
RN-08515-001_v2.4.1 | December 2021

NVSHMEM

Release Notes

NVSHMEM RN-08515-001_v2.4.1 | ii

Table of Contents

Chapter 1. NVSHMEM Release 2.4.1... 1

Chapter 2. NVSHMEM Release 2.2.1... 4

Chapter 3. NVSHMEM Release 2.1.2... 7

Chapter 4. NVSHMEM Release 2.0.3..10

Chapter 5. NVSHMEM Release 2.0.2 EA.. 12

Chapter 6. NVSHMEM Release 1.1.3..14

Chapter 7. NVSHMEM Release 1.0.1..16

NVSHMEM RN-08515-001_v2.4.1 | 1

Chapter 1. NVSHMEM Release 2.4.1

This is the NVIDIA® NVSHMEM™ 2.4.1 release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Added limited support for Multiple Processes per GPU (MPG) on x86 platforms.

‣ The amount of support depends on the availability of CUDA MPS.

‣ MPG support is currently not available on Power 9 platforms.

‣ Added a local buffer registration API that allows non-symmetric buffers to be used as local
buffers in the NVSHMEM API.

‣ Added support for dynamic symmetric heap allocation, which eliminates the need to
specify NVSHMEM_SYMMETRIC_SIZE.

‣ On x86 platforms, this feature is is enabled by default, and is available with CUDA
version 11.3 or later.

‣ On P9 platforms, this feature is disabled by default, and can be enabled by using the
NVSHMEM_DISABLE_CUDA_VMM environment variable.

‣ Support for large RMA messages.

‣ To build NVSHMEM without ibrc support, set NVSHMEM_IBRC_SUPPORT=0 in the
environment before you build.

This allows you to build and run NVSHMEM without the GDRCopy and OFED dependencies.

‣ Support for calling nvshmem_init/finalize multiple times with an MPI bootstrap.

‣ Improved testing coverage (large messages, exercising full GPU memory, and so on).

‣ Improved the default PE to NIC assignment for NVIDIA DGX-2™ systems.

‣ Optimized channel request processing by using the CPU proxy thread.

‣ Added support for the shmem_global_exit API.

‣ Removed redundant barriers to improve the collectives’ performance.

‣ Significant code refactoring to use templates instead of macros for internal functions.

‣ Improved performance for device-side blocking RMA and strided RMA APIs.

‣ Bug fix for buffers with large offsets into the NVSHMEM symmetric heap.

NVSHMEM Release 2.4.1

NVSHMEM RN-08515-001_v2.4.1 | 2

Compatibility

NVSHMEM 2.4.1 has been tested with the following:

‣ CUDA:

‣ 10.2

‣ 11.0

‣ 11.5

‣ On x86 and Power 9 processors

Limitations

‣ VMM support is disabled by default on Power 9 systems because of a performance
regression.

‣ MPG support is not yet available on Power 9 systems.

‣ Systems with PCIe peer-to-peer communication require one of the following:

‣ InfiniBand to support NVSHMEM atomics APIs.

‣ The use of NVSHMEM’s UCX transport that, if IB is absent, will use sockets for
atomics.

Fixed Issues

There are no fixed issues in this release.

Breaking Changes

There are no breaking changes in this release.

Known Issues

‣ NVSHMEM can only be linked statically.

This is because the linking of CUDA device symbols does not work across shared libraries.

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

‣ Complex types, which are enabled by setting NVSHMEM_COMPLEX_SUPPORT at compile time,
are not currently supported.

‣ When built with GDRcopy and when using Infiniband, NVSHMEM cannot allocate the
complete device memory because of the inability to reuse the BAR1 space.

This will be fixed with future CUDA driver releases in the 470 (or later) and in the 460
branch.

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/cuda/

NVSHMEM Release 2.4.1

NVSHMEM RN-08515-001_v2.4.1 | 3

‣ When NVSHMEM maps the symmetric heap using cudaMalloc, it sets the
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS attribute, which automatically synchronizes
synchronous CUDA memory operations on the symmetric heap.

With CUDA 11.3 and later, NVSHMEM supports the mapping of the symmetric heap
by using the CUDA VMM APIs. However, when you map the symmetric heap by using
the VMM APIs, CUDA does not support this attribute, and users are responsible for
synchronization. For additional information about synchronous CUDA memory operations,
see API synchronization behavior.

https://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html

NVSHMEM RN-08515-001_v2.4.1 | 4

Chapter 2. NVSHMEM Release 2.2.1

This is the NVIDIA® NVSHMEM™ 2.2.1 release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Implemented dynamic heap memory allocation for runs with P2P GPUs.

This feature, which requires CUDA version 11.3 or later, can be enabled by using
NVSHMEM_DISABLE_CUDA_VMM=0. Support for IB runs will be added in the next release.

‣ Improved UCX transport performance for AMO and RMA operations.

‣ Improved performance for warp and block put/get operations.

‣ Added atomic support for PCIe-connected GPUs over the UCX transport.

‣ The UCX transport now supports non-symmetric buffers for use as local buffers in RMA
and AMO operations.

‣ Added support to initialize NVSHMEM in CUmodule.

‣ Enabled MPI and PMIx bootstrap modules to be compiled externally from the NVSHMEM
build.

This allows multiple builds of these plugins to support various MPI and PMIx
libraries. To select the plugins, set NVSHMEM_BOOTSTRAP="plugin" and
NVSHMEM_BOOTSTRAP_PLUGIN="plugin_name.so".

Note: The plugin sources are installed with the compiled NVSHMEM library.

‣ Enabled MPI bootstrap to be used with nvshmem_init.

You can set NVSHMEM_BOOTSTRAP=MPI or use the bootstrap plugin method.

‣ Fixed bugs in nvshmem_<typename>_g and the fetch atomics implementation.

‣ Changed nvshmem_<typename>_collect to nvshmem_<typename>_fcollect to match
the OpenSHMEM specification.

‣ Fixed a type of nreduce argument in the reduction API to size_t to match OpenSHMEM
specification.

NVSHMEM Release 2.2.1

NVSHMEM RN-08515-001_v2.4.1 | 5

‣ Improved NVSHMEM build times with a multi-threaded option in the CUDA compiler
(requires CUDA version 11.2 and later).

‣ Several fixes to address Coverity reports.

Compatibility

NVSHMEM 2.2.1 has been tested with the following:

‣ CUDA:

‣ 10.2

‣ 11.0

‣ 11.4

‣ On x86 and Power 9 processors

Limitations

Systems with PCIe peer-to-peer communication require one of the following:

‣ InfiniBand to support NVSHMEM atomics APIs.

‣ The use of NVSHMEM’s UCX transport that, if IB is absent, will use sockets for atomics.

Fixed Issues

There are no fixed issues in this release.

Breaking Changes

‣ Changed nvshmem_<typename>_collect to nvshmem_<typename>_fcollect to match
the OpenSHMEM specification.

‣ Fixed a type of nreduce argument in the reduction API to size_t to match OpenSHMEM
specification.

‣ Removed support for host-side NVSHMEM wait APIs.

Known Issues

‣ NVSHMEM can only be linked statically.

This is because the linking of CUDA device symbols does not work across shared libraries.

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

‣ Complex types, which are enabled by setting NVSHMEM_COMPLEX_SUPPORT at compile time,
are not currently supported.

‣ When built with GDRcopy and when using Infiniband, NVSHMEM cannot allocate the
complete device memory because of the inability to reuse the BAR1 space.

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/cuda/

NVSHMEM Release 2.2.1

NVSHMEM RN-08515-001_v2.4.1 | 6

This will be fixed with future CUDA driver releases in the 470 (or later) and in the 460
branch.

‣ When NVSHMEM maps the symmetric heap using cudaMalloc, it sets the
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS attribute, which automatically synchronizes
synchronous CUDA memory operations on the symmetric heap.

With CUDA 11.3 and later, NVSHMEM supports the mapping of the symmetric heap
by using the CUDA VMM APIs. However, when you map the symmetric heap by using
the VMM APIs, CUDA does not support this attribute, and users are responsible for
synchronization. For additional information about synchronous CUDA memory operations,
see API synchronization behavior.

https://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html

NVSHMEM RN-08515-001_v2.4.1 | 7

Chapter 3. NVSHMEM Release 2.1.2

This is the NVIDIA® NVSHMEM™ 2.1.2 release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Added a new UCX internode communication transport layer.

Note: UCX is experimental for this release.

‣ Added support for the automatic warp-level coalescing of nvshmem_g operations.

‣ Added support for put-with-signal operations on CUDA streams.

‣ Added support to map the symmetric heap by using the cuMem APIs.

‣ Improved the performance of the single-threaded NVSHMEM put/get device API.

‣ Added the NVSHMEM_MAX_TEAMS environment variable to specify the maximum number of
teams that can be created.

‣ Improved the host and on-stream Alltoall performance by using NCCL.

‣ Fixed a bug in the compare-and-swap operation that caused several bytes of the compare
operand to be lost.

‣ Improved support for single-node environments without InfiniBand.

‣ Added CPU core affinity to debugging output.

‣ Added support for the CUDA 11.3 cudaDeviceFlushGPUDirectRDMAWrites API for
consistency.

‣ Improved support for the NVIDIA Tools Extension (NVTX) to enable performance analysis
through NVIDIA NSight.

‣ Removed the NVSHMEM_IS_P2P_RUN environment variable, because runtime automatically
determines it.

‣ Made improvements to NVSHMEM example codes.

‣ Added the NVSHMEM_REMOTE_TRANSPORT environment variable to select the networking
layer that is used for communication between nodes.

‣ Set the maxrregcount to 32 for non-inlined device functions to ensure that calling these
NVSHMEM functions does not negatively affect kernel occupancy.

NVSHMEM Release 2.1.2

NVSHMEM RN-08515-001_v2.4.1 | 8

Compatibility

NVSHMEM 2.1.2 has been tested with the following:

‣ CUDA:

‣ 10.2

‣ 11.0

‣ 11.3

‣ On x86 and Power 9 processors

Limitations

Systems with PCIe peer-to-peer communication require InfiniBand to support NVSHMEM
atomics APIs.

Fixed Issues

There are no fixed issues in this release.

Breaking Changes

‣ Removed the following deprecated constants:

‣ _NVSHMEM_MAJOR_VERSION

‣ _NVSHMEM_MINOR_VERSION

‣ _NVSHMEM_VENDOR_STRING

‣ Removed support for the deprecated nvshmem_wait API.

Known Issues

‣ NVSHMEM can only be linked statically.

This is because the linking of CUDA device symbols does not work across shared libraries.

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

‣ Complex types, which are enabled by setting NVSHMEM_COMPLEX_SUPPORT at compile time,
are not currently supported.

‣ In some cases, nvshmem_<typename>_g over InfiniBand and RoCE has been reported to
return stale data.

We are continuing to investigate this issue. In the meantime, you can use
nvshmem_<typename>_atomic_fetch as a workaround for nvshmem_<typename>_g, but
the performance of these options is different.

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/cuda/

NVSHMEM Release 2.1.2

NVSHMEM RN-08515-001_v2.4.1 | 9

‣ When built with GDRcopy and when using Infiniband, NVSHMEM cannot allocate the
complete device memory because of the inability to reuse the BAR1 space.

This will be fixed with future CUDA driver releases in the 470 (or later) and in the 460
branch.

‣ When NVSHMEM maps the symmetric heap using cudaMalloc, it sets the
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS attribute, which automatically synchronizes
synchronous CUDA memory operations on the symmetric heap.

With CUDA 11.3 and later, NVSHMEM supports the mapping of the symmetric heap
by using the CUDA VMM APIs. However, when you map the symmetric heap by using
the VMM APIs, CUDA does not support this attribute, and users are responsible for
synchronization. For additional information about synchronous CUDA memory operations,
see API synchronization behavior.

https://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html

NVSHMEM RN-08515-001_v2.4.1 | 10

Chapter 4. NVSHMEM Release 2.0.3

This is the NVIDIA® NVSHMEM™ 2.0.3 release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Added the teams and team-based collectives APIs from OpenSHMEM 1.5.

‣ Added support to use the NVIDIA® Collective Communication Library (NCCL) for optimized
NVSHMEM host and on-stream collectives.

‣ Added support for RDMA over Converged Ethernet (RoCE) networks.

‣ Added support for PMI-2 to enable an NVSHMEM job launch with srun/SLURM.

‣ Added support for PMIx to enable an NVSHMEM job launch with PMIx-compatible
launchers, such as Slurm and Open MPI.

‣ Uniformly reformatted the perftest benchmark output.

‣ Added support for the putmem_signal and signal_wait_until APIs.

‣ Improved support for single-node environments without InfiniBand.

‣ Fixed a bug that occurred when large numbers of fetch atomic operations were performed
on InfiniBand.

‣ Improved topology awareness in NIC-to-GPU assignments for NVIDIA® DGX™ A100
systems.

‣ Added the NVSHMEM_CUDA_LIMIT_STACK_SIZE environment variable to set the GPU thread
stack size on Power systems.

‣ Updated the threading level support that was reported for host and stream-based APIs to
NVSHMEM_THREAD_SERIALIZED.

Device-side APIs support NVSHMEM_THREAD_MULTIPLE.

Compatibility

NVSHMEM 2.0.3 has been tested with the following:

‣ The following version of CUDA:

‣ 10.2

https://docs.nvidia.com/cuda/archive/10.2/index.html

NVSHMEM Release 2.0.3

NVSHMEM RN-08515-001_v2.4.1 | 11

‣ 11.0

‣ 11.1

‣ x86 and Power 9

Limitations

There are no limitations in this release.

Fixed Issues

‣ Concurrent NVSHMEM collective operations with active sets are not supported.

‣ Concurrent NVSHMEM memory allocation operations and collective operations are not
supported.

The OpenSHMEM specification has clarified that only memory management routines that
operate on NVSHMEM_TEAM_WORLD, and no other collectives on that team, are permitted
concurrently.

Breaking Changes

‣ Removed support for active set-based collectives interface in OpenSHMEM.

Known Issues

‣ NVSHMEM and libraries that use NVSHMEM can only be built as static libraries and not as
shared libraries.

This is because the linking of CUDA device symbols does not work across shared libraries.

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

‣ Complex types, which are enabled by setting NVSHMEM_COMPLEX_SUPPORT at compile time,
are not currently supported.

‣ In some cases, nvshmem_<typename>_g over InfiniBand and RoCE has been reported to
return stale data.

We are continuing to investigate this issue. In the meantime, you can use
nvshmem_<typename>_atomic_fetch as a workaround for nvshmem_<typename>_g, but
the performance of these options is different.

https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/cuda/archive/11.1.0/index.html

NVSHMEM RN-08515-001_v2.4.1 | 12

Chapter 5. NVSHMEM Release 2.0.2 EA

This is the NVIDIA® NVSHMEM™ 2.0.2 EA release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Added the teams and team-based collectives APIs from OpenSHMEM 1.5.

‣ Added support to use the NVIDIA® Collective Communication Library (NCCL) for optimized
NVSHMEM host and on-stream collectives.

Note: This feature is not yet supported on Power 9 systems.

‣ Added support for RDMA over Converged Ethernet (RoCE) networks.

‣ Added support for PMI-2 to enable an NVSHMEM job launch with srun/SLURM.

‣ Added support for PMIx to enable an NVSHMEM job launch with PMIx-compatible
launchers, such as Slurm and Open MPI.

‣ Uniformly reformatted the perftest benchmark output.

‣ Added support for the putmem_signal and signal_wait_until APIs.

‣ Improved support for single-node environments without InfiniBand.

‣ Fixed a bug that occurred when large numbers of fetch atomic operations were performed
on InfiniBand.

‣ Improved topology awareness in NIC-to-GPU assignments for DGX A100 systems.

Compatibility

NVSHMEM 2.0.2 EA has been tested with the following:

‣ The following version of CUDA:

‣ 10.2

‣ 11.0

‣ 11.1

‣ x86 and Power 9

https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html
https://docs.nvidia.com/cuda/archive/11.1.0/index.html

NVSHMEM Release 2.0.2 EA

NVSHMEM RN-08515-001_v2.4.1 | 13

Limitations

‣ NVSHMEM with NCCL is not yet supported on Power 9 systems.

Fixed Issues

‣ Concurrent NVSHMEM collective operations with active sets are not supported.

‣ Concurrent NVSHMEM memory allocation operations and collective operations are not
supported.

The OpenSHMEM specification has clarified that only memory management routines that
operate on NVSHMEM_TEAM_WORLD, and no other collectives on that team, are permitted
concurrently.

Breaking Changes

‣ Removed support for active set-based collectives interface in OpenSHMEM.

Known Issues

‣ NVSHMEM and libraries that use NVSHMEM can only be built as static libraries and not as
shared libraries.

This is because the linking of CUDA device symbols does not work across shared libraries.

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

‣ Complex types, which are enabled by setting NVSHMEM_COMPLEX_SUPPORT at compile time,
are not currently supported.

‣ In some cases, nvshmem_<typename>_g over InfiniBand and RoCE has been reported to
return stale data.

We are continuing to investigate this issue. In the meantime, you can use
nvshmem_<typename>_atomic_fetch as a workaround for nvshmem_<typename>_g, but
the performance of these options is different.

NVSHMEM RN-08515-001_v2.4.1 | 14

Chapter 6. NVSHMEM Release 1.1.3

This is the NVIDIA® NVSHMEM™ 1.1.3 release notes.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements:

‣ Implemented the nvshmem_<type>_put_signal API from OpenSHMEM 1.5.

‣ Added the nvshmemx_signal_op API.

‣ Optimized the implementation of a signal set operation over P2P connected GPUs.

‣ Optimized the performance of the nvshmem_fence() function.

‣ Optimized the latency of the NVSHMEM atomics API.

‣ Fixed a bug in the nvshmem_ptr API.

‣ Fixed a bug in the implementation of the host-side strided transfer (iput, iget,and so on)
API.

‣ Fixed a bug in the on-stream reduction for the long long datatype.

‣ Fixed a hang during the nvshmem barrier collective operation.

‣ Fixed __device__ nvshmem_quiet() to also do quiet on IB ops to self.

Compatibility

NVSHMEM 1.1.3 has been tested with the following:

‣ CUDA 10.1, 10.2, and 11.0

‣ x86 and PowerPC

Known Issues

‣ NVSHMEM and libraries that use NVSHMEM can only be built as static libraries, not as
shared libraries.

This is because linking of CUDA device symbols does not work across shared libraries.

‣ NVSHMEM collective operations with active sets are not supported.

‣ Concurrent NVSHMEM memory allocation operations and collective operations are not
supported.

https://docs.nvidia.com/cuda/archive/10.1/index.html
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html

NVSHMEM Release 1.1.3

NVSHMEM RN-08515-001_v2.4.1 | 15

‣ nvshmem_barrier*, nvshmem_quiet, and nvshmem_wait_until only ensure PE-PE
ordering and visibility on systems with NVLink and InfiniBand.

They do not ensure global ordering and visibility.

NVSHMEM RN-08515-001_v2.4.1 | 16

Chapter 7. NVSHMEM Release 1.0.1

This is the NVIDIA® NVSHMEM™ 1.0.1 release notes. This is the first official release of
NVSHMEM.

Key Features And Enhancements

This NVSHMEM release includes the following key features and enhancements.

‣ Combines the memory of multiple GPUs into a partitioned global address space that’s
accessed through NVSHMEM APIs.

‣ Includes a low-overhead, in-kernel communication API for use by GPU threads.

‣ Includes stream-based and CPU-initiated communication APIs.

‣ Supports peer-to-peer communication using NVIDIA® NVLink® and PCI Express and for
GPU clusters using NVIDIA Mellanox® InfiniBand.

‣ Supports x86 and POWER9 processors.

‣ Is interoperable with MPI and other OpenSHMEM implementations.

Compatibility

NVSHMEM 1.0.1 has been tested with the following:

‣ CUDA 10.1, 10.2, and 11.0 RC

‣ x86 and PowerPC

Known Issues

‣ NVSHMEM and libraries that use NVSHMEM can only be built as static libraries, not as
shared libraries. This is because linking of CUDA device symbols does not work across
shared libraries.

‣ NVSHMEM collective operations with overlapping active sets are known not to work in
some scenarios.

‣ nvshmem_quiet only ensures PE-PE visibility and not global visibility of data.

https://docs.nvidia.com/cuda/archive/10.1/index.html
https://docs.nvidia.com/cuda/archive/10.2/index.html
https://docs.nvidia.com/cuda/archive/11.0/index.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and CUDA, CUDA Toolkit, GPU, Kepler, Mellanox, NVLink, NVSHMEM, and Tesla are trademarks and/or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright
© 2019-2021 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	NVSHMEM Release 2.4.1
	NVSHMEM Release 2.2.1
	NVSHMEM Release 2.1.2
	NVSHMEM Release 2.0.3
	NVSHMEM Release 2.0.2 EA
	NVSHMEM Release 1.1.3
	NVSHMEM Release 1.0.1

