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The OpenACC Application Programming Interface (API) is a collection of compiler directives and run-
time routines that allow software developers to specify loops and regions of code in standard Fortran,
C++ and C programs that should be executed in parallel either by offloading to an accelerator such as
a GPU or by executing on all the cores of a host CPU. The OpenACC API was designed and is maintained
by an industry consortium. See the for more information about the OpenACC API.

This Getting Started guide provides examples of how to write, build and run programs using the Ope-
nNACC directives support in the NVIDIA HPC Compilers.
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Chapter 1. System Prerequisites

Using the OpenACC implementation in the NVIDIA HPC Compilers requires the following:
An x86-64 or Arm Server CPU-based system running Linux.

For targeting GPUs, a CUDA-enabled NVIDIA GPU and an installed CUDA device driver, CUDA ver-

sion 8.0 or |later. See the for more information on obtaining and installing
a CUDA device driver.
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Chapter 2. Prepare Your System

To use the NVIDIA OpenACC compilers, follow these steps:
Download the latest NVIDIA HPC SDK 26.1 packages from the

Install the downloaded package in Jopt/nvidia/hpc_sdk or another directory of your choosing.

Add the /opt/nvidia/hpc_sdk/target/26.1/compilers/bin directory to your path, where target is one

of Linux_x86_64 or Linux_aarch64.

Invoke the nvaccelinfo command to see that your GPU and drivers are properly installed and
available. You should see output that looks something like the following:

CUDA Driver Version:
NVRM version:
—~Nov 13 00:00:22 UTC 2019

Device Number:

Device Name:

Device Revision Number:
Global Memory Size:

Number of Multiprocessors:

Concurrent Copy and Execution:

Total Constant Memory:

Total Shared Memory per Block:

Registers per Block:
Warp Size:

Maximum Threads per Block:
Maximum Block Dimensions:
Maximum Grid Dimensions:
Maximum Memory Pitch:
Texture Alignment:

Clock Rate:

Execution Timeout:
Integrated Device:

Can Map Host Memory:
Compute Mode:

Concurrent Kernels:

ECC Enabled:

Memory Clock Rate:
Memory Bus Width:

L2 Cache Size:

Max Threads Per SMP:
Async Engines:

Unified Addressing:
Managed Memory:

10620

NVIDIA UNIX x86_64 Kernel Module 446.33.01 Wed

0

Tesla V100-PCIE-16GB
7.0
16945512448

80

Yes

65536

49152

65536

32

1024

1024, 1024, 64
2147483647 x 65535 x 65535
21474836478
512B

1380 MHz

No

No

Yes

default

Yes

Yes

877 MHz

4096 bits
6291456 bytes
2048

7

Yes

Yes

(continues on next page)
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(continued from previous page)

Concurrent Managed Memory: Yes
Preemption Supported: Yes
Cooperative Launch: Yes

Multi-Device: Yes
NVIDIA Default Target: cc70

This tells you the driver version, the type of the GPU (or GPUs, if you have more than one), the available
memory, the command-line flag you should use to target this GPU (in this case -gpu=cc78), and so
on.
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Chapter 3. Supporting Documentation
and Examples

You may want to consult the OpenACC 2.7 specification available at the . Simple
examples appear in
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Chapter 4. Using OpenACC with the
NVIDIA HPC Compilers

OpenACC directives are enabled by adding the -acc flag to the compiler command line. By default, the
NVIDIA HPC compilers will parallelize and offload OpenACC regions to NVIDIA GPUs. You can specify
-acc=multicore to parallelize for a multicore CPU, or —acc=host to generate an executable that will
run serially on the host CPU.

Many aspects of GPU targeting and code generation can be controlled by adding the -gpu flag to the
compiler command line. By default, the NVIDIA HPC compilers will target the NVIDIA GPU installed on
the compilation host. You can specify -gpu=cc70 to exclusively target a Volta GPU, or specify multiple
compute capabilities (ccXY) to generate GPU executables optimized for multiple generations of NVIDIA
GPUs.

See the compiler man pages for a complete list of sub-options to -acc and -gpu compiler options.
This release includes support for almost all of the OpenACC 2.7 specification. Refer to
for details about which features are supported in this release.

The NVIDIA HPC compilers use components from NVIDIA’s CUDA Toolkit to build programs for exe-
cution on an NVIDIA GPU. The NVIDIA HPC SDK puts the CUDA Toolkit components into an HPC SDK
installation sub-directory; the HPC SDK currently bundles two versions of recently-released Toolkits.

You can compile a program for an NVIDIA GPU on any system supported by the HPC compilers. You
will be able to run that program only on a system with an NVIDIA GPU and an installed NVIDIA CUDA
driver. NVIDIA HPC SDK products do not contain CUDA device drivers. You must download and install
the appropriate .

The NVIDIA HPC SDK utility nvaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 26.1 includes components from the following versions of the CUDA Toolkit:
CUDA 12.9U1
CUDA 13.0

If you are compiling a program for GPU execution on a system without an installed CUDA driver, the
compiler selects the version of the CUDA Toolkit to use based on the value of the DEFCUDAVERSION
variable contained in a file called localrc which is created during installation of the HPC SDK.
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If you are compiling a program for GPU execution on a system with an installed CUDA driver, the com-
piler detects the version of the CUDA driver and selects the appropriate CUDA Toolkit version to use
from those bundled with the HPC SDK.

The compilers look for a CUDA Toolkit version in the /opt/nvidia/hpc_sdk/target/26.1/cuda directory
that matches the version of the CUDA Driver installed on the system. If an exact match is not found,
the compiler searches for the closest match. For CUDA Driver versions 12.0 through 12.9, the compiler
will use the CUDA 12.9 Toolkit. For CUDA Driver versions 13.0 and later, the compiler will use the newest
CUDA 13.0 Toolkit.

You can change the compiler’s default selection of CUDA Toolkit version using a compiler option.
Add the cudaX.Y sub-option to -gpu where X.Y denotes the CUDA version. Using a compiler op-
tion changes the CUDA Toolkit version for one invocation of the compiler. For example, to compile an
OpenACC C file with the CUDA 12.9 Toolkit you would use:

nvc -acc -gpu=cudal2.9

The compilers can generate code for NVIDIA GPU compute capabilities 5.0 through 12.1. The compilers
construct a default list of compute capabilities that matches the compute capabilities supported by
the GPUs found on the system used in compilation. If there are no GPUs detected, the compilers
generate code for every supported compute capability.

You can override the default by specifying one or more compute capabilities using either command-
line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of compute capa-
bilities to the -gpu option.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-separated list of
compute capabilities in the siterc file located in your installation’s bin directory:

set DEFCOMPUTECAP=86 90,

Alternatively, if you don’t have permissions to change the siterc file, you can add the DEFCOMPUTECAP
definition to a separate .mynvrc file in your home directory.

The generation of device code can be time consuming, so you may notice an increase in compile time
as the number of compute capabilities increases.

As of HPC SDK 22.9, support for PTX JIT compilation is enabled in all compilers for relocatable device
code mode. This means that applications built with -gpu=rdc (that is, with relocatable device code
enabled, which is the default mode) are forward-compatible with newer GPUs thanks to the embed-
ded PTX code. The embedded PTX code is dynamically compiled when the application runs on a GPU
architecture newer than the architecture specified at compile time.

The support for PTX JIT compilation is enabled automatically, which means that you do not need to
change the compiler invocation command lines for your existing projects.

10 Chapter 4. Using OpenACC with the NVIDIA HPC Compilers
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As an example, you can compile your application targeting the Ampere GPU without having to
worry about the Hopper GPU architecture. Once the application runs on a Hopper GPU, it will
seamlessly use the embedded PTX code.

In CUDA Fortran, or with the CUDA Interoperability mode enabled, you can mix in object files
compiled with the CUDA NVCC compiler containing PTX code. This PTX code from NVCC will be
handled by the JIT compiler alongside the PTX code contained in object files produced by the HPC
SDK compilers. When using the CUDA NVCC compiler, the relocatable device code generation
must be enabled explicitly using the NVCC --relocatable-device-code true switch, as ex-
plained in the . For information about CUDA interoperability, please
refer to the and the

By default, the compiler will choose the compute capability that matches the GPU on the system
where the code is being compiled. For code that is going to run on the system where it is compiled,
we recommend letting the compiler set the compute capability.

When the default won’t work, we recommend compiling applications for a range of compute capa-
bilities that the application is expected to run against, for example, using the -gpu=ccall compiler
option. When running the application on a system that supports one of those compute capabilities,
the CUDA driver minor version is allowed to be less than the version of the CUDA toolkit used at com-
pile time, as covered in section

PTX JIT compilation, when it occurs, can have a start-up overhead for the application. The JIT compiler
keeps a cached copy of the produced device code, which reduces the overhead on subsequent runs.
Please refer to the for detailed information about how the JIT compiler
works.

In general, in order for PTX JIT compilation to work, the CUDA driver installed on the deployment
system must be at least of the version that matches the CUDA toolkit used to compile the application.
This requirement is stricter than those explained in section

For example, as explained in that section, the compilers will use the CUDA 12.9 toolkit that is shipped
as part of the HPC SDK toolkit when the CUDA driver installed in the system is at least 12.0. However,
while the CUDA 12.0 driver is commonly sufficient to run the application, it will not be able to compile
the PTX code produced by the CUDA 12.9 toolkit. This means that any deployment system where the
PTX JIT compilation is expected to be used must have at least the CUDA 12.9 driver installed. Please
refer to the guide for further information about the CUDA Driver compatibility
with CUDA Toolkits.

When the application is expected to run on a newer GPU architecture than specified at compile time,
we recommend having a CUDA driver installed on the deployment system matching the CUDA toolkit
used to build the application. One way to achieve that is to use the NVHPC_CUDA_HOME environment
variable at compile time to provide a specific CUDA toolkit.

Below are a few examples of how the PTX version incompatibility can be diagnosed and fixed. As a
general rule, if the CUDA driver is unable to run the application due to incompatible PTX, the application
will terminate with an error message indicating the cause. OpenACC and OpenMP applications will in
most cases suggest compiler flags to target the current CUDA installation.

4.3. PTX JIT Compilation 11
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Consider this program that we will compile for Volta GPU and attempt to run on an Ampere GPU, on a
system that has CUDA 12.1 installed:

#include <stdio.h>
#define N 1060
int array[N];
int main() {
#pragma acc parallel loop copy(array[@:N])
for(int i = 0; i < N; i++) {
array[i] = 3.0;
}

printf("Success!\n");

}

When we build the program, HPC SDK will choose the CUDA 12.9 toolkit included. When we attempt
to run it, it fails because code generated with 12.9 does not work with the 12.1 driver:

$ nvc -acc -gpu=cc7@ app.c

$ ./a.out

Accelerator Fatal Error: This file was compiled: -acc=gpu -gpu=cc70

Rebuild this file with -gpu=cc80 to use NVIDIA Tesla GPU ©

NVIDIA CUDA PTX JIT Compiler was unable to compile device code.

This file was compiled with NVIDIA CUDA Toolkit 12.9, the current CUDA Driver is 12.1.
Rebuild the application with the NVHPC_CUDA_HOME environment variable set to the
—.matching CUDA Tookit.

Please consult the NVIDIA HPC Compilers User's Guide for details.

File: /tmp/app.c

Function: main:5

Line: 5

From the error message it follows that the system is unable to execute the Volta GPU instructions
on the current system. The embedded Volta PTX could not be compiled, which implies a CUDA driver
incompatibility. A way to fix this is to use the installed CUDA 12.1 toolkit at compile time:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc -acc -gpu=cc7@ app.c

$ ./a.out

Success!

Likewise, an OpenMP program will compile but not run:

#include <stdio.h>
#define N 1000
int array[N];
int main()
#pragma omp target loop
for(int i = 0; i < N; i++) {
array[i] = 0;

}

printf("Success!\n");

}

12 Chapter 4. Using OpenACC with the NVIDIA HPC Compilers
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$ nvc -mp=gpu -gpu=cc70 app.c

$ ./a.out

Accelerator Fatal Error: Failed to find device function 'nvkernel_main_F1L7_2'! File
—was compiled with: -gpu=cc70

Rebuild this file with -gpu=cc86 to use NVIDIA Tesla GPU @

NVIDIA CUDA PTX JIT Compiler was unable to compile device code.

This file was compiled with NVIDIA CUDA Toolkit 12.9, the current CUDA Driver is 12.1.
Rebuild the application with the NVHPC_CUDA_HOME environment variable set to the
—matching CUDA Tookit.

Please consult the NVIDIA HPC Compilers User's Guide for details.

File: /tmp/app.c

Function: main:4

Line: 7

We can also fix it by having NVHPC_CUDA_HOME point at the matching CUDA toolkit location:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc -acc -gpu=cc7@ app.c

$ ./a.out

Success!

In contrast to OpenACC and OpenMP applications that simply terminate when PTX JIT encounters
an insufficient CUDA driver version, C++ applications throw a system exception when there is a PTX
incompatibility:

#include <vector>
#include <algorithm>
#include <execution>
#include <iostream>
#include <assert.h>
int main() {
std: :vector<int> x (1000, 0);

x[1] = -20;
auto result = std::count(std::execution::par, x.begin(), x.end(), -20);
assert(result == 1);
std::cout << "Success!" << std::endl;
}

$ nvc++ -stdpar -gpu=cc70 app.cpp

$ ./a.out

terminate called after throwing an instance of 'thrust::system::system_error'
what(): after reduction step 1: cudaErrorUnsupportedPtxVersion: the provided PTX

—was compiled with an unsupported toolchain.

Aborted (core dumped)

The exception message contains a direct reference to an incompatible PTX, which in turn implies an
mismatch between the CUDA toolkit and the CUDA driver version.

We can fix it similarly by setting NVHPC_CUDA_HOME:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc++ -stdpar -gpu=cc70 app.cpp

$ ./a.out

Success!

4.3. PTX JIT Compilation 13
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Static arrays of struct and pointers to dynamic arrays of struct are supported in OpenACC regions by
the NVIDIA C++ and C compilers.

typedef struct{
float x, y, z;
}point;

extern point base[1000];
void vecaddgpu( point *restrict r, int n ){

#pragma acc parallel loop present(base) copyout(r[@:n])
for( int i = 0; i < n; ++i ){

rii].x ; base[i].x;
r{i].y = sqrtf( base[i].y*base[i].y + base[i].z*base[i].z );
r[il.z = 0;

}

A pointer to a scalar struct is treated as a one-element array, and should be shaped as r[0:1].

typedef struct{
base[1000];
int n;
float *x, *y, *z;
}point;

extern point A;

void vecaddgpu(){
#pragma acc parallel loop copyin(A) \
copyout(A.x[0:A.n], A.y[0:A.n], A.z[6:A.n])
for( int i = 0; i < A.n; ++1i ){

A.x[1i] = A.base[i];
A.y[i] = sqrtf( A.base[i] );
A.z[i] = 0;

}

In this example, the struct A is copied to the device, which copies the static array member A.base and
the scalar A.n. The dynamic members A.x, A.y and A.z are then copied to the device. The struct A
should be copied before its dynamic members, either by placing the struct in an earlier data clause,
or by copying or creating it on the device in an enclosing data region or dynamic data lifetime. If
the struct is not present on the device when the dynamic members are copied, the accesses to the
dynamic members, such as A.x[ 1], on the device will be invalid, because the pointer A.x will not get
updated.

A pointer to a struct is treated as a single element array. If the struct also contains pointer members,
you should copy the struct to the device, then create or copy the pointer members:

typedef struct{
int n;
float *x, *y, *z;
}point;

(continues on next page)
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(continued from previous page)

void vecaddgpu( point *A, float* base ){

#pragma acc parallel loop copyin(A[6:1]) \
copyout(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n]) \
present(base[0:A->n])

for( int i = 0; i < A->n; ++1i ){

A->x[1] = base[i];
A->y[i] = sqrtf( base[i] );
A->z[1i] = ©;

}

Be careful when copying structs containing pointers back to the host. On the device, the pointer
members will get updated with device pointers. If these pointers get copied back to the host struct,
the pointers will be invalid on the host.

When creating or copying a struct on the device, the whole struct is allocated. There is no support for
allocating a subset of a struct, or only allocating space for a single member.

Structs and pointer members can be managed using dynamic data directives as well:

typedef struct{
int n;
float *x, *y, *z;
}point;

void move_to_device( point *A ){

#pragma acc enter data copyin(A[6:1])

#pragma acc enter data create(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n])
}

void move_from_device( point* A ){
#pragma acc enter data copyout(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n])
#pragma acc enter data delete(A[6:1])

}

void vecaddgpu( point *A, float* base ){

#pragma acc parallel loop present(A[8:1]) \
present(A->x[0:A->n], A->y[@:A->n], A->z[0:A->n]) \
present(base[0:A->n])

for( int i = 0; i < A->n; ++1i ){

A->x[i] = base[i];
A->y[i] = sqrtf( base[i] );
A->z[i] = ©;

4.4. C Structs in OpenACC 15
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4.5. C++ Classes in OpenACC

The NVIDIA C++ compiler supports use of C++ classes in OpenACC regions, including static array class
members, member pointers to dynamic arrays, and member functions and operators. Usually, the
class itself must be copied to device memory as well, by putting the class variable in a data clause
outside the class, or the appropriately shaped this[0:1] reference in a data clause within the class.
The entire class will be allocated in device memory.

// my managed vector datatype
template<typename elemtype> class myvector{
elemtype* data;
size_t size;
public:
myvector( size_t size_ ){ // constructor
size = size_;
data = new elemtype[size];

todev(){ // move to device
#pragma acc enter data copyin(this[6:1], data[@:size])

fromdev(){ // remove from device
#pragma acc exit data delete( data[@:size], this[0:1])
}

void updatehost(){ // update host copy of data
#pragma acc update self( data[@:size] )
}

void updatedev(){ // update device copy of data
#pragma acc update device( data[@:size] )
}

~myvector(){ // destructor from host
delete[] data;
}

inline elemtype & operator[] (int i) const { return data[i]; }
// other member functions

b

In the example below, the this pointer is copied to the device before data, so the pointer to data on
the device will get updated. This is called an “attach” operation; the class myvector pointer data s
attached to the device copy of the data vector.

Another class always creates device data along with host data:

// my managed host+device vector datatype
template<typename elemtype> class hdvector{
elemtype* data;
size_t size;
public:
hdvector( size_t size_ ){ // constructor
size = size_;
data = new elemtype[size];
#pragma acc enter data copyin(this[6:1]) create(data[@:size])
}
void updatehost(){ // update host copy of data
#pragma acc update self( data[@:size] )
}

void updatedev(){ // update device copy of data
(continues on next page)
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(continued from previous page)
#pragma acc update device( data[@:size] )

~hdvector(){ // destructor from host
#pragma acc exit data delete( data[@:size], this[0:1] )
delete[] data;
}
inline elemtype & operator[] (int i) const { return data[i]; }
// other member functions

|3

The constructor copies the class in, so the size value will get copied, and creates (allocates) the data
vector.

A slightly more complex class includes a copy constructor that makes a copy of the data pointer in-
stead of a copy of the data:

#include <openacc.h>
// my managed vector datatype
template<typename elemtype> class dupvector{
elemtype* data;
size_t size;
bool iscopy;
public:
dupvector( size_t size_ ){ // constructor
size = size_;
data = new elemtype[size];
iscopy = false;
#pragma acc enter data copyin(this[6:1]) create(data[@:size])
}
dupvector( const dupvector &copyof ){ // copy constructor
size = copyof.size;
data = copyof.data;
iscopy = true;
#pragma acc enter data copyin(this[6:1])
acc_attach( (void**)&data );
}
void updatehost(){ // update host copy of data
#pragma acc update self( data[@:size] )
}

void updatedev(){ // update device copy of data
#pragma acc update device( data[@:size] )

~dupvector(){ // destructor from host
if( !iscopy ){
#pragma acc exit data delete( data[@:size] )
delete[] data;

}
#pragma acc exit data delete( this[6:1] )

}
inline elemtype & operator[] (int i) const { return data[i]; }
// other member functions

b

Note the call to the OpenACC runtime routine, acc_attach, in the copy constructor. This routine
takes the address of a pointer, translates the address of that pointer as well as the contents of the
pointer, and stores the translated contents into the translated address on the device. In this case, it
attaches the data pointer copied from the original class on the device to the copy of this class on the

4.5. C++ Classes in OpenACC 17
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device.

In code outside the class, data can be referenced in compute clauses as expected:

dupvector<float> v = new dupvector<float>(n);
dupvector<float> x = new dupvector<float>(n);

#pragma acc parallel loop present(v,x)
for( int i = ©; i < n; ++i ) v[i] += x[i];

The example above shows references to the v and x classes in the parallel loop construct. The op-
erator|[ ] will normally be inlined. If it is not inlined or inlining is disabled, the compiler will note that
the operator is invoked from within an OpenACC compute region and compile a device version of that
operator. This is effectively the same as implying a #pragma acc routine seq above the operator.
The same is true for any function in C++, be it a class member function or standalone function: if
the function is called from within a compute region, or called from a function which is called within a
compute region, and there is no #pragma acc routine, the compiler will treat it as if it was prefixed
by #pragma acc routine seq. When you compile the file and enable -Minfo=accel, you will see
this with the message:

T1 &dupvector<T1>::operator [](int) const [with T1=float]:
35, Generating implicit acc routine seq

In the above example the loop upper bound is the simple scalar variable n, not the more natural class
member v.size. In the current implementation of the NVIDIA C++ compiler the loop upper bound for
a parallel loop or kernels loop must be a simple variable, not a class member.

The class variables appear ina present clause for the parallel construct. The normal default for acom-
pute construct would be for the compiler to treat the reference to the class as present_or_copy.
However, if the class instance were not present, copying just the class itself would not copy the dy-
namic data members, so would not provide the necessary behavior. Therefore, when referring to class
objects in a compute construct, you should put the class in a present clause.

Class member functions may be explicitly invoked in a parallel loop:

template<typename elemtype> class dupvector{

void inc1( int i, elemtype y ){
data[i] += vy;
}

}

#pragma acc parallel loop present(v,x)
for( int i = 0; i < n; ++i ) v.inc1( i, x[i] );

As discussed above, the compiler will normally inline inc1, when optimization is enabled, but will also
compile a device version of the function since it is invoked from within a compute region.

A compute construct may contain compute constructs itself:

template<typename elemtype> class dupvector{

void inc2( dupvector<elemtype> &y ){
int n = size;
#pragma acc parallel loop gang vector present(this,y)
for( int i = 0; i < n; ++i ) data[i] += y[i];

(continues on next page)
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v.inc2( x );

Note again the loop upper bound of n, and the this and y classes in the present clause. A third
example puts the parallel construct around the routine, but the loop itself within the routine. Doing
this properly requires you to put an appropriate acc routine before the routine definition to call the
routine at the right level of parallelism.

template<typename elemtype> class dupvector{

#pragma acc routine gang
void inc3( dupvector<elemtype> &y ){
int n = size;
#pragma acc loop gang vector
for( int i = 0; i < n; ++i ) data[i] += y[i];

#pragma acc parallel
v.inc3( x );

When the inc3 is invoked from host code, it will run on the host incrementing host values. When
invoked from within an OpenACC parallel construct, it will increment device values.

The NVIDIA Fortran compiler supports use of static and allocatable arrays of derived type in OpenACC
regions.

module mpoint
type point
real :: x, vy, z
end type
type(point) :: base(1000)
end module

subroutine vecaddgpu( r, n )

use mpoint

type(point) :: r(:)

integer :: n

ISacc parallel loop present(base) copyout(r(:))
doi=1,n

r(i)%x = base(i)%x
r(i)»y = sqrt( base(i)%y*base(i)%y + base(i)%z*base(i)%z )
r(i)»z = ©

enddo

end subroutine

You can explicitly reference array members of derived types, including static arrays and allocatable
arrays within a derived type. In either case, the entire derived type must be placed in device memory,
by putting the derived type itself in an appropriate data clause. In the current implementation, the
derived type variable itself must appear in a data clause, at least a present clause, for any compute
construct that directly uses the derived type variable.
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module mpoint
type point

real :: base(1000)

integer :: n

real, allocatable, dimension(:) :: x, y, z
end type

type(point) :: A
end module

subroutine vecaddgpu()

integer :: i

I'Sacc parallel loop copyin(A) copyout(A%x,A%y,A%z)
doi=1,n

A%x(1) = A%base(i)

A%y (i) = sqrt( A%base(i) )
A%z(1) = O

enddo

end subroutine

In this example, the derived type A is copied to the device, which copies the static array member
A%base and the scalar A%n. The allocatable array members A%x, A%y and A%z are then copied to the
device. The derived type variable A should be copied before its allocatable array members, either by
placing the derived type in an earlier data clause, or by copying or creating it on the device in an en-
closing data region or dynamic data lifetime. If the derived type is not present on the device when the
allocatable array members are copied, the accesses to the allocatable members, such as A%x (1), on
the device will be invalid, because the hidden pointer and descriptor values in the derived type variable
will not get updated.

Be careful when copying derived types containing allocatable members back to the host. On the de-
vice, the allocatable members will get updated to point to device memory. If the whole derived type
gets copied back to the host, the allocatable members will be invalid on the host.

When creating or copying a derived type on the device, the whole derived type is allocated. There is
no support for allocating a subset of a derived type, or only allocating space for a single member.

Derived types and allocatable members can be managed using dynamic data directives as well:

module mpoint

type point
integer :: n
real, dimension(:), allocatable :: x, y, z
end type
contains

subroutine move_to_device( A )
type(point) :: A

ISacc enter data copyin(A)

ISacc enter data create(A%x, A%y, A%z)
end subroutine

subroutine move_off_device( A )
type(point) :: A
ISacc exit data copyout(A%x, A%y, A%z)
ISacc exit data delete(A)
end subroutine
end module

subroutine vecaddgpu( A, base )
(continues on next page)
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use mpoint

type(point) :: A

real :: base(:)

integer :: i

ISacc parallel loop present(A,base)
doi=1,n

A%x (1) = base(i)

A%y(i) = sqrt( base(i) )
A%z (i) = ©

enddo

end subroutine

4.7. Fortran 1/O

The NVIDIA Fortran compiler includes limited support for PRINT statements in GPU device code. The
Fortran GPU runtime library, which is shared between CUDA Fortran and OpenACC for NVIDIA GPU
targets, buffers up the output and prints an entire line in one operation. Integer, character, logical, real
and complex data types are supported.

The underlying CUDA printf implementation limits the number of print statements in a kernel launch
to 4096. Users should take this limit into account when making use of this feature.

4.7.1. OpenACC PRINT Example

Here is a short example of printing character strings, integer, logical and real data within an OpenACC
compute region:

program t
integer(4) a(10000)
a=[ (1+i,1i=1,10000) ]
!Sacc kernels
do i =1, 10000
if (a(i)/3000*3000.eq.a(i)) print *," located ",i,a(i),i.gt.56000,a(i)/5.0
end do
ISacc end kernels
end

4.8. OpenACC Atomic Support

The NVIDIA OpenACC compilers implement full support for atomics in accordance with the OpenACC
specification. For example:

double *a, *b, *c;

#pragma acc loop vector
for (int k = 0; k < n; ++k)
(continues on next page)
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#pragma acc atomic
c[i*n+j] += a[i*n+k]*b[k*n+j];

¥

The NVIDIA compilers also include support for CUDA-style atomic operations. The CUDA atomic names
can be used in accelerator regions from Fortran, C, and C++. For example:

#pragma acc loop gang
for (j =0; j <nl *n2; j += n2) {
k = 0;
#pragma acc loop vector reduction(+:k)
for (i = 0; i < n2; i++)
k = k +al[j + i];
atomicAdd(x, k);

4.9. OpenACC Declare Data Directive for Global
and Fortran Module Variables

The compilers support the OpenACC declare directive with the copyin, create and de-
vice_resident clauses for C global variables and Fortran module variables. This is primarily for use
with the OpenACC routine directive and separate compilation. The data in the declare clauses are
statically allocated on the device when the program attaches to the device. Data in a copyin clause
will be initialized from the host data at that time. A program attaches to the device when it reaches
its first data or compute construct, or when it calls the OpenACC acc_init routine.

In C, the example below uses a global struct and a global array pointer:

struct{
float a, b;
}coef;
float* x;
#pragma acc declare create(coef,x)

#pragma acc routine seq
void modxi( int i ){
x[1] *= coef.a;

}
void initcoef( float a, float b ){
coef.a = a;
coef.b = b;
#pragma acc update device(coef)
}

void allocx( int n ){
x = (float*)malloc( sizeof(float)*n );
#pragma acc enter data create(x[6:n])

(continues on next page)

22 Chapter 4. Using OpenACC with the NVIDIA HPC Compilers



OpenACC Getting Started Guide, Release 26.1

(continued from previous page)

void modx( int s, int e ){
#pragma acc parallel loop
for( int i = s; i < e; ++i ) modxi(i);

}

The declare create(coef, x) will statically allocate a copy of the struct coef and the pointer x on
the device. In initcoef routine, the coefficients are assigned on the host, and the update directive
copies those values to the device. The allocx routine allocates space for the x vector on the host,
then uses an unstructured data directive to allocate that space on the device as well; because the x
pointer is already statically present on the device, the device copy of x will be updated with the pointer
to the device data as well. Finally, the parallel loop calls the routine modxi, which refers to the global
x pointer and coef struct. When called on the host, this routine will access the global x and coef on
the host, and when called on the device, such as in this parallel loop, this routine will access the global
x pointer and coef struct on the device.

If the modxi routine were in a separate file, the declarations of coef and x would have the extern
attribute, but otherwise the code would be the same, as shown below. Note that the acc declare
create directive is still required in this file even though the variables are declared extern, to tell the
compiler that these variables are available as externals on the device.

extern struct{
float a, b;
}coef;
extern float* x;
#pragma acc declare create(coef,x)

#pragma acc routine seq
void modxi( int i ){
x[i] *= coef.a;

}

Because the global variable is present in device memory, it is also in the OpenACC runtime present
table, which keeps track of the correspondence between host and device objects. This means that a
pointer to the global variable can be passed as an argument to a routine in another file, which uses that
pointer in a present clause. In the following example, the calling routine uses a small, statically-sized
global coefficient array:

float xcoef[11] = { 1.0, 2.0, 1.5, 3.5, ... 9.0 };
#pragma acc declare copyin(xcoef)

extern void test( float*, float*, float*, n );
void caller( float* x, float* y, int n ){
#pragma acc data copy( x[6:n], y[6:n] )
{

test( x, y, xcoef, n );

}

The declare copyin directive tells the compiler to generate code to initialize the device array from
the host array when the program attaches to the device. In another file, the procedure test is de-
fined, and all of its array arguments will be already present on the device; x and y because of the data
construct, and xcoef because it is statically present on the device.
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void test( float* xx, float* yy, float* cc, int n ){
#pragma acc data present( xx[@:n], y[60:n], cc[0:11] )

{
#pragma acc parallel loop
for( int i = 5; i < n-5; ++i ){
float t = 0.0;
for( int j = -5; j <= 5; ++j ){
t += cc[j+5]*yy[i+j];
}
xx[1] /= t;
}
}

}

In Fortran, module fixed-size variables and arrays, and module allocatable arrays which appear in de-
clare directives at module scope will be available globally on the CPU as well as in device code.
Module allocatable arrays that appear in a declare create, declare copyin or declare de-
vice_resident will be allocated in host memory as well as in device memory when they appear in
an allocate statement. The compiler manages the actual pointer to the data and a descriptor that
contains array lower and upper bounds for each dimension, and the device copy of the pointer will be
set to point to the array in device memory.

The following example module contains one fixed size array and an allocatable array, both appearing
in a declare create clause. The static array xstat will be available at any time inside accelerator
compute regions or routines.

module staticmod

integer, parameter :: maxl = 100000
real, dimension(maxl) :: xstat
real, dimension(:), allocatable :: yalloc

ISacc declare create(xstat, yalloc)
end module

This module may be used in another file that allocates the yalloc array. When the allocatable array
yalloc is allocated, it will be allocated both in host and device memory, and will then be available at
any time in accelerator compute regions or routines.

subroutine allocit(n)
use staticmod
integer :: n
allocate( yalloc(n) )
end subroutine

In another module, these arrays may be used in a compute region or in an accelerator routine:

module useit
use staticmod

contains
subroutine computer( n )
integer :: n
integer :: i

ISacc parallel loop
doi=1,n
yalloc(i) = iprocess( i )
enddo
(continues on next page)
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end subroutine

real function iprocess( i )

ISacc routine seq

integer :: i

iprocess = yalloc(i) + 2*xstat(i)
end function

end module

The OpenACC specification provides a mechanism to allow you to intercept errors triggered during
execution on a GPU and execute a specific routine in response before the program exits. For example, if
an MPI process fails while allocating memory on the GPU, the application may want to call MPI_Abort
to shut down all the other processes before the program exits. This section explains how to take
advantage of this feature.

To intercept errors the application must give a callback routine to the OpenACC runtime. To provide
the callback, the application calls acc_set_error_routine with a pointer to the callback routine.

The interface is the following, where err_msg contains a description of the error:

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

When the OpenACC runtime detects a runtime error, it will invoke the callback_routine.

Note: This feature is not the same as error recovery. If the callback routine returns to the application,
the behavior is decidedly undefined.

Let’s look at this feature in more depth using an example.

Take the MPI program below and run it with two processes. Process O tries to allocate a large array on
the GPU, then sends a message to the second process to acknowledge the success of the operation.
Process 1 waits for the acknowledgment and terminates upon receiving it.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 27147483648
int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int ack;
if(rank == 0) {

(continues on next page)
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float *a = (float*) malloc(sizeof(float) * N);

#pragma acc enter data create(a[@:N])
#pragma acc parallel loop independent
for(int 1 = 0; i < N; i++) {
ali] = 1 #*0.5;
}
#pragma acc exit data copyout(a[@:N])
printf("I am process %d, I have initialized a vector of size %1d bytes on the GPU.

- Sending acknowledgment to process 1.", rank, N);
ack = 1;
MPI_Send(&ack, 1, MPI_INT, 1, ©, MPI_COMM_WORLD);
} else if(rank == 1) {

MPI_Recv(&ack, 1, MPI_INT, ©, 6, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("I am process %d, I have received the acknowledgment from process @ that
—data in the GPU has been initialized.\n", rank, N);

fflush(stdout);

}

// do some more work
MPI_Finalize();

return 0;

}

We compile the program with:

$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

If we run this program with two MPI processes, the output will look like the following:

$ mpirun -n 2 ./error_handling_mpi

Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464

Present table dump for device[1]:

NVIDIA Tesla GPU O, compute capability 3.7, threadid=1
...empty...

call to cuMemAlloc returned error 2: Out of memory

Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.

mpirun detected that one or more processes exited with non-zero status,
thus causing the job to be terminated.

Process 0 failed while allocating memory on the GPU and terminated unexpectedly with an error. In
this case mpirun was able to identify that one of the processes failed, so it shut down the remaining
process and terminated the application. A simple two-process program like this is straightforward to
debug. In a real world application though, with hundreds or thousands of processes, having a process
exit prematurely may cause the application to hang indefinitely. Therefore it would be ideal to catch
the failure of a process, control the termination of the other processes, and provide a useful error
message.

We can use the OpenACC error handling feature to improve the previous program and correctly ter-
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minate the application in case of failure of an MPI process.

In the following sample code, we have added an error handling callback routine that will shut down the
other processes if a process encounters an error while executing on the GPU. Process O tries to allocate
a large array into the GPU and, if the operation is successful, process 0 will send an acknowledgment
to process 1. Process O calls the OpenACC function acc_set_error_routine to set the function
handle_gpu_errors as an error handling callback routine. This routine prints a message and calls
MPI_Abort to shut down all the MPI processes. If process 0 successfully allocates the array on the
GPU, process 1 will receive the acknowledgment. Otherwise, if process O fails, it will terminate itself
and trigger the call to handle_gpu_errors. Process 1 is then terminated by the code executed in
the callback routine.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

void handle_gpu_errors(char *err_msg) {
printf("GPU Error: %s", err_msg);
printf("Exiting...\n\n");
MPI_Abort(MPI_COMM_WORLD, 1);
exit(-1);

int main(int argc, char **argv)
{

int rank, size;
MPI_Init(&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

int ack;
if(rank == 0) {
float *a = (float*) malloc(sizeof(float) * N);

acc_set_error_routine(&handle_gpu_errors);

#pragma acc enter data create(a[@0:N])
#pragma acc parallel loop independent

for(int 1 = 0; i < N; i++) {

al[i] = 1 *0.5;

}
#pragma acc exit data copyout(a[0:N])

printf("I am process %d, I have initialized a vector of size %1d bytes on the GPU.
— Sending acknowledgment to process 1.", rank, N);

fflush(stdout);

ack = 1;

MPI_Send(&ack, 1, MPI_INT, 1, 6, MPI_COMM_WORLD);

(continues on next page)
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} else if(rank == 1) {
MPI_Recv(&ack, 1, MPI_INT, ©, 6, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("I am process %d, I have received the acknowledgment from process @ that
—data in the GPU has been initialized.\n", rank, N);
fflush(stdout);
}

// more work
MPI_Finalize();

return 0;

}

Again, we compile the program with:

$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

We run the program with two MPI processes and obtain the output below:

$ mpirun -n 2 ./error_handling_mpi

Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464

Present table dump for device[1]:

NVIDIA Tesla GPU O, compute capability 3.7, threadid=1
...empty...

GPU Error: call to cuMemAlloc returned error 2: Out of memory
Exiting...

MPI_ABORT was invoked on rank 6 in communicator MPI_COMM_WORLD
with errorcode 1.

This time the error on the GPU was intercepted by the application which managed it with the error
handling callback routine. In this case the routine printed some information about the problem and
called MPI_Abort to terminate the remaining processes and avoid any unexpected behavior from the
application.

4.11. C Examples

The simplest C example of OpenACC is a vector addition on the GPU:

#include <stdio.h>

#include <stdlib.h>

void vecaddgpu( float *restrict r, float *a, float *b, int n ){
#pragma acc kernels loop copyin(a[@:n],b[@:n]) copyout(r[6:n])
for( int i = 0; i < n; ++i ) r[i] = a[i] + b[i];

}

int main( int argc, char* argv[] ){
int n; /* vector length */
float * a; /* input vector 1 #*/
float * b; /* input vector 2 */
(continues on next page)
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float * r; /* output vector */
float * e; /* expected output values */
int i, errs;
if( argc > 1 ) n = atoi( argv([1] );
else n = 100000; /* default vector length */

if( n <= 8 ) n = 100000;

a = (float*)malloc( n*sizeof(float) );
b = (float*)malloc( n*sizeof(float) );
r = (float*)malloc( n*sizeof(float) );
e = (float*)malloc( n*sizeof(float) );

for( i =0; i < n; ++1i ){
a[i] = (float)(i+1);
b[i] = (float)(1000*i);

}
/* compute on the GPU */

vecaddgpu( r, a, b, n);
/* compute on the host to compare */

for( i =0; i < n; ++i ) e[i] = a[i] + b[i];
/* compare results */
errs = 0;

for( 1 =0; i< n; ++i ){
if( r[i] = e[i] ){
++errs,;
¥

}
printf( "%d errors found\n", errs );
return errs;

}

The important part of this example is the routine vecaddgpu, which includes one OpenACC directive
for the loop. This (#pragma acc) directive tells the compiler to generate a kernel for the following loop
(kernels loop), to allocate and copy from the host memory into the GPU memory n elements for the
vectors a and b before executing on the GPU, starting at a[0] and b[0] (copyin(a[@:n],b[8:n])),
and to allocate n elements for the vector r before executing on the GPU, and copy from the GPU
memory out to the host memory those n elements, starting at r[0] (copyout(r[@:n])).

If you type this example into a file al.c, you can build it using the command nvc -acc al.c. The
-acc flag enables recognition of the OpenACC pragmas and includes the OpenACC runtime library.
This command generates the usual a.out executable file, and you run the program by running a.out
as normal. You should see the output:

0 errors found

If instead you get the following output, then there is something wrong with your hardware installation
or your GPU driver.

libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your " LD_LIBRARY_PATH .

You can enable additional output by setting environment variables. If you set the environment variable
NVCOMPILER_ACC_NOTIFY to 1, then the runtime prints a line of output each time you run a kernel on
the GPU. For this program, you might get output that looks like:

launch CUDA kernel file=/user/guest/al.c function=vecaddgpu
line=5 device=0 threadid=1 num_gangs=782 num_workers=1

(continues on next page)
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vector_length=128 grid=782 block=128
0 errors found

The extra output tells you that the program launched a kernel for the loop at line 5, with a CUDA grid
of size 782, and a thread block of size 128.

If you set the environment variable NVCOMPILER_ACC_NOTIFY to 3, the output will include information
about the data transfers as well:

upload CUDA data file=/user/guest/al.c function=vecaddgpu

line=4 device=0 threadid=1 variable=a bytes=400000

upload CUDA data file=/user/guest/al.c function=vecaddgpu

line=4 device=0 threadid=1 variable=b bytes=400000

launch CUDA kernel file=/user/guest/al.c function=vecaddgpu

line=5 device=0 threadid=1 num_gangs=782 num_workers=1 vector_length=128 grid=782
—block=128

download CUDA data file=/user/guest/al.c function=vecaddgpu

line=6 device=0 threadid=1 variable=r bytes=400000

@ errors found

If you set the environment variable NVCOMPILER_ACC_TIME to 1, the runtime summarizes the
time taken for data movement between the host and GPU, and computation on the GPU.
On Linux, you may need to set the LD_LIBRARY_PATH environment variable to include the
Jopt/nvidia/npc_sdk/Linux_x86_64/26.1/compilers/lib directory, or the corresponding directory for
Arm Server targets. An OpenACC executable dynamically loads a shared object to implement this
profiling feature, and the path to the library must be available.

For this program, you might get output similar to this:

0 errors found

Accelerator Kernel Timing data
/user/guest/al.c
vecaddgpu NVIDIA devicenum=0
time(us): 167
4: compute region reached 1 time
5: kernel launched 1 time
grid: [782] block: [128]
device time(us): total=5 max=5 min=5 avg=5
elapsed time(us): total=700 max=700 min=700 avg=700
4: data region reached 2 times
4: data copyin transfers: 2
device time(us): total=110 max=67 min=43 avg=55
6: data copyout transfers: 1
device time(us): total=52 max=52 min=52 avg=52

This tells you that the program entered one accelerator region and spent a total of about 167 mi-
croseconds in that region. It copied two arrays to the device, launched one kernel, and brought one
array back to the host.

You might also find it useful to enable the compiler feedback when you are writing your own OpenACC
programs. This is enabled with the -Minfo flag. If you compile this program with the command nvc
-acc -fast -Minfo al.c, you get the output:

vecaddgpu:
4, Generating copyin(al:n])
Generating copyout(r[:n])
(continues on next page)
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Generating copyin(b[:n])
5, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
5, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
5, Loop not fused: no successor loop
Generated 2 alternate versions of the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
main:
21, Loop not fused: function call before adjacent loop
Loop not vectorized: data dependency
Loop unrolled 16 times
Generated 1 prefetches in scalar loop
28, Loop not fused: dependence chain to sibling loop
Generated 2 alternate versions of the loop
Generated vector and scalar versions of the loop; pointer conflict tests
—determine which is executed
Generated 2 prefetch instructions for the loop
Generated vector and scalar versions of the loop; pointer conflict tests
—determine which is executed
Generated 2 prefetch instructions for the loop
Generated vector and scalar versions of the loop; pointer conflict tests
—determine which is executed
Generated 2 prefetch instructions for the loop
Loop unrolled 16 times
Generated 1 prefetches in scalar loop
31, Loop not fused: function call before adjacent loop

This output gives the schedule used for the loop; in this case, the schedule is gang, vector (128). This
means the iterations of the loop are broken into vectors of 128, and the vectors executed in parallel
by SMs or compute units of the GPU.

This output is important because it tells you when you are going to get parallel execution or sequential
execution. If you remove the restrict keyword from the declaration of the dummy argument r to the
routine vecaddgpu, the -Minfo output tells you that there may be dependences between the stores
through the pointer r and the fetches through the pointers a and b:

5, Complex loop carried dependence of b->,a-> prevents parallelization

Loop carried dependence of r-> prevents parallelization

Loop carried backward dependence of r-> prevents vectorization

Accelerator serial kernel generated

Accelerator kernel generated

Generating Tesla code

5, #pragma acc loop seq

5, Complex loop carried dependence of b->,a-> prevents parallelization

Loop carried dependence of r-> prevents parallelization

Loop carried backward dependence of r-> prevents vectorization

Loop not fused: no successor loop

Generated 2 alternate versions of the loop

Generated vector and scalar versions of the loop; pointer conflict tests determine
—which is executed
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A scalar kernel runs on one thread of one thread block, which runs about 1000 times slower than the
same parallel kernel. For this simple program, the total time is dominated by GPU initialization, so you
might not notice the difference in times, but in production mode you need parallel kernel execution to
get acceptable performance.

For our second example, we modify the program slightly by replacing the data clauses on the kernels
pragma with a present clause, and add a data construct surrounding the call to the vecaddgpu rou-
tine. The data construct moves the data across to the GPU in the main program. The present clause
in the vecaddgpu routine tells the compiler to use the GPU copy of the data that has already been
allocated on the GPU. If you run this program on the GPU with NVCOMPILER_ACC_TIME set, you see
that the kernel region now has no data movement associated with it. Instead, the data movement is
all associated with the data construct in the main program.

#include <stdio.h>
#include <stdlib.h>

void vecaddgpu( float *restrict r, float *a, float *b, int n ){
#pragma acc kernels loop present(r,a,b)
for( int i = 9; i < n; ++i ) r[i] = a[i] + b[i];

}

int main( int argc, char* argv[] ){
int n; /* vector length */
float * a; /* input vector 1 #*/
float * b; /* input vector 2 */
float * r; /* output vector */
float * e; /* expected output values */
int i, errs;

if( argc > 1 ) n = atoi( argv[1] );
else n = 100000; /* default vector length */
if( n <=0 ) n = 100000;
a = (float*)malloc( n*sizeof(float) );
b = (float*)malloc( n*sizeof(float) );
r = (float*)malloc( n*sizeof(float) );
e = (float*)malloc( n*sizeof(float) );
for( i =0; i < n; ++i ){
ali] (float) (i+1);
bli] (float) (1000*1);

}
/* compute on the GPU */

#pragma acc data copyin(a[@:n],b[@:n]) copyout(r[@:n])

{
vecaddgpu( r, a, b, n );
}
/* compute on the host to compare */
for( i =0; i <n; ++i ) e[i] = a[i] + b[i];
/* compare results */
errs = 0;

for( i =0; i < n; ++1 ){
if( r[i] !'= e[i] ){
++errs;
}

}

printf( "%d errors found\n", errs );
return errs;
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4.12. Fortran Examples

The simplest Fortan example of OpenACC is a vector addition on the GPU.

4.12.1. Vector Addition on the GPU

The section contains two Fortan examples of vector addition on the GPU:

module vecaddmod
implicit none
contains
subroutine vecaddgpu( r, a, b, n)
real, dimension(:) :: r, a, b
integer :: n
integer :: i
ISacc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
doi=1,n
r(i) = a(i) + b(i)
enddo
end subroutine
end module

program main
use vecaddmod
implicit none
integer :: n, i, errs, argcount
real, dimension(:), allocatable :: a, b, r, e
character*10 :: argl
argcount = command_argument_count()
n = 1000000 ! default value
if( argcount >= 1 )then
call get_command_argument( 1, argl )
read( argl, ‘(i)' ) n
if( n <= 9 ) n = 100000
endif
allocate( a(n), b(n), r(n), e(n) )
doi=1,n

a(i) = 1
b(i) = 1000*i
enddo

! compute on the GPU
call vecaddgpu( r, a, b, n)
! compute on the host to compare
doi=1,n
e(i) = a(i) + b(i)

enddo
! compare results
errs = 0

doi=1,n
if( r(i) /= e(i) )then
errs = errs + 1
endif
enddo
print *, errs, ' errors found'
(continues on next page)
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(continued from previous page)

if( errs ) call exit(errs)
end program

The important part of this example is the subroutine vecaddgpu, which includes one OpenACC direc-
tive for the loop. This (! Sacc) directive tells the compiler to generate a kernel for the following loop
(kernels loop), to allocate and copy from the host memory into the GPU memory n elements for the
vectors a and b before executing on the GPU, starting at a(1) and b(1) (copyin(a(1:n),b(1:n)),and
to allocate n elements for the vector r before executing on the GPU, and copy from the GPU memory
out to the host memory those n elements, starting at r(1) (copyout(r(1:n)).

If you type this example into a file 1. 98, you can build it using the command nvfortran -acc f1.
90. The -acc flag enables recognition of the OpenACC pragmas and includes the OpenACC runtime
library. This command generates the usual a.out executable file, and you run the program by running
a.out as normal. You should see the output:

® errors found

If instead you get the following output, then there is something wrong with your hardware installation
or your CUDA driver.

libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your LD_LIBRARY_PATH.

You can enable additional output by setting environment variables. If you set the environment variable
NVCOMPILER_ACC_NOTIFY to 1, then the runtime prints a line of output each time you run a kernel on
the GPU. For this program, you might get output that looks like:

launch CUDA kernel file=/user/guest/f1.f98 function=vecaddgpu
line=9 device=0 threadid=1 num_gangs=7813 num_workers=1
vector_length=128 grid=7813 block=128

© errors found

The extra output tells you that the program launched a kernel for the loop at line 9, with a CUDA
grid of size 7813, and a thread block of size 128. If you set the environment variable NVCOM-
PILER_ACC_NOTIFY to 3, the output will include information about the data transfers as well:

upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu
line=8 device=0 threadid=1 variable=a bytes=4000000
upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu
line=8 device=0 threadid=1 variable=b bytes=4000000
launch CUDA kernel file=/user/guest/f1.f908 function=vecaddgpu
line=9 device=0 threadid=1 num_gangs=7813 num_workers=1 vector_length=128 grid=7813
—block=128
download CUDA data file=/user/guest/f1.f908 function=vecaddgpu
line=12 device=0 threadid=1 variable=r bytes=4000000
® errors found

If you set the environment variable NVCOMPILER_ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU. For this program,
you might get output similar to this:

® errors found

Accelerator Kernel Timing data
/home/ams/tat/example-f/f1.f90

(continues on next page)
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(continued from previous page)
vecaddgpu NVIDIA devicenum=0
time(us): 1,040
8: compute region reached 1 time
9: kernel launched 1 time
grid: [7813] block: [128]
device time(us): total=19 max=19 min=19 avg=19
elapsed time(us): total=738 max=738 min=738 avg=738
8: data region reached 2 times
8: data copyin transfers: 2
device time(us): total=689 max=353 min=336 avg=344
12: data copyout transfers: 1
device time(us): total=332 max=332 min=332 avg=332

This tells you that the program entered one accelerator region and spent a total of about 1 millisecond
in that region. It copied two arrays to the device, launched one kernel and brought one array back to
the host.

You might also find it useful to enable the compiler feedback when you are writing your own OpenACC
programs. This is enabled with the -Minfo flag.

If you compile this program with the command nvfortran -acc -fast -Minfo f1.f99, you get
the output:

vecaddgpu:
8, Generating copyin(a(:n))
Generating copyout(r(:n))
Generating copyin(b(:n))
9, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
9, !Sacc loop gang, vector(128) ! blockidx%x threadidx%x
9, Loop not fused: no successor loop
Generated 2 alternate versions of the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 2 prefetch instructions for the loop
main:

29, Loop not fused: function call before adjacent loop
Loop not vectorized: may not be beneficial
Unrolled inner loop 8 times

36, Loop not fused: function call before adjacent loop
2 loops fused

This output gives the schedule used for the loop; in this case, the schedule is gang, vector(128).
This means the iterations of the loop are broken into vectors of 128, and the vectors are executed in
parallel by SMs of the GPU. This output is important because it tells you when you are going to get
parallel execution or sequential execution.

For our second example, we modify the program slightly by replacing the data clauses on the kernels
pragma with a present clause, and add a data construct surrounding the call to the vecaddgpu sub-
routine. The data construct moves the data across to the GPU in the main program. The present
clause in the vecaddgpu subroutine tells the compiler to use the GPU copy of the data that has al-
ready been allocated on the GPU. If you run this program on the GPU with NVCOMPILER_ACC_TIME
set, you see that the kernel region now has no data movement associated with it. Instead, the data
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movement is all associated with the data construct in the main program.

In Fortran programs, you don’t have to specify the array bounds in data clauses if the compiler can
figure out the bounds from the declaration, or if the arrays are assumed-shape dummy arguments or

allocatable arrays.

module vecaddmod
implicit none
contains

subroutine vecaddgpu( r, a, b, n)

real, dimension(:) :: r, a, b
integer :: n
integer :: 1
ISacc kernels loop present(r,a,b)
doi=1,n
r(i) = a(i) + b(i)
enddo
end subroutine
end module

program main
use vecaddmod
implicit none
integer :: n, i, errs, argcount

real, dimension(:), allocatable ::

character*10 :: argl

a, b, r, e

argcount = command_argument_count()

n = 1000000 ! default value
if( argcount >= 1 )then

call get_command_argument( 1, argl )

read( argl, '(iS' ) n
if( n <= 9 ) n = 100000
endif

allocate( a(n), b(n), r(n), e(n) )

doi=1,n

a(i) = 1
b(i) = 1000*i
enddo

! compute on the GPU
ISacc data copyin(a,b) copyout(r)
call vecaddgpu( r, a, b, n)
I'Sacc end data

I compute on the host to compare

doi=1,n
e(i) = a(i) + b(i)

enddo
! compare results
errs = 0

doi=1,n

if( r(i) /= e(i) )then

errs = errs + 1

endif

enddo

print *, errs, ' errors found'
if( errs ) call exit(errs)

end program
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4.12.2. Multi-Threaded Program Utilizing Multiple Devices

This simple example shows how to run a multi-threaded host program that utilizes multiple devices.

program tdot

I Compile with "nvfortran -mp -acc tman.f90 -1blas
! Set OMP_NUM_THREADS environment variable to run with
! up to 2 threads, currently.

I

use openacc

use omp_lib

I

integer, parameter :: N = 10000

real*8 x(N), y(N), z

integer, allocatable :: offs(:)

real*8, allocatable :: zs(:)

real*8 ddot

I Max at 2 threads for now
nthr = omp_get_max_threads()
if (nthr .gt. 2) nthr = 2
call omp_set_num_threads(nthr)

I Run on host

call random_number(x)
call random_number(y)

z = ddot(N,x,1,y,1)
print *,"Host Serial",z

I Attach each thread to a device
I'Somp PARALLEL private(i)

i = omp_get_thread_num()

call acc_set_device_num(i, acc_device_nvidia)
I'Somp end parallel

I Break up the array into sections
nsec = N / nthr
allocate(offs(nthr),zs(nthr))
offs = (/ (i*nsec,i=0,nthr-1) /)
zs = 0.0do

! Decompose the problem across devices
ISomp PARALLEL private(i,j,z)
i = omp_get_thread_num() + 1
z = 0.0d0o
ISacc kernels loop &
copyin(x(offs(i)+1:o0ffs(i)+nsec),y(offs(i)+1:0ffs(i)+nsec))
do j = offs(i)+1, offs(i)+nsec
z =z +x(3) *y(J)
end do
zs(i) = z
ISomp end parallel
z = sum(zs)
print *, "Multi-Device Parallel",z
end

The program starts by having each thread call acc_set_device_num so each thread will use a differ-
ent GPU. Within the computational OpenMP parallel region, each thread copies the data it needs to
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its GPU and proceeds.

This release of the NVIDIA HPC SDK compilers implements most features of the OpenACC 2.7 specifi-
cation. For an explanation of what features are not yet implemented, refer to Chapter 3, Implemented
Features.

The Linux CUDA driver will power down an idle GPU. This means if you are using a GPU with no attached
display, or an NVIDIA compute-only GPU, and there are no open CUDA contexts, the GPU will power
down until itis needed. Since it may take up to a second to power the GPU back up, you may experience
noticeable delays when you start your program. When you run your program with the environment
variable NVCOMPILER_ACC_TIME set to 1, this time will appear as initialization time. If you are running
many tests, or want to isolate the actual time from the initialization time, you can run the NVIDIA utility
nvcudainit in the background. This utility opens a CUDA context and holds it open until you kill it or
let it complete.

The NVIDIA OpenACC compilers support the async clause and wait directive. When you use asyn-
chronous computation or data movement, you are responsible for ensuring that the program has
enough synchronization to resolve any data races between the host and the GPU. If your program
uses the async clause and wrong answers are generated, you can test whether the async clause is
causing problems by setting the environment variable NVCOMPILER_ACC_SYNCHRONOUS to 1 before
running your program. This action causes the OpenACC runtime to ignore the async clauses and run
the program in synchronous mode.
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Chapter 5. Implemented Features

This section outlines the OpenACC features currently implemented in the NVIDIA HPC SDK compilers
and lists known limitations.

5.1. OpenACC specification compliance

The NVIDIA HPC SDK compilers include support for most features of the OpenACC 2.7 specification.
The following OpenACC 2.7 features are not supported:

Declare link

v

Nested parallelism

Restricting cache clause variable refs to variables within a cached region.

>
>
» Subarrays and composite variables in reduction clauses
» The self clause

>

The default clause on data constructs

5.2. Defaults

The default ACC_DEVICE_TYPE is acc_device_nvidia, just as the -acc compiler option targets an
NVIDIA GPU by default. The device types acc_device_default and acc_device_not_host behave
the same as acc_device_nvidia. The device type can be changed using the environment variable
or by a call to acc_set_device_type().

The default ACC_DEVICE_NUM is O for the acc_device_nvidia type, which is consistent with the
CUDA device numbering system. For more information, refer to the nvaccelinfo output in Pre-
pare Your System. The device number can be changed using the environment variable or by a call
to acc_set_device_num.
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This section summarizes the environment variables that NVIDIA OpenACC supports. These environ-
ment variables are user-setable environment variables that control behavior of accelerator-enabled
programs at execution. These environment variables must comply with these rules:

The names of the environment variables must be upper case.

The values of environment variables are case insensitive and may have leading and trailing white
space.

The behavior is implementation-defined if the values of the environment variables change after
the program has started, even if the program itself modifies the values.

The following table contains the environment variables that are currently supported and provides a
brief description of each.
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Table 1: Supported Environment Variables

Use this environment vari-
able...

To do this...

NVCOM-

PILER_ACC_CUDA_PROFST(

Set to 1 (or any positive value) to tell the runtime environment to insert

DN ‘atexit(cuProfilerStop)’ call upon exit. This behavior may be desired
in the case where a profile is incomplete or where a message is issued
to call cudaProfilerStop!().

NVCOM-
PILER_ACC_DEVICE_NUM

Sets the default device number to use. NVCOM-
PILER_ACC_DEVICE_NUM. Specifies the default device number
to use when executing accelerator regions. The value of this environ-
ment variable must be a nonnegative integer between zero and the
number of devices attached to the host.

ACC_DEVICE_NUM

Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_NUM.

NVCOM-
PILER_ACC_DEVICE_TYPE

Sets the default device type to use for OpenACC regions. NVCOM-
PILER_ACC_DEVICE_TYPE. Specifies which accelerator device to use
when executing accelerator regions when the program has been com-
piled to use more than one different type of device. The value of this
environment variable is implementation-defined, and in the NVIDIA
OpenACC implementation may be the strings NVIDIA, MULTICORE or
HOST

ACC_DEVICE_TYPE

Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_TYPE.

NVCOM- For NVIDIA CUDA devices, this defines the maximum number of gangs
PILER_ACC_GANGLIMIT (CUDA thread blocks) that will be launched by a kernel.
NVCOM- With no argument, a debug message will be written to stderr for each

PILER_ACC_NOTIFY

kernel launch and/or data transfer. When set to an integer value, the
value is used as a bit mask to print information about:

1: kernel launches

2: data transfers

4: region entry/exit

8: wait operations or synchronizations with the device

16: device memory allocates and deallocates

NVCOM-
PILER_ACC_PROFLIB

Enables 3rd party tools interface using the new profiler dynamic library
interface.

NVCOM-

PILER_ACC_SYNCHRONOUS

Disables asynchronous launches and data movement.

NVCOMPILER_ACC_TIME

Enables a lightweight profiler to measure data movement and acceler-
ator kernel execution time and print a summary at the end of program
execution.

5.3. Environment Variables
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This section summarizes the OpenACC API extensions implemented in the NVIDIA Fortran compiler.

The acc_malloc function returns a device pointer, in a variable of type(c_devptr), to newly allocated
memory on the device. If the data can not be allocated, this function returns C_NULL_DEVPTR.

There is one supported call format in NVIDIA Fortran:

type(c_devptr) function acc_malloc (bytes)

bytes is an integer which specifies the number of bytes requested

The acc_free subroutine frees memory previously allocated by acc_malloc. It takes as an argument
either a device pointer contained in an instance of derived type(c_devptr), or for convenience, a CUDA
Fortran device array. In NVIDIA Fortran, calling acc_free (or cudaFree) with a CUDA Fortran device
array that was allocated using the F9O0 allocate statement results in undefined behavior.

There are two supported call formats in NVIDIA Fortran:

subroutine acc_free ( devptr )

devptr is an instance of derived type(c_devptr)

subroutine acc_free ( dev )

dev is a CUDA Fortran device array

The acc_map_data routine associates (maps) host data to device data. The first argument is a host
array, contiguous host array section, or address contained in a type(c_ptr). The second argument must
be a device address contained in a type(c_devptr), such as would be returned from acc_malloc or
acc_deviceptr, or a CUDA Fortran device array.

There are four supported call formats in NVIDIA Fortran:

subroutine acc_map_data ( host, dev, bytes )

host is a host variable, array or starting array element
dev is a CUDA Fortran device variable, array, or starting array element

bytes is an integer which specifies the mapping length in bytes
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subroutine acc_map_data ( host, dev )

host is a host array or contiguous host array section

dev is a CUDA Fortran device array or array section which conforms to host

subroutine acc_map_data ( host, devptr, bytes )

host is a host variable, array or starting array element
devptr is an instance of derived type(c_devptr)

bytes is an integer which specifies the mapping length in bytes

subroutine acc_map_data ( ptr, devptr, bytes )

ptr is an instance of derived type(c_ptr)
devptr is an instance of derived type(c_devptr)

bytes is an integer which specifies the mapping length in bytes

The acc_unmap_data routine unmaps (or disassociates) the device data from the specified host data.

There is one supported call format in NVIDIA Fortran:

subroutine acc_unmap_data ( host )

host is a host variable that was mapped to device data in a previous call to acc_map_data

The acc_deviceptr function returns the device pointer, in a variable of type(c_devptr), mapped to a
host address. The input argument is a host variable or array element that has an active lifetime on the
current device. If the data is not present, this function returns C_NULL_DEVPTR.

There is one supported call format in NVIDIA Fortran:

type(c_devptr) function acc_deviceptr ( host )

host is a host variable or array element of any type, kind and rank
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The acc_hostptr function returns the host pointer, in a variable of type(c_ptr), mapped to a de-
vice address. The input argument is a device address, such as would be returned from acc_malloc or
acc_deviceptr, or a CUDA Fortran device array.

There are two supported call formats in NVIDIA Fortran:

type(c_ptr) function acc_hostptr ( dev )

dev is a CUDA Fortran device array

type(c_ptr) function acc_hostptr ( devptr )

devptr is an instance of derived type(c_devptr)

The acc_is_present function returns .true. or .false. depending on whether a host variable or array
region is present on the device.

There are two supported call formats in NVIDIA Fortran:

logical function acc_is_present ( host )

host is a contiguous array section of intrinsic type

logical function acc_is_present ( host, bytes )

host is a host variable of any type, kind, and rank

bytes is an integer which specifies the length of the data to check

The acc_memcpy_to_device routine copies data from local memory to device memory. The source
address is a host array, contiguous array section, or address contained in a type(c_ptr). The destination
address must be a device address, such as would be returned from acc_malloc or acc_deviceptr,
or a CUDA Fortran device array.

There are four supported call formats in NVIDIA Fortran:

subroutine acc_memcpy_to_device ( dev, src, bytes )

dev is a CUDA Fortran device variable, array or starting array element
src is a host variable, array, or starting array element
bytes is an integer which specifies the length of the copy in bytes

subroutine acc_memcpy_to_device ( dev, src )

dev is a CUDA Fortran device array or contiguous array section

src is a host array or array section which conforms to dev
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subroutine acc_memcpy_to_device ( devptr, src, bytes )

devptr is an instance of derived type(c_devptr)
src is a host variable, array, or starting array element
bytes is an integer which specifies the length of the copy in bytes

subroutine acc_memcpy_to_device ( devptr, ptr, bytes )

where devptr is an instance of derived type(c_devptr)
ptr is an instance of derived type(c_ptr)

bytes is an integer which specifies the length of the copy in bytes

The acc_memcpy_from_devic  "e routine copies data from device memory to local
memory. The source address must be a device address, such as would be returned
from " “acc_malloc, acc_deviceptr, or a CUDA Fortran device array. The source address is a host
array, contiguous array section, or address contained in a type(c_ptr).

There are four supported call formats in NVIDIA Fortran:

subroutine acc_memcpy_from_device ( dest, dev, bytes )

dest is a host variable, array, or starting array element
dev is a CUDA Fortran device variable, array or starting array element

bytes is an integer which specifies the length of the copy in bytes

subroutine acc_memcpy_from_device ( dest, dev )

dest is a host array or contiguous array section
dev is a CUDA Fortran device array or array section which conforms to dest subroutine

subroutine acc_memcpy_from_device ( dest, devptr, bytes )

where dest is a host variable, array, or starting array element.
devptr is an instance of derived type(c_devptr).
bytes is an integer which specifies the length of the copy in bytes

subroutine acc_memcpy_from_device ( ptr, devptr, bytes )

ptr is an instance of derived type(c_ptr)
devptr is an instance of derived type(c_devptr)

bytes is an integer which specifies the length of the copy in bytes
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5.4.10. acc_get_cuda_stream

The acc_get_cuda_stream function returns the CUDA stream value which corresponds to an
OpenACC async queue. The input argument is an async number or a pre-defined value such as
acc_async_sync. This call is only supported on NVIDIA platforms.

There is one supported call format in NVIDIA Fortran:

integer(acc_handle_kind) function acc_get_cuda_stream ( async )

» async is a user-defined or pre-defined async value

5.4.11. acc_set_cuda_stream

The acc_set_cuda_streamsubroutine sets the CUDA stream value for an OpenACC async queue on
the current device. The input arguments are an async number and a stream. This call is only supported
on NVIDIA platforms.

There is one supported call format in NVIDIA Fortran:

subroutine acc_set_cuda_stream ( async, stream )

» async and stream are integers of acc_handle_kind

5.5. Known Limitations

This section includes the known limitations in the NVIDIA HPC SDK compilers implementations of the
OpenACC API.

5.5.1. ACC routine directive Limitations

» Extern variables may not be used with acc routine procedures.

» Reductions in procedures with acc routine are only supported for NVIDIA GPUs supporting
compute capability 3.0 or higher.

» Fortran assumed-shape arguments are not yet supported.

5.5.2. C++ and OpenACC Limitations

There are limitations to the data that can appear in OpenACC data constructs and compute regions:

» Variable-length arrays are not supported in OpenACC data clauses; VLAs are not part of the C++
standard.

» Variables of class type that require constructors and destructors do not behave properly when
they appear in data clauses.
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Exceptions are not handled in compute regions.

Member variables are not fully supported in the use_device clause of a host_data construct; this
placement may result in an error at runtime.

Targeting another accelerator device after acc_shutdown has been called is not supported.

This section discusses interactions with compiler optimizations that programmers should be aware of.

Procedure inlining may be enabled in several ways. User-controlled inlining is enabled using the
-Minline flag, or with -Mextract=1ib: and -Minline=1ib: flags. For C and C++, compiler-
controlled inlining is enabled using the -Mautoinline or -fast flags. Interprocedural analysis can
also control inlining using the -Mipa=inline option. Inlining is a performance optimization by re-
moving the overhead of the procedure call, and by specializing and optimizing the code of the inlined
procedure at the point of the call site.

When a procedure containing a compute construct (acc parallel or acc kernels)isinlined intoanacc
data construct, the compiler will use the data construct clauses to optimize data movement between
the host and device. In some cases, this can produce different answers, when the host and device
copies of some variable are different. For instance, the data construct may specify a data clause for
a scalar variable or a Fortran common block that contains a scalar variable. The compute construct
in the inlined procedure will now see that the scalar variable is present on the device, and will use
the device copy of that variable. Before inlining, the compute construct may have used the default
firstprivate behavior for that scalar variable, which would use the host value for the variable.

All information provided in this document is provided as-is, for your informational purposes only and
is subject to change at any time without notice. Reproduction of information in this document is per-
missible only if approved in advance by NVIDIA in writing. To obtain the latest information, please
contact your NVIDIA representative. Product or service performance varies by use, configuration and
other factors. Your costs and results may vary. No product or component is absolutely secure. TO
THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, NVIDIA DISCLAIMS ALL WARRANTIES AND
REPRESENTATIONS OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY, RELATING TO OR
ARISING UNDER THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF TITLE,
NONINFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, USAGE OF TRADE
AND COURSE OF DEALING. NVIDIA products are not intended or authorized for use as critical compo-
nents in a system or application where the use of or failure of such system or application developed
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with products, technology, software or services provided by NVIDIA could result in injury, death or
catastrophic damage.

Except for your permitted use of the information contained in this document, no license or right is
granted by implication, estoppel or otherwise. If this document directly includes or links to third-party
websites, products, services or information, please consult other sources to evaluate if and how to
use that information since NVIDIA does not support, endorse or assume any responsibility for any
third party offerings or its accuracy or usefulness.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR
ANY (1) INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR (Il) DAMAGES
FOR THE (A) COST OF PROCURING SUBSTITUTE GOODS OR(B) LOSS OF PROFITS, REVENUES, USE,
DATA OR GOODWILL ARISING OUT OF OR RELATED TO THIS DOCUMENT, WHETHER BASED ON
BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, OR OTHERWISE, AND
EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF A PARTY’S
REMEDIES FAIL THEIR ESSENTIAL PURPOSE. ADDITIONALLY, TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, NVIDIA'S TOTAL CUMULATIVE AGGREGATE LIABILITY FOR ANY AND ALL LIA-
BILITIES, OBLIGATIONS OR CLAIMS ARISING OUT OF OR RELATED TO THIS DOCUMENT WILL NOT
EXCEED FIVE U.S. DOLLARS (US$5).

Statements in this document that refer to future plans or expectations are forward-looking state-
ments. These statements are based on currently available information, beliefs, assumptions and in-
volve many risks and uncertainties that could cause actual results to differ materially from those ex-
pressed or implied in these statements. For more information on the factors that could cause actual
results to differ materially, see our most recent earnings release and SEC filings at

© NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and other NVIDIA marks are trade-
marks of NVIDIA Corporation or its affiliates. Other names and brands may be claimed as the property
of others.

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIA DGX, NVIDIA
Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corpo-
ration in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

©2022-2026, NVIDIA Corporation & affiliates. All rights reserved
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