be.
NVIDIA CUDA Fortran Programming

Guide
Release 25.9

NVIDIA Corporation

Sep 29, 2025






Contents

1 Programming Guide

1.1 CUDA Fortran Hostand Device Code . . . . . . . . . . . . . . i
1.2 CUDA Fortran Kernels . . . . . . . e
1.3 Thread Blocks . . . . . . .
1.4 Memory Hierarchy . . . . . . . . .
1.5 Subroutine / Function Qualifiers . . . . . . . ... ...
1.5.1 Attributes(host) . . . . . . .
1.5.2  Attributes(global) . . . . . . . ..
1.5.3  Attributes(device) . . . . . . .
1.5.4  Attributes(host,device) . . ... .. .. ..
1.5.5  Attributes(grid_global) . . . . . ... ...
1.5.6 Restrictions . . . . . . e
1.6 Variable Qualifiers . . . . . . . . . e
1.6.1 Attributes(device) . . . . . . .
1.6.2  Attributes(managed) . . . . . ...
1.6.3  Attributes(constant) . . . .. ... ...
1.6.4  Attributes(shared) . . . . . . . . . .
1.6.5 Attributes(pinned) . ... .. . ...
1.6.6  Attributes(texture) . . . . . .. ..
1.6.7  Attributes(unified) . .. ... . .. ...
1.7 Datatypes in Device Subprograms.. . . . . . . . . ... L
1.7.1 Half-precision Floating Point . . . . . . . ... .. .. .. . .
1.8 Predefined Variables in Device Subprograms . . . . . . .. .. ... ... .. .. . ...
1.9 Execution Configuration . . . . . . . .. ..
1.10 Asynchronous Concurrent Execution . . . . . .. . ... .. . . .. . ... . ... ..
1.10.1 Concurrent Host and Device Execution . . ... ... ... ... ... .. ... .. ....
1.10.2 Concurrent Stream Execution . . . .. .. ...
1.11  Kernel Loop Directive . . . . . . . . .
T.ITT Syntax . .. o e
1.11.2 Restrictions on the CUF kernel directive . . . . . . ... ... .. ... ... ... .. ...
1.11.3 Summation Example . . . . . . . . . . e
1.11.4 Scope of Local Scalar Variables . . .. ... ... .. ... . .. . ... ... ... ... ..
1.11.5 Explicit Reductions . . . . . . . ... . .
1.12 Using Fortran Modules . . . . . . . .
1.12.1 Accessing Data from Other Modules . . . . . ... ... ... ... .. ... ... .. ...
1.12.2 Call Routines from Other Modules . . . ... ... ... .. ... .. .. . ... .. ....
1.12.3 Declaring Device Pointer and Target Arrays . . . . . . . . .. ... . . ..
1.12.4 Declaring Textures . . . . . . . . .
1.13  CUDA Fortran Conditional Compilation . . . . . ... ... ... ... .. ... . ... ....
1.14  Buildinga CUDA Fortran Program . . . . . . . . . .
1.15  Managed and Unified Memory Options and Interoperability . . . ... ... ... ......

2 Reference




2.1 New Subroutine and Function Attributes . . . ... ... ... . ... . ... ... ... ... 29

2.1.1 Host Subroutinesand Functions . . . . . . .. ... .. ... . .. . .. ... 29
2.1.2 Global and Grid_Global Subroutines . . . . . . . . . ... . . . ... ... . . L. 29
2.1.3 Device Subroutinesand Functions . . . ... ... .. ... ... . . 30
2.1.4  Restrictions on Kernel Subroutines and Device Subprograms . . ... ... ...... 31
2.2 Variable Attributes . . . . . . . . 31
2.2.1 Devicedata . . . .. . .. . e 31
2.2.2 Manageddata . . . . . . . . . 32
223 Unifieddata . ... .. ... . . . 33
224  PINNed arrays. . . . . . . o e 34
225 Constantdata . .. .. ... .. . . ... 35
226 Shareddata . ... ... .. ... 35
2.2.7 Texturedata . . . ... . . e 36
2.2.8 Valuedummyarguments . . ... ... ... 37
2.3 Allocating Device Memory, Pinned Memory, and Managed Memory . . . . ... ... ... 37
2.3.1 Allocating Device Memory . . . . . . . . 38
2.3.2 Allocating Device Memory Using Runtime Routines . . . .. ... ............. 38
2.33 Allocate Pinned Memory . . . . . . . . . 39
2.3.4 AllocatingManaged Memory . . . . . . .. 39
2.3.5 Allocating Managed Memory Using Runtime Routines . . . ... .. ... ... ...... 39
2.3.6  Allocating Device Memory Asynchronously . . . ... ...... ... . .......... 40
2.3.7  Allocating Device Memory Asynchronously Using Runtime Routines . . . . ... ... 40
2.3.8 Controlling Device DataisManaged . ... ... .. .. .. .. .. ... ... 41
2.4 Data transfer between host and devicememory . . . . .. ... ... ... . L. 41
2.4.1 Data Transfer Using Assignment Statements . . . ... ... ... .. .. .. ...... 41
2.4.2 Implicit Data Transfer in Expressions . . . . . . . . . ... . . . . . ... ... ... 42
243 Data Transfer Using Runtime Routines . . . . ... ... ... .. .. .. ... .. .... 43
2.5 Invoking a kernel subroutine . . . ... ... .. 43
2.6 Device Code . . . . . . . e 44
2.6.1 Datatypes Allowed . . . . . . . . . 44
2.6.2 Built-in Variables . . . . . . . 44
2.6.3 Fortran Intrinsics . . . . . . . . 45
2.6.4  Synchronization Functions . . .. ... ... . ... ... 47
2.6.5 Warp-Vote Operations . . . . . . . . . . 49
2.6.6 Load and Store Functions Using CacheHints . . . . ... .................. 51
2.6.7 Load and Store Functions Using Bulk TMA Operations . . . . ... ... ... .. .. .. 51
2.6.8 Atomic Functions . . . . . . . . .. 54
2.6.9  Fortran l/O . . . . . e 56
2.6.10 PRINTExample. . . . . . 56
2.6.11 Shuffle Functions . . . . . . . . .. . 57
2.6.12 Restrictions . . . . ... 59
2.7 Hostcode . . . . . . 59
2.7.1 SIZEOF INtrinsic . . . . . o 59
2.8 Fortran Device Modules . . . . . . . . . . 60
2.8.1 LIBM Device Module . . . . . . . . e 61
2.8.2 Cooperative Groups DeviceModule . . . . . .. .. .. . ... . . 63
2.83  WMMA (Warp Matrix Multiply Add) Module . . . . ... ................... 64
2.8.3.1 WMMA Half Precision Intrinsic Functions . . .. .. ... ............... 67
2.8.3.2 WMMA Asynchronous Data Transfer . . . . ... ... ... ... ........... 67

2.9 Fortran Host Modules . . . . . . . . . . . 67
2.9.1 Overloaded Fortran Reduction Intrinsics in GPU_REDUCTIONS and CUDAFOR . ... 68
2.9.1.1 Fortran SUM Intrinsic Function . . . . . . ... . . ... ... ... 69
29.1.2 Fortran MAXVAL Intrinsic Function . .. ... ... .. ... . ... ... ... ..., 69
29.1.3 Fortran MINVAL Intrinsic Function . . . . . . . . ... . ... . . . ... ... ... 70




29.14 Fortran MAXLOC Intrinsic Function . . .. .. .. ... .. .. .. .. .. .. ..... 70

2.9.15 Fortran MINLOC Intrinsic Function . . .. .. ... ... ... .. ... ........ 71
29.2 Fortran Sorting SubroutinesModule . . . ... ... . ... ... ... . . 71
2.9.3 Overloaded Fortran Reduction Intrinsics in CUTENSOREX . . . . . ... ... ... ... 72

2.9.3.1 Overloaded Logical Array Assignment in CUTENSOREX . . . . ... ... .. .. .. 73

2.9.3.2 Fortran ALL Intrinsic Function . . .. ... .. ... . . . . ... . . . ... 74

2933 Fortran ANY Intrinsic Function . . . . . .. .. .. ... .. .. .. .. ... ... ... 74

2934 Fortran COUNT Intrinsic Function . . . . . . ... ... ... ... ... ........ 74
294 Overloaded Fortran Array Intrinsics in CUTENSOREX . . . . .. ... ... .. ...... 75

2.9.4.1 Fortran MERGE Intrinsic Function . . . ... .. ... ... ... . . . .. ... .... 75

2.9.4.2 Fortran PACK Intrinsic Function . . . ... ... ... ... ... . . . . . . ... ... 75

2.9.4.3 Fortran PACKLOC Function . . . . . . . . . . . . . . et 76

2.9.4.4 Fortran UNPACK Intrinsic Function . . ... ... ... ... ... .. ......... 76

2.9.45 Fortran COUNT_PREFIX Intrinsic Function . . . . . ... ... ... ... ....... 77

2.9.4.6 Fortran SUM_PREFIX Intrinsic Function . . .. ... ... ... ... ......... 77

2.9.4.7 Fortran RESHAPE Intrinsic Function . . . . . . . .. . ... ... . . . . . ....... 78

2.9.4.8 Fortran TRANSPOSE Intrinsic Function . . . . . .. . ... ... ... .. ....... 78

2.9.49 Fortran SPREAD Intrinsic Function . . ... ... ... ... ... ... ........ 79

2.9.4.10 Fortran MATMUL Intrinsic Function . . . . .. .. ... .. ... ... ......... 79

2.9.4.11  Fortran DOT_PRODUCT Intrinsic Function . . . . . ... ... ... ... ....... 80

2.9.4.12 Fortran RANDOM_NUMBER Intrinsic Function . . ... ... ... ... ....... 81
2.9.5 Other CUDA Library Host Modules . . ... ... .. ... . .. . ... ... ... ..... 81

3 Runtime APIs 85
3.1 Initialization . . . . . . . . e 85
3.2 Device Management . . . . . . . . . e e 85

3.2.1 cudaChooseDevice . . . . . . . e 86
3.2.2 cudaDeviceGetAttribute . . . . . . . ... 86
3.2.3 cudaDeviceGetCacheConfig . . ... .. .. .. . 86
3.2.4 cudaDeviceGetLimit . . . . . . ... 86
3.25 cudaDeviceGetSharedMemConfig . .. .. ... . .. . . . . .. .. 87
3.2.6  cudaDeviceGetStreamPriorityRange . . . . ... ... ... 87
3.2.7 cudaDeviceReset . . . . . . . L 87
3.2.8 cudaDeviceSetCacheConfig . . ... .. .. .. . ... 87
3.29 cudaDeviceSetLimit . . . . . . ... 87
3.2.10 cudaDeviceSetSharedMemConfig. . . . . . . . . . . . . . . 88
3.2.11 cudaDeviceSynchronize . . . . . . . . . . . . . . 88
3.2.12 cudaGetDevice. . . . . . . 88
3.2.13 cudaGetDeviceCount . . . . . . . . . . . .. 88
3.2.14 cudaGetDeviceProperties . . . . . . . . . .. 89
3.2.15 cudaSetDevice . . . . . .. 89
3.2.16 cudaSetDeviceFlags . . .. . . . .. . .. 89
3.2.17 cudaSetValidDevices . . . . . . . . e 89
3.3 Thread Management . . . . . . . . a0
3.3.1 cudaThreadExit . . . . . . . . . e 90
3.3.2 cudaThreadSynchronize . . . . . . . . . . . . .. . 90
34 Error Handling . . . . . . o 90
3.4.1 cudaGetErrorString . . . . . . ... 90
3.4.2 cudaGetLastError . . . . . . . e 91
3.4.3 cudaPeekAtLastError . . . . . . . . .. 91
35 Stream Management . . . . . . . L 91
3.5.1 cudaforGetDefaultStream . . . . . . . . . . L 91
3.5.2 cudaforSetDefaultStream . . . . . . . . . . e 91
3.5.3 cudaStreamAttachMemASsSyNnC . . . . . . . . . 92




354 cudaStreamCreate . . . . . . . . 92

3.5.5 cudaStreamCreateWithFlags . . . . . . . . . . . . . . 92
3.5.6 cudaStreamCreateWithPriority . . . .. .. ... .. .. . . ... 92
3.5.7 cudaStreamDestroy . . . . . .. 93
3.5.8 cudaStreamGetPriority . . . . ... .. 93
3.5.9  cudaStreamQUEry . . . . . . 93
3.5.10 cudaStreamSynchronize . . . . . . . . ... 93
3.5.11 cudaStreamWaitEvent . . . . . . . . ... 93
3.6 Event Management . . . . . . . 94
3.6.1 cudaEventCreate . . . . . . . . . . . 94
3.6.2 cudaEventCreateWithFlags . . . . . . . . . . ... . . . . . 94
3.6.3 cudaEventDestroy . .. .. . . ... 94
3.6.4 cudaEventElapsedTime . . . . . . . . . . 94
3.6.5 cudaEventQuery . . . . .. 95
3.6.6 cudaEventRecord . .. . .. . . ... 95
3.6.7 cudaEventSynchronize . . . . . . . . ... 95
3.7 Execution Control . . . . . . . . 95
3.7.1 cudaFuncGetAttributes . . . . . . . .. 96
3.7.2 cudaFuncSetAttribute . . . . . . . L 96
3.7.3 cudaFuncSetCacheConfig. . . . . . . . . . . 96
3.7.4  cudaFuncSetSharedMemConfig . . . . . . . . . . . . . 96
3.7.5 cudaSetDoubleForDevice . . . . . . . . . . 97
3.7.6  cudaSetDoubleForHost . . ... ... .. . ... .. 97
3.8 OCCUPANCY . . o o 97
3.8.1 cudaOccupancyMaxActiveBlocksPerMultiprocessor . .. ... .. ... ... ...... 97
3.8.2  cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags . . . . ... ... .. .. 98
3.8.3 cudaOccupancyMaxPotentialClusterSize . ... ... .. ... ... ... .. ... .... 98
3.8.4  cudaOccupancyMaxActiveClusters . . . ... ... . . .. . . .. .. 98
39 Memory Management . . . . . . . . 98
3.9.1 cudaFree . . . .. e 99
3.9.2 cudaFreeArray . . . . . .. e 99
3.9.3  cudaFreeAsync . . ... e 99
3.9.4 cudaFreeHost . . . . . . 99
3.9.5 cudaGetSymbolAddress . . . . . ... 100
3.9.6 cudaGetSymbolSize . . .. . . ... 100
3.9.7 cudaHostAlloc . . . . . . 100
3.9.8 cudaHostGetDevicePointer . . . . . . . . . .. 100
3.9.9 cudaHostGetFlags . . . . .. . . . . 101
3.9.10 cudaHostRegister . . . . . . . . 101
3.9.11 cudaHostUnregister . . . .. .. . . 101
3.9.12 cudaMalloc . . . . . .. e 101
3.9.13 cudaMalloCArray . . . . . . . . . e e 102
3.9.14 cudaMalloCASYyNC . . . . . . . . 102
3.9.15 cudaMallocManaged . . . . . . . . . .. 102
3.9.16 cudaMallocPitch . . . . . . . . . e 102
3.9.17 cudaMalloc3D . . . . . . . e 103
3.9.18 cudaMalloc3DArray . . . . . . . . 103
3.9.19 cudaMemAdVISE . . . . . L 103
3.9.20 cudaMemCPY . . . . o i e 104
3.9.21 cudaMemcpyArrayTOAITaY . . . . o i i i e e e 104
3.9.22 cudaMemCpPYASYNC . . o . o i 104
3.9.23 cudaMemcpyFromArray . . . . . . . . e 104
3.9.24 cudaMemcpyFromSymbol . . . . . . ... 105
3.9.25 cudaMemcpyFromSymbolAsync . . . . . . .. . .. 105




3.9.26 cudaMemcpyPeer . . . . .. 105

3.9.27 cudaMemcpyPeerAsync . . . . . . . 105
3.9.28 cudaMemcpyTOAITAY . . . . o o v o 106
3.9.29 cudaMemcpyToSymbol . . . . . .. . .. 106
3.9.30 cudaMemcpyToSymbolAsync. . . . . . . . . . . .. 106
3.9.31 cudaMemcpy2D . . . ... 106
3.9.32 cudaMemcpy2DArrayTOAITaY . . . . o o v e e 107
3.9.33 cudaMemcpy2DASYNC . . . . .o 107
3.9.34 cudaMemcpy2DFromArray . . . . . . .. e e e 107
3.9.35 cudaMemcpy2DTOArray . . . . . o i i e e e e 107
3.9.36 cudaMemcpy3D . . ... 108
3.9.37 cudaMemcpy3DASYNC . . . . . . e 108
3.9.38 cudaMemGetIinfo . . . . . . .. 108
3.9.39 cudaMemPrefetchAsync . . . . . . . . . . .. 108
3.940 cudaMemset . . . . . e 109
3.9.41 cudaMemsetAsync . . . . . . .. e 109
3.9.42 cudaMemset2D . . ... 109
3.9.43 cudaMemset3D . . ... e e 110
3.10 Unified Addressing and Peer Device Memory Access . . . . . . . .. . .. 110
3.10.1 cudaDeviceCanAccessPeer . . . . . . . . . . e 110
3.10.2 cudaDeviceDisablePeerAccess . . . . . . . . . . 110
3.10.3 cudaDeviceEnablePeerAccess . . . . . . . . . .. 110
3.10.4 cudaPointerGetAttributes. . . . . . . . . ... 111
3.11  Version Management . . . . . . . . e 111
3.11.1  cudaDriverGetVersion . . . . . . . . . 111
3.11.2 cudaRuntimeGetVersion . . . . . . . . . . . 111
3.12 Profiling Management . . . . . . . ... 111
3.12.1 cudaProfilerStart . . . . . . . e 112
3.12.2 cudaProfilerStop . . . . . . 112
3.13 CUDA Graph Management . . .. .. . . . . . . 112
3.13.1 cudaGraphCreate . . . . . . . . . . . e 112
3.13.2 cudaGraphDestroy . . . ... .. . . ... e 113
3.13.3 cudaGraphExecDestroy . . . .. . ... . . . . . .. 113
3.13.4 cudaGraphinstantiate . . .. .. ... . . . .. . 113
3.13.5 cudaGraphLaunch. . . . . . . . 113
3.13.6 cudaStreamBeginCapture . . . . . . . . . . . 113
3.13.7 cudaStreamEndCapture . . . . . . . . .. .. 114
3.13.8 cudaStreamlisCapturing . . . . . . . . 114

4 Examples 115
4.1 Matrix Multiplication Example . . . . . . . . . . . 115
4.1.1 Source Code Listing . . . . . . . 115
4.1.2 Source Code Description . . . . . . . . . . e 117
4.2 Mapped Memory Example . . . . . . . 118
4.3 Cublas Module Example . . . . . . . . e 119
4.4 CUDA Device Properties Example . . . . . .. .. . . . . . 121
4.5 CUDA Asynchronous Memory Transfer Example . . . .. ... ... ... ... ........ 122
4.6 Managed Memory Example . . . . . . .. 125
4.7 WMMA Tensor Core Example . . . . . . . . 126
4.8 OpenACC Interoperability Example . . . . .. . ... . . 127




Vi



NVIDIA CUDA Fortran Programming Guide, Release 25.9

This document describes CUDA Fortran, a small set of extensions to Fortran that supports and is built
upon the CUDA computing architecture.

This guide is intended for application programmers, scientists and engineers proficient in program-
ming with the Fortran, C, and/or C++ languages. The tools are available on a variety of operating sys-
tems for the x86-64 and Arm server hardware platforms. This guide assumes familiarity with basic
operating system usage.

The organization of this document is as follows:
contains a general introduction
serves as a programming guide for CUDA Fortran
describes the CUDA Fortran language reference
describes the interface between CUDA Fortran and the CUDA Runtime API

provides sample code and an explanation of the simple example.

This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language statements in
the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the context
of p/t-sets, square brackets are required to specify a p/t-set.

{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item?2 or item3.
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filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The NVIDIA HPC compilers are supported on 64-bit variants of the Linux operating system on a variety
of x86-compatible and Arm processors.

The following documents contain additional information related to CUDA Fortran programming.

ISO/IEC 1539-1:1997, Information Technology - Programming Languages - FORTRAN, Geneva,
1997 (Fortran 95).

NVIDIA CUDA Programming Guides, NVIDIA, Version 11, 11/23/2021. Available online at

NVIDIA HPC Compiler User’s Guide, Release 2025. Available online at
NVIDIA Fortran CUDA Interfaces, Release 2025. Available online at

Welcome to Release 2025 of NVIDIA CUDA Fortran, a small set of extensions to Fortran that supports
and is built upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel computational units
with very high memory bandwidth, and tremendous potential for many applications. GPU designs are
optimized for the computations found in graphics rendering, but are general enough to be useful in
many data-parallel, compute-intensive programs.

NVIDIA introduced CUDA®, a general purpose parallel programming architecture, with compilers and
libraries to support the programming of NVIDIA GPUs. CUDA comes with an extended C compiler,
here called CUDA C, allowing direct programming of the GPU from a high level language. The pro-
gramming model supports four key abstractions: cooperating threads organized into thread groups,
shared memory and barrier synchronization within thread groups, and coordinated independent
thread groups organized into a grid. A CUDA programmer must partition the program into coarse
grain blocks that can be executed in parallel. Each block is partitioned into fine grain threads, which
can cooperate using shared memory and barrier synchronization. A properly designed CUDA program
will run on any CUDA-enabled GPU, regardless of the number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming NVIDIA GPUs using
Fortran. NVIDIA 2025 includes support for CUDA Fortran on Linux. CUDA Fortran is an analog to
NVIDIA’s CUDA C compiler. Compared to the NVIDIA OpenACC directives-based model and compilers,
CUDA Fortranis a lower-level explicit programming model with substantial runtime library components
that give expert programmers direct control of all aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following operations in a Fortran
program:

Declaring variables that are allocated in the GPU device memory
Allocating dynamic memory in the GPU device memory

Copying data from the host memory to the GPU memory, and back

2 Contents
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Writing subroutines and functions to execute on the GPU

Invoking GPU subroutines from the host

Allocating pinned memory on the host

Using asynchronous transfers between the host and GPU

Using zero-copy and CUDA Unified Virtual Addressing features.
Accessing read-only data through texture memory caches.
Automatically generating GPU kernels using the kernel loop directive.

Launching GPU kernels from other GPU subroutines running on the device using dynamic paral-
lelism features.

Relocatable device code: Creating and linking device libraries and calling functions defined in
other modules and files.

Interfacing to CUDA C.

Programming access to Tensor Core hardware.
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Chapter 1. Programming Guide

This section introduces the CUDA programming model through examples written in CUDA Fortran. For
a reference for CUDA Fortran, refer to Reference.

1.1

. CUDA Fortran Host and Device Code

All CUDA programs, and in general any program which uses a GPU for computation, must perform the
following steps:

1.

o g A~ WD

Initialize and select the GPU to run on. Oftentimes this is implicit in the program and defaults to
NVIDIA device O.

Allocate space for data on the GPU.

Move data from the host to the GPU, or in some cases, initialize the data on the GPU.
Launch kernels from the host to run on the GPU.

Gather results back from the GPU for further analysis our output from the host program.

Deallocate the data on the GPU allocated in step 2. This might be implicitly performed when the
host program exits.

Here is a simple CUDA Fortran example which performs the required steps:

Explicit Device Selection
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Host code

Device Code

program t1

use cudafor

use mytests

integer, parameter :: n = 100
integer, allocatable, device ::
integer h(n)

istat = cudaSetDevice(0)
allocate(iarr(n))

h = 0; iarr = h

call testl<<<1,n>>> (iarr)

h = iarr

print *,&

"Errors: ", count(h.ne.(/ (i,i=1,n) /))
deallocate(iarr)

end program t1

iarr(:)

module mytests
contains
attributes(global) &
subroutine testl1( a )
integer, device :: a(*)
i = threadIdx%x

a(i) = 1

return

end subroutine test1
end module mytests

In the CUDA Fortran host code on the left, device selection is explicit, performed by an API call on line
7. The provided cudafor module, used in line 2, contains interfaces to the full CUDA host runtime
library, and in this case exposes the interface to cudaSetDevice() and ensures it is called correctly.
An array is allocated on the device at line 8. Line 9 of the host code initializes the data on the host and
the device, and, in line 10, a device kernel is launched. The interface to the device kernel is explicit, in
the Fortran sense, because the module containing the kernel is used in line 3. At line 11 of the host
code, the results from the kernel execution are moved back to a host array. Deallocation of the GPU

array occurs on line 14.

Implicit Device Selection

Here is a CUDA Fortran example which is slightly more complicated than the preceding one.

Host code

Device Code

program testramp

use cublas

use ramp

integer, parameter :: N = 20000

real, device :: x(N)

twopi = atan(1.0)*8

call buildramp<<<(N-1)/512+1,512>>>(x,N)
IScuf kernel do

doi=1,N

x(i) = 2.8 * x(i) * x(1)

end do

print *, "float(N) = ",sasum(N,x,1)

end program

module ramp

real, constant ::
contains
attributes(global) &

subroutine buildramp(x, n)

real, device :: x(n)

integer, value :: n

real, shared :: term

if (threadidx%x == 1) term = &
twopi / float(n)

call syncthreads()

i = (blockidx%x-1)*blockdim%x &
+ threadidx%x

if (i <= n) then

x(1i) = cos(float(i-1)*term)

end if

return

end subroutine

end module

twopi
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In this case, the device selection is implicit, and defaults to NVIDIA device 0. The device array allocation
in the host code at line 5 looks static, but actually occurs at program init time. Larger array sizes are
handled, both in the kernel launch at line 7 in the host code, and in the device code at line 10. The
device code contains examples of constant and shared data, which are described in . There
are actually two kernels launched from the host code: one explicitly provided and called from line 10,
and a second, generated using the CUDA Fortran kernel loop directive, starting at line 11. Finally, this
example demonstrates the use of the cublas module, used at line 2 in the host code, and called at
line 12.

As these two examples demonstrate, all the steps listed at the beginning of this section for using a
GPU are contained within the host code. It is possible to program GPUs without writing any kernels
and device code, through library calls and CUDA Fortran kernel loop directives as shown, or by using
higher-level directive-based models; however, programming in a lower-level model like CUDA provides
the programmer control over device resource utilization and kernel execution.

CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on the GPU when
called from the Fortran program which has been invoked and is running on the host or, starting in
CUDA 5.0, on the device. Such a subroutine is called a device kernel or kernel.

A call to a kernel specifies how many parallel instances of the kernel must be executed; each instance
will be executed by a different CUDA thread. The CUDA threads are organized into thread blocks, and
each thread has a global thread block index, and a local thread index within its thread block.

A kernel is defined using the attributes(global) specifier on the subroutine statement; a kernel
is called using special chevron syntax to specify the number of thread blocks and threads within each
thread block:

I Kernel definition
attributes(global) subroutine ksaxpy( n, a, x, y )

real, dimension(*) :: X,y
real, value :: a
integer, value :: n, i

i = (blockidx%x-1) * blockdim%x + threadidx%x
if( 1 <=n) y(i) = a * x(1) + y(i)
end subroutine

! Host subroutine
subroutine solve( n, a, x, y )

real, device, dimension(*) :: x, y
real :: a
integer :: n

I call the kernel
call ksaxpy<<<n/64, 64>>>( n, a, X, Yy )
end subroutine

In this case, the call to the kernel ksaxpy specifies n/64 thread blocks, each with 64 threads. Each
thread is assigned a thread block index accessed through the built-in blockidx variable, and a thread
index accessed through threadidx. In this example, each thread performs one iteration of the com-
mon SAXPY loop operation.

1.2. CUDA Fortran Kernels 7
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Each thread is assigned a thread block index accessed through the built-in blockidx variable, and
a thread index accessed through threadidx. The thread index may be a one-, two-, or three-
dimensional index. In CUDA Fortran, the thread index for each dimension starts at one.

Threads in the same thread block may cooperate by using shared memory, and by synchronizing at
a barrier using the SYNCTHREADS () intrinsic. Each thread in the block waits at the call to SYNC-
THREADS () until all threads have reached that call. The shared memory acts like a low-latency, high
bandwidth software managed cache memory. Currently, the maximum number of threads in a thread
block is 1024.

A kernel may be invoked with many thread blocks, each with the same thread block size. The thread
blocks are organized into a one-, two-, or three-dimensional grid of blocks, so each thread has a thread
index within the block, and a block index within the grid. When invoking a kernel, the first argument in
the chevron <<<>>> gyntax is the grid size, and the second argument is the thread block size. Thread
blocks must be able to execute independently; two thread blocks may be executed in parallel or one
after the other, by the same core or by different cores.

The dim3 derived type, defined in the cudafor module, can be used to declare variables in host code
which can conveniently hold the launch configuration values if they are not scalars; for example:

type(dim3) :: blocks, threads

blocks = dim3(n/256, n/16, 1)
threads = dim3(16, 16, 1)
call devkernel<<<blocks, threads>>>( ... )

CUDA Fortran programs have access to several memory spaces. On the host side, the host program
can directly access data in the host main memory. It can also directly copy data to and from the device
global memory; such data copies require DMA access to the device, so are slow relative to the host
memory. The host can also set the values in the device constant memory, again implemented using
DMA access.

On the device side, data in global device memory can be read or written by all threads. Data in con-
stant memory space is initialized by the host program; all threads can read data in constant memory.
Accesses to constant memory are typically faster than accesses to global memory, but it is read-only
to the threads and limited in size. Threads in the same thread block can access and share data in
shared memory; data in shared memory has a lifetime of the thread block. Each thread can also have
private local memory; data in thread local memory may be implemented as processor registers or may
be allocated in the global device memory; best performance will often be obtained when thread local
data is limited to a small number of scalars that can be allocated as processor registers.

Through use of the CUDA API as exposed by the cudafor module, access to CUDA features such as
mapped memory, peer-to-peer memory access, and the unified virtual address space are supported.
Users should check the relevant CUDA documentation for compute capability restrictions for these
features. For an example of device array mapping, refer to

8 Chapter 1. Programming Guide
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Starting with CUDA 6.0, managed or unified memory programming is available on certain platforms.
For a complete description of unified memory programming, see the sec-
tion of the CUDA C Programming Guide. Managed memory provides a common address space, and
migrates data between the host and device as it is used by each set of processors. On the host side,
the data is resident in host main memory. On the device side, it is accessed as resident in global device
memory.

A subroutine or function in CUDA Fortran has an additional attribute, designating whether it is exe-
cuted on the host or on the device, and if the latter, whether it is a kernel, called from the host, or
called from another device subprogram.

A subprogram declared with attributes(host), or with the host attribute by default, is called
a host subprogram.

A subprogram declared with attributes(global) or attributes(device) is called a device
subprogram.

A subroutine declared with attributes(global) is also called a kernel subroutine.

A subroutine declared withattributes(grid_global) is supported starting on cc70 hardware
or greater. Threads within the grid in these kernels are co-resident on the same device and can
be synchronized.

The host attribute, specified on the subroutine or function statement, declares that the subroutine
or function is to be executed on the host. Such a subprogram can only be called from another host
subprogram. The default is attributes(host), if none of the host, global, or device attributes is
specified.

The global attribute may only be specified on a subroutine statement; it declares that the subroutine
is a kernel subroutine, to be executed on the device, and may only be called using a kernel call containing
the chevron syntax and runtime mapping parameters.

The device attribute, specified on the subroutine or function statement, declares that the subpro-
gram is to be executed on the device; such a routine must be called from a subprogram with the
global or device attribute.

1.5. Subroutine / Function Qualifiers 9
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The host, device attribute, specified on the subroutine or function statement, declares that the
subprogram can be executed on both the host and device; such a routine can be called from host
code, or from a subprogram with the global or device attribute. It is typically used for small target-
independent functions.

The grid_global attribute may only be specified on a subroutine statement; it declares that the
subroutine is a kernel subroutine, to be executed on the device, and may only be launched using a
kernel call containing the chevron syntax and runtime mapping parameters. The kernel is launched
such that all threads within the grid group are guaranteed to be co-resident on the device. This allow
a grid synchronization operation on cc70 hardware and greater.

The following restrictions apply to subprograms.

A device subprogram must not contain variables with the SAVE attribute, or with data initializa-
tion.

A kernel subroutine may not also have the device or host attribute.

Calls to a kernel subroutine must specify the execution configuration, as described in “Predefined
Variables in Device Subprograms,” on page 9. Such a call is asynchronous, that is, the calling
routine making the call continues to execute before the device has completed its execution of
the kernel subroutine.

Device subprograms may not be contained in a host subroutine or function, and may not contain
any subroutines or functions.

Variables in CUDA Fortran have a new attribute that declares in which memory the data is allocated.
By default, variables declared in modules or host subprograms are allocated in the host main memory.
At most one of the device, managed, constant, shared, or pinned attributes may be specified for
a variable.

10 Chapter 1. Programming Guide
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A variable with the device attribute is called a device variable, and is allocated in the device global
memory.

If declared in a module, the variable may be accessed by any subprogram in that module and by
any subprogram that uses the module.

If declared in a host subprogram, the variable may be accessed by that subprogram or subpro-
grams contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or either an assumed-size or
assumed-shape dummy array. An allocatable device variable has a dynamic lifetime, from when it
is allocated until it is deallocated. Other device variables have a lifetime of the entire application.

Starting with CUDA 6.0, on certain platforms, a variable with the managed attribute is called a managed
variable. Managed variables may be used in both host and device code. Variables with the managed
attribute migrate between the host and device, depending on where the accesses to the memory
originate. Managed variables may be read and written by the host, but there are access restrictions
on the managed variables if kernels are active on the device. On the device, managed variables have
characteristics similar to device variables, but managed variables cannot be allocated from the device,
as device variables can be, starting in CUDA 5.0 in support of dynamic parallelism.

A variable with the constant attribute is called a device constant variable. Device constant variables
are allocated in the device constant memory space. The constant variable must be declared within a
module’s global data specification scope. When declared, the variable may be accessed by any sub-
program in that module and by any subprogram that uses the module. Device constant data may not
be assigned or modified in any device subprogram, but may be modified in host subprograms. All host
accesses of constant memory must be through use or host association. Device constant variables may
not be allocatable, and they have a lifetime, in the device constant memory, of the entire application.

A variable with the shared attribute is called a device shared variable or a shared variable. A shared
variable may only be declared in a device subprogram, and may only be accessed within that subpro-
gram, or by other device subprograms to which it is passed as an argument. A shared variable may not
be data initialized. A shared variable is allocated in the device shared memory for a thread block, and
has a lifetime of the thread block. It can be read or written by all threads in the block, though a write in
one thread is only guaranteed to be visible to other threads after the next call to the SYNCTHREADS ()
intrinsic.

1.6. Variable Qualifiers 11
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A variable with the pinned attribute is called a pinned variable. A pinned variable must be an allocat-
able array. When a pinned variable is allocated, it will be allocated in host pagelocked memory. The
advantage of using pinned variables is that copies from page-locked memory to device memory are
faster than copies from normal paged host memory. Some operating systems or installations may
restrict the use, availability, or size of page-locked memory; if the allocation in page-locked memory
fails, the variable will be allocated in the normal host paged memory and required for asynchronous
moves.

Reading values through the texture memory interface is no longer recommended or necessary on
newer GPUs and support for this feature has been dropped in CUDA 12.0.

Starting with the NVHPC 24.3 release, on systems which support it, a variable with the unified at-
tribute is called a unified variable. Similar to managed variables, unified variables may be used in both
host and device code. The compiler will allow passing a unified variable for an argument expecting
a device variable. Variables with the unified attribute may migrate between the host and device, but
depending on the driver version and settings, may do so under different conditions than managed
variables. Unified variables are created in host system memory. Similar to managed variables, care
must be taken when unified variables are accessed from both host and device code, to avoid possible
race conditions.

The following intrinsic datatypes are allowed in device subprograms and device data:

Table 1: Intrinsic Datatypes

Type Type Kind
integer 1,2,4,8
logical 1,2,4,8
real 2,4,8

double precision | equivalent to real(kind=8)

complex 4.8

character(len=1) | 1

Derived types may contain members with these intrinsic datatypes or other allowed derived types.
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On NVIDIA GPUs which support CUDA Compute Capability 6.0 and above, it is possible to create vari-
ables and arrays as half precision floating point. CUDA Fortran offers support for using the kind
attribute on real data types; allowing data to be declared as real(2). The following operators are
supported for this data type: + , -, *, /, .1lt., .le., .gt., .ge., .eq., .ne.. Thecompiler
will emit an error message when using real(2) and targeting a GPU with compute capability lower
than 6.0.

Half precision is represented as IEEE 754 binary16. Out of the 16-bits available to represent the float-
ing point value, one bit is used for sign, five bits are used for exponent, and ten bits are used for sig-
nificand. When encountering values that cannot be precisely represented in the format, such as when
adding two real(2) numbers, IEEE 754 defines rounding rules. In the case of real(2), the default rule
is round-to-nearest with ties-to-even property which is described in detail in the IEEE 754-2008 stan-
dard in section 4.3.1. This format has a small dynamic range and thus values greater than 65520 are
rounded to infinity.

Device subprograms have access to block and grid indices and dimensions through several built-in
read-only variables. These variables are of type dim3; the module cudafor defines the derived type
dim3 as follows:

type(dim3)
integer(kind=4) :: x,y,z
end type

These predefined variables are not accessible in host subprograms.

The variable threadidx contains the thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components have the value
one.

The variable blockdim contains the dimensions of the thread block; blockdim has the same
value for all thread blocks in the same grid.

The variable blockidx contains the block index within the grid; as with threadidx, for one-
dimensional grids, blockidx%y and/or blockidx%z has the value one.

The variable griddim contains the dimensions of the grid.

The constant warpsize is declared to be type integer. Threads are executed in groups of 32,
called warps; warpsize contains the number of threads in a warp, and is currently 32.

1.8. Predefined Variables in Device Subprograms 13
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A call to a kernel subroutine must specify an execution configuration. The execution configuration
defines the dimensionality and extent of the grid and thread blocks that execute the subroutine. It may
also specify a dynamic shared memory extent, in bytes, and a stream identifier, to support concurrent
stream execution on the device.

A kernel subroutine call looks like this:

call kernel<<<grid, block[,bytes][, streamid]>>>(arg1,arg2,...)

where

gridand block are either integer expressions (for one-dimensional grids and thread blocks), or
are type(dim3), for one- or two-dimensional grids and thread blocks.

If gridis type(dim3), the value of each component must be equal to or greater than one, and
the product is usually limited by the compute capability of the device.

If block is type(dim3), the value of each component must be equal to or greater than one, and
the product of the component values must be less than or equal to 1024.

The value of bytes must be an integer; it specifies the number of bytes of shared memory to
be allocated for each thread block, in addition to the statically allocated shared memory. This
memory is used for the assumed-size shared variables in the thread block; refer to

for more information. If the value of bytes is not specified, its value is treated as zero.

The value of streamid must be an integer greater than or equal to zero; it specifies the stream to
which this call is associated. Nonzero stream values can be created with a call to cudaStream-
Create. Starting in CUDA 7.0, the constant cudaStreamPerThread can be specified to use a
unique default stream for each CPU thread.

There are two components to asynchronous concurrent execution with CUDA Fortran.

When a host subprogram calls a kernel subroutine, the call actually returns to the host program before
the kernel subroutine begins execution. The call can be treated as a kernel launch operation, where
the launch actually corresponds to placing the kernel on a queue for execution by the device. In this
way, the host can continue executing, including calling or queueing more kernels for execution on the
device. By calling the runtime routine cudaDeviceSynchronize, the host program can synchronize
and wait for all previously launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases where the
host program reads or modifies device or constant data, the host program should synchronize with
the device to avoid erroneous results.
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Operations involving the device, including kernel execution and data copies to and from device memory,
are implemented using stream queues. An operation is placed at the end of the stream queue, and will
only be initiated when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-created stream
manages its own queue; operations on different stream queues may execute out-of-order with respect
to when they were placed on the queues, and may execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is special
in that operations on the stream zero queue will begin only after all preceding operations on all queues
are complete, and no subsequent operations on any queue begin until the stream zero operation is
complete.

CUDA Fortran allows automatic kernel generation and invocation from a region of host code containing
one or more tightly nested loops. Launch configuration and mapping of the loop iterations onto the
hardware is controlled and specified as part of the directive body using the familiar CUDA chevron
syntax. As with any kernel, the launch is asynchronous. The program can use cudaDeviceSynchronize()
or CUDA Events to wait for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the thread blocks and
grid; it is the programmer’s responsibility to ensure that parallel execution is legal and produces the
correct answer. The one exception to this rule is a scalar reduction operation, such as summing the
values in a vector or matrix. For these operations, the compiler handles the generation of the final
reduction kernel, inserting synchronization into the kernel as appropriate.

The general form of the kernel directive is:

IScuf kernel do[(n)] <<< grid, block [optional stream] >>>

The compiler maps the launch configuration specified by the grid and block values onto the outermost
n loops, starting at loop n and working out. The grid and block values can be an integer scalar or
a parenthesized list. Alternatively, using asterisks tells the compiler to choose a thread block shape

and/or compute the grid shape from the thread block shape and the loop limits. Loops which are not
mapped onto the grid and block values are run sequentially on each thread.

There are two ways to specify the optional stream argument:

IScuf kernel do[(n)] <<< grid, block, 6, streamid >>>

Or

IScuf kernel do[(n)] <<< grid, block, stream=streamid >>>

1.11. Kernel Loop Directive 15
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IScuf kernel do(2) <<< (*,%*), (32,4) >>>

do j =1, m
doi=1,n
a(i,j) = b(i,j) + c(i,3)
end do
end do

In this example, the directive defines a two-dimensional thread block of size 32x4.
The body of the doubly-nested loop is turned into the kernel body:
Threadldx%x runs from 1 to 32 and is mapped onto the inner i loop.
Threadldx%y runs from 1 to 4 and is mapped onto the outer j loop.

The grid shape, specified as (*,*), is computed by the compiler and runtime by dividing the loop trip
counts n and m by the thread block size, so all iterations are computed.

IScuf kernel do <<< *, 256 >>>
1, m

1
i,3) = b(i,3) + c(4,])

Without an explicit n on the do, the schedule applies just to the outermost loop, that is, the default
value is 1. In this case, only the outer j loop is run in parallel with a thread block size of 256. The inner
i dimension is run sequentially on each thread.

You might consider if the code in Kernel Loop Directive Example 2 would perform better if the two
loops were interchanged. Alternatively, you could specify a configuration like the following in which
the threads read and write the matrices in coalesced fashion.

IScuf kernel do(2) <<< *, (256,1) >>>
do j

1
i,3) = b(i,3) + c(i,])

In Kernel Loop Directive Example 2, the 256 threads in each block each do one element of the matrix
addition. Further expansion of the work along the i direction and all work across the j dimension is
handled by the mapping onto the grid dimensions.

To “unroll” more work into each thread, specify non-asterisk values for the grid, as illustrated here:

IScuf kernel do(2) <<< (1,%), (256,1) >>>
do j =1, m
doi=1,n
(continues on next page)
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(continued from previous page)

a(i,j) = b(i,j) + c(i,3)
end do
end do

Now the threads in a thread block handle all values in the i direction, in concert, incrementing by 256.
One thread block is created for each j. Specifically, the j loop is mapped onto the grid x-dimension,
because the compiler skips over the constant 1 in the i loop grid size. In CUDA built-in language,
gridDim%x is equal to m.

The following restrictions apply to CUF kernel directives:

If the directive specifies n dimensions, it must be followed by at least that many tightly-nested
DO loops.

The tightly-nested DO loops must have invariant loop limits: the lower limit, upper limit, and
increment must be invariant with respect to any other loop in the kernel do.

The invariant loop limits cannot be a value from an array expression, unless those arrays have the
managed attribute.

There can be no GOTO or EXIT statements within or between any loops that have been mapped
onto the grid and block configuration values.

The body of the loops may contain assignment statements, IF statements, loops, and GOTO
statements.

Only CUDA Fortran data types are allowed within the loops.
Fortran intrinsic functions are allowed, if they are allowed and supported in device code.

Device-specific intrinsics such as the CUDA atomic functions are allowed, but require the inter-
faces from the cudadevice module be explicitly used to compile correctly.

Device-specific intrinsics such as the syncthreads and other warp or block-level cooperating,
syncing, or barrier functions should be avoided except in very limited situations.

Subroutine and function calls to attributes(device) subprograms are allowed if they are in the
same module as the code containing the directive.

Arrays used or assigned in the loop must have the device or managed attribute.
Implicit loops and F90 array syntax are not allowed within the directive loops.

Scalars used or assigned in the loop must either have the device attribute, or the compiler will
make a device copy of that variable live for the duration of the loops, one for each thread. Except
in the case of reductions; when a reduction has a scalar target, the compiler generates a correct
sequence of synchronized operations to produce one copy either in device global memory or on
the host.

1.11. Kernel Loop Directive 17
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1.11.3. Summation Example

Here are two examples to demonstrate the last point from the previous section. The simplest directive
form for performing a dot product on two device arrays takes advantage of the properties for scalar
use outlined previously.

rsum = 0.0
IScuf kernel do <<< *, * >>>
doi=1,n

rsum = rsum + x(i)* y(i)
end do

For reductions, the compiler recognizes the use of the scalar and generates just one final result. If
rsum has the device attribute, the final result resides in device global memory. If it does not, the final
result is moved to the host rsum scalar variable.

1.11.4. Scope of Local Scalar Variables

The CUF kernel from the previous section can be followed by another CUF kernel in the same subpro-
gram:

IScuf kernel do <<< *, * >>>
doi=1,n

rsum= x(i) * y(i)

z(i) = rsum
end do

In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be allocated locally
on every thread. In this case, use of rsum on the host following this loop is undefined.

1.11.5. Explicit Reductions

The CUDA Fortran compiler generally does a good job of identifying reductions in simple loops. When
the reduction is not detected by the compiler, due to complicated control flow or other issues, starting
in version 21.7, it is possible to specify explicit reductions using syntax similar to that used in the
OpenACC and OpenMP programming models.

value = 0.0
IScuf kernel do <<< *, * >>> reduce(+:value)
doi=1,n
a(i) = real(int(a(i) * 100.0 - 50.0),kind=4)
if (a(i) .ge. ©.0) then
value = value + a(i)
else
value = value + a(i) + 50.0
end if
end do

Both the reduce and reduction keywords are accepted. Generally, all data types and types of reductions
that are accepted in OpenACC Fortran are accepted in CUF kernels. That includes +, *, max, min, iand,
ior, and ieor for the Fortran integer type; +, ¥, max, min for the Fortran real type; + for the Fortran
complex type, and finally .and., .or. for the Fortran logical type.
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1.12. Using Fortran Modules

Modern Fortran uses modules to package global data, definitions, derived types, and interface blocks.
In CUDA Fortran these modules can be used to easily communicate data and definitions between host
and device code. This section includes a few examples of using Fortran Modules.

1.12.1. Accessing Data from Other Modules

in the following example, a set of modules are defined in one file which are accessed by another module.
Accessing data from other modules.

In one file, moda. cuf, you could define a set of modules:

module moda
real, device, allocatable :: a(:)
end module

module modb
real, device, allocatable :: b(:)
end module

In another module or file, modc . cuf, you could define another module which uses the two modules
moda and modb:

module modc

use moda

use modb

integer, parameter :: n = 100
real, device, allocatable :: c(:)
contains

subroutine vadd()
IScuf kernel do <<<*, #>>>
doi=1,n
c(i) = a(i) + b(i)
end do
end subroutine
end module

In the host program, you use the top-level module, and get the definition of n and the interface to vadd.
You can also rename the device arrays so they do not conflict with the host naming conventions:

program t

use modc, a_d
real a,b,c(n)
allocate(a_d(n),b_d(n),c_d(n))

=> a, b_d => b, c_d => ¢

a_d = 1.0

b_.d =2.0

call vadd()

c =c_d

print *,all(c.eq.3.0)
end

1.12. Using Fortran Modules 19
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Starting with CUDA 5.0, in addition to being able to access data declared in another module, you can
also call device functions which are contained in another module. In the following example, the file
ffill.cuf contains a device function to fill an array:

Calling routines from other modules using relocatable device code.

module ffill
contains

attributes(device) subroutine fill(a)
integer, device :: a(*)
i = (blockidx%x-1)*blockdim%x + threadidx%x
a(i) = 1
end subroutine

end module

To generate relocatable device code, compile this file with the -gpu=rdc flag:

% nvfortran -cuda -gpu=rdc -c ffill.cuf

Now write another module and test program that calls the subroutine in this module. Since you are
calling an attributes(device) subroutine, you do not use the chevron syntax. For convenience, an over-
loaded Fortran sum function is included in the file tfill.cuf which, in this case, takes 1-D integer
device arrays.

module testfill

use ffill

contains

attributes(global) subroutine Kernel(arr)
integer, device :: arr(*)

call fill(arr)
end subroutine Kernel

integer function sum(arr)
integer, device :: arr(:)
sum = @
IScuf kernel do <<<%*, #>>>
do i = 1, size(arr)

sum = sum + arr(i)

end do

end function sum

end module testfill

program tfill

use testfill

integer, device :: iarr(1600)
iarr = 0

call Kernel<<<1,100>>>(iarr)
print *,sum(iarr)==100%101/2
end program tfill

This file also needs to be compiled with the -gpu=rdc flag and then can be linked with the previous
object file:

% nvfortran -cuda -gpu=rdc tfill.cuf ffill.o
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The -gpu=rdc option has been the default for many releases. The -gpu=nordc flag will override the
current default.

1.12.3. Declaring Device Pointer and Target Arrays

Recently, NVIDIA added support for F90 pointers that point to device data. Currently, this is limited to
pointers that are declared at module scope. The pointers can be accessed through module association,
or can be passed in to global subroutines. The associated() function is also supported in device
code. The following code shows many examples of using F90 pointers. These pointers can also be
used in CUF kernels.

Declaring device pointer and target arrays in CUDA Fortran modules

module devptr
I currently, pointer declarations must be in a module

real, device, pointer, dimension(:) :: mod_dev_ptr
real, device, pointer, dimension(:) :: arg_dev_ptr
real, device, target, dimension(4) :: mod_dev_arr
real, device, dimension(4) :: mod_res_arr
contains
attributes(global) subroutine test(arg_ptr)
real, device, pointer, dimension(:) :: arg_ptr

I copy 4 elements from one of two spots

if (associated(arg_ptr)) then
mod_res_arr = arg_ptr

else
mod_res_arr = mod_dev_ptr

end if

end subroutine test
end module devptr

program test

use devptr

real, device, target, dimension(4) :: a_dev
real result(20)

a_dev = (/ 1.0, 2.0, 3.0, 4.0 /)

! Pointer assignment to device array declared on host,
I passed as argument. First four result elements.
arg_dev_ptr => a_dev

call test<<<1,1>>>(arg_dev_ptr)

result(1:4) = mod_res_arr

IScuf kernel do <<<*, *>>>

doi=1, 4
mod_dev_arr(i) = arg_dev_ptr(i) + 4.0
a_dev(i) = arg_dev_ptr(i) + 8.0
end do

! Pointer assignment to module array, argument nullified
I Second four result elements
mod_dev_ptr => mod_dev_arr

(continues on next page)
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(continued from previous page)
arg_dev_ptr => null()
call test<<<1,1>>>(arg_dev_ptr)
result(5:8) = mod_res_arr

! Pointer assignment to updated device array, now associated
! Third four result elements

arg_dev_ptr => a_dev

call test<<<1,1>>>(arg_dev_ptr)

result(9:12) = mod_res_arr

I1Scuf kernel do <<<*, #>>>

doi=1, 4
mod_dev_arr(i) = 25.0 - mod_dev_ptr(i)
a_dev (i) = 25.0 - arg_dev_ptr(i)
end do

! Non-contiguous pointer assignment to updated device array
I Fourth four element elements

arg_dev_ptr => a_dev(4:1:-1)

call test<<<1,1>>>(arg_dev_ptr)

result(13:16) = mod_res_arr

! Non-contiguous pointer assignment to updated module array
I Last four elements of the result

nullify(arg_dev_ptr)

mod_dev_ptr => mod_dev_arr(4:1:-1)

call test<<<1,1>>>(arg_dev_ptr)

result(17:20) = mod_res_arr

print *,all(result==(/(real(i),i=1,20)/))
end

1.12.4. Declaring Textures

Reading values through the texture memory interface is no longer recommended or necessary on
newer GPUs and support for this feature has been dropped in CUDA 12.0.

CUDA texture memory can be fetched through a special texture attribute ascribed to F90 pointers that
point to device data with the target attribute. In CUDA Fortran, textures are currently just for read-only
data that travel through the texture cache. Since there is separate hardware to support this cache, in
many cases using the texture attribute is a performance boost, especially in cases where the accesses
are irregular and noncontiguous amongst threads. The following simple example demonstrates this
capability:

Declaring textures in CUDA Fortran modules

module memtests

real(8), texture, pointer :: t(:) ! declare the texture

contains
attributes(device) integer function bitrev8(i)
integer ix1, ix2, ix
ix = 1
ix1
ix2

ishft(iand(ix,z'@aa'),-1)
ishft(iand(ix,z'055"), 1)

(continues on next page)
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(continued from previous page)
ix = ior(ix1,1ix2)
ix1 ishft(iand(ix,z'6cc'),-2)
ix2 = ishft(iand(ix,z'033"'), 2)
ix = ior(ix1,1ix2)
ix1 = ishft(ix,-4)
ix2 = ishft(ix, 4)
bitrev8 = iand(ior(ix1,ix2),z'eff")
end function bitrev8

attributes(global) subroutine without( a, b )
real(8), device :: a(*), b(*)

i = blockDim%x*(blockIdx%x-1) + threadIdx%x

j = bitrev8(threadIdx%x-1) + 1

b(i) = a(j)

return

end subroutine

attributes(global) subroutine withtex( a, b )
real(8), device :: a(*), b(*)
i = blockDim%x*(blockIdx%x-1) + threadIdx%x
j = bitrev8(threadIdx%x-1) + 1
b(i) = t(j) ! This subroutine accesses a through the texture
return
end subroutine
end module memtests

program t

use cudafor

use memtests

real(8), device, target, allocatable :: da(:)
real(8), device, allocatable :: db(:)
integer, parameter :: n = 1024*1024

integer, parameter :: nthreads = 256

integer, parameter :: ntimes = 1000
type(cudaEvent) :: start, stop

real(8) b(n)

allocate(da(nthreads))
allocate(db(n))

istat = cudaEventCreate(start)
istat = cudaEventCreate(stop)

db
da

100.0d6
(/ (dble(i),i=1,nthreads) /)

call without<<<n/nthreads, nthreads>>> (da, db)
istat = cudaEventRecord(start,0)
do j = 1, ntimes

call without<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord(stop,0)
istat = cudaDeviceSynchronize()
istat = cudaEventElapsedTime(time1, start, stop)
time1 timel / (ntimes*1.0e3)

(continues on next page)
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b = db

print *,sum(b)==(n*(nthreads+1)/2)

db = 100.0d0

t => da ! assign the texture to da using f960 pointer assignment

call withtex<<<n/nthreads, nthreads>>> (da, db)
istat = cudaEventRecord(start,0)
do j = 1, ntimes

call withtex<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord(stop,0)

istat = cudaDeviceSynchronize()

istat = cudaEventElapsedTime(time2, start, stop)
time2 = time2 / (ntimes*1.0e3)

b =db

print *,sum(b)==(n*(nthreads+1)/2)

print *, "Time with textures", time2
print *,"Time without textures", timel
print *,"Speedup with textures", timel / time2

deallocate(da)
deallocate(db)
end

This section describes several ways that CUDA Fortran can be enabled in your application while mini-
mizing the changes made for maintaining a single CPU/GPU code base.

If CUDA Fortran is enabled in compilation, either by specifying -cuda on the command line or renaming
the file with the .cuf or .CUF extension, then for a source line that begins with the !@cuf sentinel
the rest of the line appears as a statement, otherwise the entire line is a comment.

If CUDA Fortran is enabled in compilation, either by specifying -cuda on the command line, and pre-
processing is enabled by either the -Mpreprocess compiler option or by using capital letters in the
filename extension (.CUF, .F90, etc.) then the _CUDA macro is defined.

If CUDA Fortran is enabled in compilation, then the CUF kernel directive (denoted by ! Scuf kernel)
will generate device code for that loop. Otherwise, the code will run on the CPU.

Variable renaming can be accomplished through a combination of the above techniques, and the use

., only: Fortran statements to rename module variables. For instance, you could rename device
arrays contained in a module with use device_declaration_mod, only : a => a_dev, b => b_dev in com-
bination with either the CUF sentinel or the _CUDA macro. Fortran associate blocks can used similarly
and offer more fine-grained control of variable renaming.

This example shows a number of these techniques, and can be compiled and run with or without CUDA
Fortran enabled.

program p
!@cuf use cudafor
real a(1000)
(continues on next page)
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!@cuf attributes(managed) :: a
real b(1000)
!@cuf real, device :: b_dev(16000)
b=2.0
l@cuf b_dev = b
!@cuf associate(b=>b_dev)
IScuf kernel do(1) <<<*, *>>>
do i =1, 1000

a(i) = real(i) * b(i)
end do
!@cuf end associate
#ifdef _CUDA
print *,"GPU sum passed? ",sum(a).eq.1000*1001
#else
print *,"CPU sum passed? ",sum(a).eq.1000*1001
#endif
end program

1.14. Building a CUDA Fortran Program

CUDA Fortran is supported by the NVIDIA Fortran compiler when the filename uses a CUDA Fortran
extension. The . cuf extension specifies that the file is a free-format CUDA Fortran program; the . CUF
extension may also be used, in which case the program is processed by the preprocessor before being
compiled. To compile a fixed-format program, add the command line option -Mfixed. CUDA Fortran
extensions can be enabled in any Fortran source file by adding the -cuda command line option. It
is important to remember that if you compile a file with the -cuda command line option, you must
also link the file with the -cuda command line option. If you compile with -cuda, but do not link with
-cuda, you will receive an undefined reference to the symbol cuda_compiled.

To change the version of the CUDA Toolkit used from the default, specify -cuda -gpu=cudaX.Y;
CUDA Toolkit version X.Y must be installed.

Relocatable device code is generated by default. You can override this option by specifying -cuda
-gpu=nordc.

If you are using many instances of the CUDA kernel loop directives, that is, CUF kernels, you may want
to add the -Minfo switch to verify that CUDA kernels are being generated where you expect and
whether you have followed the restrictions outlined in the preceding sections.

1.15. Managed and Unified Memory Options
and Interoperability

CUDA Fortranis one of several GPU programming models available for Fortran developers. Other mod-
els make use of compiler options which CUDA Fortran developers may find useful. A general discus-
sion of the memory models which are now supported can be found in the NVIDIA HPC Compiler User’s
Guide, available online at docs.nvidia.com/hpc-sdk.

One nvfortran compiler option that has been supported for many years is -~-gpu=mem :managed. This
has been especially useful in the stdpar programming models. For CUDA Fortran, what this option
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does is to use cudaMallocManaged() for all Fortran allocatable data, in essence treating allocatable
arrays as though they have the managed attribute (See 2.6.2). This allows these arrays to be used in
global subroutines, in CUF kernels, and to be passed into library functions which normally take device
arrays.

A drawback of this is that the Fortran compiler can lose the information, as arrays are passed through
levels of subroutines, that the array was originally allocatable. Therefore the managed attribute be-
havior can get lost; it works one way in the top-level functions but not in the leaf functions where you
really want it. There are a few ways to work around this, but they are usually unwanted changes to
the code. Unlike OpenACC or stdpar, CUDA Fortran has no implicit data movement. It is all explicit,
under the control of the developer, through data attributes, assignment statements, and API calls like
cudaMemcpy.

Starting with the 23.11 release, on systems which support HMM/ATS and unified memory, the NVHPC
compilers now support an option named -gpu=mem:unified. This is similar to the managed option,
but this applies to not just allocatable data, but all host data: allocatable, local stack data, and global
static data. All program data can be accessed on the GPU. In some respect, all this option does for
CUDA Fortran is removes compiler errors and warnings that host data is being used where device data
is expected. All the low-level movement of data back-and-forth between CPU and GPU accesses is
handled by the operating system and CUDA driver, and a separate host and device copy of the data is
not required.

Of course, CUDA programs which have been tuned for two discrete memories, and that make use of
asynchronous operations, multiple streams, and concurrent operation of CPUs and GPUs, may expe-
rience race conditions when using these options and there is now one copy of the data, not two. To
help debug these issues, the NVCOMPILER_ACC_SYNCHRONOUS environment variable now accepts a
bit field. Setting the value of this environment variable to 2 will insert a synchronization point at the
end of each CUF kernel, and setting it to 4 will insert a synchronization point at the end of each global
kernel launch.

Here is an example of a simple CUDA Fortran program that can now act on unified memory when
compiled with the -gpu=mem:unified option:

module m1
integer, parameter :: N
integer :: m(N)

1
(&)}

contains
attributes(global) subroutine g1( a )
integer :: a(*)
i = threadIdx%x
if (i .le. N) a(i) = m(i)
return
end subroutine g1
end module m1

program t1
use m1l
use cudafor
integer :: istat, a(N)
m=[ ((i),i=1,N) ] ! Init global data
call g1 <<<1,N>>> (a)
istat = cudaDeviceSynchronize()
print *,a(1:N)
end program t1

Note that we have added a call to cudaDeviceSynchronize( ), as the unified data is read and written
on the device, printed from the host, and global kernel launches are still asynchronous with respect to
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the host.

In addition, starting with the 24.3 release, and also on systems which support HMM/ATS and unified
memory, the NVHPC CUDA Fortran compiler supports the unified attribute. In general, data with the
unified attribute behaves similarly to managed data, however it is allocated using system memory,
not with cudaMallocManaged(). The attribute allows a programmer to enable unified memory on a
variable-by-variable basis, and it does not require compiling with -gpu=mem:unified.

When using the Managed Memory Model, the Unified Memory Model, or the managed or unified at-
tributes on variables, refer to or for memory hints which have
been shown to improve application performance in many cases.
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Chapter 2. Reference

This section is the CUDA Fortran Language Reference.

2.1. New Subroutine and Function Attributes

CUDA Fortran adds new attributes to subroutines and functions. This section describes how to specify
the new attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device attribute.
A Function may have the host or device attribute, or both. These attributes are specified using the
attributes(attr) prefix on the Subroutine or Function statement; if there is no attributes prefix
on the subprogram statement, then default rules are used, as described in the following sections.

2.1.1. Host Subroutines and Functions

The host attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(host) subroutine sub(...)
attributes(host) integer function func(...)
integer attributes(host) function func(...)

The host attributes prefix may be preceded or followed by any other allowable subroutine or function
prefix specifiers (recursive, pure, elemental, function return datatype). A subroutine or function with
the host attribute is called a host subroutine or function, or a host subprogram. A host subprogram
is compiled for execution on the host processor. A subprogram with no attributes prefix has the host
attribute by default.

2.1.2. Global and Grid_Global Subroutines

The global and grid_global attribute may be explicitly specified on the Subroutine statement as follows:

attributes(global) subroutine sub(...)

attributes(grid_global) subroutine subg(...)
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Functions may not have a global attribute. A subroutine with either global attribute is called a kernel
subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other subroutine pre-
fixes are allowed. A kernel subroutine is compiled as a kernel for execution on the device, to be called
from a host routine using an execution configuration. A kernel subroutine may not be contained in
another subroutine or function, and may not contain any other subprogram. A grid_global subroutine
is supported on cc70 hardware or greater, and specifies that the kernel should be launched in such a
way that all threads in the grid can synchronize.

Launch bounds can optionally be specified as part of the global subroutine definition to provide opti-
mization hints to the compiler. This will mainly aid register usage, spilling, and occupancy heuristics
used in the low-level code generation. See the CUDA C Programming Guide for more information. The
form used in CUDA Fortran is:

attributes(global) launch_bounds(maxTPB, minBPM) subroutine sub(...)

where maxTPB is the maxThreadsPerBlock, the maximum number of threads per block with which
the application will ever launch, and minBPM is the desired minimum number of resident blocks per
multiprocessor. Both values must be numeric constants.

Beginning with the 23.3 release, support for thread block clusters is enabled for Hopper (cc90) and
later targets. To specify the dimensions of the cluster, use the cluster_dims syntax and specify
each x, y, and z dimension. Values must be numeric constants. See the CUDA C Programming Guide
for more information. For instance, this example in CUDA Fortran:

attributes(global) cluster_dims(2,2,1) subroutine sub(...)

will set up a 2x2 (x and y) set of thread blocks in a cluster. The launch to these kernels using the
chevron syntax will be adjusted appropriately at the call site.

Also, as part of the Hopper support, the launch_bounds syntax has been extended to accept a third
argument, an upper bound on the cluster size.

The device attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes(device) subroutine sub(...)
attributes(device) datatype function func(...)
datatype attributes(device) function func(...)

A subroutine or function with the device attribute is called a device subprogram. A device subprogram
is compiled for execution on the device, and can be called from a kernel subroutine or other device
subprograms. A device subprogram may also be recursive, pure, or elemental. A subroutine or function
with the device attribute can be in a different file or scope than the callers, but you must use relocatable
device code linking, and provide an explicit interface. Otherwise, the device routines should be in the
same module as the caller.
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A subroutine or function with the device or global attribute must satisfy the following restrictions:
It may not contain another subprogram.
It may not be contained in another subroutine or function.

A kernel subroutine may not be recursive, nor have the recursive prefix on the subroutine state-
ment.

A kernel subroutine may not be pure or elemental, nor have the pure or elemental prefix on the
subroutine statement.

For more information, refer to

CUDA Fortran adds new attributes for variables and arrays. This section describes how to specify the
new attributes and their meaning and restrictions.

Variables declared in a host subprogram may have one of three new attributes: they may be declared
to be in device global memory, in managed memory, or in pinned memory.

Variables in modules may be declared to be in device global memory, in the managed memory space,
or in constant memory space.

Variables declared in a device program units may have one of three new attributes: they may be de-
clared to be in device global memory, in constant memory space, in the thread block shared memory,
or without any additional attribute they will be allocated in thread local memory. For performance
and useability reasons, the value attribute can also be used on scalar dummy arguments so they are
passed by value, rather than the Fortran default to pass arguments by reference.

Avariable or array with the device attribute is defined to reside in the device global memory. The device
attribute can be specified with the attributes statement, or as an attribute on the type declaration
statement. The following example declares two arrays, a and b, to be device arrays of size 100.

real :: a(100)
attributes(device) :: a
real, device :: b(100)
These rules apply to device data:
An allocatable device array dynamically allocates device global memory.

Device variables and arrays may appear in modules, but may not be in a Common block or an
Equivalence statement.

Members of a derived type may not have the device attribute unless they are allocatable.
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Device variables and arrays may be passed as actual arguments to host and device subprograms;
in that case, the subprogram interface must be explicit (in the Fortran sense), and the matching
dummy argument must also have the device attribute.

Device variables and arrays declared in a host subprogram cannot have the Save attribute unless
they are allocatable.

In host subprograms, device data may only be used in the following manner:
In declaration statements
In Allocate and Deallocate statements
As an argument to the Allocated intrinsic function
As the source or destination in a data transfer assignment statement
As an actual argument to a kernel subroutine
As an actual argument to another host subprogram or runtime API call
As a dummy argument in a host subprogram

A device array may have the allocatable attribute, or may have adjustable extent.

A variable or array with the managed attribute is managed by the unified memory system and mi-
grates between host main memory and device global memory. The managed attribute can be speci-
fied with the attributes statement, or as an attribute on the type declaration statement. Managed
local arrays can have an explicit shape, be automatic, or allocatable. Managed dummy arrays may be
assumed-size or assumed-shape. The following example declares two arrays, a and b, to be managed
arrays of size 100, and allocates a third array, ¢ with size 200.

real :: a(100)

attributes(managed) :: a

real, managed :: b(100)

real, allocatable, managed :: c(:)

allocate(c(200))

These rules apply to managed data on the host:

Managed variables and arrays may appear in host subprograms and modules, but may not be in
a Common block or an Equivalence statement.

Managed variables and arrays declared in a host subprogram cannot have the Save attribute
unless they are allocatable.

Derived types may have the managed attribute.
Members of a derived type may have the managed attribute.
Managed derived types may also contain allocatable device arrays.

Managed variables and arrays may be passed as actual arguments to other host subprograms; if
the subprogram interface is overloaded, the generic matching priority is match another managed
dummy argument first, match a dummy with the device attribute next, and match a dummy with
no (or host) attribute last.
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Passing a non-managed actual argument to a managed dummy argument will result in either a
compilation error if the interface is explicit, or unexpected behavior otherwise.

Managed variables and arrays may be passed as actual arguments to global subroutines just as
device variables and arrays are.

By default, managed data is allocated with global scope, i.e. the flag passed to cudaMallocMan-
aged is cudaMemAttachGlobal.

The scope of a managed variable can be changed with a call
to" “cudaStreamAttachMemAsync ™

Individual managed variables can be associated with a given stream by calling cudaforSetDe-
faultStream.

All subsequently allocated managed variables can also be associated with a given stream by call-
ing cudaforSetDefaultStream.

Accessing managed data on the host while a running kernel is accessing managed data within
the same scope on the device will result in either a segmentation fault or a race condition.

These rules apply to managed data on the device:
The managed attribute may be used on dummy arguments.
Managed data is treated as if it were device data.

There is no support for allocating or deallocating managed data on the device.

Note: Even if your application only uses a single GPU, if you are running on systems which have
multiple GPUs that are not peer-to-peer enabled, managed memory will be allocated as zero-copy
memory and performance will suffer accordingly. A workaround is to set the environment variable
CUDA_VISIBLE_DEVICES so only one GPU is seen, or to force allocation on the GPU by setting
CUDA_MANAGED_FORCE_DEVICE_ALLOC. The CUDA C Programming Guide has more details on this in
the section.

Avariable or array with the unified attribute can be accessed from both host and device code. Whether
the data migrates or is read and written across the memory bus is under the control of the CUDA driver
and settings. The unified attribute can be specified with the attributes statement, or as an attribute
on the type declaration statement. Unified arrays must be local, fixed-size, automatic or allocatable.
The unified attribute is not allowed on global module arrays. A local F90 pointer can have the unified
attribute, then point to a global array with the target attribute. This pointer can be passed as a kernel
argument into a device code kernel, similar to unified memory support in CUDA C++.

These rules apply to unified data on the host:
Unified variables and arrays may appear in host subprograms only, not in modules.
Derived types may have the unified attribute.
Members of a derived type may have the unified attribute.

Unified derived types may also contain allocatable device arrays, which can be useful for deep
data structures.
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Accessing unified data on the host while a running kernel is accessing it on the device may result
in race conditions.

These rules apply to unified data on the device:
Unified data is treated as if it were device data.
There is no support for allocating or deallocating unified data on the device.

This table may help explain how matching of actual arguments to dummy arguments, when there are
generic, overloaded interfaces exposed, are computed. For each argument pair, a distance is returned.
The minimum distance, less than infinity, wins.

Table 2: Attributed Argument Matching Distance Values

Dummy | Actual Ac- Actual | Ac- Actual Ope- | Actual None | Actual None
Argu- None tual | Man- | tual nACC use_ | (gpu= mem: | (gpu= mem:
ment (host) De- aged Uni- device unified) managed)
vice fied
None (hosD) INF 3 3 1 3 3
Device | INF 0 2 2 0 2
Man- INF INF 0 1 INF 1 0
aged
Uni- INF INF 1 0 INF 0 1
fied

It should be noted that the Fortran host modules provided in CUDA Fortran, such as those provided for
CUDA libraries discussed later in this chapter, contain interfaces in which the dummy arguments are
either host or device. Therefore, the implementation which operates on device data is still preferred
for actual arguments of either device, managed, or unified.

Also remember that the matching is based on how and where the data can be used. Care must be taken
when allocating and deallocating the data, and generally the attributes must exactly match during
those two operations. The pinned attribute discussed in the next section has the same requirement.

An allocatable array with the pinned attribute will be allocated in special page-locked host memory,
when such memory is available. The advantage of using pinned memory is that transfers between the
device and pinned memory are faster and can be asynchronous. An array with the pinned attribute
may be declared in a module or in a host subprogram. The pinned attribute can be specified with the
attributes statement, or as an attribute on the type declaration statement. The following example
declares two arrays, p and q, to be pinned allocatable arrays.

real :: p(:)

allocatable :: p
attributes(pinned) :: p

real, allocatable, pinned :: q(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether the interface is
explicit, or whether the dummy argument has the pinned and allocatable attributes. Where the array
is deallocated, the declaration for the array must still have the pinned attribute, or the deallocation
may fail.
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A variable or array with the constant attribute is defined to reside in the device constant memory
space. The constant attribute can be specified with the attributes statement, or as an attribute on
the type declaration statement. The following example declares two arrays, ¢ and d, to be constant
arrays of size 100.

real :: c(100)
attributes(constant) :: c
real, constant :: d(100)

These rules apply to constant data:

Constant variables and arrays can appear in modules, but may not be in a Common block or an
Equivalence statement. Constant variables appearing in modules may be accessed via the use
statement in both host and device subprograms.

Constant data may not have the Pointer, Target, or Allocatable attributes.
Members of a derived type may not have the constant attribute.
Arrays with the constant attribute must have fixed size.

Constant variables and arrays may be passed as actual arguments to host and device subpro-
grams, as long as the subprogram interface is explicit, and the matching dummy argument also
has the constant attribute. Constant variables cannot be passed as actual arguments between
a host subprogram and a device global subprogram.

Within device subprograms, variables and arrays with the constant attribute may not be as-
signed or modified.

Within host subprograms, variables and arrays with the constant attribute may be read and
written.

In host subprograms, data with the constant attribute may only be used in the following manner:
As a named entity within a USE statement.
As the source or destination in a data transfer assignment statement
As an actual argument to another host subprogram

As a dummy argument in a host subprogram

A variable or array with the shared attribute is defined to reside in the shared memory space of a
thread block. A shared variable or array may only be declared and used inside a device subprogram.
The shared attribute can be specified with the attributes statement, or as an attribute on the type
declaration statement. The following example declares two arrays, s and t, to be shared arrays of size
100.

real :: c(100)
attributes(shared) :: ¢

real, shared :: d(160)

These rules apply to shared data:

Shared data may not have the Pointer, Target, or Allocatable attributes.
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Shared variables may not be in a Common block or Equivalence statement.
Members of a derived type may not have the shared attribute.

Shared variables and arrays may be passed as actual arguments to from a device subprogram to
another device subprogram, as long as the interface is explicit and the matching dummy argu-
ment has the shared attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays; that is, the last
dimension of a shared array may have an asterisk as its upper bound:

real, shared :: x(%*)

Such an array has special significance. Its size is determined at run time by the call to the kernel.
When the kernel is called, the value of the bytes argument in the execution configuration is used to
specify the number of bytes of shared memory that is dynamically allocated for each thread block.
This memory is used for the assumed-size shared memory arrays in that thread block; if there is more
than one assumed-size shared memory array, they are all implicitly equivalenced, starting at the same
shared memory address. Programmers must take this into account when coding.

Shared arrays may be declared as Fortran automatic arrays. For automatic arrays, the bounds are de-
clared as an expression containing constants, parameters, blockdim variables, and integer arguments
passed in by value. The allocation of automatic arrays also comes from the dynamic area specified
via the chevron launch configuration. If more than one automatic array is declared, the compiler and
runtime manage the offsets into the dynamic area. Programmers must provide a sufficient number of
bytes in the chevron launch configuration shared memory value to cover all automatic arrays declared
in the global subroutine.

attributes(global) subroutine sub(A, n,
integer, value :: n, nb
real, shared :: s(nb*blockdim%x,nb)

If a shared array is not a dummy argument and not assumed-size or automatic, it must be fixed size.
In this case, the allocation for the shared array does not come from the dynamically allocated shared
memory area specified in the launch configuration, but rather it is declared statically within the func-
tion. If the global routine uses only fixed size shared arrays, or none at all, no shared memory amount
needs to be specified at the launch.

Reading values through the texture memory interface is no longer recommended or necessary on
newer GPUs and support for this feature has been dropped in CUDA 12.0.

Read-only real and integer device data can be accessed in device subprograms through the texture
memory by assigning an F90 pointer variable to the underlying device array. To use texture memory in
this manner, follow these steps:

Add a declaration to a module declaration section that contains the device code, such that the
declaration is available to the device subprogram through host association, and available to the
host code via either host or use association:

real, texture, pointer :: t(:)

In your host code, add the target attribute to the device data that you wish to access via texture
memory:

Change: real, device :: a(n)
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To: real, target, device :: a(n)

The target attribute is standard F90/F2003 syntax to denote an array or other data structure
that may be “pointed to” by another entity.

Tie the texture declaration to the device array by using the F9O pointer assignment operator in
your host code. A simple expression like the following one performs all the underlying CUDA
texture binding operations.

t =>a

The CUDA Fortran device code that can refer to t through host association can now access the
elements of t without any change in syntax.

In the following example, accesses of t, targeting a, go through the texture cache.

I Vector add, s through device memory, t is through texture memory
i = threadIdx%x + (blockIdx%x-1)*blockDim%x
s(i) = s(i) + t(1)

In device subprograms, following the rules of Fortran, dummy arguments are passed by default by
reference. This means the actual argument must be stored in device global memory, and the address
of the argument is passed to the subprogram. Scalar arguments can be passed by value, as is done in
C, by adding the value attribute to the variable declaration.

attributes(global) subroutine madd( a, b, n )
real, dimension(n,n) :: a, b
integer, value :: n

In this case, the value of n can be passed from the host without needing to reside in device memory.
The variable arrays corresponding to the dummy arguments a and b must be set up before the call to
reside on the device.

This section describes extensions to the Allocate statement, specifically for dynamically allocating de-
vice arrays, host pinned arrays, managed arrays, and other supported methods for allocating memory
specific to CUDA Fortran.
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Device arrays can have the allocatable attribute. These arrays are dynamically allocated in host sub-
programs using the Allocate statement, and dynamically deallocated using the Deallocate statement.
If a device array declared in a host subprogram does not have the Save attribute, it will be automatically
deallocated when the subprogram returns.

real, allocatable, device :: b(:)
allocate(b(5024),stat=istat)

if(allocated(b)) deallocate(b)

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar feature. To
use these, declare and initialize the scalar on the host as:

integer, allocatable, device :: ndev
allocate(ndev)
ndev = 100

The language also supports the ability to create the equivalent of automatic and local device arrays
without using the allocate statement. These arrays will also have a lifetime of the subprogram as is
usual with the Fortran language:

subroutine vfunc(a,c,n)

real, device :: adev(n)
real, device :: atmp(4)
end subroutine vfunc ! adev and atmp are deallocated

Automatic and local arrays declared in this way, not containing the allocatable attribute, cannot have
the Save attribute.

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the
CUDA memory management runtime routines are provided. These functions return memory which
will bypass certain Fortran allocatable properties such as automatic deallocation, and thus the arrays
are treated more like C malloc’ed areas. Mixing standard Fortran allocate/deallocate with the runtime
Malloc/Free for a given array is not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported intrinsic
data-types, and cudaFree can be used to free it:

real, allocatable, device :: v(:)
istat = cudaMalloc(v, 100)

istat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to
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2.3.3. Allocate Pinned Memory

Allocatable arrays with the pinned attribute are dynamically allocated using the Allocate statement.
The compiler will generate code to allocate the array in host page-locked memory, if available. If no
such memory space is available, or if it is exhausted, the compiler allocates the array in normal paged
host memory. Otherwise, pinned allocatable arrays work and act like any other allocatable array on the
host.

real, allocatable, pinned :: p(:)
allocate(p(5000),stat=istat)

if(allocated(p)) deallocate(p)

To determine whether or not the allocation from page-locked memory was successful, an additional
PINNED keyword is added to the allocate statement. It returns a logical success value.

logical plog

allocate(p(5000), stat=istat, pinned=plog)
if (.not. plog) then

2.3.4. Allocating Managed Memory

Managed arrays may or may not have the allocatable attribute. These arrays are all dynamically allo-
cated just as device arrays are.

real, allocatable, managed :: b(:)
allocate(b(56024), stat=istat)

if(allocated(b)) deallocate(b)

CUDA Fortran supports the ability to create the equivalent of automatic and local managed arrays
without using the allocate statement. These arrays will also have a lifetime of the subprogram as is
usual with the Fortran language:

subroutine vfunc(a,c,n)

real, managed :: aman(n)
real, managed :: atmp(4)
end subroutine vfunc ! aman and atmp are deallocated

2.3.5. Allocating Managed Memory Using Runtime
Routines

The cudaMallocManaged function can be used to allocate single-dimensional managed arrays of the
supported intrinsic data-types, and cudaFree can be used to free it:

use cudafor
real, allocatable, managed :: v(:)

(continues on next page)
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(continued from previous page)

istat = cudaMallocManaged(v, 100, cudaMemAttachHost)
istat = cudaFree(v)

For a complete list of the memory management runtime routines, refer to Memory Management.

2.3.6. Allocating Device Memory Asynchronously

Beginning in CUDA 11.2, allocatable device arrays can be dynamically allocated in host subprograms
using the Allocate statement, asynchronously, on a specified stream.

real, allocatable, device :: b(:)
integer(kind=cuda_stream_kind) :: istream

allocate(b(5024), stream=istream)

These arrays can also be dynamically deallocated using the Deallocate statement. It is not necessary,
or allowed, to specify a stream during deallocation. If a device array declared in a host subprogram does
not have the Save attribute, it will be automatically deallocated when the subprogram returns. Given
the allocation above, this statement will deallocate the array b on the stream specified by istream.

if(allocated(b)) deallocate(b)

Arrays declared using the Allocate statement with a stream are associated with that stream as if the
cudaforSetDefaultStream function were called for that combination of device data and stream. To
use this data in operations outside of this stream, users should call cudaStreamSynchronize first to
block host execution until all stream operations have completed.

2.3.7. Allocating Device Memory Asynchronously Using
Runtime Routines

The cudaMallocAsync function can be used to allocate single-dimensional arrays of the supported
intrinsic data-types, and cudaFreeAsync can be used to free it, asynchronously, on a given stream:

real, allocatable, device :: v(:)
integer(kind=cuda_stream_kind) :: istream
istat = cudaMallocAsync(v, 100, istream)
istat = cudaFreeAsync(v, istream)

For a complete list of the memory management runtime routines, refer to Memory Management.
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Beginning in the HPC SDK compiler version 21.9, it is possible to change the CUDA Fortran device data
allocation behavior to actually allocate managed memory instead of device memory, with potentially
no coding changes.

This can be useful in order to oversubscribe the available GPU memory, and allow the OS and driver to
page memory to and from the GPU as needed, either as an experiment or for running larger problem
sizes than normally available.

All CUDA Fortran device allocations go through a small wrapper layer before making the actual CUDA
API call. By setting the environment variable

NVCOMPILER_CUDAFOR_DEVICE_IS_MANAGED=1

allocations in the form of the first two subsections in this section, Allocating Device Memory and
Allocating Device Memory Using Runtime Routines will eventually call cudaMallocManaged
rather than cudaMalloc. In addition, some prefetching hints are added to make the accesses to the
newly allocated data most efficient from the GPU (the current device).

This section provides methods to transfer data between the host and device memory.

You can copy variables and arrays from the host memory to the device memory by using simple as-
signment statements in host subprograms. By default, using assignment statements to read or write
device, managed, or constant data implicitly uses CUDA stream zero. This means such data copies are
synchronous, and the data copy waits until all previous kernels and data copies complete. Alternatively,
you can use the cudaforSetDefaultStream call to associate one or more device and managed vari-
ables to a particular stream. After this call has occurred, assignment statements on those variables
will run asynchronously on the specified stream.

Specific information on assignment statements:

An assignment statement where the left hand side is a device variable or device array or array
section, and the right hand side is a host variable or host array or array section, copies data from
the host memory to the device global memory.

An assignment statement where the left hand side is a host variable or host array or array section,
and the right hand side is a device variable or device array or array section, copies data from the
device global memory to the host memory.

An assignment statement with a device variable or device array or array section on both sides of
the assignment statement copies data between two device variables or arrays.

Similarly, you can use simple assignment statements to copy or assign variables or arrays with the
constant attribute.

Specific information on assignment statements and managed data:
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An assignment statement where the left hand side is a managed variable or managed array, and
the right hand side is a conforming scalar constant, host variable, host array or array section,
copies data from the host memory to the device global memory using cudaMemcpy, memset, or
a similar operation.

An assignment statement where the left hand side is a managed array section and the right hand
side is any host variable copies data using generated host code.

An assignment statement where the left hand side is a managed variable, managed array or array
section, and the right hand side is a device variable or device array or array section, copies data
from the device global memory to the host memory using cudaMemcpy or a similar operation.

An assignment statement where the right hand side is a managed variable or managed array,
and the left hand side is a host variable, host array or array section, copies data from the device
global memory to the host memory using cudaMemcpy or a similar operation.

An assignment statement where the right hand side is a managed array section and the left hand
side is any host or managed variable copies data using generated host code.

An assignment statement where the right hand side is a managed variable, managed array or
array section, and the left hand side is a device variable or device array or array section, copies
data using cudaMemcpy and accesses the data from the device.

More information on Memcpy and Memset behavior with managed memory can be found in the
section of the CUDA C Programming Guide.

Some limited data transfer can be enclosed within expressions. In general, the rule of thumb is all
arithmetic or operations must occur on the host, which normally only allows one device array to appear
on the right-hand-side of an expression. Temporary arrays are generated to accommodate the host
copies of device data as needed. For instance, if a, b, and ¢ are conforming host arrays, and adev,
bdev, and cdev are conforming device arrays, the following expressions are legal:

a = adev
adev = a

b = a + adev

c X * adev + b

The following expressions are not legal as they either promote a false impression of where the actual
computation occurs, or would be more efficient written in another way, or both:

c = adev + bdev
adev = adev + a
b = sqrt(adev)

Elemental transfers are supported by the language but perform poorly. Array slices are also supported,
and their performance is dependent on the size of the slice, the amount of contiguous data in the
slices, and the implementation.
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For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the
CUDA memory management runtime routines are provided. These functions can transfer data either
from the host to device, device to host, or from one device array to another.

The cudaMemcpy function can be used to copy data between the host and the GPU:

real, device :: wrk(1024)
real cur(512)
istat = cudaMemcpy(wrk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routines is optional
in Fortran because the attributes of the arrays are explicitly declared. Counts expressed in arguments
to the Fortran runtime routines are expressed in terms of data type elements, not bytes.

For a complete list of memory management runtime routines, refer to

A call to a kernel subroutine must give the execution configuration for the call. The execution config-
uration gives the size and shape of the grid and thread blocks that execute the function as well as the
amount of shared memory to use for assumed-size shared memory arrays and the associated stream.

The execution configuration is specified after the subroutine name in the call statement; it has the
form:

<<< grid, block, bytes, stream >>>

gridisaninteger, avalue of type(dim3), or *. If grid is an integer, it is converted to dim3 (grid,
1,1). If itis type(dim3), the product grid%x*grid%y*grid%z gives the number of thread
blocks to launch. This product must be less than or equal to the maximum number of blocks
supported by the device. Launching a grid_global subroutine kernel puts further restrictions
on the number of blocks. Setting the grid to * instructs the runtime to compute the number
of blocks via a call to cudaOccupancyMaxActiveBlocksPerMultiprocessor(), which takes
grid_global (or not) into account. Setting a single grid dim3 x, y, or z value to -1 also takes this
same querying path through the runtime.

block is an integer, or of type(dim3). If it is type(dim3), the number of threads per thread
block is block%x*block%y*block%z, which must be less than or equal to the maximum sup-
ported by the device. If block is an integer, it is converted to dim3 (block, 1, 1).

bytes is optional; if present, it must be a scalar integer, and specifies the number of bytes of
shared memory to be allocated for each thread block to use for assumed-size shared memory
arrays. For more information, refer to . If not specified, the value zero is used.

stream is optional; if present, it must be an integer, and have a value of zero, or a value returned
by a call to cudaStreamCreate. See Section 4.5 on page 41. It specifies the stream to which this
call is enqueued. The stream constant value cudaStreamPerThread may be specified. This will
use a unique stream for each CPU thread.

For instance, a kernel subroutine

attributes(global) subroutine sub( a )

2.5. Invoking a kernel subroutine 43



NVIDIA CUDA Fortran Programming Guide, Release 25.9

can be called like:

call sub <<< DG, DB, bytes >>> ( A )

The function call fails if the grid or block arguments are greater than the maximum sizes allowed,
or if bytes is greater than the shared memory available. Shared memory may also be consumed by
fixed-sized shared memory declarations in the kernel and for other dedicated uses, such as function
arguments and execution configuration arguments.

Variables and arrays with the device, constant, or shared attributes, or declared in device subprograms,
are limited to the types described in this section. They may have any of the intrinsic datatypes in the
following table.

Table 3: Device Code Intrinsic Datatypes

Type Type Kind
integer 1,2,4(default),8
logical 1,2,4(default),8
real 2,4(default),8

double precision | equivalent to real(kind=8)

complex 4(default),8

character(len=1) | 1 (default)

Additionally, they may be of derived type, where the members of the derived type have one of the
allowed intrinsic datatypes, or another allowed derived type.

The system module cudafor includes definitions of the derived type dim3, defined as

type(dim3)
integer(kind=4) :: x,y,z
end type

Several CUDA Fortran read-only predefined variables are available in device code. They are declared as
follows:

type(dim3) :: threadidx, blockdim, blockidx, griddim
integer(4), parameter :: warpsize = 32
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The variable threadidx contains the thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components have the value
one.

The variable blockdim contains the dimensions of the thread block; blockdim has the same
value for all threads in the same grid; for one- or two-dimensional thread blocks, the blockdim%y
and/or blockdim%z components have the value one.

The variable blockidx contains the block index within the grid; as with threadidx, for one-
dimensional grids, blockidx%y has the value one. The value of blockidx%z is always one. The
value of blockidx is the same for all threads in the same thread block.

The variable griddim contains the dimensions of the grid. The value of griddimis the same for
all threads in the same grid; the value of griddim%y and griddim%z is one for one-dimensional
grids.

The variables threadidx, blockdim, blockidx, and griddim are available only in device sub-
programs.

The constant warpsize contains the number of threads in a warp. It is currently defined to be
32.

This section lists the Fortran intrinsic functions allowed in device subprograms.

The use of system module wmma is required to call mathematical and some numeric intrinsics using
real(2) data type. Information about which intrinsics are only available via wmma module can be
found in description section.

Table 4: Fortran Numeric and Logical Intrinsics

Name Argument Datatypes Name Argument Datatypes

abs integer, real(2,4,8), complex int integer, real(2,4,8), complex
aimag complex logical | logical

aint real(4,8) max integer, real(2,4,8)

anint real(4,8) min integer, real(2,4,8)
ceiling | real(4,8) mod integer, real(4,8)

cmplx real(2,4,8) or (real,real) modulo | integer, real(4,8)

conjg complex nint real(4,8)

dim integer, real(4,8) real integer, real(2,4,8), complex
floor real(4,8) sign integer, real(4,8)
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Table 5: Fortran Mathematical Intrinsics

Name Argument Datatypes Name Argument Datatypes
acos real(2,4,8) cosh real(2,4,8)
acosh real(4,8) erf real(4,8)
asin real(2,4,8) erfc real(4,8)
asinh real(4,8) exp real(2,4,8), complex
atan real(2,4,8) gamma real(4,8)
atanh real(4,8) hypot (real(4,8),real(4,8))
atan2 (real,real) log real(2,4,8), complex
bessel_j0 | real(4,8) log1@ real(2,4,8)
bessel_j1 | real(4,8) log_gamma | real(4,8)
bessel_jn | (intreal(4,8)) sin real(2,4,8), complex
bessel_y0 | real(4,8) sinh real(2,4,8)
bessel_y1 | real(4,8) sqrt real(2,4,8), complex
bessel_yn | (int,real(4,8)) tan real(2,4,8)
cos real(2,4,8), complex tanh real(2,4,8)
Table 6: Fortran Numeric Inquiry Intrinsics
Name Argument Datatypes Name Argument Datatypes
bit_size integer precision real(2,4,8), complex
digits integer, real(2,4,8) radix integer, real(2,4,8)
epsilon real(2,4,8) range integer, real(2,4,8), complex
huge integer, real(2,4,8) selected_int_kind | integer
maxexponent | real(2,4,8) selected_real_kind | (integer,integer)
minexponent | real(2,4,8) tiny real(2,4,8)
Table 7: Fortran Bit Manipulation Intrinsics
Name | Argument Datatypes Name Argument Datatypes
btest | integer ishft | integer
iand | integer ishftc | integer
ibclr | integer leadz | integer
ibits | integer mvbits | integer
ibset | integer not integer
ieor | integer popcnt | integer
ior integer poppar | integer
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Table 8: Fortran Reduction and Array Intrinsics

Name Argument Datatypes Name Argument Datatypes
all logical maxval | integer, real(2,4,8)

any logical minloc | integer, real(4,8)

count logical minval | integer, real(2,4,8)
dot_product | real(4,8) norm2 real(4,8)

matmul real(4,8), complex product | integer, real(4,8), complex
maxloc integer, real(4,8) sum integer, real(4,8), complex

This section describes the synchronization functions and subroutines supported in device subpro-
grams.

Synchronization Functions

The synchronization functions control the synchronization of various threads during execution of
thread blocks.

syncthreads syncwarp
syncthreads_count threadfence
syncthreads_and threadfence_block
syncthread_or threadfence_system

For detailed information on these functions, refer to
SYNCTHREADS

The syncthreads intrinsic subroutine acts as a barrier synchronization for all threads in a single
thread block; it has no arguments:

subroutine syncthreads()

Sometimes threads within a block access the same addresses in shared or global memory, thus creat-
ing potential read-after-write, write-after-read, or write-after-write hazards for some of these mem-
ory accesses. To avoid these potential issues, use syncthreads() to specify synchronization points
in the kernel. This intrinsic acts as a barrier at which all threads in the block must wait before any
thread is allowed to proceed. Threads within a block cooperate and share data by synchronizing their
execution to coordinate memory accesses.

Each thread in a thread block pauses at the syncthreads call until all threads have reached that call.
If any thread in a thread block issues a call to syncthreads, all threads must also reach and execute
the same call statement, or the kernel fails to complete correctly.

SYNCTHREADS_AND

integer syncthreads_and(int_value)
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syncthreads_and. like syncthreads, acts as a barrier at which all threads in the block must wait be-
fore any thread is allowed to proceed. In addition, syncthreads_and evaluates the integer argument
int_value for all threads of the block and returns non-zero if and only if int_value evaluates to non-zero
for all of them.

SYNCTHREADS_COUNT

integer syncthreads_count(int_value)

syncthreads_count, like syncthreads, acts as a barrier at which all threads in the block must wait
before any thread is allowed to proceed. In addition, syncthreads_count evaluates the integer ar-
gument int_value for all threads of the block and returns the number of threads for which int_value
evaluates to non-zero.

SYNCTHREADS_OR

integer syncthreads_or(int_value)

syncthreads_or, like syncthreads, acts as a barrier at which all threads in the block must wait
before any thread is allowed to proceed. In addition, syncthreads_or evaluates the integer argument
int_value for all threads of the block and returns non-zero if and only if int_value evaluates to non-zero
for any of them.

SYNCWARP

subroutine syncwarp(int_mask)

syncwarp will cause all executing threads witin a warp, and specified in the mask argument, to reach
a barrier, at which point all threads in the mask must execute syncwarp before any thread is allowed
to proceed.

Memory Fences

In general, when a thread issues a series of writes to memory in a particular order, other threads may
see the effects of these memory writes in a different order. You can use threadfence(), thread-
fence_block(), and threadfence_system() to create a memory fence to enforce ordering.

For example, suppose you use a kernel to compute the sum of an array of N numbers in one call. Each
block first sums a subset of the array and stores the result in global memory. When all blocks are done,
the last block done reads each of these partial sums from global memory and sums them to obtain the
final result. To determine which block is finished last, each block atomically increments a counter to
signal that it is done with computing and storing its partial sum. If no fence is placed between storing
the partial sum and incrementing the counter, the counter might increment before the partial sum is
stored.

THREADFENCE

subroutine threadfence()

threadfence acts as a memory fence, creating a wait. Typically, when a thread issues a series of
writes to memory in a particular order, other threads may see the effects of these memory writes in
a different order. threadfence() is one method to enforce a specific order. All global and shared
memory accesses made by the calling thread prior to threadfence() are visible to:

All threads in the thread block for shared memory accesses
All threads in the device for global memory accesses
THREADFENCE_BLOCK
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subroutine threadfence_block()

threadfence_block acts as a memory fence, creating a wait until all global and shared memory
accesses made by the calling thread prior to threadfence_block() are visible to all threads in the
thread block for all accesses.

THREADFENCE_SYSTEM

subroutine threadfence_system()
threadfence_system acts as a memory fence, creating a wait until all global and shared memory
accesses made by the calling thread prior to threadfence_system() are visible to:

All threads in the thread block for shared memory accesses

All threads in the device for global memory accesses

Host threads for page-locked host memory accesses

threadfence_system() is only supported by devices of compute capability 2.0 or higher.

New warp-vote and warp match operations have been added to NVIDIA CUDA Fortran. The older ver-
sions remain for legacy reasons; they will invoke the newer functionality with a mask specifying all
threads in the warp.

ALLTHREADS

The allthreads function is a warp-vote operation with a single scalar logical argument:

if( allthreads(a(i)<0.0) ) allneg = .true.

The function allthreads evaluates its argument for all threads in the current warp. The value of the
functionis . true. only if the value of the argument is . true. for all threads in the warp.
ANYTHREAD

The anythread function is a warp-vote operation with a single scalar logical argument:

if( anythread(a(i)<0.0) ) allneg = .true.

The function anythread evaluates its argument for all threads in the current warp. The value of the
function is . false. only if the value of the argument is . false. for all threads in the warp.

BALLOT

The ballot function is a warp-vote operation with a single integer argument:

unsigned integer ballot(int_value)

The function ballot evaluates the argument int_value for all threads of the warp and returns an
integer whose Nth bit is set if and only if int_value evaluates to non-zero for the Nth thread of the
warp.

This function is only supported by devices of compute capability 2.0.

Example:
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if( ballot(int_value) ) allneg = .true.

ACTIVEMASK

unsigned integer activemask()

The activemask function returns a 32-bit integer mask of all the currently active threads in the calling
warp. The Nth bit is set if the Nth lane in the warp is active when activemask is called.

ALL_SYNC

integer all_sync(int_mask, int_predicate)

The all_sync function evaluates the predicate argument for all non-exited threads in the mask and
returns non-zero if the predicate is non-zero for all threads.

ANY_SYNC

integer any_sync(int_mask, int_predicate)

The any_sync function evaluates the predicate argument for all non-exited threads in the mask and
returns non-zero if the predicate is non-zero for any of them.

BALLOT_SYNC

unsigned integer ballot_sync(int_mask, int_predicate)

The ballot_sync function evaluates the predicate argument for all non-exited threads set by the
mask in the calling warp. The Nth bit is set in the Nth lane if the predicate is non-zero for the Nth
thread.

MATCH_ALL_SYNC

unsigned integer match_all_sync(int_mask, value, int_predicate)

The match_all_sync function performs a broadcast and compare of the value for all threads within
a warp specified by the mask argument. It returns int_mask if all threads have the same value, other-
wise 0. The int_predicateis set to true in the former case, false in the latter. This function currently
accepts the type of value to be integer(4), integer(8), real(4), or real(8).

MATCH_ANY_SYNC

unsigned integer match_any_sync(int_mask, value)

The match_any_sync function performs a broadcast and compare of the value for all threads within
a warp specified by the mask argument. It returns a mask of threads that have the same value as
value. This function currently accepts the type of value to be integer(4), integer(8), real(4), or real(8).
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These load and store functions can provide finer control over the caching behavior and act as optimiza-
tion hints. They do not change the memory consistency behavior of the program. These functions and
subroutines can operate on most supported data types, including integer(4), integer(8), real(2), real(4),
real(8), complex(4), and complex(8). There is also support for integer(4) and real(4) of dimension(4),
and integer(8) and real(8) of dimension(2), i.e. 128-bit loads and stores..

The cache load functions are:

Table 9: Load Functions Using Cache Hints

Function Caching Behavior

value = __ldca(mem) | Cache at all levels

value = __ldcg(mem) | Cache at global level

value = __ldcs(mem) | Cache streaming, accessed once
value = __ldlu(mem) | Last use

value = __ldcv(mem) | Don't cache, treat as volatile

The cache store subroutines are:

Table 10: Store Subroutines Using Cache Hints

Subroutine Caching Behavior

call __stwb(mem, value) | Cache write-back all coherent levels

call __stcg(mem, value) | Cache at global level

call __stcs(mem, value) | Cache streaming, accessed once

call __stwt(mem, value) | Cache write-through

Starting with the NVHPC 25.3 release, initial support for asynchronous bulk load and store operations
is available in CUDA Fortran. The TMA operations listed in this section are supported on Hopper (cc90)
and newer architectures. The load operations are typically issued by a single CUDA thread, and load
data into a section of shared memory. Barriers are needed to ensure the data has arrived and can
be safely accessed. These barriers are declared as integer(8), shared variables, and are often the first
argument to the runtime API calls. The store operations are similarly launched by a single CUDA thread,
but do not require a barrier. Here is a simple vector add operation in CUDA Fortran using these new
library functions.

attributes(global) subroutine stream_add(c, a, b, n)
integer, value :: n
real(8), device :: c(n), a(n), b(n)
real(8), shared :: tmpa(1024), tmpb(1024)
(continues on next page)
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integer(8), shared :: barrier1, barrier2
integer(8) :: tokenl, token2
integer(4) :: j, elem_count

j = threadIdx%x + (blockIdx%x-1) * 1024
if (threadIdx%x == 1) then
call barrier_init(barrier1, blockDim%Xx)
call barrier_init(barrier2, blockDim%Xx)
end if
call syncthreads() ! All threads see SM barriers

I First thread does the bulk load, sets element count

if (threadIdx%x == 1) then
elem_count = min(1024, n-j+1)

call tma_bulk_load(barrier1, a(j), tmpa, elem_count)
call tma_bulk_load(barrier2, b(j), tmpb, elem_count)

end if

call syncthreads()

token1 = barrier_arrive(barrier1) ! All threads arrive

token2 = barrier_arrive(barrier2) ! Return a token to wait upon

I These runtime functions spin and wait, return 1 on success
if (barrier_try_wait(barrier1, tokenl1) .eq. @) return
if (barrier_try_wait(barrier2, token2) .eq. 0) return

do i = threadIdx%x, 1024, blockDim%x
tmpa(i) = tmpa(i) + tmpb(i)
end do

call fence_proxy_async() ! Ensure readiness for store

call syncthreads()

if (threadIdx%x == 1) then
call tma_bulk_store(tmpa, c(j), elem_count)
end if
return
end subroutine

(continued from previous page)

Another version of the load and store functions take the count in terms of bytes, and can take any
type for the source and destination. There are also wait functions that the user can provide the spin

loop for:

j = threadIdx%x + (blockIdx%x-1) * 1024
if (threadIdx%x == 1) then
call barrier_init(barrier1, blockDim%Xx)
call barrier_init(barrier2, blockDim%x)
end if
call syncthreads()

I First thread does the bulk load, sets byte count
if (threadIdx%x == 1) then
tx_count = min(1024*8, (n-j+1)*8)
call tma_bulk_g2s(barrier1, a(j), tmpa, tx_count)
call tma_bulk_g2s(barrier2, b(j), tmpb, tx_count)
else
I Other threads have a byte count of zero
tx_count = 0

(continues on next page)
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(continued from previous page)
end if
call syncthreads()
token1 = barrier_arrive(barrier1, tx_count)
token2 = barrier_arrive(barrier2, tx_count)

! Loop until condition
do

if (barrier_try_wait_sleep(barrier1, tokenl1, 1000000) .ne. 0) exit
end do

do
if (barrier_try_wait_sleep(barrier2, token2, 1000000) .ne. 0) exit
end do

do i = threadIdx%x, 1024, blockDim%Xx
tmpa(i) = tmpa(i) + tmpb(i)

end do

call fence_proxy_async()

call syncthreads()

if (threadIdx%x == 1) then

call tma_bulk_s2g(tmpa, c(j), tx_count)
end if

There are other possible variations of these calls which may be added in future releases. The set that
is supported initially are summarized in the following tables.

Table 11: TMA Subroutines

Subroutine Operation

call barrier_init(barrier, | Initialize the barrier object with the number of threads

count) participating

call tma_bulk_g2s(barrier, src, | General bulk load from global memory to shared mem-

dst, nbytes) ory, count is in bytes

call tma_bulk_load(barrier, src, | Type-specific bulk load from global mem to shared mem,

dst, nelems) count is in elements

call tma_bulk_s2g(src, dst, | General bulk store from shared memory to global mem-

nbytes) ory, count is in bytes

call tma_bulk_store(src, dst, | Type-specific bulk store from shared mem to global

nelems) mem, count is in elements

call fence_proxy_async() Synchronize shared memory and TMA engine; also called
as part of barrier_init()

call tma_bulk_commit_group() Called as part of these bulk store operations

call tma_bulk_wait_group() Called as part of these bulk store operations
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Table 12: TMA Functions

Function Operation

token = barrier_arrive(barrier) All threads arrive on the barrier which returns anin-
teger(8) token

token = barrier_arrive(barrier, | Alternate formin which the user provides the trans-

count) action count

istat = barrier_try_wait(barrier, | Calltowaitinthe runtime function for datato arrive

token)

istat = barrier_try_wait_sleep(barrierGall to wait with a specified time in nanoseconds,
token, ns) user provides wait loop

The atomic functions read and write the value of their first operand, which must be a variable or array
element in shared memory (with the shared attribute) or in device global memory (with the device
attribute). Atomic functions are only supported by devices with compute capability 1.1 and higher.
Compute capability 1.2 or higher is required if the first argument has the shared attribute. Certain
real(4) and real(8) atomic functions may require compute capability 2.0 and higher.

The atomic functions return correct values even if multiple threads in the same or different thread
blocks try to read and update the same location without any synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine that value
with the value of the second argument, depending on the function, and store the combined value back
to the first argument location. For atomicadd, atomicsub, atomicmax, atomicmin, and atomicexch, the
data types may be integer(4), integer(8), real(4), or real(8). For atomicand, atomicor, and atomicxor, only
integer(4) arguments are supported.

Note: The return value for each of these functions is the first argument, mem.

These functions are:
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Table 13: Arithmetic and Bitwise Atomic Functions

Function Additional Atomic Update

atomicadd( mem, value mem = mem + value

atomicsub( mem, value mem = mem - value

atomicmin( mem, value mem = min(mem, value)

)
)
atomicmax( mem, value ) |mem = max(mem,value)
)
)

atomicand( mem, value mem = iand(mem, value)

atomicor( mem, value ) mem = ior(mem, value)

atomicxor( mem, value ) |mem = ieor(mem,value)

atomicexch( mem, value ) | mem = value

Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also compare the first
argument with the second argument, and stores a new value back to the first argument location,
depending on the result of the comparison. These functions are intended to implement circular coun-
ters, counting up to or down from a maximum value specified in the second argument. Both arguments
must be of type integer(kind=4).

Note: The return value for each of these functions is the first argument, mem.

These functions are:

Table 14: Counting Atomic Functions

Function Additional Atomic Update

atomicinc( mem, imax )
if (mem<imax) then
mem = mem+1
else
mem = 0
endif

atomicdec( mem, imax )

if (mem<imax .and. mem>8) then
mem = mem-1

else
mem = imax

endif

Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares the first
argument with the second argument, and atomically stores a new value back to the first argument
location if the first and second argument are equal. All three arguments must be of the same type,
either integer(kind=4), integer(kind=8), real(kind=4), or real(kind=8).
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Note: The return value for this function is the first argument, mem.

The function is:

Table 15: Compare and Swap Atomic Function

Function Additional Atomic Update
atomiccas(mem, comp, val)
if (mem == comp) then
mem = val
endif

The NVIDIA Fortran compiler includes limited support for PRINT statements in GPU device code. The
Fortran GPU runtime library, which is shared between CUDA Fortran and OpenACC for NVIDIA GPU
targets, buffers up the output and prints an entire line in one operation. Integer, character, logical, real
and complex data types are supported.

The underlying CUDA printf implementation limits the number of print statements in a kernel launch
to 4096. Users should take this limit into account when making use of this feature.

By adding the compiler option -cuda=charstring, some limited support for character strings, char-
acter substrings, character variables, and string assignment is also now available in CUDA Fortran
device code. Here is a short example:

attributes(global) subroutine printtest()
character*12 c¢

i = threadIdx%x

if (i/2*2.eq.i) then

c = "Even Thread:"
else

c = " 0dd Thread:"
endif

print *,c,c(6:11),1
end subroutine
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CUDA Fortran device code can access compute capability 3.x shuffle functions. These functions enable
access to variables between threads within a warp, referred to as lanes. In CUDA Fortran, lanes use
Fortran’s 1-based numbering scheme.

_shfl()

__shfl() returns the value of var held by the thread whose ID is given by srcLane. If the srcLane
is outside the range of 1:width, then the thread’s own value of var is returned. The width argument
is optional in all shuffle functions and has a default value of 32, the current warp size.

integer(4) function __shfl(var, srclLane, width)
integer(4) var, srclLane
integer(4), optional :: width

integer(8) function
integer(8) :: var
integer(4) :: srclLane
integer(4), optional :: width

shfl(var, srcLane, width)

real(4) function
real(4) :: var
integer(4) :: srclLane
integer(4), optional :: width

shfl(var, srclLane, width)

real(8) function
real(8) :: var
integer(4) :: srclLane
integer(4), optional :: width

shfl(var, srcLane, width)

shfl_up()

__shfl_up() calculates a source lane ID by subtracting delta from the caller’s thread ID. The value of
var held by the resulting thread ID is returned; in effect, var is shifted up the warp by delta lanes.

The source lane index will not wrap around the value of width, so the lower deltalanes are unchanged.

integer(4) function __shfl_up(var, delta, width)
integer(4) var, delta
integer(4), optional :: width

integer(8) function
integer(8) :: var
integer(4) :: delta
integer(4), optional :: width

shfl_up(var, delta, width)

real(4) function
real(4) :: var
integer(4) :: delta
integer(4), optional :: width

shfl_up(var, delta, width)

real(8) function
real(8) :: var
integer(4) :: delta
integer(4), optional :: width

shfl_up(var, delta, width)
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__shfl_down()

__shfl_down() calculates a source lane ID by adding delta to the caller’s thread ID. The value of var
held by the resulting thread ID is returned: this has the effect of shifting var down the warp by delta
lanes. The ID number of the source lane will not wrap around the value of width, so the upper delta
lanes remain unchanged.

integer(4) function __shfl_down(var, delta, width)
integer(4) var, delta
integer(4), optional :: width

integer(8) function __shfl_down(var, delta, width)
integer(8) :: var
integer(4) :: delta
integer(4), optional :: width

real(4) function __shfl_down(var, delta, width)
real(4) :: var
integer(4) :: delta
integer(4), optional :: width

real(8) function __shfl_down(var, delta, width)
real(8) :: var
integer(4) :: delta
integer(4), optional :: width

__shfl_xor()

__shfl_xor() uses ID-1 to calculate the source lane ID by performing a bitwise XOR of the caller’s
lane ID with the 1laneMask. The value of var held by the resulting lane ID is returned. If the resulting
lane ID falls outside the range permitted by width, the thread’s own value of var is returned. This
mode implements a butterfly addressing pattern such as is used in tree reduction and broadcast.

integer(4) function __shfl_xor(var, laneMask, width)
integer(4) var, laneMask
integer(4), optional :: width

integer(8) function __shfl_xor(var, laneMask, width)
integer(8) :: var
integer(4) :: laneMask
integer(4), optional :: width

real(4) function __shfl_xor(var, laneMask, width)
real(4) :: var
integer(4) :: laneMask
integer(4), optional :: width

real(8) function __shfl_xor(var, laneMask, width)
real(8) :: var
integer(4) :: laneMask

integer(4), optional :: width

Here is an example using __shfl_xor () to compute the sum of each thread’s variable contribution
within a warp:
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~ XX N xw

__shfl_xor(j,1); j =3 +k
__shfl_xor(j,2); j =3 +k
__shfl_xor(j,4); j =3 +k
__shfl_xor(j,8); j =3 +k
__shfl_xor(j,16); j = j + k

This section lists restrictions on statements and features that can appear in device subprograms.

Recursive subroutines and functions are not allowed.
PAUSE statements are not allowed.

Most Input/Output statements are not allowed at all: READ, FORMAT, NAMELIST, OPEN, CLOSE,
BACKSPACE, REWIND, ENDFILE, INQUIRE.

List-directed PRINT and WRITE statements to the default unit may be used when compiling for
compute capability 2.0 and higher; all other uses of PRINT and WRITE are disallowed.

Alternate return specifications are not allowed.

ENTRY statements are not allowed.

Floating point exception handling is not supported.

Fortran intrinsic functions not listed in Section 3.6.3 are not supported.

Cray pointers are not supported.

Host subprograms may use intrinsic functions, such as the sizeof intrinsic function, to find the size
in bytes of Fortran data structures.

A call to sizeof (A), where A is a variable or expression, returns the number of bytes required to hold
the value of A.

integer(kind=4) :: i, j
j = sizeof (i) ! this assigns the value 4 to j
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2.8. Fortran Device Modules

NVIDIA provides a device module by default which allows access and interfaces to many of the CUDA
device built-in routines.

To access this module explicitly, do one of the following:
» Add this line to your Fortran program:

use cudadevice

» Add this line to your C program:

#include <cudadevice.h>

You can use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in
NVIDIA Accelerator compute regions in Fortran as well as in C. Further, the NVIDIA HPC compilers
come with implementations of these routines for host code, though these implementations are not
specifically optimized for the host. In uses other than CUDA Fortran global and device subprograms,
you must explicitly use the module in the host subprogram unit.

CUDA Built-in Routines lists the CUDA built-in routines that are available:

Table 16: CUDA Built-in Routines

__brev __brevll clock clock64

_clz _clzll _ cosf cospi

cospif __dadd_rd __dadd_rn __dadd_ru
__dadd_rz __ddiv_rd __ddiv_rn __ddiv_ru
__ddiv_rz __dmul_rd __dmul_rn __dmul_ru
__dmul_rz __double2float_rd __double2float_rn | __double2float_ru
__double2float_rz | __double2hiint __double2int_rd __double2int_rn
__double2int_ru | __double2int_rz __double2loint __double2ll_rd
__double2ll_rn __double2ll_ru __double2ll_rz __double2uint_rd
__double2uint_rn | __double2uint_ru __double2uint_rz | __double2ull_rd
__double2ull_rn __double2ull_ru __double2ull_rz __double_as_longlong
__drcp_rd _drcp_rn _ drcp_ru _drcp_rz
__dsqgrt_rd _dsqgrt_rn _dsqgrt_ru _dsqgrt_rz
__explOf __expf __fadd_rd __fadd_rn
__fadd_ru __fadd_rz __fdiv_rd __fdiv_rn
__fdiv_ru __fdiv_rz fdivide fdividef
__fdividef __ffs __ffsll __float2half_rn
__float2int_rd __float2int_rn __float2int_ru __float2int_rz

continues on next page
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Table 16 - continued from previous page

__float2ll_rd __float2ll_rn __float2ll_ru __float2ll_rz
__float_as_int __fma_rd __fma_rn __fma_ru
__fma_rz __fmaf_rd __fmaf_rn __fmaf_ru
__fmaf_rz __fmul_rd __fmul_rn __fmul_ru
__fmul_rz __frcp_rd __frcp_rn __frcp_ru

_ frcp_rz _ fsqgrt_rd __fsqgrt_rn __fsqgrt_ru
__fsart_rz globaltimer __half2float __hiloint2double
__int2double_rn __int2float_rd __int2float_rn _int2float_ru
__int2float_rz __int_as_float __ll2double_rd __ll2double_rn
__ll2double_ru __ll2double_rz __lI2float_rd __lI2float_rn
__ll2float_ru __lI2float_rz __log1of __log2f

__logf __longlong_as_double | __mul24 __mulhi
__popc __popcll __powf rsqrt

rsqrtf __sad __saturatef signbit
signbitf sincos sincosf sincospi
sincospif __sinf sinpi sinpif

__tanf __uint2double_rn __uint2float_rd __uint2float_rn
__uint2float_ru __uint2float_rz __ull2double_rd __ull2double_rn
__ull2double_ru __ull2double_rz __ull2float_rd __ull2float_rn
__ull2float_ru __ull2float_rz __umul24 __umulhi
__usad

2.8.1. LIBM Device Module

NVIDIA also provides a device module which provides interfaces to standard liom functions which are
not in the Fortran intrinsic library.

To access this module, add this line to your Fortran subprogram:

use libm

These interfaces are defined in the libm device module:

2.8. Fortran Device Modules
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Table 17: CUDA Device libm Routines

Name Argument Datatypes Name Argument Datatypes

cbrt,cbrtf real(8),real(4) returns real llround,llroundf real(8),real(4) returns integer

ceil,ceilf real(8),real(4) returns real Irint,Irintf real(8),real(4) returns integer

copy- 2*real(8),real(4) returns real Iround,lroundf real(8),real(4) returns integer

sign,copysignf

expml,expm1f | real(8),real(4) returns real logb,logbf real(8),real(4) returns real

exp10,exp10f real(8),real(4) returns real log1p,log1pf real(8),real(4) returns rea

exp2,exp2f real(8),real(4) returns real log2,log2f real(8),real(4) returns real

fabs,fabsf real(8),real(4) returns real modf,modff 2*real(8),real(4) returns real

floor,floorf real(8),real(4) returns real near- real(8),real(4) returns real

byint,nearbyintf
fma,fmaf 3*real(8),real(4) returns real nextafter,nextaftenf2*real(8),real(4) returns real
fmax,fmaxf 2*real(8),real(4) returns real remain- 2*real(8),real(4) returns real
der,remainderf
fmin,fminf 2*real(8),real(4) returns real remquo,remquof | 2*real(8),real(4) integer re-
turns real

frexp,frexpf real(8),real(4) integer re- rint,rintf real(8),real(4) returns real
turns real

ilogb,ilogbf real(8),real(4) returns real scalbn,scalbnf real(8),real(4) integer returns

real

Idexp,ldexpf real(8),real(4) integer re- scalbln,scalbinf real(8),real(4) integer returns
turns real real

lrint,llrintf real(8),real(4) returns inte- trunc,truncf real(8),real(4) returns real
ger

Here is a simple example of using the LIBM device module:

attributes(global) subroutine testlibm( a, b )

use libm
real, device
i:

2ra(*), b(*)

threadIdx%x

b(i) = cbrt(a(i))

end subroutine
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On NVIDIA GPUs which support CUDA Compute Capability 7.0 and above, NVIDIA provides a device
module which provides interfaces to cooperative group functionality which is provided by NVIDIA start-
ing in CUDA 9.0. In our 23.3 release, the cooperative group module also supports thread block cluster
programming for Hopper (cc90) and newer architectures.

To access this module, add this line to your Fortran subprogram:

use cooperative_groups

Here is a simple example of using the cooperative_groups device module which enables a cooperative
grid kernel:

attributes(grid_global) subroutine g1(a,b,n, some_offset)
use cooperative_groups
real, device :: a(n), b(n)
integer, value :: n, some_offset
type(grid_group) :: gg
gg = this_grid()
do i = gg%rank, n, gg%size
a(i) = min(max(a(i),©.0),100.0) + 0.5
end do
call syncthreads(gg)
do i = gg%rank, n, gg%size
j = 1 + some_offset
if (j.gt.n) j =3 - n
b(i) = a(i) + a(j)
end do
return
end subroutine

There is currently limited functionality for cooperative groups of size less than or equal to a thread
block. More functionality will be added in an upcoming release. Currently, the following types are
defined within the module: grid_group, thread_group, coalesced_group, and cluster_group.
Each type has two public members, the size and rank. The syncthreads subroutine is overloaded in the
cooperative_groups module to take the type as an argument, to appropriately synchronize the threads
in that group. Minimal code sequences supported are:

Cooperative group equal to a thread block:

use cooperative_groups
type(thread_group) :: tg
tg = this_thread_block()
call syncthreads(tg)

Cooperative group equal to a warp:

use cooperative_groups
type(coalesced_group) :: wg
wg = this_warp()

call syncthreads(wg)

Cooperative group equal to a thread block cluster:
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use cooperative_groups
type(cluster_group) :: clg
clg = this_cluster()

call syncthreads(clg)

The major benefit of a thread block cluster is to take advantage of distributed shared memory, which
enables keeping a larger portion of data close to the processing elements. We recommend using cray
pointer syntax in accessing neighboring shared memory to keep register pressure as low as possible.
Here is a short example:

attributes(global) cluster_dims(2,1,1) subroutine t1(rnks)
use cooperative_groups

integer, device :: rnks(32,*)

type(cluster_group) :: clg ! Defined in cooperative_groups
integer, shared :: smem(*)

integer, shared :: dmem(*); pointer(pmem, dmem)

i = threadIdx%x; j = blockIdx%x

clg = this_cluster() ! Defined in cooperative_groups
nrank = clg%rank

rnks(i, j) = clg%rank I Initialize rnks to 1 or 2
call syncthreads(clg) I Sync both blocks

if (nrank.eq.1) then ! Get a pointer to the other
pmem = cluster_map_shared_rank(smem, 2)

else
pmem = cluster_map_shared_rank(smem, 1)
end if
dmem(i) = 100@*nrank + i ! Write to the other blocks shared memory
call syncthreads(clg) I Sync both blocks

rnks(i,j) = rnks(i,j) + smem(i) ! Read what the other block wrote
end subroutine

The cooperative groups module also defines new shfl_sync() functions. These functions are similar
to the shfl() functions discussed in an earlier section of this document, but take an extra mask first
argument. The 32-bit mask argument specifies which threads in the warp take part in the shuffle
operation, and can be passed as an integer(4) with value Z'ffffffff’ for most use cases. Note that, if
you use the legacy shfl() functions with CUDA 9.0 or higher, we implicitly use sh1f_sync() with a
mask of Z'ffffffff’. This may not be correct if you have thread divergence within the warp. In that case,
do use the new shfl_sync() functions and provide the proper mask, which can be generated using
the ballot() device function.

On NVIDIA GPUs that support CUDA Compute Capability 7.0 and above, NVIDIA includes a device
module that provides interfaces to matrix operations that leverage Tensor Cores to accelerate ma-
trix problems. This enables scientific programmers using Fortran to take advantage of real(2) matrix
operations.

To access the module, add this line to your Fortran subprogram:

use wmma

Among the API routines provided in the wmma module are matrix multiply operations of form C =
Matmul(A, B), where:
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A'is a 2 dimensional real(2) array dimensioned A(m,k)
B is a 2 dimensional real(2) array dimensioned B(k,n)
Cis a 2 dimensional real(2) or real(4) array dimensioned C(m,n)

Using the Fortran kind attribute, it is possible to declare and use data in half precision format. Details
on representation and requirements for use can be found in section.

Here is a simple example using the wmma device module to do matrix multiplication using a single warp
of threads. There are two 16x16 real(2) matrices being multiplied and accumulated into a 16x16
real(4) matrix:

#include "cuf_macros.CUF"

module m
integer, parameter :: wmma_m = 16
integer, parameter :: wmma_n = 16
integer, parameter :: wmma_k = 16
contains

! kernel for 16 x16 matrices (a, b, and c) using wmma

I Should be launched with one block of 32 threads
attributes(global) subroutine wmma_single(a, b, c¢)

use wmma

implicit none

real(2), intent(in) :: a(wmma_m,*) , b(wmma_k, *)

real(4) :: c(wmma_m,*)

WMMASubMatrix (WMMAMatrixA, 16, 16, 16, Real, WMMAColMajor) :: sa
WMMASubMatrix (WMMAMatrixB, 16, 16, 16, Real, WMMAColMajor) :: sb
WMMASubMatrix (WMMAMatrixC, 16, 16, 16, Real, WMMAKind4) :: sc
integer :: lda, 1ldb, 1ldc

1lda = wmma_m
1db = wmma_k
ldc = wmma_m

sc = 0.0_4

call wmmaLoadMatrix(sa, a(1, 1), 1lda)
call wmmaLoadMatrix(sb, b(1, 1), 1ldb)
call wmmaMatMul(sc, sa, sb, sc)

call wmmaStoreMatrix(c(1, 1), sc, ldc)

end subroutine wmma_single
end module m

The call site looks as follows to invoke with a single warp of threads:

call wmma_single<<<1,32>>>(ah_d, bh_d, c_d)

For this simple example, the matrices passed in as arguments to the kernel are the same size as the
WMMA submatrices. Thus, to perform the matrix multiplication we simply initialize the C WMMA
submatrix to 0.0, load the A and B matrices from global memory to WMMA submatrices, perform the
matrix multiplication on the submatrices, and store the result from the WMMA submatrix to global
memory.

You may have noticed that the thread index threadIdx does not appear at all in this code. This un-
derlies the important concept to take away from this example: the threads in a warp work collectively
to accomplish these tasks. So when dealing with the WMMA submatrices, we are doing warp-level
programming rather than thread-level programming. This kernel is launched with a single warp of
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32 threads, yet each of our WMMA submatrices has 16x16 or 256 elements. When the initialization
statement:

sc = 0.0_4

is executed, each thread sets 8 elements in the 16x16 submatrix to zero. The mapping of threads
to submatrix elements is opaque for this and other operations involving WMMA submatrices - from a
programming standpoint we only address what happens collectively by a warp of threads on WMMA
submatrices.

The statements that load the A and B from global memory to WMMA submatrices:

call wmmaLoadMatrix(sa, a(1, 1), 1lda)
call wmmaLoadMatrix(sb, b(1, 1), 1ldb)

also work collectively. In these calls, the WMMA submatrices are specified as the first argument, and
the second arguments contain the addresses of the upper left element of the tiles in global (or shared)
memory to be loaded to the WMMA submatrices. The leading dimension of the the matrices in global
(or shared) memory is the third argument. Note that the arguments passed to wmmaLoadMatrix()
are the same for all threads in the warp. Because the mapping of elements to threads in a warp is
opaque, each thread just passes the address of the first element in the 16x16 matrix along with the
leading dimension as the third parameter, and the load operation is distributed amongst the threads
in the warp.

The matrix multiplication on the WMMA submatrices is performed by the statement:

call wmmaMatMul(sc, sa, sb, sc)

whichis again performed collectively by a warp of threads. Here used the same accumulator submatrix
for the first and last arguments in the wmmaMatMul() call, which is why its initialization to zero is
required.

The wmmaStoreMatrix() call:

call wmmaStoreMatrix(c(1, 1), sc, ldc)

is analogous to the prior wnmaLoadMatrix calls, but here the first argument is the address of the
upper left element of the tile in global (or shared) memory and the second argument is the WMMA
submatrix whose values are stored. When both wmmalLoadMatrix() and wmmaStoreMatrix() are
called with accumulator (WMMAMatrixC) arguments, there is an optional fourth argument that spec-
ifies the storage order. In CUDA Fortran, the default is the WIMAColMajor or column-major storage
order.

One final note on arguments to the wmmaLoadMatrix () and wmmaStoreMatrix() routines. There is
a requirement that the leading dimension of the matrices, specified by the third argument of these
routines, must be a multiple of 16 bytes (e.g. 8 real(2) words or 4 real(4) words).

More details about data declaration and wmma operations are available at
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The wmma module provides access to the following half precision mathematical intrinsics and requires
use wmma in order to access them: abs, sin, cos, tan, acos, asin, atan, atan2, sinh, cosh, tanh,
log, log1@, exp, and sqrt. It is expected that in a future release, these intrinsics will be available
without having to mention use wmma.

The wmma module also provides access to functions which enable asynchronous data transfers be-
tween global and shared memory, bypassing the use of local registers. This requires devices of com-
pute capability 8.0 and higher. Three functions are supported: a pipelined asynchronous load, a
pipeline commit, and a pipeline wait. The load operations are overloaded to take a single real(4), single
real(8), an array of 4 real(4) elements, and an array of 2 real(8) elements, as 16-byte loads are optimal
on many architectures.

Here is a small example of usage, to perform a matrix transpose:

attributes(global) subroutine transposeCoalescedAsync(odata, idata)
use wmma

real(8), intent(out) :: odata(ny,nx)

real(8), intent(in) :: idata(nx,ny)

real(8), shared :: tile(TILE_DIM+1, TILE_DIM)
integer :: x, vy, j

x = (blockIdx%x-1) * TILE_DIM + threadIdx%x
y = (blockIdx%y-1) * TILE_DIM + threadIdx%y
do j = 0, TILE_DIM-1, BLOCK_ROWS
call pipelineMemcpyAsync(tile(threadIdx%x, threadIdx%y+j), idata(x,y+j))
call pipelineCommit()
end do
call pipelineWaitPrior(®)
call syncthreads()
x = (blockIdx%y-1) * TILE_DIM + threadIdx%x
y = (blockIdx%x-1) * TILE_DIM + threadIdx%y
do j = 0, TILE_DIM-1, BLOCK_ROWS
odata(x,y+j) = tile(threadIdx%y+j, threadIdx%x)
end do
end subroutine transposeCoalescedAsync

The primary Fortran module which NVIDIA provides for CUDA Fortran is named cudafor. This module
contains all of the supported interfaces to the CUDA Runtime APl listed in the next chapter. In addition,
it contains interfaces to some Fortran array intrinsics which are described in sections below.

Beginning in the 25.3 release, the structure of the cudafor module has been changed slightly. The
module now includes, or “uses” 3 submodules: cuda_runtime_api, gpu_reductions,and sort. The
cudafor functionality has not changed. But for new users, or users who have needed to work-around
name conflicts in the module, it may be better to use cuda_runtime_api to expose interfaces to
the CUDA runtime calls described in Chapter 4 of this guide.

There are a number of other Fortran modules which interface to CUDA Libraries. Those are described
thoroughly in the document. These include libraries for computation,
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like CUBLAS, CUFFT, and CUSPARSE, for communication, NCCL, NVSHMEM, and for profiling, NVTX.

One other host module, which we will describe in this chapter, is CUTENSOR. It has been extended in a
module named cutensorex and contains overloaded interfaces to many more Fortran array intrinsics,
some of which call into the NVIDIA CUTENSOR library, and some which do not, but they use the same
deferred evaluation techniques. These implementations operate on device (or managed) data, and are
called from the host.

The SUM, MAXVAL, MINVAL, MAXLOC, and MINLOC Fortran intrinsics are overloaded to accept device or
managed arrays when the cudafor or gpu_reductions module is used, from host code. If the mask
optional argument is used, the mask argument must be either a device logical array, or an expression
containing managed operands and constants, i.e. the mask must be computable on the host but
readable on the device. As in standard Fortran, the mask shape and size, if present, must conform to
the data array.

Here is a complete example which performs the sum and maxval reductions on the GPU:

program multidimred
use cudafor
real(8), managed :: a(5,5,5,5
real(8), managed :: b(5,5,5,5)
real(8) :: ¢
call random_number(a)
do idim = 1, 5

b = sum(a, dim=idim)

¢ = max(maxval(b), c)
end do
print *, "Max along any dimension”,c
end program

Array slices are also supported. This may run less efficiently on the GPU, but is very powerful nonethe-
less, and useful for debugging:

real(4), managed :: a(n,m)
reslt(ix) = sum(a(2:n-1,:))
reslt(ix) = sum(a(:,3:m-2))
reslt(ix) = sum(a(n2:n,m2:m))
reslt(ix) = sum(a(1:n3,1:m3))
reslt(ix) = sum(a(n2:n3,m2:m3))

By default, intrinsic reductions that are supported on the device will be executed on the device for
(large enough) managed arrays. There may be occasions where one would like to perform reductions on
managed data on the host. This can be accomplished using the rename feature of the “use” statement,
for example:

program reductionRename
use cudafor, gpusum => sum
implicit none
integer, managed :: m(3000)
integer :: istat
m =1
(continues on next page)
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(continued from previous page)
istat = cudaDeviceSynchronize()
write(*,*) sum(m) I executes on host
write(*,*) gpusum(m) ! executes on device
end program

Beginning in the NVHPC 23.1 release, all five functions, SUM, MAXVAL, MINVAL, MAXLOC, and MINLOC
can now accept an optional stream argument. If a unique per-thread default stream was set via a
call to cudaforSetDefaultStream, the reduction operation will pick that up and run on that stream.
Given the new, simpler functionality, support for cudaforReductionSetStream() and cudaforRe-
ductionGetStream() has been dropped starting in 23.1 as well. For instance:

integer(kind=cuda_stream_kind) :: istrm
x = sum(a, stream=istrm)

is now the simplest way to run a sum reduction on a specific stream.

The following sections describe each function, with current support and limitations, in more detail.

2.9.1.1 Fortran SUM Intrinsic Function

The overloaded interface for SUMis in the cudafor module. It can return either a scalar, which is most
common, or an array, if the optional dim argument is used. The real(4), real(8), integer(4), and integer(8)
data types are supported. Complex types may be added in a future release. The input array can be
between one and seven dimensions. The two forms are:

function sum ( array, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream
type, intent(out) :: res ! same type as array

function sum ( array, dim, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
integer(4), intent(in) :: dim

logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream

type, allocatable, managed, intent(out) :: res(...) ! same type as array

! rank is one less than array

2.9.1.2 Fortran MAXVAL Intrinsic Function

The overloaded interface for MAXVAL, which returns the maximum value of an element in the array, is
in the cudafor module. It can return either a scalar, which is most common, or an array, if the optional
dim argument is used. The real(4), real(8), integer(4), and integer(8) data types are supported. The
input array can be between one and seven dimensions. The two forms are:

function maxval ( array, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream
type, intent(out) :: res ! same type as array
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function maxval ( array, dim, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
integer(4), intent(in) :: dim

logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream

type, allocatable, managed, intent(out) :: res(...) ! same type as array

I rank is one less than array

2.9.1.3 Fortran MINVAL Intrinsic Function

The overloaded interface for MINVAL, which returns the minimum value of an element in the array, is
in the cudafor module. It can return either a scalar, which is most common, or an array, if the optional
dim argument is used. The real(4), real(8), integer(4), and integer(8) data types are supported. The
input array can be between one and seven dimensions. The two forms are:

function minval ( array, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream
type, intent(out) :: res ! same type as array

function minval ( array, dim, mask, stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
integer(4), intent(in) :: dim

logical(4), device, optional, intent(in) :: mask(...)
integer(kind=cuda_stream_kind), optional, intent(in) :: stream

type, allocatable, managed, intent(out) :: res(...) ! same type as array

I rank is one less than array

2.9.1.4 Fortran MAXLOC Intrinsic Function

The overloaded interface for MAXLOC, which returns an array of indices, starting at 1, identifying the
maximum value of an element in the array which appears first, is in the cudafor module. The size
of the function result is equal to the rank of the input array, and is an integer host array. The real(4),
real(8), integer(4), and integer(8) data types are supported. The input array can be between one and
seven dimensions. The dim argument is only supported for 1-D arrays, in which case the result is a
scalar rather than an array of size=1. There are also optional kind, back, and stream arguments, the
first two of those being standard Fortran, and the latter being a CUDA Fortran extension.

function maxloc ( array, mask, kind, back stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
logical(4), device, optional, intent(in) :: mask(...)

integer, optional, intent(in) :: kind

logical, optional, intent(in) :: back

integer(kind=cuda_stream_kind), optional, intent(in) :: stream
integer, intent(out) :: res(*) ! Size of res is equal to rank of array
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2.9.1.5 Fortran MINLOC Intrinsic Function

The overloaded interface for MINLOC, which returns an array of indices, starting at 1, identifying the
minimum value of an element in the array which appears first, is in the cudafor module. The size of
the function result is equal to the rank of the input array, and is an integer host array. The real(4),
real(8), integer(4), and integer(8) data types are supported. The input array can be between one and
seven dimensions. The dim argument is only supported for 1-D arrays, in which case the result is a
scalar rather than an array of size=1. There are also optional kind, back, and stream arguments, the
first two of those being standard Fortran, and the latter being a CUDA Fortran extension.

function minloc ( array, mask, kind, back stream ) result(res)

type, device :: array(...) ! type is real or integer, kind = 4 or 8
logical(4), device, optional, intent(in) :: mask(...)

integer, optional, intent(in) :: kind

logical, optional, intent(in) :: back

integer(kind=cuda_stream_kind), optional, intent(in) :: stream
integer, intent(out) :: res(*) ! Size of res is equal to rank of array

2.9.2. Fortran Sorting Subroutines Module

Typically, for best performance, we recommend generating sort routines using CUDA Thrust, the nvcc
compiler, and calling those functions from Fortran. Starting with the 23.5 release, we also include
basic sort subroutines as part of the CUDA Fortran libraries, which are readily available and may provide
“good enough” performance.

The interfaces to the library functions can be accessed by adding use sort to your code, and the
overloaded sorting subroutine is named fsort (). The library provides a radix sort implementation for
integer(4), integer(8), real(4), and real(8) arrays. The subroutines can accept either host, managed, or
device arrays. The subroutines can also accept an index array, to return the sort permutations. Other
optional arguments are listed below.

Here is a simple example which sorts an array of reals on the GPU:

program sortit

use sort

real(4), managed :: a(1000)

call random_number(a)

call fsort(a, 1000)

print *,all(a(1:999) .le. a(2:1000))
end program

The host and device functionality is divided into four types of calls, and the arguments for each are:

! Host arrays, no indices

subroutine fsort(array, n, stream)

type(kind) :: array(*) ! Type is integer or real, kind is 4 or 8
integer(kind) :: n I kind is 4 or 8
integer(kind=cuda_stream_kind), optional :: stream

end subroutine

! Host arrays, with indices

subroutine fsort(array, indices, n, init_index, stream)
type(kind) :: array(*) ! Type is integer or real, kind is 4 or 8
integer(4) :: indices(*)

(continues on next page)
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(continued from previous page)

integer(kind) :: n ! kind is 4 or 8
logical(4), optional :: init_index ! Flag to initialize the indices to 1..n
integer(kind=cuda_stream_kind), optional :: stream

end subroutine

! Managed or device arrays, no indices

subroutine fsort(array, n, workspace, worksize, stream)

type(kind), device :: array(*) ! Type is integer or real, kind is 4 or 8
integer(kind) :: n ! kind is 4 or 8

type(kind), device, optional :: workspace(*) ! Same type as array
integer(8), optional :: worksize I Size of workspace in elements
integer(kind=cuda_stream_kind), optional :: stream

end subroutine

! Managed or device arrays, with indices
subroutine fsort(array, indices, n, init_index, workspace, worksize, stream)

type(kind), device :: array(*) ! Type is integer or real, kind is 4 or 8
integer(4), device :: indices(*)

integer(kind) :: n I kind is 4 or 8

logical(4), optional :: init_index ! Flag to initialize the indices to 1..n
type(kind), device, optional :: workspace(*) ! Same type as array
integer(8), optional :: worksize I Size of workspace in elements
integer(kind=cuda_stream_kind), optional :: stream

end subroutine

Without a provided workspace argument, the subroutines will allocate temporary work space using
either cudaMalloc(), or cudaMallocAsync(), depending on the CUDA version support and whether the
stream is specified. The amount of workspace required to avoid temporary allocations for the subrou-
tines which take the worksize argument is roughly N elements, kind equal to 4 or 8, plus up to another
2 MBytes above that. For instance, sorting an integer(4) array of size 10 million will use workspace of
roughly 42 MBytes or 10.5 million elements.

2.9.3. Overloaded Fortran Reduction Intrinsics in
CUTENSOREX

The ALL, ANY, and COUNT Fortran intrinsics are overloaded to accept device or managed arrays when
the cutensorex module is used, from host code. As these three functions operate only on a mask, a
different tact was chosen to make these functions more flexible, and recognize and efficiently evaluate
commonly-used mask expressions.

Using the same deferred evaluation and assignment techniques that were used in cutensorex for mat-
mul(), spread(), transpose(), and reshape(), beginning in the 23.1 release we now support more F90 array
intrinsic operations.

These three functions do not call into the cuTensor library, but build upon and extend the software
infrastructure developed previously for those wrappers.

First, here are the mask expressions which are recognized for deferred evaluation:
For A, B, x, dx, alpha, beta

A is a device array of real(4), real(8), integer(4), or integer(8)
B is a device array with the same type as A.
(continues on next page)
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(continued from previous page)
A and B are 1-3 dimensional, (conforming arrays)
x is a scalar with the same type as A
dx is a device scalar with the same type as A
alpha and beta are host scalars with the same type as A

In one kernel launch, we support these mask expressions:

A .relop. B
A .relop. x
A .relop. dx

abs(A) .relop. B

abs(A) .relop. x

abs(A) .relop. dx

(A +/- B) .relop. x

(A +/- B) .relop. dx

abs(A +/- B) .relop. x

abs(A +/- B) .relop. dx
(alpha*A + beta*B) .relop. x
(alpha*A + beta*B) .relop. dx
abs(alpha*A + beta*B) .relop. x
abs(alpha*A + beta*B) .relop. dx

For relop in EQ, NE, LE, LT, GE, GT

One exception, for convenience, is if the operation is “A .relop. x”, x can be kind=4 if A is kind=8

In most cases, the B array can also be the result of the spread() or transpose() intrinsic function, to
make B conform to the shape of A. General reshape() support for mask operands is not available at
this time.

The result of a logical expression from the section above can be assigned to an array of type logical(4).
For example:

A and B are conforming device arrays of type real(4), x is a real(4) scalar, and L a device arrray of type
logical(4):

block; use cutensorex

L =A .LT. B

L = ABS(A) .GE. 1.0
L = ABS(A - B) .LE. x
end block

Of course, a logical array can be generated using any means: CUDA kernels, CUF kernels, or com-
puted/copied from the host. These are provided as a convenience, but note that if a mask is constant
over many uses, it is probably faster to compute it once and pass it into these functions rather than
to re-evalute it many times.
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2.9.3.2 Fortran ALL Intrinsic Function

The interface for ALL is in the cutensorex module.

The Fortran array reduction ALL returns true if every element of the mask is true, otherwise it returns
false. The mask can be a logical array, array slice, or any of the logical expressions described above.
The optional dim argument to ALL() is not supported at this time.

logical(4) function all ( mask )
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
For example, if A and B are conforming arrays with the device or managed attribute, and X is a scalar

of the same type:

IF (ALL(A .EQ. B)) PRINT *,"PASSED"
IF (ALL(ABS(A - B) .GT. X)) CALL REDO()

2.9.3.3 Fortran ANY Intrinsic Function

The interface for ANY is in the cutensorex module.

The Fortran array reduction ANY returns true if any element of the mask is true, and returns false if
none are true. The mask can be a logical array, array slice, or any of the logical expressions described
above. The optional dim argument to ANY() is not supported at this time.

logical(4) function any ( mask )
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

For example, if A and B are conforming arrays with the device or managed attribute, and X is a scalar
of the same type:

IF (ANY(A .EQ. B)) PRINT *,"FAILED"
IF (ANY(ABS(A) .GT. X)) CALL REDO()

2.9.3.4 Fortran COUNT Intrinsic Function

The interface for COUNT is in the cutensorex module.

The Fortran array reduction COUNT returns the number of true elements of the mask. The mask can be
alogical array, array slice, or any of the logical expressions described above. The optional dim argument
to COUNT() is not supported at this time.

integer function count ( mask )
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

For example, if A and B are conforming real(4) arrays with the device or managed attribute, EPS is a
real(4) scalar, and ICNT1 and ICNT2 are integer scalars:

ICNT1
ICNT2

COUNT(A .EQ. B)
COUNT(ABS(A - B) .LE. EPS)
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This section lists the other overloaded functions available in the cutensorex module. Similar to the
last section, these Fortran intrinsics accept device or managed arrays when the cutensorex module is
used, from host code.

The first five functions in this section also take a mask argument, and accept the same mask arrays
or expressions described in the previous section. The more complicated functions in this group use a
scan algorithm described in this paper: Single-pass Parallel Prefix Scan with Decoupled Look-Back, by
Duane Merrill and Michael Garland.

The second set of functions call into either the cuTensor or cuRand library, and are included here for
completeness. They were previously documented in the document.

The interface for MERGE is in the cutensorex module.

The Fortran merge() intrinsic is an elemental selection based on the mask evaluation. It takes three
arguments, an array of “true” values, one or more “false” values, and a mask. The merge() intrinsic
function can take a mask expression in the form specified above as an argument, or a logical(4) de-
vice array. In the current implementation, only the second argument (the false selection) can be a
scalar. Only real(4), real(8), integer(4), and integer(8) arrays are supported, and only for arrays of 1 -3
dimensions. The tsource argument and mask argument must be conforming arrays, and if fsource is
an array, it must conform as well.

function merge ( tsource, fsource, mask ) result(res)
type, intent(in) :: tsource(...) ! type is real or integer, kind = 4 or 8

type, intent(in) :: fsource(...) ! type same as tsource, array or scalar
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
type, intent(out) :: res(...) I type, kind, rank same as tsource

For example: For A, B, C, arrays of type integer(4), and K a scalar of type integer(4):

MERGE(A, B, A .GT. B)
MERGE(A, ©, ABS(A) .LT. K)

(@]
|

The interface for PACK is in the cutensorex module.

The Fortran pack() intrinsic is useful for gathering selected data from a multiple-dimensional array into
a rank-1 array. The pack intrinsic is unique in that the size of the output array is not known until the
function has been completely evaluated. This Fortran pack() intrinsic function is an efficient parallel
implementation and can take a mask expression specified above as the mask argument.

Currently, as part of our emphasis on performance, we do not re-allocate the LHS destination to fit
the result; it is the user’s responsibility to make sure the LHS destination array is large enough.

Only real(4), real(8), integer(4), and integer(8) arrays are supported, and only for arrays of 1 - 3 dimen-
sions. This implementation does not support the vector optional argument to pack(). This implemen-
tation does add a new optional argument, “count” which can return the count of passing mask results,
basically the number of elements written into the LHS result:
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function pack ( array, mask, count ) result(res)

type, intent(in) :: array(...) I type is real or integer, kind = 4 or 8
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

integer, optional, intent(in) :: count

type, intent(out) :: res(*) I type is same as array, rank is 1-D

For example: A and B are device arrays of type real(4), and x is a scalar of type real(4). C and D are
device arrays of the same type, where C conforms to both A and B, and D is a 1-dimensional array:

D
D

PACK(C, ABS(A - B) .GT. x)
PACK(C, MASK=(A .EQ. B), COUNT=ICNT)

The interface for PACKLOC is in the cutensorex module.

The Fortran packloc() function is an extension of the PACK intrinsic, but does not take a source array.
Instead, it produces a packed array of indices, or locations, where the mask evaluates to true. This
Fortran packloc() function uses the same efficient parallel implementation as PACK, and can take a
mask expression specified above as the mask argument.

Currently, as part of our emphasis on performance, we do not re-allocate the LHS destination to fit
the result; it is the user’s responsibility to make sure the LHS destination array is large enough.

Only mask expressions involving 1D arrays are currently supported. This implementation does sup-
port the optional argument, “count” which can return the count of passing mask results, basically the
number of elements written into the LHS result:

Similar to maxloc and other location functions, the indices begin at 1, and are not affected by non-
unary strides or lower bounds of the arrays passed to the function.

function packloc ( mask, count ) result(res)

logical, intent(in) :: mask(:) ! mask is a 1D logical array or supported
—expression

integer(4), optional, intent(out) :: count

integer(4), intent(out) :: res(*)

For example: A and B are device arrays of type real(4), and x is a scalar of type real(4). D is an integer(4)
device array:

D = PACKLOC(ABS(A - B) .GT. x, COUNT=ICNT)

The interface for UNPACK is in the cutensorex module.

The Fortran unpack() intrinsic function is the complement of pack(), and can take a mask expression
specified above as the mask argument. There are some limitations in the current implementation for
unpack() related to the field argument. In this implementation, the field argument is optional, and if
it is left off, the LHS destination is treated as the field. If the field argument is a scalar, unpack works
according to the standard. If the field argument is an array, the mask operation must be a logical array,
not a mask expression, and of course the mask and field must be conforming in size and shape.

Only real(4), real(8), integer(4), and integer(8) arrays are supported, and only for arrays of 1 - 3 dimen-
sions. The output array and mask argument must be conforming arrays.
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function unpack ( array, mask, field ) result(res)

type, intent(in) :: array(*) I type is real or integer, kind = 4 or 8
logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
type, optional, intent(in) :: field(...) ! array or scalar
type, intent(out) :: res(...) I type same as array, rank same as mask

For example: For A and B device arrays of type real(4), x and y are scalars of type real(4), C and D of
the same type, where C conforms to both A and B, and D is a 1-dimensional array:

C
c

UNPACK(D, ABS(A - B) .GT. x)
UNPACK(D, MASK=(ABS(A - B) .GT. x), FIELD=y)

2.9.4.5 Fortran COUNT_PREFIX Intrinsic Function

The interface for COUNT_PREFIX isin the cutensorex module.

The count_prefix function was defined in High Performance Fortran (HPF). It computes a running count
of the number of true mask values, in array storage order. An optional logical argument, EXCLUSIVE,
specifies that the current mask result does not contribute to the current output, only to succeeding
counts. Another optional argument, the integer DIM, specifies to compute the counts for a multi-
dimensional array only across the specific dimension.

The complete function declaration and argument list is:

function count_prefix ( mask, dim, exclusive ) result(res)

logical, intent(in) :: mask(...) ! mask is 1 - 3 dimensions

integer, optional, intent(in) :: dim ! 7 - 3 depending on rank of mask
logical, optional, intent(in) :: exclusive ! Default is .false. (inclusive)
integer, intent(out) :: res(...) ! same size and rank as mask

For example: For A, B, and x of type real(4), C of type integer(4):

C = COUNT_PREFIX(A .GT. 0)
C = COUNT_PREFIX(A .EQ. B, DIM=1)
C = COUNT_PREFIX(MASK=ABS(A - B) .LE. x, DIM=2, EXCLUSIVE=.true.)

HPF also specified a SEGMENT optional argument, but that functionality is not in the current release.

2.9.4.6 Fortran SUM_PREFIX Intrinsic Function

The interface for SUM_PREFIX is in the cutensorex module.

The sum_prefix function was also defined in HPF. It computes a running sum of array element values,
for which the corresponding mask is true, in array storage order. An optional logical argument, EXCLU-
SIVE, specifies that the array value does not contribute to the current output, only to succeeding sums.
Another optional argument, the integer DIM, specifies to compute the counts for a multi-dimensional
array only across the specific dimension. For this function, the MASK is also optional; without it, every
array element contributes to the sums.

The complete function declaration and argument list is:

function sum_prefix ( array, mask, dim, exclusive ) result(res)

type, intent(in) :: array(...) I type is real or integer, kind = 4 or 8
logical, optional, intent(in) :: mask(...) ! mask is 1 - 3 dimensions
integer, optional, intent(in) :: dim ! 7 - 3 depending on rank of array

(continues on next page)

2.9. Fortran Host Modules 77



NVIDIA CUDA Fortran Programming Guide, Release 25.9

(continued from previous page)

logical, optional, intent(in) :: exclusive ! Default is .false. (inclusive)
type, intent(out) :: res(...) ! same size and rank as array

For example: For A, B, C, D, and x of type real(4):

D = SUM_PREFIX(C, A .GT. 9)
D = SUM_PREFIX(C, MASK=(A .NE. B), DIM=2)
D = SUM_PREFIX(C, MASK=ABS(A - B) .LE. x, EXCLUSIVE=.true.)

2.9.4.7 Fortran RESHAPE Intrinsic Function

The interface for RESHAPE is in the cutensorex module. This function is also documented thoroughly
in the NVIDIA Fortran CUDA Interfaces document in the cuTensor chapter.

The Fortran reshape() intrinsic changes the shape of an array and possibly permutes the dimensions
and layout. It is invoked as:

D = alpha * func(reshape(A, shape=[...], order=[...]))

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The rank (number
of dimensions) of A and D can be from 1 to 7. The alpha value is expected to be the same type as A, or
as func(reshape(A)), if that differs. Accepted functions which can be applied to the result of reshape
are listed in the Fortran CUDA Interfaces document referred to above. The pad argument to the FOO
reshape function is not currently supported. This Fortran call, besides initialization and setting up
CUTENSOR descriptors, maps to cutensorPermutation().

function reshape ( source, shape, order ) result(res)

type, intent(in) :: source(...) ! type is real or complex
integer, intent(in) :: shape(:)

integer, optional, intent(in) :: order(*)

type, intent(out) :: res(...) ! type, kind same as source

I Example to switch the 2nd and 3rd dimension layout

D = reshape(a, shape=[ni,nk,nj], order=[1,3,2])

I Same example, take the absolute value and scale by 2.5

D = 2.5 * abs(reshape(a, shape=[ni,nk,nj], order=[1,3,2]))

2.9.4.8 Fortran TRANSPOSE Intrinsic Function

The interface for TRANSPOSE is in the cutensorex module. This function is also documented thor-
oughly in the NVIDIA Fortran CUDA Interfaces document in the cuTensor chapter.

The Fortran transpose() intrinsic transposes a matrix (a 2-dimensional array). It is invoked as:
D = alpha * func(transpose(A))

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The rank (number of
dimensions) of Aand Dis 2. Applying scaling (the alpha argument) or applying a function to the trans-
pose result is optional. The alpha value is expected to be the same type as A, or as func(transpose(A)),
if that differs. Accepted functions which can be applied to the result of the transpose are listed in
the Fortran CUDA Interfaces document referred to above. This Fortran call, besides initialization and
setting up cuTENSOR descriptors, maps to cutensorPermutation().
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! Example of transpose

D = transpose(A)

! Same example, take the absolute value and scale by 2.5
D = 2.5 * abs(tranpose(A))

The transpose() function is also supported as part of the “B” argument in mask expressions described
above. For example, if A is a 2-dimension mxn array, and B is nxm:

ICNT = COUNT(A .GT. TRANSPOSE(B))

Theinterface for SPREAD isin the cutensorex module. This function is also documented in the
document in the cuTensor chapter.

The Fortran spread() intrinsic increases the rank of an array by one across the specified dimension and
broadcasts the values over the new dimension. It is invoked as:

D = alpha * func(spread(A, dim=i, ncopies=n))

The arrays A and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The rank (number
of dimensions) of A and D can be from 1 to 7. The alpha value is expected to be the same type as A.
Accepted functions which can be applied to the result of spread are listed in the Fortran CUDA Inter-
faces document referred to above. This Fortran call, besides initialization and setting up cuTENSOR
descriptors, maps to cutensorPermutation().

! Example to add and broadcast values over the new first dimension
D = spread(A, dim=1, ncopies=n1)

! Same example, take the absolute value and scale by 2.5

D =2.5 * abs(spread(A, dim=1, ncopies=n1))

The spread() function is also supported as part of the “B” argument in mask expressions described
above. For example, if A is a 2-dimension mxn array, and B is 1-dimensional array of length m:

ICNT = COUNT(A .GT. SPREAD(B, dim=2, ncopies=n))

The interface for MATMUL is in the cutensorex module. This function is also documented thoroughly
in the document in the cuTensor chapter.

The Fortran matmul() intrinsic performs matrix multiplication, one instance of tensor contractions.
Either operand to matmul can be a permuted array, the result of a call to reshape(), transpose(), or
spread(). The cuTENSOR library does not currently support applying an elemental function to the array
operands, but the result and accumlator can be scaled. Here are some supported forms:

= matmul(A, B)

= matmul(permute(A), B)

= matmul(A, permute(B))

= matmul(permute(A), permute(B))
= C + matmul(A, B)

= C - matmul(A, B)
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D = alpha * matmul(A, B) + beta * C

The arrays A, B, C, and D can be of type real(2), real(4), real(8), complex(4), or complex(8). The rank
(number of dimensions) of A, B, C, and D must be 2, after any permutations. Arrays C and D must
currently have the same shape, strides, and type. The alpha value is expected to be the same type as
A and B. The beta value should have the same type as C. The Fortran wrapper does no type conversion,
though cuTENSOR may. Compile-time checking of array conformance is limited. Other runtime checks
for unsupported combinations may come from either the Fortran wrapper or from cuTENSOR. Fortran
support for Matmul, besides initialization and setting up cuTENSOR descriptors, maps to cutensor-
Contraction().

! Example to multiply two matrices together
D = matmul(A, B)

! Same example, accumulate into C

C=C+ matmul(A, B)

! Same example, transpose the first argument
C = C + matmul(transpose(A), B)

The interface for DOT_PRODUCT is in the cutensorex module. This function is also documented thor-
oughly in the document in the cuTensor chapter.

The Fortran dot_product() intrinsic performs the dot product of two vectors, one specific instance of a
tensor contraction. In the standard form, it returns a scalar of the same type as the input arguments,
and the destination on the LHS of the assignment must have the device or managed attribute. Either
operand to dot_product can be a permuted array, the result of a call to reshape(), creating a 1-D array.
Note that the Fortran definition of dot_product for complex variables performs a conjugate of the first
argument. Here are some supported forms:

S = dot_product(A, B)

S = dot_product(reshape(T, shape=[m*n]), B)

S = dot_product(ABS(A), B)

ZC = dot_product(ZX,ZY) ! BLAS ZDOTC equivalent

ZU = dot_product(CONJG(ZX),ZY) ! BLAS ZDOTU equivalent

The input arrays can be of type real(2), real(4), real(8), complex(4), or complex(8). Fortran support for
DOT_PRODUCT, besides initialization and setting up cuTENSOR descriptors, maps to cutensorCon-
traction().

This implementation has been extended to expose more of the cutensorContraction() function-
ality at a high level. The extended interface to DOT_PRODUCT accepts multi-dimensional arrays and a
dim argument. The dot_product will be computed only along the specified dimension, resulting in an
array with rank one fewer than the input arrays.

Most of the same permutations, functions and accumulation operations that are provided with MATMUL
are provided with DOT_PRODUCT. Here are a few examples: For A and B an NxN matrix, X and V are
vectors of length N, and alpha a scalar:

X = dot_product(A, B, dim=1)
X = X + dot_product(A, transpose(B), dim=1)
X = X - alpha * dot_product(spread(V, dim=1, ncopies=N), B, dim=2)
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The interface for RANDOM_NUMBER is actually in the curandex module, but that is included/used within
the cutensorex module.

The Fortran subroutine RANDOM_NUMBER returns random numbers between the values of 0.0 and 1.0.
This interface is provided as a convenience, and has not undergone extensive testing. When you pass
arrays with the device or managed attribute, the subroutine will invoke a cuRAND library function to
generate the values. Some additional work was done to support the types real(2), real(4), real(8), com-
plex(4), and complex(8), some of which is non-standard. Only arrays of 1 - 3 dimensions are supported.

For example, if A is a real array and has the device or managed attribute:

block; use cutensorex
CALL RANDOM_NUMBER(A)
end block

The default generator used by the curandex module is CURAND_RNG_PSEUDO_XORWOW.

Some helper functions are provided in the curandex module to fine-tune the cuRAND library random
number generator, which should be self-explanatory:

integer(4) function curandExSetCurandGenerator(g)
type(curandGenerator) :: g
end function

function curandExGetCurandGenerator() result(s)
type(curandGenerator) :: s
end function

integer(4) function curandExSetStream(stream)
integer(kind=cuda_stream_kind), value :: stream
end function

function curandExGetStream() result(s)
integer(kind=cuda_stream_kind) :: s
end function

Please refer to the document for more detailed information on the For-
tran interfaces to CUDA libraries. This section discusses some of the more-commonly used interfaces
and libraries.

NVIDIA provides a module which defines interfaces to the CUBLAS Library from NVIDIA CUDA Fortran.
These interfaces are made accessible by placing the following statement in the CUDA Fortran host-
code program unit.

use cublas

The interfaces are currently in three forms:

Overloaded traditional BLAS interfaces which take device arrays as arguments rather than host
arrays, i.e.
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call saxpy(n, a, x, incx, y, incy)

where the arguments x and y have the device attribute.

Portable legacy CUBLAS interfaces which interface directly with CUBLAS versions < 4.0, i.e.

call cublasSaxpy(n, a, x, incx, y, incy)

where the arguments x and y must have the device attribute.
New CUBLAS 4.0+ interfaces with access to all features of the new library.

These interfaces are all in the form of function calls, take a handle as the first argument, and
pass many scalar arguments and results by reference, i.e.

istat = cublasSaxpy_v2(h, n, a, x, incx, y, incy)

In the case of saxpy, users now have the option of having a reside either on the host or device.
Functions which traditionally return a scalar, such as sdot () and isamax( ), now take an extra
argument for returning the result. Functions which traditionally take a character#*1 argument,
such as t or n to control transposing, now take an integer value defined in the cublas module.

To support the third form, a derived type named cublasHandle is defined in the cublas module.
You can define a variable of this type using

type(cublasHandle) :: h

Initialize it by passing it to the cublasCreate function.

When using CUBLAS 4.0 and higher, the cublas module properly generates handles for the first two
forms from serial and OpenMP parallel regions.

Intermixing the three forms is permitted. To access the handles used internally in the cublas module
use:

h = cublasGetHandle()

The following form “istat = cublasGetHandle(h)” is also supported.

istat = cublasGetHandle(h)

Assignment and tests for equality and inequality are supported for the cublasHandle type.

CUDA 4.0+ helper functions defined in the cublas module:

integer function cublasCreate(handle)

integer function cublasDestroy(handle)

integer function cublasGetVersion(handle, version)
integer function cublasSetStream(handle, stream)
integer function cublasGetStream(handle, stream)
integer function cublasGetPointerMode(handle, mode)
integer function cublasSetPointerMode(handle, mode)

Refer to for an example that demonstrates the use of the cublas module, the
cublasHandle type, and the three forms of calls.

NVIDIA provides another module which defines interfaces to the CUFFT Library from NVIDIA CUDA
Fortran. These interfaces are made accessible by placing the following statement in the CUDA Fortran
host-code program unit.
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use cufft

Here is an example of some code which uses the cufft interfaces:

program cufft2dTest
use cufft
integer, parameter :: n=450
complex :: a(n,n),b(n,n)
complex, device :: a_d(n,n), b_d(n,n)
integer :: plan, ierr
real, dimension(3) :: res, exp

a =1; a_d = a

ierr = cufftPlan2D(plan,n,n,CUFFT_C2C)

ierr = ierr + cufftExecC2C(plan,a_d,b_d,CUFFT_FORWARD)
ierr = ierr + cufftExecC2C(plan,b_d,b_d, CUFFT_INVERSE)
b = b_d

res(1) = maxval(abs(a-b/(n*n)))
print *, 'Max error C2C: ', res(1)

The distribution also contains a module which defines interfaces to the CUSPARSE Library from NVIDIA
CUDA Fortran. These interfaces are made explicit by placing the following statement in the CUDA

Fortran host-code program unit.

use cusparse

In addition to the function interfaces, there are several important derived types and constants which

are defined in the cusparse module. Here is an example of their use:

! Compile with "nvfortran testlLevel3.cuf -cudalib=cusparse"

program testlLevel3
use cudafor
use cusparse

implicit none

integer, parameter :: nd = 20 ! # rows/cols in dense matrix

type(cusparseHandle) :: h
type(cusparseMatDescr) :: descrA
type(cusparseSolveAnalysisInfo) :: saInfo
integer :: status, version, mode, i

I D-data
I dense

real(8) :: DAde(nd,nd), DBde(nd,nd), DCde(nd,nd), DmaxErr
real(8), device :: DAde_d(nd,nd), DBde_d(nd,nd), DCde_d(nd,nd)

I csr

real(8) :: csrValDA(nd)

real(8), device :: csrValDA_d(nd)
real(8) :: Dalpha, Dbeta

real(8), device :: Dalpha_d, Dbeta_d

I integer data common to all data types
integer :: nnz

(continues on next page)
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integer :: nnzPerRowA(nd), csrRowPtrA(nd+1), csrColIndA(nd)
integer, device :: nnzPerRowA_d(nd), csrRowPtrA_d(nd+1), csrColIndA_d(nd)

I initalization

status = cusparseCreate(h)

status = cusparseGetVersion(h, version)
write(*,*) '... version:', version

status = cusparseCreateMatDescr (descrA)

status = cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL)
status = cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE)
status = cusparseCreateSolveAnalysisInfo(saInfo)

I Initialize matrix (Identity)

DAde = 0.0
i=1, nd
DAde(i,i) = 1.0
end do
DAde_d = DAde
call random_number (DBde)
DBde_d = DBde

I convert from dense to csr

status = cusparseDnnz_v2(h, CUSPARSE_DIRECTION_ROW, nd, nd, descrA, &
DAde_d, nd, nnzPerRowA_d, nnz)

status = cusparseDdense2csr(h, nd, nd, descrA, DAde_d, nd, nnzPerRowA_d, &
csrValDA_d, csrRowPtrA_d, csrColIndA_d)

I' csrmm HPM
Dalpha = 1.0
Dbeta = 0.9

status = cusparseDcsrmm(h, CUSPARSE_OPERATION_NON_TRANSPOSE, nd, nd, nd, &
nnz, Dalpha, descrA, csrValDA_d, csrRowPtrA_d, csrColIndA_d, DBde_d, &
nd, Dbeta, DCde_d, nd)

if (status /= CUSPARSE_STATUS_SUCCESS) write (*,*) 'CSRMM Error:', status

DCde = DCde_d
DmaxErr = maxval(abs(DCde-DBde))

status = cusparseDestroy(h)
write(*,*) 'cusparseDestroy', status, DmaxErr

end program testlLevel3
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Chapter 3. Runtime APIs

The system module cudafor defines the interfaces to the Runtime API routines.

For a complete explanation of the purpose and function of each routine in this chapter, refer to
docs.nvidia.com/cuda/cuda-runtime-api.

Most of the runtime API routines are integer functions that return an error code; they return a value of
zero if the call was successful, and a nonzero value if there was an error. To interpret the error codes,
refer to Error Handling.

Unless a specific kind is provided, the plain integer type implies integer(4) and the plain real type implies
real(4).

3.1. Initialization

No explicit initialization is required; the runtime initializes and connects to the device the first time a
runtime routine is called or a device array is allocated.

Tip: When doing timing runs, be aware that initialization can add some overhead.

3.2. Device Management

Use the functions in this section for device management.

For a complete explanation of the purpose and function of each routine listed here, refer to the Device
Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.
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3.2.1. cudaChooseDevice

integer function cudaChooseDevice ( devnum, prop )
integer, intent(out) :: devnum
type(cudaDeviceProp), intent(in) :: prop

cudaChooseDevice assigns the device number that best matches the properties given in prop to its
first argument.

3.2.2. cudaDeviceGetAttribute

integer function cudaDeviceGetAttribute ( val, attribute, devicenum )

integer, intent(out) :: val
integer, intent(in) :: attribute
integer, intent(in) :: devicenum

cudaDeviceGetAttribute returns information about the device. Specific information returned is
determined by the attribute argument, for the specified device number.

3.2.3. cudaDeviceGetCacheConfig

integer function cudaDeviceGetCacheConfig ( cacheconfig )
integer, intent(out) :: cacheconfig

cudaDeviceGetCacheConfig returns the preferred cache configuration for the current device.
Current possible cache configurations are defined to be cudaFuncCachePreferNone, cudaFunc-
CachePreferShared, and cudaFuncCachePreferL1.

cudaDeviceGetCacheConfig is available in device code starting in CUDA 5.0.

3.2.4. cudaDeviceGetLimit

integer function cudaDeviceGetLimit( val, limit )
integer(kind=cuda_count_kind) :: val
integer :: limit

cudaGetDeviceGetLimit returns in val the current size of limit. Current possible limit arguments
are cudalLimitStackSize, cudaLimitPrintfSize, and cudaLimitMallocHeapSize.

cudaGetDeviceGetLimit is available in device code starting in CUDA 5.0.
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3.2.5. cudaDeviceGetSharedMemConfig

integer function cudaDeviceGetSharedMemConfig ( config )
integer, intent(out) :: config

cudaDeviceGetSharedMemConfig returns the current size of the shared memory banks on the cur-
rent device. This routine is for use with devices with configurable shared memory banks, and is sup-
ported starting with CUDA 4.2. Current possible shared memory configurations are defined to be cu-

daSharedMemBankSizeDefault, cudaSharedMemBankSizeFourByte, and cudaSharedMemBank-
SizeEightByte.

3.2.6. cudaDeviceGetStreamPriorityRange

integer function cudaDeviceGetStreamPriorityRange ( leastpriority, greatestpriority )
integer, intent(out) :: leastpriority, greatestpriority

cudaDeviceGetStreamPriorityRange returns the numerical values that correspond to the least
and greatest stream priorities for the current context and device.

3.2.7. cudaDeviceReset

integer function cudaDeviceReset()

cudaDeviceReset resets the current device attached to the current process.

3.2.8. cudaDeviceSetCacheConfig

integer function cudaDeviceSetCacheConfig ( cacheconfig )
integer, intent(in) :: cacheconfig

cudaDeviceSetCacheConfig sets the current device preferred cache configuration. Current pos-

sible cache configurations are defined to be cudaFuncCachePreferNone, cudaFuncCachePrefer-
Shared, and cudaFuncCachePreferL1.

3.2.9. cudaDeviceSetLimit

integer function cudaDeviceSetLimit( limit, val )
integer :: limit

integer(kind=cuda_count_kind) :: val

cudaGetDeviceSetLimit sets the limit of the current device to val. Current possible limit arguments
are cudalLimitStackSize, cudaLimitPrintfSize, and cudaLimitMallocHeapSize.
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3.2.10. cudaDeviceSetSharedMemConfig

integer function cudaDeviceSetSharedMemConfig ( config )
integer, intent(in) :: config

cudaDeviceSetSharedMemConfig sets the size of the shared memory banks on the current de-
vice. This routine is for use with devices with configurable shared memory banks, and is supported
starting with CUDA 4.2. Current possible shared memory configurations are defined to be cu-
daSharedMemBankSizeDefault, cudaSharedMemBankSizeFourByte, and cudaSharedMemBank-
SizeEightByte.

3.2.11. cudaDeviceSynchronize

integer function cudaDeviceSynchronize()

cudaDeviceSynchronize blocks the current device until all preceding requested tasks have com-
pleted.
cudaDeviceSynchronize was available in device code starting in CUDA 5.0.

cudaDeviceSynchronize has been removed from CUDA Fortran device code starting with the
NVHPC 22.11 Release as it is no longer supported there in the CUDA Programming Model.

3.2.12. cudaGetDevice

integer function cudaGetDevice( devnum )
integer, intent(out) :: devnum

cudaGetDevice assigns the device number associated with this host thread to its first argument.

cudaGetDevice is available in device code starting in CUDA 5.0.

3.2.13. cudaGetDeviceCount

integer function cudaGetDeviceCount( numdev )
integer, intent(out) :: numdev

cudaGetDeviceCount assigns the number of available devices to its first argument.

cudaGetDeviceCount is available in device code starting in CUDA 5.0.
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3.2.14. cudaGetDeviceProperties

! Prior to CUDA 13.0

integer function cudaGetDeviceProperties( prop, devnum )
type(cudaDeviceProp), intent(out) :: prop
integer, intent(in) :: devnum

! CUDA 13.0 and after

integer function cudaGetDeviceProperties( prop, devnum )
type(cudaDeviceProp130), intent(out) :: prop
integer, intent(in) :: devnum

cudaGetDeviceProperties returns the properties of a given device.
cudaGetDeviceProperties is available in device code starting in CUDA 5.0.

In CUDA 13.0 and after, several fields have been removed from the cudaDeviceProp structure. Those
properties are now available using the cudaDeviceGetAttributes runtime function. In CUDA For-
tran, we will support the older cudaDeviceProp derived type in CUDA 13.x for a short number of re-
leases. Users should not rely on the removed fields being available in the long term.

3.2.15. cudaSetDevice

integer function cudaSetDevice( devnum )
integer, intent(in) :: devnum

cudaSetDevice selects the device to associate with this host thread.

3.2.16. cudaSetDeviceFlags

integer function cudaSetDevice( flags )
integer, intent(in) :: flags

cudaSetDeviceFlags records how the CUDA runtime interacts with this host thread.

3.2.17. cudaSetValidDevices

integer function cudaSetValidDevices( devices, numdev )
integer :: numdev, devices(numdev)

cudaSetValidDevices sets a list of valid devices for CUDA execution in priority order as specified in
the devices array.
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3.3. Thread Management

Sometimes threads within a block access the same addresses in shared or global memory, thus creat-
ing potential read-after-write, write-after-read, or write-after-write hazards for some of these memory
accesses. To avoid these potential issues, use the functions in this section for thread management.
These functions have been deprecated beginning in CUDA 4.0.

3.3.1. cudaThreadExit

integer function cudaThreadExit()

cudaThreadExit explicitly cleans up all runtime-related CUDA resources associated with the host
thread. Any subsequent CUDA calls or operations will reinitialize the runtime.

Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

3.3.2. cudaThreadSynchronize

integer function cudaThreadSynchronize()

cudaThreadSynchronize blocks execution of the host subprogram until all preceding kernels and
operations are complete. It may return an error condition if one of the preceding operations fails.

Note: This function is deprecated because its name does not reflect its behavior. Its functionality is
identical to the non-deprecated function cudaDeviceSynchronize (), which you should use instead.

3.4. Error Handling

Use the functions in this section for error handling.

For a complete explanation of the purpose and function of each routine listed here, refer to the Error
Handling section at https://docs.nvidia.com/cuda/cuda-runtime-api.

3.4.1. cudaGetErrorString

function cudaGetErrorString( errcode )
integer(4), intent(in) :: errcode
character*(*) :: cudaGetErrorString

cudaGetErrorString returns the message string associated with the given error code.
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3.4.2. cudaGetLastError

integer function cudaGetLastError()

cudaGetLastError returns the error code that was most recently returned from any runtime call in
this host thread.

3.4.3. cudaPeekAtLastError

integer function cudaPeekAtLastError()

cudaPeekAtLastError returns the last error code that has been produced by the CUDA runtime
without resetting the error code to cudaSuccess like cudaGetlLastError.

3.5. Stream Management

Use the functions in this section for stream management.

For a complete explanation of the purpose and function of each routine listed here, refer to the Stream
Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

3.5.1. cudaforGetDefaultStream

integer(kind=cuda_stream_kind) function cudaforGetDefaultStream( devptr )

cudaforGetDefaultStream returns the default stream which has been associated with a thread,
managed variable, or device variable via a call to cudaforSetDefaultStream. devptr may be any
managed or device scalar or array of a supported type specified in Device Code Intrinsic Datatypes.
The devptr argument is optional; if it is not specified, the function returns the stream tied to the
thread, or zero (the default stream).

Streams values returned from cudaforGetDefaultStream can be used as the argument to other
CUDA libraries, such as the routines cublasSetStream(), cufftSetStream(), and cusparseSet-
Stream().

3.5.2. cudaforSetDefaultStream

integer function cudaforSetDefaultStream( devptr, stream )
integer(kind=cuda_stream_kind), intent(in) :: stream

cudaforSetDefaultStream sets the default stream for all subsequent high-level CUDA Fortran op-
erations on managed or device data initiated by that CPU thread. The specific operations affected
with managed data are allocatation via the Fortran allocate statement, assignment (both memset and
memcpy types), CUF Kernel and global kernel launches, and sum(), maxval(), and minval() reduction
operations. devptr may be any managed or device scalar or array of a supported type specified in
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Device Code Intrinsic Datatypes. The devptr argument is optional; if it is not specified, the function
ties the specified stream to all subsequent, allowable, high-level operations executing on that thread.

3.5.3. cudaStreamAttachMemAsync

integer function cudaStreamAttachMemAsync( stream, devptr, length, flags )

integer(kind=cuda_stream_kind), intent(in) :: stream
integer(kind=cuda_count_kind), optional, intent(in) :: length
integer, optional, intent(in) :: flags

cudaStreamAttachMemAsync initiates a stream operation to attach the managed allocation start-
ing at address devptr to the specified stream. devptr may be any managed scalar or array of a
supported type specified in Device Code Intrinsic Datatypes. The argument len is optional, but cur-
rently must be zero. The flags argument must be cudaMemAttachGlobal, cudMemAttachHost, or
cudMemAttachSingle.

cudaStreamAttachMemAsync is available starting in CUDA 6.0.

3.5.4. cudaStreamCreate

integer function cudaStreamCreate( stream )
integer(kind=cuda_stream_kind), intent(out) :: stream

cudaStreamCreate creates an asynchronous stream and assigns its identifier to its first argument.

3.5.5. cudaStreamCreateWithFlags

integer function cudaStreamCreateWithFlags( stream, flags )
integer(kind=cuda_stream_kind), intent(out) :: stream
integer, intent(in) :: flags

cudaStreamCreateWithFlags creates an asynchronous streamand assigns its identifier to its first
argument. Valid values for flags are cudaStreamDefault or cudaStreamNonBlocking.

cudaStreamCreateWithFlags is available in device code starting in CUDA 5.0.

3.5.6. cudaStreamCreateWithPriority

integer function cudaStreamCreateWithPriority( stream, flags, priority )
integer(kind=cuda_stream_kind), intent(out) :: stream
integer, intent(in) :: flags, priority

cudaStreamCreateWithPriority creates an asynchronous stream and assigns its identifier to its
first argument. Valid values for flags are cudaStreamDefault or cudaStreamNonBlocking. Lower
values for priority represent higher priorities. Work in a higher priority stream may preempt work
already executing in a low priority stream.
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3.5.7. cudaStreamDestroy

integer function cudaStreamDestroy( stream )
integer(kind=cuda_stream_kind), intent(in) :: stream
cudaStreamDestroy releases any resources associated with the given stream.

cudaStreamDestroy is available in device code starting in CUDA 5.0.

3.5.8. cudaStreamGetPriority

integer function cudaStreamGetPriority( stream, priority )
integer(kind=cuda_stream_kind), intent(in) :: stream
integer, intent(out) :: priority

cudaStreamGetPriority queries and returns the priority of the given stream in priority.

3.5.9. cudaStreamQuery

integer function cudaStreamQuery( stream )
integer(kind=cuda_stream_kind), intent(in) :: stream

cudaStreamQuery tests whether all operations enqueued to the selected stream are complete; it
returns zero (success) if all operations are complete, and the value cudaErrorNotReady if not. It may
also return another error condition if some asynchronous operations failed.

3.5.10. cudaStreamSynchronize

integer function cudaStreamSynchronize( stream )
integer(kind=cuda_stream_kind), intent(in) :: stream

cudaStreamSynchronize blocks execution of the host subprogram until all preceding kernels and
operations associated with the given stream are complete. It may return error codes from previous,
asynchronous operations.

3.5.11. cudaStreamWaitEvent

integer function cudaStreamWaitEvent( stream, event, flags )
integer(kind=cuda_stream_kind) :: stream
type(cudaEvent), intent(in) :: event
integer :: flags

cudaStreamWaitEvent blocks execution on all work submitted on the streamuntil the event reports
completion.

cudaStreamWaitEvent is available in device code starting in CUDA 5.0.
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3.6. Event Management

Use the functions in this section to manage events.

For a complete explanation of the purpose and function of each routine listed here, refer to the Event
Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

3.6.1. cudaEventCreate

integer function cudaEventCreate( event )
type(cudaEvent), intent(out) :: event

cudaEventCreate creates an event object and assigns the event identifier to its first argument

3.6.2. cudakventCreateWithFlags

integer function cudaEventCreateWithFlags( event, flags )
type(cudaEvent), intent(out) :: event
integer :: flags

cudaEventCreateWithFlags creates an event object with the specified flags. Current flags sup-
ported are cudaEventDefault, cudaEventBlockingSync, and cudaEventDisableTiming.

cudaEventCreateWithFlags is available in device code starting in CUDA 5.0.

3.6.3. cudakventDestroy

integer function cudaEventDestroy( event )
type(cudaEvent), intent(in) :: event
cudaEventDestroy destroys the resources associated with an event object.

cudaEventDestroy is available in device code starting in CUDA 5.0.

3.6.4. cudakventElapsedTime

integer function cudaEventElapsedTime( time, start, end)
real :: time
type(cudaEvent), intent() :: start, end

cudaEventElapsedTime computes the elapsed time between two events (in milliseconds). It returns
cudaErrorInvalidValue if either event has not yet been recorded. This function is only valid with
events recorded on stream zero.
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3.6.5. cudakventQuery

integer function cudaEventQuery( event )
type(cudaEvent), intent(in) :: event

cudaEventQuery tests whether an event has been recorded. It returns success (zero) if the event
has been recorded, and cudaErrorNotReady if it has not. It returns cudaErrorInvalidValue if
cudaEventRecord has not been called for this event.

3.6.6. cudaEventRecord

integer function cudaEventRecord( event, stream )
type(cudaEvent), intent(in) :: event
integer, intent(in) :: stream

cudaEventRecord issues an operation to the given streamto record an event. The eventis recorded
after all preceding operations in the stream are complete. If streamis zero, the event is recorded after
all preceding operations in all streams are complete.

cudaEventRecord is available in device code starting in CUDA 5.0.

3.6.7. cudakventSynchronize

integer function cudaEventSynchronize( event )
type(cudaEvent), intent(in) :: event

cudaEventSynchronize blocks until the event has been recorded. It returns a value of cudaError-
InvalidValue if cudaEventRecord has not been called for this event.

3.7. Execution Control

CUDA Fortran does not support all APl routines which duplicate the functionality of the chevron syntax.
Additional functionality which has been provided with later versions of CUDA is available.

For a complete explanation of the purpose and function of each routine listed here, refer to the Exe-
cution Control section at https://docs.nv idia.com/cuda/cuda-runtime-api.
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3.7.1. cudaFuncGetAttributes

integer function cudaFuncGetAttributes( attr, func )
type(cudaFuncAttributes), intent(out) :: attr
external :: func

cudaFuncGetAttributes gets the attributes for the function named by the func argument, which
must be a global function.

cudaFuncGetAttributes is available in device code starting in CUDA 5.0.

3.7.2. cudaFuncSetAttribute

integer function cudaFuncSetAttribute( func, attribute, value )

external :: func
integer :: attribute
integer :: value

cudaFuncSetAttribute setsthe attribute for the function named by the func argument, which must
be a global function.

3.7.3. cudaFuncSetCacheConfig

integer function cudaFuncSetCacheConfig( func, cacheconfig )
character*(*) :: func
integer :: cacheconfig

cudaFuncSetCacheConfig sets the preferred cache configuration for the function named by the
func argument, which must be a global function. Current possible cache configurations are defined to
be cudaFuncCachePreferNone, cudaFuncCachePreferShared, and cudaFuncCachePreferL1.

3.7.4. cudaFuncSetSharedMemConfig

integer function cudaFuncSetSharedMemConfig( func, cacheconfig )
character*(*) :: func
integer :: cacheconfig

cudaFuncSetSharedMemConfig sets the size of the shared memory banks for the function named
by the func argument, which must be a global function. This routine is for use with devices with
configurable shared memory banks, and is supported starting with CUDA 4.2. Current possible shared
memory configurations are defined to be cudaSharedMemBankSizeDefault, cudaSharedMemBank-
SizeFourByte, and cudaSharedMemBankSizeEightByte
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3.7.5. cudaSetDoubleForDevice

integer function cudaSetDoubleForDevice( d )
real(8) :: d

cudaSetDoubleForDevice sets the argument d to an internal representation suitable for devices
which do not support double precision arithmetic.

3.7.6. cudaSetDoubleForHost

integer function cudaSetDoubleForHost( d )
real(8) :: d

cudaSetDoubleForHost sets the argument d from an internal representation on devices which do
not support double precision arithmetic to the normal host representation.

3.8. Occupancy

The occupancy routines take a global subroutine as an argument and return values related to occu-
pancy, available to be used in kernel launch configurations.

CUDA Fortran has extended the chevron syntax to take a * argument which will call these functions
within the runtime, i.e. under the hood. This convenience may not be desirable if the kernel is launched
many times as it does invoke some overhead for each call.

Use of the occupancy calls, either explicitly or via the * syntax, is particularly useful when launching
grid_global kernels as the launch parameters must be sized to fit on the current device.

Use the functions in this section for explicit occupancy calculations.

For a complete explanation of the purpose and function of each routine listed here, refer to the Occu-
pancy section at https://docs.nvidia.com/cuda/cuda-runtime-api.

3.8.1. cudaOccupancyMaxActiveBlocksPerMultiprocessor

integer function cudaOccupancyMaxActiveBlocksPerMultiprocessor( numBlocks, func,
—blockSize, dynamicSMemSize )

integer :: numBlocks
external :: func

integer :: blockSize
integer :: dynamicSMemSize

cudaOccupancyMaxActiveBlocksPerMultiprocessor returns the occupancy, as the number of
blocks per multiprocessor, given the global subroutine named by the func argument, the block size
(number of threads) the kernel is intended to be launched with, and the amount of dynamic shared
memory, in bytes, the kernel is intended to be launched with.
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3.8.2. cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

integer function cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags( numBlocks,
—func, blockSize, dynamicSMemSize, flags )

integer :: numBlocks
external :: func

integer :: blockSize
integer :: dynamicSMemSize

integer :: flags

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags returns the occupancy, as the
number of blocks per multiprocessor, given the global subroutine named by the func argument, the
block size (number of threads) the kernel is intended to be launched with, and the amount of dynamic
shared memory, in bytes, the kernel is intended to be launched with, for the specified flags.

3.8.3. cudaOccupancyMaxPotentialClusterSize

integer function cudaOccupancyMaxPotentialClusterSize( csize, func, config )
integer :: csize
external :: func
type(cudaLaunchConfig) :: config

cudaOccupancyMaxPotentialClusterSize returns the maximum cluster size that can be
launched, given the input kernel, func, and launch configuration specified in the config argument.

3.8.4. cudaOccupancyMaxActiveClusters

integer function cudaOccupancyMaxActiveClusters( maxc, func, config )
integer :: maxc
external :: func
type(cudaLaunchConfig) :: config

cudaOccupancyMaxActiveClusters returns the maximum number of clusters that could co-exist
on the target device. The cluster size can be set in the config argument.

3.9. Memory Management

Many of the memory management routines can take device arrays as arguments. Some can also take
C types, provided through the Fortran 2003 iso_c_binding module, as arguments to simplify inter-
facing to existing CUDA C code.

CUDA Fortran has extended the F2003 derived type TYPE(C_PTR) by providing a C device
pointer, defined in the cudafor module, as TYPE(C_DEVPTR). Consistent use of TYPE(C_PTR) and
TYPE (C_DEVPTR), as well as consistency checks between Fortran device arrays and host arrays, should
be of benefit.

Currently, it is possible to construct a Fortran device array out of a TYPE(C_DEVPTR) by using an
extension of the iso_c_binding subroutine c_f_pointer. Under CUDA Fortran, c_f_pointer will take a
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TYPE(C_DEVPTR) as the first argument, an allocatable device array as the second argument, a shape
as the third argument, and in effect transfer the allocation to the Fortran array. Similarly, there is
also a function C_DEVLOC () defined which will create a TYPE (C_DEVPTR) that holds the C address of
the Fortran device array argument. Both of these features are subject to change when, in the future,
proper Fortran pointers for device data are supported.

Use the functions in this section for memory management.

For a complete explanation of the purpose and function of each routine listed here, refer to the Mem-
ory Management section at

integer function cudaFree(devptr)

cudaFree deallocates data on the device. devptr may be any allocatable device array of a supported
type specified in . Or, devptr may be of TYPE(C_DEVPTR).

cudaFree is available in device code starting in CUDA 5.0.

integer function cudaFreeArray(carray)
type(cudaArrayPtr) :: carray

cudaFreeArray frees an array that was allocated on the device.

integer function cudaFreeAsync(devptr, stream)

cudaFreeAsync deallocates data on the device, asynchronously, on the specified stream. devptr
may be any allocatable device array of a supported type specified in
Or,devptr maybe of TYPE(C_DEVPTR). The streamargumentis aninteger of kind=cuda_stream_ klnd

cudaFreeAsync is available starting in CUDA 11.2.

integer function cudaFreeHost (hostptr)
type(C_PTR) :: hostptr

cudaFreeHost deallocates pinned memory on the host allocated with cudaMalloHost.
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3.9.5. cudaGetSymbolAddress

integer function cudaGetSymbolAddress(devptr, symbol)
type(C_DEVPTR) :: devptr
type(c_ptr) :: symbol

cudaGetSymbolAddress returns in the devptr argument the address of symbol on the device. A
symbol can be set to an external device name via a character string.

The following code sequence initializes a global device array ‘vx’ from a CUDA C kernel:

type(c_ptr) :: csvx

type(c_devptr) :: cdvx

real, allocatable, device :: vx(:)

csvx = 'vx'

Istat = cudaGetSymbolAddress(cdvx, csvx)
Call c_f_pointer(cdvx, vx, 100)

Vx = 0.0

3.9.6. cudaGetSymbolSize

integer function cudaGetSymbolSize(size, symbol)
integer :: size
type(c_ptr) :: symbol

cudaGetSymbolSize sets the variable size to the size of a device area in global or constant memory
space referenced by the symbol.

3.9.7. cudaHostAlloc

integer function cudaHostAlloc(hostptr, size, flags)
type(C_PTR) :: hostptr
integer :: size, flags

cudaHostAlloc allocates pinned memory on the host. It returnsin hostptr the address of the page-
locked allocation, or returns an error if the memory is unavailable. Size is in bytes. The flags argu-
ment enables different options to be specified that affect the allocation. The normal iso_c_binding
subroutine c_f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

3.9.8. cudaHostGetDevicePointer

integer function cudaHostGetDevicePointer(devptr, hostptr, flags)
type(C_DEVPTR) :: devptr
type(C_PTR) :: hostptr
integer :: flags

cudaHostGetDevicePointer returns a pointer to a device memory address corresponding to the
pinned memory on the host. hostptr is a pinned memory buffer that was allocated via cudaHostAl-
loc(). It returnsin devptr an address that can be passed to, and read and written by, a kernel which
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runs on the device. The flags argument is provided for future releases. The normal iso_c_binding
subroutine c_f_pointer can be used to move the type(c_devptr)to a device array.

3.9.9. cudaHostGetFlags

integer function cudaHostGetFlags(flags, hostptr)
integer :: flags
type(C_PTR) :: hostptr

cudaHostGetFlags returns the flags associated with a host pointer.

3.9.10. cudaHostRegister

integer function cudaHostRegister(hostptr, count, flags)
integer :: flags
type(C_PTR) :: hostptr

cudaHostRegister page-locks the memory associated with the host pointer and of size provided by
the count argument, according to the flags argument.

3.9.11. cudaHostUnregister

integer function cudaHostRegister(hostptr)
type(C_PTR) :: hostptr

cudaHostUnregister unmaps the memory associated with the host pointer and makes it page-able
again. The argument hostptr must be the same as was used with cudaHostRegister.

3.9.12. cudaMalloc

integer function cudaMalloc(devptr, count)

cudaMalloc allocates data on the device. devptr may be any allocatable, one-dimensional device ar-
ray of a supported type specified in Device Code Intrinsic Datatypes. The count is in terms of elements.
Or, devptr may be of TYPE(C_DEVPTR), in which case the count is in bytes.

cudaMalloc is available in device code starting in CUDA 5.0.
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3.9.13. cudaMallocArray

integer function cudaMallocArray(carray, cdesc, width, height)
type(cudaArrayPtr) :: carray
type(cudaChannelFormatDesc) :: cdesc
integer :: width, height

cudaMallocArray allocates a data array on the device.

3.9.14. cudaMallocAsync

integer function cudaMallocAsync(devptr, count, stream)

cudaMallocAsync allocates data on the device, asynchronously, on the specified stream. devptr may
be any allocatable, one-dimensional device array of a supported type specified in Device Code Intrinsic
Datatypes. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case
the count is in bytes. The stream argument is an integer of kind=cuda_stream_kind.

cudaFreeAsync is available starting in CUDA 11.2.

3.9.15. cudaMallocManaged

integer function cudaMallocManaged(devptr, count, flags)

cudaMallocManaged allocates data that will be managed by the unified memory system. devptr
may be any allocatable, one-dimensional managed array of a supported type specified in Device Code
Intrinsic Datatypes. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in
which case the count is in bytes. The flags argument must be either cudaMemAttachGlobal or cu-
daMemAttachHost.

cudaMallocManaged is available starting in CUDA 6.0.

3.9.16. cudaMallocPitch

integer function cudaMallocPitch(devptr, pitch, width, height)

cudaMallocPitch allocates data on the device. devptr may be any allocatable, two-dimensional
device array of a supported type specified in Device Code Intrinsic Datatypes. The widthis in terms of
number of elements. The height is an integer.

cudaMallocPitch may pad the data, and the padded width is returned in the variable pitch. Pitch
is an integer of kind=cuda_count_kind. devptr may also be of TYPE(C_DEVPTR), in which case the
integer values are expressed in bytes.
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integer function cudaMalloc3D(pitchptr, cext)
type(cudaPitchedPtr), intent(out) :: pitchptr
type(cudaExtent), intent(in) :: cext

cudaMalloc3D allocates data on the device. pitchptr is a derived type defined in the cudafor mod-
ule. cext is also a derived type which holds the extents of the allocated array. Alternatively, pitchptr
may be any allocatable, three-dimensional device array of a supported type specified in

integer function cudaMalloc3DArray(carray, cdesc, cext)
type(cudaArrayPtr) :: carray
type(cudaChannelFormatDesc) :: cdesc
type(cudaExtent) :: cext

cudaMalloc3DArray allocates array data on the device.

! Prior to CUDA 13.6

integer function cudaMemAdvise(devptr, count, advice, device)
integer(kind=cuda_count_kind) :: count

integer(4) :: advice, device

! CUDA 13.6 and after

integer function cudaMemAdvise(devptr, count, advice, location)

integer(kind=cuda_count_kind) :: count
integer(4) :: advice
type(cudaMemLocation) :: location

cudaMemAdvise lends advice to the Unified Memory subsystem about the expected usage pattern
for the specified memory range. devptr may be any managed memory scalar or array, of a supported
type specified in . The count is in terms of elements. Alternatively,
devptr may be of TYPE(C_DEVPTR), in which case the count is in terms of bytes.

Current possible values for advice, defined in the cudafor module, are cudaMemAdviseSe-
tReadMostly, cudaMemAdviseUnsetReadMostly, cudaMemAdviseSetPreferredLocation, cu-
daMemAdviseUnsetPreferredLocation, cudaMemAdviseSetAccessedBy, and cudaMemAdvise-
UnsetAccessedBy

The device argument specifies the destination device. Passing in cudaCpuDeviceld for the device,
which is defined as a parameter in the cudafor module, will set advice for the CPU.

Starting with CUDA 13.0, the API has changed, and the last argument is a location derived type, con-
taining a type and id field. Current possible values for location type are cudaMemLocationType-
Invalid, cudaMemLocationTypeNone, cudaMemLocationTypeDevice, cudaMemLocationType-
Host, cudaMemLocationTypeHostNuma, and cudaMemLocationTypeHostNumaCurrent.

For a complete explanation of the interplay of the advice and location options, refer to the Memory
Management section at
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3.9.20. cudaMemcpy

integer function cudaMemcpy(dst, src, count, kdir)

cudaMemcpy copies data from one location to another. dst and src may be any device or host, scalar
or array, of a supported type specified in Device Code Intrinsic Datatypes. The count is in terms of
elements. kdir may be optional; for more information, refer to Data Transfer Using Runtime Rou-
tines. If kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice, cu-
daMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of
TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term of bytes.

cudaMemcpy is available in device code starting in CUDA 5.0.

3.9.21. cudaMemcpyArrayToArray

integer function cudaMemcpyArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, count, kdir)
type(cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, count, kdir

cudaMemcpyArrayToArray copies array data to and from the device.

3.9.22. cudaMemcpyAsync

integer function cudaMemcpyAsync(dst, src, count, kdir, stream)

cudaMemcpyAsync copies data from one location to another. dst and src may be any device or
host, scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The count is
in terms of elements. kdir may be optional; for more information, refer to Data Transfer Using Run-
time Routines. If kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of
TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream
by passing a non-zero stream argument; otherwise the stream argument is optional and defaults to
zero.

cudaMemcpyAsync is available in device code starting in CUDA 5.0.

3.9.23. cudaMemcpyFromArray

integer function cudaMemcpyFromArray(dst, srca, srcx, srcy, count, kdir)
type(cudaArrayPtr) :: srca
integer :: dstx, dsty, count, kdir

cudaMemcpyFromArray copies array data to and from the device.
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3.9.24. cudaMemcpyFromSymbol

integer function cudaMemcpyFromSymbol(dst, symbol, count, offset, kdir, stream)
type(c_ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyFromSymbol copies data from a device area in global or constant memory space refer-
enced by a symbol to a destination on the host. dst may be any host scalar or array of a supported
type specified in Datatypes Allowed. The count is in terms of elements.

3.9.25. cudaMemcpyFromSymbolAsync

integer function cudaMemcpyFromSymbolAsync(dst, symbol, count, offset, kdir, stream)
type(c_ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyFromSymbolASYNC copies data from a device area in global or constant memory space
referenced by a symbo1l to a destination on the host. dst may be any host scalar or array of a supported
type specified in Datatypes Allowed. The count is in terms of elements.

cudaMemcpyF romSymbolASYNC is asynchronous with respect to the host, This function operates on
page-locked host memory only. The copy can be associated with a stream by passing a non-zero
stream argument.

3.9.26. cudaMemcpyPeer

integer function cudaMemcpyPeer(dst, dstdev, src, srcdev, count)

cudaMemcpyPeer copies data from one device to another. dst and src may be any device scalar
or array, of a supported type specified in Device Code Intrinsic Datatypes. The count is in terms of
elements. Alternatively, dst and src may be of TYPE(C_DEVPTR), in which case the count is in term
of bytes.

3.9.27. cudaMemcpyPeerAsync

integer function cudaMemcpyPeerAsync(dst, dstdev, src, srcdev, count, stream)

cudaMemcpyPeerAsync copies data from one device to another. dst and src may be any device
scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The count is in terms
of elements. Alternatively, dst and src may be of TYPE(C_DEVPTR), in which case the count isin term
of bytes. The copy can be associated with a stream by passing a non-zero stream argument.
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3.9.28. cudaMemcpyToArray

integer function cudaMemcpyToArray(dsta, dstx, dsty, src, count, kdir)
type(cudaArrayPtr) :: dsta
integer :: dstx, dsty, count, kdir

cudaMemcpyToArray copies array data to and from the device.

3.9.29. cudaMemcpyToSymbol

integer function cudaMemcpyToSymbol(symbol, src, count, offset, kdir)
type(c_ptr) :: symbol
integer :: count, offset, kdir

cudaMemcpyToSymbol copies data from the source to a device area in global or constant memory
space referenced by a symbol. src may be any host scalar or array of a supported type as specified
in Device Code Intrinsic Datatypes. The count is in terms of elements.

3.9.30. cudaMemcpyToSymbolAsync

integer function cudaMemcpyToSymbolAsync(symbol, src, count, offset, kdir, stream)
type(c_ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyToSymbolAsync copies data from the source to a device area in global or constant mem-
ory space referenced by a symbol. src may be any host scalar or array of a supported type specified
in Datatypes Allowed. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream
by passing a non-zero stream argument.

3.9.31. cudaMemcpy2D

integer function cudaMemcpy2D(dst, dpitch, src, spitch, width, height, kdir)

cudaMemcpy2D copies data from one location to another. dst and src may be any device or host
array, of a supported type specified in Device Code Intrinsic Datatypes. The width and height are in
terms of elements. Contrary to how Fortran programmers might view memory layout, and in order to
keep compatibility with CUDA C, the width specifies the number of contiguous elements in the lead-
ing dimension, and the height is the number of such contiguous sections. kdir may be optional; for
more information, refer to Data Transfer Using Runtime Routines. If kdir is specified, it must be one
of the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDe-
viceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case
the width and height are in term of bytes.

cudaMemcpy2D is available in device code starting in CUDA 5.0.
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3.9.32. cudaMemcpy2DArrayToArray

integer function cudaMemcpy2DArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, width, height, kdir)

type(cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMemcpy2DArrayToArray copies array data to and from the device.

3.9.33. cudaMemcpy2DAsync

integer function cudaMemcpy2DAsync(dst, dpitch, src, spitch, width,
height, kdir, stream)

cudaMemcpy2D copies data from one location to another. dst and src may be any device or host
array, of a supported type specified in Device Code Intrinsic Datatypes. The width and height are in
terms of elements. Contrary to how Fortran programmers might view memory layout, and in order to
keep compatibility with CUDA C, the width specifies the number of contiguous elements in the lead-
ing dimension, and the height is the number of such contiguous sections. kdir may be optional; for
more information, refer to Data Transfer Using Runtime Routines. If kdir is specified, it must be one
of the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDe-
viceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case
the width and height are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream
by passing a non-zero stream argument, otherwise the stream argument is optional and defaults to
zero.

cudaMemcpy2DAsync is available in device code starting in CUDA 5.0.

3.9.34. cudaMemcpy2DFromArray

integer function cudaMemcpy2DFromArray(dst, dpitch, srca, srcx, srcy,
width, height, kdir)
type(cudaArrayPtr) :: srca
integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array data to and from the device.

3.9.35. cudaMemcpy2DToArray

integer function cudaMemcpy2DToArray(dsta, dstx, dsty, src,
spitch, width, height, kdir)
type(cudaArrayPtr) :: dsta
integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array data to and from the device.
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3.9.36. cudaMemcpy3D

integer function cudaMemcpy3D(p)
type(cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the data held in the
derived type p.

3.9.37. cudaMemcpy3DAsync

integer function cudaMemcpy3D(p, stream)
type(cudaMemcpy3DParms) :: p
integer :: stream

cudaMemcpy3DAsync copies elements from one 3D array to another as specified by the data held in
the derived type p.

This function operates on page-locked host memory only. The copy can be associated with a stream
by passing a non-zero stream argument.

3.9.38. cudaMemGetinfo

integer function cudaMemGetInfo( free, total )
integer(kind=cuda_count_kind) :: free, total

cudaMemGetInfo returns the amount of free and total memory available for allocation on the device.
The returned values units are in bytes.

3.9.39. cudaMemPrefetchAsync

! Prior to CUDA 13.0
integer function cudaMemPrefetchAsync(devptr, count, device, stream)

integer(kind=cuda_count_kind) :: count
integer(4) :: device
integer(kind=cuda_stream_kind) :: stream

! CUDA 13.0 and after
integer function cudaMemPrefetchAsync(devptr, count, location, flags, stream)
integer function cudaMemAdvise(devptr, count, advice, location)

integer(kind=cuda_count_kind) :: count
type(cudaMemLocation) :: location
integer(4) :: flags
integer(kind=cuda_stream_kind) :: stream

cudaMemPrefetchAsync prefetches memory to the specified destination device. devptr may be any
managed memory scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The
count is in terms of elements. Alternatively, devptr may be of TYPE(C_DEVPTR), in which case the
count is in terms of bytes.
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The device argument specifies the destination device. The stream argument specifies which stream
to enqueue the prefetch operation on.

Passing in cudaCpuDevicelId for the device, which is defined as a parameter in the cudafor module,
will prefetch the data to CPU memory.

Starting with CUDA 13.0, the API has changed to take a location derived type, containing a type and
id field. Possible values for location type are cudaMemLocationTypeInvalid, cudaMemLocation-
TypeNone, cudaMemLocationTypeDevice, cudaMemLocationTypeHost, cudaMemLocationType-
HostNuma, and cudaMemLocationTypeHostNumaCurrent. Currently the flags argument must be
zero.

integer function cudaMemset(devptr, value, count)

cudaMemset sets a location or array to the specified value. devptr may be any device scalar or array
of a supported type specified in . The value must match in type and
kind. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case the
count is in term of bytes, and the lowest byte of value is used.

integer function cudaMemsetAsync(devptr, value, count, stream)

cudaMemsetAsync sets a location or array to the specified value. devptr may be any device scalar
or array of a supported type specified in . The value must match in
type and kind. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which
case the count is in term of bytes, and the lowest byte of value is used. The memory set operation
is associated with the stream specified.

integer function cudaMemset2D(devptr, pitch, value, width, height)

cudaMemset2D sets an array to the specified value. devptr may be any device array of a supported
type specified in . The value must match in type and kind. The pitch,
width, and height are in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case
the pitch, width, and height are in terms of bytes, and the lowest byte of value is used. Contrary
to how Fortran programmers might view memory layout, and in order to keep compatibility with CUDA
C, the width specifies the number of contiguous elements in the leading dimension, and the height is
the number of such contiguous sections.
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3.9.43. cudaMemset3D

integer function cudaMemset3D(pitchptr, value, cext)
type(cudaPitchedPtr) :: pitchptr
integer :: value
type(cudaExtent) :: cext

cudaMemset3D sets elements of an array, the extents in each dimension specified by cext, which was
allocated with cudaMalloc3D to a specified value.

3.10. Unified Addressing and Peer Device
Memory Access

Use the functions in this section for managing multiple devices from the same process and threads.

For a complete explanation of the purpose and function of each routine listed here, refer to
the Unified Addressing and Peer Device Memory Access sections at https://docs.nvidia.com/cuda/
cuda-runtime-api.

3.10.1. cudaDeviceCanAccessPeer

integer function cudaDeviceCanAccessPeer( canAccessPeer, device, peerDevice )
integer :: canAccessPeer, device, peerDevice

cudaDeviceCanAccessPeer returns in canAccessPeer the value 1 if the device argument can ac-
cess memory in the device specified by the peerDevice argument.

3.10.2. cudaDeviceDisablePeerAccess

integer function cudaDeviceDisablePeerAccess ( peerDevice )
integer :: peerDevice

cudaDeviceDisablePeerAccess disables the ability to access memory on the device specified by
the peerDevice argument by the current device.

3.10.3. cudaDeviceEnablePeerAccess

integer function cudaDeviceEnablePeerAccess ( peerDevice, flags )
integer :: peerDevice, flags

cudaDeviceEnablePeerAccess enables the ability to access memory on the device specified by the
peerDevice argument by the current device. Currently, flags must be zero.
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3.10.4. cudaPointerGetAttributes

integer function cudaPointerGetAttributes( attr, ptr )
type(cudaPointerAttributes), intent(out) :: attr

cudaPointerGetAttributes returns the attributes of a device or host pointer in the attributes type.

ptr may be any host or device scalar or array of a supported type specified in Datatypes Allowed. It
may also be of type C_PTR or C_DEVPTR. It may have the host, device, managed, or pinned attribute.

3.11. Version Management

Use the functions in this section for version management.

For a complete explanation of the purpose and function of each routine listed here, refer to the Version
Management section at https://docs.nvidia.com/cuda/cuda-runtime-api.

3.11.1. cudaDriverGetVersion

integer function cudaDriverGetVersion(iversion)
integer :: iversion

cudaDriverGetVersion returns the version number of the installed CUDA driver as iversion. If no
driver is installed, then it returns O as iversion.

This function automatically returns cudaErrorInvalidValue if the iversion argument is NULL.

3.11.2. cudaRuntimeGetVersion

integer function cudaRuntimeGetVersion(iversion)
integer :: iversion

cudaRuntimeGetVersion returns the version number of the installed CUDA Runtime as iversion.

This function automatically returns cudakErrorInvalidValue if the iversion argumentis NULL.

3.12. Profiling Management

Use the functions in this section for profiling management.

For a complete explanation of the purpose and function of each routine listed here, refer to the Profiler
Control section at https://docs.nvidia.com/cuda/cuda-runtime-api.
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3.12.1. cudaProfilerStart

subroutine cudaProfilerStart()

cudaProfilerStart enables profile collection by the active profilng tool.

3.12.2. cudaProfilerStop

subroutine cudaProfilerStop()

cudaProfilerStop disables profile collection by the active profilng tool.

3.13. CUDA Graph Management

Use the functions in this section for CUDA Graph management, the capturing and replaying of CUDA
Graphs from CUDA Fortran.

For a complete explanation of the purpose and function of each routine listed here, refer to the CUDA
Graph section here https://docs.nvidia.com/cuda/cuda-c-programming-guide.

CUDA Fortran provides three types for managing cuda graphs:

TYPE cudaGraph
TYPE(C_PTR) :: graph
END TYPE cudaGraph

TYPE cudaGraphExec
TYPE(C_PTR) :: exec
END TYPE cudaGraphExec

TYPE cudaGraphNode

TYPE(C_PTR) :: node
END TYPE cudaGraphNode

3.13.1. cudaGraphCreate

integer function cudaGraphCreate( graph, flags )
type(cudagraph), intent(out) :: graph
integer :: flags

cudaGraphCreate creates an empty graph.
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3.13.2. cudaGraphDestroy

integer function cudaGraphDestroy( graph )
type(cudagraph) :: graph

cudaGraphDestroy releases any resources associated with the given graph.

3.13.3. cudaGraphExecDestroy

integer function cudaGraphExecDestroy( graphExec )
type(cudagraphexec) :: graphExec

cudaGraphExecDestroy releases any resources associated with the given graphExec.

3.13.4. cudaGraphlnstantiate

integer function cudaGraphInstantiate( graphExec, graph, flags )
type(cudagraphexec), intent(out) :: graphExec
type(cudagraph), intent(in) :: graph
integer, intent(in) :: flags

cudaGraphInstantiate instantiates the graphExec object from the specified graph.

3.13.5. cudaGraphLaunch

integer function cudaGraphLaunch( graphExec, stream )
type(cudagraphexec) :: graphExec
integer(kind=cuda_stream_kind), intent(in) :: stream

cudaGraphLaunch begins an asynchronous graph launch or replay on the specified stream.

3.13.6. cudaStreamBeginCapture

integer function cudaStreamBeginCapture( stream, mode )
integer(kind=cuda_stream_kind), intent(in) :: stream
integer, intent(in) :: mode

cudaStreamBeginCapture begins a graph capture on the specified stream.
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3.13.7. cudaStreamEndCapture

integer function cudaStreamEndCapture( stream, graph )
integer(kind=cuda_stream_kind), intent(in) :: stream
type(cudagraph), intent(out) :: graph

cudaStreamEndCapture ends a graph capture on the specified stream and provides a cudagraph
for further use.

3.13.8. cudaStreamlsCapturing

integer function cudaStreamIsCapturing( stream, status )
integer(kind=cuda_stream_kind), intent(in) :: stream
integer, intent(out) :: status

cudaStreamIsCapturing queries the capture status in the specified stream.
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Chapter 4. Examples

This section contains examples with source code.

4.1. Matrix Multiplication Example

This example shows a program to compute the product C of two matrices A and B, as follows:
» Each thread block computes one 16x16 submatrix of C;
» Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size (32) and
is less than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program computes
the products by accumulating submatrix products; it reads a block submatrix of A and a block subma-
trix of B, accumulates the submatrix product, then moves to the next submatrix of A rowwise and of
B columnwise. The program caches the submatrices of A and B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not been highly
optimized for execution time.

4.1.1. Source Code Listing

Matrix Multiplication

I start the module containing the matmul kernel
module mmul_mod
use cudafor
contains
I mmul_kernel computes A*B into C where
' A is NxM, B is MxL, C is then NxL
attributes(global) subroutine mmul_kernel( A, B, C, N, M, L )
real :: A(N,M), B(M,L), C(N,L)
integer, value :: N, M, L
integer :: i, j, kb, k, tx, ty
I submatrices stored in shared memory
real, shared :: Asub(16,16), Bsub(16,16)
I the value of C(i,j) being computed
real :: Cij

(continues on next page)
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(continued from previous page)

I Get the thread indices
tx = threadidx%x
ty = threadidx%y

! This thread computes C(i,j) = sum(A(i,:) * B(:,7))
i = (blockidx%x-1) * 16 + tx
j = (blockidx%y-1) * 16 + ty
Cij = 0.0
I Do the k loop in chunks of 16, the block size
do kb = 1, M, 16
I Fill the submatrices
I Each of the 16x16 threads in the thread block
I loads one element of Asub and Bsub
Asub(tx,ty) = A(i,kb+ty-1)
Bsub(tx,ty) = B(kb+tx-1,7j)
I Wait until all elements are filled
call syncthreads()
I Multiply the two submatrices
I Each of the 16x16 threads accumulates the
I dot product for its element of C(i,J)

do k = 1,16
Cij = Cij + Asub(tx,k) * Bsub(k,ty)
enddo

I Synchronize to make sure all threads are done
I reading the submatrices before overwriting them
I in the next iteration of the kb loop
call syncthreads()
enddo
I Each of the 16x16 threads stores its element
I to the global C array
C(i,j) = Cij
end subroutine mmul_kernel

! The host routine to drive the matrix multiplication
subroutine mmul( A, B, C )
real, dimension(:,:) :: A, B, C
I allocatable device arrays
real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
I dim3 variables to define the grid and block shapes
type(dim3) :: dimGrid, dimBlock

Get the array sizes

!
N = size( A, 1)
M = size( A, 2 )
L = size( B, 2 )
I

! Allocate the device arrays
allocate( Adev(N,M), Bdev(M,L), Cdev(N,L) )

B to the device
,1:M)

an
(1
Bdev(:,:) = B(1:M,1:L)

=

! Create the grid and block dimensions
dimGrid = dim3( N/16, L/16, 1 )
(continues on next page)
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dimBlock = dim3( 16, 16, 1 )
call mmul_kernel<<<dimGrid, dimBlock>>>( Adev, Bdev, Cdev, N, M, L)

I Copy the results back and free up memory
C(1:N,1:L) = Cdev

deallocate( Adev, Bdev, Cdev )
end subroutine mmul
end module mmul_mod

This source code module mmul_mod has two subroutines. The host subroutine mmul is a wrapper for
the kernel routine mmul_kernel.

MMUL

This host subroutine has two input arrays, A and B, and one output array, C, passed as assumed-shape
arrays. The routine performs the following operations:

It determines the size of the matricesin N, M, and L.

It allocates device memory arrays Adev, Bdev, and Cdev.

It copies the arrays A and B to Adev and Bdev using array assignments.
It fills dimGrid and dimBlock to hold the grid and thread block sizes.
It calls mmul_kernel to compute Cdev on the device.

It copies Cdev back from device memory to C.

It frees the device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed between the
copy operations and the kernel launch.

MMUL_KERNEL

This kernel subroutine has two device memory input arrays, A and B, one device memory output array,
C, and three scalars giving the array sizes. The thread executing this routine is one of 16x16 threads
cooperating in a thread block. This routine computes the dot product of A(i, :)*B( :, j) for a partic-
ular value of i and j, depending on the block and thread index.

It performs the following operations:
It determines the thread indices for this thread.
It determines the i and j indices, for which element of " * C(i,j) " * it is computing.
It initializes a scalar in which it will accumulate the dot product.
It steps through the arrays A and B in blocks of size 16.
For each block, it does the following steps:
It loads one element of the submatrices of A and B into shared memory.
It synchronizes to make sure both submatrices are loaded by all threads in the block.

It accumulates the dot product of its row and column of the submatrices.
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» It synchronizes again to make sure all threads are done reading the submatrices before start-

ing the next block.

» Finally, it stores the computed value into the correct element of C.

4.2. Mapped Memory Example

This example demonstrates the use of CUDA API supported in the cudafor module for mapping page-
locked host memory into the address space of the device. It makes use of the iso_c_binding c_ptr
type and the cudafor c_devptr types tointerface to the C routines, then the Fortran c_f_pointer

call to map the types to Fortran arrays.
Mapped Memory

module atest

contains
attributes(global) subroutine matrixinc(a,n)
real, device :: a(n,n)
integer, value :: n

i = (blockidx%x-1)*10 + threadidx%x
j= (blockidx%y-1)*10 + threadidx%y

if ((i .le. n) .and. (j .le. n)) then

a(i,j) = a(di,j) + 1.0
endif
return
end subroutine
end module

program test

use cudafor

use atest

use, intrinsic :: iso_c_binding

type(c_ptr) :: a

type(c_devptr) :: a_d

real, dimension(:,:), pointer :: fa

real, dimension(:,:), allocatable, device :: fa_d
type(dim3) :: blcks, thrds

istat= cudaSetDeviceFlags(cudadevicemaphost)
istat = cudaHostAlloc(a, 100*100*sizeof(1.0), cudaHostAllocMapped)

I can move the c_ptr to an f90 pointer
call c_f_pointer(a, fa, (/ 100, 100 /) )

! update the data on the host
do j =1, 100
do i=1, 100
fa(i,j)= real(i) + j*;100.0
end do
end do

! get a device pointer to the same array
istat= cudaHostGetDevicePointer(a_d, a, 9)

(continues on next page)
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I can move the c_devptr to an device allocatable array
call c_f_pointer(a_d, fa_d, (/ 100, 1060 /) )
I

Blcks

thrds
I

call matrixinc <<<blcks, thrds>>>(fa_d, 100)

dim3(10,16,1)
dim3(10,10,1)

I need to synchronize
istat = cudaDeviceSynchronize()
I
do j = 1, 100
doi=1, 100
if (fa(i,j) .ne. (real(i) + j*100.0 + 1.0)) print *,"failure", i, j
end do
end do
I
istat = cudaFreeHost(a)
end

4.3. Cublas Module Example

This example demonstrates the use of the cublas module, the cublasHandle type, the three forms
of cublas calls, and the use of mapped pinned memory, all within the framework of an multi-threaded
OpenMP program.

Cublas Module

program tdot

I Compile with "nvfortran -mp tdot.cuf -cudalib=cublas -1blas
I Set OMP_NUM_THREADS environment variable to run with

! up to 2 threads, currently.

I

use cublas

use cudafor

use omp_lib

I

integer, parameter :: N = 10000

real*8 x(N), y(N), z

real*8, device, allocatable :: xd@(:), ydo
real*8, device, allocatable :: xd1(:), yd1l
real*8, allocatable :: zh(:)

real*8, allocatable, device :: zd(:)
integer, allocatable :: istats(:), offs(:)
real*8 reslt(3)

type(C_DEVPTR) :: zdptr

type(cublasHandle) :: h

(:)
()

I Max at 2 threads for now
nthr = omp_get_max_threads()
if (nthr .gt. 2) nthr = 2
call omp_set_num_threads(nthr)
(continues on next page)
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! Run on host

call random_number(x)
call random_number (y)
z = ddot(N,x,1,y,1)
print *, "HostSerial",z

! Create a pinned memory spot

I'Somp PARALLEL private(i,istat)
i = omp_get_thread_num()
istat = cudaSetDeviceFlags(cudaDeviceMapHost)
istat = cudaSetDevice(1i)

I'Somp end parallel

allocate(zh(512),align=4096)

zh = 0.0d0
istat = cudaHostRegister(C_LOC(zh(1)), 4096, cudaHostRegisterMapped)
istat = cudaHostGetDevicePointer(zdptr, C_LOC(zh(1)), ©)

call c_f_pointer(zdptr, zd, 512 )

! CUDA data allocation, run on one card, blas interface

allocate(xd@(N),yda(N))

xd@ = x

ydo =y

z = ddot(N, xde,1,yde, 1)

ii =1

reslt(ii)

ii = ii +

deallocate(xd®)
de

=z
.
(
deallocate(ydo)

! Break up the array into sections
nsec = N / nthr
allocate(istats(nthr),offs(nthr))
offs = (/ (i*nsec,i=0,nthr-1) /)

I Allocate and initialize the arrays
I'Somp PARALLEL private(i,istat)
i = omp_get_thread_num() + 1
if (i .eq. 1) then
allocate(xd@(nsec), yd@(nsec))
xd@ = x(offs(i)+1:0ffs(i)+nsec)
yde = y(offs(i)+1:0ffs(i)+nsec)
else
allocate(xd1(nsec), ydl(nsec))

xd1 = x(offs(i)+1:0ffs(i)+nsec)
yd1 = y(offs(i)+1:0ffs(i)+nsec)
endif

I'Somp end parallel

! Run the blas kernel using cublas name
I'Somp PARALLEL private(i,istat,z)
i = omp_get_thread_num() + 1
if (i .eq. 1) then
z = cublasDdot(nsec,xd®,1,ydo, 1)
else
z = cublasDdot(nsec,xd1,1,yd1,1)

(continues on next page)
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endif

zh(i) = z
I'Somp end parallel
z = zh(1) + zh(2)
reslt(ii) = z
ii = ii + 1
zh = 0.0d0

I Now write to our pinned area with the v2 blas
ISomp PARALLEL private(h,i,istat)

i = omp_get_thread_num() + 1

h = cublasGetHandle()

istat
if (i

istats(i) = cublasDdot_v2(h, nsec, xd@, 1, yde, 1, zd(1))

else

istats(i) = cublasDdot_v2(h, nsec, xd1, 1, yd1, 1, zd(2))

endif
istat
istat

= cublasSetPointerMode(h, CUBLAS_POINTER_MODE_DEVICE)

.eq. 1) then

= cublasSetPointerMode(h, CUBLAS_POINTER_MODE_HOST)

= cudaDeviceSynchronize()

I'Somp end parallel

z = zh(1)
reslt(ii)

+ zh(2)

= Z

print *,"Device, 3 ways:",reslt

I Deallocate the arrays
I'Somp PARALLEL private(i)
i = omp_get_thread_num() + 1

if (i

.eq. 1) then

deallocate(xd@, ydo)

else

deallocate(xd1,yd1)

endif

I'Somp end parallel
deallocate(istats, offs)

end

(continued from previous page)

4.4. CUDA Device Properties Example

This example demonstrates how to access the device properties from CUDA Fortran.

CUDA Device Properties

An example of getting device properties in CUDA Fortran

nvfortran cufinfo.cuf

I
I Build with
I
!

(continues on next page)
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program cufinfo
use cudafor
integer istat, num, numdevices
type(cudaDeviceProp) :: prop
istat = cudaGetDeviceCount(numdevices)
do num = 0, numdevices-1
istat = cudaGetDeviceProperties(prop, num)
call printDeviceProperties(prop, num)
end do
end
!
subroutine printDeviceProperties(prop, num)
use cudafor
type(cudaDeviceProp) :: prop
integer num
ilen = verify(prop%name, ' ', .true.)
write (*,900) "Device Number: " , num
write (*,901) "Device Name: "

,prop%name(1:ilen)

(continued from previous page)

write (*,903) "Total Global Memory: ", real(prop%totalGlobalMem)/1e9," Gbytes"

write (*,902) "sharedMemPerBlock: " ,prop%sharedMemPerBlock," bytes"
write (*,900) "regsPerBlock: " ,prop%regsPerBlock

write (*,900) "warpSize: " ,prop%warpSize

write (*,900) "maxThreadsPerBlock: " ,prop%maxThreadsPerBlock

write (*,904) "maxThreadsDim: " ,prop%maxThreadsDim

write (*,904) "maxGridSize: " ,prop%maxGridSize

write (*,902) "Total Const Memory: " ,prop%totalConstMem," bytes"
write (*,905) "Compute Capability Revision: ",prop%major,prop%minor
write (*,902) "TextureAlignment: " ,prop%textureAlignment, " bytes"
write (*,900) "multiProcessorCount: ",prop%multiProcessorCount

write (*,906) "integrated: " ,prop%integrated

write (*,906) "canMapHostMemory: " , prop%canMapHostMemory

write (*,906) "ECCEnabled: " ,prop%ECCEnabled

write (*,906) "UnifiedAddressing: " ,prop%unifiedAddressing

write (*,900) "L2 Cache Size: " ,prop%l2CacheSize

write (*,900) "maxThreadsPerSMP: " ,prop%maxThreadsPerMultiProcessor

900 format (a,i®@)

901 format (a,a)

902 format (a,i®@,a)

903 format (a,f5.3,a)

904 format (a,2(i@,1x, 'x',1x),10)
905 format (a,i@,'.',1i@)

906 format (a,l1@)

return

end

4.5. CUDA Asynchronous Memory Transfer

Example

This example demonstrates how to perform asynchronous copies to and from the device using the

CUDA API from CUDA Fortran.

CUDA Asynchronous Memory Transfer
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! This code demonstrates strategies hiding data transfers via
! asynchronous data copies in multiple streams

module kernels_m
contains
attributes(global) subroutine kernel(a, offset)
implicit none
real :: a(*)
integer, value :: offset
integer :: i
real :: c, s, x
i = offset + threadIdx%x + (blockIdx%x-1)*blockDim%x
x = threadIdx%x + (blockIdx%x-1)*blockDim%x
s = sin(x); ¢ = cos(x)
a(i) = a(i) + sqrt(s**2+c**2)
end subroutine kernel
end module kernels_m

program testAsync
use cudafor
use kernels_m
implicit none
integer, parameter :: blockSize = 256, nStreams = 8
integer, parameter :: n = 16*1024*blockSize*nStreams
real, pinned, allocatable :: a(:)
real, device :: a_d(n)
integer(kind=cuda_Stream_Kind) :: stream(nStreams)
type (cudaEvent) :: startEvent, stopEvent, dummyEvent
real :: time
integer :: i, istat, offset, streamSize = n/nStreams
logical :: pinnedFlag
type (cudaDeviceProp) :: prop

istat = cudaGetDeviceProperties(prop, 9)
write(*," (' Device: ', a,/)") trim(prop%name)

I allocate pinned host memory
allocate(a(n), STAT=istat, PINNED=pinnedFlag)
if (istat /= @) then
write(*,*) 'Allocation of a failed'
stop
else
if (.not. pinnedFlag) write(*,*) 'Pinned allocation failed'
end if

I create events and streams
istat = cudaEventCreate(startEvent)
istat = cudaEventCreate(stopEvent)
istat = cudaEventCreate(dummyEvent)
do i = 1, nStreams

istat = cudaStreamCreate(stream(i))
enddo

I baseline case - sequential transfer and execute
a=290
istat = cudaEventRecord(startEvent,9)

(continues on next page)
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a_d = a
call kernel<<<n/blockSize, blockSize>>>(a_d, 0)
a=ald

istat = cudaEventRecord(stopEvent, 0)

istat = cudaEventSynchronize(stopEvent)

istat = cudaEventElapsedTime(time, startEvent, stopEvent)
write(*,*) 'Time for sequential transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval(abs(a-1.0))

I asynchronous version 1: loop over {copy, kernel, copy}
a==0
istat = cudaEventRecord(startEvent,0)

do i = 1, nStreams
offset = (i-1)*streamSize
istat = cudaMemcpyAsync(a_d(offset+1),a(offset+1),streamSize, stream(i))
call kernel<<<streamSize/blockSize, blockSize, &
0, stream(i)>>>(a_d,offset)
istat = cudaMemcpyAsync(a(offset+1),a_d(offset+1),streamSize, stream(i))
enddo
istat = cudaEventRecord(stopEvent, 0)
istat = cudaEventSynchronize(stopEvent)
istat = cudaEventElapsedTime(time, startEvent, stopEvent)
write(*,*) 'Time for asynchronous V1 transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval(abs(a-1.0))

I asynchronous version 2:
I Joop over copy, loop over kernel, loop over copy
a==90
istat = cudaEventRecord(startEvent,9)
do i = 1, nStreams

offset = (i-1)*streamSize

istat = cudaMemcpyAsync(a_d(offset+1),a(offset+1),streamSize, stream(i))
enddo
do i = 1, nStreams

offset = (i-1)*streamSize

call kernel<<<streamSize/blockSize, blockSize, &

0, stream(i)>>>(a_d,offset)

enddo
do i = 1, nStreams

offset = (i-1)*streamSize

istat = cudaMemcpyAsync(a(offset+1),a_d(offset+1),streamSize, stream(i))
enddo
istat = cudaEventRecord(stopEvent, 0)
istat = cudaEventSynchronize(stopEvent)
istat = cudaEventElapsedTime(time, startEvent, stopEvent)

write(*,*) 'Time for asynchronous V2 transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval(abs(a-1.0))
I cleanup

istat = cudaEventDestroy(startEvent)
istat = cudaEventDestroy(stopEvent)
istat = cudaEventDestroy(dummyEvent)

do i = 1, nStreams
istat = cudaStreamDestroy(stream(i))

(continues on next page)
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(continued from previous page)

enddo
deallocate(a)

end program testAsync

4.6. Managed Memory Example

This example demonstrates the use of CUDA managed memory in an OpenMP program. In the main
program, one stream is created for each OpenMP thread. A call to cudaforSetDefaultStream is made
to set that as the default stream for all subsequent high-level language constructs. The default stream
is used explicitly in the launch configuration of the CUF kernel, and also as the thread’s input argument
for synchronization. Once the cudaStreamSynchronize has occurred, this thread can safely access the
managed data on the host, in this case in the any() function, even while other threads may be in the
middle of their kernel launch.

Managed Memory and OpenMP in CUDA Fortran

program ompcuf

use cudafor

use omp_lib

integer(kind=cuda_stream_kind) :: mystream

ISomp parallel private(istat,mystream)
istat = cudaStreamCreate(mystream)

istat = cudaforSetDefaultstream(mystream)
call ompworker ()

ISomp end parallel

end

subroutine ompworker()
use cudafor

use omp_lib

real, managed :: a(10000)
j = omp_get_thread_num()
a = real(j)

IScuf kernel do <<< *, * stream=cudaforGetDefaultStream() >>>
do i =1, 10000
a(i) = a(i) + 1.0
end do
istat = cudaStreamSynchronize(cudaforGetDefaultStream())

if (any(a.ne.real(j+1))) then
print *,"Found error on ",j
else
print *,"Looks good on ",j
endif
end
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4.7. WMMA Tensor Core Example

This example demonstrates the use of NVIDIA Volta tensor cores to perform real(2) matrix multiply.
The result is a real(4) matrix. This example utilizes the definitions in cuf_macros.CUF, a file which is
shipped in the examples directory of the NVIDIA packages. The actual derived types currently used
in Fortran tensor core programming may change at a later date, but these macros will always be sup-
ported. The program shows the use of the Fortran real(2) data type, both in host and device code. Fur-
ther examples, highlighting overloaded device functions which take the WMMASubMatrix types, and
which use a vector of real(2) data for improved performance, can be found in the examples directory

of NVIDIA packages.

Tensor Core Programming in CUDA Fortran

#include "cuf_macros.CUF"

module params

integer, parameter :: m = 16
integer, parameter :: n = 16
integer, parameter :: k = 16

end module

module mod1

use params ! Define matrix m, n, k

contains
attributes(global) subroutine testi(a,b,c)
use wmma
real(2), device :: a(m,k)
real(2), device :: b(k,n)
real(4), device :: c(m,n)

WMMASubMatrix(WMMAMatrixA, 16, 16, 16, Real, WMMAColMajor)
WMMASubMatrix (WMMAMatrixB, 16, 16, 16, Real, WMMAColMajor)
WMMASubMatrix (WMMAMatrixC, 16, 16, 16, Real, WMMAKind4)
sc = 0.0
call wmmaLoadMatrix(sa, a(1,1), m)
call wmmaLoadMatrix(sb, b(1,1), k)
call wmmaMatmul(sc, sa, sb)
call wmmaStoreMatrix(c(1,1), sc, m)
end subroutine
end module

program main

use cudafor

use mod1

real(2), managed :: a(m,k)
real(2), managed :: b(k,n)

real(4), managed :: c(m,n)
a = real(1.0,kind=2)
b=2.0_2

c =0.0

call testl <<<1,32>>> (a,b,c)
istat = cudaDeviceSynchronize()
print *,all(c.eq.2*k)

end program

1. sa
: sb
11 sc
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4.8. OpenACC Interoperability Example

This example demonstrates two ways that CUDA Fortran and OpenACC can be used together in the
same program, both in sharing data, and in control flow. At the lowest level, we have slightly modi-
fied the BLAS daxpy subroutine by inserting it in a module, making it an OpenACC vector routine, and
adding OpenACC vector loop directives. The second file contains pure CUDA Fortran, a global subrou-
tine which calls daxpy with the same arguments for each thread block. At the highest level, we have
a Fortran main program which uses OpenACC for data management, but calls both a CUDA Fortran
global function and overloaded CUDA Fortran reductions via the host_data directive. This directive
instructs the compiler to pass the corresponding device pointers, which are managed implicitly by the
OpenACC runtime, for the x and y arguments.

Mixing CUDA Fortran and OpenACC

module daxpy_mod

contains

subroutine daxpy(n,da,dx, incx,dy, incy)
ISacc routine vector nohost

constant times a vector plus a vector.

uses unrolled loops for increments equal to one.

jack dongarra, linpack, 3/11/78.

modified 12/3/93, array(1) declarations changed to array(*)

integer, value :: n, incx, incy
double precision, value :: da
double precision dx(*),dy(*)
integer 1i,ix,1iy

if(n.le.B@)return
if (da .eq. 0.06d0) return
if(incx.eq.1.and.incy.eq.1) then

! code for both increments equal to 1

ISacc loop vector
doi=1,n
dy(i) = dy(i) + da*dx(i)
end do
else
I
! code for unequal increments or equal increments
! not equal to 1
I
ISacc loop vector
doi=1,n
if(incx.1t.0) then
ix = 1 + (-n+i) * incx
else
ix = 1 + (i-1) * incx
end if
if(incy.1t.0) then
iy = 1 + (-n+i) * incy
else
iy = 1 + (i-1) * incy
end if

(continues on next page)
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(continued from previous page)
dy(iy) = dy(iy) + da*dx(ix)
end do
end if
return
end
end module daxpy_mod

module mdaxpy
use daxpy_mod

contains
attributes(global) subroutine mdaxpy(x,y,n)
integer, value :: n
real(8), device :: x(n), y(n,n)
real(8) :: a
a = 0.5do

j = blockIdx%x
call daxpy(n, a, x, 1, y(1,3), 1)
return
end subroutine
end module

Care must be taken in the CUDA code, where the programming model allows much flexibility in how the
threads are applied, to follow what OpenACC expects when calling into an OpenACC routine. Calling an
OpenACC vector routine from every thread in a thread block, passing the same parameters, is usually
safe. Calling OpenACC sequential routines from a CUDA thread is also safe. This is a generally a new
feature and has not yet been thoroughly tested.

program tdaxpy

I Compile with "nvfortran -cuda daxpy.F mdaxpy.CUF tdaxpy.F98"
use cudafor

use mdaxpy

integer, parameter :: n = 100
real(8) :: x(n), y(n,n)

X = 2.0d0

y = 3.0d0o

ISacc data copyin(x), copy(y)

ISacc host_data use_device(x,y)

call mdaxpy <<<n, n>>> (x, y, n)
print *,sum(y),maxval(y).eq.minval(y)
ISacc end host_data

ISacc end data

end program

There are many examples of calling CUDA code from within OpenACC compute regions. The examples
directory in the NVIDIA package has several, from Fortran, C, and C++. There are also many examples
of using the OpenACC host_data directive. More information on that directive, and other directives,
can be found in the OpenACC Specification.
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All information provided in this document is provided as-is, for your informational purposes only and
is subject to change at any time without notice. Reproduction of information in this document is per-
missible only if approved in advance by NVIDIA in writing. To obtain the latest information, please
contact your NVIDIA representative. Product or service performance varies by use, configuration and
other factors. Your costs and results may vary. No product or component is absolutely secure. TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, NVIDIA DISCLAIMS ALL WARRANTIES AND
REPRESENTATIONS OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY, RELATING TO OR
ARISING UNDER THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF TITLE,
NONINFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, USAGE OF TRADE
AND COURSE OF DEALING. NVIDIA products are not intended or authorized for use as critical compo-
nents in a system or application where the use of or failure of such system or application developed
with products, technology, software or services provided by NVIDIA could result in injury, death or
catastrophic damage.

Except for your permitted use of the information contained in this document, no license or right is
granted by implication, estoppel or otherwise. If this document directly includes or links to third-party
websites, products, services or information, please consult other sources to evaluate if and how to
use that information since NVIDIA does not support, endorse or assume any responsibility for any
third party offerings or its accuracy or usefulness.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR
ANY (1) INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR (Il) DAMAGES
FOR THE (A) COST OF PROCURING SUBSTITUTE GOODS OR (B) LOSS OF PROFITS, REVENUES, USE,
DATA OR GOODWILL ARISING OUT OF OR RELATED TO THIS DOCUMENT, WHETHER BASED ON
BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, AND
EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF A PARTY’S
REMEDIES FAIL THEIR ESSENTIAL PURPOSE. ADDITIONALLY, TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, NVIDIA'S TOTAL CUMULATIVE AGGREGATE LIABILITY FOR ANY AND ALL LIA-
BILITIES, OBLIGATIONS OR CLAIMS ARISING OUT OF OR RELATED TO THIS DOCUMENT WILL NOT
EXCEED FIVE U.S. DOLLARS (US$5).

Statements in this document that refer to future plans or expectations are forward-looking state-
ments. These statements are based on currently available information, beliefs, assumptions and in-
volve many risks and uncertainties that could cause actual results to differ materially from those ex-
pressed or implied in these statements. For more information on the factors that could cause actual
results to differ materially, see our most recent earnings release and SEC filings at

© NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and other NVIDIA marks are trade-
marks of NVIDIA Corporation or its affiliates. Other names and brands may be claimed as the property
of others.
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