
DG-08911-001_v2.5.0 | March 2022

NVIDIA NVSHMEM

Installation Guide

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | ii

Table of Contents

Chapter 1. Overview..1

Chapter 2. Hardware And Software Requirements...2
2.1. Hardware Requirements.. 2

2.2. Software Requirements.. 2

2.3. System Requirements...3

Chapter 3. Installation.. 4
3.1. Downloading NVSHMEM...4

3.2. Building And Installing NVSHMEM.. 4

3.3. Using NVSHMEM In Your Applications.. 5

3.3.1. Launching NVSHMEM Programs.. 5

3.3.2. Using NVSHMEM with Multiple Processes-Per-GPU.. 6

3.3.3. Using NVSHMEM With Your C Or C++ Program...6

3.3.4. Using NVSHMEM With Your MPI or OpenSHMEM Program.. 7

3.4. Running Performance Tests.. 8

3.5. "Hello World" Example...9

Chapter 4. Support... 11

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 1

Chapter 1. Overview

NVIDIA® NVSHMEM™ is a programming interface that implements a Partitioned Global
Address Space (PGAS) model across a cluster of NVIDIA GPUs. NVSHMEM provides an easy-
to-use interface to allocate memory that is symmetrically distributed across the GPUs. In
addition to a CPU-side interface, NVSHMEM also provides a CUDA kernel-side interface
that allows NVIDIA CUDA® threads to access any location in the symmetrically-distributed
memory.

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 2

Chapter 2. Hardware And Software
Requirements

NVSHMEM has the following hardware and software requirements.

2.1. Hardware Requirements
NVSHMEM requires the following hardware:

‣ The x86_64 or ppc64le CPU architectures.

‣ NVIDIA Data Center GPU of the NVIDIA Volta™ GPU architecture or later.

For a complete list, refer to https://developer.nvidia.com/cuda-gpus.

‣ All GPUs must be P2P-connected via NVLink/PCIe or via GPUDirect RDMA over InfiniBand/
RoCE with a Mellanox adapter (CX-4 or later).

Support for atomics requires a NVLink connection or a GPUDirect RDMA connection and
GDRCopy. Refer to Software Requirements for more information.

2.2. Software Requirements
NVSHMEM requires the following software:

‣ 64-bit Linux.

For a complete compatibility matrix, see the NVIDIA CUDA Installation Guide for Linux .

‣ A C++ Compiler with C++11 support.

‣ CUDA 10.2 or later.

‣ GNU Make 3.81 or later.

‣ (Optional) Mellanox OFED.

This software is required to build the IBRC transport. If the OFED is unavailable,
NVSHMEM can be built with NVSHMEM_IBRC_SUPPORT=0 set in the environment.

‣ (Optional) nv_peer_mem for GPUDirect RDMA.

This software must use the IBRC and UCX transports and is required when
NVSHMEM_IBRC_SUPPORT=0 and NVSHMEM_UCX_SUPPORT=0 are not set at compile time.

https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://github.com/Mellanox/nv_peer_memory

Hardware And Software Requirements

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 3

‣ A PMI-1 (for example, Hydra), PMI-2 (for example, Slurm), or a PMIx (for example, Open
MPI) compatible launcher.

‣ (Optional) GDRCopy v2.0 or later.

‣ This software is required for atomics support on non-NVLink connections.

‣ It is required when NVSHMEM_IBRC-SUPPORT=0 and NVSHMEM_UCX_SUPPORT=0 are not
set at compile time.

‣ (Optional) UCX version 1.10.0 or later.

This software is required to build the UCX transport.

Note: UCX must be configured with --enable-mt and --with-dm.

‣ (Optional) NCCL 2.0 or later.

‣ (Optional) PMIx 3.1.5 or later.

2.3. System Requirements
Here is some information about an additional system requirement.

(Optional) CUDA MPS Service

When using multiple processes-per-GPU, to support the complete NVHSMEM API, the CUDA
MPS server must be configured on the system. To avoid deadlock situations, the total GPU
Utilization that is shared between the processes must be capped at 100% or lower.

Refer to Multi-Process Service for more information about how to configure the MPS server.

https://github.com/NVIDIA/gdrcopy/tree/v2.0
https://github.com/openucx/ucx

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 4

Chapter 3. Installation

3.1. Downloading NVSHMEM
Procedure

Download and extract the NVSHMEM txz archive from https://
developer.download.nvidia.com/compute/redist/nvshmem/version-number/source (for
example, https://developer.download.nvidia.com/compute/redist/nvshmem/2.5.0/source/).

The extracted directory contains the following files and subdirectories:

File or Directory Description
src/ Contains NVSHMEM sources and headers.

perftest/ Contains tests showing use of NVSHMEM APIs
with performance reporting.

examples/ Contains examples showing use of some
common use cases of NVSHMEM.

scripts/ Contains helper scripts, for example, the script
to download, build, and install Hydra.

changelog Change history for the repository.

COPYRIGHT.txt Copyright information.

NVSHMEM-SLA.txt NVSHMEM Software License Agreement (SLA).

3.2. Building And Installing NVSHMEM
Procedure

 1. Set the CUDA_HOME environment variable to point to the CUDA Toolkit.
 2. Set the GDRCOPY_HOME environment variable to point to the GDRCopy installation.

To build without GDRCopy, set the environmental variable to NVSHMEM_USE_GDRCOPY=0.

Note: Without GDRCopy, atomics are only supported across NVLink connections.

https://developer.download.nvidia.com/compute/redist/nvshmem/version-number/source
https://developer.download.nvidia.com/compute/redist/nvshmem/version-number/source
https://developer.download.nvidia.com/compute/redist/nvshmem/2.5.0/source/

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 5

 3. If MPI and/or SHMEM support is required, set NVSHMEM_MPI_SUPPORT=1 and/or
NVSHMEM_SHMEM_SUPPORT=1.

 4. Set the MPI_HOME and SHMEM_HOME environment variables to point to the MPI and
OpenSHMEM installations, respectively.

 5. By default, the location of mpicc that is used during NVSHMEM compilation is set to
$MPI_HOME/bin/mpicc.

This location can be overridden by specifying MPICC=<path/to/mpicc> in the
environment.

Note: Here is some additional information:

‣ When using Open MPI and OSHMEM, the paths are the same.

‣ To use OSHMEM, Open MPI needs to be built with UCX support.

‣ NVSHMEM has been tested with Open MPI 4.0.1 and UCX 1.10.

‣ Other MPI and OpenSHMEM installations should work.

‣ By default, MPI support is enabled, and OpenSHMEM support is disabled.

 6. Optional: To enable UCX support, set NVSHMEM_UCX_SUPPORT=1 and UCX_HOME to the
installed UCX directory.

 7. Optional: To enable NCCL support, set NVSHMEM_USE_NCCL=1 and NCCL_HOME to the
installed NCCL directory.

 8. Optional: To enable PMIx support, set NVSHMEM_PMIX_SUPPORT=1 andPMIX_HOME to the
installed PMIx directory.

 9. Configure the default bootstrap:

‣ The PMI bootstrap method can be selected by using the NVSHMEM_BOOTSTRAP_PMI
environment variable at runtime.

PMI-1, which can be used with the Hydra launcher, is the default PMI standard that is
used by NVSHMEM.

‣ To select PMIx as the default PMI interface, set NVSHMEM_DEFAULT_PMIX=1.

‣ To select PMI-2 as the default PMI interface, set NVSHMEM_DEFAULT_PMI2=1.

 10.Set NVSHMEM_PREFIX to specify the location where NVSHMEM will be installed.
 11.To build and install the library, run make -j install.

3.3. Using NVSHMEM In Your Applications

3.3.1. Launching NVSHMEM Programs
NVSHMEM supports the following methods to launch your application:

‣ Using a PMI-1 compatible launcher, such as Hydra.

‣ Using a PMI-2 compatible launcher, such as Slurm.

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 6

‣ Using a PMIx compatible launcher, such as Slurm or Open MPI mpirun.

‣ Launching as part of an existing MPI application.

‣ Launching as part of an existing OpenSHMEM application.

The PMI-1 and PMI-2 clients are in NVSHMEM and are automatically built as part of the
build process. A PMIx client must be provided by the user by installing Open PMIx or by
using the PMIx client that is installed by Open MPI or Slurm. When you build Open MPI,
include the --enable-install-libpmix configure option. When you build NVSHMEM, set
NVSHMEM_PMIX_SUPPORT=1 and PMIX_HOME=/path/to/openmpi.

To select the correct PMI library at runtime, set NVSHMEM_BOOTSTRAP_PMI to PMI, PMI-2, or
PMIx. To bootstrap NVSHMEM by using MPI or OpenSHMEM, start the application in the typical
way, start MPI or OpenSHMEM, and then call the nvshmemx_init_attr function to inform
NVSHMEM that NVSHMEM is running as part of an existing MPI or OpenSHMEM job.

3.3.2. Using NVSHMEM with Multiple Processes-
Per-GPU

Starting with release 2.5.0, NVSHMEM supports multiple processes-per-GPU (MPG), which
does not require additional configuration and can be run with or without the CUDA Multi-
process Service (MPS) enabled.

If MPS is not enabled, however, only the following APIs are supported:

‣ Point-to-point RMA

‣ nvshmem_barrier_all() host

‣ nvshmemx_barrier_all_on_stream()

‣ nvshmem_sync_all() host

‣ nvshmemx_sync_all_on_stream()

To enable complete NVSHMEM MPG support, the NVIDIA MPS server must be installed and be
running on the system. To enable support for the complete API, the MPS server must also be
configured to place a limit on the total GPU utilization of a maximum of 100%.

The NVSHMEM library will automatically detect when it runs on a system with more processes
than GPUs and fan out the processes accordingly. It also automatically detects the presence
of the MPS server daemon and GPU utilization configuration and enables the APIs accordingly.
If an unsupported API is used in a limited MPG run, an error message will be printed, and the
application will exit.

3.3.3. Using NVSHMEM With Your C Or C++
Program

Procedure

 1. Include nvshmem.h and nvshmemx.h from include/.
 2. Point to the include/ and lib/ paths.

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 7

 3. NVSHMEM users: If your C or C++ program only uses NVSHMEM, install Hydra Process
Manager using the install_hydra.sh bash script under the scripts/ directory.
 a). Provide the download and install location as arguments, for example:

./install_hydra.sh <download_path> <install_path>

 b). To run the NVSHMEM job, use nvshmrun launcher, which is located under bin/ in the
Hydra install path.

3.3.4. Using NVSHMEM With Your MPI or
OpenSHMEM Program

Here is some information about how to use NVSHMEM with your MPI or OpenSHMEM
program.

Note: The only currently tested MPI library is Open MPI, but any standard compliant MPI library
should work.

To run a Hybrid MPI + NVSHMEM program, use the mpirun launcher in the MPI installation.

Similarly, NVSHMEM can be used from OpenSHMEM programs, and you must use the
corresponding launcher for the OpenSHMEM library. The only currently tested OpenSHMEM
version is OSHMEM in Open MPI. Other OpenSHMEM implementations, such as Sandia
OpenSHMEM (SOS) should also work, but these implementations have not been tested. To run
the hybrid OpenSHMEM/NVSHMEM job, use the oshrun launcher in the OpenMPI installation
or follow the launcher specification of your OpenSHMEM library.

NVSHMEM relies on a plug-in system for bootstrapping. By default, an MPI bootstrap plug-in
is built for NVSHMEM and is installed in $(NVSHMEM_HOME)/lib. If this directory is not in your
dynamic linker search path, you might need to add it to $LD_LIBRARY_PATH. This MPI plug-in
is selected automatically at runtime if the nvshmemx_init_attr initialization function is used
to request the MPI bootstrap, or if NVSHMEM_BOOTSTRAP=”MPI” is set.

The source code of the MPI bootstrap plug-in is installed in $(NVSHMEM_HOME)/share/
nvshmem/src/bootstrap-plugins and can be built separately from the NVSHMEM
library (for example, to support additional MPI libraries). Custom bootstrap plugins are also
possible and should implement the interface that is defined in $(NVSHMEM_HOME)/include/
nvshmem_bootstrap.h. Plug-ins must be built as relocatable shared objects.

After the external plug-in library is built, it can be specified to
NVSHMEM at runtime by specifying NVSHMEM_BOOTSTRAP=”plugin”
and NVSHMEM_BOOTSTRAP_PLUGIN=”[name of plugin]”. For example,
NVSHMEM_BOOTSTRAP=”MPI” is equal to NVSHMEM_BOOTSTRAP=”plugin” and
NVSHMEM_BOOTSTRAP_PLUGIN=”nvshem_bootstrap_mpi.so”.

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 8

3.4. Running Performance Tests
Before you can run performance tests, you first must build them.

Procedure

 1. If the NVSHMEM library was built with NVSHMEM_MPI_SUPPORT=1, set the CUDA_HOME,
NVSHMEM_HOME and MPI_HOME environment variables to build NVSHMEM performance
tests:
CUDA_HOME=<path to supported CUDA installation>
NVSHMEM_HOME=<path to directory where NVSHMEM is installed>
MPI_HOME=<path to MPI installation>

If you built NVSHMEM with MPI and OpenSHMEM support (NVSHMEM_MPI_SUPPORT=1 and
NVSHMEM_SHMEM_SUPPORT=1) when you build perftest/, MPI and OpenSHMEM support
must be enabled.

Build without SHMEM interoperability: To build NVSHMEM performance tests without
SHMEM interoperability, set the environment variable NVSHMEM_SHMEM_SUPPORT to 0. By
default, performance tests are installed under perftest/perftest_install. To install to
a different path, set NVSHMEM_PERFTEST_INSTALL to point to the correct path.

 2. Update LD_LIBRARY_PATH to point to $CUDA_HOME/lib64, $MPI_HOME/lib, and
$NVSHMEM_HOME/lib.

 3. Assuming Hydra is installed under HYDRA_HOME, run performance tests as NVSHMEM jobs,
hybrid MPI+NVSHMEM jobs, or hybrid OpenSHMEM+NVSHMEM jobs with the following
commands (using perftest/device/pt-to-pt/put.cu as an example):

NVSHMEM job using Hydra (PMI-1):
$HYDRA_HOME/bin/nvshmrun -n <up to number of P2P or InfiniBand
NIC accessible GPUs>
$NVSHMEM_PERFTEST_INSTALL/device/pt-to-pt/shmem_put_bw

NVSHMEM job using Slurm:
srun -n <up to number of P2P or InfiniBand NIC accessible GPUs>
$NVSHMEM_PERFTEST_INSTALL/device/pt-to-pt/shmem_put_bw

Note: When Slurm was built with a PMI that does not match the default of NVSHMEM, for
example, if Slurm was built with PMIx support and NVSHMEM_DEFAULT_PMIX=1 was not set
when building NVSHMEM, NVSHMEM_BOOTSTRAP_PMI can be used to override the default.
Possible values are PMIX, PMI-2, and PMI. The Slurm --mpi= option to srun can be used to
tell Slurm which PMI interface to use.

Hybrid MPI/NVSHMEM job:
$MPI_HOME/bin/mpirun -n <up to number of GPUs accessible by P2P
or InfiniBand NIC> -x NVSHMEMTEST_USE_MPI_LAUNCHER=1
$NVSHMEM_PERFTEST_INSTALL/device/pt-to-pt/shmem_put_bw

Hybrid OpenSHMEM/NVSHMEM job:
$MPI_HOME/bin/oshrun -n <up to number of GPUs accessible by P2P
or InfiniBand NIC> -x USE_SHMEM_IN_TEST=1
$NVSHMEM_PERFTEST_INSTALL/device/pt-to-pt/shmem_put_bw

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 9

3.5. "Hello World" Example
Procedure

 1. Save the following code as nvshmemHelloWorld.cu:
#include <stdio.h>
#include <cuda.h>
#include <nvshmem.h>
#include <nvshmemx.h>

__global__ void simple_shift(int *destination) {
 int mype = nvshmem_my_pe();
 int npes = nvshmem_n_pes();
 int peer = (mype + 1) % npes;

 nvshmem_int_p(destination, mype, peer);
}

int main(void) {
 int mype_node, msg;
 cudaStream_t stream;

 nvshmem_init();
 mype_node = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
 cudaSetDevice(mype_node);
 cudaStreamCreate(&stream);

 int *destination = (int *) nvshmem_malloc(sizeof(int));

 simple_shift<<<1, 1, 0, stream>>>(destination);
 nvshmemx_barrier_all_on_stream(stream);
 cudaMemcpyAsync(&msg, destination, sizeof(int), cudaMemcpyDeviceToHost,
 stream);

 cudaStreamSynchronize(stream);
 printf("%d: received message %d\n", nvshmem_my_pe(), msg);

 nvshmem_free(destination);
 nvshmem_finalize();
 return 0;
}

 2. Build nvshmemHelloWorld.cu with the following command:

When using dynamic linking:
nvcc -rdc=true -ccbin g++ -gencode=$NVCC_GENCODE -I
$NVSHMEM_HOME/include nvshmemHelloWorld.cu -o
nvshmemHelloWorld.out -L $NVSHMEM_HOME/lib -lnvshmem_host -lnvshmem_device

When using static linking:
nvcc -rdc=true -ccbin g++ -gencode=$NVCC_GENCODE -I
$NVSHMEM_HOME/include nvshmemHelloWorld.cu -o
nvshmemHelloWorld.out -L $NVSHMEM_HOME/lib -lnvshmem -lnvidia-ml -lcuda -lcudart

Where arch=compute_70,code=sm_70 is the value of NVCC_GENCODE for V100 GPUs.
 3. Run the nvshmemHelloWorld sample with one of the following commands:

‣ When running on one host with two GPUs (connected by PCI-E, NVLink or Infiniband):
$HYDRA_HOME/bin/nvshmrun -n 2 -ppn 2 ./nvshmemHelloWorld.out

Installation

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 10

‣ When running on two hosts with one GPU per host that is connected by InfiniBand:
$HYDRA_HOME/bin/nvshmrun -n 2 -ppn 1 –-hosts hostname1,hostname2 ./
nvshmemHelloWorld.out

NVIDIA NVSHMEM DG-08911-001_v2.5.0 | 11

Chapter 4. Support

Report bugs and submit feature requests by using NVONLINE or by emailing
nvshmem@nvidia.com.

https://nvdeveloper.nvidia.com/
nvshmem@nvidia.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and CUDA, CUDA Toolkit, GPU, Kepler, Mellanox, NVLink, NVSHMEM, and Tesla are trademarks and/or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright
© 2019-2022 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Hardware And Software Requirements
	2.1. Hardware Requirements
	2.2. Software Requirements
	2.3. System Requirements

	Installation
	3.1. Downloading NVSHMEM
	3.2. Building And Installing NVSHMEM
	3.3. Using NVSHMEM In Your Applications
	3.3.1. Launching NVSHMEM Programs
	3.3.2. Using NVSHMEM with Multiple Processes-Per-GPU
	3.3.3. Using NVSHMEM With Your C Or C++ Program
	3.3.4. Using NVSHMEM With Your MPI or OpenSHMEM Program

	3.4. Running Performance Tests
	3.5. "Hello World" Example

	Support

