
HPC SDK Container Guide
Release 26.1

NVIDIA Corporation

Jan 27, 2026





Contents

1 Introduction to Containers 3

2 NGC 5
2.1 Using the NGC Containers with Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Using the NGC Containers with Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Building Containerized Applications 7
3.1 Building Containerized Applications with Docker . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Building Containerized Applications with Singularity . . . . . . . . . . . . . . . . . . . . . . 8
3.3 HPC Container Maker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Best Practices 13
4.1 Multi Stage Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Multi Architecture Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Version Tagging and Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



ii



HPC SDK Container Guide, Release 26.1

HPC SDK Container Guide

Welcome to the HPC SDK Container Documentation.

This book is designed to provide you with information on NVIDIA’s HPC application containers.

Contents 1



HPC SDK Container Guide, Release 26.1

2 Contents



Chapter 1. Introduction to Containers

Containers are a lighter weight virtualization technology based on Linux namespaces. Unlike virtual
machines, containers share the kernel and other services with the host. As a result, containers can
startup very quickly and have negligible performance overhead, but they do not provide the full isola-
tion of virtual machines.

Containers bundle the entire application user space environment into a single image. This way, the
application environment is both portable and consistent, and agnostic to the underlying host system
software configuration. Container images can be deployed widely, and even shared with others, with
confidence that the results will be reproducible.

Containers make life simpler for developers, users, and system administrators. Developers can dis-
tribute software in a container to provide a consistent runtime environment and reduce support over-
head. Container images from repositories such as NGC can help users start up quickly on any system
and avoid the complexities of building from source. Containers can also help IT staff tame environment
module complexity and support legacy workloads that are no longer compatible with host operating
system.

There are many container runtimes; two of the most significant are Docker and Singularity, both of
which are covered in this guide.

3

https://ngc.nvidia.com/


HPC SDK Container Guide, Release 26.1

4 Chapter 1. Introduction to Containers



Chapter 2. NGC

NVIDIA HPC SDK containers are available on NGC and are the best way to get started using the HPC
SDK and containers. Two types of containers are provided, “devel” containers which contain the en-
tire HPC SDK development environment, and “runtime” container which include only the components
necessary to redistribute software built with the HPC SDK.

2.1. Using the NGC Containers with Docker

Several source code examples are available in the “devel” container at /opt/nvidia/hpc_sdk/
$NVARCH/26.1/examples, where $NVARCH is either Linux_x86_64 or Linux_aarch64 depending
on the system architecture.

To access the OpenACC examples in an interactive session, use:

$ sudo docker run --gpus all -it --rm nvcr.io/nvidia/nvhpc:26.1-devel-cuda_
↪→multi-ubuntu22.04
# cd /opt/nvidia/hpc_sdk/Linux_x86_64/26.1/examples/OpenACC/samples
# make all

For your own code, the following commandmounts the current directory on the host as /src inside the
container and starts an interactive session as the current user inside the container.

$ sudo docker run --gpus all -it --rm --user $(id -u):$(id -g) --volume
↪→$(pwd):/src --workdir /src nvcr.io/nvidia/nvhpc:26.1-devel-cuda_
↪→multi-ubuntu22.04

Since containers are ephemeral, this command mounts the source code directory from the host
as /src inside the container (--volume) and defaults to this directory when the container starts
(--workdir). Any changes to the source code or build artifacts made from inside the container will
be stored in the source directory on the host and persist even when the container exits.

By default, the user inside a Docker container is root. The --user option modifies this so the user
inside the container is the same as the user outside the container. Without this option the build arti-
facts and other files created inside the container in the /src directory would be owned by root.

The other options tell Docker to cleanup the container when the container exits (--rm), to enable
NVIDIA GPUs (--gpus all), and that this is an interactive session (-it).

Assuming there is a Makefile in the /src directory, then the make command can be appended to build
the source using the HPC SDK container with the build artifacts available in the current directory on
the host.

5

https://ngc.nvidia.com/catalog/containers/nvidia:nvhpc


HPC SDK Container Guide, Release 26.1

$ sudo docker run --gpus all -it --rm --user $(id -u):$(id -g) --volume
↪→$(pwd):/src --workdir /src nvcr.io/nvidia/nvhpc:26.1-devel-cuda_
↪→multi-ubuntu22.04 make

2.2. Using the NGC Containers with Singularity

When using Singularity, typically the container image is saved locally as a Singularity Image File (SIF).
This command saves the container in the current directory as nvhpc-26.1-devel.sif.

$ singularity build nvhpc-26.1-devel.sif docker://nvcr.io/nvidia/nvhpc:26.
↪→1-devel-cuda_multi-ubuntu22.04

The following command starts an interactive session as the current user inside the container.

$ singularity shell --nv nvhpc-26.1-devel.sif

Unlike Docker the user inside a Singularity container is the same as the user outside the container and
the user’s home directory, current directory, and /tmp are automatically mounted inside the container.

The only additional option needed is --nv to enable NVIDIA GPU support.

Assuming there is a Makefile in the current directory, then the make command can be appended to
build the source using the HPC SDK container with the build artifacts available in the current directory
on the host.

$ singularity exec --nv nvhpc-26.1-devel.sif make

6 Chapter 2. NGC



Chapter 3. Building Containerized
Applications

When the interactive development cycle is complete, a container is an excellent way to broadly dis-
tribute the result. Container images are generated from container specification files

▶ Dockerfiles for Docker and other container builders,

▶ Singularity definition files for Singularity.

The set of instructions are mostly the same for Docker and Singularity, but the syntax is different.

Tominimize the container image size and adhere to the permissible redistribution of theHPCSDK, only
the application itself and its runtime dependencies should be included in the container. Docker and
Singularity both support multi-stage container builds. A multi-stage container specification typically
consists of 2 parts:

1. A build stage based on a full development environmentand application source code, and

2. A distribution stage based on a smaller runtime environment that cherry picks content from the
build stage such as the application binary and other build artifacts.

The CloverLeaf mini application is used to illustrate these concepts.

3.1. Building Containerized Applications with
Docker

To build a container image with Docker:

$ sudo docker build -t <name:tag> -f Dockerfile .

The -t option specifies the name to give the container image, in the name:tag format.

The build stage of the CloverLeaf Dockerfile is based on the HPC SDK development image from NGC.
The runtime stage is based on the smaller HPC SDK runtime image, also from NGC. HPC SDK runtime
images are available for each CUDA version bundled with the HPC SDK; select the version correspond-
ing to the CUDA version used to build CloverLeaf. The clover_leaf binary and the sample input
datasets are copied from the build stage.

Finally, the directory /opt/CloverLeaf-OpenACC/bin is added to the default PATH for convenience.

# Build stage
FROM nvcr.io/nvidia/nvhpc:26.1-devel-cuda_multi-ubuntu22.04 AS build

7



HPC SDK Container Guide, Release 26.1

# build CloverLeaf
RUN mkdir /source && \

cd /source && \
git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git && \
cd CloverLeaf-OpenACC && \
make COMPILER=PGI FLAGS_PGI="-Mpreprocess -fast -acc -Minfo=acc�

↪→-gpu=ccall -tp=px"

# Runtime stage
FROM nvcr.io/nvidia/nvhpc:26.1-runtime-cuda12.9-ubuntu22.04

COPY --from=build /source/CloverLeaf-OpenACC/clover_leaf /opt/
↪→CloverLeaf-OpenACC/bin/
COPY --from=build /source/CloverLeaf-OpenACC/InputDecks /opt/
↪→CloverLeaf-OpenACC/InputDecks

ENV PATH=/opt/CloverLeaf-OpenACC/bin:$PATH

To generate the container image from this Dockerfile:

$ sudo docker build -t cloverleaf:git -f Dockerfile .

The containerized CloverLeaf can be run using the following command:

$ sudo docker run --gpus all --cap-add=SYS_NICE --rm cloverleaf:git mpirun -n 1 --
↪→allow-run-as-root clover_leaf

Note: --cap-add=SYS_NICE is required to allow MPI to set the CPU affinity.

This will run the small built-in dataset; to use one of the sample datasets mount it from the host into
the working directory (/) as clover.in.

Note: The dataset should be typically mounted from the host into the running container. Including
datasets in the container image is bad practice and is not recommended. Datasets can be large and
bloat the size of the container image and are often specific to a particular usage. However, neither of
these conditions are true for CloverLeaf: the CloverLeaf input files are tiny and they are standard.

$ sudo docker run --gpus all --rm --volume $(pwd)/clover_bm32_short.in:/clover.in�
↪→cloverleaf:git mpirun -n 1 --allow-run-as-root clover_leaf

3.2. Building Containerized Applications with
Singularity

To build a container image with Singularity:

$ sudo singularity build <image> Singularity.def

8 Chapter 3. Building Containerized Applications



HPC SDK Container Guide, Release 26.1

<image> is the name of the resulting Singularity image file (SIF).

The instructions for building theCloverLeaf container are virtually identical to the correspondingDock-
erfile in the previous section, although the syntax differs. The key difference is the step to configure
the container environment; when building containers Singularity does not automatically setup the en-
vironment inherited from Docker base images and this must be done manually.

# Build stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:26.1-devel-cuda_multi-ubuntu22.04
Stage: build

%post
. /.singularity.d/env/10-docker*.sh

# build CloverLeaf
mkdir /source
cd /source
git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git
cd CloverLeaf-OpenACC
make COMPILER=PGI FLAGS_PGI="-Mpreprocess -fast -acc -Minfo=acc -gpu=ccall�

↪→-tp=px"

# Runtime stage
BootStrap: docker
From: nvcr.io/nvidia/nvhpc:26.1-runtime-cuda12.9-ubuntu22.04

%files from build
/source/CloverLeaf-OpenACC/clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_

↪→leaf
/source/CloverLeaf-OpenACC/InputDecks /opt/CloverLeaf-OpenACC/InputDecks

%environment
export PATH=/opt/CloverLeaf-OpenACC/bin:$PATH

To generate the container image from this Singularity definition file:

$ sudo singularity build cloverleaf-git.sif Singularity.def

The containerized CloverLeaf can be run using the following command:

$ singularity run --nv cloverleaf-git.sif mpirun -n 1 clover_leaf

This will run the small built-in dataset; to use one of the sample datasets copy it to the current working
directory on the host as clover.in.

$ cp CloverLeaf-OpenACC/InputDecks/clover_bm32_short.in clover.in
$ singularity run --nv cloverleaf-<label>.sif mpirun -n 1 clover_leaf

3.2. Building Containerized Applications with Singularity 9



HPC SDK Container Guide, Release 26.1

3.3. HPC Container Maker

CloverLeaf, like nearly all mini-apps, is intentionally simple and has a very limited set of build depen-
dencies, essentially a compiler and an MPI library. Real world applications are typically much more
complex and may have dependencies on third-party software components. As a result, containerizing
real world application may require considerably more effort than a mini-app like CloverLeaf.

HPC Container Maker (HPCCM) is an open source tool to make it easier to generate container spec-
ification files. HPCCM generates Dockerfiles or Singularity definition files from a high level Python
recipe. HPCCM recipes have some distinct advantages over “native” container specification formats.

1. A library of HPC building blocks that separate the choice of what to include in a container image
from the details of how it’s done. The building blocks transparently provide the latest component
and container best practices.

2. Python provides increased flexibility over static container specification formats. Python-based
recipes can branch, validate user input, etc. - the same recipe can generate multiple container
specifications.

3. Generate either Dockerfiles or Singularity definition files from the same recipe.

The following is the HPCCM Python recipe for the scenario where CloverLeaf is checked out from the
GitHub repository:

# Build stage
Stage0 += baseimage(image='nvcr.io/nvidia/nvhpc:26.1-devel-cuda_
↪→multi-ubuntu22.04', _as='build')

# build CloverLeaf
Stage0 += generic_build(build=['make COMPILER=PGI FLAGS_PGI="-Mpreprocess�
↪→-fast -acc -Minfo=acc -gpu=ccall -tp=px"'],

install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',
'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],

prefix='/opt/CloverLeaf-OpenACC',
repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

# Runtime stage
Stage1 += baseimage(image='nvcr.io/nvidia/nvhpc:26.1-runtime-cuda12.
↪→9-ubuntu22.04')

Stage1 += Stage0.runtime()
Stage1 += environment(variables={'PATH': '/opt/CloverLeaf-OpenACC/bin:$PATH'})

The HPCCM recipe is mostly descriptive, rather than prescriptive like the Dockerfile and Singularity
definition files. For instance, the recipe specifies the CloverLeaf git repository, but does not define
the details of how it should be downloaded. Since the CloverLeaf Makefile does not provide an in-
stall target, a basic install method needs to be specified. HPCCM also includes generic_autotools and
generic_cmake building blocks for packages that use GNU Autotools or CMake, respectively.

The hpccm command line tool processes the recipe and outputs either a Dockerfile or a Singularity
definition file. The resulting container specification file should be used as shown in the above sections
to generate a container image.

10 Chapter 3. Building Containerized Applications

https://github.com/NVIDIA/hpc-container-maker


HPC SDK Container Guide, Release 26.1

$ hpccm --recipe cloverleaf.py

$ hpccm --recipe cloverleaf.py --format singularity --singularity-version 3.2

Note: Multi-stage container builds were added to Singularity in version 3.2. However, the multi-
stage Singularity definition file syntax is incompatible with earlier Singularity versions. The HPCCM
--singularity-version flag is currently necessary to generate multi-stage Singularity definition
files; otherwise the output is a single stage Singularity definition file compatible with all versions.

HPCCM includes building blocks for many common HPC software components such as HDF5, FFTW,
OpenMPI, and many more that may be required for real world applications. One of the building blocks
covers the HPC SDK, making it easy to include in custom images.

3.3. HPC Container Maker 11



HPC SDK Container Guide, Release 26.1

12 Chapter 3. Building Containerized Applications



Chapter 4. Best Practices

The following sections discuss some of the best practices when using HPC SDK Containers.

4.1. Multi Stage Builds

Multi-stage builds are a way to control the size of container images. In the same Dockerfile, you can
define a second stage that is a completely separate container image and copy just the binary and any
runtime dependencies from preceding stages into the image. The output of a multi-stage build is a
single container image corresponding to the last stage of the Dockerfile. This method can also be
used to prevent redistribution of source code. Multi-stage builds have been used extensively in the
preceding sections.

4.2. Layering

The OCI image format used by Docker is layered. OCI container images are composed of a series of
layers. The layers are applied sequentially, one on top of another, to form the container image that you
ultimately see when running a container.

The layers are cached and the Docker container builder can take advantage of the layer cache to speed
up builds of container with common layers. Also, builds that were interrupted can be resumed from
the previous point in the cache rather than having to start over from scratch.

However, caremust be takenwhen specifying theDockerfile instructions not to inadvertently bloat the
container image size. The OCI image specification employs file level deduplication to handle conflicts.
When a build instruction creates or modifies a file, the entire file is saved in the corresponding layer.
For example, the following Dockerfile instructions generate seven (7) separate layers.

RUN mkdir /source
RUN cd /source && git clone https://github.com/UoB-HPC/CloverLeaf-OpenACC.git
RUN cd /source/CloverLeaf-OpenACC && make COMPILER=PGI FLAGS_
↪→PGI="-Mpreprocess -fast -acc -Minfo=acc -gpu=ccall -tp=px"
RUN mkdir -p /opt/CloverLeaf-OpenACC
RUN install -m 755 -d /opt/CloverLeaf-OpenACC/bin
RUN install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf
RUN install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks
RUN install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks
RUN rm -rf /source/CloverLeaf-OpenACC

13



HPC SDK Container Guide, Release 26.1

Despite the final instruction to remove the git checkout of the CloverLeaf source code, the source
code is still actually present in the image — the final layer is just a whiteout file entry.

A best practice arising from file level deduplication of layers is to put all actions modifying the same
set of files in the same Dockerfile instruction. For example, remove any temporary files in the same
instruction in which they are created. Generally, put all instructions relating to the same component
in the same layer, but use separate layers for different components. HPCCM automatically generates
container specification files that follow this best practice.

4.3. Multi Architecture Support

One of the goals of containerizing an application is to allow it to run on a wide variety of systems,
including across different CPU and GPU generations. However, the CloverLeaf Makefile sets the GPU
compute capability to cc60, i.e., Pascal. The default CloverLeaf binary may not run on older or newer
GPUs. Similarly, the NVIDIA compiler implicitly optimizes for the build system CPU architecture. If the
container was built on a system with the latest CPU microarchitecture, it would not run on systems
with older CPUs, or conversely if built on a system with an older CPU microarchitecture, it may not run
optimally on newer CPUs.

An approach to deal with the tension between supporting a wide range of systems and delivering op-
timal performance is to build fat or unified binaries. Support for multiple compute capabilities and
instruction sets can be embedded in a single binary and the optimal code path will be used automati-
cally at runtime. This is the approach taken by specifying the -gpu=ccall compiler option, which will
generate code for multiple GPU compute capabilities in the same binary.

Another approach to build for the “lowest common denominator”. This is the approach taken for the
CPU microarchitecture by specifying the -tp=px compiler option.

Unfortunately the build systems of some real world applications do not allow the unified binary ap-
proach. An alternative is to build and redistribute multiple binaries in the same container image. A
container entry point can be used to detect the system architecture at runtime and setup the envi-
ronment (PATH, LD_LIBRARY_PATH, etc.) inside the container accordingly. Since HPCCM recipes are
Python, building multiple binaries is as simple as a for loop. For example, to build for multiple CPU
architectures:

for cpu_arch in ['sandybridge', 'haswell', 'skylake', 'icelake']:
Stage0 += generic_build(build=['make COMPILER=PGI FLAGS_PGI="-Mpreprocess -fast -

↪→acc -Minfo=acc -ta=tesla,ccall -tp={}"'.format(cpu_arch)],
install=['install -m 755 -d /opt/CloverLeaf-OpenACC-{}/bin'.format(cpu_arch),

'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC-{}/bin'.format(cpu_
↪→arch)],

prefix='/opt/CloverLeaf-OpenACC-{}'.format(cpu_arch),
repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

In general, the same recipe can also be used for different processor architectures as well. The HPC
SDK NGC containers are provided for both Arm and X86 processors. With a slight tweak to the -tp
px compiler option, the provided Dockerfile, Singularity definition file, and HPCCM recipe can also be
used to generate Arm container images.

14 Chapter 4. Best Practices



HPC SDK Container Guide, Release 26.1

4.4. Version Tagging and Reproducibility

Container specification files often download content from online repositories such as GitHub. That
content can change from one point in time to another. For instance, the master branch of the Clover-
Leaf GitHub repository could change in a way that invalidates the container specification. To avoid this
scenario, specify a tag or commit to ensure that the container image build is reproducible

A HPCCM recipe can checkout a specific commit or tag to increase the reproducibility of the recipe.

Stage0 += generic_build(build=['make COMPILER=PGI FLAGS_PGI="-Mpreprocess -fast -acc -
↪→Minfo=acc -gpu=ccall -tp=px"'],

commit='23b8e81b5234474757e44418e78ce91c8d050363',
install=['install -m 755 -d /opt/CloverLeaf-OpenACC/bin',

'install -m 755 clover_leaf /opt/CloverLeaf-OpenACC/bin/clover_leaf',
'install -m 755 -d /opt/CloverLeaf-OpenACC/InputDecks',
'install -m 644 InputDecks/* /opt/CloverLeaf-OpenACC/InputDecks'],

prefix='/opt/CloverLeaf-OpenACC',
repository='https://github.com/UoB-HPC/CloverLeaf-OpenACC.git')

Notices

Notice and Disclaimers

All information provided in this document is provided as-is, for your informational purposes only and
is subject to change at any time without notice. Reproduction of information in this document is per-
missible only if approved in advance by NVIDIA in writing. To obtain the latest information, please
contact your NVIDIA representative. Product or service performance varies by use, configuration and
other factors. Your costs and results may vary. No product or component is absolutely secure. TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, NVIDIA DISCLAIMS ALL WARRANTIES AND
REPRESENTATIONS OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY, RELATING TO OR
ARISING UNDER THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF TITLE,
NONINFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, USAGE OF TRADE
AND COURSE OF DEALING. NVIDIA products are not intended or authorized for use as critical compo-
nents in a system or application where the use of or failure of such system or application developed
with products, technology, software or services provided by NVIDIA could result in injury, death or
catastrophic damage.

Except for your permitted use of the information contained in this document, no license or right is
granted by implication, estoppel or otherwise. If this document directly includes or links to third-party
websites, products, services or information, please consult other sources to evaluate if and how to
use that information since NVIDIA does not support, endorse or assume any responsibility for any
third party offerings or its accuracy or usefulness.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR
ANY (I) INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR (II) DAMAGES
FOR THE (A) COST OF PROCURING SUBSTITUTE GOODS OR (B) LOSS OF PROFITS, REVENUES, USE,
DATA OR GOODWILL ARISING OUT OF OR RELATED TO THIS DOCUMENT, WHETHER BASED ON
BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, AND
EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCHDAMAGES AND EVEN IF A PARTY’S
REMEDIES FAIL THEIR ESSENTIAL PURPOSE. ADDITIONALLY, TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, NVIDIA’S TOTAL CUMULATIVE AGGREGATE LIABILITY FOR ANY AND ALL LIA-
BILITIES, OBLIGATIONS OR CLAIMS ARISING OUT OF OR RELATED TO THIS DOCUMENT WILL NOT
EXCEED FIVE U.S. DOLLARS (US$5).

4.4. Version Tagging and Reproducibility 15



HPC SDK Container Guide, Release 26.1

Statements in this document that refer to future plans or expectations are forward-looking state-
ments. These statements are based on currently available information, beliefs, assumptions and in-
volve many risks and uncertainties that could cause actual results to differ materially from those ex-
pressed or implied in these statements. For more information on the factors that could cause actual
results to differ materially, see our most recent earnings release and SEC filings at NVIDIA Corporation
SEC Filings.

© NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and other NVIDIAmarks are trade-
marks of NVIDIA Corporation or its affiliates. Other names and brands may be claimed as the property
of others.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIADGX, NVIDIA
Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corpo-
ration in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

©2022-2026, NVIDIA Corporation & affiliates. All rights reserved

16 Chapter 4. Best Practices

https://investor.nvidia.com/financial-info/sec-filings/default.aspx
https://investor.nvidia.com/financial-info/sec-filings/default.aspx

	Introduction to Containers
	NGC
	Using the NGC Containers with Docker
	Using the NGC Containers with Singularity

	Building Containerized Applications
	Building Containerized Applications with Docker
	Building Containerized Applications with Singularity
	HPC Container Maker

	Best Practices
	Multi Stage Builds
	Layering
	Multi Architecture Support
	Version Tagging and Reproducibility


