcx-cuda12 environment module, de-
pending on the installed CUDA driver version.

▶ To use HPC-X, please use the provided environment module files or take care to source
the hpcx-init.sh script: $ . ${NVHPCSDK_HOME}/comm_libs/X.Y/hpcx/latest/
hpcx-init.sh Then, run the hpcx_load function defined by this script: hpcx_load. These
actions will set important environment variables that are needed when running HPC-X. The
following warning from HPC-X while running an MPI job – “WARNING: Open MPI tried to
bind a process but failed. This is a warning only; your job will continue, though perfor-
mance may be degraded” – is a known issue, and may be suppressed as follows: export
OMPI_MCA_hwloc_base_binding_policy=""

▶ Startingwith version 2.17.1, HPC-X does not have performance-optimal support for stream-
ordered CUDA-allocated memory. In practical terms it means that IPC methods such as
the MPI calls MPI_Send and MPI_Recv can have significantly degraded throughput when
passed data allocated with the cudaMallocAsync function or its variants. This limitation
will be removed in a future release.

▶ Math Libraries

▶ Known issues related to NVPL are described in the NVPL documentation.

▶ Some applications may see failures on Haswell and Broadwell with MKL version 2023.1.0
when running certain workloads with 4 or more OpenMP threads. The issue is resolved in
MKL version 2023.2.0.

▶ cuSolverMp has two dependencies on UCC and UCX libraries in the HPC-X directory. To
execute a program linked against cuSolverMP using CUDA 11.8, please use the “nvhpc-
hpcx-cuda11” environment module for the HPC-X library, or set the environment variable
LD_LIBRARY_PATH as follows: LD_LIBRARY_PATH=${NVHPCSDK_HOME}/comm_libs/11.
8/hpcx/latest/ucc/lib:${NVHPCSDK_HOME}/comm_libs/11.8/hpcx/latest/ucx/
lib:$LD_LIBRARY_PATH

8 Chapter 3. Known Limitations

https://docs.nvidia.com/nvpl/


Chapter 4. Deprecations and Changes

▶ Support for FMA4 and Piledriver class CPUs has been deprecated in the HPC Compilers.

▶ CUDA_VISIBLE_DEVICES is not supported at compile time when using nvfortran to generate
GPU device code. The -gpu=ccXY option can be used to specify the desired code generation on
systems with multiple GPU architectures.

▶ The Maxwell, Pascal, and Volta architectures are deprecated with CUDA 12.8, and support will be
removed in a future version.

▶ Support for using stdpar with C++14 and below has been deprecated; C++17 or higher is required
when using stdpar.

▶ When the next major version of CUDA becomes available, the HPC SDK will ship with the newest
version of CUDA and CUDA 12.<latest>; CUDA 11.8 will be removed from the HPC SDK package
and support will be deprecated.

▶ The -M[no]-acle-intrinsics option is a no-op beginning with version 25.1, and has been
removed starting with 25.3.

▶ The nvvp and nvprof utilities have been deprecated and will be removed from a future release of
the HPC SDK. Users of nvvp and nvprof are recommended to use the NSight Systems and NSight
Compute applications.

▶ The OpenMPI 3 library has been removed from the HPC SDK starting with the 24.11 release. The
OpenMPI 4 library will be removed in a future release.

▶ Support for CUDA versions 11.0 and 11.1 has been removed from the HPC SDK starting with the
24.11 release.

▶ The following flags have been deprecated and should not be used: -Mllvm, -gpu=stacklimit;
-gpu=pinned, -gpu=[no]managed, -gpu=[no]unified (see here for more info).

▶ The following deprecated flags have been removed from the HPC Compilers starting with version
24.11:

▶ -Mcuda, replaced by -cuda

▶ -Mcudalib, replaced by -cudalib

▶ -ta, replaced by -acc=gpu

▶ In a future release, the HPC SDK tar package file name will be extended to include the release
number, in addition to the version. Automations that download and install the HPC SDK from the
tar file package may need to be updated.

▶ Starting with version 24.7, the HPC compilers will not perform reciprocal rewrites at optimization
level -O3 or below; reciprocal rewrites are enabled with the -Mfprelaxed or -Ofast options.

9

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#migrating-to-nsight-tools-from-visual-profiler-and-nvprof
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#gpu-mem-flags


HPC SDK Release Notes, Release 25.5

▶ As of HPC SDK version 24.7 for Arm, UCC collectives were disabled by default for
the HPC-X package. Users wishing to re-enable UCC collective operations can set
OMPI_MCA_coll_ucc_enable=1 in their environment. Performance on some systems may de-
pend on whether UCC collectives are enabled or not.

▶ The effect of the OMP_NUM_TEAMS environment variable was changed in 24.7. It now speci-
fies an upper bound on the number of teams, in accordance with the OpenMP specification.
In previous releases, the number of teams was always set to OMP_NUM_TEAMS; now the value
is decided by the OpenMP runtime and will be no greater than OMP_NUM_TEAMS. The NVCOM-
PILER_OMP_CUDA_GRID environment variable may be used to force a specific number of teams.

▶ Support for the Power CPU architecture in the HPC SDK has been discontinued.

▶ Support for the Amazon Linux 2 and RHEL 7-based operating systems was discontinued in the
HPC SDK starting with version 24.9, corresponding with the upstream end-of-life (EOL).

▶ The GNU extension macros linux and unix are no longer defined when in ANSI mode (e.g.,
-std=c++17 or -std=c99). If your code is compiled in ANSI mode and you rely on either of
these macros, you will need to use one of the ANSI compliant macros __linux__ or __unix__.

▶ Arm (aarch64) only: The 23.9 version of nvfortran changes the calling/return sequence for For-
tran complex functions to match GNU’s gfortran convention. Prior to the 23.9 release, nvfortran
functions returned complex values via the stack using a “hidden” pointer as the first parame-
ter. Now, complex values are returned following the gfortan convention via the floating-point
registers. All libraries released with NVIDIA HPC SDK for Arm have been updated to follow the
“gfortran” method. Users linking against Arm’s performance libraries will need to use the “gcc”
version instead of the “arm” version. All Fortran code, including libraries, that uses complex num-
bers must be recompiled when using nvfortran on Arm systems.

▶ Support for CUDA Fortran textures is deprecated in CUDA 11.0 and 11.8, and has been removed
from CUDA 12. The 23.9 release was the last version of the HPC Compilers to include support
for CUDA Fortran texture.

▶ The -Minfo=intensity option is no longer supported.

▶ The CUDA_HOME environment variable is ignored by the HPC Compilers. It is replaced by
NVHPC_CUDA_HOME.

▶ The -Mipa option has been disabled starting with the 23.3 version of the HPC Compilers.

▶ Starting with version 23.11, the HPC SDK bundles only CUDA 11.8 and the latest version of the
CUDA 12.x series. Codepaths in the HPC Compilers that support CUDA versions older than 11.0
are no longer tested or maintained.

▶ cudaDeviceSynchronize() in CUDA Fortran has been deprecated, and support has been removed
from device code. It is still supported in host code.

▶ Starting with the 21.5 version of the NVIDIA HPC SDK, the -cuda option for NVC++ and NVFOR-
TRAN no longer automatically links the NVIDIA GPUmath libraries. Please refer to the -cudalib
option.

▶ HPC Compiler support for the Kepler architecture of NVIDIA GPUs was deprecated starting with
the 21.3 version of the NVIDIA HPC SDK.

10 Chapter 4. Deprecations and Changes



HPC SDK Release Notes, Release 25.5

Notices

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
ANDOTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.”
NVIDIA MAKES NOWARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT
TO THEMATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIEDWARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specificationsmentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIADGX, NVIDIA
Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corpo-
ration in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

11


	Release Component Versions
	Supported Platforms
	Platform Requirements for the HPC SDK
	Supported CUDA Toolchain Versions

	Known Limitations
	Deprecations and Changes

