TABLE OF CONTENTS

Chapter 1. What’s New.. 1
Chapter 2. Release Component Versions.. 2
Chapter 3. Supported Platforms... 4
 3.1. Platform Requirements for the HPC SDK... 4
 3.2. Supported CUDA Toolkit Versions.. 5
Chapter 4. Known Limitations.. 6
LIST OF TABLES

Table 1 HPC SDK Release Components ... 2
Table 2 HPC SDK Platform Requirements ... 4
Chapter 1.
WHAT’S NEW

This is the 20.9 release of the NVIDIA HPC SDK, a comprehensive suite of compilers and libraries enabling developers to program the entire HPC platform, from the GPU foundation to the CPU and through the interconnect.

Key features that are new in the 20.9 release of the NVIDIA HPC SDK for Linux include:

- NVIDIA HPC SDK 20.9 is a maintenance release providing multiple bugfixes and usability enhancements.
- A beta preview of Open MPI 4.0.5 built with support for UCX 1.9.0 is now available.
- The Fortran module for OpenMP has been split into two modules, 'omp_lib' and 'omp_lib_kinds'.
- HPC SDK library and developer tool components have been updated to their newest versions.
Chapter 2.
RELEASE COMPONENT VERSIONS

The NVIDIA HPC SDK 20.9 release contains the following versions of each component:

Table 1 HPC SDK Release Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Linux_x86_64</th>
<th>Linux_ppc64le</th>
<th>Linux_aarch64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUDA 10.1</td>
<td>CUDA 10.2</td>
<td>CUDA 11.0</td>
</tr>
<tr>
<td>nvc++</td>
<td>20.9</td>
<td>20.9</td>
<td>20.9</td>
</tr>
<tr>
<td>nvc</td>
<td>20.9</td>
<td>20.9</td>
<td>20.9</td>
</tr>
<tr>
<td>nvfortran</td>
<td>20.9</td>
<td>20.9</td>
<td>20.9</td>
</tr>
<tr>
<td>nvcc</td>
<td>10.1.243</td>
<td>10.2.89</td>
<td>11.0.228</td>
</tr>
<tr>
<td>NCCL</td>
<td>2.7.8-1</td>
<td>2.7.8-1</td>
<td>2.7.8-1</td>
</tr>
<tr>
<td>NVSHMEM</td>
<td>1.1.3</td>
<td>1.1.3</td>
<td>1.1.3</td>
</tr>
<tr>
<td>cuBLAS</td>
<td>10.2.1.243</td>
<td>10.2.2.89</td>
<td>11.2.0.252</td>
</tr>
<tr>
<td>cuFFT</td>
<td>10.1.1.243</td>
<td>10.1.2.89</td>
<td>10.2.1.245</td>
</tr>
<tr>
<td>cuRAND</td>
<td>10.1.1.243</td>
<td>10.1.2.89</td>
<td>10.2.1.245</td>
</tr>
<tr>
<td>cuSOLVER</td>
<td>10.2.0.243</td>
<td>10.3.0.89</td>
<td>11.1.1.245</td>
</tr>
<tr>
<td>cuSPARSE</td>
<td>10.3.0.243</td>
<td>10.3.1.89</td>
<td>11.1.1.245</td>
</tr>
<tr>
<td>cuTENSOR</td>
<td>1.2.0</td>
<td>1.2.0</td>
<td>1.2.0</td>
</tr>
<tr>
<td>Nsight Compute</td>
<td>2020.1.0.33-28294165</td>
<td>2020.1.0.33-28294165</td>
<td>2020.1.0.33-28294165</td>
</tr>
<tr>
<td>Nsight Systems</td>
<td>2020.3.1.54 CLI and GUI</td>
<td>2020.3.1.54 CLI</td>
<td>2020.3.1.54 CLI</td>
</tr>
<tr>
<td>OpenMPI</td>
<td>3.1.5</td>
<td>3.1.5</td>
<td>3.1.5</td>
</tr>
<tr>
<td>OpenMPI 4 (NVHPC beta)</td>
<td>N/A</td>
<td>4.0.5</td>
<td>N/A</td>
</tr>
<tr>
<td>UCX</td>
<td>N/A</td>
<td>1.9.0</td>
<td>1.9.0</td>
</tr>
</tbody>
</table>

NVIDIA HPC SDK Release Notes
<table>
<thead>
<tr>
<th></th>
<th>Linux_x86_64</th>
<th>Linux_ppc64le</th>
<th>Linux_aarch64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUDA 10.1</td>
<td>CUDA 10.2</td>
<td>CUDA 11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenBLAS</td>
<td>0.3.10</td>
<td>0.3.10</td>
<td>0.3.10</td>
</tr>
<tr>
<td>Scalapack</td>
<td>2.1.0</td>
<td>2.1.0</td>
<td>2.1.0</td>
</tr>
<tr>
<td>Thrust</td>
<td>1.9.6</td>
<td>1.9.7</td>
<td>1.9.9</td>
</tr>
<tr>
<td></td>
<td>1.9.6</td>
<td>1.9.7</td>
<td>1.9.9</td>
</tr>
<tr>
<td></td>
<td>1.9.6</td>
<td>1.9.7</td>
<td>1.9.10</td>
</tr>
<tr>
<td>CUB</td>
<td>N/A</td>
<td>N/A</td>
<td>1.9.9</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>1.9.9</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>1.9.9</td>
</tr>
<tr>
<td>libc++</td>
<td>N/A</td>
<td>1.0.0</td>
<td>2.0.0</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>1.0.0</td>
<td>2.0.0</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>1.0.0</td>
<td>2.0.0</td>
</tr>
</tbody>
</table>
3.1. Platform Requirements for the HPC SDK

Table 2 HPC SDK Platform Requirements

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Linux Distributions</th>
<th>Minimum gcc/glibc Toolchain</th>
<th>Minimum CUDA Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86_64</td>
<td>CentOS 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, RHEL 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, RHEL 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, RHEL 8.0, 8.1, SLES 12SP4, 12SP5, 15SP1, Ubuntu 14.04, 16.04, 18.04, 19.04, 19.10, 20.04</td>
<td>C99: 4.4, C11: 4.9, C++03: 4.4, C++11: 4.9, C++14: 5.1, C++17: 7.1</td>
<td>418.39</td>
</tr>
<tr>
<td>ppc64le</td>
<td>RHEL 7.3, 7.4, 7.5, 7.6, 7.7, 8.0, 8.1, RHEL Pegas 7.5, 7.6, Ubuntu 16.04, 18.04</td>
<td>C99: 4.4, C11: 4.9, C++03: 4.4, C++11: 4.9, C++14: 5.1, C++17: 7.1</td>
<td>410.45</td>
</tr>
</tbody>
</table>
Supported Platforms

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Linux Distributions</th>
<th>Minimum gcc/glibc Toolchain</th>
<th>Minimum CUDA Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>aarch64</td>
<td>RHEL 8.1 Ubuntu 18.04</td>
<td>C99: 4.4, C11: 4.9, C++03: 4.4, C++11: 4.9, C++14: 5.1, C++17: 7.1</td>
<td>450.36</td>
</tr>
</tbody>
</table>

3.2. Supported CUDA Toolkit Versions

The NVIDIA HPC SDK uses elements of the CUDA toolchain when building programs for execution with NVIDIA GPUs. Every HPC SDK installation package puts the required CUDA components into an installation directory called `[/install-prefix]/[arch]/[nvhpc-version]/cuda`.

An NVIDIA CUDA GPU device driver must be installed on a system with a GPU before you can run a program compiled for the GPU on that system. The NVIDIA HPC SDK does not contain CUDA Drivers. You must download and install the appropriate CUDA Driver from NVIDIA, including the CUDA Compatibility Platform if that is required.

The `nvaccelinfo` tool prints the Driver version as its first line of output. You can use it to find out which version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 20.9 includes stand-alone support for the following CUDA toolchain versions:

- CUDA 10.1
- CUDA 10.2
- CUDA 11.0

See the NVIDIA HPC Compilers User Guide for information about using the HPC SDK Fortran, C++ and C compilers with alternative versions of the CUDA toolchain.
Chapter 4.
KNOWN LIMITATIONS

- The cuda-gdb debugger is included in this release. Currently, Fortran arrays with non-constant bounds are not handled correctly and querying values will yield incorrect results. Stepping through cuda-fortran and OpenACC kernels is partially supported, but incorrect line numbers are displayed. For additional general limitations with cuda-gdb, please refer to its documentation.

- When using -stdpar to accelerate C++ parallel algorithms, the algorithm calls cannot include virtual function calls or function calls through a function pointer, cannot use C++ exceptions, can only dereference pointers that point to the heap, and must use random access iterators (raw pointers as iterators work best).

- The Open MPI 4.0.5 build with UCX 1.9.0 is a beta feature in the NVIDIA HPC SDK 20.9. It is built with support for MOFED 5.0; users on systems using earlier MOFED versions may encounter compatibility issues.
Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2013-2020 NVIDIA Corporation. All rights reserved.