& ACEELENTED
O COMEBUTING

HPC SDK Release Notes
Release 25.9

NVIDIA Corporation

Sep 29, 2025

Contents

1 Release Component Versions

2 Supported Platforms
2.1 Platform Requirements for the HPC SDK

2.2 Supported CUDA Toolchain Versions . . .

3 Known Limitations and Recommendations

4 Deprecations and Changes

HPC SDK Release Notes, Release 25.9

Welcome to version 25.9 of the NVIDIA HPC SDK, a comprehensive suite of compilers and libraries
enabling developers to program the entire HPC platform, from the GPU foundation to the CPU and
out through the interconnect. The 25.9 release of the HPC SDK includes component updates as well
as important functionality and performance improvements.

HPC SDK 25.9 supports CUDA 12.x and introduces support for CUDA 13.0. The 25.9 release
packages include components from CUDA 13.0 and 12.9U1. CUDA 11.x is no longer provided as
part of this HPC SDK release; however the compilers will continue to be tested on CUDA 11.x
until a future release.

HPC SDK 25.9 adds support for the RHEL/Rocky 10 Operating System distribution.
Maxwell, Pascal, and Volta GPUs are no longer supported starting with CUDA 13.0.

cuSOLVERMp and cuBLASMp have transitioned from using the Communication Abstraction Li-
brary (libcal) to using NCCL directly. These libraries should now be able to run on Cray/HPE Sling-
shot. This is a breaking change and requires changes to initialization in the user application. For
CUSOLVERMp, see , and for cuBLASMp, see

for steps to transition the application from libcal to NCCL.

The following environment variables can be used to point to components outside the HPC
SDK: NVHPC_CUDA_HOME, NVCOMPILER_MATH_LIBS_HOME, NVCOMPILER_COMM_LIBS_HOME,
NVCOMPILER_NCCL_HOME, NVCOMPILER_SHMEM_HOME, NVCOMPILER_CUPTI_LIBS_HOME,
NVCOMPILER_NSIGHT_COMPUTE_HOME, NVCOMPILER_NSIGHT_SYSTEMS_HOME, NVCOM-
PILER_COMPUTE_SANITIZER_HOME. As an example, these can be used to point to system CUDA
11.8 components, which can then be used with the nvhpc compiler within the HPC SDK. For more
information on these environment varaibles, see the

Several new environment variables and API functions have been added to the com-
piler to enhance use of unified memory, and to add additional thread limit control.
For information on the environment variable additions (NVCOMPILER_ACC_MEMHINTS,
NVCOMPILER_ACC_MEMPREFETCH, NVCOMPILER_ACC_CHECK_UNIFIED, NVCOM-
PILER_CPU_HARD_THREAD_LIMIT), or APl function additions (accx_set_mem_hints,
accx_set_mem_prefetch, accx_mem_advise, accx_mem_prefetch), see

HPC SDK 25.9-1 addresses the following issues:

Support for cuSOLVERMp and cuBLASMp transition to using NCCL directly had some re-
maining links to libcal, which have subsequently been removed

1lvm-as was not found when building with certain compute capability options for -gpu
(problem occurred with a combination of cc<100 and cc100)

Support GCCinstallations in directories with extended non-alphanumeric characters in their
path

Contents 1

https://docs.nvidia.com/cuda/cusolvermp/usage/initialization/cal_to_nccl.html
https://docs.nvidia.com/cuda/cublasmp/usage/initialization/cal_to_nccl.html
https://docs.nvidia.com/cuda/cublasmp/usage/initialization/cal_to_nccl.html
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html

HPC SDK Release Notes, Release 25.9

2 Contents

Chapter 1. Release Component Versions

The NVIDIA HPC SDK 25.9 release contains the following versions of each component:

HPC SDK Release Notes, Release 25.9

Table 1: HPC SDK Release Components

Linux_x86_64 Linux_aarch64
CUDA 12.9U1 CUDA 13.0 CUDA 12.9U1 CUDA 13.0
nvc++ 25.9 25.9
nvc 25.9 25.9
nvfortran 25.9 25.9
nvce 12.9.37 13.0.48 12.9.37 13.0.48
NCCL
2.26.5(12.0-12.1) 2.27.7 2.26.5(12.0-12.1) 2.27.7
2.27.7 (12.2+) 2.27.7 (12.2+)
NVSHMEM 3.3.24 3.3.24 3.3.24 3.3.24
CUBLAS 129.14 13.0.0.19 129.14 13.0.0.19
cuBLASMp 0.5.1 0.5.1 (cc80+) 0.5.1 0.5.1 (cc80+)
CUFFT 11.4.1.4 12.0.0.15 11.4.1.4 12.0.0.15
cuFFTMp* 11.4.0 11.40 11.4.0 11.4.0
cuRAND 10.3.10.19 10.4.0.35 10.3.10.19 10.4.0.35
cuSOLVER 11.7.5.82 12.0.3.29 11.7.5.82 12.0.3.29
cuSOLVERMp* 0.7.0 0.7.0 (cc80+) 0.7.0 0.7.0 (cc80+)
cuSPARSE 12.5.10.65 12.6.2.49 12.5.10.65 12.6.2.49
CUTENSOR 2.3.0 2.3.0
2.2.0 (<cc70) 2.2.0 (<cc70)
2.3.0 (>=cc70+) 2.3.0 (>=cc70)
Nsight Compute 2025.2.1 2025.3 2025.2.1 2025.3
Nsight Systems 2025.5.1 2025.5.1
HPC-X 2.24 2.24
2.20(12.0-12.2) 2.20(12.0-12.2)
2.24 (12.3+) 2.24 (12.3+)
OpenBLAS 0.3.23 0.3.23
Scalapack 2.2.0 2.2.0
Thrust 2.8.2 3.0.1 2.8.2 3.0.1
CuB 2.8.2 3.0.1 2.8.2 3.0.1
libcu++ 2.8.2 3.0.1 2.8.2 3.0.1
NVPL* N/A 25.5
4 Chapter 1. Release Component Versions

HPC SDK Release Notes, Release 25.9

* product in beta

HPC SDK Release Notes, Release 25.9

6 Chapter 1. Release Component Versions

Chapter 2. Supported Platforms

Table 2: HPC SDK Platform Requirements

SLES 15SP6, 155P7
Amazon Linux 2023

Architecture Linux Distributions Minimum gcc/glibc | Minimum CUDA Driver
Toolchain
x86_64
RHEL/CentOS/Rocky Fortran, C, and up to 12.x: >=525.60.13
8.0-8.10 C++17: 7.5 13.x: >=580.65.06
RHEL/Rocky 9.2 - 9.6, C++20: 10.1
10 C++23: 12.1
OpenSUSE Leap 15.4 -
15.6
SLES 155P4, 15SP5,
15SP6, 15SP7
Ubuntu 22.04, 24.04
Debian 12, 13
aarch64
RHEL/CentOS/Rocky Fortran, C, and up to 12.x: >=525.60.13
8.0-8.10 C++17: 75 13.x: >=580.65.06
Rocky 9.2-9.6, 10 C++20: 10.1
Ubuntu 22.04, 24.04 C++23:12.1

Programs generated by the HPC Compilers for x86_64 processors require a minimum of AVX instruc-
tions, which includes Sandy Bridge and newer CPUs from Intel, as well as Bulldozer and newer CPUs
from AMD. The HPC SDK includes support for v8.1+ Server Class Arm CPUs that meet the require-
ments appendix E specified in the SBSA 7.1 specification.

The HPC Compilers are compatible with gcc and g++ and use the GCC C and C++ libraries; the minimum
compatible versions of GCC are listed in the table in Section 3. The minimum system requirements for
CUDA and NVIDIA Math Library requirements are available in the

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

HPC SDK Release Notes, Release 25.9

The NVIDIA HPC SDK uses elements of the CUDA toolchain when building programs for execution
with NVIDIA GPUs. Every HPC SDK installation package puts the required CUDA components into an
installation directory called [install-prefix]/[arch]/[nvhpc-version]/cuda.

An NVIDIA CUDA GPU device driver must be installed on a system with a GPU before you can run a
program compiled for the GPU on that system. The NVIDIA HPC SDK does not contain CUDA drivers.
You must download and install the appropriate , including the

if that is required.

The nvaccelinfo command prints the CUDA Driver version in its output. You can use it to find out
which version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 25.9 includes the following CUDA toolchain versions:
CUDA 12.9U1
CUDA 13.0

The minimum required CUDA driver versions are listed in the table in Section 3.1.

8 Chapter 2. Supported Platforms

http://www.nvidia.com/cuda
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-compatibility-platform
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-compatibility-platform

Chapter 3. Known Limitations and
Recommendations

The following are recommendations for more effectively using the HPC SDK and its components when
unexpected behavior or suboptimal performance is encountered.

HPC Compilers

When using nvfortran with -g and mixing Blackwell and non-Blackwell compute capabilities
in the same fat binary, -gpu=nodebug is implied. When -g support on the device is needed,
users can specify Blackwell-only compute capability support using the -gpu flag and one or
more Blackwell sub-options (i.e., cc100, cc1280).

For nvfortran, the IOSTAT argument of defined input/output procedures is expected to be
of default kind INTEGER. IOSTAT declared to be other than the default kind may experience
undefined behavior at runtime.

When a pointer is assigned to an array dummy argument with the target attribute, nvfortran
may associate the pointer with a copy of the array argument instead of the actual argument.

Passing an internal procedure as an actual argument to a Fortran subprogram is supported
by nvfortran provided that the dummy argument is declared as an interface block or as a
procedure dummy argument. nvfortran does not support internal procedures as actual ar-
guments to dummy arguments declared external.

nvfortran only supports the Fortran 2003 standard maximum of 7 dimensions for arrays
(Fortran 2008 raised the standard maximum dimensions to 15). This limit is defined in the
standard CFI_MAX_RANK macro in the ISO_Fortran_binding.h C header file.

Section “15.5.2.4 Ordinary dummy variables”, constraint C1540 and Note 5 in the For-
tran 2018 Standard allow Fortran compilers to avoid copy-in/copy-out argument pass-
ing provided that the actual and corresponding dummy arguments have the ASYN-
CHRONOUS/VOLATILE attribute, and the dummy arguments do not have the VALUE at-
tribute. This feature is fully supported in nvfortran with BIND(C) interfaces (i.e., Fortran call-
ing C). Copy-in/copy-out avoidance with asynchronous/volatile attributes may not be avail-
able in other cases with nvfortran.

Fortran derived type objects with zero-size derived type allocatable components that are
used in sourced allocation or allocatable assignment may result in a runtime segmentation
violation.

When using -stdpar to accelerate C++ parallel algorithms, the algorithm calls cannot in-
clude virtual function calls or function calls through a function pointer, cannot use C++ ex-
ceptions, and must use random access iterators (raw pointers as iterators work best). When
unified memory is not enabled, the algorithm calls can only dereference pointers that point
to the heap. See the for more details.

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#stdpar-use

HPC SDK Release Notes, Release 25.9

There is a known (inclusive) that can negatively impact
performance of malloc() when called from inside OpenMP regions and combined with
OMP_PROC_BIND. While a fix has been backported into those versions of glibc, it is not avail-
able for many Linux distributions. The OpenMP runtime will automatically set the value of
the MALLOC_ARENA_MAX environment variable to 8 times the value of OMP_NUM_THREADS if
MALLOC_ARENA_MAX is not already set. MALLOC_ARENA_MAX may be set to 0 to disable the
automatic workaround and use the default glibc behavior.

Communication libraries (HPC-X MPI, OpenSHMEM, UCX, ...)

HPC SDK 25.9 defaults to using HPC-X version 2.24 which is incompatible with CUDA 12.0
- 12.2 driver (R525). HPC-X 2.20 is available as a fallback for users requiring CUDA 12.0 -
12.2. HPC-X 2.20 can be selected by loading the nvhpc-hpcx-2.20-cuda12 environment
module.

HPC-X MPI initialization time on systems with CUDA may be higher than on systems
without CUDA installed. If your application does not use GPU communication, you may
be able to reduce the initialization overhead by setting the MPI environment variables
OMPI_MCA_coll_ucc_enable=0and UCX_MODULES="cuda. Please be aware that disabling
UCC may degrade performance in other areas of HPC-X MPI, so we recommend testing over-
all performance changes with these settings.

Both NVSHMEM and NCCL rely on GPUDirect RDMA for direct GPU-to-GPU communication
within a node. To achieve the best performance on bare metal Linux platforms, the
recommends that system settings like PCle Access Control
Services (ACS) and Input-Output Memory Management Units (IOMMUs) be disabled or set
to passthrough mode. The also suggests that ACS and IOMMUs be
disabled, citing that they could cause a significant performance reduction or even a hang.

Any program data specified in acc declare create (and related clauses such as copyin,
device_resident) can cause an application crash if used in an HPC-X MPI transport.

The MPI wrappers in comm_libs/mpi/bin automatically detect the CUDA driver and select
the matching MPI library from comm_libs/X.Y. Applications that require a full MPI direc-
tory hierarchy (e.g., bin, include, lib) or are launched via srun should bypass the MPI wrappers
by loading the nvhpc-hpcx-cudal1 or the nvhpc-hpcx-cudal12 environment module, de-
pending on the installed CUDA driver version.

To use HPC-X, please use the provided environment module files or take care to source
the hpcx-init.sh script: § . S{NVHPCSDK_HOME}/comm_libs/X.Y/hpcx/latest/
hpcx-init.sh Then, run the hpcx_load function defined by this script: hpcx_load. These
actions will set important environment variables that are needed when running HPC-X.

The following warning from HPC-X may be encountered due to oversubscription, fail-
ure to detect proper topology, etc., while running an MPI job - “WARNING: Open MPI
tried to bind a process but failed. This is a warning only; your job will continue,
though performance may be degraded”. This may be suppressed as follows: export
OMPI_MCA_hwloc_base_binding_policy=""

Starting with version 2.17.1, HPC-X does not have performance-optimal support for stream-
ordered CUDA-allocated memory. In practical terms it means that IPC methods such as
the MPI calls MPI_Send and MPI_Recv can have significantly degraded throughput when
passed data allocated with the cudaMallocAsync function or its variants. This limitation
will be removed in a future release.

Math Libraries

CUSOLVERMp and cuBLASMp do not support Turing (cc75) with CUDA 13.0. Support for
Turing will be added in a future release.

10 Chapter 3. Known Limitations and Recommendations

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsourceware.org%2Fbugzilla%2Fshow_bug.cgi%3Fid%3D30945&data=05%7C02%7Chpoxon%40nvidia.com%7Ca1d4752586ad41f6714608ddc3ea3abd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638882132957444121%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=NGGxrD8%2BMxCJSfdmHHX8v7yjNkxs3mETs%2FCKaiAbucw%3D&reserved=0
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html#system-settings
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html#system-settings
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#pci-access-control-services-acs

HPC SDK Release Notes, Release 25.9

cuBLASMp redistribution functionality (cublasMpGemr2D and cublasMpTrmr2D) may fail
when the user provided host workspace is allocated as CUDA unified memory. This issue will
be fixed in the next cuBLASMp release. To work around this, provide a host workspace that
is not allocated using CUDA unified memory.

cuSolverMp has two dependencies on UCC and UCX libraries in the HPC-X directory. To
execute a program linked against cuSolverMP using CUDA 11.8, please use the “nvhpc-
hpcx-cudal1” environment module for the HPC-X library, or set the environment variable
LD_LIBRARY_PATH as follows: LD_LIBRARY_PATH=${NVHPCSDK_HOME}/comm_libs/11.
8/hpcx/latest/ucc/1lib:S{NVHPCSDK_HOME}/comm_libs/11.8/hpcx/latest/ucx/
1ib:SLD_LIBRARY_PATH

Known issues related to NVPL are described in the

11

https://docs.nvidia.com/nvpl/

HPC SDK Release Notes, Release 25.9

12 Chapter 3. Known Limitations and Recommendations

Chapter 4. Deprecations and Changes

Starting with HPC SDK 25.9, the preprocessor macro __HLE__ is unavailable by default. HLE
refers to the x86_64 processor feature “Hardware Lock Elision”. On Intel (x86_64) processors,
the NVC and NVC++ compiler drivers had an inconsistency with the definition of the predefined
(system) preprocessor macro. If the user specified an x86_64 target processor as a compiler
option (for example: -tp skylake), the predefined preprocessor system object macro __HLE__
was not defined (correct behavior). But when compiling on an Intel x86_64 processor without
specifying the -tp <SOME-Intel-PROC>, the compiler queried the host processor to see if
the HLE hardware feature was present, and if it was, the preprocessor system macro __HLE__
was defined (incorrect behavior). The compiler option -mhle can be used to override the default
behavior and force the system preprocessor macro __HLE__ to be defined.

Architecture support for Maxwell, Pascal, and Volta is considered feature complete. Offline com-
pilation and library support for these architectures have been removed in CUDA Toolkit 13.0 major
version release. The use of CUDA Toolkits through the 12.x series to build applications for these
architectures will continue to be supported, but newer toolkits will be unable to target these
architectures.

The nvvp and nvprof utilities are deprecated and have been removed from HPC SDK 25.9. Users
of nvvp and nvprof are recommended to use

The Open MPI 4 library has been removed in HPC SDK 25.9. Using HPC-X MPI is recommended.

The CUDA_HOME environment variable is ignored by the HPC Compilers. It is replaced by
NVHPC_CUDA_HOME.

Support for using stdpar with C++14 and below has been deprecated; C++17 or higher is required
when using stdpar.

CUDA_VISIBLE_DEVICES is not supported at compile time. This environment variable remains
effective at application runtime. To affect code generation when compiling on systems with
multiple GPU architectures, use the -gpu=ccXY option.

All information provided in this document is provided as-is, for your informational purposes only and
is subject to change at any time without notice. Reproduction of information in this document is per-
missible only if approved in advance by NVIDIA in writing. To obtain the latest information, please
contact your NVIDIA representative. Product or service performance varies by use, configuration and
other factors. Your costs and results may vary. No product or component is absolutely secure. TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, NVIDIA DISCLAIMS ALL WARRANTIES AND
REPRESENTATIONS OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY, RELATING TO OR

13

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#migrating-to-nsight-tools-from-visual-profiler-and-nvprof

HPC SDK Release Notes, Release 25.9

ARISING UNDER THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF TITLE,
NONINFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, USAGE OF TRADE
AND COURSE OF DEALING. NVIDIA products are not intended or authorized for use as critical compo-
nents in a system or application where the use of or failure of such system or application developed
with products, technology, software or services provided by NVIDIA could result in injury, death or
catastrophic damage.

Except for your permitted use of the information contained in this document, no license or right is
granted by implication, estoppel or otherwise. If this document directly includes or links to third-party
websites, products, services or information, please consult other sources to evaluate if and how to
use that information since NVIDIA does not support, endorse or assume any responsibility for any
third party offerings or its accuracy or usefulness.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR
ANY (1) INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR (/) DAMAGES
FOR THE (A) COST OF PROCURING SUBSTITUTE GOODS OR(B) LOSS OF PROFITS, REVENUES, USE,
DATA OR GOODWILL ARISING OUT OF OR RELATED TO THIS DOCUMENT, WHETHER BASED ON
BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, AND
EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF A PARTY’S
REMEDIES FAIL THEIR ESSENTIAL PURPOSE. ADDITIONALLY, TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, NVIDIA'S TOTAL CUMULATIVE AGGREGATE LIABILITY FOR ANY AND ALL LIA-
BILITIES, OBLIGATIONS OR CLAIMS ARISING OUT OF OR RELATED TO THIS DOCUMENT WILL NOT
EXCEED FIVE U.S. DOLLARS (US$5).

Statements in this document that refer to future plans or expectations are forward-looking state-
ments. These statements are based on currently available information, beliefs, assumptions and in-
volve many risks and uncertainties that could cause actual results to differ materially from those ex-
pressed or implied in these statements. For more information on the factors that could cause actual
results to differ materially, see our most recent earnings release and SEC filings at

© NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and other NVIDIA marks are trade-
marks of NVIDIA Corporation or its affiliates. Other names and brands may be claimed as the property
of others.

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIA DGX, NVIDIA
Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corpo-
ration in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

14 Chapter 4. Deprecations and Changes

https://investor.nvidia.com/financial-info/sec-filings/default.aspx
https://investor.nvidia.com/financial-info/sec-filings/default.aspx

	Release Component Versions
	Supported Platforms
	Platform Requirements for the HPC SDK
	Supported CUDA Toolchain Versions

	Known Limitations and Recommendations
	Deprecations and Changes

