& ACEELENTED
PRTTEN OMELULTING

NVIDIA HPC Compilers Reference Guide
Release 25.5

NVIDIA Corporation

May 19, 2025

Contents

1 Fortran Data Types

1.1 Fortran Scalars. e
1.2 FORTRAN Treal(2) e e
1.3 FORTRAN 77 Aggregate Data Type Extensions
1.4 Fortran 90 Aggregate Data Types (Derived Types) it
2 Cand C++ Data Types
2.1 Cand C++Scalars
2.2 Cand C++ Aggregate DataTypes i et
2.3 Classand Object Data Layout
2.4 Aggregate Alignment
2.5 Bit-field Alignment
2.6 Other Type KeywordsinCand C++ it ..
3 Command-Line Options Reference
3.1 HPC Compilers Option Summary e e e
3.1.1 Acceleration and Optimization-Related Compiler Options
3.1.2 Build-Related Options
3.1.3 Debug-Related Compiler Options
3.1.4 Linking and Runtime-Related Compiler Options
3.2 Generic Compiler Options e
3.2.1 e
322 -[N0JacC . . . e
3.23 -Bdynamic ...
3.24 -byteswapio
325 -
3.2.8 cC .
3.2.7 —ctHlibs Lo
328 —cUda . .
3.29 -cudalib .. e
3.2.10 -D .
3211 =d<arg> . . . e
3.2.12 -dryrun ..o e
3.2.13 drystdinc e
3214 -E L
3 215 SR e
3.2.16 -fast . .. e
3.2.17 -fex-limited-range
3.2.18 —flagcheck
3.2.19 -fortranlibs
3.2.20 -fMax-errorsS=<n> e e e
3221 HfpIC .
3.2.22 fPIC .

3223 mg . 32
3.2.24 -g77libs . .. 32
3.2.25 -gcc-toolchain=<path> 33
3.2.26 -gOPL . .. 33
3227 —GPU o o 34
3.228 -help . .. e 36
3.2.29 -l 38
3.230 -i2,-i4,-18 . . . 39
3.231 -K<flag> 39
3.2.32 -L . 41
3.233 <library> . . . e 41
3.2.34 M e 42
3.235 -M<nvflag> 42
3.2.36 M L 45
3.237 -march=<target> e 45
3.2.38 -mcmodel=<size> 46
3.2.39 -mcpu=<target>[<+extension..>] 46
3.2.40 -module <moduledir> 49
3.241 -[N0OIMP . .o 49
3.242 -mtune=<target> 50
3.2.43 -noswitcherror 51
3.244 -[nolnvmalloc e 51
3.2.45 -O<level> . . . 52
3246 S0 . . 53
3247 PG 54
3.2.48 -R<directory> e 54
3249 or 55
3250 rdand-r8 ... e 55
3251 arC . . e 55
3.2, 52 -S e 56
32,53 mS 56
3.254 -shared 57
3,255 -ShOW . . . e 57
3.2.56 ssilent .. e 57
3257 -soname L 58
3.258 -static e 58
3.2.59 -static-nvidia 59
3.260 -stdpar. e 59
3261 target 60
3.2.62 -time . . . e 60
3.2.63 -tp<target> 60
3.2.64 -[noltraceback e 63
3.2.65 -U . 63
3266 cU ..o 64
3.2.67 -V[release_number]. 64
3268 SV . 65
3.2.69 -W e 65
3.2.70 -Werror e e 66
B2.7T W o 66
B.2.72 XS 67
3.2.73 Xt 67
3.2.74 -XHNKer . . . e 68
33 C++ and C-specific Compiler Options 68
3.3.1 e 68

332 mA
333 —alias . oL e
3.3.4 -[no_lalternative_tokens
3.3 B
336 -[no_Jbool.
337 -[no_dbuiltin . ..
3.3.8 —[no_]lcompress_names e
3.3.9 —diag_error <number> . ..
3.3.10 -diag_remark <number>
3.3.11 —diag_suppress <number> e
3.3.12 -—diag_warning <number>
3.3.13 -display_error_number
3.3.14 -—e<number> . L e
3.3.15 —no_exceplions e
3.3.16 -fvisibility=<visibility>
3.3.17 =gnu_Version <SNUM> o oot e e e e e e e
3.3.18 —[nolllalign e
33,19 M
3.3.20 -MDI[<dfile>] e
3.3.21 -optk_allow_dollar_in_id_chars
3.3.22 P
3.3.23 -—pedantic e
3.3.24 -preinclude=<filename>
3.3.25 -[no_Jusing_std e
3.3.26 -Xfilename
3.4 -M Options by Category
3.4.1 Code Generation Controls
3.42 C/C++Llanguage Controls e
343 Environment Controls
3.4.4 FortranlLanguage Controls
3.45 Inlining Controls
3.46 OptimizationControls
3.4.7 Miscellaneous Controls
4 C++ Name Mangling
5 Pre-defined Compiler Macros
6 Runtime Environment
6.1 Linux Programming Model
6.1.1 x86-64 Function Calling Sequence
6.1.2 OpenPOWER Function Calling Sequence
6.1.3 Linux Fortran Supplement.
7 C++ Dialect Supported
7.1 C++17 Language Features Accepted
8 x86-64 C++ and C MMX/SSE/AVX Intrinsics
8.1 Using Intrinsic functions
8.1.1 Required Header File
8.1.2 Intrinsic Data Types e e
8.1.3 Intrinsic Example
8.2 x86-64 MMX IntrinsiCs e
8.3 x86-64 SSE INtrinsics
8.4 x86-64 ABM Intrinsics e

101

103

105
105
105
111
124

8.5 x86-64 AVX Intrinsics

9 Messages
9.1 Diagnostic Messages

9.2 Phase Invocation Messages i
9.3 Fortran Compiler Error Messages i

9.3.1 Message Format .
9.3.2 Message List . . .

94 Fortran Run-time Error Messages

9.4.1 Message Format .
9.4.2 Message List . . .

NVIDIA HPC Compilers Reference Guide, Release 25.5

This guide is part of a set of manuals that describe how to use the NVIDIA HPC Fortran, C++ and
C compilers. These compilers include the NVFORTRAN, NVC++ and NVC compilers. They work in con-
junction with an assembler, linker, libraries and header files on your target system, and include a CUDA
toolchain, libraries and header files for GPU computing. You can use the NVIDIA HPC compilers to de-
velop, optimize and parallelize applications for NVIDIA GPUs and x86-64 and Arm Server multicore
CPUs.

The NVIDIA HPC Compilers User’s Guide provides operating instructions for the NVIDIA HPC compilers
command-level development environment. The NVIDIA HPC Compilers Reference Guide contains de-
tails concerning the NVIDIA compilers’ interpretation of the Fortran, C++ and C language standards,
implementation of language extensions, and command-level compilation. Users are expected to have
previous experience with or knowledge of the Fortran, C++ and C programming languages. These
guides do not teach the Fortran, C++ or C programming languages.

This manual is intended for scientists and engineers using the NVIDIA HPC compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C++ and C as well
as parallel programming models such as CUDA, OpenACC and OpenMP in the software development
process, and you should have some level of understanding of programming. The NVIDIA HPC compilers
are available on a variety of NVIDIA GPUs and x86-64 and Arm CPU-based platforms and operating
systems. You need to be familiar with the basic commands available on your system.

Your system needs to be running a properly installed and configured version of the NVIDIA HPC com-
pilers. For information on installing NVIDIA HPC compilers, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:
American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

ISO/IEC 1539-1 : 1991, Information technology - Programming Languages - Fortran, Geneva,
1991 (Fortran 90).

ISO/IEC 1539-1 : 1997, Information technology - Programming Languages - Fortran, Geneva,
1997 (Fortran 95).

ISO/IEC 1539-1 : 2004, Information technology - Programming Languages - Fortran, Geneva,
2004 (Fortran 2003).

ISO/IEC 1539-1: 2010, Information technology - Programming Languages - Fortran, Geneva,
2010 (Fortran 2008).

ISO/IEC 1539-1 : 2018, Information technology - Programming Languages - Fortran, Geneva,
2018 (Fortran 2018).

Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge,
Mass, 1997.

The Fortran 2003 Handbook, Adams et al, Springer, 2009.

Contents 1

NVIDIA HPC Compilers Reference Guide, Release 25.5

OpenACC Application Program Interface, Version 2.7, November 2018,

OpenMP Application Program Interface, Version 5.0, November 2018,

Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

Military Standard, Fortran, DOD Supplement to American National Standard Programming Lan-
guage Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

American National Standard Programming Language C, ANSI X3.159-1989.

ISO/IEC 9899:1990, Information technology - Programming Languages - C, Geneva, 1990 (C90).
ISO/IEC 9899:1999, Information technology - Programming Languages - C, Geneva, 1999 (C99).
ISO/IEC 9899:201 1, Information Technology - Programming Languages - C, Geneva, 2011 (C11).

ISO/IEC 14882:2011, Information Technology - Programming Languages - C++, Geneva, 2011
(C++11).

ISO/IEC 14882:2014, Information Technology - Programming Languages - C++, Geneva, 2014
(C++14).

ISO/IEC 14882:2017, Information Technology - Programming Languages - C++, Geneva, 2017
(C++17).

This manual contains detailed reference information about specific aspects of the compiler, such as
the details of compiler options, directives, data types supported, and more. It contains these sections:

describes the data types that are supported by the NVIDIA HPC Fortran,
C++ and C compilers.

provides a detailed description of most command-line options.

describes the name mangling facility and explains the transformations of names
of entities to names that include information on aspects of the entity’s type and a fully qualified name.

describes details related to compiler code generation, including register conven-
tions and calling conventions for Linux/x86-64 and Linux/Arm processor-based systems.

lists more details of the version of the C++ language that NVC++ supports.

provides tables that list the MMX and
SSE/SSE2/SSE3/SSSE3/SSE4a/ABM/AVX Inline Intrinsics supported in C++ and C programs.

provides a list of Fortran compiler error messages.

This guide describes versions of the NVIDIA HPC compilers that target NVIDIA GPUs and x86-64 and
Arm CPUs. Details concerning environment-specific values and defaults and system-specific features
or limitations are presented in the release notes delivered with the NVIDIA HPC compilers.

2 Contents

http://www.openacc.org
http://www.openmp.org

NVIDIA HPC Compilers Reference Guide, Release 25.5

This guide uses the following conventions:
italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements in
the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the context
of p/t-sets, square brackets are required to specify a p/t-set.

{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C++ and C
C++ and C language statements are shown in the test of this guide using a reduced fixed point
size.

A number of terms related to systems, processors, compilers and tools are used throughout this guide.
For example:

accelerator FMA -mcmodel=medium | shared library
AVX host -mcmodel=small SIMD

CUDA hyperthreading (HT) | MPI SSE

device large arrays MPICH static linking
driver linux86-64 NUMA x86-64
DWARF LLVM OpenPOWER Arm

dynamic library | multicore ppc64le Aarch64

The following table lists the NVIDIA HPC compilers and their corresponding commands:

Contents

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 1: Table 1. NVIDIA HPC Compilers and Commands

Compiler or Tool | Language or Function Command
NVFORTRAN ISO/ANSI Fortran 2003 nvfortran
NVC++ ISO/ANSI C++17 with GNU compatibility | nvc++
NVC ISO/ANSI C11 nvc

In general, the designation NVFORTRAN is used to refer to the NVIDIA Fortran compiler, and nvfortran
is used to refer to the command that invokes the compiler. A similar convention is used for each of
the NVIDIA HPC compilers.

For simplicity, examples of command-line invocation of the compilers generally reference the nvfor-
tran command, and most source code examples are written in Fortran. Use of NVC++ and NVC is
consistent with NVFORTRAN, though there are command-line options and features of these compilers
that do not apply to NVFORTRAN, and vice versa.

There are a wide variety of x86-64 CPUs in use. Most of these CPUs are forward-compatible, but not
backward-compatible, meaning that code compiled to target a given processor will not necessarily
execute correctly on a previous-generation processor.

A table listing the processor options that NVIDIA HPC compilers support is available in the Release
Notes. The table also includes the features utilized by the compilers that distinguish them from a
compatibility standpoint.

In this manual, the convention is to use “x86-64”" to specify the group of CPUs that are x86-compatible,
64-bit enabled, and run a 64-bit operating system. x86-64 processors can differ in terms of their
support for various prefetch, SSE and AVX instructions. Where such distinctions are important with
respect to a given compiler option or feature, it is explicitly noted in this manual.

This section describes the scalar and aggregate data types recognized by the NVIDIA Fortran, C++ and
C compilers, the format and alignment of each type in memory, and the range of values each type can
have on 64-bit operating systems.

4 Contents

Chapter 1. Fortran Data Types

A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. The next
table lists Fortran scalar data types, their size, format and range. shows the range and approxi-
mate precision for Fortran real data types. shows the alignment for different scalar data types.
The alignments apply to all scalars, whether they are independent or contained in an array, a structure
or a union.

Table 1: Table 2. Representation of Fortran Data Types

Fortran Data Type Format Range

INTEGER 2’s complement integer -231 to 23141
INTEGER*2 2’s complement integer -32768 to 32767
INTEGER*4 2’s complement integer -231 to 23'-1
INTEGER*8 2's complement integer -263 to 263-1
LOGICAL 32-bit value true or false
LOGICAL*1 8-bit value true or false
LOGICAL*2 16-bit value true or false
LOGICAL*4 32-bit value true or false
LOGICAL*8 64-bit value true or false
BYTE 2’s complement -128to 127
REAL Single-precision floating point 1037 to 10380
REAL*2 Half-precision floating point (binary16) | 104 to 10 3V
REAL*4 Single-precision floating point 1037 to 1038
REAL*8 Double-precision floating point 107397 to 10 308(7)

DOUBLE PRECISION | Double-precision floating point 107397 to 103080

COMPLEX Single-precision floating point 1037 to 10380
DOUBLE COMPLEX | Double-precision floating point 107307 to 10308(M
COMPLEX*16 Double-precision floating point 10397 to 10308()

CHARACTER*n Sequence of n bytes

NVIDIA HPC Compilers Reference Guide, Release 25.5

() Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively. Internally, the
value of a logical variable is true if the least significant bit is one and false otherwise. When the option
-Munixlogical is set, a logical variable with a non-zero value is true and with a zero value is false.

Note:

treated as an integer of the same size.

A variable of logical type may appear in an arithmetic context, and the logical type is then

Table 2: Table 3. Real Data Type Ranges

Data Type | Binary Range | Decimal Range | Digits of Precision
REAL -271%6 t0 2128 | 1037 to 10380 | 7-8

REAL*2 214 to 216 10 to 105 3-4

REAL*8 -271022 £g 21024 | 10307 £g 10308() | 15-16

Table 3: Table 4. Scalar Type Alignment

This Type... ...Is aligned on this size boundary
LOGICAL*1 1-byte
LOGICAL*2 2-byte
LOGICAL*4 4-byte
LOGICAL*8 8-byte
BYTE 1-byte
INTEGER*2 2-byte
INTEGER*4 4-byte
INTEGER*8 8-byte
REAL*2 2-byte
REAL*4 4-byte
REAL*8 8-byte
COMPLEX*8 | 4-byte
COMPLEX*16 | 8-byte

Chapter 1. Fortran Data Types

NVIDIA HPC Compilers Reference Guide, Release 25.5

1.2. FORTRAN real(2)

The NVFORTRAN compiler supports real(2) data type which makes it possible to declare and use
data in half precision floating point. It is explicitly required to use the kind attribute with value of 2
on real data type to take advantage of this support. The following operators are supported for this
data type: + , -, *, /, .lt., .le., .gt., .ge., .eq.,.ne..

There are several ways to create real(2) constants:

I Using kind attribute of 2 by appending _2 to the floating point value:
real(2) :: vall = 2.06_2

I Using a hexadecimal constant:

real(2) :: val2 = z'4000'

! Explicitly calling real() intrinsic with the value to be converted:
real(2) :: val3 = real(2, kind=2)

I Implicitly relying on compiler to convert value to real(2):

real(2) :: vald = 2de

Half precision native support is not available on all of the architecture targets that NVFORTRAN sup-
ports. It is still possible to use this type, but be aware that implementation relies on conversion to
real(4), handling operation in real(4), and then converting back to real(2). NVIDIA GPUs which
support CUDA Compute Capability 6.0 and above implement operations natively and do not rely on
conversion.

Half precision is represented as IEEE 754 binary16. Out of the 16-bits available to represent the float-
ing point value, one bit is used for sign, five bits are used for exponent, and ten bits are used for sig-
nificand. When encountering values that cannot be precisely represented in the format, such as when
adding two real(2) numbers, IEEE 754 defines rounding rules. In the case of real(2), the default
rule is round-to-nearest with ties-to-even property which is described in detail in the IEEE 754-2008
standard in section 4.3.1. This format has a small dynamic range and thus values greater than 65520
are rounded to infinity.

1.3. FORTRAN 77 Aggregate Data Type
Extensions

The NVFORTRAN compiler supports de facto standard extensions to FORTRAN 77 that allow for ag-
gregate data types. An aggregate data type consists of one or more scalar data type objects. You can
declare the following aggregate data types:

» An array consists of one or more elements of a single data type placed in contiguous locations
from first to last.

» A structure can contain different data types. The members are allocated in the order they appear
in the definition but may not occupy contiguous locations.

» A union is a single location that can contain any of a specified set of scalar or aggregate data
types. A union can have only one value at a time. The data type of the union member to which
data is assigned determines the data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of their
members.

1.2. FORTRAN real(2) 7

NVIDIA HPC Compilers Reference Guide, Release 25.5

Array types
align according to the alignment of the array elements. For example, an array of INTEGER*2 data
aligns on a 2-byte boundary. The exception to this rule is that aligment of REAL*2 arraysison a
4-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In the
next example, the union aligns on a 4-byte boundary since the alignment of ¢, the most restrictive
element, is four.

STRUCTURE /astr/
UNION
MAP
INTEGER*2 a ! 2 bytes
END MAP
MAP
BYTE b ! 1 byte
END MAP
MAP
INTEGER*4 ¢ ! 4 bytes
END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the
structure is called internal padding. Padding between the last member and the end of the space is
called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member’s
alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an INTE-
GER*2member from the beginning of a structure is a multiple of two bytes.

The Fortran 90 standard added formal support for aggregate data types. The TYPE statement begins
a derived type data specification or declares variables of a specified user-defined type. For example,
the following would define a derived type ATTENDEE:

TYPE ATTENDEE

CHARACTER(LEN=30) NAME
CHARACTER(LEN=30) ORGANIZATION
CHARACTER (LEN=308) EMAIL

END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable, code such
as the following would be used:

TYPE (ATTENDEE) ATTLIST(100)

ATTLIST(1)%NAME = ‘JOHN DOE’

8 Chapter 1. Fortran Data Types

Chapter 2. C and C++ Data Types

2.1. Cand C++ Scalars

Table 5 lists C and C++ scalar data types, providing their size and format. The alignment of a scalar data
type is equal to its size. Table 6 shows scalar alignments that apply to individual scalars and to scalars
that are elements of an array or members of a structure or union. Wide characters are supported
(character constants prefixed with an L). The size of each wide character is 4 bytes.

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 1: Table 5. C/C++ Scalar Data Types

Data Type Size Format Range
(bytes)

unsigned char 1 ordinal 0 to 255

signed char 1 2’'s complement integer | -128 to 127

char 1 2’s complement integer | -128 to 127

char 1 ordinal 0 to 255

unsigned short 2 ordinal 0 to 65535

[signed] short 2 2's complement integer | -32768 to 32767

unsigned int 4 ordinal 0to 2% -1

[signed] int 4 2’s complement integer | -23' to 23'-1

[signed] long [int] | 4 2’s complement integer | -23' to 23'-1

(win64)

[signed] long [int] | 8 2’s complement integer | -253 to 2%3-1

(linux86-64)

unsigned long [int] | 4 ordinal 0 to 232-1

(win64)

unsigned long [int] | 8 ordinal 0 to 264-1

(linux86-64)

[signed] long long | 8 2’s complement integer | -253 to 263-1

[int]

unsigned long long | 8 ordinal 0 to 264-1

[int]

[signed] __int128 16 2’s complement integer | -2'27 to 2127-1

unsigned __int128 16 ordinal Oto2'28-]

float 4 IEEE single-precision | 1037 to 1038()
floating-point

double 8 IEEE double-precision | 10397 to 10308(1)
floating-point

long double 16 IEEE extended- | 104931 to 104932()
precision floating-point

long double 16 IBM double-double 107307 to 10308()

bit field® (unsigned | 1 to 32 | ordinal 0 to 2%¢-1, where size is the number of

value) bits bits in the bit field

bit field® (signed | 1 to 32 | 2’s complement integer | -257¢-1 to 25ize-1-1 where size is the num-

value) bits ber of bits in the bit field

pointer (32-bit oper- | 4 address 0 to 232-1

ating system)

pointer 8 address 0 to 254-1

enum 4 2’s complement integer | -23' to 23'-1

10 Chapter 2. C and C++ Data Types

NVIDIA HPC Compilers Reference Guide, Release 25.5

() Approximate value

(@ Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a
multiple of 8 bits (1 byte)

Table 2: Table 6. Scalar Alignment

Data Type Alignment on this size boundary
char 1-byte boundary, signed or unsigned.
short 2-byte boundary, signed or unsigned.
int 4-byte boundary, signed or unsigned.
enum 4-byte boundary.

pointer 8-byte boundary.

float 4-byte boundary.

double 8-byte boundary.

long double 8-byte boundary.

long double (64-bit operating system) | 16-byte boundary.

long [int] linux86-64 8-byte boundary, signed or unsigned.
long long [int] 8-byte boundary, signed or unsigned.

An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

array
consists of one or more elements of a single data type placed in contiguous locations from first
to last.

class
(C++ only) is a class that defines an object and its member functions. The object can contain
fundamental data types or other aggregates including other classes. The class members are
allocated in the order they appear in the definition but may not occupy contiguous locations.

struct
is a structure that can contain different data types. The members are allocated in the order they
appear in the definition but may not occupy contiguous locations. When a struct is defined with
member functions, its alignment rules are the same as those for a class.

union
is a single location that can contain any of a specified set of scalar or aggregate data types. A
union can have only one value at a time. The data type of the union member to which data is
assigned determines the data type of the union after that assignment.

2.2. C and C++ Aggregate Data Types 11

NVIDIA HPC Compilers Reference Guide, Release 25.5

Class and structure objects with no virtual entities and with no base classes, that is just direct data
field members, are laid out in the same manner as C structures. The following section describes the
alignment and size of these C-like structures. C++ classes (and structures as a special case of a class)
are more difficult to describe. Their alignment and size is determined by compiler generated fields in
addition to user-specified fields. The following paragraphs describe how storage is laid out for more
general classes. The user is warned that the alignment and size of a class (or structure) is dependent
on the existence and placement of direct and virtual base classes and of virtual function information.
The information that follows is for informational purposes only, reflects the current implementation,
and is subject to change. Do not make assumptions about the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence indicated):

First, storage for all of the direct base classes (which implicitly includes storage for non-virtual
indirect base classes as well):

When the direct base class is also virtual, only enough space is set aside for a pointer to the
actual storage, which appears later.

In the case of a non-virtual direct base class, enough storage is set aside for its own non-
virtual base classes, its virtual base class pointers, its own fields, and its virtual function
information, but no space is allocated for its virtual base classes.

Next, storage for the class’s own fields.
Next, storage for virtual function information (typically, a pointer to a virtual function table).

Finally, storage for its virtual base classes, with space enough in each case for its own non-virtual
base classes, virtual base class pointers, fields, and virtual function information.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members.

Arrays
align according to the alignment of the array elements. For example, an array of short data type
aligns on a 2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. In the following
example, the union un1 aligns on a 4-byte boundary since the alignment of ¢, the most restrictive
element, is four:

union un1 {
short a; /* 2 bytes */
char b; /* 1 byte */
int c; /* 4 bytes */
%

Structure alignment can result in unused space, called padding. Padding between members of a struc-
ture is called internal padding. Padding between the last member and the end of the space occupied
by the structure is called tail padding. illustrates structure alignment. Consider the following
structure:

12 Chapter 2. C and C++ Data Types

NVIDIA HPC Compilers Reference Guide, Release 25.5

struct strc1 {
char a; /* occupies byte 6 */
short b; /* occupies bytes 2 and 3 */
char c; /* occupies byte 4 */
int d; /* occupies bytes 8 through 11 */
iE

byte O

brrte 4
brrte 8

Fig. 1: Figure 1. Internal Padding in a Structure

Figure 2 shows how tail padding is applied to a structure aligned on a doubleword (8 byte) boundary.

struct strc2{
int m1[4]; /* occupies bytes
0 through 15 */
double m2; /* occupies bytes 16 through 23 */
short m3; /* occupies bytes 24 and 25 */
} st

2.5. Bit-field Alignment

Bit-fields have the same size and alignment rules as other aggregates, with several additions to these
rules:

» Bit-fields are allocated from right to left.

» A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross
unit boundaries.

» Bit-fields may share a storage unit with other structure/union members, including members that
are not bit-fields.

» Unnamed bit-field’s types do not affect the alignment of a structure or union.

2.5. Bit-field Alignment 13

NVIDIA HPC Compilers Reference Guide, Release 25.5

st.ml[0] byte O
st.ml[1] byte 4
st.ml[2] byte 8
st.ml[3] byte 12
mZ byte 16

mZ byte 20
byte 24

byte 28

Fig. 2: Figure 2. Tail Padding in a Structure

2.6. Other Type Keywords in C and C++

The void data type is neither a scalar nor an aggregate. You can use void or void* as the return type of
a function to indicate the function does not return a value, or as a pointer to an unspecified data type,
respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate attributes
with other types. Use const to specify that an identifier is a constant and is not to be changed. Use
volatile to prevent optimization problems with data that can be changed from outside the program,
such as memory-mapped I/O buffers.

Extended integer types __int128 and unsigned __int128 are now supported by NVC and NVC++. 128-
bit integer support can be turned on with the -Mint128 flag. Note, 128-bit integer support is not
supported with OpenMP, OpenACC and CUDA.

14 Chapter 2. C and C++ Data Types

Chapter 3. Command-Line Options
Reference

A command-line option allows you to specify specific behavior when a program is compiled and linked.
Compiler options perform a variety of functions, such as setting compiler characteristics, describing
the object code to be produced, controlling the diagnostic messages emitted, and performing some
preprocessor functions. Most options that are not explicitly set take the default settings. This ref-
erence section describes the syntax and operation of each compiler option. For easy reference, the
options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks, refer to the
‘Using Command-line Options’ section of the , which also provides summary
tables of the different options.

This section uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

The following tables include all the HPC compiler options that are not language-specific. The options
are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this section.

15

../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

The options included in the following table pertain to optimizing your program or application code.

Table 1: Table 7. Acceleration and Optimization-Related HPC
Compiler Options

Option Description

-acc[={gpu|multicore}] Enable OpenACC directives for GPUs (default) or multicore
CPUs.

-cuda[={charstring|madconst}] Enable CUDA Fortran features for GPUs (default for .cuf/.CUF
files).

-fast Enable a generally optimal set of CPU code generation flags
including SIMD vectorization.

-gpu=[...] Specify details of GPU code generation including compute ca-
pability, CUDA version and more.

-M<nvflag> Selects variations for code generation and optimization.

-mp[={gpu|multicore}[, Enable OpenMP code generation for GPUs and multicore

[nolalign]][, [no]autopar]] CPUs; implies -Mrecursive in Fortran

-O<level> Specifies code optimization level where <level>is 0, 1, 2, 3, 4
or fast.

-stdpar[={gpu|multicore}] Enable parallelization/offload of Standard C++ and Fortran

parallel constructs; default is -stdpar=gpu.

-target={gpu|multicore} Specify code-generation target for -acc, -mp, -stdpar.

The options included in the following table pertain to the initial building of your program or application.

Table 2: Table 8. Build-Related Compiler Options

Option Description

-# Display invocation information.

-Bdynamic Compiles for and links to the shared object version of the NVIDIA runtime
libraries.

-static Passed to the linker to specify static binding.

-static-nvidia Statically link in the NVIDIA runtime libraries, while using dynamic linking for
the system libraries; implies -Mnorpath.

-C Stops after the assembly phase and saves the object code in filename.o.

continues on next page

16 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 2 - continued from previous page

Option Description

-c++1ibs Append GNU-compatible C++ libraries to the link line.

-D<args> Defines a preprocessor macro.

-dryrun Shows but does not execute driver commands.

-drystdinc Displays the standard include directories and then exits the compiler.

-E Stops after the preprocessing phase and displays the preprocessed file on
the standard output.

-F Stops after the preprocessing phase and saves the preprocessed file in
filename. f. This option is only valid for the NVIDIA Fortran compilers.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-fmax-errors=<n>

Set compiler error limit to <n>

-fortranlibs Append NVFORTRAN runtime libraries to the link line.
-fpic Generate position-independent code.
-fPIC Equivalent to -fpic.

--gcc-toolchain=<

p8pkeify gcc toolchain location using path to gcc directory or gcc executable.

-help, --help Display driver help message.

-I<dirname> Adds a directory to the search path for #include files.

-i2 Treat INTEGER variables as 2 bytes.

-i4 Treat INTEGER variables as 4 bytes.

-i8 Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTE-
GER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE
754.

-L<dirname> Specifies a directory to search for libraries.

-1<library> Loads a library.

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium

Generate code which supports the medium memory model in the Linux en-
vironment.

-module (Fortran only) Save/search for module files in directory <moduledirs>.
<moduledir>

-noswitcherror Ignore unknown command line switches after printing an warning message.
-0 Names the object file.

--pedantic (C++ only) Prints warnings from included <system header files>

continues on next page

3.1. HPC Compilers Option Summary

17

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 2 - continued from previous page

Option Description

-pg or -gp Instrument the generated executable to produce a gprof-style gmon.out
sample-based profiling trace file; -qp is equivalent to -pg.

-R<directory> Passed to the Linker. Hard code <directory> into the search path for
shared object files.

-r Creates a relocatable object file.

-r4 Interpret DOUBLE PRECISION variables as REAL.

-r8 Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver’s startup file.

-s Strips the symbol-table information from the object file.

-S Stops after the compiling phase and saves the assembly-language code in
filename.s.

-shared Passed to the linker. Instructs the linker to generate a shared object file.
Implies -fpic.

-show Display driver’s configuration parameters after startup.

-silent Do not print warning messages.

-soname Pass the soname option and its argument to the linker.

-time Print execution times for the various compilation steps.

-tp <target>

Specify the type of the CPU target processor. Cross-compilation is only sup-
ported within CPU Architecture families.

-u<symbol> Initializes the symbol table with <symbol>, which is undefined for the linker.
An undefined symbol triggers loading of the first member of an archive li-
brary.

-U<symbol> Undefine a preprocessor macro.

-V[release_number

] Displays the version messages and other information, or allows invocation
of a version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.
-W Passes arguments to a specific phase.
-Werror Turn all warning messages into errors.
-w Do not print warning messages.
-X1linker Passes options to the linker.
<option>
18 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

The options included in the following table pertain to debugging your program or application.

Table 3: Table 9. Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-g Includes debugging information in the object module; sets the optimization
level to zero unless a -O option is present on the command line.

-gopt Includes debugging information in the object module, but forces assembly
code generation identical to that obtained when -gopt is not present on the
command line.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE
754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

-[no]traceback

Adds debug information for runtime traceback for use with the environment
variable NVCOMPILER_TERM.

The options included in the following table pertain to defining parameters related to linking and run-
ning your program or application.

3.1. HPC Compilers Option Summary 19

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 4: Table 10. Linking and Runtime-Related Compiler Op-

tions
Option Description
-Bdynamic Compiles for and links to the shared object version of the NVIDIA runtime li-
braries.
-static Passed to the linker to specify static binding.

-static-nvidia

Statically link in the NVIDIA runtime libraries, while using dynamic linking for the
system libraries; implies -Mnorpath.

-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice versa on in-
put/output of unformatted data.

-c++1ibs Append GNU-compatible C++ runtime libraries to the link line.

-fortranlibs Append NVFORTRAN runtime libraries to the link line.

-fpic or -fPIC | Generate position-independent code.

-g771ibs Allow object files generated by gfortran or g77 to be linked into NVIDIA main
programs.

-i2 Treat INTEGER variables as 2 bytes.

-i4 Treat INTEGER variables as 4 bytes.

-i8 Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTEGER*8
operations.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE
754.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=mediun

n Generate code which supports the medium memory model in 64-bit Linux envi-
ronments.

-[no]nvmalloc

Link in a custom host memory allocator library.

-shared Passed to the linker. Instructs the linker to generate a shared object file. Implies
-fpic.
-soname Pass the soname option and its argument to the linker.

-tp <target>

Specify the type of the CPU target processor. Cross-compilation is only sup-
ported within CPU Architecture families.

-Xlinker
<option>

Pass options to the linker.

20

Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

The following descriptions are for compiler options common to the NVIDIA HPC Fortran, C++ and C
compilers. For easy reference, the options are arranged in alphabetical order. For a list of options by
tasks, refer to the tables in the beginning of this section.

Displays the invocations of the compiler, assembler and linker.
Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.

$ nvfortran -# prog.f

Description

The -# option displays the invocations of the compiler, assembler and linker. These invocations are
command-lines created by the driver from your command-line input and the default value.

Related options

Enable [disable] OpenACC directives. The following suboptions may be used following an equals sign
(“="), with multiple sub-options separated by commas:

gpu OpenACC directives are compiled for GPU execution only.

host
Compile for serial execution on the host CPU.

multicore
Compile for parallel execution on the host CPU.

legacy
Suppress warnings about deprecated NVIDIA accelerator directives.

[nolautopar
Enable [disable] loop autoparallelization within acc parallel. The default is to autoparallelize, that
is, to enable loop autoparallelization.

[no]routineseq
Compile every routine for the devicee. The default behavior is to not treat every routine as a seq
directive.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

3.2. Generic Compiler Options 21

NVIDIA HPC Compilers Reference Guide, Release 25.5

sync
Ignore async clauses

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator directive.

[no]wait
Wait for each device kernel to finish. Kernel launching is blocked by default unless the async
clause is used.

Default

By default OpenACC directives are compiled for GPU and sequential CPU host execution (i.e. equivalent
to explicitly setting -acc=gpu, host).

Usage

The following command-line requests that OpenACC directives be enabled and that an error be issued
for any non-OpenACC accelerator directive.

$ nvfortran -acc=verystrict prog.f

Predefined Macros
The following macros corresponding to the target compiled for are added implicitly:
__NVCOMPILER_OPENACC_GPU when the OpenACC directives are compiled for GPU.

__NVCOMPILER_OPENACC_MULTICORE when the OpenACC directives are compiled for multicore
CPU.

__NVCOMPILER_OPENACC_HOST when the OpenACC directives are compiled for serial execution
on CPU.

Compiles for and links to the shared object version of the NVIDIA HPC Compilers runtime libraries.
Default

Dynamic linking is the default behavior for Linux.

Usage

% nvfortran -Bdynamic myprogram.f

When you use the NVIDIA HPC compiler flag -Bdynamic to create an executable that links to the
shared object form of the runtime, the executable built is smaller than one built without -Bdynamic.
The NVIDIA HPC Compilers runtime shared object(s), however, must be available on the system where

the executable is run. The -Bdynamic flag must be used when an executable is linked against a shared
object built by the NVIDIA HPC compilers.

Related options

22 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Swaps the byte-order of data in unformatted Fortran data files on input/output.

Default

The compiler does not byte-swap data on input/output.

Usage

The following command-line requests that byte-swapping be performed on input/output.

$ nvfortran -byteswapio myprog.f

Description

Use the -byteswapio option to swap the byte-order of data in unformatted Fortran data files on
input/output. When this option is used, the order of bytes is swapped in both the data and record
control words; the latter occurs in unformatted sequential files.

You can use this option to convert big-endian format data files produced by most legacy RISC work-
stations to the little-endian format used on modern Linux systems on the fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access files
are the same on the systems. It further assumes that the IEEE representation is used for floating-
point numbers. In particular, the format of unformatted data files produced by NVIDIA HPC Fortran
compilers is identical to the format used on Sun and SGI workstations; this format allows you to read
and write unformatted Fortran data files produced on those platforms from a program compiled for
modern Linux platform using the -byteswapio option.

Related options

None.

(Fortran only) Generates code to check array bounds.
Default

The compiler does not enable array bounds checking.
Usage

In this example, the compiler instruments the executable produced from myprog. f to perform array
bounds checking at runtime:

$ nvfortran -C myprog.f

Description

Use this option to enable array bounds checking. If an array is an assumed size array, the bounds
checking only applies to the lower bound. If an array bounds violation occurs during execution, an error
message describing the error is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred (the source file and the line
number in the source), and information about the out of bounds subscript (its value, its lower and
upper bounds, and its dimension).

Related options

3.2. Generic Compiler Options 23

NVIDIA HPC Compilers Reference Guide, Release 25.5

Halts the compilation process after the assembling phase and writes the object code to a file.
Default

The compiler produces an executable file and does not use the -c option.

Usage

In this example, the compiler produces the object file myprog.o in the current directory.

$ nvfortran -c myprog.f

Description

Use the -c option to halt the compilation process after the assembling phase and write the object code
to a file. If the input file is filename. f, the output file is filename.o.

Related options

) 3)

Instructs the compiler to append C++ runtime libraries to the link line for programs built using NVFOR-
TRAN.

Default
The NVFORTRAN compiler does not append the C++ runtime libraries to the link line.
Usage

In the following example the C++ runtime libraries are linked with an object file compiled with NVFOR-
TRAN

$ nvfortran main.f90 mycpp.o -c++libs
Description

Use this option to instruct the NVIDIA Fortran compiler to append C++ runtime libraries to the link line.

Related options

24 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Enable CUDA, please refer to -gpu for target-specific options. The following suboptions may be used
following an equals sign (“="), with multiple sub-options separated by commas:

charstring
Enable limited support for character strings in GPU kernels.

madconst
Put Module Array Descriptors in CUDA Constant Memory

Usage

The following command-line requests that CUDA interoperability be enabled and CUDA Fortran syntax
be recognized and processed in all Fortran files.

$ nvfortran -cuda myprog.f

Add CUDA-optimized libraries to the link line. When no sub-option is specified the compiler will link
all necessary CUDA-optimized libraries. -cudalib will use the version of the library appropriate to the
CUDA version being used. The following libraries may be specified following an equals sign (“="), with
multiple libraries separated by commas:

cublas

Link in the cuBLAS library.
cufft

Link in the cuFFT library.
cufftw

Link in the cuFFTW library.

curand
Link in the cuRAND library.

cusolver
Link in the cuSOLVER library.

cusparse
Link in the cuSPARSE library.

cutensor
Link in the cuTENSOR library.

nvblas
Link in the NVBLAS library.

nccl
Link in the NCCL library.

nvlamath
Link in the NVLAmath library.

nvshmem
Link in the NVSHMEM library.

3.2. Generic Compiler Options 25

NVIDIA HPC Compilers Reference Guide, Release 25.5

Usage
The following command-line links in all necessary CUDA libraries.

$ nvfortran -acc -cudalib myprog.cpp

Creates a preprocessor macro with a given value.

Note: You can use the -D option more than once on a compiler command line. The number of active
macro definitions is limited only by available memory.

Syntax

-Dname[=value]

Where name is the symbolic name and value is either an integer value or a character string.
Default

If you define a macro name without specifying a value, the preprocessor assigns the string 1 to the
macro name.

Usage

In the following example, the macro PATHLENGTH has the value 256 until a subsequent compilation.
If the -D option is not used, PATHLENGTH is set to 128.

$ nvfortran -DPATHLENGTH=256 myprog.F

The source text in myprog.F is this:

#ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path

END

Description

Use the -D option to create a preprocessor macro with a given value. The value must be either an
integer or a character string.

You can use macros with conditional compilation to select source text during preprocessing. A macro
defined in the compiler invocation remains in effect for each module on the command line, unless you
remove the macro with an #undef preprocessor directive or with the -U option. The compiler processes
all of the -U options in a command line after processing the -D options.

Related options

26 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Prints additional information from the preprocessor. [Valid only for the C compiler (nvc)]
Default
No additional information is printed from the preprocessor.

Syntax
-d[D|I|M|N]

-dD Print macros and values from source files.

-dI Printinclude file names.

-dM Print macros and values, including predefined and command-line macros.
-dN Print macro names from source files.

Usage

In the following example, the compiler prints macro names from the source file.

$ nvc -dN myprog.f

Description
Use the -d<arg> option to print additional information from the preprocessor.

Related options

Displays the invocations of the compiler, assembler, and linker but does not execute them.
Default

The compiler does not display individual phase invocations.

Usage

The following command line requests verbose invocation information.

$ nvfortran -dryrun myprog.f

Description

Use the -dryrun option to display the invocations of the compiler, assembler, and linker but not have
them executed. These invocations are command lines created by the compiler driver from the rc files
and the command-line supplied with -dryrun.

Related options

3.2. Generic Compiler Options 27

NVIDIA HPC Compilers Reference Guide, Release 25.5

Displays the standard include directories and then exits the compiler.

Default

The compiler does not display standard include directories.

Usage

The following command line requests a display for the standard include directories.

$ nvc -drystdinc myprog.c

Description
Use the -drystdinc option to display the standard include directories and then exit the compiler.
Related options

None.

Halts the compilation process after the preprocessing phase and displays the preprocessed output on
the standard output.

Default

The compiler produces an executable file.

Usage

In the following example the compiler displays the preprocessed myprog.f on the standard output.

$ nvc -E myprog.c

Description

Use the -E option to halt the compilation process after the preprocessing phase and display the pre-
processed output on the standard output.

Related options

Stops compilation after the preprocessing phase.
Default

The compiler produces an executable file.

Usage

In the following example the compiler produces the preprocessed file myprog. f in the current direc-
tory.

28 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

$ nvfortran -F myprog.F

Description

Use the -F option to halt the compilation process after preprocessing and write the preprocessed
output to a file. If the input file is filename.F, then the output file is filename. f.

Related options

3 ’ 3)

Enables vectorization with SIMD instructions, cache alignment, and flushz for 64-bit targets.
Default

The compiler does not enable vectorization with SIMD instructions, cache alignment, and flushz.
Usage

In the following example the compiler produces vector SIMD code when targeting a 64-bit machine.

S nvfortran -fast vadd.f95

Description

When you use this option, a generally optimal set of options is chosen for targets that support SIMD
capability. In addition, the appropriate -tp option is automatically included to enable generation of
code optimized for the type of system on which compilation is performed. This option enables vec-
torization with SIMD instructions, cache alignment, and flushz.

Note: Auto-selection of the appropriate -tp option means that programs built using the -fast option
on a given system are not necessarily backward-compatible with older systems.

Note: C/C++ compilers enable -Mautoinline with -fast.

Related options

’ ’ 3 ’)

-fcx-1limited-range specifies that complex division does not need range reduction.
-fno-cx-limited-range specifies that complex division does need range reduction.

Default
-fcx-limited-range with -Ofast
Otherwise: -fno-cx-limited-range

Related options

3.2. Generic Compiler Options 29

NVIDIA HPC Compilers Reference Guide, Release 25.5

Causes the compiler to check that flags are correct and then exit without any compilation occuring.
Default

The compiler begins a compile without the additional step to first validate that flags are correct.
Usage

In the following example the compiler checks that flags are correct, and then exits.

$ nvfortran --flagcheck myprog.f

Description

Use this option to make the compiler check that flags are correct and then exit. If flags are all correct
then the compiler returns a zero status. No compilation occurs.

Related options

None.

Instructs the C++ or C compiler to append NVFORTRAN runtime libraries to the link line.
Default

The C++ and compilers do not append the NVFORTRAN runtime libraries to the link line.

Usage

In the following example a . ¢ main program is linked with an object file compiled with nvfortran.

$ nvc main.c myfort.o -fortranlibs

Description

Use this option to instruct the C++ or C compiler to append NVFORTRAN runtime libraries to the link
line.

Related options

30 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Set

Default

Abort compilation after a user defined error limit.

Usage

In the following example the compiler error limit is set to 5.

$ nvfortran -fmax-errors=5 myprog.f

Use the -fmax-errors option to increase or decrease the default compilation error limit.

Related options

Generates position-independent code suitable for inclusion in shared object (dynamically linked library)
files.

Default

The compiler does not generate position-independent code.

Usage

In the following example the resulting object file, myprog. o, can be used to generate a shared object.
$ nvfortran -fpic myprog.f

Use the -fpic option to generate position-independent code suitable for inclusion in shared object
(dynamically linked library) files.

Related options

Equivalent to -fpic. Provided for compatibility with other compilers.

3.2. Generic Compiler Options 31

NVIDIA HPC Compilers Reference Guide, Release 25.5

Instructs the compiler to include symbolic debugging information in the object module; sets the opti-
mization level to zero unless a -0 option is present on the command line.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object file myprog. o contains symbolic debugging information.

$ nvfortran -c -g myprog.f

Description

Use the -g option to instruct the compiler to include symbolic debugging information in the object
module. Debuggers require symbolic debugging information in the object module to display and ma-
nipulate program variables and source code.

If you specify the -g option on the command-line, the compiler sets the optimization level to -O0
(zero), unless you specify the -0 option. For more information on the interaction between the -g and
-0 options, refer to the -0 entry. Symbolic debugging may give confusing results if an optimization
level other than zero is selected.

Note: Note: Including symbolic debugging information increases the size of the object module.

Related options

’

Used on the link ling, this option instructs the nvfortran driver to search the necessary g77 or gfortran
support libraries to resolve references specific to g77- or gfortran-compiled program units.

Note: The g77 or gfortran compiler must be installed on the system on which linking occurs in order
for this option to function correctly.

Default

The compiler does not search g77 or gfortran support libraries to resolve references at link time.
Usage

The following command-line requests that g77 and gfortran support libraries be searched at link time:

$ nvfortran -g771ibs myprog.f g77_object.o

Description

Use the -g771ibs option on the link line if you are linking g77- or gfortran-compiled program units
into a nvfortran-compiled main program using the nvfortran driver. When this option is present, the

32 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

nvfortran driver searches the necessary g77 and gfortran support libraries to resolve references spe-
cific to g77- or gfortran-compiled program units.

Related options

Specify the gcc toolchain location for use during compilation.

Default

Compiles using the default gcc toolchain location (selected during installation).
Usage

The following examples compile using the specified gcc 9.3.0 toolchain.

$ nvc++ --gcc-toolchain=~/gcc/gcc-9.3.0/ myprog.cpp
$ nvc++ --gcc-toolchain=~/gcc/gcc-9.3.08/bin/ myprog.cpp
$ nvc++ --gcc-toolchain=~/gcc/gcc-9.3.8/bin/gcc myprog.cpp

Description
The argument can either be gcc root directory, <root directory>/bin, or the gcc executable itself.
Related options

None.

Instructs the compiler to include symbolic debugging information in the object file, and to generate
optimized code identical to that generated when -g is not specified.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object file myprog. o contains symbolic debugging information.

$ nvfortran -c -gopt myprog.f

Description

Using -g alters how optimized code is generated in ways that are intended to enable or improve de-
bugging of optimized code. The -gopt option instructs the compiler to include symbolic debugging
information in the object file, and to generate optimized code identical to that generated when -g is
not specified.

Related options

3.2. Generic Compiler Options 33

NVIDIA HPC Compilers Reference Guide, Release 25.5

Used in combination with the -acc, -cuda, -mp, and -stdpar flags to specify options for GPU code

generation. The following sub-options may be used following an equals sign (“="), with multiple sub-
options separated by commas:

autocompare
Automatically compare CPU vs GPU results at execution time: implies redundant

ccXY
Generate code for a device with compute capability X.Y. Multiple compute capabilities can be
specified, and one version will be generated for each. By default, the compiler will detect the
compute capability for each installed GPU. Use -help -gpu to see the valid compute capabilities
for your installation.

ccall
Generate code for all compute capabilities supported by this platform and by the selected or
default CUDA Toolkit.

ccall-major
Compile for all major supported compute capabilities.

ccnative
Detects the visible GPUs on the system and generates codes for them. If no device is available,
the compute capability matching NVCC’s default will be used.

cudaX.Y
Use CUDA XY Toolkit compatibility, where installed

[no]debug
Enable [disable] debug information generation in device code
deepcopy
Enable full deep copy of aggregate data structures in OpenACC; Fortran only
fastmath
Use routines from the fast math library
[no]flushz
Enable [disable] flush-to-zero mode for floating point computations on the GPU
[no]fma
Generate [do not generate] fused multiply-add instructions; default at -01. This is an alias of
-M[nolfma.

[nolimplicitsections
Change [do not change] array element references in a data clause into an array section. In
C++, the implicitsections option will change update device(a[n]) to update de-
vice(a[@:n]). In Fortran, it will change enter data copyin(a(n)) to enter data
copyin(a(:n)). The default behavior, noimplicitsections, can also be changed using rc-
files; for example, one could add set IMPLICITSECTIONS=0; to siterc or another rcfile.

[no]linterceptdeallocations
Intercept [do not intercept] calls to standard library memory deallocations (e.g. free) and call the
corresponding CUDA memory deallocation version if address is in pinned or managed memory,
regular version otherwise.

keep
Keep the kernel files (.cubin, .ptx, source)

34 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

[no]lineinfo
Enable [disable] GPU line information generation

loadcache: {L1|L2}
Choose what hardware level cache to use for global memory loads; options include the default,
L1, or L2

[no]lmanaged
Allocate [do not allocate] any dynamically allocated data in CUDA Managed memory. Use
-gpu=nomanaged with -stdpar to prevent that flag’s implicit use of -gpu=managed when CUDA
Managed memory capability is detected. This option is deprecated.

maxregcount:n
Specify the maximum number of registers to use on the GPU; leaving this blank indicates no limit

mem: {separate|managed|unified}
Select GPU memory mode for the generated binary. This controls CUDA memory capability to
be utilised such as separate GPU memory only (separate), GPU Managed Memory for the dy-
namically allocated data (managed), or system memory aka full CUDA Unified Memory (unified).
Use of Managed or Unified Memory facilitates simpler programming by eliminating the need to
detect all data to be copied into and outside of the code region executing on the GPU.

pinned
Use CUDA Pinned Memory. This option is deprecated.

ptxinfo
Print PTX info

[no]rdc
Generate [do not generate] relocatable device code.

redundant
Redundant CPU/GPU execution

safecache
Allow variable-sized array sections in cache directives; compiler assumes they fit into CUDA
shared memory

sm_XY
Generate code for a device with compute capability X.Y. Multiple compute capabilities can be
specified, and one version will be generated for each. By default, the compiler will detect the
compute capability for each installed GPU. Use -help -gpu to see the valid compute capabilities
for your installation.

stacklimit:<l>nostacklimit
Sets the limit (I) of stack variables in a procedure or kernel, in KB. This option is deprecated.

[no]unified
Compile [do not compile] for CUDA Unified memory capability, where system memory is acces-
sible from the GPU. This mode utilizes system and managed memory for dynamically allocated
data unless explicit behavior is set through -gpu=[no]managed. Use -gpu=nounified with
-stdpar to prevent that flag’s implicit use of -gpu=unified when CUDA Unified memory ca-
pability is detected. This option must appear in both the compile and link lines. This option is
deprecated.

[no]unroll
Enable [disable] automatic inner loop unrolling; default at -03

zeroinit
Initialize allocated device memory with zero

3.2. Generic Compiler Options 35

NVIDIA HPC Compilers Reference Guide, Release 25.5

Usage

In the following example, the compiler generates code for NVIDIA GPUs with compute capabilities 6.0
and 7.0.

$ nvfortran -acc -gpu=cc60,cc70 myprog.f

The compiler automatically invokes the necessary software tools to create the kernel code and embeds
the kernels in the object file.

To link in the appropriate GPU libraries, you must link an OpenACC program with the -acc flag, and
similarly for -cuda, -mp, or -stdpar.

DWARF Debugging Formats

Use the -g option to enable generation of full DWARF information on both the host and device; in the
absence of other optimization flags, -g sets the optimization level to zero. If a -0 option raises the
optimization level to one or higher, only GPU line information is generated in device code even when -g
is specified. To enforce full DWARF generation for device code at optimization levels above zero, use
the debug sub-option to -gpu. Conversely, to prevent the generation of dwarf information for device
code, use the nodebug sub-option to -gpu. Both debug and nodebug can be used independently of

_g.

Used with no other options, -help displays options recognized by the driver on the standard output.
When used in combination with one or more additional options, usage information for those options
is displayed to standard output.

Default

The compiler does not display usage information.

Usage

In the following example, usage information for ~-Minline is printed to standard output.

$ nvc -help -Minline
-Minline[=1ib:<inlib>|<maxsize>|<func>|except:<func>|name:<func>|maxsize:<n>|
totalsize:<n>|smallsize:<n>|reshape]

Enable function inlining

lib:<inlib>
<maxsize>
<func>
except:<func>
name :<func>
maxsize:<n>
totalsize:<n>
smallsize:<n>
reshape

pragma

-Minline

Use extracted functions from inlib

Set maximum function size to inline

Inline function func

Do not inline function func

Inline function func

Inline only functions smaller than n

Limit inlining to total size of n

Always inline functions smaller than n

Allow inlining in Fortran even when array shapes do not
match

Fortran Only: Inline only those procedures that have the
“TINVFS INLINE'° pragma on the source line

immediately before the procedure's SUBROUTINE or
FUNCTION statement.

Inline all functions that were extracted

36

Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

In the following example, usage information for ~-help shows how groups of options can be listed or
examined according to function.

$ nvc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall|phase|prepro|suffix|switch|target|variable]

Description

Use the -help option to obtain information about available options and their syntax. You can use -help
in one of three ways:

Use -help with no parameters to obtain a list of all the available options with a brief one-line
description of each.

Add a parameter to -help to restrict the output to information about a specific option. The syntax
for this usage is this:

-help <command line option>

Add a parameter to -help to restrict the output to a specific set of options or to a building process.
The syntax for this usage is this:

-help=<subgroup>

The following table lists and describes the subgroups available with -help.

Table 5: Table 11. Subgroups for -help Option

Use this -help | To get this information...

option

-help=asm A list of options specific to the assembly phase.
-help=debug A list of options related to debug information generation.

-help=groups

A list of available switch classifications.

-help=1language

A list of language-specific options.

-help=1linker

A list of options specific to link phase.

-help=opt

A list of options specific to optimization phase.

-help=other

A list of other options, such as ANSI conformance pointer aliasing for C.

-help=overall

A list of options generic to any NVIDIA HPC compiler.

-help=phase

A list of build process phases and to which compiler they apply.

-help=prepro

A list of options specific to the preprocessing phase.

-help=suffix

A list of known file suffixes and to which phases they apply.

-help=switch

A list of all known options; this is equivalent to usage of -help without any pa-
rameter.

-help=target

A list of options specific to target processor.

-help=variable

A list of all variables and their current value. They can be redefined on the com-
mand line using syntax VAR=VALUE.

For more examples of -help, refer to ‘Help with Command-line Options.’

3.2. Generic Compiler Options

37

NVIDIA HPC Compilers Reference Guide, Release 25.5

Related options

’ 3

Adds a directory to the search path for files that are included using either the INCLUDE statement or
the preprocessor directive #include.

Default

The compiler searches only certain directories for included files.
For gcc-lib includes: /usr/1ib64/gcc-1ib
For system includes: /usr/include

Syntax

-Idirectory

Where directory is the name of the directory added to the standard search path for include files.
Usage

In the following example, the compiler first searches the directory mydir and then searches the default
directories for include files.

$ nvfortran -Imydir

Description

Adds a directory to the search path for files that are included using the INCLUDE statement or the
preprocessor directive #include. Use the -l option to add a directory to the list of where to search for
the included files. The compiler searches the directory specified by the -l option before the default
directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The compiler
uses two rules to locate the file:

If the file name specified in the INCLUDE statement includes a path name, the compiler begins
reading from the file it specifies.

If no path name is provided in the INCLUDE statement, the compiler searches (in order):
Any directories specified using the -l option (in the order specified)
The directory containing the source file
The current directory

For example, the compiler applies rule (1) to the following statements:

INCLUDE ' /bob/include/filel1' (absolute path name)

INCLUDE '../../filel' (relative path name)

and rule (2) to this statement:

INCLUDE 'filel'

38 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Related options

(Fortran only) Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default

The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage

In the following example, using the -i8 switch causes the integer variables to be treated as 64 bits.

$ nvfortran -i8 int.f

int.f is a function similar to this:

int.f
print *, "Integer size:", bit_size(i)
end

Description

Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes. INTEGER*8
values not only occupy 8 bytes of storage, but operations use 64 bits, instead of 32 bits.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTEGER*8 operations.
Related options

None.

Requests that the compiler provide special compilation semantics with regard to conformance to IEEE
754.

Default

The default is ~-Knoieee and the compiler does not provide special compilation semantics.
Syntax

-K<flag>

Where flag is one of the following:

ieee
Perform floating-point operations in strict conformance with the IEEE 754 standard. Some op-
timizations are disabled, and on some systems a more accurate math library is linked if -Kieee
is used during the link step.

3.2. Generic Compiler Options 39

NVIDIA HPC Compilers Reference Guide, Release 25.5

noieee
Default flag. Use the fastest available means to perform floating-point operations, link in faster
non-lEEE libraries if available, and disable underflow traps.

PIC or pic
Generate position-independent code. Equivalent to -fpic. Provided for compatibility with other
compilers.

trap=option[,option]...
Controls the behavior of the processor when floating-point exceptions occur. Possible options
include:

fp

align (ignored)
inv

denorm

divz

ovf

unf

inexact

none

Note: Same floating-point exception functionality as -Ktrap=option[, option] can be achieved
with the runtime environment variable NVCOMPILER_FPU_STATE

Usage

In the following example, the compiler performs floating-point operations in strict conformance with
the IEEE 754 standard

$ nvfortran -Kieee myprog.f

Description
Use -K to instruct the compiler to provide special compilation semantics.

-Ktrap is only processed by the compilers when compiling main functions or programs. The options
inv, denorm, divz, ovf, unf, and inexact correspond to the processor’s exception mask bits: invalid
operation, denormalized operand, divide-by-zero, overflow, underflow, and precision, respectively.

Normally, the processor’s exception mask bits are on, meaning that floating-point exceptions are
masked - the processor recovers from the exceptions and continues. If a floating-point exception
occurs and its corresponding mask bit is off, or “unmasked”, execution terminates with an arithmetic
exception (C’s SIGFPE signal).

-Ktrap=fp is equivalent to -Ktrap=inv, divz, ovf.

Note: The NVIDIA HPC compilers do not support exception-free execution for -Ktrap=inexact. The
purpose of this hardware support is for those who have specific uses for its execution, along with the
appropriate signal handlers for handling exceptions it produces. It is not designed for normal floating
point operation code support.

40 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Related options

None.

Specifies a directory to search for libraries.

Note: Multiple -L options are valid. However, the position of multiple -L options is important relative
to -l options supplied.

Default
The compiler searches the standard library directory.

Syntax

-Ldirectory

Where directory is the name of the library directory.
Usage

In the following example, the library directory is /1ib and the linker links in the standard libraries
required by NVFORTRAN from this directory.

$ nvfortran -L/1ib myprog.f
In the following example, the library directory /1ib is searched for the library file 1ibx.a and both the

directories /1ib and /1ibz are searched for 1iby.a.

$ nvfortran -L/1lib -1x -L/libz -1y myprog.f

Description

Use the -L option to specify a directory to search for libraries. Using -L allows you to add directories
to the search path for library files.

Related options

Instructs the linker to load the specified library. The linker searches <library>in addition to the stan-
dard libraries.

Note: The linker searches the libraries specified with -l in order of appearance before searching the
standard libraries.

Syntax

3.2. Generic Compiler Options 41

NVIDIA HPC Compilers Reference Guide, Release 25.5

-1library

Where library is the name of the library to search.

Usage: In the following example, if the standard library directory is /1ib the linker loads the library
/1lib/1ibmylib.a, in addition to the standard libraries.

$ nvfortran myprog.f -1lmylib

Description

Use this option toinstruct the linker to load the specified library. The compiler prepends the characters
lib to the library name and adds the .a extension following the library name. The linker searches each
library specified before searching the standard libraries.

Related options

Generate make dependence lists. You can use -MD, filename (nvc++ only) to generate make depen-
dence lists and print them to the specified file.

Selects options for code generation. The options are divided into the following categories:

Code generation | Fortran Language Controls | Optimization

Environment C/C++ Language Controls | Miscellaneous

Inlining

The following table lists and briefly describes the options alphabetically and includes a field showing
the category. For more details about the options as they relate to these categories, refer to -M Options
by Category’.

nvflag Description

allocatable=95|083 Controls whether to use Fortran 95 or Fortran 2003 semantics in allocatable array as
anno Annotate the assembly code with source code.

[no]autoinline When a C/C++ function is declared with the inline keyword, inline it at -O2.
[no]asmkeyword Specifies whether the compiler allows the asm keyword in C/C++ source files (nvc an
[no]backslash Determines how the backslash character is treated in quoted strings (nvfortran only)
[no]bounds Specifies whether array bounds checking is enabled or disabled.

42 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

nvflag

Description

[no]builtin

Do/don’t compile with math subroutine builtin support, which causes selected math |

byteswapio

Swap byte-order (big-endian to little-endian or vice versa) during I/O of Fortran unfor

cache_align

Where possible, align data objects of size greater than or equal to 16 bytes on cache

chkptr Check for NULL pointers (nvfortran only).

chkstk Check the stack for available space upon entry to and before the start of a parallel re
concur Enable auto-concurrentization of loops. Multiple processors or cores will be used to ¢
cpp Run the NVIDIA cpp-like preprocessor without performing subsequent compilation sf
cray Force Cray Fortran (CF77) compatibility (nvfortran only).

cuda Enables CUDA Fortran.

[no]daz Do/don’t treat denormalized operands as zero (default).

[no]ldclchk Determines whether all program variables must be declared (nvfortran only).
[no]defaultunit Determines how the asterisk character ("*”) is treated in relation to standard input ar
[no]ldepchk Checks for potential data dependencies.

[noldse Enables [disables] dead store elimination phase for programs making extensive use ¢

[no]dlines

Determines whether the compiler treats lines containing the letter “D” in column one

dollar, char

Specifies the character (char) to which the compiler maps the dollar sign symbol (nvf

[no]dwarf Specifies [not] to add DWARF debug information.

dwarf2 When used with -g, generate DWARF2 format debug information.

dwarf3 When used with -g, generate DWARF3 format debug information.

extend Instructs the compiler to accept 132-column source code; otherwise it accepts 72-cc
extract invokes the function extractor.

[no]fprelaxed[=option]

Perform certain floating point intrinsic functions using relaxed precision.

fixed Instructs the compiler to assume F77-style fixed format source code (nvfortran only)
[no]flushz Do [not] treat denormalized results as zero (default).

[no]fpapprox Specifies not to use low-precision fp approximation operations.

free Instructs the compiler to assume F90-style free format source code (nvfortran only).
func32 The compiler aligns all functions to 32-byte boundaries.

gccbug([s] Matches behavior of certain gcc bugs

info Prints informational messages regarding optimization and code generation to standa
inform Specifies the minimum level of error severity that the compiler displays.

inline Invokes the function inliner.

instrument Generates additional code to enable instrumentation of functions.

3.2. Generic Compiler Options

43

NVIDIA HPC Compilers Reference Guide, Release 25.5

nvflag

Description

[no]iomutex

Determines whether critical sections are generated around Fortran I/O calls (nvfortra

[nolipa

Invokes interprocedural analysis and optimization.

keepasm

Preserve intermediate assembly language file.

[no]llarge_arrays

Enables support for 64-bit indexing and single static data objects of size larger than

list Specifies whether the compiler creates a listing file.

[no]loop32 Aligns [does not align] innermost loops on 32-byte boundaries.

[no]lre Enable [disable] loop-carried redundancy elimination.

[no]m128 Recognizes [ignores] __m128, __m128d, and __m128i datatypes. (nvc only)

fcon Instructs the compiler to treat floating-point constants as float data types rather th:
neginfo Instructs the compiler to produce information on why certain optimizations are not
noframe Eliminates operations that set up a true stack frame pointer for functions.

[no]i4d [do not] treat INTEGER variables and constants as INTEGER(KIND=4).

nomain When the link step is called, don’t include the object file that calls the Fortran main p
norpath On Linux, do not add -rpath paths to the link line.

[no]stddef Instructs the compiler to not recognize the standard preprocessor macros.
nostdinc Instructs the compiler to not search the standard location for include files.
nostdlib Instructs the linker to not link in the standard libraries.

[no]onetrip

Determines whether each DO loop executes at least once (nvfortran only).

novintr Disable idiom recognition and generation of calls to optimized vector functions.
preprocess Perform cpp-like preprocessing on assembly language and Fortran input source files.
[no]r8 [do not] treat REAL variables and constants as REAL(KIND=8) (nvfortran only).

[no]r8intrinsics

Determines how the compiler treats the intrinsics CMPLX and REAL (nvfortran only).

[no]recursive

Allocate [do not allocate] local variables on the stack; this allows recursion. SAVEd, d:

[no]reentrant

Specifies whether the compiler avoids optimizations that can prevent code from beir

[no]ref_externals

[do not] force references to names appearing in EXTERNAL statements (nvfortran or

safeptr

Instructs the compiler to override data dependencies between pointers and arrays (n

safe_lastval

In the case where a scalar is used after a loop, but is not defined on every iteration of

[no]save

Determines whether the compiler assumes that all local variables are subject to the ¢

schar

Specifies signed char for characters (nvc and nvc++ only — also see uchar).

[no]second_underscore

Do [do not] add the second underscore to the name of a Fortran global if its name al

[no]signextend

Do [do not] extend the sign bit, if it is set.

[no]lsingle

Do [do not] convert float parameters to double parameter characters (nvc and nvc++

44

Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

nvflag Description

standard Causes the compiler to flag source code that does not conform to the ANSI standarc
[no]strided Do [do not] generate alternate code for a loop that contains an induction variable wh
uchar Specifies unsigned char for characters (nvc and nvc++ only — also see schar).
[noJunixlogical [do not] treat any non-zero logical variable as .TRUE. . (nvfortran only).

[no]unroll Controls loop unrolling.

[no]upcase Determines whether the compiler preserves uppercase letters in identifiers. Fortran
varargs Forces Fortran program units to assume calls are to C functions with a varargs type i
[no]vect Do [do not] invoke the code vectorizer.

3.2.36. -m

Displays a link map on the standard output.

Default

The compiler does not display the link map.

Usage

When the following example is executed, nvfortran writes the link map to stdout.

$ nvfortran -m myprog.f

Description
Use this option to display a link map.

» On Linux, the map is written to stdout.
Related options

-C, -0, -S, -Uu

3.2.37. -march=<target>

An alias for -mcpu=<target>[<+extension...>]. Please see -mcpu=<target>[<+extension...>] for details.
Related options

-tp <target>, -mcpu=<target>[<+extension...>], -mtune=<target>, and all -M<nvflag> options that
control environments, as listed in Environment Controls

3.2. Generic Compiler Options 45

NVIDIA HPC Compilers Reference Guide, Release 25.5

Generates code for the requested memory model in the Linux execution environment.

Default: The compiler generates code for the small memory model on Arm and x86-64 targets.
Usage

The following command line requests the medium memory model:

$ nvfortran -mcmodel=medium myprog.f

Arm Description

The tiny memory model limits the combined area for a user’s object or executable to 1TMB. The max-
imum code size is TMB.

The small memory model limits the combined area for a user’s object or executable to 4GB. The max-
imum code size is 2GB.

The medium memory model is not supported on Arm. This will automatically select the large memory
model.

The large memory model allows unrestricted data size. The maximum code size is 2GB.
-mcmodel=1arge is not compatible with -fPIC on Arm systems.

x86-64 Description
The tiny memory model is not supported on x86-64.

The small memory model limits the combined area for a user’s object or executable to 2GB. Implies
-Mlarge_arrays on x86-64 targets.

The medium memory model allows unrestricted data size. The maxmium code size is 2GB.

The Linux environment provides static libxxx.a archive libraries, that are built both with and with-
out -fpic,and dynamic libxxx.so shared object libraries that are compiled with -fpic. Using the
link switch -mcmodel=medium implies the -fpic switch and utilizes the shared libraries by default.

The large memory model is not supported on x86-64.
Details

The tiny and small code models are the fastest and should be suitable for the majority of programs.
The medium and large code models allow for larger code and data sizes, at the cost of extra instruc-
tions. Please see the respective SysV ABI documents for more detail.

Related options

Sets the target processor. An optional list of architecture extensions may follow the target proces-
sor. Architecture extensions are disabled by prepending no to the extension name. For example,
+nocrypto. Extensions are processed in order, from left-to-right.

Default

46 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

The NVIDIA HPC compilers produce code specifically targeted to the type of processor on which com-
pilation is performed. In particular, the default is to use all supported instructions wherever possible
when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the compilation
is performed. You can specify a target processor different than the auto-selected default, but that
target must be within the same CPU family as the processor on which compilation is performed. The
NVIDIA HPC Compilers support 2 different families of CPUs: x86_64 and 64-bit Arm Server CPUs.

Executables created on a given system without the -mcpu= flag may not be usable on previous gen-
eration systems. For example, executables created on an Intel Skylake processor may use AVX-512 or
other instructions that are not available on earlier Intel processors or certain AMD processors.

Usage
In the following example, nvfortran sets the target processor to Arm Neoverse-v2 with Crypto support:

$ nvfortran -mcpu=neoverse-v2+crypto myprog.f

Description

Use this option to set the target architecture. By default, the NVIDIA HPC compilers use all supported
instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the -mcpu option. Thus,
it is possible to create executables that are usable on previous-generation systems.

The following list contains the possible suboptions for -mcpu and the processors that each suboption
is intended to target.

x86-64
px generate code that is usable on any x86-64 processor-based system.

host
generate code targeted for host processor. Link native version of HPC SDK cpu math library.

native

generate code targeted for host processor. Alias for -tp host.
x86-64-v2

generate code for the x86-64 microarchitectural level including SSE.
x86-64-v3

generate code for the x86-64 microarchitectural level including AVX2.
x86-64-v4

generate code for the x86-64 microarchitectural level including some AVX512 extensions.
bulldozer

generate code for AMD Bulldozer and compatible processors.
piledriver

generate code that is usable on any AMD Piledriver processor-based system.
bdver3

generate code for AMD Steamroller and compatible processors.
bdver4

generate code for AMD Excavator and compatible processors.

zen generate code that is usable on any AMD Zen processor-based system (e.g. Naples, Ryzen).

3.2. Generic Compiler Options 47

NVIDIA HPC Compilers Reference Guide, Release 25.5

zen2
generate code that is usable on any AMD Zen 2 processor-based system (e.g. Rome, 3rd Gen
Ryzen).

zen3
generate code that is usable on any AMD Zen 3 processor-based system (e.g. Milan, Ryzen 5000).

zen4
generate code that is usable on any AMD Zen 4 processor-based system (e.g. Genoa).

sandybridge

generate code for Intel Sandy Bridge and compatible processors.
haswell

generate code that is usable on any Intel Haswell processor-based system.
skylake

generate code that is usable on an Intel Skylake Xeon processor-based system.
icelake

generate code that is usable on an Intel Ice Lake Xeon processor-based system.
cannonlake

generate code that is usable on an Intel Cannon Lake Xeon processor-based system.
cascadelake

generate code that is usable on an Intel Cascade Lake Xeon processor-based system.
cooperlake

generate code that is usable on an Intel Cooper Lake Xeon processor-based system.
tigerlake

generate code that is usable on an Intel Tiger Lake Xeon processor-based system.
alderlake

generate code that is usable on an Intel Alder Lake Xeon processor-based system.

rocketlake
generate code that is usable on an Intel Rocket Lake Xeon processor-based system.

sapphirerapids
generate code that is usable on an Intel Sapphire Rapids Xeon processor-based system.

graniterapids
generate code that is usable on an Intel Granite Rapids Xeon processor-based system.

Arm
pXx generate code that is usable on any Arm processor-based system.

host
generate code targeted for host processor. Link native version of HPC SDK cpu math library.

native
generate code targeted for host processor. Alias for -tp host.

a64fx
generate code that is usable on a Fujitsu A64fx processor-based system (SVE x 512).

neoverse-n1
generate code that is usable on any Arm Neoverse-N1 processor-based system.

neoverse-vi
generate code that is usable on any Arm Neoverse-V1 processor-based system (SVE x 256).

48 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

neoverse-v2
generate code that is usable on any Arm Neoverse-V2 processor-based system (SVE x 128).

grace
generate code that is usable on a NVIDIA Grace processor-based system (SVE x 128).

graviton3
generate code that is usable on an AWS Graviton3 processor-based system (SVE x 256).

graviton4
generate code that is usable on an AWS Graviton4 processor-based system (SVE x 128).

thunderx2t99
generate code that is usable on a Cavium Vulcan processor-based system.

Related options

, , , and all -M<nvflag> options that control environ-
ments, as listed in

Allows you to specify a particular directory in which generated intermediate .mod files should be
placed.

Default

The compiler places .mod files in the current working directory, and searches only in the current work-
ing directory for pre-compiled intermediate .mod files.

Usage

The following command line requests that any intermediate module file produced during compilation
of myprog.f be placed in the directory mymods; specifically, the file . /mymods/myprog.mod is used.

$ nvfortran -module mymods myprog.f

Description

Use the -module option to specify a particular directory in which generated intermediate .mod files
should be placed. If the -module <moduledir> option is present, and USE statements are present
in a compiled program unit, then <moduledir> is searched for .mod intermediate files prior to a search
in the default local directory.

Related options

None.

Enable [disable] OpenMP directives. When enabled, it instructs the compiler to interpret user-inserted
OpenMP parallel programming directives and pragmas, and to generate an executable file which will
utilize multiple processors in a parallel system.

Default

The compiler does not interpret user-inserted OpenMP parallel programming directives and pragmas.

3.2. Generic Compiler Options 49

NVIDIA HPC Compilers Reference Guide, Release 25.5

Usage
The following command line requests processing of any OpenMP directives present in myprog. f:

$ nvfortran -mp myprog.f

Description

Use the -mp option to instruct the compiler to interpret user-inserted OpenMP parallel programming
directives and to generate an executable file which utilizes multiple processors in a parallel system.

The suboptions are one or more of the following:

[no]lalign
Forces loop iterations to be allocated to OpenMP processes using an algorithm that maximizes
alignment of vector sub-sections in loops that are both parallelized and SIMD vectorized. This
allocation can improve performance in program units that include many such loops. It can also
result in load-balancing problems that significantly decrease performance in program units with
relatively short loops that contain a large amount of work in each iteration.

[nolautopar
Auto-parallelization of loops within omp loop is enabled by default. To disable this optimization,
use the noautopar suboption.

gpu OpenMP directives are compiled for GPU execution as well as host fallback to the CPU. For target-
specific options, refer to the documentation for -gpu.

multicore
OpenMP directives are compiled for multicore CPU execution only; this sub-option is the default.

ompt
Link against the OMPT-enabled OpenMP runtime library. OMPT is an interface that helps a first-
party tool monitor the execution of an OpenMP program.

For more information about how the HPC Compilers support OpenMP, refer to the “Using OpenMP”
section of the

Related options

-mtune= is provided for compatibility. It performs no operation.
Related options

, , , and all -M<nvflag options that control envi-
ronments, as listed in

50 Chapter 3. Command-Line Options Reference

../hpc-compilers-user-guide/index.html

NVIDIA HPC Compilers Reference Guide, Release 25.5

Issues warnings instead of errors for unknown switches. Ignores unknown command line switches
after printing a warning message.

Default
The compiler prints an error message and then halts.
Usage

In the following example, the compiler ignores unknown command line switches after printing a warn-
ing message.

$ nvfortran -noswitcherror myprog.f

Description

Use this option to instruct the compiler to ignore unknown command line switches after printing a
warning message.

Tip: You can configure this behavior in the siterc file by adding: set NOSWITCHERROR=1.

Related options

None.

Enable [disable] linking with a library containing a custom memory allocator.

Default

On Arm, the compiler links in the custom memory allocator library for dynamic allocations.
On x86-64, the compiler links in the system library for dynamic allocations.

Usage

In the following example, the compiler uses the custom host memory allocator in place of the system
library.

$ nvc main.c -nvmalloc

Description

Use this option to make use of the alternate memory allocator library. Users may see a performance
improvement in certain situations by using this library.

Related options

None.

3.2. Generic Compiler Options 51

NVIDIA HPC Compilers Reference Guide, Release 25.5

Invokes code optimization at the specified level.
Default

The compiler enables classical global optimization.
Syntax

-0 [level]

Where level is an integer from O to 4 or “fast”.
Usage
In the following example, since no -O option is specified, the compiler sets the optimization to level 1.

$ nvfortran myprog.f

In the following example, since no optimization level is specified and a -O option is specified, the com-
piler enables classical global optimizations.

$ nvfortran -0 myprog.f

Description

Use this option to invoke code optimization. Using the NVIDIA compiler commands with the -Olevel
option (the capital O is for Optimize), you can specify any of the following optimization levels:

-00 Level zero specifies no optimization. A basic block is generated for each language statement.

-01 Level one specifies local optimization. Scheduling of basic blocks is performed. Register alloca-
tion is performed.

-0 When no level is specified, level global optimizations are performed, including traditional scalar
optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is enabled.

-02 Level two specifies all level-1 and global optimizations, and enables more advanced optimizations
such as SIMD code generation, cache alignment, and partial redundancy elimination.

-03 Level three specifies aggressive global optimization. This level performs all level-one and level-
two global optimizations and enables more aggressive hoisting and scalar replacement optimiza-
tions that may or may not be profitable.

-Ofast
Enables -03, -Mfprelaxed, -Mstack_arrays, -Mno-nan, -Mno-inf, and,
-fcx-1limited-range.

Note: -Mstack_array is disabled when both command line options -Ofast and -stdpar are
enabled.

-04 Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of
guarded invariant floating point expressions.

The following table shows the interaction between the -0 option, -g option, -Mvect, and -Mconcur
options.

52 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 7: Table 13. Optimization and -0, -g, -Mvect, and -
Mconcur Options

Optimize Option | Debug Option | -M Option | Optimization Level
none none none 1

none none -Mvect 2

none none -Mconcur | 2

none -g none 0

-0 none or -g none 2

-Olevel none or -g none level

-Olevel < 2 none or -g -Mvect 2

-Olevel < 2 none or -g -Mconcur | 2

Unoptimized code compiled using the option -00 can be significantly slower than code generated at
other optimization levels. Like the -Mvect option, the -Munroll option sets the optimization level to
level-2 if no -0 or -g options are supplied. The -gopt option is recommended for generation of debug
information with optimized code. For more information on optimization, refer to the ‘Multicore CPU
Optimization’ section of the

Related options

) 3

Names the executable file. Use the -0 option to specify the filename of the compiler object file. The
final output is the result of linking.

Default

The compiler creates executable filenames as needed. If you do not specify the -o option, the default
filename is the linker output file a. out.

Syntax
-o filename

Where filename is the name of the file for the compilation output. The filename should not have a . f
extension.

Usage
In the following example, the executable file is myprog instead of the default a.out.

$ nvfortran myprog.f -o myprog

Related options

3 ’ 3

3.2. Generic Compiler Options 53

../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

Instructs the compiler to instrument the generated executable for gprof-style gmon.out sample-
based profiling trace file.

Default

The compiler does not instrument the generated executable for gprof-style profiling.
Usage:

In the following example the program is compiled for profiling using gprof.

$ nvfortran -pg myprog.c

Description

Use this option to instruct the compiler to instrument the generated executable for gprof-style
sample-based profiling. You must use this option at both the compile and link steps. A gmon.out
style trace is generated when the resulting program is executed, and can be analyzed using gprof.

Related options

None.

Instructs the linker to hard-code the pathname <directory> into the search path for generated shared
object (dynamically linked library) files.

Note: There cannot be a space between R and <directory>.

Usage

In the following example, at runtime the a.out executable searches the specified directory, in this case
/home/Joe/myso, for shared objects.

$ nvfortran -R/home/Joe/myso myprog.f

Description

Use this option to instruct the compiler to pass information to the linker to hard-code the pathname
<directory> into the search path for shared object (dynamically linked library) files.

Related options

3

54 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Creates a relocatable object file.

Default

The compiler does not create a relocatable object file and does not use the -r option.
Usage

In this example, nvfortran creates a relocatable object file.

$ nvfortran -r myprog.f

Description
Use this option to create a relocatable object file.

Related options

)) 3

(Fortran only) Interprets DOUBLE PRECISION variables as REAL (-r4), or interprets REAL variables as
DOUBLE PRECISION (-r8). Note that these options do not override de facto standard type declarations
that explicitly declare the number of bytes in the type name (REAL*4 and REAL*8).

Usage
In this example, the double precision variables are interpreted as REAL.

$ nvfortran -r4 myprog.f

Description
Interpret DOUBLE PRECISION variables as REAL (-r4) or REAL variables as DOUBLE PRECISION (-r8).

Related options

)

Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a full
pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path of the
currently executing driver). If a full pathname is supplied, that file is used for the driver configuration
file.

Syntax

-rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname beginning
with “/”. Filename is the driver configuration file.

Usage

3.2. Generic Compiler Options 55

NVIDIA HPC Compilers Reference Guide, Release 25.5

In the following example, the file .nvfortranrctest, relative to /opt/hpc_sdk/<target>/
<release>/compilers/bin, the value of $DRIVER, is the driver configuration file.

$ nvfortran -rc .nvfortranrctest myprog.f

Description

Use this option to specify the name of the compiler driver startup configuration file. If the file or
pathname supplied is not a full pathname, the path for the configuration file loaded is relative to the
$DRIVER path - the path of the currently executing compiler driver. If a full pathname is supplied, that
file is used for the compiler driver configuration file.

Related options

Stops compilation after the compiling phase and writes the assembly-language output to a file.
Default

The compiler does not retain a . s file.

Usage

In this example, nvfortran produces the file myprog. s in the current directory.

$ nvfortran -S myprog.f

Description

Use this option to stop compilation after the compiling phase and then write the assembly-language
output to a file. If the input file is filename. f, then the output file is filename.s.

Related options

3 ’ 3 ’

Strips the symbol-table information from the executable file.

Default

The compiler includes all symbol-table information and does not use the -s option.

Usage

In this example, nvfortran strips symbol-table information from the a.out. executable file.

$ nvfortran -s myprog.f

Description
Use this option to strip the symbol-table information from the executable.

Related options

3)

56 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Instructs the compiler to pass information to the linker to produce a shared object (dynamically linked
library) file.

Default
The compiler does not pass information to the linker to produce a shared object file.
Usage

In the following example the compiler passes information to the linker to produce the shared object
file:myso. so.

$ nvfortran -shared myprog.f -o myso.so

Description

Use this option to instruct the compiler to pass information to the linker to produce a shared object
(dynamically linked library) file.

Related options

3

Produces driver help information describing the current driver configuration.
Default

The compiler does not show driver help information.

Usage

In the following example, the driver displays configuration information to the standard output after
processing the driver configuration file.

$ nvfortran -show myprog.f

Description
Use this option to produce driver help information describing the current driver configuration.

Related options

Do not print warning messages.
Default

The compiler prints warning messages.
Usage

In the following example, the driver does not display warning messages.

3.2. Generic Compiler Options 57

NVIDIA HPC Compilers Reference Guide, Release 25.5

$ nvfortran -silent myprog.f

Description
Use this option to suppress warning messages.

Related options

The compiler recognizes the -soname option and passes it through to the linker.

Default

The compiler does not recognize the -soname option.

Usage

In the following example, the driver passes the soname option and its argument through to the linker.

$ nvfortran -soname library.so myprog.f

Description

Use this option to instruct the compiler to recognize the -soname option and pass it through to the
linker.

Related options

None.

Statically link all libraries, including the NVIDIA HPC Compilers runtime.
Default

Dynamic linking is the default behavior for Linux

Usage

The following command line explicitly compiles for and links to the static version of the NVIDIA HPC
Compilers runtime libraries:

% nvfortran -static -c objectl.f

Description

You can use this option to explicitly compile for and link to the static versions of the system libraries
and NVIDIA HPC Compilers runtime libraries.

Related options

58 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Linux only. Compile and statically link only to the NVIDIA HPC Compilers runtime libraries. Other li-
braries are dynamically linked. Implies -Mnorpath.

Default
The compiler uses static libraries.
Usage

The following command line explicitly compiles for and links to the static version of the NVIDIA HPC
Compilers runtime libraries:

% nvfortran -static-nvidia -c object1.f

Description

You can use this option to explicitly compile for and link to the static version of the NVIDIA HPC Com-
pilers runtime libraries.

Note: On Linux, -static-nvidia results in code that runs on most Linux systems without requiring
a Portability package.

Related options

Enable ISO C++17 Parallel Algorithms behavior; please refer to -gpu for target-specific options. The

supported sub-options may be used following an equals sign (“="), with multiple sub-options separated
by commas.

Default

Without sub-options, -stdpar requests generation of code for execution of C++ Parallel Algorithms
on the GPU.

Sub-options
gpu Execute C++ Parallel Algorithms on the GPU; the default.

multicore
Execute C++ Parallel Algorithms in parallel on the CPU.

Usage
The following command-line enables parallelization of C++ Parallel Algorithms for offloading to a GPU.

$ nvc++ -stdpar myprog.cpp

3.2. Generic Compiler Options 59

NVIDIA HPC Compilers Reference Guide, Release 25.5

Select the target device for all parallel programming paradigms used (OpenACC, OpenMP, Standard
Languages). The following suboptions may be used following an equals sign (“="), with multiple sub-
options separated by commas:

gpu Globally set the target device to an NVIDIA GPU.

multicore
Globally set the target device to a multicore CPU.

Usage

The following command-line enables parallelization of C++17 Parallel Algorithms and OpenACC, and
globally designates the target device as an NVIDIA GPU.

$ nvc++ -stdpar -acc -target=gpu myprog.cpp

Print execution times for various compilation steps.

Default

The compiler does not print execution times for compilation steps.

Usage

In the following example, nvfortran prints the execution times for the various compilation steps.

$ nvfortran -time myprog.f

Description
Use this option to print execution times for various compilation steps.

Related options

Sets the target processor.
Default

The NVIDIA HPC compilers produce code specifically targeted to the type of processor on which com-
pilation is performed. In particular, the default is to use all supported instructions wherever possible
when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the compilation
is performed. You can specify a target processor different than the auto-selected default, but that
target must be within the same CPU family as the processor on which compilation is performed. The
NVIDIA HPC Compilers support 2 different families of CPUs: x86_64 and 64-bit Arm Server CPUs.

60 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Executables created on a given system without the -tp flag may not be usable on previous generation
systems. For example, executables created on an Intel Skylake processor may use AVX-512 or other
instructions that are not available on earlier Intel processors or certain AMD processors.

Usage
In the following example, nvfortran sets the target processor to an Intel Skylake Xeon processor:

$ nvfortran -tp=skylake myprog.f

Description

Use this option to set the target architecture. By default, the NVIDIA HPC compilers use all supported
instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the -tp option. Thus, it
is possible to create executables that are usable on previous-generation systems.

The following list contains the possible suboptions for -tp and the processors that each suboption is
intended to target.

pXx generate code that is usable on any x86-64 processor-based system.

host
generate code targeted for host processor. Link native version of HPC SDK cpu math library.
native
generate code targeted for host processor. Alias for -tp host.
x86-64-v2
generate code for the x86-64 microarchitectural level including SSE.
x86-64-v3
generate code for the x86-64 microarchitectural level including AVX2.
x86-64-v4
generate code for the x86-64 microarchitectural level including some AVX512 extensions.
bulldozer
generate code for AMD Bulldozer and compatible processors.
piledriver
generate code that is usable on any AMD Piledriver processor-based system.
bdver3
generate code for AMD Steamroller and compatible processors.
bdver4

generate code for AMD Excavator and compatible processors.
zen generate code that is usable on any AMD Zen processor-based system (e.g. Naples, Ryzen).

zen2
generate code that is usable on any AMD Zen 2 processor-based system (e.g. Rome, 3rd Gen
Ryzen).

zen3
generate code that is usable on any AMD Zen 3 processor-based system (e.g. Milan, Ryzen 5000).

zen4
generate code that is usable on any AMD Zen 4 processor-based system (e.g. Genoa).

sandybridge
generate code for Intel Sandy Bridge and compatible processors.

3.2. Generic Compiler Options 61

NVIDIA HPC Compilers Reference Guide, Release 25.5

haswell

generate code that is usable on any Intel Haswell processor-based system.
skylake

generate code that is usable on an Intel Skylake Xeon processor-based system.
icelake

generate code that is usable on an Intel Ice Lake Xeon processor-based system.
cannonlake

generate code that is usable on an Intel Cannon Lake Xeon processor-based system.
cascadelake

generate code that is usable on an Intel Cascade Lake Xeon processor-based system.
cooperlake

generate code that is usable on an Intel Cooper Lake Xeon processor-based system.
tigerlake

generate code that is usable on an Intel Tiger Lake Xeon processor-based system.
alderlake

generate code that is usable on an Intel Alder Lake Xeon processor-based system.
rocketlake

generate code that is usable on an Intel Rocket Lake Xeon processor-based system.
sapphirerapids

generate code that is usable on an Intel Sapphire Rapids Xeon processor-based system.
graniterapids

generate code that is usable on an Intel Granite Rapids Xeon processor-based system.
host

generate code targeted for host processor. Link native version of HPC SDK cpu math library.
native

generate code targeted for host processor. Alias for -tp host.
a64fx

generate code that is usable on a Fujitsu A64fx processor-based system (SVE x 512).

neoverse-n1
generate code that is usable on any Arm Neoverse-N1 processor-based system.

neoverse-vi
generate code that is usable on any Arm Neoverse-V1 processor-based system (SVE x 256).

heoverse-v2
generate code that is usable on any Arm Neoverse-V2 processor-based system (SVE x 128).

grace
generate code that is usable on a NVIDIA Grace processor-based system (SVE x 128).

graviton3
generate code that is usable on an AWS Graviton3 processor-based system (SVE x 256).

graviton4
generate code that is usable on an AWS Graviton4 processor-based system (SVE x 128).

thunderx2t99
generate code that is usable on a Cavium Vulcan processor-based system.

62 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Related options

All -M<nvflag> options that control environments, as listed in

Adds debug information for runtime traceback for use with the environment variable NVCOM-
PILER_TERM.

Default
The compiler enables traceback for FORTRAN and disables traceback for C and C++.
Syntax

-traceback

Usage
In this example, nvfortran enables traceback for the program myprog. f.

$ nvfortran -traceback myprog.f

Description

Use this option to enable or disable runtime traceback information for use with the environment vari-
able NVCOMPILER_TERM.

Setting set TRACEBACK=OFF; "~ in " “sitercor .mynv*rc also disables default traceback.
Using ON instead of OFF enables default traceback.
Related options

None.

Undefines a preprocessor macro.

Syntax

-Usymbol

Where symbol is a symbolic name.

Usage

The following examples undefine the macro test.
$ nvfortran -Utest myprog.F

$ nvfortran -Dtest -Utest myprog.F
Description

Use this option to undefine a preprocessor macro. You can also use the #undef pre-processor directive
to undefine macros.

Related options

3.2. Generic Compiler Options 63

NVIDIA HPC Compilers Reference Guide, Release 25.5

Initializes the symbol-table with <symbol>, which is undefined for the linker. An undefined symbol
triggers loading of the first member of an archive library.

Default
The compiler does not use the -u option.

Syntax

-usymbol

Where symbol is a symbolic name.
Usage
In this example, nvfortran initializes symbol-table with test.

$ nvfortran -utest myprog.f

Description

Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

Related options

3 3

Displays additional information, including version messages. Further, if a release_number is ap-
pended, the compiler driver attempts to compile using the specified release instead of the default
release.

Note: There can be no space between -V and release_number.

Default

The compiler does not display version information and uses the release specified by your path to com-
pile.

Usage
The following command-line shows the output using the -V option.
% nvfortran -V myprog.f

The following command-line causes nvc to compile using the 20.7 release instead of the default re-
lease.

64 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

% nvc -V20.7 myprog.c

Description

Use this option to display additional information, including version messages or, if a release_number
is appended, to instruct the compiler driver to attempt to compile using the specified release instead
of the default release.

The specified release must be co-installed with the default release

Related options

Displays the invocations of the compiler, assembler, and linker.

Default

The compiler does not display individual phase invocations.

Usage

In the following example you use -v to see the commands sent to compiler tools, assembler, and linker.

$ nvfortran -v myprog.f90

Description

Use the -v option to display the invocations of the compiler, assembler, and linker. These invocations
are command lines created by the compiler driver from the files and the -W options you specify on the
compiler command-line.

Related options

3 3 3

Passes arguments to a specific phase.
Syntax

-W{@ | a | 1 },option[,option...]

Note: You cannot have a space between the -W and the single-letter pass identifier, between the
identifier and the comma, or between the comma and the option.

0 (the number zero) specifies the compiler.
a specifies the assembler.

1 (lowercase letter |) specifies the linker.

3.2. Generic Compiler Options 65

NVIDIA HPC Compilers Reference Guide, Release 25.5

option
is a string that is passed to and interpreted by the compiler, assembler or linker. Options sepa-
rated by commas are passed as separate command line arguments.

Usage

In the following example the linker loads the text segment at address Oxffc00000 and the data seg-
ment at address 0xffe00000.

$ nvfortran -W1,-k,-t,0xffc000e0,-d, 0xffe@0000 myprog.f

Description

Use this option to pass arguments to a specific phase. You can use the -W option to specify options
for the assembler, compiler, or linker.

A given NVIDIA HPC compiler command invokes the compiler driver, which parses the command-line,
and generates the appropriate commands for the compiler, assembler, and linker.

Related options

Turn all warning messages into error messages. Compilation fails when errors are detected.
Default

The compiler does not abort compilation when only warning messages are generated.
Usage

In the following example all warning messages are fatal messages.

$ nvfortran -Werror myprog.f

Description
Use the -Werror option to abort compilation upon encountering any warning message.

Related options

Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example no warning messages are printed.

$ nvfortran -w myprog.f

66 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Description
Use the -w option to inhibit warning messages.

Related options

Use legacy standard mode for C and C++.

Default

None.

Usage

In the following example the compiler uses legacy standard mode.

$ nvc -Xs myprog.c

Description

Use this option to use legacy standard mode for C and C++. Further, this option implies -
alias=traditional.

Related options

Use legacy transitional mode for C and C++.

Default

None.

Usage

In the following example the compiler uses legacy transitional mode.

$ nvc -Xt myprog.c

Description

Use this option to use legacy transitional mode for C and C++. Further, this option implies -
alias=traditional.

Related options

3.2. Generic Compiler Options 67

NVIDIA HPC Compilers Reference Guide, Release 25.5

Pass options to the linker.

Syntax

-Xlinker option[,option...]

Default
None.
Usage

In the following example the option —trace-symbol=foo is passed to the linker, which will cause the
Linux linker to list all the files that reference symbol foo.

$ nvc -Xlinker --trace-symbol=foo myprog.c

Description

Use this option pass options to the linker. This is useful when the link step needs to be customized but
the compiler doesn’t understand the necessary linker options. The options supported by the linker are
platform dependent and are not listed here. This option has the same effect as -WI.

Related options

There are a large number of compiler options specific to the NVC++ and NVC compilers, especially
NVC++. This section provides details on several of these options, but is not exhaustive. For a complete
list of available options, including an exhaustive list of NVC++ options, use the ~-help command-line
option. For further detail on a given option, use -help and specify the option explicitly as described
in

(nvc++ only) Instructs the NVC++ compiler to accept code conforming to the ISO C++ standard, issuing
errors for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.
Usage

The following command-line requests ISO conforming C++.

$ nvc++ -A hello.cc

68 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Description

Use this option to instruct the NVC++ compiler to accept code conforming to the ISO C++ standard
and to issues errors for non-conforming code.

Related options

(nvc++ only) Instructs the NVC++ compiler to accept code conforming to the ISO C++ standard, issuing
warnings for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.
Usage

The following command-line requests ISO conforming C++, issuing warnings for non-conforming code.

$ nvc++ -a hello.cc

Description

Use this option to instruct the NVC++ compiler to accept code conforming to the ISO C++ standard
and to issues warnings for non-conforming code.

Related options

Select optimizations based on type-based pointer alias rules in C and C++.

Syntax

-alias=[ansi|traditionall]

Default

None.

Usage

The following command-line enables optimizations.

$ nvc++ -alias=ansi hello.cc

Description
Use this option to select optimizations based on type-based pointer alias rules in C and C++,
ansi Enable optimizations using ANSI C type-based pointer disambiguation

traditional
Disable type-based pointer disambiguation

3.3. C++ and C-specific Compiler Options 69

NVIDIA HPC Compilers Reference Guide, Release 25.5

Related options

(nvc++ only) Enables or disables recognition of alternative tokens. These are tokens that make it pos-
sible to write C++ without the use of the comma (,), [,], #, & #, and characters. The alternative tokens
include the operator keywords (e.g., and, bitand, etc.) and digraphs.

Default

The default behavior is —no_alternative_tokens, that is, to disable recognition of alternative tokens.
Usage

The following command-line enables alternative token recognition.

S nvc++ --alternative_tokens hello.cc

Related options

None.

(nvc and nvc++) Enables use of C++ style comments starting with // in C program units.
Default

The NVC C compiler does not allow C++ style comments.

Usage

In the following example the compiler accepts C++ style comments.

$ nvc -B myprog.cc

Description
Use this option to enable use of C++ style comments starting with // in C program units.

Related options

(nvc++ only) Enables or disables recognition of bool.
Default

The compile recognizes bool: -bool.

Usage

In the following example, the compiler does not recognize bool.

70 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

$ nvc++ --no_bool myprog.cc

Description
Use this option to enable or disable recognition of bool.
Related options

None.

Compile with or without math subroutine builtin support.

Default

The default is to compile with math subroutine support: -builtin.

Usage

In the following example, the compiler does not build with math subroutine support.

$ nvc++ --no_builtin myprog.cc

Description

Use this option to enable or disable compiling with math subroutine builtin support. When you compile
with math subroutine builtin support, the selected math library routines are inlined.

Related options

None.

Compresses long function names in the file.

Default

The compiler does not compress names: —no_compress_names.

Usage

In the following example, the compiler compresses long function names.

$ nvc++ --compress_names myprog.cc

Description

Use this option to specify to compress long function names. Highly nested template parame-
ters can cause very long function names. These long names can cause problems for older assem-
blers. Users encountering these problems should compile all C++ code, including library code with
--compress_names. Libraries supplied by NVIDIA work with —compress_names.

Related options

None.

3.3. C++ and C-specific Compiler Options 71

NVIDIA HPC Compilers Reference Guide, Release 25.5

3.3.9. -diag_error <number>

(nvc++ only) Overrides the normal severity of the specified diagnostic messages.
Default

The compiler does not override normal diagnostics severity.

Description

Use this option to override the normal severity of the specified diagnostic messages and have them
treated as errors. The message(s) may be specified using a mnemonic tag or using a diagnostic num-
ber.

Related options

-diag_remark <number>, -diag_suppress <number>, -diag_warning <number>, -display_error_number

3.3.10. =diag_remark <number>

(nvc++ only) Overrides the normal severity of the specified diagnostic messages.
Default

The compiler does not override normal diagnostics severity.

Description

Use this option to override the normal severity of the specified diagnostic messages and have them
treated as remarks. The message(s) may be specified using a mnemonic tag or using a diagnostic
number.

Related options

—-diag_error <number>, -diag_suppress <number>, -diag_warning <number>, -display_error_number

3.3.11. —=diag_suppress <number>

(nvc++ only) Overrides the normal severity of the specified diagnostic messages.
Default

The compiler does not override normal diagnostics severity.

Usage

In the following example, the compiler suppresses the specified diagnostic messages.

$ nvc++ --diag_suppress error_tag prog.cc

Description

Use this option to override the normal severity of the specified diagnostic messages and have them
suppressed. The message(s) may be specified using a mnemonic tag or using a diagnostic number.

Related options

-diag_error <number>, -diag_remark <number>, -diag_warning <number>, -display_error_number

72 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

(nvc++ only) Overrides the normal severity of the specified diagnostic messages.
Default

The compiler does not override normal diagnostics severity.

Usage

In the following example, the compiler overrides the severity of the specified diagnostic messages and
treats them as warnings.

$ nvc++ --diag_warning an_error_tag myprog.cc

Description

Use this option to override the normal severity of the specified diagnostic messages and have them
treated as warnings. The message(s) may be specified using a mnemonic tag or using a diagnostic
number.

Related options

(nvc++ only) Displays the error message number in any diagnostic messages that are generated. The
option may be used to determine the error number to be used when overriding the severity of a diag-
nostic message.

Default
The compiler does not display error message numbers for generated diagnostic messages.
Usage

In the following example, the compiler displays the error message number for any generated diagnostic
messages.

$ nvc++ --display_error_number myprog.cc

Description

Use this option to display the error message number in any diagnostic messages that are generated.
You can use this option to determine the error number to be used when overriding the severity of a
diagnostic message.

Related options

3.3. C++ and C-specific Compiler Options 73

NVIDIA HPC Compilers Reference Guide, Release 25.5

(nvc++ only) Set the C++ front-end error limit to the specified <number>.

(nvc++ only) Disables exception handling support.

Default

Exception handling support is enabled.

Usage

In the following example, the compiler does not provide exception handling support.

$ nvc++ --no_exceptions myprog.cc

Description

Use this option to disable exception handling support. When exception handling is turned off, any
try/catch blocks or throw expressions in the code will result in a compilation error, and any exception
specifications will be ignored.

(nvc++ only) Sets the visibility of ELF symbols.
Default

Sets the visibility of ELF symbols.

Usage

All symbols are marked with global visibility unless overridden with this switch or with the visibility
attribute.

$ nvc++ -fvisibility=default hello.cp

Description

The visibility argument can take on one of four values: default, internal, hidden, or protected.

(nvc++ only) Sets the GNU C++ compatibility version.

Default

The compiler uses the latest version installed on the system on which compilation is performed.
Usage

In the following example, the compiler sets the GNU version to 4.3.4.

74 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

$ nvc++ --gnu_version 4.3.4 myprog.cc

Description

Use this option to set the GNU C++ compatibility version to use when you compile.

(nve++ only) Enables or disables alignment of long long integers on long long boundaries.
Default

The compiler aligns long long integers on long long boundaries: -llalign.

Usage

In the following example, the compiler does not align long long integers on long long boundaries.

$ nvc++ --nollalign myprog.cc

Description
Use this option to allow enable or disable alignment of long long integers on long long boundaries.
Related options

None.

Generates a list of make dependencies and prints them to stdout.

Note: Note: The compilation stops after the preprocessing phase.

Default

The compiler does not generate a list of make dependencies.

Usage

In the following example, the compiler generates a list of make dependencies.
$ nvc++ -M myprog.cc

Description

Use this option to generate a list of make dependencies and print them to stdout.

Related options

3.3. C++ and C-specific Compiler Options 75

NVIDIA HPC Compilers Reference Guide, Release 25.5

Generates a list of make dependencies and prints them to a file.
Default

The compiler does not generate a list of make dependencies.
Usage

In the following example, the compiler generates a list of make dependencies and prints them to the
file myprog.d.

$ nvc++ -MD myprog.cc

Description

Use this option to generate a list of make dependencies and print them to a file. The name of the file
is determined by the name of the file under compilation, or is as specified using the optional <dfile>
argument.

Related options

(nvc++ only) Accepts dollar signs ($) in identifiers.

Default

The compiler does not accept dollar signs ($) in identifiers.

Usage

In the following example, the compiler allows dollar signs ($) in identifiers.

$ nvc++ --optk_allow_dollar_in_id_chars myprog.cc

Description

Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

Halts the compilation process after preprocessing and writes the preprocessed output to a file.
Default

The compiler produces an executable file.

Usage

In the following example, the compiler produces the preprocessed file myprog. i in the current direc-
tory.

$ nvc++ -P myprog.cc

76 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

Description

Use this option to halt the compilation process after preprocessing and write the preprocessed output
to a file. If the input file is filename.c or filename.cc., then the output file is filename.i.

Related options

Prints warnings from included <system header files>.

Default

The compiler does not print warnings from the included system header files.

Usage

In the following example, the compiler prints the warnings from the included system header files.

$ nvc++ --pedantic myprog.cc

Related options

None.

(nvc++ only) Specifies the name of a file to be included at the beginning of the compilation.

In the following example, the compiler includes the file incl_file.c at the beginning of the compi-
lation. me

$ nvc++ --preinclude=incl_file.c myprog.cc

Description

Use this option to specify the name of a file to be included at the beginning of the compilation. For
example, you can use this option to set system-dependent macros and types.

Related options

None.

(nvc++ only) Enables or disables implicit use of the std namespace when standard header files are
included.

Default
The compiler uses std namespace when standard header files are included: —using_std.
Usage

The following command-line disables implicit use of the std namespace:

3.3. C++ and C-specific Compiler Options 77

NVIDIA HPC Compilers Reference Guide, Release 25.5

$ nvc++ --no_using_std hello.cc

Description

Use this option to enable or disable implicit use of the std namespace when standard header files are
included in the compilation.

Related options

(nvc++ only) Generates cross-reference information and places output in the specified file.
Syntax:

-Xfoo

where foo is the specified file for the cross reference information.

Default

The compiler does not generate cross-reference information.

Usage

In the following example, the compiler generates cross-reference information, placing it in the file:
xreffile.

$ nvc++ -Xxreffile myprog.cc

Description

Use this option to generate cross-reference information and place output in the specified file. This is
an EDG option.

Related options

None.

This section describes each of the options available with -M by the categories:

Code Generation Fortran Language Controls | Optimization | Environment

C/C++ Language Controls | Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not all, of the -M<nvflag> options.
For a complete alphabetical list of all the options, refer to . These options are grouped accord-
ing to categories and are listed with exact syntax, defaults, and notes concerning similar or related
options.

For the latest information and description of a given option, or to see all available options, use the -help
command-line option, described in

78 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

This section describes the -M<nvflag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are these:

daz norecursive | nosecond_underscore

flushz noreentrant | nostrideO

noref_externals | signextend

Related options: -D, -I, -L, -1, -U.

The following list provides the syntax for each -M<nvflag> option that controls code generation. Each
option has a description and, if appropriate, any related options.

-Mdaz
Set IEEE denormalized floating point operands to zero; there is a performance benefit but mis-
leading results can occur, such as when dividing a small normalized number by a denormalized
number. To take effect, this option must be set when compiling the main program/function.
[default - x86_64 and aarch64]

Note: Same functionality can be achieved with the runtime environment variable NVCOM-
PILER_FPU_STATE

-Mnodaz
Do not treat denormalized numbers as zero. To take effect, this option must be set for the main
program.

Note: Same functionality can be achieved with the runtime environment variable NVCOM-
PILER_FPU_STATE

-Mnodwarf
Specifies not to add DWARF debug information.

-Mdwarf2
Generate DWARF2 format debug information. To take effect, this option must be used in com-
bination with -g.

-Mdwarf3
Generate DWARF3 format debug information. To take effect, this option must be used in com-
bination with -g.

-Mflushz
Set floating point control register to flush-to-zero mode; if a floating-point underflow occurs,

the result is set to zero. To take effect, this option must be set when compiling the main pro-
gram/function. [default - x86_64 and aarch64]

Note: Same functionality can be achieved with the runtime environment variable NVCOM-
PILER_FPU_STATE

3.4. -M Options by Category 79

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mnoflushz
Do not set flush-to-zero mode; generate underflows. To take effect, this option must be set for
the main program.

Note: Same functionality can be achieved with the runtime environment variable NVCOM-
PILER_FPU_STATE

-Mfma
Enable FMA (fused multiply-add) generation on both the CPU and GPU; default at -01.

Note: The global -Mfma option can be used in conjunction with -gpu=[no]fma to explicitly
enable/disable FMAs on either the CPU or GPU.

Example:
-Mfma // Enable CPU and GPU FMAs.
-Mfma -gpu=nofma // Enable CPU FMAs and disable GPU FMAs.
-Mnofma -gpu=fma // Disable CPU FMAs and enable GPU FMAs.
-Mnofma // Disable CPU and GPU FMAs.

-Mnofma

Disable FMA (fused multiply-add) generation on both the CPU and GPU.

Note: The global -Mnofma option can be used in conjunction with -gpu=[no]fma to explicitly
enable/disable FMAs on either the CPU or GPU.

-Mfunc32
Align functions on 32-byte boundaries.

-Minstrument [=functions]
Generate additional code to enable instrumentation of functions.

Note: The option -Minstrument=functions is the same as -Minstrument.

Just after function entry and just before function exit, the following profiling functions are called
with the address of the current function and its call site.

void __cyg_profile_func_enter (void *this_fn, void *call_site);

void __cyg_profile_func_exit (void *this_fn, void *call_site);

Note: In these calls, the first argument is the address of the start of the current function.

Implies -Mf rame.

-Minstrument-exclude-file-list=<filelist>
Instruct the compiler not to instrument functions in files whose path contains <filelist>. Used in
conjunction with -Minstrument[=functions]

-Minstrument-exclude-func-list=<functions>
Instruct the compiler not to instrument functions that contain the substring <functions>. Used
in conjunction with -Minstrument[=functions]

80 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mlarge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2 GB in size. On
x86-64 targets, this option is the default in the presence of -mcmodel=medium. It can be used
separately together with the default small memory model for certain 64-bit applications that
manage their own memory space. For more information, refer to the ‘Programming Considera-
tions for 64-Bit Environments’ section of the

-Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2 GB in size. On x86-
64 targets, when this option is placed after -mcmodel=medium on the command line, it disables
use of 64-bit indexing for applications that have no single data object larger than 2 GB. For more
information, refer to the ‘Programming Considerations for 64-Bit Environments’ section of the

-Mnomain
Instructs the compiler not to include the object file that calls the Fortran main program as part
of the link step. This option is useful for linking programs in which the main program is written
in C/C++ and one or more subroutines are written in Fortran (Fortran only).

-M[no]pre
enables [disables] partial redundancy elimination.

-Mrecursive
instructs the compiler to allow Fortran subprograms to be called recursively.

-Mnorecursive
Fortran subprograms may not be called recursively.

-Mref_externals
force references to names appearing in EXTERNAL statements (Fortran only).

-Mnoref_externals
do not force references to names appearing in EXTERNAL statements (Fortran only).

-Mreentrant
instructs the compiler to avoid optimizations that can prevent code from being reentrant.

-Mnoreentrant
instructs the compiler not to avoid optimizations that can prevent code from being reentrant.

-Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global symbol if its
name already contains an underscore. This option is useful for maintaining compatibility with
object code compiled using gfortran, which uses this convention by default (Fortran only).

-Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a Fortran global symbol if
its name already contains an underscore (Fortran only).

-Msafe_lastval
When a scalar is used after a loop, but is not defined on every iteration of the loop, the compiler
does not by default parallelize the loop. However, this option tells the compiler it’s safe to paral-
lelize the loop. For a given loop, the last value computed for all scalars makes it safe to parallelize
the loop.

-Msignextend
instructs the compiler to extend the sign bit that is set as a result of converting an object of one
data type to an object of a larger signed data type.

-Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting an object

3.4. -M Options by Category 81

../hpc-compilers-user-guide/index.htm
../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

of one data type to an object of a larger data type.

-Mstack_arrays
places automatic arrays on the stack.

-Mnostack_arrays
allocates automatic arrays on the heap. -Mnostack_arrays is the default and what traditionally
has been the approach used.

-Mstride®
instructs the compiler to inhibit certain optimizations and to allow for stride O array references.
This option may degrade performance and should only be used if zero-stride induction variables
are possible.

-Mnostride®
instructs the compiler to perform certain optimizations and to disallow for stride O array refer-
ences.

-Mvarargs
force Fortran program units to assume procedure calls are to C functions with a varargs-type
interface (nvfortran only).

This section describes the -M<nvflag> options that affect C++ and C language interpretations by the
NVC++ and NVC compilers. These options are only valid to the nvc++ and nvc compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword | nosingle

dollar,_ schar

Usage:

In this example, the compiler allows the asm keyword in the source file.

$ nvc -Masmkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.

$ nvc -Mdollar,. myprog.c

In the following example, the compiler treats floating-point constants as float values, rather than the
default double.

$ nvc -Mfcon myprog.c
In the following example, the compiler does not convert float parameters to double parameters.
$ nvc -Msingle myprog.c

Without -Muchar or with -Mschar, the variable ch is a signed character:

char ch;
signed char sch;

82 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

If -Muchar is specified on the command line:

$ nvc -Muchar myprog.c

char ch in the preceding declaration is equivalent to:

unsigned char ch;

The following list provides the syntax for each -M<nvflag> option that controls code generation in
C++ and C. Each option has a description and, if appropriate, any related options.

-Masmkeyword
instructs the compiler to allow the asm keyword in C source files. The syntax of the asm state-
ment is as follows:

asm("statement");

Where statement is a legal assembly-language statement. The quote marks are required.

Note: The current default is to support gcc’s extended asm, where the syntax of extended
asm includes asm strings. The -M[no]asmkeyword switch is useful only if the target device is a
Pentium 3 or older cpu type (-tp piii|p6|k7|athlon]athlonxp|px).

-Mnoasmkeyword
instructs the compiler not to allow the asm keyword in C source files. If you use this option and
your program includes the asm keyword, unresolved references are generated

-Mdollar, char
char specifies the character to which the compiler maps the dollar sign ($). The NVC compiler
allows the dollar sign in names; ANSI C does not allow the dollar sign in names.

-M[no]eh_frame
instructs the linker to keep eh_frame call frame sections in the executable.

Note: The eh_frame option is available only on newer Linux systems that supply the system
unwind libraries.

-Mfcon
instructs the compiler to treat floating-point constants as float data types, instead of double
data types. This option can improve the performance of single-precision code.

-M[no]m128
instructs the compiler to recognize [ignore] __m128, __m128d, and __m128i datatypes.

-Mschar
specifies signed char characters. The compiler treats “plain” char declarations as signed char.

-Msingle
do not to convert float parameters to double parameters in non-prototyped functions. This op-
tion can result in faster code if your program uses only float parameters. However, since ANSI C
specifies that routines must convert float parameters to double parameters in non-prototyped
functions, this option results in non-ANSI conformant code.

-Mnosingle
instructs the compiler to convert float parameters to double parameters in non-prototyped func-
tions.

3.4. -M Options by Category 83

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Muchar
instructs the compiler to treat “plain” char declarations as unsigned char.

This section describes the -M<nvflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

The following list provides the syntax for each -M<nvflag> option that controls environments. Each
option has a description and, if appropriate, a list of any related options.

-Mnostartup
instructs the linker not to link in the standard startup routine that contains the entry point
(_start) for the program.

Note: If you use the -Mnostartup option and do not supply an entry point, the linker issues the
following error message: Warning: cannot find entry symbol _start

-M[no]hugetlb
links in the huge page runtime library. Enables large 2-megabyte pages to be allocated. The effect
is to reduce the number of TLB entries required to execute a program. This option is most effec-
tive on newer architectures; older architectures do not have enough TLB entries for this option to
be beneficial. By itself, the huge suboption tries to allocate as many huge pages as required. You
can also limit the pages allocated by using the environment variable NVCOMPILER_HUGE _PAGES.

-M[no]stddef
instructs the compiler not to predefine any macros to the preprocessor when compiling a C pro-
gram.

-Mnostdinc
instructs the compiler to not search the standard location for include files.

-Mnostdlib
instructs the linker not to link in the standard libraries 1ibnvf.a, 1ibm.a, 1libc.a,and 1libnvc.
a in the library directory 1ib within the standard directory. You can link in your own library with
the -l option or specify a library directory with the -L option.

This section describes the -M<nvflag> options that affect Fortran language interpretations by the
NVIDIA Fortran compiler. These options are valid only for the nvfortran compiler driver.

Default: Before looking at all the options, let’s look at the defaults. For arguments that you do not
specify, the defaults are as follows:

nobackslash | nodefaultunit | dollar,_ noonetrip | nounixlogical

nodclchk nodlines noiomutex | nosave noupcase

84 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

The following list provides the syntax for each -M<nvflag> option that affect Fortran language inter-
pretations. Each option has a description and, if appropriate, a list of any related options.

-Mallocatable=95|03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array assignments.
The default behavior is to use Fortran 95 semantics; the 83 option instructs the compiler to use
Fortran 2003 semantics.

-Mbackslash
instructs the compiler to treat the backslash as a normal character, and not as an escape char-
acter in quoted strings.

-Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted strings (in ac-
cordance with standard C usage).

-Mdclchk
instructs the compiler to require that all program variables be declared.

-Mnodclchk
instructs the compiler not to require that all program variables be declared.

-Mdefaultunit
instructs the compiler to treat “*” as a synonym for standard input for reading and standard
output for writing.

-Mnodefaultunit
instructs the compiler to treat “*” as a synonym for unit 5 on input and unit 6 on output.

-Mdlines
instructs the compiler to treat lines containing “D” in column 1 as executable statements (ignor-
ing the “D”).

-Mnodlines
instructs the compiler not to treat lines containing “D” in column 1 as executable statements.
The compiler does not ignore the “D”.

-Mdollar, char
char specifies the character to which the compiler maps the dollar sign. The compiler allows the
dollar sign in names.

-Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-column code.

-Mfixed
instructs the compiler to assume input source files are in FORTRAN 77-style fixed form format.

-Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform format.

-Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.

-Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran I/O statements.

-Monetrip
instructs the compiler to force each DO loop to execute at least once. This option is useful for
programs written for earlier versions of Fortran.

-Mnoonetrip
instructs the compiler not to force each DO loop to execute at least once.

3.4. -M Options by Category 85

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Msave
instructs the compiler to assume that all local variables are subject to the SAVE statement. This
may allow older Fortran programs to run, but it can greatly reduce performance.

-Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE statement.

-Mstandard
instructs the compiler to flag non-ANSI-conforming source code.

-Munixlogical
directs the compiler to treat logical values as true if the value is non-zero and false if the value
is zero (UNIX F77 convention). When -Munixlogical is enabled, a logical value or test that is
non-zerois . TRUE ., and a value or test that is zero is . FALSE.. In addition, the value of a logical
expression is guaranteed to be one (1) when the result is . TRUE..

-Mnounixlogical
directs the compiler to use the VMS convention for logical values for true and false. Even values
are true and odd values are false.

-Mupcase
instructs the compiler to preserve uppercase lettersin identifiers. With -Mupcase, the identifiers
X and x are different. Keywords must be in lower case. This selection affects the linking process.
If you compile and link the same source code using -Mupcase on one occasion and -Mnoupcase
on another, you may get two different executables - depending on whether the source contains
uppercase letters. The standard libraries are compiled using the default -Mnoupcase.

-Mnoupcase
instructs the compiler to convert all identifiers to lower case. This selection affects the link-
ing process. If you compile and link the same source code using -Mupcase on one occasion
and -Mnoupcase on another, you may get two different executables, depending on whether the
source contains uppercase letters. The standard libraries are compiled using -Mnoupcase.

This section describes the -M<nvflag> options that control function inlining.

Usage: Before looking at all the options, let’s look at a few examples. In the following example, the
compiler extracts functions that have 500 or fewer statements from the source file myprog.f and
saves them in the file extract.il.

$ nvfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100 statements
in the source file myprog.f.

$ nvfortran -Minline=maxsize:100 myprog.f

Related options: -0, -Mextract

The following list provides the syntax for each -M<nvflag> option that controls function inlining. Each
option has a description and, if appropriate, a list of any related options.

-M[no]autoinline[=option[,option,...]]

instructs the compiler to inline [not to inline] a C++ and C functions at -02, where the option can
be any of these:

86 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

maxsize:n
instructs the compiler not to inline functions of size > n. The default size is 100.

nostatic
do not inline static functions without the inline keyword

totalsize:n
instructs the compiler to stop inlining when the size equals n. The default size is 800.

-Mextract[=option[,option,...]]
Extracts functions from the file indicated on the command line and creates or appends to the
specified extract directory where option can be any of the following:

name : func
instructs the extractor to extract function func from the file.

pragma
Fortran Only: instructs the extractor to extract procedures that have the INVF$ INLINE
pragma on a separate source lineimmediately before the procedure’s SUBROUTINE or FUNC-
TION statement.

size:number
instructs the extractor to extract functions with number or fewer statements from the file.

lib:filename.ext
instructs the extractor to use directory filename.ext as the extract directory, which is
required to save and re-use inline libraries.

If you specify both name and size, the compiler extracts functions that match func, or that have
number or fewer statements. For examples of extracting functions, refer to the ‘Using Function
Inlining’ section of the

-Minline[=option[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be any of the
following:

except:func
Inlines all eligible functions except func, a function in the source text. You can use a comma-
separated list to specify multiple functions.

[name:]func
Inlines all functions in the source text whose name matches func. You can use a comma-
separated list to specify multiple functions.

The function name should be a non-numeric string that does not contain a period. You can
also use a name : prefix followed by the function name. If name: is specified, what follows
is always the name of a function.

[maxsize:]number
A numeric option is assumed to be a size. Functions of size number or less are inlined. If
both number and function are specified, then functions matching the given name(s) or
meeting the size requirements are inlined.

The size number need not exactly equal the number of statements in a selected function;
the size parameter is merely a rough gauge.

[no]lreshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes do not
match. The default is ~-Minline=noreshape, except with -Mconcur or -mp, where the de-
faultis -Minline=reshape.

3.4. -M Options by Category 87

../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

smallsize:number
Always inline functions of size smaller than number regardless of other size limits.

totalsize:number
Stop inlining in a function when the function’s total inlined size reaches the number speci-
fied.

[1lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext. The com-
piler assumes that a filename.ext option containing a period is a library file.

Tip: Create the library file using the -Mextract option. You can also use a 1ib: prefix
followed by the library name.

If 1ib: is specified, no period is necessary in the library name. Functions from the
specified library are inlined.

If no library is specified, functions are extracted from a temporary library created during
an extract prepass.

If you specify both func and number, the compiler inlines functions that match the function
name or have number or fewer statements.

Inlining can be disabled with -Mnoinline.

For examples of inlining functions, refer to the ‘Using Function Inlining’ section of the

This section describes the -M<nvflag> options that control optimization.

Default: Before looking at all the options, let’s look at the defaults. For arguments that you do not
specify, the default optimization control options are as follows:

depchk noipa nounroll | nor8

i4 nolre novect nor8intrinsics

nofprelaxed | noprefetch

Usage: In this example, the compiler invokes the vectorizer with use of packed SIMD instructions
enabled.

$ nvfortran -Mvect=simd -Mcache_align myprog.f

Note: If you do not supply any sub-options to -Mvect, the compiler uses defaults that are dependent
upon the target system. Not all sub-options are valid on all target systems.

Related options: -g, -0

The following list provides the syntax for each -M<nvflag> option that controls optimization. Each
option has a description and, if appropriate, a list of any related options.

88 Chapter 3. Command-Line Options Reference

../hpc-compilers-user-guide/index.htm
../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mcache_align
Align unconstrained objects of length greater than or equal to 16 bytes on cache-line bound-
aries. An unconstrained object is a data object that is not a member of an aggregate structure or
common block. This option does not affect the alignment of allocatable or automatic arrays. To
effect cache-line alignment of stack-based local variables, the main program or function must
be compiled with -Mcache_align.

-Mconcur[=option [,option,...]]
Instructs the compiler to enable auto-parallelization of loops for multicore CPUs. If -Mconcur is
specified, multiple CPU cores will be used to execute loops that the compiler determines to be
parallelizable. option is one of the following:

allcores
Instructs the compiler to use all available cores. Use this option at link time.

[no]altcode:n
Instructs the parallelizer to generate alternate serial code for parallelized loops.

If altcode is specified without arguments, the parallelizer determines an appropriate
cutoff length and generates serial code to be executed whenever the loop count is less
than or equal to that length.

If altcode :nis specified, the serial altcode is executed whenever the loop count is less
than or equal to n.

If noaltcode is specified, the parallelized version of the loop is always executed regard-
less of the loop count.

cncall
Indicates that calls in parallel loops are safe to parallelize. Also, no minimum loop count
threshold must be satisfied before parallelization will occur, and last values of scalars are
assumed to be safe.

[no]innermost
Instructs the parallelizer to enable parallelization of innermost loops. The default is to not
parallelize innermost loops, since it is usually not profitable on dual-core processors.

levels:n
Parallelize loops nested at most n levels deep.

noassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result.

Note: Thisoption applies only on shared-memory multi-processor (SMP) or multicore CPU-based
systems.

-Mcray[=option[,option,...]]
(Fortran only) Force Cray Fortran compatibility with respect to the listed options. Possible values
of option include:

pointer
for purposes of optimization, it is assumed that pointer-based variables do not overlay the
storage of any other variable.

-Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

3.4. -M Options by Category 89

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.

-Mdse
Enables a dead store elimination phase that is useful for programs that rely on extensive use of
inline function calls for performance. This is disabled by default.

-Mnodse
Disables the dead store elimination phase. This is the default.

-M[no]fpapprox [=option]

Perform certain floating point operations using low-precision approximation. -Mnofpapprox
specifies not to use low-precision fp approximation operations. By default -Mfpapprox is not
used. If -Mfpapprox is used without suboptions, it defaults to use approximate div, sqrt, and
rsqrt. The available suboptions are these:
div

Approximate floating point division
sqrt

Approximate floating point square root

rsqrt
Approximate floating point reciprocal square root

-M[no]fpmisalign
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory operands
that are not aligned on 16-byte boundaries. The default is -Mnofpmisalign on all processors.

-M[no]fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some intrinsic func-
tions. Can result in improved performance at the expense of numerical accuracy. The possible
values for option are:
div
Perform divide using relaxed precision.
intrinsic
Enables use of relaxed precision intrinsics.

noorder
Do not allow expression reordering or factoring.

order
Allow expression reordering, including factoring.

recip
Perform reciprocal using relaxed precision.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sqrt
Perform square root with relaxed precision.

With no options, -Mfprelaxed generates relaxed precision code for those operations that gen-
erate a significant performance improvement, depending on the target processor. The default is
-Mnofprelaxed which instructs the compiler to not use relaxed precision in the calculation of
intrinsic functions.

90 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*4.
-Mlre[=array \| assoc \| noassoc]

Enables loop-carried redundancy elimination, an optimization that can reduce the number of
arithmetic operations and memory references in loops. The available suboptions are:

assoc
allow expression re-association. Specifying this suboption can increase opportunities for
loop-carried redundancy elimination but may alter numerical results.

noassoc
disallow expression re-association.

-Mnolre
Disable loop-carried redundancy elimination.

-Mnoframe
Eliminate operations that set up a true stack frame pointer for every function. With this option
enabled, you cannot perform a traceback on the generated code and you cannot access local
variables.

-Mnoi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*2.

-Mpre
Enables partial redundancy elimination.
-Mprefetch[=option [,option...]]

enables generation of prefetch instructions on processors where they are supported. Possible
values for option include:

d:m

set the fetch-ahead distance for prefetch instructions to m cache lines.
n:p

set the maximum number of prefetch instructions to generate for a given loop to p.
nta

use the prefetch instruction.

plain
use the prefetch instruction (default).

t0 use the prefetchtO instruction.
w use the AMD-specific prefetchw instruction.

-Mnoprefetch
Disables generation of prefetch instructions.

-M[no]propcond
Enables or disables constant propagation from assertions derived from equality conditionals.
The default is enabled.

-Mr8
(Fortran only) The compiler promotes REAL variables and constants to DOUBLE PRECISION vari-
ables and constants, respectively. DOUBLE PRECISION elements are 8 bytes in length.

-Mnor8
(Fortran only) The compiler does not promote REAL variables and constants to DOUBLE PRECI-
SION. REAL variables will be single precision (4 bytes in length).

3.4. -M Options by Category 91

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mr8intrinsics
(Fortran only) The compiler treats the intrinsics CMPLX and REAL as DCMPLX and DBLE, respec-
tively.

-Mnor8intrinsics
(Fortran only) The compiler does not promote the intrinsics CMPLX and REAL to DCMPLX and DBLE,
respectively.

-Msafeptr[=option[,option,...]]
(C++and Conly) instructs the C++ or C compiler to override data dependencies between pointers
of a given storage class. Possible values of option include:

all
assume all pointers and arrays are independent and safe for aggressive optimizations, and
in particular that no pointers or arrays overlap or conflict with each other.

arg
instructs the compiler to treat arrays and pointers with the same copyin and copyout
semantics as Fortran dummy arguments.

global
instructs the compiler that global or external pointers and arrays do not overlap or conflict
with each other and are independent.

local / auto
instructs the compiler that local pointers and arrays do not overlap or conflict with each
other and are independent.

static
instructs the compiler that static pointers and arrays do not overlap or conflict with each
other and are independent.

-M[no]target_temps
instructs the compiler to enable [disable] using temporaries when passing an array for a callee
assumed-shape variable with the target attribute.

-Munroll[=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each iteration. This
also sets the optimization level to 2 if the level is set to less than 2, or if no -0 or -g options are
supplied. The option is one of the following:

c:m
instructs the compiler to completely unroll loops with a constant loop count less than or
equal to m, a supplied constant. If this value is not supplied, the m count is set to 1.

m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for loops that
have conditional statements. If n is not supplied, then the default value is 1. The default
setting is not to enable -Munroll=m.

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not completely
unrolled, or has a non-constant loop count. If n is not supplied, the unroller computes the
number of times a candidate loop is unrolled.

-Mnounroll
instructs the compiler not to unroll loops.

-M[no]vect[=option [,option,...]]
enable [disable] the code vectorizer, where option is one of the following:

92 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

[no]altcode

Enable [disable] generation of alternate code (altcode) for vectorized loops when appropri-
ate. For each vectorized loop the compiler decides whether to generate altcode and what
type or types to generate, which may be any or all of: altcode without iteration peeling,
altcode with non-temporal stores and other data cache optimizations, and altcode based
on array alignments calculated dynamically at runtime. The compiler also determines suit-
able loop count and array alignment conditionals for executing the al tcode. This option is
enabled by default.

[no]assoc
Enable [disable] certain associativity conversions that can change the results of a computa-
tion due to roundoff error. A typical optimization is to change an arithmetic operation to an
arithmetic operation that is mathematically correct, but can be computationally different,
due to round-off error.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache size
of n. The default is set per processor type, either using the -tp switch or auto-detected from
the host computer.

[no]fuse
Enable [disable] automatic loop fusion by the vectorizer.

[no]lgather
Enable [disable] vectorization of loops containing indirect array references, such as this one:

sum = 0.d6
do k=d(j),d(j+1)-1

sum = sum + a(k)*b(c(k))
enddo

The default is gather.

[no]idiom
Enable [disable] idiom recognition by the vectorizer.

levels:n
Maximum nest level of loops to optimize

nocond
Disable vectorization of loops with conditionals.

[no]partial
Enable [disable] partial loop vectorization through innermost loop distribution.

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of prefetch instructions.

[no]short
Enable [disable] short vector operations. -Mvect=short enables generation of packed
SIMD instructions for short vector operations that arise from scalar code outside of loops
or within the body of a loop iteration.

[no]simd[:{128]256|512}]
Enable [disable] vectorization using SIMD instructions and data, either 128 bits, 256 bits or
512 bits wide, on processors where there is a choice.

[no]simdresidual
Enable [disable] vectorization using SIMD instructions of the residual iterations of a vector-
ized loop.

3.4. -M Options by Category 93

NVIDIA HPC Compilers Reference Guide, Release 25.5

[no]lsizelimit:n
Instructs the vectorizer to generate vector code for all loops where possible regardless of
the number of statements in the loop. This overrides a heuristic in the vectorizer that ordi-
narily prevents vectorization of loops with a number of statements that exceeds a certain
threshold. The default is nosizelimit.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and residual
loops.

Note: This option may affect the performance of the residual loop.

-Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized
vector functions.

This section describes the -M<nvflag> options that do not easily fit into one of the other categories
of -M<nvflag> options.

Default: Before looking at all the options, let’s look at the defaults. For arguments that you do not
specify, the default miscellaneous options are as follows:

inform | nobounds | nolist | warn

Related options: -m, -S, -V, -v
Usage: In the following example, the compiler includes Fortran source code with the assembly code.

$ nvfortran -Manno -S myprog.f

In the following example, the assembler does not delete the assembly file myprog. s after the assem-
bly pass.

$ nvfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions with fewer than
approximately 20 source lines in the source file myprog. f.

$ nvfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler creates the listing file myprog.1lst.

$ nvfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.

$ nvfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous -M<nvflag> option. Each option has a
description and, if appropriate, a list of any related options.

94 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Manno
annotate the generated assembly code with source code. Implies -Mkeepasm.

-M[no]bounds
Enables [disables] array bounds checking.

If an array is an assumed size array, the bounds checking only applies to the lower bound.

If an array bounds violation occurs during execution, an error message describing the error
is printed and the program terminates. The text of the error message includes the name of
the array, the location where the error occurred (the source file and the line number in the
source), and information about the out of bounds subscript (its value, its lower and upper
bounds, and its dimension).

The following is a sample error message:

NVFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1, upper bound=2, dimension=2

-Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran un-
formatted data files.

-Mchkptr
instructs the compiler to check for pointers that are dereferenced while initialized to NULL (For-
tran only).

-Mchkstk
instructs the compiler to check the stack for available space in the prologue of a function and
before the start of a parallel region. Prints a warning message and aborts the program gracefully
if stack space is insufficient. This option is useful when many local and private variables are
declared in an OpenMP program.

-Mcpp[=option [,option,...]]
run the cpp-like preprocessor without execution of any subsequent compilation steps. This op-
tion is useful for generating dependence information to be included in makefiles.

Note: Only one of the m, md, mm or mmd options can be present; if multiple of these options
are listed, the last one listed is accepted and the others are ignored.

The option is one or more of the following:
m print makefile dependencies to stdout.

md print makefile dependencies to filename.d, where filename is the root name of the input
file being processed, ignoring system include files.

mm print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to filename.d, where filename is the root name of the input
file being processed, ignoring system include files.

[no]comment
do [do not] retain comments in output.

[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.

3.4. -M Options by Category 95

NVIDIA HPC Compilers Reference Guide, Release 25.5

-Mgccbug[s]
instructs the compiler to match the behavior of certain gcc bugs.

-Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:

cref
uses CREF calling conventions, no trailing underscores.

mixed_str_len_arg
places the lengths of character argumentsimmediately after their corresponding argument.
Has affect only with the CREF calling convention.

nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has affect only
with the CREF calling convention.

-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the fol-
lowing:
all
instructs the compiler to produce all available -Minfo information. Implies a number of
suboptions:

-Minfo=accel, inline, ipa, loop, 1lre, mp, opt, par, vect, stdpar

accel
instructs the compiler to enable accelerator information.
ftn
instructs the compiler to enable Fortran-specific information.
inline
instructs the compiler to display information about extracted or inlined functions. This op-
tion is not useful without either the -Mextract or -Minline option.
intensity
instructs the compiler to provide informational messages about the intensity of the loop.
Specify <n> to get messages on nested loops.
For floating point loops, intensity is defined as the number of floating point operations
divided by the number of floating point loads and stores.
For integer loops, the loop intensity is defined as the total number of integer arithmetic
operations, which may include updates of loop counts and addresses, divided by the
total number of integer loads and stores.
By default, the messages just apply to innermost loops.
loop
instructs the compiler to display information about loops, such as information on vectoriza-
tion.
Ire

instructs the compiler to enable LRE, loop-carried redundancy elimination, information.
mp instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

96 Chapter 3. Command-Line Options Reference

NVIDIA HPC Compilers Reference Guide, Release 25.5

par
instructs the compiler to enable parallelizer information.
stdpar
instructs the compiler to emit information about parallelization of C++ parallel algorithms
and Fortran DO CONCURRENT loops.
time
instructs the compiler to display compilation statistics.
unroll
instructs the compiler to display information about loop unrolling.
vect

instructs the compiler to enable vectorizer information.

-Minform=1level
instructs the compiler to display error messages at the specified and higher levels, where level
is one of the following:

fatal
instructs the compiler to display fatal error messages.
[no]file
instructs the compiler to print or not print source file names as they are compiled.
The default is to print the names: -Minform=file.
inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).
severe

instructs the compiler to display severe and fatal error messages.

warn
instructs the compiler to display warning, severe and fatal error messages.

-Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the assem-
bler deletes this file when it is finished. The assembly file has the same filename as the source
file, but with a .s extension.

-Mlist
instructs the compiler to create a listing file. The listing file is filename.1lst, where the name
of the source file is filename. f.

-Mnames={lowercase|uppercase}
specifies the case for the names of Fortran externals.

lowercase - Use lowercase for Fortran externals.
uppercase - Use uppercase for Fortran externals.

-Mneginfo[=option[,option,...]]
instructs the compiler to produce information on standard error, where option is one of the fol-
lowing:

all
instructs the compiler to produce all available information on why various optimizations are
not performed.

3.4. -M Options by Category 97

NVIDIA HPC Compilers Reference Guide, Release 25.5

accel
instructs the compiler to enable accelerator information.

concur
instructs the compiler to produce all available information on why loops are not automatically
parallelized. In particular, if a loop is not parallelized due to potential data dependence, the
variable(s) that cause the potential dependence are listed in the messages that you see when
using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This op-
tion is not useful without either the -Mextract or -Minline option.

loop
instructs the compiler to display information about loops, such as information on vectoriza-
tion.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination, information.

mp instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

vect
instructs the compiler to enable vectorizer information.

-Mnolist
the compiler does not create a listing file. This is the default.

-Mnorpath
Do not add -rpath to the link line.

-Mnvpl[=option, [option, ...]1]
instruct the compiler to link in the NVIDIA Performance Libraries (NVPL) into the application.
Use this option without sub-options to link against all libraries in the NVPL, or with sub-options
to link only against those NVPL libraries specified. To use the NVPL ScalLAPACK library, use
-Mscalapack -Mnvpl. Refer to the section on -Mscalapack for more information about this
option.

Note: The NVPL Libraries are only available for Arm CPUs. For more information about NVPL,
please visit

Valid options for this flag are:

blas
link in the NVPL BLAS library.

fft
link in the NVPL FFT library.

98 Chapter 3. Command-Line Options Reference

https://docs.nvidia.com/nvpl

NVIDIA HPC Compilers Reference Guide, Release 25.5

lapack
link in the NVPL LAPACK library. This option will also cause the NVPL BLAS library to be linked

in, as BLAS is a dependency of LAPACK.

rand
link in the NVPL RAND library.

sparse
link in the NVPL Sparse library.

tensor
link in the NVPL Tensor library.

-Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran input source
files.

-Mwritable_strings
stores string constants in the writable data segment.

Note: Options -Xs and -Xst include -Mwritable_strings.

-Mscalapack
instruct the compiler to link in the ScalLAPACK library. ScalLAPACK is a library of high-

performance linear algebra routines for parallel distributed memory machines, which uses MPI
as the underlying communication mechanism. If -Mnvpl is also specified on the command line,
then this flag will link in the NVPL ScaLAPACK library into the application. Otherwise, the Netlib
ScalAPACK library will be used.

3.4. -M Options by Category 99

NVIDIA HPC Compilers Reference Guide, Release 25.5

100 Chapter 3. Command-Line Options Reference

Chapter 4. C++ Name Mangling

Name mangling transforms the names of entities so that the names include information on aspects
of the entity’s type and fully qualified name. This ability is necessary since the intermediate language
into which a program is translated contains fewer and simpler name spaces than there are in the C++
language; specifically:

Overloaded function names are not allowed in the intermediate language.

Classes have their own scopes in C++, but not in the generated intermediate language. For ex-
ample, an entity x from inside a class must not conflict with an entity x from the file scope.

External names in the object code form a completely flat name space. The names of entities with
external linkage must be projected onto that name space so that they do not conflict with one
another. A function f from a class A, for example, must not have the same external name as a
function f from class B.

Some names are not names in the conventional sense of the word, they’re not strings of alphanu-
meric characters, for example: operator=.

There are two main problems here:
Generating external names that will not clash.
Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and alphanu-
meric names for entities with strange names in C++. It also solves the problem of generating hidden
names for some behind-the-scenes language support in such a way that they match up across sepa-
rate compilations.

You see mangled names if you view files that are translated by NVC++ or NVC, and you do not use tools
that demangle the C++ names. Intermediate files that use mangled names include the assembly and
object files created by the NVC++ command. To view demangled names, use the tool nvdecode, which
takes input from stdin. nvdecode demangles NVC++ names.

prompt> nvdecode
_ZN1A1gEf
A::g(float)

The name mangling algorithm for the NVC++ compiler is IA-64 ABI compliant and is described at
. Refer to this document for a complete description of the name
mangling algorithm.

101

http://mentorembedded.github.io/cxx-abi
http://mentorembedded.github.io/cxx-abi

NVIDIA HPC Compilers Reference Guide, Release 25.5

102 Chapter 4. C++ Name Mangling

Chapter 5. Pre-defined Compiler

The HPC compilers will pre-define certain compiler macros. The macros are defined as follows:

#define
#define
#define
#define
#define
#define

Macros

__NVCOMPILER_MAJOR__ 25

__NVCOMPILER_MINOR__ 5

__NVCOMPILER_PATCHLEVEL__ ©
__NVCOMPILER_CLANG_SSE_INTRINSICS_VERSION__ 60000
__NVCOMPILER 1

__NVCOMPILER_LLVM__ 1

103

NVIDIA HPC Compilers Reference Guide, Release 25.5

104 Chapter 5. Pre-defined Compiler Macros

Chapter 6. Runtime Environment

This section describes details related to compiler code generation, including register conventions and
calling conventions for x86-64 and OpenPOWER processor-based systems. It addresses these con-
ventions for processors running Linux operating systems.

Note: In this section we sometimes refer to word, halfword, and double word. The equivalent byte
information is word (4 byte), halfword (2 byte), and double word (8 byte).

6.1. Linux Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of
an x86-64 or OpenPOWER processor running a Linux operating system. These standards must be
followed to guarantee that compilers, application programs, and operating systems written by differ-
ent people and organizations will work together. The conventions supported by the NVC ISO/ANSI C
compiler implement the application binary interface (ABI) as defined in the System V Application Bi-
nary Interface: AMD64 Architecture Processor Supplement and the OpenPOWER for Linux Supplement,
Power Architecture 64-Bit ELF V2 ABI Specification listed in the Preface.

6.1.1. x86-64 Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register us-
age, and parameter passing.

x86-64 Register Usage Conventions

The following table defines the standard for register allocation. The x86-64 Architecture provides a
variety of registers. All the general purpose registers, x87 registers, XMM registers, SSE registers and
AVX registers are visible to all procedures in a running program.

105

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 1: Table 14. x86-64 Register Allocation

Type | Name Purpose
Gen- | %rax 1st return register. When callee has a variable number of arguments, %al
eral specifies the number of vector registers passed.
%rbx callee-saved; optional base pointer
%rcx pass 4th argument to functions
%rdx pass 3rd argument to functions; 2nd return register
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%rsi pass 2nd argument to functions
%rdi pass 1st argument to functions
%r8 pass 5th argument to functions
%r9 pass 6th argument to functions
%r10 temporary register; pass a function’s static chain pointer
%r11 temporary register
%ri12-r15 callee-saved registers
XMM | %xmmO- pass and return floating point arguments
%xmm 1
%xmme- pass floating point arguments
%xmm7
%xmm8- temporary registers
%xmm15
x87 %st(0) temporary register; return long double arguments
%st(1) temporary register; return long double arguments
%st(2) - | temporary registers
%st(7)

x86-64 Stack Frame Organization

In addition to the registers, each function has a frame on the run-time stack. This stack grows down-
ward from high addresses. shows the stack frame organization.

106 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 2: Table 15. Standard Stack Frame

Position Contents Frame

8n+16 (%rbp) | argument eightbyte n ... | previous

16 (%rbp) argument eightbyte O

8 (%rbp) return address current
0 (%rbp) caller’s %rbp current
-8 (%rbp) unspecified ...

0 (%rsp) variable size

-128 (%rsp) red zone

x86-64 Stack Usage Conventions
Key points concerning the stack frame:
The end of the input argument area is aligned on a 16-byte boundary.

The 128-byte area beyond the location of %rsp is called the red zone and can be used for tem-
porary local data storage. This area is not modified by signal or interrupt handlers.

A call instruction pushes the address of the next instruction (the return address) onto the stack.
The return instruction pops the address off the stack and effectively continues execution at
the next instruction after the call instruction. A function must preserve non-volatile registers,
a register whose contents must be preserved across subroutine calls. Additionally, the called
function must remove the return address from the stack, leaving the stack pointer (%rsp) with
the value it had before the call instruction was executed.

All registers on an x86-64 system are visible to both a calling and a called function. Registers %rbx,
%rsp, %rbp, %r12, %r13, %r14, and %r15 are non-volatile across function calls. Therefore, a function
must preserve these registers’ values for its caller. Remaining registers are volatile (scratch) registers,
that is a register whose contents need not be preserved across subroutine calls. If a calling function
wants to preserve such a register value across a function call, it must save its value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer and pointer ar-
guments are passed in these registers (listed in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9. The first eight
floating point arguments are passed in the first eight XMM registers: %xmm0, %xmm]1, ..., %xmm?7.
The registers %rax and %rdx are used to return integer and pointer values. The registers %xmmO and
%xmm 1 are used to return floating point values.

Additional registers with assigned roles in the standard calling sequence:

%rsp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s
bottom-most, valid word. The stack must be 16-byte aligned.

%rbp
The frame pointer holds a base address for the current stack frame. Consequently, a function
has registers pointing to both ends of its frame. Incoming arguments reside in the previous
frame, referenced as positive offsets from %rbp, while local variables reside in the current frame,
referenced as negative offsets from %rbp. A function must preserve this register value for its
caller.

RFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The

6.1. Linux Programming Model 107

NVIDIA HPC Compilers Reference Guide, Release 25.5

direction flag must be set to the “forward” (i.e., zero) direction before entry and upon exit from
a function. Other user flags have no specified role in the standard calling sequence and are not
preserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception
masking. This register is initialized at process initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on
their use of registers. Moreover, if a signal handling function returns, the process resumes its original
execution path with registers restored to their original values. Thus, programs and compilers may
freely use all registers without danger of signal handlers changing their values.

x86-64 Functions Returning Scalars or No Value

A function that returns an integral or pointer value places its result in the next available register
of the sequence %rax, %rdx.

A function that returns a floating point value that fits in the XMM registers returns this value in
the next available XMM register of the sequence %xmm0, %xmm1.

An X87 floating-point return value appears on the top of the floating point stack in %st(0) as an
80-bit X87 number. If this X87 return value is a complex number, the real part of the value is
returned in %st(0) and the imaginary part in %st(1).

A function that returns a value in memory also returns the address of this memory in %rax.

Functions that return no value (also called procedures or void functions) put no particular value
in any register.

x86-64 Functions Returning Structures or Unions

A function can use either registers or memory to return a structure or union. The size and type of the
structure or union determine how it is returned. If a structure or union is larger than 16 bytes, it is
returned in memory allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or more return
registers, examine the first eight bytes of the structure or union. The type or types of the structure
or union’s fields making up these eight bytes determine how these eight bytes will be returned. If
the eight bytes contain at least one integral type, the eight bytes will be returned in %rax even if non-
integral types are also present in the eight bytes. If the eight bytes only contain floating point types,
these eight bytes will be returned in %xmmo0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types
of the fields making up the second eight bytes of the structure or union. If these eight bytes contain
at least one integral type, these eight bytes will be returned in %rdx even if non-integral types are also
present in the eight bytes. If the eight bytes only contain floating point types, these eight bytes will
be returned in %xmm1.

If a structure or union is returned in memory, the caller provides the space for the return value and
passes its address to the function as a “hidden” first argument in %rdi. This address will also be re-
turned in %rax.

x86-64 Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the se-
quence %rdi, %rsi, %rdx, %rcx, %r8, %r9. After this list of registers has been exhausted, all remaining
integral and pointer arguments are passed to the function via the stack.

x86-64 Floating-Point Arguments

108 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

Float and double arguments are passed to a function using the next available XMM register taken in
the order from %xmmO0 to %xmm7. After this list of registers has been exhausted, all remaining float
and double arguments are passed to the function via the stack.

x86-64 Structure and Union Arguments

Structure and union arguments can be passed to a function in either registers or on the stack. The
size and type of the structure or union determine how it is passed. If a structure or union is larger than
16 bytes, it is passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to a functionin one or two
registers, examine the first eight bytes of the structure or union. The type or types of the structure
or union’s fields making up these eight bytes determine how these eight bytes will be passed. If the
eight bytes contain at least one integral type, the eight bytes will be passed in the first available general
purpose register of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also
present in the eight bytes. If the eight bytes only contain floating point types, these eight bytes will
be passed in the first available XMM register of the sequence from %xmmO0 to %xmm?7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types
of the fields making up the second eight bytes of the structure or union. If the eight bytes contain at
least one integral type, the eight bytes will be passed in the next available general purpose register of
the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also present in the eight
bytes. If these eight bytes only contain floating point types, these eight bytes will be passed in the
next available XMM register of the sequence from %xmmO0 to %xmm?7.

If the first or second eight bytes of the structure or union cannot be passed in a register for some
reason, the entire structure or union must be passed in memory.

x86-64 Passing Arguments on the Stack

If there are arguments left after every argument register has been allocated, the remaining arguments
are passed to the function on the stack. The unassigned arguments are pushed on the stack in reverse
order, with the last argument pushed first.

x86-64 Parameter Passing

shows the register allocation and stack frame offsets for the function declaration and call
shown in the following example. Both table and example are adapted from System V Application Binary
Interface: AMD64 Architecture Processor Supplement.

typedef struct {
int a, b;
double d;
}
structparam;
structparam s;
int e, f, g, h, i, j, k;
float flt;
double m, n;
extern void func(int e, int f, structparam s, int g, int h,
float flt, double m, double n, int i, int j, int k);
void func2()
{
func(e, f, s, g, h, flt, m, n, i, j, k);
}

6.1. Linux Programming Model 109

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 3: Table 16. Register Allocation for Example A-2

General Purpose Registers | Floating Point Registers | Stack Frame Offset
%rdi: e %xmm0: s.d 0:j

%rsi: f %xmm1: flt 8: k

%rdx: s.a,s.b %xmm2: m

%rcx: g %xmm3: n

%r8: h

%r9: i

x86-64 Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer, register
%rsp, is set by the operating system for the application when the program is started. The stack must
grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on
the stack at run-time (e.g. alloca). Some languages can also return values from a routine allocated on
stack space below the original top-of-stack pointer. Such a routine prevents the calling function from
using %rsp-relative addressing for values on the stack. If the compiler does not call routines that leave
%rsp in an altered state when they return, a frame pointer is not needed and may not be used if the
compiler option -Mnoframe is specified.

The stack must be kept aligned on 16-byte boundaries.
x86-64 Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses
a special method to access variable-count parameters. The stdarg.h and varargs.h files define
several functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up a data structure before the parameters can be used. The va_arg macro
must be used to access the successive parameters.

For calls that use varargs or stdargs, the register %rax acts as a hidden argument whose value is
the number of XMM registers used in the call.

x86-64 C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must match the argu-
ment type in the calling function. If the called function is not prototyped, the calling convention uses
the types of the arguments but promotes char or short to int, and unsigned char or unsigned short to
unsigned int and promotes float to double, unless you use the -Msingle option. For more information
on the -Msingle option, refer to

x86-64 Calling Assembly Language Programs
The following example shows a C program calling an assembly-language routine sum_3.

C Program Calling an Assembly-language Routine

/* File: testmain.c */
#include <stdio.h>
int
main() {
long 1l_paral = 2;
(continues on next page)

110 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

(continued from previous page)

float f_para2 = 1.0;

double d_para3 = 0.5;

float f_return;

extern float sum_3(long paral, float para2, double para3);
f_return = sum_3(1l_paral, f_para2, d_para3);
printf("Parameter one, type long = %ld\n", l_paral);
printf("Parameter two, type float = %f\n", f_para2);
printf("Parameter three, type double = %f\n", d_para3);
printf("The sum after conversion = %f\n", f_return);
return 0;

}
File: sum_3.s
Computes (paral + para2) + para3

.text

.align 16

.globl sum_3
sum_3:

pushq %rbp

mov(q %rsp, %rbp

cvtsi2ssq %rdi, %xmm2
addss %xXmmo, %xmm2
cvtss2sd %xmm2, %xmm2
addsd %xmm1, %xmm2
cvtsd2ss %xmm2, %xmm2
movaps %xmm2, %xmmo
popq %rbp

ret

.type sum_3, @function
.size sum_3, .-sum_3

OpenPOWER Register Usage Conventions

The following table defines the standard for register allocation. The OpenPOWER Architecture pro-
vides a variety of registers. All the general purpose registers, vector scalar registers, and vector regis-
ters are visible to all procedures in a running program.

In the 64-bit OpenPOWER Architecture, there are always 32 general-purpose registers, each 64 bits
wide. Throughout this document the symbol rN is used, where N is a register number, to refer to
general-purpose register N.

6.1. Linux Programming Model 111

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 4: Table 17. OpenPOWER Register Allocation

Type Name | Preserva- Purpose
tion Rules
General | r0 Volatile Optional use in function linkage. Used in function prologues.
ri Nonvolatile | Stack frame pointer.
r2 Nonvolatile"| TOC pointer.
r3- Volatile Parameter and return values.
rio
ril Volatile Optional use in function linkage. Used as an environment pointer
in languages that require environment pointers.
riz Volatile Optional use in function linkage. Function entry address at the
global entry point.
ri3 Reserved Thread pointer.
rl4- Nonvolatile | Local variables.
r31@
Floating- | fO Volatile Local variables.
point
f1- Volatile Used for parameter passing and return values of binary float
f13 types.
f14- Nonvolatile | Local variables.
f31
Vector vO-v1 | Volatile Local variables.
v2- Volatile Used for parameter passing and return values.
v13
v14- | Volatile Local variables.
v19
v20- Nonvolatile | Local variables.
v31

(M Register r2 is nonvolatile with respect to calls between functions in the same compilation unit. It is
saved and restored by code inserted by the linker resolving a call to an external function.

@ |f a function needs a frame pointer, assigning r31 to the role of the frame pointer is recommended.

In OpenPOWER-compliant processors, floating-point and vector functions are implemented using a
unified vector-scalar model. As shown in and , there are 64 vector-scalar registers;
each is 128 bits wide.

The vector-scalar registers can be addressed with vector-scalar instructions, for vector and scalar
processing of all 64 registers, or with the “classic” Power floating-point instructions to refer to a 32-
register subset of 64 bits per register. They can also be addressed with VMX instructions to refer to a
32-register subset of 128-bit wide registers.

The classic floating-point repertoire consists of 32 floating-point registers, each 64 bits wide, and
an associated special-purpose register to provide floating-point status and control. Throughout this
document, the symbol fN is used, where N is a register number, to refer to floating-point register N.

112 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

VSR(0) FPR[0]
VSR(1) FPR1]
VSR(30) FPR[30]
VSR(31) FP[31]

VSR(32)
VSR(33)

VSR(62)
VSR(63)

Fig. 1: Figure 3. Floating-point Registers as Part of Vector Scalar Registers

VSR(0)
VSR(1)

VSR(30)
VSR(31)
VSR(32) VRI[0]
VSR(33) VR[1]
VSR(62) VR[30]
VSR(63) VR[31]
0 127

Fig. 2: Figure 4. Vector Registers as Part of Vector Scalar Registers

6.1. Linux Programming Model 113

NVIDIA HPC Compilers Reference Guide, Release 25.5

For the purpose of function calls, the right half of VSX registers, corresponding to the classic floating-
point registers (that is, vsrO-vsr31), is volatile.

Single-precision and double-precision shall be passed in the floating-point registers. Single-precision
decimal floating-point shall occupy the lower half of a floating-point register. When a floating-point
register is skipped during input parameter allocation, words in the corresponding GPR or memory
doubleword in the parameter list are not skipped.

The OpenPOWER vector-category instruction repertoire provides the ability to reference 32 vector
registers, each 128 bits wide, of the vector-scalar register file, and a special-purpose register VSCR.
Throughout this document, the symbol vN is used, where N is a register number, to refer to vector
register N.

Parameters in the long double format with a pair of two double-precision floating-point values shall
be passed in two successive floating-point registers.

If only one value can be passed in a floating-point register, the second parameter will be passed in a
GPR or in memory in accordance with the parameter passing rules for structure aggregates.

OpenPOWER Stack Frame Organization
OpenPOWER Stack Usage Conventions
The stack shall be quadword aligned.

The minimum stack frame size shall be 32 bytes. A minimum stack frame consists of the first 4
doublewords (back-chain doubleword, CR save word and reserved word, LR save doubleword, and
TOC pointer doubleword), with padding to meet the 16-byte alignment requirement.

There is no maximum stack frame size defined.

Padding shall be added to the Local Variable Space of the stack frame to maintain the defined
stack frame alignment.

The stack pointer, r1, shall always point to the lowest address doubleword of the most recently
allocated stack frame.

The stack shall start at high addresses and grow downward toward lower addresses.

The lowest address doubleword (the back-chain word in) shall point to the previously
allocated stack frame when a back chain is present. As an exception, the first stack frame shall
have a value of O (NULL).

If required, the stack pointer shall be decremented in the called function’s prologue and restored
in the called function’s epilogue.

The stack pointer shall be updated atomically so that, at all times, it points to a valid back-chain
doubleword if a back chain is maintained.

Before a function calls any other functions, it shall save the value of the LR register into the LR
save doubleword of the caller’s stack frame.

Back Chain Doubleword

When a back chain is not present, alternate information compatible with the ABI unwind framework to
unwind a stack must be provided by the compiler, for all languages, regardless of language features.
A compiler that does not provide such system-compatible unwind information must generate a back
chain. All compilers shall generate back chain information by default, and default libraries shall contain
a back chain.

CR Save Word

If a function changes the value in any nonvolatile field of the condition register, it shall first save at
least the value of those nonvolatile fields of the condition register, to restore before function exit. The

114 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

High Address Caller's
) Back Chain «— Stack
’ Frame
8 x (32-n) bytes ¢
(Optional) Floating-Point Register Save Area
I 31, 130 ... f (n; + 1), f(ny)
8 x (32 - n) bytes < (Optional) General Register Save Area
{ r31, r30 ... r(n, + 1), r(n,)
Quadword Boundary . | (Optional) Alignment Padding Word
J (Optional) Vector Register Save Area (Quadword Aligned)
16 (32-n) bytes v31, v30, ... v(n, + 1), v(n,)
\
(Optional) Local Variable Space \
Current
> Stack
/ Frame

(Optional) Parameter Save Area (SP + 32) (

TOC Painter Doubleword (SP + 24)

LR Save Doubleword (SP + 16)

| Reserved (SP + 12) |

| CR Save Word (SP + 8) |

Stack Pointer (SP) ——» Back Chain (SP + 0) | ‘

v | |

Low Address

Fig. 3: Figure 5. Stack Frame Organization

6.1. Linux Programming Model 115

NVIDIA HPC Compilers Reference Guide, Release 25.5

caller frame CR Save Word may be used as the save location. This location in the current frame may
be used as temporary storage, which is volatile over function calls.

Reserved Word

This word is reserved for system functions. Modifications of the value contained in this word are
prohibited unless explicitly allowed by future ABl amendments.

LR Save Doubleword

If a function changes the value of the link register, it must first save the old value to restore before
function exit. The caller frame LR Save Doubleword may be used as the save location. This location in
the current frame may be used as temporary storage, which is volatile over a function call.

TOC Pointer Doubleword

If a function changes the value of the TOC pointer register, it shall first save it in the TOC pointer
doubleword.

This ABI provides a stack frame with a number of optional save areas. These areas are always present,
but may be of size 0. This section indicates the relative position of these save areas in relation to each
other and the primary elements of the stack frame.

Because the back-chain word of a stack frame must maintain quadword alignment, a reserved word is
introduced above the CR save word to provide a quadword-aligned minimal stack frame and align the
doublewords within the fixed stack frame portion at doubleword boundaries.

An optional alignment padding to a quadword-boundary element might be necessary above the Vector
Register Save Area to provide 16-byte alignment, as shown in

Floating-Point Register Save Area

If a function changes the value in any nonvolatile floating-point register fN, it shall first save the value
in N in the Floating-Point Register Save Area and restore the register upon function exit.

The Floating-Point Register Save Area is always doubleword aligned. The size of the Floating-Point
Register Save Area depends upon the number of floating-point registers that must be saved. If no
floating-point registers are to be saved, the Floating-Point Register Save Area has a zero size.

General-Purpose Register Save Area

If a function changes the value in any nonvolatile general-purpose register rN, it shall first save the
value in rN in the General-Purpose Register Save Area and restore the register upon function exit.

The General-Purpose Register Save Area is always doubleword aligned. The size of the General-Purpose
Register Save Area depends upon the number of general registers that must be saved. If no general-
purpose registers are to be saved, the General-Purpose Register Save Area has a zero size.

Vector Register Save Area

If a function changes the value in any nonvolatile vector register vN, it shall first save the value in vN
in the Vector Register Save Area and restore the register upon function exit.

The Vector Register Save Area is always quadword aligned. If necessary to ensure suitable alignment
of the vector save area, a padding doubleword may be introduced between the vector register and
General- Purpose Register Save Areas, and/or the Local Variable Space may be expanded to the next
quadword boundary. The size of the Vector Register Save Area depends upon the number of vector
registers that must be saved. It ranges from 0 bytes to a maximum of 192 bytes (12 x 16). If no vector
registers are to be saved, the Vector Register Save Area has a zero size.

116 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

Local Variable Space

The Local Variable Space is used for allocation of local variables. The Local Variable Space is located
immediately above the Parameter Save Area, at a higher address. There is no restriction on the size of
this area.

Note: Sometimes a register spill area is needed. It is typically positioned above the Local Variable
Space.

The Local Variable Space also contains any parameters that need to be assigned a memory address
when the function’s parameter list does not require a save area to be allocated by the caller.

Parameter Save Area

The Parameter Save Area shall be allocated by the caller for function calls unless a prototype is pro-
vided for the callee indicating that all parameters can be passed in registers. (This requires a Parameter
Save Area to be created for functions where the number and type of parameters exceeds the regis-
ters available for parameter passing in registers, for those functions where the prototype contains an
ellipsis to indicate a variadic function, and functions are declared without prototype.)

When the caller allocates the Parameter Save Area, it will always be automatically quadword aligned
because it must always start at SP + 32. It shall be at least 8 doublewords in length. If a function needs
to pass more than 8 doublewords of arguments, the Parameter Save Area shall be large enough to spill
all register-based parameters and to contain the arguments that the caller stores in it.

The calling function cannot expect that the contents of this save area are valid when returning from
the callee.

The Parameter Save Area, which is located at a fixed offset of 32 bytes from the stack pointer, is
reserved in each stack frame for use as an argument list when an in-memory argument list is required.
For example, a Parameter Save Area must be allocated by the caller when calling functions with the
following characteristics:

Prototyped functions where the parameters cannot be contained in the parameter registers
Prototyped functions with variadic arguments

Functions without a suitable declaration available to the caller to determine the called function’s
characteristics (for example, functions in C without a prototype in scope).

Under these circumstances, a minimum of 8 doublewords are always reserved. The size of this area
must be sufficient to hold the longest argument list being passed by the function that owns the stack
frame. Although not all arguments for a particular call are located in storage, when an in-memory
parameter list is required, consider the parameters to be forming a list in this area. Each argument
occupies one or more doublewords.

More arguments might be passed than can be stored in the parameter registers. In that case, the
remaining arguments are stored in the Parameter Save Area. The values passed on the stack are iden-
tical to the values placed in registers. Therefore, the stack contains register images for the values that
are not placed into registers.

This ABIl uses a simple va_list type for variable lists to point to the memory location of the next param-
eter. Therefore, regardless of type, variable arguments must always be in the same location so that
they can be found at runtime. The first 8 doublewords are located in general registers r3-r10. Any
additional doublewords are located in the stack Parameter Save Area. Alignment requirements such
as those for vector types may require the va_list pointer to first be aligned before accessing a value.

Follow these rules for parameter passing:

Map each argument to enough doublewords in the Parameter Save Area to hold its value.

6.1. Linux Programming Model 117

NVIDIA HPC Compilers Reference Guide, Release 25.5

Map single-precision floating-point values to the least-significant word in a single doubleword.
Map double-precision floating-point values to a single doubleword.

Map simple integer types (char, short, int, long, enum) to a single doubleword. Sign or zero extend
values shorter than a doubleword to a doubleword based on whether the source data type is
signed or unsigned.

When 128-bit integer types are passed by value, map each to two consecutive GPRs, two consec-
utive doublewords, or a GPR and a doubleword. The required alignment of int128 data typesis 16
bytes. Therefore, by-value parameters must be copied to a new location in the local variable area
of the callee’s stack frame before the address of the type can be provided (for example, using
the address-of operator, or when the variable is to be passed by reference), when the incoming
parameter is not aligned at a 16-byte boundary.

Map long double to two consecutive doublewords. The required alignment of long double data
types is 16 bytes. Therefore, by-value parameters must be copied to a new location in the local
variable area of the callee’s stack frame before the address of the type can be provided (for
example, using the address-of operator, or when the variable is to be passed by reference), when
the incoming parameter is not aligned at a 16-byte boundary.

Map complex floating-point and complex integer types as if the argument was specified as sep-
arate real and imaginary parts.

Map pointers to a single doubleword.

Map vectors to a single quadword, quadword aligned. This might result in skipped doublewords
in the Parameter Save Area.

Map fixed-size aggregates and unions passed by value to as many doublewords of the Parameter
Save Area as the value uses in memory. Align aggregates and unions as follows:

Aggregates that contain qualified floating-point or vector arguments are normally aligned
at the alignment of their base type. For more information about qualified arguments, see
OpenPOWER Parameter Passing in Registers.

Other aggregates are normally aligned in accordance with the aggregate’s defined align-
ment.

The alignment will never be larger than the stack frame alignment (16 bytes).

This might result in doublewords being skipped for alignment. When a doubleword in the Param-
eter Save Area (or its GPR copy) contains at least a portion of a structure, that doubleword must
contain all other portions mapping to the same doubleword. (That is, a doubleword can either
be completely valid, or completely invalid, but not partially valid and invalid, except in the last
doubleword where invalid padding may be present.)

Pad an aggregate or union smaller than one doubleword in size so that it is in the least-significant
bits of the doubleword. Pad all others, if necessary, at their tail. Variable size aggregates or unions
are passed by reference.

Map other scalar values to the number of doublewords required by their size.

Future data types that have an architecturally defined quadword-required alignment will be
aligned at a quadword boundary.

If the callee has a known prototype, arguments are converted to the type of the corresponding
parameter when loaded to their parameter registers or when being mapped into the Parameter
Save Area. For example, if a long is used as an argument to a float double parameter, the value is
converted to double precision and mapped to a doubleword in the Parameter Save Area.

OpenPOWER Protected Zone

118 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

The 288 bytes below the stack pointer are available as volatile program storage that is not preserved
across function calls. Interrupt handlers and any other functions that might run without an explicit
call must take care to preserve a protected zone, also referred to as the red zone, of 512 bytes that
consists of:

The 288-byte volatile program storage region that is used to hold saved registers and local vari-
ables

An additional 224 bytes below the volatile program storage region that is set aside as a volatile
system storage region for system functions

If a function does not call other functions and does not need more stack space than is available in
the volatile program storage region (that is, 288 bytes), it does not need to have a stack frame. The
224-byte volatile system storage region is not available to compilers for allocation to saved registers
and local variables.

For the OpenPOWER Architecture, it is more efficient to pass arguments to functions in registers
rather than through memory. For more information about passing parameters through memory, see

under OpenPOWER Optional Save Areas. For the OpenPOWER ABI, the following
parameters can be passed in registers:

Up to eight arguments can be passed in general-purpose registers r3-r10.

Up to thirteen qualified floating-point arguments can be passed in floating-point registers f1-f13
or up to twelve in vector registers v2-v13.

Up to thirteen single-precision or double-precision decimal floating-point arguments can be
passed in floating-point registers f1-f13.

Up to six quad-precision decimal floating-point arguments can be passed in even-odd floating-
point register pairs f2-f13.

Up to 12 qualified vector arguments can be passed in v2-v13.
A qualified floating-point argument corresponds to:

A scalar floating-point data type

Each member of a complex floating-point type

A member of a homogeneous aggregate of multiple like data types passed in up to eight floating-
point registers

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number of
members of the base floating-point type. (A complex floating-point data type is treated as if
two separate scalar values of the base type were passed.)

Homogeneous floating-point aggregates can have up to four long double members or eight mem-
bers of floating-point types. (Unions are treated as their largest member. For homogeneous
unions, different union alternatives may have different sizes, provided that all union members
are homogeneous with respect to each other.) They are passed in floating-point registers if pa-
rameters of that type would be passed in floating-point registers. They are passed in vector
registers if parameters of that type would be passed in vector registers. They are passed as if
each member was specified as a separate parameter.

A qualified vector argument corresponds to:

A vector data type

6.1. Linux Programming Model 119

NVIDIA HPC Compilers Reference Guide, Release 25.5

A member of a homogeneous aggregate of multiple like data types passed in up to eight vector
registers

Any future type requiring 16-byte alignment (see OpenPOWER Optional Save Areas) or processed
in vector registers

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number of mem-
bers of the base vector type. Homogeneous vector aggregates with up to eight members are
passed in up to eight vector registers as if each member was specified as a separate parameter.
(Unions are treated as their largest member. For homogeneous unions, different union alterna-
tives may have different sizes, provided that all union members are homogeneous with respect
to each other))

Note: Floating-point and vector aggregates that contain padding words and integer fields with a
width of O should not be treated as homogeneous aggregates.

A homogeneous aggregate is either a homogeneous floating-point aggregate or a homogeneous vec-
tor aggregate. This ABI does not specify homogeneous aggregates for integer types.

Long double numbers in are passed using two successive floating-point registers. A floating-point
register might be skipped to allocate an even/odd register pair when necessary. When a floating-
point register is skipped, no corresponding memory word is skipped in the natural home location; that
is, the corresponding GPR or memory doubleword in the parameter list.

All other aggregates are passed in consecutive GPRs, in GPRs and in memory, or in memory.

When a parameter is passed in a floating-point or vector register, a number of GPRs are skipped, in
allocation order, commensurate to the size of the corresponding in-memory representation of the
passed argument’s type.

Each parameter is allocated to at least one doubleword.
Full doubleword rule:

When a doubleword in the Parameter Save Area (or its GPR copy) contains at least a portion of a struc-
ture, that doubleword must contain all other portions mapping to the same doubleword. (That is, a
doubleword can either be completely valid, or completely invalid, but not partially valid and invalid,
except in the last doubleword where invalid padding may be present.)

Long Double
Long double parameters are passed as if they were a struct consisting of separate double parameters.

Long double parameters shall be considered as a distinct type for the determination of homogeneous
aggregates.

If fewer arguments are needed, the unused registers defined previously will contain undefined values
on entry to the called function.

If there are more arguments than registers or no function prototype is provided, a function must pro-
vide space for all arguments in its stack frame. When this happens, only the minimum storage needed
to contain all arguments (including allocating space for parameters passed in registers) needs to be
allocated in the stack frame.

General-purpose registers r3-r10 correspond to the allocation of parameters to the first 8 double-
words of the Parameter Save Area. Specifically, this requires a suitable number of general-purpose
registers to be skipped to correspond to parameters passed in floating-point and vector registers.

120 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

If a parameter corresponds to an unnamed parameter that corresponds to the ellipsis, a caller shall
promote float values to double. If a parameter corresponds to an unnamed parameter that corre-
sponds to the ellipsis, the parameter shall be passed in a GPR or in the Parameter Save Area.

If no function prototype is available, the caller shall promote float values to double and pass floating-
point parameters in both available floating-point registers and in the Parameter Save Area. If no func-
tion prototype is available, the caller shall pass vector parameters in both available vector registers
and in the Parameter Save Area. (If the callee expects a float parameter, the result will be incorrect.)

It is the callee’s responsibility to allocate storage for the stored data in the local variable area. When
the callee’s parameter list indicates that the caller must allocate the Parameter Save Area (because at
least one parameter must be passed in memory or an ellipsis is present in the prototype), the callee
may use the preallocated Parameter Save Area to save incoming parameters.

OpenPOWER Parameter Passing Register Selection Algorithm

The following algorithm describes where arguments are passed for the C language. In this algorithm,
arguments are assumed to be ordered from left (first argument) to right. The actual order of evaluation
for arguments is unspecified.

gr contains the number of the next available general-purpose register.
fr contains the number of the next available floating-point register.

vr contains the number of the next available vector register.

Note: The following types refer to the type of the argument as declared by the function prototype.
The argument values are converted (if necessary) to the types of the prototype arguments before
passing them to the called function.

If a prototype is not present, or it is a variable argument prototype and the argument is after the ellipsis,
the type refers to the type of the data objects being passed to the called function.

INITIALIZE: If the function return type requires a storage buffer, set gr = 4; else set gr = 3.

Set fr
Set vr

1
2

SCAN: If there are no more arguments, terminate. Otherwise, allocate as follows based on the
class of the function argument:

switch(class(argument))

integer:
pointer:

if gr > 10

goto mem_argument
pass (GPR, gr, argument);
gr++

break;

aggregate:
if (homogeneous(argument, float) and regs_needed(members(argument)) <= 8)
n_fregs = n_fregs_for_type(member_type(argument,9))
agg_size = members(argument * n_fregs
reg_size = min(agg_size, 15-fr)
(continues on next page)

6.1. Linux Programming Model 121

NVIDIA HPC Compilers Reference Guide, Release 25.5

pass(FPR, fr,first_n_DW(argument, reg_size)

(continued from previous page)

fr += reg_size;
gr += size_in_DW (first_n_DW(argument, reg_size))

if remaining_members

break;

if (homogeneous(argument,vector) and members(argument) <= 8)

argument = after_n_DW(argument,reg_size))
goto gpr_struct

use_vrs:

break;

agg_size = members(argument)
reg_size = min(agg_size, 14-vr)
if (gr&1 = @) // align vector in memory

gr++
pass(VR,vr,first_n_elements(argument, reg_size);
vr += reg_size

gr += size_in_DW (first_n_elements(argument, reg_size)

if remaining_members
argument = after_n_elements(argument, reg_size))
goto gpr_struct

if gr > 10
goto mem_argument

size = size_in_DW(argument)
gpr_struct:
reg_size = min(size, 11-gr)

pass (GPR, gr, first_n_DW (argument, reg_size));
gr += size_in_DW (first_n_DW (argument, reg_size))

if remaining_members
argument = after_n_DW(argument, reg_size))
goto mem_argument

break;

float:

// float is passed in one FPR.
// double is passed in one FPR.

if (register_type_used (type (argument)) == vr)
goto use_vr;

if fr > 14
goto mem_argument

n_fregs

n_fregs_for_type(argument) // Assumes n_fregs_for_type ==

// for long double == 1 for float

// or double

pass(FPR, fr,argument)
fr += n_fregs

(continues on next page)

122

Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

(continued from previous page)
gr += size_in_DW(argument)

break;

vector:
Use vr:
if vr > 13
goto mem_argument

if (gr&1 = @) // align vector in memory
gr++

pass(VR, vr,argument)
vro++
gr += 2

break;
next argument;

mem_argument :
need_save_area = TRUE
pass (stack, gr, argument)
gr += size_in_DW(argument)

next argument;

All complex data types are handled as if two scalar values of the base type were passed as separate
parameters.

If the callee takes the address of any of its parameters, values passed in registers are stored to memory.
Itis the callee’s responsibility to allocate storage for the stored data in the local variable area. When the
callee’s parameter list indicates that the caller must allocate the Parameter Save Area (because at least
one parameter must be passed in memory, or an ellipsis is present in the prototype), the callee may
use the preallocated Parameter Save Area to save incoming parameters. (If an ellipsis is present, using
the preallocated Parameter Save Area ensures that all arguments are contiguous.) If the compilation
unit for the caller contains a function prototype, but the callee has a mismatching definition, this may
result in the wrong values being stored.

Note: If the declaration of a function that is used by the caller does not match the definition for the
called function, corruption of the caller’s stack space can occur.

OpenPOWER Variable Argument Lists

C programs that are intended to be portable across different compilers and architectures must use
the header file <stdarg.h> to deal with variable argument lists. This header file contains a set of macro
definitions that define how to step through an argument list. The implementation of this header file
may vary across different architectures, but the interface is the same.

C programs that do not use this header file for the variable argument list and assume that all the
arguments are passed on the stack in increasing order on the stack are not portable, especially on
architectures that pass some of the arguments in registers. The OpenPOWER Architecture is one of
the architectures that passes some of the arguments in registers.

The parameter list may be zero length and is only allocated when parameters are spilled, when a func-
tion has unnamed parameters, or when no prototype is provided. When the Parameter Save Area is

6.1. Linux Programming Model 123

NVIDIA HPC Compilers Reference Guide, Release 25.5

allocated, the Parameter Save Area must be large enough to accommodate all parameters, including
parameters passed in registers.

OpenPOWER Return Values

Functions that return a value shall place the result in the same registers as if the return value was
the first named input argument to a function unless the return value is a nonhomogeneous aggregate
larger than 2 doublewords or a homogeneous aggregate with more than eight registers. For a defi-
nition of homogeneous aggregates, see OpenPOWER Parameter Passing in Registers. (Homogeneous
aggregates are arrays, structs, or unions of a homogeneous floating-point or vector type and of a
known fixed size.) Therefore, long double functions are returned in f1:f2.

Homogeneous floating-point or vector aggregate return values that consist of up to eight registers
with up to eight elements will be returned in floating-point or vector registers that correspond to the
parameter registers that would be used if the return value type were the first input parameter to a
function.

Aggregates that are not returned by value are returned in a storage buffer provided by the caller. The
address is provided as a hidden first input argument in general-purpose register r3.

Functions that return values of the following types shall place the result in register r3 as signed or
unsigned integers, as appropriate, and sign extended or zero extended to 64 bits where necessary:

char

enum

short

int

long

pointer to any type

_Bool

Sections A2.4.1 through A2.4.4 of the ABI for Linux defines the Fortran supplement. The register usage
conventions set forth in that document remain the same for Fortran.

Fortran Fundamental Types

124 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 5: Table 18. Linux Fortran Fundamental Types

Fortran Type Size (bytes) | Alignment (bytes)
INTEGER 4 4
INTEGER*1 1 1
INTEGER*2 2 2
INTEGER*4 4 4
INTEGER*8 8 8
LOGICAL 4 4
LOGICAL*1 1 1
LOGICAL*2 2 2
LOGICAL*4 4 4
LOGICAL*8 8 8
BYTE 1 1
CHARACTER*n n 1
REAL 4 4
REAL*4 4 4
REAL*8 8 8
DOUBLE PRECISION | 8 8
COMPLEX 8 4
COMPLEX*8 8 4
COMPLEX*16 16 8
DOUBLE COMPLEX | 16 8

A logical constant is one of:
TRUE.
.FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and O respectively.
A logical expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.
Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are con-
verted to lower-case. In addition, an underscore is appended to Fortran global names to distinguish
the Fortran name space from the C/C++ name space.

Argument Passing and Return Conventions

Arguments are passed by reference (i.e., the address of the argument is passed, rather than the argu-
ment itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the

6.1. Linux Programming Model 125

NVIDIA HPC Compilers Reference Guide, Release 25.5

length of the CHARACTER argument is also passed to the function. This length argument is a four-
byte integer passed by value, and is passed at the end of the parameter list following the other formal
arguments. A length argument is passed for each CHARACTER argument; the length arguments are
passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning of its
argument list. The first additional argument is the address of the area created by the caller for the
return value; the second additional argument is the length of the return value. If a Fortran function is
declared to return a character value of constant length, for example CHARACTER*4 FUNCTION CHF(),
the second extra parameter representing the length of the return value must still be supplied.

On Linux86-64 systems a Fortran complex function returns its value in memory. The caller provides
space for the return value and passes the address of this storage as if it were the first argument to the
function. On OpenPOWER systems a Fortran complex function returns its value in the same manner
as complex functions.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The alter-
nate return function passes the appropriate return value back to the caller in %rax on Linux86-64 and
inr1 on OpenPOWER.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters and
return values match types.

If a C/C++ function returns a value, call it from Fortran as a function, otherwise, call it as a sub-
routine.

If a Fortran function has type CHARACTER (or COMPLEX on Linux86-64), call it from C/C++ as a
void function.

If a Fortran subroutine has alternate returns, call it from C/C++ as a function returning int; the
value of such a subroutine is the value of the integer expression specified in the alternate RETURN
statement.

If a Fortran subroutine does not contain alternate returns, call it from C/C++ as a void function.

Fortran 2003 also provides a mechanism to support interoperability with C. This mechanism inclues
the ISO_C_BINDING intrinsic module, binding labels, and the BIND attribute.

provides the C/C++ data type corresponding to each Fortran data type.

126 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 6: Table 19. Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x 8
DOUBLE PRECISION x | double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1
INTEGER*2 x short x 2
INTEGER*4 x int x 4
INTEGER*8 x long x, or long long x | 8
LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long x, or long long x | 8

Table 7: Table 20. Fortran and C/C++ Representation of the

COMPLEX Type

Fortran Type (lower case)

C/C++ Type

Size (bytes)

complex x struct {float r,i;} x; float complex x; 8
complex*8 x struct {float r,i;} x; float complex x; 88
double complex x struct {double dr,di;} x; double complex x; | 16 16
complex *16 x struct {double dr,di;} x; double complex x; | 16 16

Note: For C/C++, the complex type implies C99 or later.

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++ arrays
start at O and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ use row-major order. For one-dimensional arrays, this poses no prob-
lems. For two-dimensional arrays, where there are an equal number of rows and columns, row and
column indexes can simply be reversed. Inter-language function mixing is not recommended for ar-
rays other than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types

6.1. Linux Programming Model 127

NVIDIA HPC Compilers Reference Guide, Release 25.5

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members corre-
spond to the members of the common block. The name of the structure in C/C++ must have the added
underscore.

For example, the Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /COM/ i, j, ¢, cd, d

is represented in C with the following equivalent:

extern struct {
int i;
int j;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com_;

and in C++ with the following equivalent:

extern "C" struct {
int i;
int j;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com_;

Note: The compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as calling
other types of Fortran functions. Additional arguments must be passed to the Fortran function by the
C/C++ caller. A Fortran COMPLEX function returns its value in memory; the first argument passed to
the function must contain the address of the storage for this value. A Fortran CHARACTER function
adds two arguments to the beginning of its argument list. The following example of calling a Fortran
CHARACTER function from C/C++ illustrates these caller-provided extra parameters:

CHARACTER*(*) FUNCTION CHF(C1, I)
CHARACTER* (*) C1

INTEGER I

END

extern void chf_();

char tmp[10];

char c1[9];

int i;

chf_(tmp, 10, c1, &i, 9);

128 Chapter 6. Runtime Environment

NVIDIA HPC Compilers Reference Guide, Release 25.5

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the length
of cl.

6.1. Linux Programming Model 129

NVIDIA HPC Compilers Reference Guide, Release 25.5

130 Chapter 6. Runtime Environment

Chapter 7. C++ Dialect Supported

The NVC++ compiler accepts the C++ language of the ISO/IEC standards up to and including the
14882:2017 standard, plus substantially all GNU C++ extensions.

Command-line options provide full support of many C++ variants, including strict standard confor-
mance. NVC++ provides the --c++XY command-line options to enable the user to specify the version
of C++ accepted, where XY isoneof {17 \| 14 \| 11 \| 03}. The C++ version accepted by default
is determined by and matches that of the version of the GCC toolchain used for compilation.

The NVC++ compiler includes support for the C++17 language standard. Enable this support by com-
piling with --c++17 or -std=c++17.

Supported C++17 core language features are available on Linux systems using a GCC 7 or later
toolchain.

The following C++17 language features are supported:
Structured bindings
Selection statements with initializers
Compile-time conditional statements, a.k.a. constexpr if
Fold expressions
Inline variables
Constexpr lambdas
Lambda capture of *this by value
Class template deduction
Auto non-type template parameters
Guaranteed copy elision

The NVC++ compiler installation does not include a C++ standard library, so support for C++17 addi-
tions to the standard library depends on the C++ library provided on your system. On Linux, GCC 7 is
the first GCC release with significant C++17 support.

The following C++ library changes are supported when building against GCC 7 or later:
std:string_view

std:optional

131

NVIDIA HPC Compilers Reference Guide, Release 25.5

std:variant
std::any
Variable templates for metafunctions
The following C++ library changes are supported when building against GCC 9 or later:
Parallel algorithms
Filesystem support

Polymorphic allocators and memory resources

132 Chapter 7. C++ Dialect Supported

Chapter 8. x86-64 C++ and C
MMX/SSE/AVX Intrinsics

An intrinsic is a function available in a given language whose implementation is handled specifically
by the compiler. Typically, an intrinsic substitutes a sequence of automatically-generated instructions
for the original function call. Since the compiler has an intimate knowledge of the intrinsic function,
it can better integrate it and optimize it for the situation.

NVIDIA provides support for MMX and SSE/SSE2/SSE3/SSSE3/SSE4a/ABM/AVX intrinsics in C++ and
C programs.

Intrinsics make the use of processor-specific enhancements easier because they provide a C++and C
language interface to assembly instructions. In doing so, the compiler manages things that the user
would normally have to be concerned with, such as register names, register allocations, and memory
locations of data.

This section contains these tables associated with inline intrinsics:
A table of MMX inline intrinsics (mmintrin.h)
A table of SSE inline intrinsics (xmmintrin.h)
A table of SSE2 inline intrinsics (emmintrin.h)
A table of SSE3 inline intrinsics (pmmintrin.h)
A table of SSSE3 inline intrinsics (tmmintrin.h)
A table of SSE4a inline intrinsics (ammintrin.h)
A table of ABM inline intrinsics (intrin.h)

A table of AVX inline intrinsics (immintrin.h)

The definitions of the intrinsics are provided in the corresponding header files.

133

NVIDIA HPC Compilers Reference Guide, Release 25.5

To call these intrinsic functions from a C/C++ source, you must include the corresponding header file
- one of the following:

For MMX, use mmintrin.h For SSSE3 use tmmintrin.h
For SSE, use xmmintrin.h For SSE4a use ammintrin.h
For SSE2, use emmintrin.h For ABMuse intrin.h
For SSE3, use pmmintrin.h For AVX use intrin.h

The following table describes the data types that are defined for intrinsics:

Data Defined in Description
Types

m64 mmintrin.h | For use with MMX intrinsics, this 64-bit data type stores one 64-bit or
two 32-bit integer values.

__m128 xmmintrin.h | For use with SSE intrinsics, this 128-bit data type, aligned on 16-byte
boundaries, stores four single-precision floating point values.

__m128d | emmintrin.h | For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on
16-byte boundaries, stores two double-precision floating point values.

__mi128i | emmintrin.h | For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on
16-byte boundaries, stores two 64-bit integer values.

__m256 immintrin.h | For use with AVX intrinsics, this 256-bit data type, aligned on 31-byte
boundaries, stores eight single-precision floating point values.

__m256d | immintrin.h | For use with AVX intrinsics, this 256-bit data type, aligned on 32-byte
boundaries, stores four double-precision floating point values.

__m256i | immintrin.h | For use with AVX intrinsics, this 256-bit data type, aligned on 16-byte
boundaries, stores four 64-bit integer values.

The MMX/SSE intrinsics include functions for initializing variables of the types defined in the preceding
table. The following sample program, example. c, illustrates the use of the SSE intrinsics _mm_add_ps
and _mm_set_ps.

#include<xmmintrin.h>
int main(){
m128 A, B, result;
_mm_set_ps(23.3, 43.7, 234.234, 98.746); /* initialize A */
_mm_set_ps(15.4, 34.3, 4.1, 8.6); /* initialize B */

-
B

(continues on next page)

134 Chapter 8. x86-64 C++ and C MMX/SSE/AVX Intrinsics

NVIDIA HPC Compilers Reference Guide, Release 25.5

(continued from previous page)

result = _mm_add_ps(A, B);
return 0;

}

To compile this program, use the following command:

$ nvc example.c -o myprog

8.2. x86-64 MMX Intrinsics

NVC++ and NVC support a set of MMX Intrinsics which allow the use of the MMX instructions directly
from C++ and C code, without writing the assembly instructions. The following table lists the MMX
intrinsics supported.

Note: Intrinsics with a * are only available on 64-bit systems.

Table 1: Table 21. MMX Intrinsics (mmintrin.h)

_mm_empty _m_paddd _m_psllw _m_pand
_m_empty _mm_add_si64 _mm_slli_pi16 | _mm_andnot_si64
_mm_cvtsi32_si64 _mm_adds_pi8 _m_psllwi _m_pandn
_m_from_int _m_paddsb _mm_sll_pi32 | _mm_or_si64
_mm_cvtsib4x_si64* | _mm_adds_pil6 | _m_pslld _m_por
_mm_set_pi64x* _m_paddsw _mm_slli_pi32 | _mm_xor_si64

_mm_cvtsi64_si32

_mm_adds_pu8

_m_pslldi

_Mm_pXxor

_m_to_int

_m_paddusb

_mm_sll_si64

_mm_cmpeq_pi8

_mm_cvtsib4_si64x*

_mm_adds_pul16

_m_psliqg

_m_pcmpeqgb

_mm_packs_pil6*

_m_paddusw

_mm_slli_si64

_mm_cmpgt_pi8

_m_packsswb

_mm_sub_pi8

_m_psllqi

_m_pcmpgtb

_mm_packs_pi32

_m_psubb

_mm_sra_pil6

_mm_cmpeq_pil6

_m_packssdw

_mm_sub_pil6

_Mm_psraw

_Mm_pcmpeqw

_mm_packs_pul6 _m_psubw _mm_srai_pi16 | _mm_cmpgt_pil6
_m_packuswb _mm_sub_pi32 _m_psrawi _m_pcmpgtw
_mm_unpackhi_pi8 | _m_psubd _mm_sra_pi32 | _mm_cmpeqg_pi32

_m_punpckhbw

_mm_sub_si64

_m_psrad

_m_pcmpeqd

_mm_unpackhi_pi16

_mm_subs_pi8

_mm_srai_pi32

_mm_cmpgt_pi32

_m_punpckhwd

_m_psubsb

_m_psradi

_m_pcmpgtd

continues on next page

8.2. x86-64 MMX Intrinsics

135

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 1 -continued from previous page

_mm_unpackhi_pi32

_mm_subs_pi16

_mm_srl_pi16

_mm_setzero_si64

_m_punpckhdq

_m_psubsw

_m_psriw

_mm_set_pi32

_mm_unpacklo_pi8

_mm_subs_pu8

_mm_srli_pi16

_mm_set_pil6

_m_punpcklbw

_m_psubusb

_m_psrlwi

_mm_set_pi8

_mm_unpacklo_pil6

_mm_subs_pul6

_mm_srl_pi32

_mm_setr_pi32

_m_punpcklwd

_m_psubusw

_m_psrld

_mm_setr_pi16

_mm_unpacklo_pi32

_mm_madd_pil6

_mm_srli_pi32

_mm_setr_pi8

_m_punpckldqg _m_pmaddwd _m_psrldi _mm_setl_pi32
_mm_add_pi8 _mm_mulhi_pi16 | _mm_srl_si64 | _mm_set1_pil6
_m_paddb _m_pmulhw _m_psrlq _mm_set1_pi8
_mm_add_pil6 _mm_mullo_pi16 | _mm_srli_si64

_m_paddw _m_pmullw _m_psrlqi

_mm_add_pi32 _mm_sll_pi16 _mm_and_si64

8.3. x86-64 SSE Intrinsics

NVC++ and NVC support a set of SSE Intrinsics which allows the use of the SSE instructions directly
from C++ and C code, without writing the assembly instructions. The following tables list the SSE
intrinsics supported.

Note: Intrinsics with a * are only available on 64-bit systems.

Table 2: Table 22. SSE Intrinsics (xmmintrin.h)

_mm_add_ss _mm_comige_ss _mm_load_ss

_mm_sub_ss _mm_comineq_ss _mm_load1_ps

_mm_mul_ss _mm_ucomieq_ss _mm_load_ps]1

_mm_div_ss _mm_ucomilt_ss _mm_load_ps

_mm_sqrt_ss _mm_ucomile_ss _mm_loadu_ps

_mm_rcp_ss _mm_ucomigt_ss _mm_loadr_ps

_mm_rsgrt_ss _mm_ucomige_ss _mm_set_ss

_mm_min_ss _mm_ucomineq_ss _mm_setl_ps
_mm_max_ss _mm_cvtss_si32 _mm_set_ps]
_mm_add_ps _mm_cvt_ss2si _mm_set_ps

continues on next page

136 Chapter 8. x86-64 C++ and C MMX/SSE/AVX Intrinsics

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 2 - continued from previous page

_mm_sub_ps

_mm_cvtss_si64x*

_mm_setr_ps

_mm_mul_ps

_mm_cvtps_pi32

_mm_store_ss

_mm_div_ps

_mm_cvt_ps2pi

_mm_store_ps

_mm_sqrt_ps

_mm_cvttss_si32

_mm_storel_ps

_mm_rcp_ps

_mm_cvtt_ss2Zsi

_mm_store_ps]

_mm_rsqrt_ps

_mm_cvttss_si64x*

_mm_storeu_ps

_mm_min_ps

_mm_cvttps_pi32

_mm_storer_ps

_mm_max_ps

_mm_cvtt_ps2pi

_mm_move_ss

_mm_and_ps

_mm_cvtsi32_ss

_mm_extract_pil6

_mm_andnot_ps

_mm_cvt_siZ2ss

_m_pextrw

_mm_or_ps

_mm_cvtsib4x_ss*

_mm_insert_pil6

_Mmm_xor_ps

_mm_cvtpi32_ps

_m_pinsrw

_mm_cmpeq_ss

_mm_cvt_pi2ps

_mm_max_pil6

_mm_cmplt_ss

_mm_movelh_ps

_M_pmaxsw

_mm_cmple_ss

_mm_setzero_ps

_mm_max_pu8

_mm_cmpgt_ss

_mm_cvtpil6_ps

_m_pmaxub

_mm_cmpge_ss

_mm_cvtpul6_ps

_mm_min_pil6

_mm_cmpneqg_ss

_mm_cvtpi8_ps

_m_pminsw

_mm_cmpnlt_ss

_mm_cvtpu8_ps

_mm_min_pu8

_mm_cmpnle_ss

_mm_cvtpi32x2_ps

_m_pminub

_mm_cmpngt_ss

_mm_movehl_ps

_mm_movemask_pi8

_mm_cmpnge_ss

_mm_cvtps_pil6

_m_pmovmskb

_mm_cmpord_ss

_mm_cvtps_pi8

_mm_mulhi_pul6

_mm_cmpunord_ss

_mm_shuffle_ps

_m_pmulhuw

_mm_cmpeqg_ps

_mm_unpackhi_ps

_mm_shuffle_pi16

_mm_cmplt_ps

_mm_unpacklo_ps

_m_pshufw

_mm_cmple_ps

_mm_loadh_pi

_mm_maskmove_si64

_mm_cmpgt_ps

_mm_storeh_pi

_m_maskmovq

_mm_cmpge_ps

_mm_loadl_pi

_mm_avg_pu8

_mm_cmpneqg_ps

_mm_storel_pi

_m_pavgb

_mm_cmpnlt_ps

_mm_movemask_ps

_mm_avg_pul6

_mm_cmpnle_ps

_mm_getcsr

_m_pavgw

_mm_cmpngt_ps

_MM_GET_EXCEPTION_STATE

_mm_sad_pu8

continues on next page

8.3. x86-64 SSE Intrinsics

137

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 2 - continued from previous page

_mm_cmpnge_ps

_MM_GET_EXCEPTION_MASK

_m_psadbw

_mm_cmpord_ps

_MM_GET_ROUNDING_MODE

_mm_prefetch

_mm_cmpunord_ps

_MM_GET_FLUSH_ZERO_MODE

_mm_stream_pi

_mm_comieq_ss

_mm_setcsr

_mm_stream_ps

_mm_comilt_ss

_MM_SET_EXCEPTION_STATE

_mm_sfence

_mm_comile_ss

_MM_SET_EXCEPTION_MASK

_mm_pause

_mm_comigt_ss

_MM_SET_ROUNDING_MODE _MM_SET_FLUSH_ZERO_MODE

_MM_TRANSPOSE4_PS

Table 23 lists the SSE2 intrinsics that are supported and available in emmintrin.h.

Table 3: Table 23. SSE2 Intrinsics (emmintrin.h)

_mm_load_sd

_mm_cmpge_sd

_mm_cvtps_pd

_mm_srl_epi32

_mm_load1_pd

_mm_cmpneq_sd

_mm_cvtsd_si32

_mm_srl_epi64

_mm_load_pd1

_mm_cmpnlt_sd

_mm_cvtsd_si64x*

_mm_slli_epil6

_mm_load_pd

_mm_cmpnle_sd

_mm_cvttsd_si32

_mm_slli_epi32

_mm_loadu_pd

_mm_cmpngt_sd

_mm_cvttsd_si64x*

_mm_slli_epi64

_mm_loadr_pd

_mm_cmpnge_sd

_mm_cvtsd_ss

_mm_srai_epil6

_mm_set_sd

_mm_cmpord_sd

_mm_cvtsi32_sd

_mm_srai_epi32

_mm_set1_pd

_mm_cmpunord_sd

_mm_cvtsi64x_sd*

_mm_srli_epi16

_mm_set_pd1

_mm_comieq_sd

_mm_cvtss_sd

_mm_srli_epi32

_mm_set_pd

_mm_comilt_sd

_mm_unpackhi_pd

_mm_srli_epi64

_mm_setr_pd

_mm_comile_sd

_mm_unpacklo_pd

_mm_and_si128

_mm_setzero_pd

_mm_comigt_sd

_mm_loadh_pd

_mm_andnot_si128

_mm_store_sd

_mm_comige_sd

_mm_storeh_pd

_mm_or_sil28

_mm_store_pd

_mm_comineq_sd

_mm_loadl_pd

_mm_xor_si128

_mm_storel_pd

_mm_ucomieq_sd _mm_storel_pd

_mm_cmpeqg_epi8

_mm_store_pd1

_mm_ucomilt_sd _mm_movemask_pd

_mm_cmpeq_epil6

_mm_storeu_pd

_mm_ucomile_sd _mm_packs_epil6

_mm_cmpeqg_epi32

_mm_storer_pd

_mm_ucomigt_sd _mm_packs_epi32

_mm_cmplt_epi8

_mm_move_sd

_mm_ucomige_sd _mm_packus_epil6

_mm_cmplt_epil6

_mm_add_pd

_mm_ucomineq_sd _mm_unpackhi_epi8

_mm_cmplt_epi32

_mm_add_sd

_mm_load_si128 _mm_unpackhi_epil6

_mm_cmpgt_epi8

_mm_sub_pd

_mm_loadu_si128 _mm_unpackhi_epi32

_mm_cmpgt_epil6

_mm_sub_sd _mm_loadl_epi64 _mm_unpackhi_epi64 | _mm_srl_epil6
continues on next page
138 Chapter 8. x86-64 C++ and C MMX/SSE/AVX Intrinsics

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 3 - continued from previous page

_mm_mul_pd

_mm_store_si128

_mm_unpacklo_epi8

_mm_cmpgt_epi32

_mm_mul_sd _mm_storeu_si128 _mm_unpacklo_epil6 | _mm_max_epil6
_mm_div_pd _mm_storel_epi64 _mm_unpacklo_epi32 | _mm_max_epu8
_mm_div_sd _mm_movepi64_pi64 | _mm_unpacklo_epi64 | _mm_min_epil6
_mm_sqrt_pd _mm_move_epi64 _mm_add_epi8 _mm_min_epu8
_mm_sqrt_sd _mm_setzero_si128 | _mm_add_epil6 _mm_movemask_epi8
_mm_min_pd _mm_set_epi64 _mm_add_epi32 _mm_mulhi_epul6

_mm_min_sd

_mm_set_epi32

_mm_add_epi64

_mm_maskmoveu_si128

_mm_max_pd

_mm_set_epib4x*

_mm_adds_epi8

_mm_avg_epu8

_mm_max_sd

_mm_set_epil6

_mm_adds_epi16

_mm_avg_epul6

_mm_and_pd

_mm_set_epi8

_mm_adds_epu8

_mm_sad_epu8

_mm_andnot_pd

_mm_set1_epi64

_mm_adds_epul6

_mm_stream_si32

_mm_or_pd

_mm_setl_epi32

_mm_sub_epi8

_mm_stream_si128

_mm_xor_pd

_mm_set1_epi64x*

_mm_sub_epil6

_mm_stream_pd

_mm_cmpeqg_pd

_mm_setl_epil6

_mm_sub_epi32

_mm_movpi64_epi64

_mm_cmplt_pd

_mm_set1_epi8

_mm_sub_epi64

_mm_Ifence

_mm_cmple_pd

_mm_setr_epi64

_mm_subs_epi8

_mm_mfence

_mm_cmpgt_pd

_mm_setr_epi32

_mm_subs_epil6

_mm_cvtsi32_si128

_mm_cmpge_pd

_mm_setr_epil6

_mm_subs_epu8

_mm_cvtsib4x_si128*

_mm_cmpneq_pd

_mm_setr_epi8

_mm_subs_epul6

_mm_cvtsil28_si32

_mm_cmpnlt_pd

_mm_cvtepi32_pd

_mm_madd_epil6

*

_mm_cvtsi128_si64x

_mm_cmpnle_pd

_mm_cvtepi32_ps

_mm_mulhi_epi16

_mm_srli_si128

_mm_cmpngt_pd

_mm_cvtpd_epi32

_mm_mullo_epil6

_mm_slli_si128

_mm_cmpnge_pd

_mm_cvtpd_pi32

_mm_mul_su32

_mm_shuffle_pd

_mm_cmpord_pd

_mm_cvtpd_ps

_mm_mul_epu32

_mm_shufflehi_epi16

_mm_cmpunord_pd

_mm_cvttpd_epi32

_mm_sll_epil6

_mm_shufflelo_epil6

_mm_cmpeq_sd

_mm_cvttpd_pi32

_mm_sll_epi32

_mm_shuffle_epi32

_mm_cmplt_sd

_mm_cvtpi32_pd

_mm_sll_epi64

_mm_extract_epil6

_mm_cmple_sd

_mm_cvtps_epi32

_mm_sra_epil6

_mm_insert_epi16

_mm_cmpgt_sd

_mm_cvttps_epi32

_mm_sra_epi32

Table 24 lists the SSE3 intrinsics supported and available in pmmintrin.h.

8.3. x86-64 SSE Intrinsics

139

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 4: Table 24. SSE3 Intrinsics (pmmintrin.h)

_mm_addsub_ps

_mm_moveldup_ps

_mm_loaddup_pd

_mm_mwait

_mm_hadd_ps _mm_addsub_pd _mm_movedup_pd
_mm_hsub_ps _mm_hadd_pd _mm_lddqu_si128
_mm_movehdup_ps | _mm_hsub_pd _mm_monitor

lists the SSSE3 intrinsics supported and available in tmmintrin.h.

Table 5: Table 25. SSSE3 Intrinsics (tmmintrin.h)

_mm_hadd_epil6

_mm_hsubs_pi16

_mm_sign_pil6

_mm_hadd_epi32

_mm_maddubs_epil6

_mm_sign_pi32

_mm_hadds_epil6

_mm_maddubs_pi16

_mm_alignr_epi8

_mm_hadd_pi16

_mm_mulhrs_epil6

_mm_alignr_pi8

_mm_hadd_pi32

_mm_mulhrs_pi16

_mm_abs_epi8

_mm_hadds_pil6

_mm_shuffle_epi8

_mm_abs_epil6

_mm_hsub_epil6

_mm_shuffle_pi8

_mm_abs_epi32

_mm_hsub_epi32

_mm_sign_epi8

_mm_abs_pi8

_mm_hsubs_epil6

_mm_sign_epil6

_mm_abs_pil6

_mm_hsub_pi16

_mm_sign_epi32

_mm_abs_pi32

_mm_hsub_pi32

_mm_sign_pi8

lists the SSE4a intrinsics supported and available in ammintrin.h.

Table 6: Table 26. SSE4a Intrinsics (ammintrin.h)

_mm_stream_sd

_mm_extract_si64

_mm_insert_si64

_mm_stream_ss

_mm_extracti_si64

_mm_inserti_si64

NVC++ and NVC support a set of ABM Intrinsics which allow the use of the ABM instructions directly
from C++ and C code, without writing the assembly instructions. The following table lists the ABM
intrinsics supported.

Table 7: Table 27. ABM Intrinsics (intrin.h)

__lzente4

__lzent16 __popcnt __rdtscp

__lzent __popcntl16 | __popcnt64

140 Chapter 8. x86-64 C++ and C MMX/SSE/AVX Intrinsics

NVIDIA HPC Compilers Reference Guide, Release 25.5

8.5. x86-64 AVX Intrinsics

The following table lists the AVX intrinsics supported by NVC++ and NVC.

Table 8: Table 28. AVX Intrinsics (immintrin.h)

_mm256_add_pd

_mm256_add_ps

_mm256_addsub_pd

_mm256_addsub_ps

_mm256_and_pd

_mm256_and_ps

_mm256_andnot_pd

_mm256_andnot_ps

_mm256_blendv_pd

_mm256_blendv_ps

_mm256_broadcast_pd

_mm256_broadcast_ps

_mm256_broadcast_sd

_mm256_broadcast_ss

_mm256_castpd_si256

_mm256_castps_si256

_mm256_castpd_ps

_mm256_castps_pd

_mm256_castpd128_pd256

_mm256_castpd256_pd128

_mm256_castsi256_pd

_mm256_castsi256_ps

_mm256_cvtepi32_pd

_mm256_cvtepi32_ps

_mm256_cvtpd_epi32

_mm256_cvtps_epi32

_mm256_cvtpd_ps

_mm256_cvtps_pd

_mm256_cvttpd_epi32

_mm256_cvttps_epi32

_mm256_div_pd

_mm256_div_ps

_mm256_hadd_pd

_mm256_hadd_ps

_mm256_hsub_pd

_mm256_hsub_ps

_mm256_load_pd

_mm256_load_ps

_mm256_loadu_pd

_mm256_loadu_ps

_mm256_maskload_pd

_mm256_maskload_ps

_mm256_maskstore_pd

_mm256_maskstore_ps

_mm256_max_pd

_mm256_max_ps

_mm256_min_pd

_mm256_min_ps

_mm256_movemask_pd

_mm256_movemask_ps

_mm256_mul_pd

_mm256_mul_ps

_mm256_or_pd

_mm256_or_ps

_mm256_rcp_ps

_mm256_rsqrt_ps

_mm256_set_pd

_mm256_set_ps

_mm256_setr_pd

_mm256_setr_ps

_mm256_set1_pd

_mm256_set1_ps

_mm256_set_epi32

_mm256_set_epib4x

_mm256_setzero_pd

_mm256_setzero_ps

_mm256_sqrt_pd

_mm256_sqrt_ps

_mm256_store_pd

_mm256_store_ps

_mm256_storeu_pd

_mm256_storeu_ps

_mm256_stream_pd

_mm256_stream_ps

_mm256_stream_si256

_mm256_sub_pd

_mm256_sub_ps

_mm256_testz_pd

_mm256_testz_ps

_mm256_testc_pd

_mm256_testc_ps

_mm256_testnzc_pd

_mm256_testnzc_ps

_mm256_unpackhi_pd

_mm256_unpackhi_ps

_mm256_unpacklo_pd

_mm256_unpacklo_ps

continues on next page

8.5. x86-64 AVX Intrinsics

141

NVIDIA HPC Compilers Reference Guide, Release 25.5

Table 8 - continued from previous page

_mm256_xor_pd

_mm256_xor_ps

_mm256_zeroupper

_mm256_macc_pd

_mm256_macc_ps

_mm256_msub_pd

_mm256_msub_ps

_mm256_nmacc_pd

_mm256_nmacc_ps

_mm256_nmsub_pd

_mm256_nmsub_ps

_mm256_maddsub_pd

_mm256_maddsub_ps

_mm256_msubadd_pd

_mm256_msubadd_ps

_mm_macc_pd

_mm_macc_ps

_mm_msub_pd

_mm_msub_ps

_mm_nmacc_pd

_mm_nmacc_ps

_mm_nmsub_pd

_mm_nmsub_ps

_mm_maddsub_pd

_mm_maddsub_ps

_mm_msubadd_pd

_mm_msubadd_ps

_mm_macc_sd

_Mmm_macc_ss

_mm_msub_sd

_mm_msub_ss

_mm_nmacc_sd

_mMmm_nmacc_ss

_mm_nmsub_sd

_mm_nmsub_ss

_mm256_extractf128_pd

_mm256_extractf128_ps

_mm256_extractf128_si256

_mm256_permute_pd

_mm256_permute_ps

_mm256_permute2f128_pd

_mm256_permute2f128_ps

_mm256_permute2f128_si256

_mm256_blend_pd

_mm256_blend_ps

_mm256_shuffle_pd

_mm256_shuffle_ps

_mm256_cmp_pd

_mm256_cmp_ps

_mm256_round_pd

_mm256_round_ps

_mm256_insertf128_pd

_mm256_insertf128_ps

_mm256_insertf128_si256

_mm256_dp_ps

142

Chapter 8. x86-64 C++ and C MMX/SSE/AVX Intrinsics

Chapter 9. Messages

This section describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler always
displays any error messages, along with the erroneous source line, on the screen. If you specify the
-Mlist option, the compiler places any error messages in the listing file. You can also use the -v
option to display more information about the compiler, assembler, and linker invocations and about
the host system. For more information on the -M1ist and -v options, refer to ‘Using Command-line
Options’ in the HPC Compiler User Guide.

Diagnostic messages provide syntactic and semantic information about your source text. Syntactic
information includes information such as syntax errors. Semantic information includes information
such as unreachable code, incorrect number of arguments specified for a call to a routine, illegal data
type usage, etc.

You can specify that the compiler displays error messages at a certain level with the -Minform option.

The compiler messages refer to a severity level, a message number, and the line number where the
error occurs.

The compiler can also display internal error messages on standard error.

If you use the listing file option -M1ist, the compiler places diagnostic messages after the source
lines in the listing file, in the following format:

NVFORTRAN-etype-enum-message (filename: line)

Where:

etype
is a character signifying the severity level

enum
is the error number

message
is the error message

filename
is the source filename

line is the line number where the compiler detected an error.

143

NVIDIA HPC Compilers Reference Guide, Release 25.5

9.2. Phase Invocation Messages

You can display compiler, assembler, and linker phase invocations by using the -v command line option.
For further information about this option, refer to the ‘Using Command-line Options’ section of the
HPC Compilers User Guide.

9.3. Fortran Compiler Error Messages

This section presents the error messages generated by the NVFORTRAN compiler. The compiler dis-
plays error messages in the program listing and on standard output. They can also display internal
compiler error messages on standard error.

9.3.1. Message Format

Each message is numbered. Each message also lists the line and column number where the error
occurs. A dollar sign ($) in a message represents information that is specific to each occurrence of the
message.

9.3.2. Message List

Error message severities:

| informative
W warning

S severe error
F fatal error
Vv variable

Ve00 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error - although it may be possible
for a user error to cause an internal error. The severity may vary; if it is informative or warning, correct
object code was probably generated, but it is not safe to rely on this.

FO01 Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after
them.

F@02 Unable to open source input file: $

Source file name is misspelled, file is not in current working directory, or file is read protected.

FB03 Unable to open listing file

144 Chapter 9. Messages

../hpc-compilers-user-guide/index.htm

NVIDIA HPC Compilers Reference Guide, Release 25.5

This message typically occurs when the user does not have write permission for the current working
directory.

Foo4 $ §

Generic message for file errors.

FBe5 Unable to open temporary file

Compiler uses directory “/usr/tmp” or “/tmp” in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler directives.

F@O7 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other non-recoverable
problem related to the size of the subprogram. If this error occurs at opt level 2, reducing the opt level
to 1 may work around the problem. Moving the subprogram being compiled to its own source file may
eliminate the problem.

FOO8 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on the
command line.

FO09 Unable to open assembly file

This message typically occurs when the user does not have write permission for the current working
directory.

FB10 File write error occurred $

The file system may be full.

S011 Unrecognized command line switch: $

Refer to the HPC Compiler User Guide for a list of allowed compiler switches.

S012 Value required for command line switch: $

Certain switches require an immediately following value, such as “-opt 2”.

S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

WB15 Hexadecimal or octal constant truncated to fit data type

I016 Identifier, $§, truncated to 63 chars

An identifier may be at most 63 characters in length; characters after the 63rd are ignored.

9.3. Fortran Compiler Error Messages 145

NVIDIA HPC Compilers Reference Guide, Release 25.5

S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file name
should be enclosed in quotes.

S818 Illegal label $ $

Used for label ‘field’ errors or illegal values. E.g., in fixed source form, the label field (first five characters)
of the indicated line contains a non-numeric character.

S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines were specified.

S020 Unrecognized compiler directive

S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.

S022 Unexpected end of file - missing END statement

The source file is missing and END statement, or the file is truncated.

S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.

We24 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough to contain
all of the characters in the constant. This type conversion occurs when the constant is used in an
arithmetic expression or is assigned to a non-character variable. The character or hollerith constant is
truncated on the right, that is, if 4 characters are needed then the first 4 are used and the remaining
characters are discarded.

We25 Illegal character ($8) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran character
(characters inside of character or Hollerith constants cannot cause this error). As a general rule, all
non-printing characters are treated as white space characters (blanks and tabs); no error message is
generated when this occurs. If for some reason, a non-printing character is not treated as a white
space character, its hex representation is printed in the form dd where each d is a hex digit.

S026 Unmatched quote

A character constant is missing a closing quote or the source file is truncated.

S027 Illegal integer constant: $

Integer constant is too large for 32 bit word.

S028 Illegal real or double precision constant: $

S829 Illegal $ constant: $

146 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0.9 and letters
A.F or a.f; any other character in a hexadecimal constant is illegal. An octal constant consists of digits
0..7; any other digit or character in an octal constant is illegal. A binary constant consists of digits O
or 1; any other digit or character in a binary constant is illegal.

S030 Explicit shape must be specified for $

A shape for an array expression is effected in this context.

S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a member of
the set of allowed values for this particular data type.

We32 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g. DIMENSION
A(10)*4).

S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment statement or as
the target of a data initialization statement.

S034 Syntax error at or near $

lllegal command specified.

I835 Predefined intrinsic $§ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic.
The compiler, based on the context, will treat the name as a variable or an external function.

S036 Illegal implicit character range

First character must alphabetically precede second.

S837 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.

S038 Symbol, $§, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT NONE
statement occurs in the subprogram.

We39 Symbol, $§, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.

S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has previously been defined
to be something other than a variable or array.

We41 Illegal use of dummy argument $

9.3. Fortran Compiler Error Messages 147

NVIDIA HPC Compilers Reference Guide, Release 25.5

This error can occur in several situations. It can occur if dummy arguments were specified on a PRO-
GRAM statement. It can also occur if a dummy argument name occurs in a DATA, COMMON, SAVE, or
EQUIVALENCE statement. A program statement must have an empty argument list.

S042 $ is a duplicate dummy argument

Each dummy argument must have a unique name.
S043 Illegal attempt to redefine $ $
An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the same

symbol. This can happen for a number of reasons. The message attempts to indicate the situation
that occurred.

intrinsic - An attempt was made to redefine an intrinsic function. A symbol that represents an intrinsic
function may be redefined if that symbol has not been previously verified to be an intrinsic function.
For example, the intrinsic sin can be defined to be an integer array. If a symbol is verified to be an
intrinsic function via the INTRINSIC statement or via an intrinsic function reference then it must be
referred to as an intrinsic function for the remainder of the program unit.

symbol - An attempt was made to redefine a symbol that was previously defined. An example of this is
to declare a symbol to be a PARAMETER which was previously declared to be a subprogram argument.

S844 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previously declared as an ENTRY.

Se45 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of the current
function. For example, the function returns type character and an entry point returns type complex.

S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the other
data types. Suppose, we want to declare arrays ARRAYA and ARRAYB to have 8 elements each having
an element length of 4 bytes. The difference is that ARRAYA is character and ARRAYB is integer. The
declarations would be CHARACTER ARRAYA(8)*4 and INTEGER ARRAYB*4(8).

S847 More than seven dimensions specified for array

The compiler currently supports up to seven dimensions for arrays.

S048 Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.

S049 Illegal use of '*' in non-subroutine subprogram

The alternate return specifier * is legal only in the subroutine statement. Programs, functions, and
block data are not allowed to have alternate return specifiers.

S050 Assumed size array, $, is not a dummy argument

(kI

Arrays with " in their dimension(s) may only be declared as dummy arguments.

148 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was encountered that did not
match one of these allowed forms.

S0852 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in procedure calls.

WO54 Implicit character $ used in a previous implicit statement

An implicit character has been given an implied data type more than once. The implied data type for
the implicit character is changed anyway.

We55 Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.

We56 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will produce
a warning message for IMPLICIT statements.

S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

SB58 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.

SB59 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

SP61 Equivalence of $§ and $ extends common block backwards

We62 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not optimal

for variables of its data type. This can occur when INTEGER and CHARACTER data are equivalenced,
for instance.

I063 Gap in common block $ before $

SP64 Illegal use of § in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.

S065 Repeat factor less than zero

9.3. Fortran Compiler Error Messages 149

NVIDIA HPC Compilers Reference Guide, Release 25.5

S066 Too few data constants in initialization statement
S867 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range @ through 255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or hexadec-
imal constant if that constant is in the range O through 255.

S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.

S@70 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a specifi-
cation statement which in turn must precede an executable statement.

S071 Executable statements not allowed in block data
S872 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector reference.
The assignment operation may be by way of an assignment statement, a data statement, or the index
variable of an implied DO-loop. The compiler has determined that the identifier used as the destination
is not a storage location. The error message attempts to indicate the type of entity used.

entry point - An assignment to an entry point that was not a function procedure was attempted.

external procedure - An assignment to an external procedure or a Fortran intrinsic name was at-
tempted. If the identifier is the name of an entry point that is not a function, an external procedure.

S073 Intrinsic or predeclared, $§, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function, re-
quiring a certain number of arguments of a fixed data type.

S@75 Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring and
function references.

S076 Subscripts specified for non-array variable $

S@77 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

SB79 Keyword form of argument illegal in this context for $

S080 Subscript for array $ is out of bounds

150 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S881 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

S083 Vector expression used where scalar expression required

A vector expression was used in an illegal context. For example, iscalar = iarray, where a scalar
is assigned the value of an array. Also, character and record references are not vectorizable.

S084 Illegal use of symbol $ $

This message is used for many different errors.

S885 Incorrect number of arguments to statement function $
S086 Dummy argument to statement function must be a variable
S887 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.

S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as statement func-
tion dummy parameters and statement function names. Also, a dummy variable of type CHARAC-
TER*(*) cannot be used as a function.

S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O statements, must
not consist of a concatenation involving a passed length character variable.

We93 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other data
type. The compiler generates code to convert the expression into the required type.

S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data type.

S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other data
type.

9.3. Fortran Compiler Error Messages 151

NVIDIA HPC Compilers Reference Guide, Release 25.5

S096 Illegal complex comparison

The relations .LT., .GT,, .GE., and .LE. are not allowed for complex values.

S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.

S098 Divide by zero

SP99 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted 1/0
statements, and as parameters to subprograms. They may not appear, for example, in expressions.
Also, records with differing structure types may not be assigned to one another.

S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector illegally. For example,
the assignment of a character constant string to a character array. Records, too, cannot be promoted
to vectors.

S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.

S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double precision
scalar expression.

S183 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.

S184 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements, DO loops, and directives.
You may see one of the following messages:

NVFORTRAN-S-0104-I1legal control structure - unterminated PARALLEL directive

NVFORTRAN-S-0104-I1legal control structure - unterminated block IF

If the line number specified is the last line (END statement) of the subprogram, the error is probably
an unterminated DO loop or IF-THEN statement. If the message contains unterminated PARALLEL
directive, it is likely you are missing the required !Somp end parallel directive.

S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN statement.

S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a function
name, a structure name, etc.

152 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S187 Illegal assigned goto variable $

S188 Illegal variable, $§, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars.

I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits produces an over-
flow. The constant is truncated at left (e.g. ‘1234567890abcdef1’x will be 234567890abcdef1°x).

I110 <reserved message number>

I711 Underflow of real or double precision constant
I112 Overflow of real or double precision constant
S113 Label $§ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S$116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $§ definition

The statement may not appear in a STRUCTURE or derived type definition.

S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.

I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the oper-
ation. For example, a logical expression can consist of only logical elements of type integer or logical.
Real data would be invalid.

I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement has
been truncated to fit the declared size of the corresponding identifier.

W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were present in the
character field of the hollerith constant. The length specifier was reduced to agree with the number
of characters present.

9.3. Fortran Compiler Error Messages 153

NVIDIA HPC Compilers Reference Guide, Release 25.5

S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character expressions.
A character expression cannot be compared to an arithmetic expression.

I125 Dummy procedure $ not declared EXTERNAL
A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram name

in a CALL statement, or is called as a function, and is therefore assumed to be a dummy procedure.
This message can result from a failure to declare a dummy array.

I126 Name $ is not an intrinsic function
I127 Optimization level for $§ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits, such as a
BYTE.

I129 Floating point overflow. Check constants and constant expressions
I130 Floating point underflow. Check constants and constant expressions
I131 Integer overflow. Check floating point expressions cast to integer
I132 Floating pt. invalid oprnd. Check constants and constant expressions
I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ S

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.

W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.

W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.

S140 Variable $ is not a RECORD

S141 RECORD required on left of $

154 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S142 $ is not a member of this RECORD
S143 $ requires initializer
W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.

W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It is only valid when
used within a STRUCTURE multiline statement even though it is ignored.

S146 Expression must be character type
S147 Character expression not allowed in this context
S148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but another data type
was found instead.

S149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported.

S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP - ENDMAP declaration
contains no members.

S152 All dimension specifiers must be
S153 Array objects are not conformable $

S154 DISTRIBUTE target, $§, must be a processor

S155 § §

S156 Number of colons and triplets must be equal in ALIGN $ with $
S157 Illegal subscript use of ALIGN dummy $§ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE or
ENTRY statements.

S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.

9.3. Fortran Compiler Error Messages 155

NVIDIA HPC Compilers Reference Guide, Release 25.5

S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced with < or > test.
S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.

S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only when
an assembly file is the output of the compiler.

S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable only
when an assembly file is the output of the compiler.

I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is not identical. The
maximum size is chosen. The message is applicable only when an assembly file is the output of the
compiler.

S168 Incompatible size of common block $
A common block occurs in more than one subprogram of a source file and is initialized in one subpro-

gram. Its initialized size was found to be less than its size in the other subprogram(s). The message is
applicable only when an assembly file is the output of the compiler.

W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the first set of initial-
izations apply. The message is applicable only when an assembily file is the output of the compiler.

W170 NVIDIA Fortran extension: $ $

Use of a nonstandard feature. A description of the feature is provided.

W171 NVIDIA Fortran extension: nonstandard statement type $

W172 NVIDIA Fortran extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.

W173 NVIDIA Fortran extension: nonstandard use of data type length specifier
W174 NVIDIA Fortran extension: type declaration contains data initialization

W175 NVIDIA Fortran extension: IMPLICIT range contains nonalpha characters

156 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

NVIDIA Fortran extension: nonstandard operator $

NVIDIA Fortran extension: nonstandard use of keyword argument $

use of structure field reference $

nonstandard form of constant

& alternate return

mixed non-character and character elements in COMMON $

: mixed non-character and character EQUIVALENCE (S,S$)

Mixed type elements (numeric and/or character types) in COMMON $

Mixed numeric and/or character type EQUIVALENCE (S$,$)

type mismatch

association of scalar actual argument to array dummy

non-conformable arrays
annot be an assumed-size array

ust be a label

$ to $ does not match INTENT (OUT)

INTENT(IN) argument cannot be defined - $

Statement may not appear in an INTERFACE block $

Deferred-shape specifiers are required for $

W176

w177

W178 <reserved message number>
W179 NVIDIA Fortran extension:
W180 NVIDIA Fortran extension:
W181 NVIDIA Fortran extension:
W182 NVIDIA Fortran extension:
W183 NVIDIA Fortran extension
w184

W185

S186 Argument missing for formal argument $
S187 Too many arguments specified for $
S188 Argument number $ to $:
S189 Argument number $§ to $:
—argument

S190 Argument number $ to $:
S191 Argument number $ to $ ¢
S$192 Argument number $ to $ m
W193 Argument number

W194

S195

S196

S197

Invalid qualifier or qualifier value (/$) in OPTIONS statement

An illegal qualifier was found or a value was specified for a qualifier which does not expect a value. In
either case, the qualifier for which the error occurred is indicated in the error message.

S198 $ $ in ALLOCATE/DEALLOCATE

9.3. Fortran Compiler Error Messages 157

NVIDIA HPC Compilers Reference Guide, Release 25.5

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.

S200 Missing UNIT/FILE specifier
S201 Illegal I/0 specifier - $
S202 Repeated I/0 specifier - $
S203 FORMAT statement has no label

S204 $ §

Miscellaneous I/O error.

S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors
S211 Internal I/0 not allowed in this I/0 statement

S212 Illegal NAMELIST I/O

Namelist 1/0O cannot be performed with internal, unformatted, formatted, and list-directed I/O. Also,
I/O lists must not be present.

S213 $ is not a NAMELIST group name
S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/0 item or specifier

An assumed size array was used as an item to be read or written or as an I/O specifier (i.e., FMT =
array-name). In these contexts the size of the array must be known.

S216 STRUCTURE/UNION cannot be used as an I/0 item
S217 ENCODE/DECODE buffer must be a variable, array, or array element

S218 Statement labeled $ $

158 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S219 <reserved message number>
$220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this context.

S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this context.

S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

S$224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro’s definition.

F226 Can't find include file $

The indicated include file could not be opened.

S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed (currently
2048).

S228 EOF in comment

The end of a file was encountered while processing a comment.

S$229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.

S230 EOF in string

The end of a file was encountered while processing a quoted string.

S231 Formal parameters too long for $

The total length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

9.3. Fortran Compiler Error Messages 159

NVIDIA HPC Compilers Reference Guide, Release 25.5

S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.

W235 Illegal macro name

A macro name was not an identifier.

$236 Illegal number $

The indicated number contained a syntax error.

F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W238 Missing #endif

End of file was encountered before a required #endif directive was found.

W239 Missing argument list for $

A call of the indicated macro had no argument list.

S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W241 Redefinition of symbol $

The indicated macro name was redefined.

I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.

F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $§ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W245 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro’s definition.

S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.

S247 Syntax error in #include

The #include directive was not correctly formed.

160 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

W248 Syntax error in #line

A #line directive was not correctly formed.

W249 Syntax error in #module

A #module directive was not correctly formed.

W250 Syntax error in #undef

A #undef directive was not correctly formed.

W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
31).

F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

W256 Undefined directive $

The identifier following a # was not a directive name.

F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and O values are illegal for a position in a file.

S257 EOF in #include directive

End of file was encountered while processing a #include directive.

S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.

S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

9.3. Fortran Compiler Error Messages 161

NVIDIA HPC Compilers Reference Guide, Release 25.5

S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

1264 Possible nested comment

The characters /* were found within a comment.

S265 <reserved message number>
S266 <reserved message number>
S267 <reserved message number>
W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be severe if the compilation has gone too far to undo the inlining process.

F276 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)
F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram
I277 Inlining of function $§ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been assigned a value.
The names of the variable and the function in which the use occurred are listed. The line number, if
specified, is the line number of the basic block containing the use of the variable.

162 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

W280 Syntax error in directive $

Messages 280-300 reserved for directives handling

W281 Directive ignored - $ §$

S300 Too few data constants in initialization of derived type $
S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S383 END statement for $§ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$
S305 $ cannot be named, $

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or arithmetic IF
S309 Incorrect name, $, specified in END statement

S$310 $ $

Generic message for MODULE errors.

W311 Non-replicated mapping for $ array, $, ignored
W312 <reserved message number>
W313 <reserved message number>

E314 IPA: actual argument $ is a label, but dummy argument $ is not an asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the alternate return.

I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.

I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.

I317 <reserved message number>

I318 <reserved message number>

9.3. Fortran Compiler Error Messages 163

NVIDIA HPC Compilers Reference Guide, Release 25.5

I319 <reserved message number>

I320 IPA: routine $, $ common blocks optimized

This many mapped common blocks were optimized by interprocedural analysis.

I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either because
they were declared differently in different routines, or they did not appear in the main program.

I322 IPA: analyzing main program $

Interprocedural analysis is building the call graph and propagating information with the named main
program.

I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for subsequent analysis and
propagation.

W324 IPA file $ appears to be out of date

W325 IPA file $§ is for wrong subprogram: $

W326 Unable to open file $§ to propagate IPA information to $
I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)
I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 <reserved message number>

I332 <reserved message number>

I333 <reserved message number>

I334 <reserved message number>

I335 <reserved message number>

I336 <reserved message number>

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

164 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S$339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information
S342 Unable to open file $ while analyzing IPA information
S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.

W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first appearance.

F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate options,
requires the -ipalib option to specify the library directory.

W348 <reserved message number>
W349 <reserved message number>
W350 <reserved message number>

W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.

W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.

W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or analyzed.

I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.

W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.

I356 Array section analysis incomplete

9.3. Fortran Compiler Error Messages 165

NVIDIA HPC Compilers Reference Guide, Release 25.5

Interprocedural analysis for array section arguments is incomplete; some information may not be avail-
able for optimization.

I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be avail-
able for optimization.

W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to a dummy argument that is declared EXTERNAL.

W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a function.

W360 FUNCTION $ passed to FUNCTION dummy argument $§ with different result type

The call statement passes a function argument to a function dummy argument, but the dummy has a
different result type.

W361 FUNCTION $ passed to SUBROUTINE dummy argument $

The call statement passes a function name to a dummy argument that is used as a subroutine.

W362 Argument $§ has a different type than dummy argument $

The type of the actual argument is different than the type of the corresponding dummy argument.

W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.

W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is a scalar variable.

W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to the compiler main-
tenance group. If user errors were reported when collecting IPA information or during IPA analysis,
correcting them may avoid this error.

I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array to se-
quential storage. The most common cause is passing an ALLOCATABLE array or array expression to a
dummy argument that is declared with explicit bounds. Declaring the dummy argument as assumed
shape, with bounds (:,:,2), will remove this warning.

W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

166 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than the dummy ar-
gument.

W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.

W371 Dummy argument $ is INTENT(IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the argument may be
modified; the INTENT(IN) declaration should be changed.

W372 <reserved message number>
I373 <reserved message number>
I374 <reserved message number>
I375 <reserved message number>
I376 <reserved message number>
I377 <reserved message number>
I378 <reserved message number>
I379 <reserved message number>
I380 <reserved message number>
I381 <reserved message number>

I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole pro-
gram.

I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be
replaced by constants.

1384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).

W385 IPA: § INTENT(IN) dummy arguments should be INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were de-
clared as INTENT(IN) but should be INTENT(INOUT).

9.3. Fortran Compiler Error Messages 167

NVIDIA HPC Compilers Reference Guide, Release 25.5

I386 <reserved message number>
I387 <reserved message number>
I388 <reserved message number>
I389 <reserved message number>
I390 <reserved message number>
I391 <reserved message number>

I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized
Interprocedural analysis has found this many common blocks that could not be optimized, either be-

cause the common block was not declared in the main program, or because it was declared differently
in different subprograms.

I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.

I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.

I396 <reserved message number>
I397 <reserved message number>
I398 <reserved message number>

I399 IPA: common block $§ not optimized

The given common block was not optimized by interprocedural analysis either because it was not de-
clared in the main program, or because it was declared differently in different subprograms.

E400 IPA: dummy argument $ is an asterisk, but actual argument is not a label

The subprogram expects an alternate return label for this argument.

E401 Actual argument $ is a subprogram, but Dummy argument $ is not declared EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar variable
or array.

E402 Actual argument $§ is illegal

E403 <reserved message number>

168 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

E404 <reserved message number>
E405 <reserved message number>
E406 <reserved message number>

W407 Argument $§ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the correspond-
ing dummy argument.

W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data subprogram.

W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one found is used.

W416 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.

W411 Formal argument $ is DYNAMIC but actual argument is an expression
W412 Formal argument $ is DYNAMIC but actual argument $ is not

I413 Formal argument $ has two reaching distributions and may be a candidate for
—cloning

I414 § and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased because the same
variable is passed in both argument positions; or one formal argument and a global or COMMON vari-
able may be aliased, because the global or COMMON variable is passed as an actual argument. If either
alias is assigned in the subroutine, unexpected results may occur; this message alerts the user that
this situation is disallowed by the Fortran standard.

F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA directory. One
of these files has been renamed or corrupted. This can arise when there are two files with the same
prefix, such as a.hpf and a.f96@.

E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must have
the SEQUENCE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION

E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE

9.3. Fortran Compiler Error Messages 169

NVIDIA HPC Compilers Reference Guide, Release 25.5

E419 Interface block for $ is a FUNCTION has wrong result type
W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not allowed
E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete
W432 Illegal type conversion $

E433 <reserved message number>

W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ‘real a(-1)’, or an upper bound less
than the lower bound, as ‘real a(4:2)’.

W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for COMPLEX(16) or
COMPLEX*32.

E438 $ $ not supported on this platform

This construct is not supported by the compiler for this target.

S439 An internal subprogram cannot be passed as argument - $

170 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S440 Defined assignment statements may not appear in WHERE statement or WHERE block
S441 $§ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type must
have the SEQUENCE attribute, but does not.

E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.

S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number of dimensions
in the dummy argument.

S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported
S452 Assumed length character, $§, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - § $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association can
appear in a MODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a member array section - $

A reference like A()%B(:), where ‘A’ is a derived type array and ‘B’ is a member array, is not allowed; a
section subscript may appear after ‘A’ or after ‘B’, but not both.

S456 Unimplemented for data type for MATMUL
S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

9.3. Fortran Compiler Error Messages 171

NVIDIA HPC Compilers Reference Guide, Release 25.5

S459 Target of NULL() assignment must be a pointer
S460 ELEMENTAL procedures cannot be RECURSIVE
S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot have the POINTER
—attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

S465 Functions returning a POINTER require an explicit interface

S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE attribute
W468 Argument to ISO_C_BINDING intrinsic must have TARGET attribute set
W469 Character argument to C_LOC intrinsic must have length of one

WA70 <reserved message number>

W471 <reserved message number>

E472 A Scalar element of a nonsequential array cannot be passed to a dummy array
—argument - $

A subroutine or function call may not pass an element of an array, like ‘A(N)’, to a dummy array argu-
ment if the array ‘A’ is not sequential. If the array is sequential, then Fortran sequence and storage
association rules will treat the dummy argument as a new array equivalenced to the actual argument
starting at the element passed. If the array is not sequential, then Fortran sequence and storage
association rules do not apply.

W473 $ must have the PURE attribute
F474 <reserved message number>
E475 <reserved message number>
E476 <reserved message number>

E477 The device array section actual argument was not stride-1 in the leading
—dimension - $

A device (device, shared, or constant attribute) array passed as an array section to an assumed-shape
dummy argument must be stride-1 in the leading dimension.

172 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to a dummy argument with the Accelerator REFLECTED
attribute must be a symbol that has a visible device copy. Expressions are not allowed.

E479 The dummy argument $ is REFLECTED; the actual argument $ must have a visible
—.device copy

If a dummy argument has the Accelerator REFLECTED attribute, the actual argument must be a sym-
bol with a visible device copy. This may be because the symbol appeared in a MIRROR, REFLECTED,
COPYIN, COPYOUT, COPY or LOCAL declarative Accelerator directive, or because it appeared in a
COPYIN, COPYOUT, COPY or LOCAL clause for an Accelerator DATA REGION or REGION surrounding
the procedure call.

E480 Argument $ is passed to dummy argument $§, which is REFLECTED; the actual
—argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the actual argument
must be copied to a temporary array. This may occur if the dummy argument is not assumed-shape,
and so must be contiguous in memory, or if the actual argument is not stride-1 in the leftmost (first)
dimension. In these cases, the REFLECTED argument is not supported.

F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a dummy argument
to the subprogram.

E482 <reserved message number>
E483 <reserved message number>
E484 <reserved message number>
E485 <reserved message number>

E486 The dummy argument $ is REFLECTED; an array element cannot be passed to a
—REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy argument.

E487 Index variable $ does not appear in a subscript on the left hand side of the
—FORALL assignment

In a FORALL statement, each index variable in the FORALL must appear in some subscript of the left
hand side of the FORALL assignment. Otherwise, the FORALL will assign the same left hand side
elements for different values of that index.

1489 <reserved message number>

E488 The function call in the FORALL does not have the PURE attribute - $

In a FORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise, they cannot be
called in parallel.

9.3. Fortran Compiler Error Messages 173

NVIDIA HPC Compilers Reference Guide, Release 25.5

E490 An array section of $ is passed to the REFLECTED argument $, which is not
—»supported

When an actual argument is an array section, the dummy argument must not have the REFLECTED
attribute.

W491 <reserved message number>
E492 <reserved message number>
E493 <reserved message number>
E494 <reserved message number>
W495 <reserved message number>
1496 <reserved message number>
E497 <reserved message number>
E498 <reserved message number>
W499 <reserved message number>

E508 MODULE $ uses (directly or indirectly) MODULE $§, which causes a USE cycle

If MODULE A has a USE statement for MODULE B, we say that MODULE A directly uses MODULE B. If
MODULE B has a USE statement for MODULE C, we say that MODULE A indirectly uses MODULE C. If
MODULE C then has a USE statement for MODULE A, then MODULE A indirectly uses itself, which is a
USE cycle, and is not allowed.

E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be between 1 and the
rank of the array or expression being transformed.

E505 DIM argument out of range for this reduction - $

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1 and the rank of
the expression being reduced.

E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with the POINTER
attribute.

E507 The arguments to MOVE_ALLOC must be ALLOCATABLE - $

The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE attribute.

E508 The array objects in a call to an elemental function are not conformable - $

When calling an elemental function, the arguments must be scalars or conformable arrays or array
expressions.

174 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

E509 Variables in a PURE subprogram may not have the SAVE attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot save state in a
SAVEd variable.

E5106 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching ENDWHERE.
The body of the WHERE construct can only contain assignment statements.

E511 The WHERE mask expression and the array assignment do not conform

The assignment under control of a WHERE mask must have the same shape as the WHERE mask.

E512 The WHERE mask is not an array expression

The WHERE mask expression must be a logical array expression.

E513 <reserved message number>
E514 <reserved message number>
E515 <reserved message number>
E516 <reserved message number>
E517 <reserved message number>
W518 <reserved message number>

E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.

E5208 Host MODULE data cannot be used in a DEVICE or GLOBAL subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.

E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless compiling for
—.compute capability >= 2.8 - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE except the
MODULE containing the subprogram, unless they are being compiled for compute capability 2.0 or
higher. This feature requires the unified memory system provided in compute capability 2.0.

E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless compiling
—with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE except the
MODULE containing the subprogram, unless they are being compiled for compute capability 2.0 or
higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.

W523 MODULE data used in a DEVICE or GLOBAL subprogram forces compute capability >= 2.
~0 only - $

9.3. Fortran Compiler Error Messages 175

NVIDIA HPC Compilers Reference Guide, Release 25.5

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when compiled for
compute capability 2.0 or greater.

E524 Dependency in assignment causes allocation of a temporary which is not supported
—in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which requires alloca-
tion of temporary storage to produce a correct result. Dynamic allocation of memory is not supported
in subprograms that run on the device.

E525 Array reshaping is not supported for device subprogram calls: argument $ to
—subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy argument is not
supported in global or device subprograms. This would require a run-time test and a possible run-time
copy to a dynamically allocated temporary array.

W526 SHARED attribute ignored on dummy argument $

The SHARED attribute has no meaning when applied to a dummy argument.

E527 Argument number $ requires allocation of a temporary which is not supported in
—.DEVICE or GLOBAL subprograms

Evaluation of the specified argument requires allocation of temporary storage for the result to be
passed to the subprogram being called. Dynamic allocation of memory is not supported in subpro-
grams that run on the device.

E528 Argument number $ to $: device attribute mismatch

Device attributes of the actual and formal arguments are not the same.

E529 PRINT and WRITE statements in device subprograms are only supported when
—compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms requires CUDA
Toolkit 4.0 or later and compute capability 2.0 or higher.

E536 PRINT and WRITE statements in device subprograms are only supported with compute
—.capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms requires CUDA
Toolkit 4.0 or later and compute capability 2.0 or higher.

W531 NVIDIA extension to OpenACC: $

This program is using an NVIDIA extension to OpenACC.

W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program is using an NVIDIA extension to OpenACC.

E533 Clause $ not allowed in $ directive

This clause is not allowed on the specified directive.

E534 A loop scheduling directive may not appear within a KERNEL loop

176 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL, VECTOR,
WORKER or GANG, may not appear inside a loop that has an accelerator loop directive with the KERNEL
clause. This clause is not allowed on the specified directive.

E535 Undeclared symbol $ used in directive

Symbols used in OpenACC directives must be declared.

S901 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this context.

S902 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this context.

W95 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro’s definition.

F906 Can't find include file $

The indicated include file could not be opened.

S908 EOFin comment

The end of a file was encountered while processing a comment.

S909 EOFin macro call to $

The end of a file was encountered while processing a call to the indicated macro.

S912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

W914 Illegal directive name

The sequence of characters following a # sign was not an identifier.

W915 Illegal macro name

A macro name was not an identifier.

W918 Missing #endif

End of file was encountered before a required #endif directive was found.

W919 Missing argument list for $

A call of the indicated macro had no argument list.

S920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

9.3. Fortran Compiler Error Messages 177

NVIDIA HPC Compilers Reference Guide, Release 25.5

W921 Redefinition of symbol $

The indicated macro name was redefined.

1922 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.

F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S924 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

S926 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.

S927 Syntax error in #include

The #include directive was not correctly formed.

W928 Syntax error in #line

A #line directive was not correctly formed.

W929 Syntax error in #module

A #module directive was not correctly formed.

W930 Syntax error in #undef

A #undef directive was not correctly formed.

W931 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W932 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
31).

S935 Illegal context for __VA_ARGS__

W936 Undefined directive $

178 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

The identifier following a # was not a directive name.

S937 EOFin #include directive

End of file was encountered while processing a #include directive.

S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.

S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

W941 Illegal token in directive, $

A directive token contains a illegal character.

S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S943 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

1944 Possible nested comment

The characters /* were found within a comment.

1945 Redefining predefined macro $
1946 Undefining predefined macro $
W947 Can't redefine predefined macro $
W948 Can't undefine predefined macro $

F949 #error -- §

User defined preprocessor error message.

W956 #ident not followed by quoted string

W951 Extraneous tokens ignored following # directive
F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

S954 Illegal number in directive

9.3. Fortran Compiler Error Messages 179

NVIDIA HPC Compilers Reference Guide, Release 25.5

S955

S956

Wo57

S959

S960

Wo61

W62

Wo64

F965

Illegal token in #if expression

Missing > in #include

Arguments in macro $ are not unique

directive occurs at beginning or end of macro definition

$ is not an argument

No macro replacement within a character constant

Macro replacement within a character constant

Macro replacement within a string literal

Recursive include file $

W966 Null argument to macro

Argument to macro is a null value.

F967 #warning -- $

User defined preprocessor warning message.

S969 _Pragma $

Pragma operator errors.

W972 The directive !$acc

mirror is deprecated; use !Sacc declare create instead

W973 The directive !Sacc reflected is deprecated; use !Sacc declare present

W974 The directive !Sacc region is deprecated; use !Sacc kernels instead

W975 The directive !Sacc data region is deprecated; use !Sacc data instead

W976 The directive !Sacc do is deprecated; use !Sacc loop instead

W977 The directive !Sacc do kernel is deprecated; use !Sacc loop instead

W978 The directive !Sacc loop parallel is deprecated; use !Sacc loop gang instead

W979 The directive !Sacc region do is deprecated; use !Sacc kernels loop instead

W980 The directive !Sacc region loop is deprecated; use !Sacc kernels loop instead

W981 The directive !Sacc kernels do is deprecated; use !Sacc kernels loop instead

180 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

W982 <reserved message number>

W983 The directive !Sacc parallel do is deprecated; use !Sacc parallel loop instead
W984 The directive !Sacc scalar region is deprecated; use !Sacc serial instead

W985 The clause local is deprecated; use clause create instead

W986 The clause cache is deprecated; use directive !Sacc cache instead

W987 The clause update host is deprecated; use separate update host directive after
—the region instead

W988 The clause update device is deprecated; use separate update device directive
—before the region instead

W989 The clause update in is deprecated; use separate update device directeve before
-~the region instead

W990 The clause update out is deprecated; use update self instead

W991 The clause pnot is deprecated; use no_create instead

W992 The clause updatein is deprecated; use update device instead

W993 The clause updateout is deprecated; use update self instead

W994 The directive !Sacc copy is deprecated; use !Sacc declare copy instead

W995 The directive !Sacc copyin is deprecated; use !Sacc declare copyin instead
W996 The directive !Sacc copyout is deprecated; use !Sacc declare copyout instead

W997 The directive !Sacc device_resident is deprecated; use !Sacc declare device_
—resident instead

W998 The directive !Sacc do host is deprecated; no OpenACC equivalent

W999 The directive !Sacc loop kernel is deprecated; no OpenACC equivalent

S1800 Call in OpenACC region to procedure 'S' which has no acc routine information
S1001 All selected compute capabilities were disabled (see -Minfo)

S1802 Reduction type not supported for this variable datatype - $

W10083 Lambda capture by reference not supported in Accellerated region

W1004 Lambda capture 'this' by reference not supported in Accellerated region

9.3. Fortran Compiler Error Messages 181

NVIDIA HPC Compilers Reference Guide, Release 25.5

W1005 The clause unroll is deprecated; no OpenACC equivalent

W1006 The clause mirror is deprecated; no OpenACC equivalent

W1007 The clause host is deprecated; no OpenACC equivalent

S1011 Device variable cannot be THREADPRIVATE - $

S1012 Threadprivate variables are not supported in acc routine - $
S1013 Static Threadprivate variables are not supported - $

S1014 Global Threadprivate variables are not supported - $

F1815 No shape directive is defined in structure $

F1016 No shape name $ is defined in structure $

F1017 arrays/pointers appearing in the OpenACC shape and policy directives must be a
—member of current aggregate type

F1818 Only one unnamed Shape directive is allowed in one aggregate type (struct/union)

F1019 Type clause must be used to specified structure type when Shape/Policy is
—defined outside (struct/union/class) definition

F1020 Data-Type appearing in type clause cannot be found

F1021 Data-Type appearing in type clause must be struct/union type

F1022 Duplicated shape names $ are defined for structure/union/class $
F1023 Duplicated policy names $ are defined for structure/union/class $
F1024 Type clause is not allowed within structure/union/class definition

F1025 The number of dimension section descriptions doesn't match member $ which
—requires $ dimensions

F1026 Pointers appearing within relative clause must be their sibling members

F1027 As motion clauses, only create, copyin, copyout, copy, update, and deviceptr
—are allowed in policy directive

F1028 The variable $§ doesn't have predefined policy $ available
F1029 The variable $ using policy $ is not a structure-based type

F1030 Policy motion $ is not allowed in $ directive

182 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

W1831 The directive !$acc create is deprecated; use !Sacc declare create instead
W1832 The directive !Sacc present is deprecated; use !Sacc declare present instead
W1033 The directive !$Sacc link is deprecated; use !Sacc declare link instead

F1034 Only signed/unsigned 32 bits and 64 bits integer variables are allowed in bound
—.expression. $ is is not such variable

F1035 Only integer sibling members and global variables are allowed in bound
—expression. $ is is neither of them.

F1036 No global variable named $ has been defined

F1037 Default clause can only contain include and exclude keyword.
F1038 Var $ used in array region cannot be found

F1039 Var $ used is not an integer type. It has to be int4 and int8.

F1040 In Fortran, the default option is full deep copy. A shape directive must be
—given a shape name.

F1041 Shape and policy directives cannot be declared within routine/subroutine.

S1842 $ mask expression must be scalar

A DO CONCURRENT or FORALL mask expression must be scalar.

S1043 DO CONCURRENT $ references construct variable $

A DO CONCURRENT limit or step control expression may not reference an index name or LOCAL name.
A DO CONCURRENT mask expression may not reference a LOCAL name.

S1044 Invalid DO CONCURRENT locality spec variable $

A name in a DO CONCURRENT locality spec must be a valid variable name in the containing scope.

S1845 DO CONCURRENT index name $§ may not appear in a locality spec
S1046 Variable $ has multiple DO CONCURRENT locality spec references
S1047 Multiple DO CONCURRENT DEFAULT(NONE) locality specs

S$1048 LOCAL/LOCAL_INIT variable $§ $

A DO CONCURRENT LOCAL or LOCAL_INIT variable must not have the ALLOCATABLE, INTENT (IN), or
OPTIONAL attribute, must not be of finalizable type, must not be a nonpointer polymorphic dummy ar-
gument, must not be a an assumed-size array, and must be permitted to appear in a variable definition
context.

S1049 Variable $ is not in a DO CONCURRENT locality list

9.3. Fortran Compiler Error Messages 183

NVIDIA HPC Compilers Reference Guide, Release 25.5

When DEFAULT(NONE) is specified for a DO CONCURRENT loop, construct variables and variables from
containing scopes must appear in a locality spec.

S1050 S DO CONCURRENT construct

A DO CONCURRENT construct may not contain a RETURN, EXIT, GOTO, or other branch out of the
construct. A CYCLE statement is permitted.

S1851 DO CONCURRENT polymorphic variable deallocation - $

A DO CONCURRENT construct must not contain a statement that might result in the deallocation of
a polymorphic variable.

S1052 $ call in DO CONCURRENT construct

A DO CONCURRENT construct may not contain a call to IEEE_GET_FLAG, IEEE_SET_HALTING_MODE,
or IEEE_GET_HALTING_MODE from intrinsic module IEEE_EXCEPTIONS.

S$1053 Duplicate $§ index name

A DO CONCURRENT or FORALL construct or statement may not specify an index name multiple times.

W1054 Duplicate subprogram prefix $ is used
S1055 MODULE prefix cannot be inside an abstract interface

S1056 MODULE prefix is only allowed for subprograms that were declared as separate
—smodule procedures

S1057 Definition argument name $§ does not match declaration argument name $
S$1058 The type of definition argument $ does not match its declaration type

S1059 The definition of subprogram $ does not have the same number of arguments as
—its declaration

S1060 The $ of the definition and declaration of subprogram $§ must match
S1861 The definition of function return type of $ does not match its declaration type

S1062 LOCAL_INIT variable does not have an outside variable of the same name - $

A DO CONCURRENT variable with LOCAL_INIT locality must have a host variable of the same name.

W1063 Data construct ignored in compute construct or acc routine

S1065 Unsupported nested compute construct in compute construct or acc routine
S1866 The -cuda flag should be used with CUDA DEVICE variable - $

S1867 Cannot determine bounds for array - $

S1868 Cannot determine start offset for array - $

184 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

S$1069

w1e7e

Data clause required with default(none) - $

Data clause required in OpenACC 2.7 with default(none) - $; a future release

—will enforce this

S$1071

S1100

S1207

S1208

S1209

S1210

S1211

S1212

S1213

S1214

S1215

S1216
—may

S1217

S1218

S1219

S1220

S1221

S$1222

Host array used in CUF kernel - $

Cannot collapse non-tightly-nested loops

ERROR STOP stop-code requires either a character or integer expression.
QUIET requires a logical expression.

ERROR STOP stop-code integer expression must be an integer of default kind.
Parent module $ must declare a separate module procedure.

Submodule's ancestor module $ must be a nonintrinsic module.

S was previously declared to be a module procedure.

OpenACC $ data clause may not follow a device_type clause.

PGI Accelerator $ data clause may not follow a device_type clause.
OpenACC data clause expected after $.

Expression in assignment statement contains type bound procedure name $§. This
be a function call that's missing parentheses.

Left hand side of polymorphic assignment must be allocatable - $
$ statement may not appear in a BLOCK construct.

Unimplemented feature: $.

PUBLIC namelist /$/ has a PRIVATE namelist object ($)

Interface $ is not declared.

Invalid module. Interface $ referenced in module $ is not declared.

9.3. Fortran Compiler Error Messages

185

NVIDIA HPC Compilers Reference Guide, Release 25.5

This section presents the error messages generated by the run-time system. The run-time system
displays error messages on standard output.

The messages are numbered but have no severity indicators because they all terminate program exe-
cution.

Here are the run-time error messages:
201 illegal value for specifier

An improper specifier value has been passed to an I/O run-time routine. Example: within an OPEN
statement, form="unknown’.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an OPEN state-
ment, form="unformatted’, blank="null’.

203 record length must be specified

A recl specifier required for an 1/O run-time routine has not been passed. Example: within an
OPEN statement, access="direct’ has been passed, but the record length has not been specified
(recl=specifier).

204 illegal use of a readonly file
Self explanatory. Check file and directory modes for readonly status.
205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, a file disposition conflict has occurred. Example: within an OPEN statement,
status="scratch’ and dispose="keep’ have both been passed.

206 attempt to open a named file as 'SCRATCH'
207 file is already connected to another unit
208 'NEW' specified for file that already exists
209 'OLD' specified for file that does not exist
210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/O. The most probable cause of
fixed buffer overflow is exceeding the maximum number of simultaneously open file units.

211 invalid file name
212 invalid unit number

A file unit number less than or equal to zero has been specified.

186 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

215 formatted/unformatted file conflict
Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.
220 write after last internal record

221 syntax error in format string

A run-time encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.
225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a run-time format item.
228 end of file reached without finding group

229 end of file reached while processing group

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.
231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Data types specified by I/0 list item and corresponding edit descriptor conflict.
236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

9.4. Fortran Run-time Error Messages 187

NVIDIA HPC Compilers Reference Guide, Release 25.5

246 infinite format scan for edit descriptor
248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

250 error in format - number missing after '.', '-', or '+

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)
254 illegal repeat count in format

255 illegal asynchronous I/0 operation

256 POS can only be specified for a 'STREAM' file

257 POS value must be positive

258 NEWUNIT requires FILE or STATUS=SCRATCH

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.”
NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT
TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIA DGX, NVIDIA
Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corpo-
ration in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

188 Chapter 9. Messages

NVIDIA HPC Compilers Reference Guide, Release 25.5

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

9.4. Fortran Run-time Error Messages 189

	Fortran Data Types
	Fortran Scalars
	FORTRAN real(2)
	FORTRAN 77 Aggregate Data Type Extensions
	Fortran 90 Aggregate Data Types (Derived Types)

	C and C++ Data Types
	C and C++ Scalars
	C and C++ Aggregate Data Types
	Class and Object Data Layout
	Aggregate Alignment
	Bit-field Alignment
	Other Type Keywords in C and C++

	Command-Line Options Reference
	HPC Compilers Option Summary
	Acceleration and Optimization-Related Compiler Options
	Build-Related Options
	Debug-Related Compiler Options
	Linking and Runtime-Related Compiler Options

	Generic Compiler Options
	-#
	-[no]acc
	-Bdynamic
	-byteswapio
	-C
	-c
	-c++libs
	-cuda
	-cudalib
	-D
	-d<arg>
	-dryrun
	-drystdinc
	-E
	-F
	-fast
	-fcx-limited-range
	–flagcheck
	-fortranlibs
	-fmax-errors=<n>
	-fpic
	-fPIC
	-g
	-g77libs
	–gcc-toolchain=<path>
	-gopt
	-gpu
	-help
	-I
	-i2, -i4, -i8
	-K<flag>
	-L
	-l<library>
	-M
	-M<nvflag>
	-m
	-march=<target>
	-mcmodel=<size>
	-mcpu=<target>[<+extension…>]
	-module <moduledir>
	-[no]mp
	-mtune=<target>
	-noswitcherror
	-[no]nvmalloc
	-O<level>
	-o
	-pg
	-R<directory>
	-r
	-r4 and -r8
	-rc
	-S
	-s
	-shared
	-show
	-silent
	-soname
	-static
	-static-nvidia
	-stdpar
	-target
	-time
	-tp <target>
	-[no]traceback
	-U
	-u
	-V[release_number]
	-v
	-W
	-Werror
	-w
	-Xs
	-Xt
	-Xlinker

	C++ and C-specific Compiler Options
	-A
	-a
	-alias
	–[no_]alternative_tokens
	-B
	–[no_]bool
	–[no_]builtin
	–[no_]compress_names
	–diag_error <number>
	–diag_remark <number>
	–diag_suppress <number>
	–diag_warning <number>
	–display_error_number
	-e<number>
	–no_exceptions
	-fvisibility=<visibility>
	–gnu_version <num>
	–[no]llalign
	-M
	-MD[<dfile>]
	–optk_allow_dollar_in_id_chars
	-P
	–pedantic
	–preinclude=<filename>
	–[no_]using_std
	-Xfilename

	-M Options by Category
	Code Generation Controls
	C/C++ Language Controls
	Environment Controls
	Fortran Language Controls
	Inlining Controls
	Optimization Controls
	Miscellaneous Controls

	C++ Name Mangling
	Pre-defined Compiler Macros
	Runtime Environment
	Linux Programming Model
	x86-64 Function Calling Sequence
	OpenPOWER Function Calling Sequence
	Linux Fortran Supplement

	C++ Dialect Supported
	C++17 Language Features Accepted

	x86-64 C++ and C MMX/SSE/AVX Intrinsics
	Using Intrinsic functions
	Required Header File
	Intrinsic Data Types
	Intrinsic Example

	x86-64 MMX Intrinsics
	x86-64 SSE Intrinsics
	x86-64 ABM Intrinsics
	x86-64 AVX Intrinsics

	Messages
	Diagnostic Messages
	Phase Invocation Messages
	Fortran Compiler Error Messages
	Message Format
	Message List

	Fortran Run-time Error Messages
	Message Format
	Message List

