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NVIDIA HPC Compilers User’s Guide

Preface

This guide is part of a set of manuals that describe how to use the NVIDIA HPC Fortran, C++ and
C compilers. These compilers include the NVFORTRAN, NVC++ and NVC compilers. They work in con-
junction with an assembler, linker, libraries and header files on your target system, and include a CUDA
toolchain, libraries and header files for GPU computing. You can use the NVIDIA HPC compilers to de-
velop, optimize and parallelize applications for NVIDIA GPUs and x86-64 and Arm Server multicore
CPUs.

The NVIDIA HPC Compilers User’s Guide provides operating instructions for the NVIDIA HPC compilers
command-level development environment. The NVIDIA HPC Compilers Reference Manual contains de-
tails concerning the NVIDIA compilers’ interpretation of the Fortran, C++ and C language standards,
implementation of language extensions, and command-level compilation. Users are expected to have
previous experience with or knowledge of the Fortran, C++ and C programming languages. These
guides do not teach the Fortran, C++ or C programming languages.

Audience Description

This manual is intended for scientists and engineers using the NVIDIA HPC compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C++ and C as well
as parallel programming models such as CUDA, OpenACC and OpenMP in the software development
process, and you should have some level of understanding of programming. The NVIDIA HPC compilers
are available on a variety of NVIDIA GPUs and x86-64 and Arm CPU-based platforms and operating
systems. You need to be familiar with the basic commands available on your system.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of the NVIDIA HPC com-
pilers. For information on installing NVIDIA HPC compilers, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

▶ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

▶ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran, Geneva, 1991
(Fortran 90).

▶ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran, Geneva, 1997
(Fortran 95).

▶ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran, Geneva, 2004
(Fortran 2003).

▶ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran, Geneva, 2010
(Fortran 2008).

▶ ISO/IEC 1539-1 : 2018, Information technology – Programming Languages – Fortran, Geneva, 2018
(Fortran 2018).

▶ Fortran95HandbookComplete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass,
1997.

▶ The Fortran 2003 Handbook, Adams et al, Springer, 2009.

Contents 1



NVIDIA HPC Compilers User's Guide, Release 26.1

▶ OpenACC Application Program Interface, Version 2.7, November 2018, http://www.openacc.org.

▶ OpenMP Application Program Interface, Version 5.0, November 2018, http://www.openmp.org.

▶ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

▶ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

▶ Military Standard, Fortran, DOD Supplement to American National Standard Programming Lan-
guage Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

▶ American National Standard Programming Language C, ANSI X3.159-1989.

▶ ISO/IEC 9899:1990, Information technology – Programming Languages – C, Geneva, 1990 (C90).

▶ ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

▶ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva, 2011 (C11).

▶ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, Geneva, 2011
(C++11).

▶ ISO/IEC 14882:2014, Information Technology – Programming Languages – C++, Geneva, 2014
(C++14).

▶ ISO/IEC 14882:2017, Information Technology – Programming Languages – C++, Geneva, 2017
(C++17).

Organization

This guide contains the essential information on how to use the NVIDIA HPC compilers and is divided
into these sections:

Getting Started provides an introduction to the NVIDIA HPC compilers and describes their use and
overall features.

Use Command-line Options provides an overview of the command-line options as well as task-related
lists of options.

Multicore CPU Optimization describes multicore CPU optimizations and related compiler options.

Using Function Inlining describes how to use function inlining and shows how to create an inline library.

Using OpenMP describes how to use OpenMP for multicore CPU programming.

Using OpenACC describes how to use an NVIDIA GPU and gives an introduction to using OpenACC.

Using Stdpar describes how to use C++/Fortran Standard Language Parallelism for programming an
NVIDIA GPU or multicore CPU.

PCAST describes how to use the Parallel Compiler Assisted Testing features of the HPC Compilers.

Using MPI describes how to use MPI with the NVIDIA HPC compilers.

Creating and Using Libraries discusses NVIDIA HPC compiler support libraries, shared object files, and
environment variables that affect the behavior of the compilers.

Environment Variables describes the environment variables that affect the behavior of the NVIDIA HPC
compilers.

Distributing Files – Deployment describes the deployment of your files once you have built, debugged
and compiled them successfully.

Inter-language Calling provides examples showing how to place C language calls in a Fortran program
and Fortran language calls in a C program.
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Programming Considerations for 64-Bit Environments discusses issues of which programmers should
be aware when targeting 64-bit processors.

C++ and C Inline Assembly and Intrinsics describes how to use inline assembly code in C++ and C pro-
grams, as well as how to use intrinsic functions that map directly to assembly machine instructions.

Hardware and Software Constraints

This guide describes versions of the NVIDIA HPC compilers that target NVIDIA GPUs and x86-64 and
Arm CPUs. Details concerning environment-specific values and defaults and system-specific features
or limitations are presented in the release notes delivered with the NVIDIA HPC compilers.

Conventions

This guide uses the following conventions:

italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements in
the text, including assembly language statements.

Bold
is used for commands.

[ item1 ]
in general, square brackets indicate optional items. In this case item1 is optional. In the context
of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename …
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C++ and C
C++ and C language statements are shown in the text of this guide using a reduced fixed point
size.

Terms

The following table lists the NVIDIA HPC compilers and their corresponding commands:

Table 1: NVIDIA HPC Compilers and Commands

Compiler or Tool Language or Function Command

NVFORTRAN ISO/ANSI Fortran 2003 nvfortran

NVC++ ISO/ANSI C++17 with GNU compatibility nvc++

NVC ISO/ANSI C11 nvc
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In general, the designation NVFORTRAN is used to refer to the NVIDIA Fortran compiler, and nvfortran
is used to refer to the command that invokes the compiler. A similar convention is used for each of
the NVIDIA HPC compilers.

For simplicity, examples of command-line invocation of the compilers generally reference the nvfor-
tran command, and most source code examples are written in Fortran. Use of NVC++ and NVC is
consistent with NVFORTRAN, though there are command-line options and features of these compilers
that do not apply to NVFORTRAN, and vice versa.

There are a wide variety of x86-64 CPUs in use. Most of these CPUs are forward-compatible, but not
backward-compatible, meaning that code compiled to target a given processor will not necessarily
execute correctly on a previous-generation processor.

A table listing the processor options that NVIDIA HPC compilers support is available in the Release
Notes. The table also includes the features utilized by the compilers that distinguish them from a
compatibility standpoint.

In this manual, the convention is to use “x86-64” to specify the group of CPUs that are x86-compatible,
64-bit enabled, and run a 64-bit operating system. x86-64 processors can differ in terms of their
support for various prefetch, SSE and AVX instructions. Where such distinctions are important with
respect to a given compiler option or feature, it is explicitly noted in this manual.

Related Publications

The following documents contain additional information related to the NVIDIA HPC compilers.

▶ System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories,
Inc. (Prentice Hall, Inc.).

▶ System V Application Binary Interface X86-64 Architecture Processor Supplement.

▶ Fortran95HandbookComplete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass,
1997.

▶ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

▶ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

▶ The C Programming Language by Kernighan and Ritchie (Prentice Hall).

▶ C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

▶ The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Labora-
tories, Inc. (Addison-Wesley Publishing Co., 1990).

This section describes how to use the NVIDIA HPC compilers.
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Chapter 1. Overview

The command used to invoke a compiler, such as the nvfortran command, is called a compiler driver.
The compiler driver controls the following phases of compilation: preprocessing, compiling, assem-
bling, and linking. Once a file is compiled and an executable file is produced, you can execute, debug,
or profile the program on your system.

In general, using an NVIDIA HPC compiler involves three steps:

1. Produce program source code in a file containing a .f extension or another appropriate extension,
as described in Input Files. This program may be one that you have written or one that you are
modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The NVIDIA HPC compilers allow many variations on these general program development steps. These
variations include the following:

▶ Stop the compilation after preprocessing, compiling or assembling to save and examine inter-
mediate results.

▶ Provide options to the driver that control compiler optimization or that specify various features
or limitations.

▶ Include as input intermediate files such as preprocessor output, compiler output, or assembler
output.
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Chapter 2. Creating an Example

Let’s look at a simple example of using the NVIDIA Fortran compiler to create, compile, and execute a
program that prints:

hello

1. Create your program. For this example, suppose you enter the following simple Fortran program
in the file hello.f:

print *, "hello"
end

2. Compile the program. When you created your program, you called it hello.f. In this example,
we compile it from a shell command prompt using the default nvfortran driver option. Use the
following syntax:

$ nvfortran hello.f

By default, the executable output is placed in the file a.out. However, you can specify an output
file name by using the o option.

To place the executable output in the file hello, use this command:

$ nvfortran -o hello hello.f

3. Execute the program. To execute the resulting hello program, simply type the filename at the
command prompt and press the Return or Enter key on your keyboard:

$ hello

Below is the expected output:

hello

7
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Chapter 3. Invoking the Command-level
NVIDIA HPC Compilers

To translate and link a Fortran, C, or C++ program, the nvfortran, nvc and nvc++ commands do the
following:

1. Preprocess the source text file.

2. Check the syntax of the source text.

3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.

3.1. Command-line Syntax

The compiler command-line syntax, using nvfortran as an example, is:

nvfortran [options] [path]filename [...]

Where:

options
is one or more command-line options, all of which are described in detail in Use Command-line
Options.

path
is the pathname to the directory containing the file named by filename. If you do not specify the
path for a filename, the compiler uses the current directory. You must specify the path separately
for each filename not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object file, or library
to be processed by the compilation system. You can specify more than one [path]filename.

9
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3.2. Command-line Options

The command-line options control various aspects of the compilation process. For a complete alpha-
betical listing and a description of all the command-line options, refer to Use Command-Line Options.

The following list provides important information about proper use of command-line options.

▶ Command-line options and their arguments are case sensitive.

▶ The compiler drivers recognize characters preceded by a hyphen (-) as command-line options.
For example, the -Mlist option specifies that the compiler creates a listing file.

Note: The convention for the text of this manual is to show command-line options using a dash
instead of a hyphen; for example, you see -Mlist.

▶ The order of options and the filename is flexible. That is, you can place options before and after
the filename argument on the command line. However, the placement of some options is signif-
icant, such as the -l option, in which the order of the filenames determines the search order.

Note: If two or more options contradict each other, the last one in the command line takes
precedence.

▶ You may write linker options into a text file prefixed with the ‘@’ symbol, e.g. @file, and pass
that file to the compiler as an option. The contents of @file are passed to the linker.

$ echo "foo.o bar.o" > ./option_file.rsp
$ nvc++ @./option_files.rsp

The above will pass “foo.o bar.o” to the compiler as linker arguments.

10 Chapter 3. Invoking the Command-level NVIDIA HPC Compilers



Chapter 4. Filename Conventions

The NVIDIA HPC compilers use the filenames that you specify on the command line to find and to
create input and output files. This section describes the input and output filename conventions for
the phases of the compilation process.

4.1. Input Files

You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files, object
files, and libraries as inputs on the command line. The compiler driver determines the type of each
input file by examining the filename extensions.

The drivers use the following conventions:

filename.f
indicates a Fortran source file.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be pre-
processed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be pre-
processed).

filename.F90
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.f90
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that can
contain macros and preprocessor directives (to be preprocessed).

11
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filename.c
indicates a C source file that can contain macros and preprocessor directives (to be prepro-
cessed).

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be prepro-
cessed).

filename.i
indicates a preprocessed C or C++ source file.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be prepro-
cessed).

filename.cpp
indicates a C++ source file that can contain macros and preprocessor directives (to be prepro-
cessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux) indicates an object file.

filename.a
(Linux) indicates a library of object files.

filename.so
(Linux only) indicates a library of shared object files.

The driver passes files with .s extensions to the assembler and files with .o, .so and .a extensions
to the linker. Input files with unrecognized extensions, or no extension, are also passed to the linker.

Files with a .F (Capital F) or .FOR suffix are first preprocessed by the Fortran compilers and the output
is passed to the compilation phase. The Fortran preprocessor functions like cpp for C programs, but
is built in to the Fortran compilers rather than implemented through an invocation of cpp. This design
ensures consistency in the preprocessing step regardless of the type or revision of operating system
under which you are compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if
on the command line you specify an assembly-language file (filename.s) and the -S option to stop
before the assembly phase, the compiler takes no action on the assembly language file. Processing
stops after compilation and the assembler does not run. In this scenario, the compilation must have
been completed in a previous pass which created the .s file. For a complete description of the -S
option, refer to Output Files.

In addition to specifying primary input files on the command line, code within other files can be com-
piled as part of include files using the INCLUDE statement in a Fortran source file or the preprocessor
#include directive in Fortran source files that use a .F extension or C++ and C source files.

When linking a program with a library, the linker extracts only those library components that the pro-
gram needs. The compiler drivers link in several libraries by default. For more information about li-
braries, refer to Create and Use Libraries.

12 Chapter 4. Filename Conventions



NVIDIA HPC Compilers User's Guide, Release 26.1

4.2. Output Files

By default, an executable output file produced by one of the NVIDIA HPC compilers is placed in the file
a.out. As the Hello example shows, you can use the -o option to specify the output file name.

If you use option -F (Fortran only), -P (C/C++ only), -S or -c, the compiler produces a file containing
the output of the last completed phase for each input file, as specified by the option supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked object file re-
spectively. Similarly, the -E option does not produce a file, but displays the preprocessed source file
on the standard output. Using any of these options, the -o option is valid only if you specify a single
input file. If no errors occur during processing, you can use the files created by these options as input
to a future invocation of any of the NVIDIA compiler drivers.

The following table lists the stop-after options and the output files that the compilers create when
you use these options. It also indicates the accepted input files.

Table 2: Option Descriptions

Op-
tion

Stop Af-
ter

Input Output

-E prepro-
cessing

Source files preprocessed file to
standard out

-F prepro-
cessing

Source files. This option is not valid for nvc or nvc++. preprocessed file (.f)

-P prepro-
cessing

Source files. This option is not valid for nvfortran. preprocessed file (.i)

-S compila-
tion

Source files or preprocessed files assembly-language
file (.s)

-c assembly Source files, or preprocessed files, or assembly-
language files

unlinked object file (.o
or .obj)

none linking Source files, or preprocessed files, assembly-language
files, object files, or libraries

executable file (a.
out)

If you specify multiple input files or do not specify an object filename, the compiler uses the input
filenames to derive corresponding default output filenames of the following form, where filename is
the input filename without its extension:

filename.f
indicates a preprocessed file, if you compiled a Fortran file using the - F option.

filename.i
indicates a preprocessed file, if you compiled using the - P option.

filename.lst
indicates a listing file from the - Mlist option.

filename.o or filename.obj
indicates a object file from the - c option.

filename.s
indicates an assembly-language file from the - S option.
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Note: Unless you specify otherwise, the destination directory for any output file is the current working
directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.

$ nvfortran -c proto.f proto1.F

This produces the output files proto.o and proto1.o, which are binary object files. Prior to compi-
lation, the file proto1.F is preprocessed because it has a .F filename extension.
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Chapter 5. Fortran, C++ and C Data
Types

The NVIDIA Fortran, C++ and C compilers recognize scalar and aggregate data types. A scalar data
type holds a single value, such as the integer value 42 or the real value 112.6. An aggregate data type
consists of one or more scalar data type objects, such as an array of integer values.

15
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Chapter 6. Platform-specific
considerations

The NVIDIA HPC Compilers are supported on x86-64 and 64-bit Arm multicore CPUs running Linux.

6.1. Using the NVIDIA HPC Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. The NVIDIA HPC C++ and C compil-
ers support many of these extensions and can compile most programs that the GNU compilers can
compile. A few header files not interoperable with the NVIDIA compilers have been rewritten.

If you are using the NVIDIA HPC C++ or C compilers, please make sure that the supplied versions of
these include files are found before the system versions. This hierarchy happens by default unless you
explicitly add a -I option that references one of the system include directories.
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Chapter 7. Site-Specific Customization
of the Compilers

If you are using the NVIDIA HPC Compilers and want all your users to have access to specific libraries
or other files, there are special files that allow you to customize the compilers for your site.

7.1. Use siterc Files

The NVIDIA HPC Compiler command-level drivers utilize a file named siterc to enable site-specific
customization of the behavior of the NVIDIA compilers. The siterc file is located in the bin subdi-
rectory of the NVIDIA HPC Compilers installation directory. Using siterc, you can control how the
compiler drivers invoke the various components in the compilation tool chain.

7.2. Using User rc Files

In addition to the siterc file, user rc files can reside in a given user’s home directory, as specified by
the user’s HOME environment variable. You can use these files to control the respective NVIDIA HPC
Compilers. All of these files are optional.

On Linux, these files are named .mynvfortranrc, .mynvcrc, and .mynvc++rc.

The following examples show how you can use these rc files to tailor a given installation for a particular
purpose on Linux_x86_64 targets. The process is similar with obvious substitutions for aarch64
targets.
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Table 3: Examples of Using siterc and User rc Files

To do this… Add the line shown to the indicated file(s)

Make available to all linux compilations the li-
braries found in /opt/newlibs/64

set SITELIB=/opt/newlibs/64; to
/opt/nv/Linux_x86_64/26.1/compilers/bin/siterc

Add to all linux compilations a new library path:
/opt/local/fast

append SITELIB=/opt/local/fast; to
/opt/nv/Linux_x86_64/26.1/compilers/bin/siterc

With linux compilations, change -Mmpi to link in
/opt/mympi/64/libmpix.a

set MPILIBDIR=/opt/mympi/
64; set MPILIBNAME=mpix; to
/opt/nv/Linux_x86_64/26.1/compilers/bin/siterc

Build a Fortran executable for linux that resolves
shared objects in the relative directory ./REDIST

set RPATH=./REDIST; to ~/.mynvfortranrc
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Chapter 8. Common Development Tasks

Now that you have a brief introduction to the compiler, let’s look at some common development tasks
that you might wish to perform.

▶ When you compile code you can specify a number of options on the command line that define
specific characteristics related to how the program is compiled and linked, typically enhancing
or overriding the default behavior of the compiler. For a list of the most common command line
options and information on all the command line options, refer to Use Command-line Options.

▶ Code optimization for multicore CPUs allows the compiler to organize your code for efficient
execution. While possibly increasing compilation time and making the code more difficult to
debug, these techniques typically produce code that runs significantly faster than code that
does not use them. For more information on optimization refer to Multicore CPU Optimization.

▶ Function inlining, a special type of optimization, replaces a call to a function or a subroutine with
the body of the function or subroutine. This process can speed up execution by eliminating pa-
rameter passing and the function or subroutine call and return overhead. In addition, function
inlining allows the compiler to optimize the function with the rest of the code. However, function
inlining may also result in much larger code size with no increase in execution speed. For more
information on function inlining, refer to Using Function Inlining.

▶ A library is a collection of functions or subprograms used to develop software. Libraries con-
tain “helper” code and data, which provide services to independent programs, allowing code and
data to be shared and changed in a modular fashion. The functions and programs in a library are
grouped for ease of use and linking. When creating your programs, it is often useful to incorpo-
rate standard libraries or proprietary ones. For more information on this topic, refer to Creating
and Using Libraries.

▶ Environment variables define a set of dynamic values that can affect the way running processes
behave on a computer. It is often useful to use these variables to set and pass information that
alters the default behavior of the NVIDIA HPC Compilers and the executables which they gener-
ate. For more information on these variables, refer to Environment Variables.

▶ Deployment, though possibly an infrequent task, can present some unique issues related to con-
cerns of porting the code to other systems. Deployment, in this context, involves distribution
of a specific file or set of files that are already compiled and configured. The distribution must
occur in such a way that the application executes accurately on another system which may not
be configured exactly the same as the system on which the code was created. For more infor-
mation on what you might need to know to successfully deploy your code, refer to Distributing
Files – Deployment.

▶ An intrinsic is a function available in a given language whose implementation is handled specially
by the compiler. Intrinsics make using processor-specific enhancements easier because they
provide a C++ and C language interface to assembly instructions. In doing so, the compiler man-
ages details that the user would normally have to be concerned with, such as register names,
register allocations, and memory locations of data.
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Chapter 9. Use Command-line Options

A command line option allows you to control specific behavior when a program is compiled and
linked. This section describes the syntax for properly using command-line options and provides a
brief overview of a few of the more common options.

9.1. Command-line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for these options.
There are a large number of options available to you, yet most users only use a few of them. So, start
simple and progress into using the more advanced options.

By default, the NVIDIA HPC Compilers generate code that is optimized for the type of processor on
which compilation is performed, the compilation host. Before adding options to your command-line,
review Help with Command-line Options and Frequently-used Options.

9.1.1. Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not recognize
an option, you get an unknown switch error. The error can be downgraded to a warning by adding the
-noswitcherror option.

This document uses the following notation when describing options:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

… Horizontal ellipses indicate that zero or more instances of the preceding item are valid.
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9.1.2. Command-line Suboptions

Some options accept several suboptions. You can specify these suboptions either by using the full
option statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:

nvfortran -Mvect=simd -Mvect=noaltcode

nvfortran -Mvect=simd,noaltcode

9.1.3. Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both -Mvect and -Mnovect are
available. -Mvect enables vectorization and-Mnovectdisables it. If you used both of these commands
on a command line, they would conflict.

Note: When you use conflicting options on a command line, the last encountered option takes prece-
dence over any previous one.

The conflicting options rule is important for a number of reasons.

▶ Some options, such as -fast, include other options. Therefore, it is possible for you to be un-
aware that you have conflicting options.

▶ You can use this rule to create makefiles that apply specific flags to a set of files, as shown in
the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags defined for
CCFLAGS but disables vectorization.

CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$(CCFLAGS) -Mnovect

9.2. Help with Command-line Options

If you are just getting started with the NVIDIA HPC Compilers, it is helpful to know which options are
available, when to use them, and which options most users find effective.

Using -help

The -help option is useful because it provides information about all options supported by a given
compiler.

You can use -help in one of three ways:

▶ Use -help with no parameters to obtain a list of all the available options with a brief one-line
description of each.
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▶ Add a parameter to -help to restrict the output to information about a specific option. The
syntax for this usage is:

-help <command line option>

Suppose you use the following command to restrict the output to information about the -fast
option:

$ nvfortran -help -fast

The output you see is similar to:

-fast Common optimizations; includes -O2 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the -help parameter to restrict the output to information about
the help command. The usage information for -help shows how groups of options can be listed
or examined according to function.

$ nvfortran -help -help
-help[=groups|asm|debug|language|linker|opt|other|overall|phase|prepro|
suffix|switch|target|variable]

▶ Add a parameter to -help to restrict the output to a specific set of options or to a building
process. The syntax for this usage is this:

-help=<subgroup>

9.3. Getting Started with Performance

This section provides a quick overview of a few of the command-line options that are useful in improv-
ing multicore CPU performance.

9.3.1. Using -fast

The NVIDIA HPC Compilers implement a wide range of options that allow users a fine degree of control
on each optimization phase. When it comes to optimization of code, the quickest way to start is to
use the option -fast. These options create a generally optimal set of flags. They incorporate opti-
mization options to enable use of vector streaming SIMD instructions for 64-bit targets. They enable
vectorization with SIMD instructions, cache alignment, and flush to zero mode.

Note: The contents of the -fast option are host-dependent. Further, you should use these options
on both compile and link command lines.

The following table shows the typical -fast options.
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Table 4: Typical -fast Options

Use this op-
tion…

To do this…

-O2 Specifies a code optimization level of 2.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each itera-
tion.

-Mnoframe Do not generate code to set up a stack frame. Note: With this option, a stack trace
does not work.

-Mlre Enable loop-carried redundancy elimination.

-Mpre Enable partial redundancy elimination

On most modern CPUs the -fast also includes the options shown in this table:

Table 5: Additional -fast Options

Use this option… To do this…

-Mvect=simd Generates packed SIMD instructions.

-Mcache_align Aligns long objects on cache-line boundaries.

-Mflushz Sets flush-to-zero mode.

-M[no]vect Controls automatic vector pipelining.

To see the specific behavior of -fast for your target, use the following command:

$ nvfortran -help -fast

9.3.2. Other Performance-Related Options

While -fast is designed to be the quickest route to best performance, it is limited to routine bound-
aries. Depending on the nature and writing style of the source code, the compiler often can perform
further optimization by knowing the global context of usage of a given routine. For instance, deter-
mining the possible value range of actual parameters of a routine could enable a loop to be vectorized;
similarly, determining static occurrence of calls helps to decide which routine is beneficial to inline.

These types of global optimizations are under control of Interprocedural Analysis (IPA) in NVIDIA HPC
Compilers. Option -Mipa enables Interprocedural Analysis. -Mipa=fast is the recommended option
to get best performances for global optimization. You can also add the suboption inline to enable
automatic global inlining across files. You might consider using -Mipa=fast,inline. This option for
interprocedural analysis and global optimization can improve performance.

For more information on optimization, refer to Multicore CPU Optimization. For specific information
about these options, refer to the ‘Optimization Controls’ section of the HPC Compilers Reference
Guide.
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9.4. Frequently-used Options

In addition to overall performance, there are a number of other options that many users find useful
when getting started. The following table provides a brief summary of these options.
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Table 6: Commonly Used Command-Line Options

Use this option… To do this…

-acc Enable parallelization using OpenACC directives. By default the compil-
ers will parallelize and offload OpenACC regions to an NVIDIA GPU. Use
-acc=multicore to parallelize OpenACC regions for execution on all the cores
of a multicore CPU.

-fast This option creates a generally optimal set of flags for targets that support
SIMD capability. It incorporates optimization options to enable use of vector
streaming SIMD instructions, cache alignment and flushz.

-g Instructs the compiler to include symbolic debugging information in the object
module; sets the optimization level to zero unless a -O option is present on the
command line. Conversely, to prevent the generation of DWARF information,
use the -Mnodwarf option.

-gopt Instructs the compiler to include symbolic debugging information in the object
file, and to generate optimized code identical to that generated when -g is not
specified.

-gpu Control the type of GPU for which code is generated, the version of CUDA to be
targeted, and several other aspects of GPU code generation.

-help Provides information about available options.

-mcmodel=medium Enables medium=model code generation for 64-bit targets, which is useful when
the data space of the program exceeds 4GB.

-mp Enable parallelization using OpenMP directives. By default the compilers will
parallelize OpenMP regions for execution on all the cores of a multicore CPU.
Use -mp=gpu to parallelize OpenMP regions for offload to an NVIDIA GPU.

-Mconcur Instructs the compiler to enable auto-concurrentization of loops. If specified,
the compiler uses multiple CPU cores to execute loops that it determines to
be parallelizable; thus, loop iterations are split to execute optimally in a multi-
threaded execution context.

-Minfo Instructs the compiler to produce information on standard error.

-Minline Enables function inlining.

-Mipa=fast,
inline

Enables interprocedural analysis and optimization. Also enables automatic pro-
cedure inlining.

-Mkeepasm Keeps the generated assembly files.

-Munroll Invokes the loop unroller to unroll loops, executing multiple instances of the loop
during each iteration. This also sets the optimization level to 2 if the level is set
to less than 2, or if no -O or -g options are supplied.

-M[no]vect Enables [Disables] the code vectorizer.

--[no_]exceptionsRemoves exception handling from user code. For C++, declares that the func-
tions in this file generate no C++ exceptions, allowing more optimal code gen-
eration.

-o Names the output file.

-O <level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

-stdpar Enable parallelization and offloading of Standard C++ and Fortran parallel con-
structs to NVIDIA GPUs; default is -stdpar=gpu.

-tp <target> Specify a CPU target other than the compilation host CPU.

-Wl, <option> Compiler driver passes the specified options to the linker.
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9.5. Floating-point Subnormal

Starting with the 22.7 release of the NVIDIA HPC SDK the default setting of how floating-point de-
normal (IEEE 754 terminology “subnormal”) values are processed at runtime across both x86_64 and
aarch64 processors has been changed to be more consistent.

Denormal values can be both operands to, and results of, floating-point operations. The x86_64 ISA
differentiate between the two categories, operands and results, and use the terminology “daz” de-
normals are zeros for operands, and “flushz” flush to zero for results. The Arm V8 ISA as defined can
differentiate between the two categories, but currently the processors that NVIDIA HPC SDK support
only have a single setting for both operands and results and is defined as “fz” in the floating-point
status and control register.

The NVIDIA HPC SDK C, C++, and Fortran compilers have command line switches -M[no]daz and
-M[no]flushz, which when specified for the C/C++ main function or the Fortran main program af-
fect how denormals are handled by the processor at runtime. The values of these two command line
switches are passed to the runtime library to configure the floating-point status and control register
at program startup.

NVIDIA HPC SDK supports x86_64 processors from both Intel and AMD, and ArmV8.1 and later pro-
cessors. The following table summarizes the default settings of the -Mdaz and -Mflushz command
line switches pre and post the 22.7 release.

Table 7: Default settings of -Mdaz and -Mflushz

Pre 22.7 defaults 22.7 defaults

Intel -Mdaz
-Mnoflushz

-Mdaz
-Mflushz

AMD -Mnodaz
-Mnoflushz

-Mdaz
-Mflushz

Arm processors -Mnodaz -Mdaz

With the NVIDIA HPC SDK 22.7 release, the default handling of denormals operands and results is
to treat them as zero, as if the main function/program were compiled with -Mdaz-Mflushz. Conse-
quently, these changes can potentially affect applications that are dependent on subnormal values
being non-zero.

Along with the change to the default treatment of denormal values, users now have the ability to
configure the floating-point status and control register through the NVCOMPILER_FPU_STATE envi-
ronment variable — effectively overriding how the program was originally compiled. For further infor-
mation, see the description of the NVCOMPILER_FPU_STATE environment variable.
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Chapter 10. Multicore CPU Optimization

Source code that is readable, maintainable, and produces correct results is not always organized for
efficient execution. Normally, the first step in the program development process involves producing
code that executes and produces the correct results. This first step usually involves compiling with-
out much worry about optimization. After code is compiled and debugged, code optimization and
parallelization become an issue.

Invoking one of the NVIDIA HPC Compiler commands with certain options instructs the compiler to
generate optimized code. Optimization is not always performed since it increases compilation time
and may make debugging difficult. However, optimization produces more efficient code that usually
runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. You can use a number of
options to specify the optimization levels, including - O, - Mvect, - Mipa and - Mconcur. In addition, you
can use several of the - M<nvflag> switches to control specific types of optimization.

This chapter describes the overall effect of the optimization options supported by the NVIDIA HPC
Compilers, and basic usage of several options.

10.1. Overview of Optimization

In general, optimization involves using transformations and replacements that generate more efficient
code. This is done by the compiler and involves replacements that are independent of the particular
target processor’s architecture as well as replacements that take advantage of the architecture, in-
struction set and registers.

For discussion purposes, we categorize optimization:

▶ Local Optimization

▶ Global Optimization

▶ Loop Optimization

▶ Interprocedural Analysis (IPA) and Optimization

▶ Optimization Through Function Inlining
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10.1.1. Local Optimization

A basic block is a sequence of statements in which the flow of control enters at the beginning and
leaves at the end without the possibility of branching, except at the end. Local optimization is per-
formed on a block-by-block basis within a program’s basic blocks.

The NVIDIA HPC Compilers perform many types of local optimization including: algebraic identity re-
moval, constant folding, common sub-expression elimination, redundant load and store elimination,
scheduling, strength reduction, and peephole optimizations.

10.1.2. Global Optimization

This optimization is performed on a subprogram/function over all its basic blocks. The optimizer per-
forms control-flow and data-flow analysis for an entire program unit. All loops, including those formed
by ad hoc branches such as IFs or GOTOs, are detected and optimized.

Global optimization includes: constant propagation, copy propagation, dead store elimination, global
register allocation, invariant code motion, and induction variable elimination.

10.1.3. Loop Optimization: Unrolling, Vectorization and
Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling op-
tions. Vectorization transforms loops to improve memory access performance and make use of packed
SSEvector instructions which perform the same operation on multiple data items concurrently. Un-
rolling replicates the body of loops to reduce loop branching overhead and provide better opportu-
nities for local optimization, vectorization and scheduling of instructions. Performance for loops on
systems with multiple processors may also improve using the parallelization features of the NVIDIA
HPC Compilers.

10.1.4. Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries to perform op-
timizations that would otherwise be unavailable. For example, if the actual argument to a function is
in fact a constant in the caller, it may be possible to propagate that constant into the callee and per-
form optimizations that are not valid if the dummy argument is treated as a variable. A wide range of
optimizations are enabled or improved by using IPA, including but not limited to data alignment opti-
mizations, argument removal, constant propagation, pointer disambiguation, pure function detection,
F90/F95 array shape propagation, data placement, empty function removal, automatic function inlin-
ing, inlining of functions from pre-compiled libraries, and interprocedural optimization of functions
from pre-compiled libraries.
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10.1.5. Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function. This
optimization will sometimes speed up execution by eliminating the function call and return overhead.
Function inlining may also create opportunities for other types of optimization. Function inlining is not
always beneficial. When used improperly it may increase code size and generate less efficient code.

10.2. Getting Started with Optimization

The first concern should be getting the program to execute and produce correct results. To get the
program running, start by compiling and linking without optimization. Add -O0 to the compile line to
select no optimization; or add -g to debug the program easily and isolate any coding errors exposed
during porting.

To get started quickly with optimization, a good set of options to use with any of the NVIDIA HPC
compilers is -fast. For example:

$ nvfortran -fast -Mipa=fast,inline prog.f

For all of the NVIDIA HPC Fortran, C++ and C compilers, the - fast - Mipa=fast,inline options
generally produce code that is well-optimized without the possibility of significant slowdowns due to
pathological cases.

▶ The``- fast`` option is an aggregate option that includes a number of individual NVIDIA compiler
options; which compiler options are included depends on the target for which compilation is
performed.

▶ The - Mipa=fast,inline option invokes interprocedural analysis (IPA), including several IPA sub-
options. The inline suboption enables automatic inlining with IPA. If you do not wish to use auto-
matic inlining, you can compile with - Mipa=fast and use several IPA suboptions without inlining.

These aggregate options incorporate a generally optimal set of flags for targets that support SIMD
capability, including vectorization with SIMD instructions, cache alignment, and flushz.

The following table shows the typical - fast options.

Table 8: Typical -fast Options

Use this op-
tion…

To do this…

-O2 Specifies a code optimization level of 2 and -Mvect=SIMD.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each iteration.

-Mnoframe Indicates to not generate code to set up a stack frame. Note With this option, a
stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

-Mautoinline Enables automatic function inlining in C & C++.

-Mpre Indicates partial redundancy elimination

On modern multicore CPUs the -fast also typically includes the options shown in the following table:
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Table 9: Additional -fast Options

Use this option… To do this…

-Mvect=simd Generates packed SSE and AVX instructions.

-Mcache_align Aligns long objects on cache-line boundaries.

-Mflushz Sets flush-to-zero mode.

By experimenting with individual compiler options on a file-by-file basis, further significant perfor-
mance gains can sometimes be realized. However, depending on the coding style, individual optimiza-
tions can sometimes cause slowdowns, and must be used carefully to ensure performance improve-
ments.

There are other useful command line options related to optimization and parallelization, such as -help,
-Minfo, -Mneginfo, -dryrun, and -v.

10.2.1. -help

As described in Help with Command-Line Options, you can see a specification of any command-line
option by invoking any of the NVIDIA HPC Compilers with -help in combination with the option in
question, without specifying any input files.

For example, you might want information on -O:

$ nvfortran -help -O

The resulting output is similar to this:

-O Set opt level. All -O1 optimizations plus traditional scheduling and
global scalar optimizations performed

Or you can see the full functionality of -help itself, which can return information on either an individual
option or groups of options:

$ nvfortran -help -help

The resulting output is similar to this:

-help[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

10.2.2. -Minfo

You can use the -Minfo option to display compile-time optimization listings. When this option is used,
the NVIDIA HPC Compilers issue informational messages to standard error (stderr) as compilation
proceeds. From these messages, you can determine which loops are optimized using unrolling, SIMD
vectorization, parallelization, GPU offloading, interprocedural optimizations and various miscellaneous
optimizations. You can also see where and whether functions are inlined.
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10.2.3. -Mneginfo

You can use the -Mneginfo option to display informational messages to standard error (stderr) that
explain why certain optimizations are inhibited.

10.2.4. -dryrun

The - dryrun option can be useful as a diagnostic tool if you need to see the steps used by the compiler
driver to preprocess, compile, assemble and link in the presence of a given set of command line inputs.
When you specify the - dryrun option, these steps are printed to standard error (stderr) but are not
actually performed. For example, you can use this option to inspect the default and user-specified
libraries that are searched during the link phase, and the order in which they are searched by the
linker.

10.2.5. -v

The -v option is similar to -dryrun, except each compilation step is performed and not simply printed.

10.3. Local and Global Optimization

This section describes local and global optimization.

10.3.1. -Msafeptr

The - Msafeptr option can significantly improve performance of C++ and C programs in which there is
known to be no pointer aliasing. For obvious reasons, this command-line option must be used carefully.
There are a number of suboptions for - Msafeptr:

▶ -Msafeptr=all – All pointers are safe. Equivalent to the default setting: - Msafeptr.

▶ -Msafeptr=arg – Function formal argument pointers are safe. Equivalent to- Msafeptr=dummy.

▶ -Msafeptr=global – Global pointers are safe.

▶ -Msafeptr=local – Local pointers are safe. Equivalent to - Msafeptr=auto.

▶ -Msafeptr=static – Static local pointers are safe.

If your C++ or C program has pointer aliasing and you also want automating inlining, then compiling
with - Mipa=fast or - Mipa=fast,inline includes pointer aliasing optimizations. IPA may be able to
optimize some of the alias references in your program and leave intact those that cannot be safely
optimizied.
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10.3.2. -O

Using the NVIDIA HPC Compiler commands with the -O<level> option (the capital O is for Optimize),
you can specify any integer level from 0 to 4.

-O0

Level zero specifies no optimization. A basic block is generated for each language statement. At this
level, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. This level is useful for the initial
execution of a program. It is also useful for debugging, since there is a direct correlation between the
program text and the code generated. To enable debugging, include -g on your compile line.

-O1

Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is
performed.

Local optimization is a good choice when the code is very irregular, such as code that contains many
short statements containing IF statements and does not contain loops (DO or DO WHILE statements ).
Although this case rarely occurs, for certain types of code, this optimization level may perform better
than level-two (-O2).

-O

When no level is specified, level two global optimizations are performed, including traditional scalar
optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is enabled.

-O2

Level two specifies global optimization. This level performs all level-one local optimization as well as
level two global optimization described in -O. In addition, more advanced optimizations such as SIMD
code generation, cache alignment, and partial redundancy elimination are enabled.

-O3

Level three specifies aggressive global optimization. This level performs all level-one and level-two
optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or
may not be profitable.

-O4

Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of
guarded invariant floating point expressions.

Types of Optimizations

The NVIDIA HPC Compilers perform many different types of local optimizations, including but not lim-
ited to:

▶ Algebraic identity removal

▶ Constant folding

▶ Common subexpression elimination

▶ Local register optimization

▶ Peephole optimizations

▶ Redundant load and store elimination

▶ Strength reductions
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Level-two optimization (- O2 or - O) specifies global optimization. The - fast option generally specifies
global optimization; however, the - fast switch varies from release to release, depending on a reason-
able selection of switches for any one particular release. The - O or - O2 level performs all level-one
local optimizations as well as global optimizations. Control flow analysis is applied and global registers
are allocated for all functions and subroutines. Loop regions are given special consideration. This opti-
mization level is a good choice when the program contains loops, the loops are short, and the structure
of the code is regular.

The NVIDIA HPC Compilers perform many different types of global optimizations, including but not
limited to:

▶ Branch to branch elimination

▶ Constant propagation

▶ Copy propagation

▶ Dead store elimination

▶ Global register allocation

▶ Induction variable elimination

▶ Invariant code motion

You can explicitly select the optimization level on the command line. For example, the following com-
mand line specifies level-two optimization which results in global optimization:

$ nvfortran -O2 prog.f

The default optimization level changes depending on which options you select on the command line.
For example, when you select the - g debugging option, the default optimization level is set to level-
zero (- O0). However, if you need to debug optimized code, you can use the - gopt option to generate
debug information without perturbing optimization. For a description of the default levels, refer to
Default Optimization Levels.

The - fast option includes - O2 on all targets. If you want to override the default for - fast with - O3
while maintaining all other elements of - fast, simply compile as follows:

$ nvfortran -fast -O3 prog.f

10.4. Loop Unrolling using -Munroll

This optimization unrolls loops, which reduces branch overhead, and can improve execution speed
by creating better opportunities for instruction scheduling. A loop with a constant count may be
completely unrolled or partially unrolled. A loop with a non-constant count may also be unrolled. A
candidate loop must be an innermost loop containing one to four blocks of code.

The following example shows the use of the -Munroll option:

$ nvfortran -Munroll prog.f

The -Munroll option is included as part of -fast on all targets. The loop unroller expands the con-
tents of a loop and reduces the number of times a loop is executed. Branching overhead is reduced
when a loop is unrolled two or more times, since each iteration of the unrolled loop corresponds to two
or more iterations of the original loop; the number of branch instructions executed is proportionately
reduced. When a loop is unrolled completely, the loop’s branch overhead is eliminated altogether.
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Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely unrolled
or unrolled two or more times, opportunities for improved scheduling may be presented. The code
generator can take advantage of more possibilities for instruction grouping or filling instruction delays
found within the loop.

Examples Showing Effect of Unrolling

The following side-by-side examples show the effect of code unrolling on a segment that computes a
dot product.

Note: This example is only meant to represent how the compiler can transform the loop; it is not
meant to imply that the programmer needs to manually change code. In fact, manually unrolling your
code can sometimes inhibit the compiler’s analysis and optimization.

Table 10: Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

REAL*4 A(100), B(100), Z
INTEGER I
DO I=1, 100

Z = Z + A(i) * B(i)
END DO

END

REAL*4 A(100), B(100), Z
INTEGER I
DO I=1, 100, 2

Z = Z + A(i) * B(i)
Z = Z + A(i+1) * B(i+1)

END DO
END

Using the -Minfo option, the compiler informs you when a loop is being unrolled. For example, a mes-
sage similar to the following, indicating the line number, and the number of times the code is unrolled,
displays when a loop is unrolled:

dot:
5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-options to - Munroll, or using - Mnounroll, you can control whether
and how loops are unrolled on a file-by-file basis. For more information on - Munroll, refer to Use
Command-line Options.

10.5. Vectorization using -Mvect

The - Mvect option is included as part of - fast on all multicore CPU targets. If your program contains
computationally-intensive loops, the - Mvect option may be helpful. If in addition you specify - Minfo,
and your code contains loops that can be vectorized, the compiler reports relevant information on the
optimizations applied.

When an NVIDIA HPC Compiler command is invoked with the - Mvect option, the vectorizer scans code
searching for loops that are candidates for high- level transformations such as loop distribution, loop
interchange, cache tiling, and idiom recognition (replacement of a recognizable code sequence, such as
a reduction loop, with optimized code sequences or function calls). When the vectorizer finds vector-
ization opportunities, it internally rearranges or replaces sections of loops (the vectorizer changes the
code generated; your source code’s loops are not altered). In addition to performing these loop trans-
formations, the vectorizer produces extensive data dependence information for use by other phases
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of compilation and detects opportunities to use vector or packed SIMD instructions on processors
where these are supported.

The - Mvect option can speed up code which contains well-behaved countable loops which operate
on large floating point arrays in Fortran and their C++ and C counterparts. However, it is possible
that some codes will show a decrease in performance when compiled with the - Mvect option due to
the generation of conditionally executed code segments, inability to determine data alignment, and
other code generation factors. For this reason, it is recommended that you check carefully whether
particular program units or loops show improved performance when compiled with this option enabled.

10.5.1. Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable if the
number of iterations is set only before loop execution and cannot be modified during loop execution.
Some of the vectorizer transformations can be controlled by arguments to the -Mvect command line
option. The following sections describe the arguments that affect the operation of the vectorizer. In
addition, some of these vectorizer operations can be controlled from within code using directives and
pragmas.

The vectorizer performs the following operations:

▶ Loop interchange

▶ Loop splitting

▶ Loop fusion

▶ Generation of SIMD instructions on CPUs where these are supported

▶ Generation of prefetch instructions on processors where these are supported

▶ Loop iteration peeling to maximize vector alignment

▶ Alternate code generation

The following table lists and briefly describes some of the -Mvect suboptions.
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Table 11: -Mvect Suboptions

Use this option … To instruct the vectorizer to do this …

-Mvect=altcode Generate appropriate code for vectorized loops.

-Mvect=[no]assoc
Perform[disable] associativity conversions

that can change the results of a computa-
tion due to a round-off error. For example,
a typical optimization is to change one
arithmetic operation to another arith-
metic operation that is mathematically
correct,
but can be computationally different
and generate faster code. This option is
provided to enable or disable this trans-
formation, since a round-off error for such
associativity conversions may produce
unacceptable results.

-Mvect=fuse Enable loop fusion.

-Mvect=gather Enable vectorization of indirect array references.

-Mvect=idiom Enable idiom recognition.

-Mvect=levels:<n> Set the maximum next level of loops to optimize.

-Mvect=nocond Disable vectorization of loops with conditions.

-Mvect=partial Enable partial loop vectorization via inner loop
distribution.

-Mvect=prefetch Automatically generate prefetch instructions
when vectorizable loops are encountered, even in
cases where SSESIMD instructions are not gen-
erated.

-Mvect=short Enable short vector operations.

-Mvect=simd Automatically generate packed SSE (Streaming
SIMD Extensions)SIMD, and prefetch instruc-
tions when vectorizable loops are encountered.
SIMD instructions, first introduced on Pentium
III and AthlonXP processors, operate on single-
precision floating-point data.

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to -Mvect=simd.

-Mvect=uniform Perform consistent optimizations in both vector-
ized and residual loops. Be aware that this may
affect the performance of the residual loop.

Note: Inserting no in front of an option disables the option. For example, to disable the generation of
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SIMD instructions, compile with -Mvect=nosimd.

10.5.2. Vectorization Example Using SIMD Instructions

One of the most important vectorization options is -Mvect=simd. When you use this option, the
compiler automatically generates SIMD vector instructions, where possible, when targeting proces-
sors on which these instructions are supported. This process can improve performance by several
factors compared with the equivalent scalar code. All of the NVIDIA HPC Fortran, C++ and C compilers
support this capability.

In the program in Vector operation using SIMD instructions, the vectorizer recognizes the vector oper-
ation in subroutine ‘loop’ when either compiler switch -Mvect=simd or -fast is used. This example
shows the compilation, informational messages, and runtime results using SIMD instructions on an
Intel Core i7 7800X Skylake system, along with issues that affect SIMD performance.

Loops vectorized using SIMD instructions operate much more efficiently when processing vectors that
are aligned to a cache-line boundary. You can cause unconstrained data objects of size 16 bytes or
greater to be cache-aligned by compiling with the -Mcache_align switch. An unconstrained data
object is a data object that is not a common block member and not a member of an aggregate data
structure.

Note: For stack-based local variables to be properly aligned, the main program or function must be
compiled with -Mcache_align.

The -Mcache_align switch has no effect on the alignment of Fortran allocatable or automatic ar-
rays. If you have arrays that are constrained, such as vectors that are members of Fortran common
blocks, you must specifically pad your data structures to ensure proper cache alignment. You can use
-Mcache_align for only the beginning address of each common block to be cache-aligned.

The following examples show the results of compiling the sample code in Vector operation using SIMD
instructions both with and without the option -Mvect=simd.

Vector operation using SIMD instructions

program vector_op
parameter (N = 9999)
real*4 x(N), y(N), z(N), W(N)
do i = 1, n

y(i) = i
z(i) = 2*i
w(i) = 4*i

enddo
do j = 1, 200000

call loop(x,y,z,w,1.0e0,N)
enddo
print *, x(1),x(771),x(3618),x(6498),x(9999)

end

subroutine loop(a,b,c,d,s,n)
integer i, n

(continues on next page)
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(continued from previous page)

real*4 a(n), b(n), c(n), d(n),s
do i = 1, n

a(i) = b(i) + c(i) - s * d(i)
enddo

end

Assume the preceding program is compiled as follows, where -Mvect=nosimd disables SIMD vector-
ization:

$ nvfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector_op:

4, Loop unrolled 16 times
Generated 1 prefetches in scalar loop

9, Loop not vectorized/parallelized: contains call
loop:

18, Loop unrolled 8 times
FMA (fused multiply-add) instruction(s) generated

The following output shows a sample result if the generated executable is run and timed on an Intel
Core i7 7800X Skylake system:

$ /bin/time vadd
-1.000000 -771.0000 -3618.000 -6498.000
-9999.000

0.99user 0.01system 0:01.18elapsed 84%CPU (0avgtext+0avgdata 3120maxresident)k
7736inputs+0outputs (4major+834minor)pagefaults 0swaps

$ /bin/time vadd
-1.000000 -771.0000 -3618.000 -6498.000
-9999.000

2.31user 0.00system 0:02.57elapsed 89%CPU (0avgtext+0avgdata 6976maxresident)k
8192inputs+0outputs (4major+149minor)pagefaults 0swaps

Now, recompile with vectorization enabled, and you see results similar to these:

$ nvfortran -fast -Minfo vadd.f -Mfree -o vadd
vector_op:

4, Loop not vectorized: may not be beneficial
Unrolled inner loop 8 times
Residual loop unrolled 7 times (completely unrolled)
Generated 1 prefetches in scalar loop

9, Loop not vectorized/parallelized: contains call
loop:

18, Generated 2 alternate versions of the loop
Generated vector simd code for the loop
Generated 3 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 3 prefetch instructions for the loop
Generated vector simd code for the loop
Generated 3 prefetch instructions for the loop
FMA (fused multiply-add) instruction(s) generated

Notice the informational messages for the loop at line 18. The first line of the message indicates that
two alternate versions of the loop were generated. The loop count and alignments of the arrays deter-
mine which of these versions is executed. The next several lines indicate the loop was vectorized and
that prefetch instructions have been generated for three loads to minimize latency of data transfers
from main memory.
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Executing again, you should see results similar to the following:

$ /bin/time vadd-simd
-1.000000 -771.0000 -3618.000 -6498.000
-9999.000

0.27user 0.00system 0:00.29elapsed 93%CPU (0avgtext+0avgdata 3124maxresident)k
0inputs+0outputs (0major+838minor)pagefaults 0swaps

$ /bin/time vadd-simd
-1.000000 -771.0000 -3618.000 -6498.000
-9999.000

0.62user 0.00system 0:00.65elapsed 95%CPU (0avgtext+0avgdata 6976maxresident)k
0inputs+0outputs (0major+151minor)pagefaults 0swaps

The SIMD result is 3.7 times faster than the equivalent non-SIMD version of the program.

Speed-up realized by a given loop or program can vary widely based on a number of factors:

▶ When the vectors of data are resident in the data cache, performance improvement using SIMD
instructions is most effective.

▶ If data is aligned properly, performance will be better in general than when using SIMD operations
on unaligned data.

▶ If the compiler can guarantee that data is aligned properly, even more efficient sequences of
SIMD instructions can be generated.

▶ The efficiency of loops that operate on single-precision data can be higher. SIMD instructions can
operate on four single-precision elements concurrently, but only two double-precision elements.

Note: Compiling with -Mvect=simd can result in numerical differences from the executables gener-
ated with less optimization. Certain vectorizable operations, for example dot products, are sensitive
to order of operations and the associative transformations necessary to enable vectorization (or par-
allelization).

10.6. Interprocedural Analysis and Optimization
using -Mipa

The NVIDIA HPC Fortran, C++ and C compilers use interprocedural analysis (IPA) that results in mini-
mal changes to makefiles and the standard edit-build-run application development cycle. Other than
adding -Mipa to the command line, no other changes are required. For reference and background,
the process of building a program without IPA is described later in this section, followed by the minor
modifications required to use IPA with the NVIDIA compilers. While the NVC compiler is used here to
show how IPA works, similar capabilities apply to each of the NVIDIA HPC Fortran, C++ and C compilers.
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10.6.1. Building a Program Without IPA – Single Step

Using the nvc command-level compiler driver, multiple source files can be compiled and linked into a
single executable with one command. The following example compiles and links three source files:

$ nvc -o a.out file1.c file2.c file3.c

In actuality, the nvc driver executes several steps to produce the assembly code and object files corre-
sponding to each source file, and subsequently to link the object files together into a single executable
file. This command is roughly equivalent to the following commands performed individually:

$ nvc -S -o file1.s file1.c
$ as -o file1.o file1.s
$ nvc -S -o file2.s file2.c
$ as -o file2.o file2.s
$ nvc -S -o file3.s file3.c
$ as -o file3.o file3.s
$ nvc -o a.out file1.o file2.o file3.o

If any of the three source files is edited, the executable can be rebuilt with the same command line:

$ nvc -o a.out file1.c file2.c file3.c

Note: This always works as intended, but has the side-effect of recompiling all of the source files,
even if only one has changed. For applications with a large number of source files, this can be time-
consuming and inefficient.

10.6.2. Building a Program Without IPA – Several Steps

It is also possible to use individual nvc commands to compile each source file into a corresponding
object file, and one to link the resulting object files into an executable:

$ nvc -c file1.c
$ nvc -c file2.c
$ nvc -c file3.c
$ nvc -o a.out file1.o file2.o file3.o

The nvc driver invokes the compiler and assembler as required to process each source file, and invokes
the linker for the final link command. If you modify one of the source files, the executable can be
rebuilt by compiling just that file and then relinking:

$ nvc -c file1.c
$ nvc -o a.out file1.o file2.o file3.o
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10.6.3. Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using the make utility on sys-
tems where it is supported. Suppose you create a makefile containing the following lines:

a.out: file1.o file2.o file3.o
nvc $(OPT) -o a.out file1.o file2.o file3.o

file1.o: file1.c
nvc $(OPT) -c file1.c

file2.o: file2.c
nvc $(OPT) -c file2.c

file3.o: file3.c
nvc $(OPT) -c file3.c

It is then possible to type a single make command:

$ make

The make utility determines which object files are out of date with respect to their corresponding
source files, and invokes the compiler to recompile only those source files and to relink the executable.
If you subsequently edit one or more source files, the executable can be rebuilt with the minimum
number of recompilations using the same single make command.

10.6.4. Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the NVIDIA HPC Compilers alters the standard and
make utility command-level interfaces as little as possible. IPA occurs in three phases:

▶ Collection: Create a summary of each function or procedure, collecting the useful information
for interprocedural optimizations. This is done during the compile step if the - Mipa switch is
present on the command line; summary information is collected and stored in the object file.

▶ Propagation: Process all the object files to propagate the interprocedural summary information
across function and file boundaries. This is done during the link step, when all the object files are
combined, if the - Mipa switch is present on the link command line.

▶ Recompile/Optimization: Recompile each of the object files with the propagated interprocedural
information, producing a specialized object file. This process is also performed during the link
step when the - Mipa switch is present on the link command line.

When linking with - Mipa, the NVIDIA HPC Compilers automatically regenerate IPA-optimized versions
of each object file, essentially recompiling each file. If there are IPA-optimized objects from a previous
build, the compilers will minimize the recompile time by reusing those objects if they are still valid. They
will still be valid if the IPA-optimized object is newer than the original object file, and the propagated
IPA information for that file has not changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application with
the IPA-optimized object files. The IPA-optimized object files are saved in the same directory as the
original object files, for use in subsequent program builds.

10.6. Interprocedural Analysis and Optimization using -Mipa 45



NVIDIA HPC Compilers User's Guide, Release 26.1

10.6.5. Building a Program with IPA – Single Step

By adding the -Mipa command line switch, several source files can be compiled and linked with inter-
procedural optimizations with one command:

$ nvc -Mipa=fast -o a.out file1.c file2.c file3.c

Just like compiling without -Mipa, the driver executes several steps to produce the assembly and
object files to create the executable:

$ nvc -Mipa=fast -S -o file1.s file1.c
$ as -o file1.o file1.s
$ nvc -Mipa=fast -S -o file2.s file2.c
$ as -o file2.o file2.s
$ nvc -Mipa=fast -S -o file3.s file3.c
$ as -o file3.o file3.s
$ nvc -Mipa=fast -o a.out file1.o file2.o file3.o

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the inter-
procedural propagation. The IPA linker reinvokes the compiler on each of the object files to recompile
them with interprocedural information. This creates three new objects with mangled names:

file1_ipa5_a.out.oo.o, file2_ipa5_a.out.oo.o, file3_ipa5_a.out.oo.o

The system linker is then invoked to link these IPA-optimized objects into the final executable. Later,
if one of the three source files is edited, the executable can be rebuilt with the same command line:

$ nvc -Mipa=fast -o a.out file1.c file2.c file3.c

This works, but again has the side-effect of compiling each source file, and recompiling each object
file at link time.

10.6.6. Building a Program with IPA – Several Steps

Just by adding the -Mipa command-line switch, it is possible to use individual nvc commands to com-
pile each source file, followed by a command to link the resulting object files into an executable:

$ nvc -Mipa=fast -c file1.c
$ nvc -Mipa=fast -c file2.c
$ nvc -Mipa=fast -c file3.c
$ nvc -Mipa=fast -o a.out file1.o file2.o file3.o

The nvc driver invokes the compiler and assembler as required to process each source file, and invokes
the IPA linker for the final link command. If you modify one of the source files, the executable can be
rebuilt by compiling just that file and then relinking:

$ nvc -Mipa=fast -c file1.c
$ nvc -Mipa=fast -o a.out file1.o file2.o file3.o

When the IPA linker is invoked, it will determine that the IPA-optimized object for file1.o
(file1_ipa5_a.out.oo.o) is stale, since it is older than the object file1.o; and hence it needs
to be rebuilt, and reinvokes the compiler to generate it. In addition, depending on the nature of the
changes to the source file file1.c, the interprocedural optimizations previously performed for file2
and file3 may now be inaccurate. For instance, IPA may have propagated a constant argument value
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in a call from a function in file1.c to a function in file2.c; if the value of the argument has changed,
any optimizations based on that constant value are invalid. The IPA linker determines which, if any, of
the previously created IPA-optimized objects need to be regenerated; and, as appropriate, reinvokes
the compiler to regenerate them. Only those objects that are stale or which have new or different IPA
information are regenerated. This approach saves compile time.

10.6.7. Building a Program with IPA Using Make

As shown earlier, programs can be built with IPA using the make utility. Just add the command-line
switch -Mipa, as shown here:

OPT=-Mipa=fast
a.out: file1.o file2.o file3.o
nvc $(OPT) -o a.out file1.o file2.o file3.o

file1.o: file1.c
nvc $(OPT) -c file1.c

file2.o: file2.c
nvc $(OPT) -c file2.c

file3.o: file3.c
nvc $(OPT) -c file3.c

Using the single make command invokes the compiler to generate any of the object files that are out-
of-date, then invokes nvc to link the objects into the executable. At link time, nvc calls the IPA linker
to regenerate any stale or invalid IPA-optimized objects.

$ make

10.6.8. Questions about IPA

Question: Why is the object file so large?

Answer: An object file created with - Mipa contains several additional sections. One is the summary
information used to drive the interprocedural analysis. In addition, the object file contains the compiler
internal representation of the source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is enabled. The total size of the object
file may be 5-10 times its original size. The extra sections are not added to the final executable.

Question: What if I compile with - Mipa and link without - Mipa?

Answer: The NVIDIA HPC Compilers generate a legal object file, even when the source file is compiled
with - Mipa. If you compile with - Mipa and link without - Mipa, the linker is invoked on the original
object files. A legal executable is generated. While this executable does not have the benefit of inter-
procedural optimizations, any other optimizations do apply.

Question: What if I compile without - Mipa and link with - Mipa?

Answer: At link time, the IPA linker must have summary information about all the functions or routines
used in the program. This information is created only when a file is compiled with - Mipa. If you compile
a file without - Mipa and then try to get interprocedural optimizations by linking with - Mipa, the IPA
linker will issue a message that some routines have no IPA summary information, and will proceed to
run the system linker using the original object files. If some files were compiled with - Mipa and others
were not, it will determine the safest approximation of the IPA summary information for those files not
compiled with - Mipa, and use that to recompile the other files using interprocedural optimizations.
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Question: Can I build multiple applications in the same directory with - Mipa?

Answer: Yes. Suppose you have three source files: main1.c, main2.c, and sub.c, where sub.c is
shared between the two applications. Suppose you build the first application with - Mipa, using this
command:

$ nvc -Mipa=fast -o app1 main1.c sub.c

The IPA linker creates two IPA-optimized object files and uses them to build the first application.

main1_ipa4_app1.oo sub_ipa4_app1.oo

Now suppose you build the second application using this command:

$ nvc -Mipa=fast -o app2 main2.c sub.c

The IPA linker creates two more IPA-optimized object files:

main2_ipa4_app2.oo sub_ipa4_app2.oo

Note: There are now three object files for sub.c: the original sub.o, and two IPA-optimized objects,
one for each application in which it appears.

Question: How is the mangled name for the IPA-optimized object files generated?

Answer: The mangled name has ‘_ipa’ appended, followed by the decimal number of the length of
the executable file name, followed by an underscore and the executable file name itself. The suffix is
changed to .oo so that linking *.o does not pull in the IPA-optimized objects. If the IPA linker determines
that the file would not benefit from any interprocedural optimizations, it does not have to recompile
the file at link time, and uses the original object.

Question: Can I use parallel make environments (e.g., pmake) with IPA?

Answer: No. IPA is not compatible with parallel make environments.
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Chapter 11. Using Function Inlining

Function inlining replaces a call to a function or a subroutine with the body of the function or sub-
routine. This can speed up execution by eliminating parameter passing and function/subroutine call
and return overhead. It also allows the compiler to optimize the function with the rest of the code.
Note that using function inlining indiscriminately can result in much larger code size and no increase
in execution speed.

The NVIDIA HPC compilers provide two categories of inlining:

▶ Automatic function inlining – In C++ and C, you can inline static functions with the inline key-
word by using the - Mautoinline option, which is included with - fast.

▶ Function inlining – You can inline functions which were extracted to the inline libraries in Fortran,
C++ and C. There are two ways of enabling function inlining: with and without the lib suboption.
For the latter, you create inline libraries, for example using the nvfortran compiler driver and
the - o and - Mextract options.

There are important restrictions on inlining. Inlining only applies to certain types of functions. Refer
to Restrictions on Inlining for more details on function inlining limitations.

This section describes how to use the following options related to function inlining:

-Mautoinline
-Mextract
-Minline
-Mnoinline
-Mrecursive

11.1. Automatic function inlining in C++ and C

To enable automatic function inlining in C++ and C for static functions with the inline keyword, use
the - Mautoinline option (included in - fast). Use - Mnoautoinline to disable it.

These - Mautoinline suboptions let you determine the selection criteria, where n loosely corresponds
to the number of lines in the procedure:

maxsize:n
Automatically inline functions size n and less

totalsize:n
Limit automatic inlining to total size of n
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11.2. Invoking Procedure Inlining

To invoke the procedure inliner, use the - Minline option. If you do not specify an inline library, the
compiler performs a special prepass on all source files named on the compiler command line before it
compiles any of them. This pass extracts procedures that meet the requirements for inlining and puts
them in a temporary inline library for use by the compilation pass.

Several - Minline suboptions let you determine the selection criteria for procedures to be inlined.
These suboptions include:

except:func
Inlines all eligible procedures except func, a procedure in the source text. You can use a comma-
separated list to specify multiple procedure.

[name:]``func``
Inlines all procedures in the source text whose name matches func. You can use a comma-
separated list to specify multiple procedures.

[pragma]
Fortran Only: The pragma option is similar to the name option above except it will inline proce-
dures marked with the !NVF$ INLINE pragma. To use this option, add !NVF$ INLINE on a
separate source line immediately before the procedure’s SUBROUTINE or FUNCTION statement.

[maxsize:]``n``
A numeric option is assumed to be a size. Procedures of size n or less are inlined, where n loosely
corresponds to the number of lines in the procedure. If both n and func are specified, then
procedures matching the given name(s) or meeting the size requirements are inlined.

reshape
Fortran subprograms with array arguments are not inlined by default if the array shape does not
match the shape in the caller. Use this option to override the default.

smallsize:n
Always inline procedures of size smaller than n regardless of other size limits.

totalsize:n
Stop inlining in a procedure when the procedure’s total size with inlining reaches the n specified.

[lib:]``file.ext``
Instructs the inliner to inline the procedures within the library file file.ext. If no inline library is
specified, procedures are extracted from a temporary library created during an extract prepass.

Tip: Create the library file using the -Mextract option.

If you specify both a procedure name and a maxsize n, the compiler inlines procedures that match the
procedure name or have n or fewer statements.

If a name is used without a keyword, then a name with a period is assumed to be an inline library and
a name without a period is assumed to be a procedure name. If a number is used without a keyword,
the number is assumed to be a size.

Inlining can be disabled with -Mnoinline.

In the following example, the compiler inlines procedures with fewer than approximately 100 state-
ments in the source file myprog.f and writes the executable code in the default output file a.out.

$ nvfortran -Minline=maxsize:100 myprog.f
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11.3. Using an Inline Library

If you specify one or more inline libraries on the command line with the -Minline option, the compiler
does not perform an initial extract pass. The compiler selects functions to inline from the specified
inline library. If you also specify a size or function name, all functions in the inline library meeting the
selection criteria are selected for inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the -Minline option, the compiler tries
to inline every function in the inline library that matches a function in the source text.

In the following example, the compiler inlines the function proc from the inline library lib.il and
writes the executable code in the default output file a.out.

$ nvfortran -Minline=name:proc,lib:lib.il myprog.f

The following command line is equivalent to the preceding line, with the exception that in the follow-
ing example does not use the keywords name: and lib:. You typically use keywords to avoid name
conflicts when you use an inline library name that does not contain a period. Otherwise, without the
keywords, a period informs the compiler that the file on the command line is an inline library.

$ nvfortran -Minline=proc,lib.il myprog.f

11.4. Creating an Inline Library

You can create or update an inline library using the - Mextract command-line option. If you do not
specify selection criteria with the - Mextract option, the compiler attempts to extract all procedures.

Several - Mextract options let you determine the selection criteria for creating or updating an inline
library. These selection criteria include:

func
Extracts the procedure func. you can use a comma-separated list to specify multiple procedures.

[name:]func
Extracts the procedure whose name matches func, a procedure in the source text.

[pragma]
Fortran Only: The pragma option is similar to the name option above except it will inline proce-
dures marked with the !NVF$ INLINE pragma. To use this option, add !NVF$ INLINE on a
separate source line immediately before the procedure’s SUBROUTINE or FUNCTION statement.

[size:]n
Limits the size of the extracted procedures to those with a statement count less than or equal
to n, the specified size.

Note: The size n may not exactly equal the number of statements in a selected procedure; the
size parameter is merely a rough gauge.

[lib:]ext.lib
Stores the extracted information in the library directory ext.lib.

If no inline library is specified, procedures are extracted to a temporary library created during an
extract prepass for use during the compilation stage.
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When you use the - Mextract option, only the extract phase is performed; the compile and link phases
are not performed. The output of an extract pass is a library of procedures available for inlining. This
output is placed in the inline library file specified on the command line with the - o filename specifica-
tion. If the library file exists, new information is appended to it. If the file does not exist, it is created.
You can use a command similar to the following:

$ nvfortran -Mextract=lib:lib.il myfunc.f

You can use the - Minline option with the - Mextract option. In this case, the extracted library of
procedures can have other procedures inlined into the library. Using both options enables you to obtain
more than one level of inlining. In this situation, if you do not specify a library with the - Minline
option, the inline process consists of two extract passes. The first pass is a hidden pass implied by the
- Minline option, during which the compiler extracts procedures and places them into a temporary
library. The second pass uses the results of the first pass but puts its results into the library that you
specify with the - o option.

11.4.1. Working with Inline Libraries

An inline library is implemented as a directory with each inline function in the library stored as a file
using an encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents for the inline library.
This is a printable, ASCII file which you can examine to locate information about the library contents,
such as names and sizes of functions, the source file from which they were extracted, the version
number of the extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

▶ Inline libraries can be copied or renamed.

▶ Elements of libraries can be deleted or copied from one library to another.

▶ The ls or dir command can be used to determine the last-change date of a library entry.

11.4.2. Dependencies

When a library is created or updated using one of the NVIDIA HPC compilers, the last-change date of
the library directory is updated. This allows a library to be listed as a dependence in a makefile and
ensures that the necessary compilations are performed when a library is changed.

11.4.3. Updating Inline Libraries – Makefiles

If you use inline libraries you must be certain that they remain up-to-date with the source files into
which they are inlined. One way to assure inline libraries are updated is to include them in a makefile.

The makefile fragment in the following example assumes the file utils.f contains a number of small
functions used in the files parser.f and alloc.f.

This portion of the makefile:

▶ Maintains the inline library utils.il.

▶ Updates the library whenever you change utils.f or one of the include files it uses.
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▶ Compiles parser.f and alloc.f whenever you update the library.

Sample Makefile

SRC = mydir
FC = nvfortran
FFLAGS = -O2
main.o: $(SRC)/main.f $(SRC)/global.h

$(FC) $(FFLAGS) -c $(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h

$(FC) $(FFLAGS) -c $(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h

$(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il

$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il

$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o

$(FC) -o myprog main.o utils.o parser.o alloc.o

11.5. Error Detection during Inlining

You can specify the -Minfo=inline option to request inlining information from the compiler when
you invoke the inliner. For example:

$ nvfortran -Minline=mylib.il -Minfo=inline myext.f

11.6. Examples

Assume the program dhry consists of a single source file dhry.f. The following command line builds
an executable file for dhry in which proc7 is inlined wherever it is called:

$ nvfortran dhry.f -Minline=proc7

The following command lines build an executable file for dhry in which proc7 plus any functions of
approximately 10 or fewer statements are inlined (one level only).

Note: The specified functions are inlined only if they are previously placed in the inline library, temp.
il, during the extract phase.

$ nvfortran dhry.f -Mextract=lib:temp.il
$ nvfortran dhry.f -Minline=10,proc7,temp.il

Using the same source file dhry.f, the following example builds an executable for dhry in which all
functions of roughly ten or fewer statements are inlined. Two levels of inlining are performed. This
means that if function A calls function B, and B calls C, and both B and C are inlinable, then the version
of B which is inlined into A will have had C inlined into it.
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$ nvfortran dhry.f -Minline=maxsize:10

11.7. Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

▶ Main or BLOCK DATA programs.

▶ Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE state-
ments.

▶ Subprograms containing FORMAT statements.

▶ Subprograms containing multiple entries.

A Fortran subprogram is not inlined if any of the following applies:

▶ It is referenced in a statement function.

▶ A common block mismatch exists; in other words, the caller must contain all common blocks
specified in the callee, and elements of the common blocks must agree in name, order, and type
(except that the caller’s common block can have additional members appended to the end of the
common block).

▶ An argument mismatch exists; in other words, the number and type (size) of actual and formal
parameters must be equal.

▶ A name clash exists, such as a call to subroutine xyz in the extracted subprogram and a variable
named xyz in the caller.

The following types of C and C++ functions cannot be inlined:

▶ Functions which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

▶ Static functions

▶ Functions which call a static function

▶ Functions which reference a static variable

54 Chapter 11. Using Function Inlining



Chapter 12. Using GPUs

An NVIDIA GPU can be used as an accelerator to which a CPU can offload data and executable kernels
to perform compute-intensive calculations. This section gives an overview of options for programming
NVIDIA GPUs with NVIDIA’s HPC Compilers and covers topics that affect GPU programming when using
one or more of the GPU programming models.

12.1. Overview

With the NVIDIA HPC Compilers you can program NVIDIA GPUs using certain standard language con-
structs, OpenACC directives, OpenMP directives, or CUDA Fortran language extensions. GPU program-
ming with standard language constructs or directives allows you to create high-level GPU-accelerated
programs without the need to explicitly initialize the GPU, manage data or program transfers between
the host and GPU, or initiate GPU startup and shutdown. Rather, all of these details are implicit in the
programming model and are managed by the NVIDIA HPC SDK Fortran, C++ and C compilers. GPU
programming with CUDA extensions gives you access to all NVIDIA GPU features and full control over
data management and offloading of compute-intensive loops and kernels.

The NVC++ compiler supports automatic offload of C++17 Parallel Algorithms invocations to NVIDIA
GPUs under control of the -stdpar compiler option. See the Blog post Accelerating Standard C++
with GPUs for details on using this feature. The NVFORTRAN compiler supports automatic offload to
NVIDIA GPUs of certain Fortran array intrinsics and patterns of array syntax, including use of Volta and
Ampere architecture Tensor Cores for appropriate intrinsics. See the Blog post Bringing Tensor Cores
to Standard Fortran for details on using this feature.

The NVFORTRAN compiler supports CUDA programming in Fortran. See the NVIDIA CUDA Fortran Pro-
grammingGuide for complete details on how to use CUDA Fortran. The NVCC compiler supports CUDA
programming in C and C++ in combination with a host C++ compiler on your system. See the CUDA
C++ Programming Guide for an introduction and overview of how to use NVCC and CUDA C++.

The NVFORTRAN, NVC++ and NVC compilers all support directive-based programming of NVIDIA GPUs
using OpenACC. OpenACC is an accelerator programming model that is portable across operating sys-
tems and various host CPUs and types of accelerators, including both NVIDIA GPUs and multicore
CPUs. OpenACC directives allow a programmer to migrate applications incrementally to accelera-
tor targets using standards-compliant Fortran, C++ or C that remains completely portable to other
compilers and systems. It allows the programmer to augment information available to the compilers,
including specification of data local to an accelerator region, guidance on mapping of loops onto an
accelerator, and similar performance-related details.

The NVFORTRAN, NVC++, and NVC compilers support a subset of the OpenMP Application Program
Interface for CPUs and GPUs. OpenMP applications properly structured for GPUs, meaning they ex-
pose massive parallelism and have relatively little or no synchronization in GPU-side code segments,
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should compile and execute with performance on par with or close to equivalent OpenACC. Codes that
are not well-structured for GPUs may perform poorly but should execute correctly.

In user-directed accelerator programming the user specifies the regions of a host program to be tar-
geted for offloading to an accelerator. The bulk of a user’s program, as well as regions containing
constructs that are not supported on the targeted accelerator, are executed on the host.

12.2. Terminology

Clear and consistent terminology is important in describing any programming model. This section
provides definitions of the terms required for you to effectively use this section and the associated
programming model.

Accelerator
a parallel processor, such as a GPU or a CPU running in multicore mode, to which a CPU can
offload data and executable kernels to perform compute-intensive calculations.

Compute intensity
for a given loop, region, or program unit, the ratio of the number of arithmetic operations per-
formed on computed data divided by the number of memory transfers required to move that
data between two levels of a memory hierarchy.

Compute region
a structured block defined by a compute construct. A compute construct is a structured block
containing loops which are compiled for the accelerator. A compute region may require device
memory to be allocated and data to be copied from host to device upon region entry, and data to
be copied from device to host memory and device memory deallocated upon exit. The dynamic
range of a compute construct, including any code in procedures called from within the construct,
is the compute region. In this release, compute regions may not contain other compute regions
or data regions.

Construct
a structured block identified by the programmer or implicitly defined by the language. Certain
actions may occur when program execution reaches the start and end of a construct, such as
device memory allocation or data movement between the host and device memory. Loops in
a compute construct are targeted for execution on the accelerator. The dynamic range of a
construct including any code in procedures called from within the construct, is called a region.

CUDA
stands for Compute Unified Device Architecture; CUDA C++ and Fortran language extensions
and API calls can be used to explicitly control and program an NVIDIA GPU.

Data region
a region defined by a data construct, or an implicit data region for a function or subroutine con-
taining directives. Data regions typically require device memory to be allocated and data to be
copied from host to device memory upon entry, and data to be copied from device to host mem-
ory and device memory deallocated upon exit. Data regions may contain other data regions and
compute regions.

Device
a general reference to any type of accelerator.

Device memory
memory attached to an accelerator which is physically separate from the host memory.
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Directive
in C, a #pragma, or in Fortran, a specially formatted comment statement that is interpreted by a
compiler to augment information about or specify the behavior of the program.

DMA
Direct Memory Access, a method to move data between physically separate memories; this is
typically performed by a DMA engine, separate from the host CPU, that can access the host
physical memory as well as an IO device or GPU physical memory.

GPU
a Graphics Processing Unit; one type of accelerator device.

Host
the main CPU that in this context has an attached accelerator device. The host CPU controls the
program regions and data loaded into and executed on the device.

Loop trip count
the number of times a particular loop executes.

Private data
with respect to an iterative loop, data which is used only during a particular loop iteration. With
respect to a more general region of code, data which is used within the region but is not initialized
prior to the region and is re-initialized prior to any use after the region.

Region
the dynamic range of a construct, including any procedures invoked from within the construct.

Structured block
in C++ or C, an executable statement, possibly compound, with a single entry at the top and a
single exit at the bottom. In Fortran, a block of executable statements with a single entry at the
top and a single exit at the bottom.

Vector operation
a single operation or sequence of operations applied uniformly to each element of an array.

Visible device copy
a copy of a variable, array, or subarray allocated in device memory, that is visible to the program
unit being compiled.

12.3. Execution Model

The execution model targeted by the NVIDIA HPC Compilers is host-directed execution with an at-
tached accelerator device, such as a GPU. The bulk of a user application executes on the host. Com-
pute intensive regions are offloaded to the accelerator device under control of the host. The accel-
erator device executes kernels, which may be as simple as a tightly-nested loop, or as complex as a
subroutine, depending on the accelerator hardware.
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12.3.1. Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

▶ allocates memory on the accelerator device

▶ initiates data transfer

▶ sends the kernel code to the accelerator

▶ passes kernel arguments

▶ queues the kernel

▶ waits for completion

▶ transfers results back to the host

▶ deallocates memory

Note: In most cases, the host can queue a sequence of kernels to be executed on the device, one
after the other.

12.4. Memory Model

The most significant difference between a host-only program and a host+accelerator program is that
the memory on the accelerator can be completely separate from host memory, which is the case on
many GPUs. For example:

▶ The host cannot read or write accelerator memory directly because it is not mapped into the
virtual memory space of the host.

▶ All data movement between host memory and accelerator memory must be performed by the
host through runtime library calls that explicitly move data between the separate memories.

▶ In general it is not valid for the compiler to assume the accelerator can read or write host memory
directly. This is well-defined starting with the OpenACC 2.7 and OpenMP 5.0 specifications.

The systems with the latest GPUs provide a unified single address space between CPU and GPU for
some or all memory regions, as detailed in the Managed and Unified Memory Modes subsection below.
In these systems data can be accessed from host and accelerator subprograms without the need for
explicit data movement.

The NVIDIA HPC Compilers support the following system memory modes:
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Table 12: GPU Memory Modes

Memory Mode Description Compiler flags

Separate All data accessed in host and accelerator programs are in
separate (CPU and GPU) memories. Data in the application
need to be physically moved between CPU and GPU mem-
ory either by adding explicit annotations or by relying on a
compiler to detect and migrate the data.

-gpu=mem:separate

Managed Dynamically allocated host data are placed in CUDA Man-
aged Memory which is a unified single address space be-
tween host and accelerator programs and can therefore
be accessed on device without explicit data movement. All
other data (host, stack, or global data) remain in separate
memory.

-gpu=mem:managed

Unified All host data are placed in a unified single address space
between the host and accelerator subprograms; no explicit
data movements are required. This mode is intended for
targets with full CUDA Unified Memory capability and it
may utilize CUDA Managed Memory for dynamic alloca-
tions.

-gpu=mem:unified

If the memory mode is not selected explicitly by passing one of the above -gpu=mem:* options, the
compiler selects a default memory mode. The default memory mode for Stdpar is explained in Using
Stdpar. When Stdpar is not enabled, the default memory mode is Separate Memory. Memory modes
may have specific semantics in each programming language and the compilers can sometimes implic-
itly determine the data movement that’s required. More details can be found in the subsections of
each programming model.

The following options -gpu=[no]managed, -gpu=[no]unified and -gpu=pinned are deprecated
but still accepted. Refer to Command-line Options Selecting Compiler Memory Modes for compatibility
between the current and deprecated memory specific flags.

The compiler implicitly defines the following macros corresponding to the memory mode it compiles
for:

▶ When the code is compiled for Separate Memory Mode, the compiler defines __NVCOM-
PILER_GPU_SEPARATE_MEM macro.

▶ When the code is compiled for Managed Memory Mode, the compiler defines __NVCOM-
PILER_GPU_MANAGED_MEM macro.

▶ When the code is compiled for Unified Memory Mode, the compiler defines __NVCOM-
PILER_GPU_UNIFIED_MEM macro. If CUDA Managed Memory is utilised, the compiler defines
additionally __NVCOMPILER_GPU_MANAGED_MEM.

When a binary is compiled for one memory mode it may need to be run on a system with specific
memory capabilities as follows:

▶ Applications compiled for Separate Memory Mode can run on any CUDA platforms.

▶ Applications compiled for Managed Memory Mode must be run on platforms with CUDA Man-
aged Memory or full CUDA Unified Memory capabilities.

▶ Applications compiled for Unified Memory Mode must be run on platforms with full CUDA Unified
Memory.
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Note: Memory allocated in the accelerator subprogram can’t be accessed or deallocated from the
host.

12.4.1. Separate Host and Accelerator Memory
Considerations

The programmer must be aware of the potentially separate memories for many reasons, including but
not limited to:

▶ Memory bandwidth between host memory and accelerator memory determines the compute
intensity required to effectively accelerate a given region of code.

▶ Limited size of accelerator memory may prohibit offloading of regions of code that operate on
very large amounts of data.

12.4.1.1 Accelerator Memory

On the accelerator side, current GPUs implement a weak memory model. In particular, they do not sup-
port memory coherence between threads unless those threads are parallel only at the synchronous
level and the memory operations are separated by an explicit barrier. Otherwise, if one thread updates
a memory location and another reads the same location, or two threads store a value to the same loca-
tion, the hardware does not guarantee the results. While the results of running such a program might
be inconsistent, it is not accurate to say that the results are incorrect. By definition, such programs
are defined as being in error. While a compiler can detect some potential errors of this nature, it is
nonetheless possible to write an accelerator region that produces inconsistent numerical results.

Stack data in accelerator subprograms are allocated per thread. Stack data from one thread are not
accessible by the other threads.

12.4.1.2 Staging Memory Buffer

Memory transfers between the accelerator and host may not always be asynchronous with respect to
the host, even if the chosen programming model (for instance, OpenACC) declares that. This limitation
may be due to the specific GPU and host memory architectures.

In order to help the host program proceed while a memory transfer to or from the accelerator is under-
way, the NVIDIA HPC Compilers Runtime maintains a designated staging memory area, also known as
a pinned buffer. This memory area is registered with the CUDA API, which makes it suitable for asyn-
chronous memory transfers between the GPU and the host. When an asynchronous memory transfer
is started, the data being transferred is staged through the pinned buffer. Multiple asynchronous op-
erations on the same data can be issued - in that case, the runtime system will operate on the data
staged in the pinned buffer, not on the original host memory. When the host program issues an ex-
plicit or implicit synchronization request, the data is moved from the pinned buffer to its destination
transparently to the application.

The runtime has the discretion to enable or disable the pinned buffer depending on the host and GPU
memory architecture. Also, the size of the pinned buffer is determined by the runtime system as
appropriate. The user can control some of these decisions using environment variables at the start of
the application. Please refer to Environment Variables Controlling DeviceMemoryManagement to learn
more.
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12.4.1.3 Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and most
have hardware caches that can be used only in certain situations and are limited to read-only data. In
low-level programming models such as CUDA, it is up to the programmer to manage these caches. The
OpenACC programming model provides directives the programmer can use as hints to the compiler
for cache management.

12.4.1.4 Environment Variables Controlling Device Memory Management

This section summarizes the environment variables that NVIDIA HPC Compilers use to control device
memory management.

The following table contains the environment variables that are currently supported and provides a
brief description of each.

12.4. Memory Model 61



NVIDIA HPC Compilers User's Guide, Release 26.1

Table 13: Memory Management Environment Variables

Environment Variable Use

NVCOMPILER_ACC_BUFFERSIZE For NVIDIA CUDA devices, this defines the size of
the pinned buffer used to transfer data between
host and device.

NVCOMPILER_ACC_CHECK_UNIFIED For NVIDIA CUDA devices, in the Unified Memory
mode, when set to a non-zero integer value, this
environment variable enables the run-time data
validation checks for data shared between host
and device. For more information, please refer to
OpenACC with CUDA Unified Memory.

NVCOMPILER_ACC_CUDA_CTX_SCHED For NVIDIA CUDA devices, sets flags to be used
when creating a new CUDA context. By default,
the CU_CTX_SCHED_YIELD flag is used. Please
refer to the CUDA Toolkit Documentation for the
detailed description of the cuCtxCreate func-
tion and the possible flag values.

NVCOMPILER_ACC_CUDA_HEAPSIZE For NVIDIA CUDA devices, sets the heap size limit
for malloc() when called on device.

NVCOMPILER_ACC_CUDA_MAX_L2_FETCH_GRANULARITYFor NVIDIA CUDA devices, sets the maximum L2
cache fetch granularity size in bytes. A correct
value is an integer between 0 and 128.

NVCOMPILER_ACC_CUDA_MEMALLOCASYNC For NVIDIA CUDA devices, when set to a non-zero
integer value, enables CUDA asynchronous mem-
ory allocations from the default CUDA memory
pool as descibed in the CUDA Toolkit Documen-
tation. By default, an internal NVIDIA HPC Run-
time memory pool is used instead.

NVCOMPILER_ACC_CUDA_MEMALLOCASYNC_POOLSIZEFor NVIDIA CUDA devices, sets the size
of the default CUDA memory pool for
asynchronous allocations if the NVCOM-
PILER_ACC_CUDA_MEMALLOCASYNC environ-
ment variable is also set to a non-zero integer
value.

NVCOMPILER_ACC_CUDA_NOCOPY Disables the use of the pinned buffer when
transferring user data between host and NVIDIA
CUDA devices. When this variable is set to a non-
zero integer value, user data will be transferred
directly bypassing the pinned buffer. Asyn-
chronous execution of such data transfers can
be limited when this setting is in effect.

NVCOMPILER_ACC_CUDA_PIN For NVIDIA CUDA devices, enables host memory
pinning at data directives. When host memory
is pinned, data transfers to and from the device
can be asynchronous, which can potentially im-
prove program performance. A non-zero integer
value enables this mechanism. A value of 2 or
greater additionally disallows unpinning the host
data after it is pinned. A value of 3 or greater
also enables pinning the whole array referenced
in a data directive (provided that the size of the
array is known), rather than its subarray speci-
fied in the data directive. By default, host data
referenced at data directives is not pinned un-
less directed by the compiler at compile-time; re-
fer to Command-line Options Selecting Compiler
Memory Modes for more information about the
compile-time memory modes.

NVCOMPILER_ACC_CUDA_PINSIZE For NVIDIA CUDA devices, sets the host memory
pinning granularity. If host memory pinning is
enabled with the NVCOMPILER_ACC_CUDA_PIN
environment variable, the runtime will attempt
to use this setting to pin larger regions of mem-
ory at once, thus potentially lowering the cost of
pinning memory when the program needs to pin
multiple data regions separately. The maximum
allowed value is 1 MB. By default, single byte pin-
ning granularity is used.

NVCOMPILER_ACC_CUDA_PRINTFIFOSIZE For NVIDIA CUDA devices, sets the buffer size for
formatted output calls on device. In particular, it
controls the buffer size for the printf C func-
tion.

NVCOMPILER_ACC_CUDA_STACKSIZE For NVIDIA CUDA devices, sets the stack size
limit for device threads.

NVCOMPILER_ACC_DEV_MEMORY For NVIDIA CUDA devices, when set to a valid
non-zero size value, enables the use of a device
memory pool and sets its size. By default, the
device memory pool is not used.

NVCOMPILER_ACC_MEM_MANAGE For NVIDIA CUDA devices, when set to the inte-
ger value 0, disables the use of an internal device
memory manager. By default, the device mem-
ory manager is enabled. It maintains a list of
deallocated chunks of device memory in an at-
tempt to efficiently reuse them for future allo-
cations.

NVCOMPILER_ACC_MEMHINTS For NVIDIA CUDA devices, controls the use of au-
tomatic memory hints at data constructs in the
managed and unified memory modes. Below is a
breakdown of the permitted values (case insen-
sitive):

▶ DEFAULT: Use the default settings. On
NVIDIA Grace Hopper systems, the default
is currently ENABLE_EXPLICIT; on all other
systems, the default is DISABLE.

▶ DISABLE: Memory hints are disabled for all
data constructs.

▶ ENABLE_EXPLICIT: Memory hints are en-
abled for explicit data constructs only.

▶ ENABLE_ALL: Memory hints are enabled for
explicit and implicit data constructs.

NVCOMPILER_ACC_MEMPREFETCH For NVIDIA CUDA devices, controls the use of au-
tomatic memory prefetching at data constructs
in the managed and unified memory modes. Be-
low is a breakdown of the permitted values (case
insensitive):

▶ DEFAULT: Use the default settings. On
NVIDIA Grace Hopper systems, the default
is currently DISABLE; on all other systems,
the default is ENABLE_UPDATE.

▶ DISABLE: Memory prefetching is disabled
for all data constructs.

▶ ENABLE_UPDATE: Memory prefetching is
enabled for update data constructs only.

▶ ENABLE_EXPLICIT: Memory prefetching is
enabled for explicit data constructs only.

▶ ENABLE_ALL: Memory prefetching is en-
abled for explicit and implicit data con-
structs.

NVCOMPILER_ACC_UNIFED_ALLOC_MODE For NVIDIA CUDA devices, controls the type of
dynamically allocated memory when the applica-
tion is compiled in the Unified Memory mode us-
ing the -gpu=mem:unified switch (case insen-
sitive):

▶ DEFAULT: Use the default settings. Cur-
rently, the default is MANAGED.

▶ SYSTEM: Allocate system memory.
▶ MANAGED: Allocate CUDA managed mem-

ory.
▶ PINNED: Allocate host pinned memory.
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12.4.2. Managed and Unified Memory Modes

The NVIDIA HPC Compilers support interoperability with CUDA Unified Memory. This feature is avail-
able with the x86-64 and Arm Server compilers. Unified memory provides a single address space for
CPU and GPU; data movement between CPU and GPU memories is implicitly handled by the NVIDIA
CUDA driver.

Whenever data is accessed on the CPU or the GPU, it could trigger a data transfer if the last time
it was accessed was not on the same device. In some cases, page thrashing may occur and impact
performance. An introduction to CUDA Unified Memory is available on Parallel Forall.

12.4.2.1 Managed Memory Mode

In Managed Memory Mode, all Fortran, C++ and C explicit allocation statements (e.g. allocate, new,
and malloc, respectively) in a program unit are replaced by equivalent CUDA managed data allocation
calls that place the data in CUDA Managed Memory. The result is that OpenACC and OpenMP data
clauses and directives are not needed to manage data movement. They are essentially ignored and
can be omitted. For Stdpar this is the minimal required memory mode since there are no specific
annotations for data used in the parallel region.

To enable Managed Memory Mode, add the option -gpu=mem:managed to the compiler and linker
command lines.

When a program allocates managed memory, it allocates host pinned memory as well as device mem-
ory thus making allocate and free operations somewhat more expensive and data transfers somewhat
faster. A memory pool allocator is used to mitigate the overhead of the allocate and deallocate oper-
ations. More details can be found in Memory Pool Allocator.

Managed Memory Mode has the following limitations:

▶ Use of managed memory applies only to dynamically-allocated data.

▶ Given an allocatable aggregate with a member that points to local, global, or static data, compil-
ing with -gpu=mem:managed and attempting to access memory through that pointer from the
compute kernel will cause a failure at runtime.

▶ C++ virtual functions are not supported.

▶ The -gpu=mem:managed compiler option must be used to compile the files in which variables
(accessed from GPU) are allocated, even if there is no code to accelerate on the GPU in the source
file.

▶ When linking multiple translation units, the application must ensure that all data are deallocated
using the scheme corresponding to their allocation. For example if the data are allocated in man-
aged memory the deallocation must be performed using CUDA API calls for managed memory.
More details and extra compiler support is detailed in Interception of Deallocations.

Managed Memory Mode has the following additional limitations when used with NVIDIA Kepler GPUs:

▶ Data motion on Kepler GPUs is achieved through fast pinned asynchronous data transfers; from
the program’s perspective, however, the transfers are synchronous.

▶ The NVIDIA HPC Compiler Runtime enforces synchronous execution of kernels when
-gpu=mem:managed is used on a system with a Kepler GPU. This situation may result in slower
performance because of the extra synchronizations and decreased overlap between CPU and
GPU.

▶ The total amount of managed memory is limited to the amount of available device memory on
Kepler GPUs.
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Memory Allocations/Deallocations Automatically Changed to Managed Memory

When the compiler utilizes CUDA Managed Memory capability either with -gpu=mem:managed or
-gpu=mem:unified, the following explicit allocations/deallocations are automatically changed into
cudaMallocManaged/cudaFree-type allocations/deallocations:

▶ For C++:

▶ All calls to global operator new and operator delete that allocate or deallocate memory,
such as:

operator new(std::size_t size)
operator new(std::size_t size, const std::nothrow_t &nothrow_value)
operator new(std::size_t size, std::align_val_t align)
operator new(std::size_t size, std::align_val_t align, const std::nothrow_t &
↪→nothrow_value)
operator delete(void *p)
operator delete(void *p, std::size_t size)
operator delete(void *p, std::align_val_t align)
operator delete(void *p, std::size_t size, std::align_val_t align)
operator delete(void *p, const std::nothrow_t &nothrow_value)
operator delete(void *p, std::align_val_t align, const std::nothrow_t &
↪→nothrow_value)

▶ All the array forms of the above overloads.

▶ All calls to malloc/free functions.

▶ For C: all calls to malloc/free functions.

▶ For Fortran:

▶ All allocations of automatic arrays.

▶ all allocate/deallocate statements with allocatable arrays or pointer variables.

12.4.2.2 Unified Memory Mode

In Unified Memory Mode, the requirements for the program are further relaxed compared to Managed
Memory Mode. Specifically, not only is dynamically allocated system memory accessible on the GPU,
but global and local memory are also accessible.

To enable this feature, add the option -gpu=mem:unified to the compiler and linker command lines.

Programs compiled with -gpu=mem:unified must be run on systems that support full CUDA Unified
Memory capability. At this time, full CUDA Unified Memory is supported on NVIDIA Grace Hopper
Superchip systems and Linux x86-64 systems running with the Heterogeneous Memory Management
(HMM) feature enabled in the Linux kernel. Details about these platforms are available in the following
blog posts on the NVIDIA website: Simplifying GPU Programming for HPC with NVIDIA Grace Hopper
Superchip and Simplifying GPU Application Development with Heterogeneous Memory Management.

In Unified Memory Mode, the compiler assumes that any system memory is accessible on the GPU.
Even so, the compiler may generate managed memory allocations for explicit data allocations when
it considers them beneficial for program performance. If you would like to enforce or prohibit the
use of managed memory for dynamic allocations pass -gpu=mem:unified:[no]managedalloc to
compilation and linking.

If the program is compiled with the -gpu=mem:unified switch, you can also use the NVCOM-
PILER_ACC_UNIFED_ALLOC_MODE environment variable to select the dynamic memory allocation
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mode at runtime. Please refer to Environment Variables Controlling Device Memory Management for
a comprehensive list of its recognized values.

Unified Memory Mode has the following limitations:

▶ Unified memory support for OpenACC, OpenMP and Stdpar Fortran is not mix-and-match; all
object files containing OpenACC/OpenMP directives or Fortran DO CONCURRENT constructs must
be compiled and linked with -gpu=mem:unified to ensure correct execution.

▶ C++ virtual functions are not supported.

Transitioning to Unified Memory Mode

Applications transitioning to architectures that support Unified Memory Mode can be recompiled with
-gpu=mem:unified without any code modifications.

The programmer should be aware that in Unified Memory Mode, the whole program state becomes
essentially shared between the CPU and the GPU. By implication, modifications to program variables
made on the GPU are visible on the CPU. That is, the GPU does not operate on a copy of the data
even if the program contains respective directives, but instead the GPU operates directly on the data
in system memory. To understand the importance of this idea, consider the following OpenACC C
program:

int x[N];
void foo() {

#pragma acc enter data create(x[0:N])
#pragma acc parallel loop
for (int i = 0; i < N; i++) {

x[i] = i;
}

}

When compiled in Separate Memory Mode, in the foo() function a copy of the array x is created in
GPU memory and initialized as written in the loop construct. When -gpu=mem:unified is added,
however, the compiler ignores the acc enter data construct, and the loop construct initializes the
array x in system memory.

Another implication of which to be aware, asynchronous code execution on the GPU can introduce race
conditions over access to program data. More details about code patterns to avoid when writing ap-
plication sources for Unified Memory Mode can be found in the sections about specific programming
models of this guide e.g. OpenACC, OpenMP, or CUDA Fortran.

12.4.2.3 Memory Hints and Prefetching

In Managed and Unified Memory Modes, applications can benefit from automatically issued memory
hints and prefetching at both explicit and implicit data constructs.

Consider the following example:

float *a = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)

a[i] = i;
#pragma acc enter data copyin(a) async
#pragma acc parallel loop async
for (int i = 0; i < N; i++)

a[i] = a[i] * 2.0;
#pragma acc update self(a) async
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If the array a is allocated in managed or unified memory, no explicit memory copies are performed.
However, at the acc enter data directive, it is often beneficial to automatically set the preferred
memory location of the data to the device. At the acc update directive, the data is updated on
the host, which the OpenACC runtime can translate into asynchronous memory prefetching from the
device.

Similarly, copying data to the host or updating data on the device can be automatically translated into
setting the preferred memory location to the host or prefetching to the device, respectively.

This behavior of the OpenACC runtime is controlled by the NVCOMPILER_ACC_MEMHINTS and NVCOM-
PILER_ACC_MEMPREFETCH environment variables. They similarly control the behavior of the NVIDIA
OpenMP Target Offload runtime. Refer to the section Environment Variables Controlling Device Mem-
ory Management to learn more.

OpenACC Runtime Interface (Fortran)

integer(accx_mem_hints_kind), parameter :: accx_mem_hints_default = 0
integer(accx_mem_hints_kind), parameter :: accx_mem_hints_disable = 1
integer(accx_mem_hints_kind), parameter :: accx_mem_hints_enable_explicit = 2
integer(accx_mem_hints_kind), parameter :: accx_mem_hints_enable_all = 3

integer(accx_mem_prefetch_kind), parameter :: accx_mem_prefetch_default = 0
integer(accx_mem_prefetch_kind), parameter :: accx_mem_prefetch_disable = 1
integer(accx_mem_prefetch_kind), parameter :: accx_mem_prefetch_enable_update = 2
integer(accx_mem_prefetch_kind), parameter :: accx_mem_prefetch_enable_explicit = 3
integer(accx_mem_prefetch_kind), parameter :: accx_mem_prefetch_enable_all = 4

subroutine accx_set_mem_hints( mode ) bind(c,name='accx_set_mem_hints')
subroutine accx_set_mem_prefetch( mode ) bind(c,name='accx_set_mem_prefetch')

OpenACC Runtime Interface (C)

typedef enum {
accx_mem_hints_default,
accx_mem_hints_disable,
accx_mem_hints_enable_explicit
accx_mem_hints_enable_all

} accx_mem_hints_t;

typedef enum {
accx_mem_prefetch_default,
accx_mem_prefetch_disable,
accx_mem_prefetch_enable_update,
accx_mem_prefetch_enable_explicit
accx_mem_prefetch_enable_all

} accx_mem_prefetch_t;

void accx_set_mem_hints(accx_mem_hints_t value);
void accx_set_mem_prefetch(accx_mem_prefetch_t value);

The accx_set_mem_hints and accx_set_mem_prefetch APIs operate on a per-thread basis, mean-
ing they affect only the calling host thread. The parameter values correspond directly to the values of
the NVCOMPILER_ACC_MEMHINTS and NVCOMPILER_ACC_MEMPREFETCH environment variables.

Calling these APIs will similarly affect OpenMP target data constructs when the application is compiled
with -mp=gpu.

The following APIs operate on a specific region of memory as a convenient shortcut you can use instead
of relying on the CUDA Runtime API:
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OpenACC Runtime Interface (Fortran)

integer, parameter :: accx_mem_advise_kind = 4
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_set_read_mostly = 0
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_unset_read_mostly = 1
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_set_preferred_location = 2
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_unset_preferred_location�
↪→= 3
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_set_accessed_by = 4
integer(accx_mem_advise_kind), parameter :: accx_mem_advise_unset_accessed_by = 5

integer, parameter :: accx_mem_advise_location_kind = 4
integer(accx_mem_advise_location_kind), parameter :: accx_mem_advise_location_none = 0
integer(accx_mem_advise_location_kind), parameter :: accx_mem_advise_location_host = 1
integer(accx_mem_advise_location_kind), parameter :: accx_mem_advise_location_device�
↪→= 2

integer, parameter :: accx_mem_prefetch_location_kind = 4
integer(accx_mem_prefetch_location_kind), parameter :: accx_mem_prefetch_location_
↪→host = 0
integer(accx_mem_prefetch_location_kind), parameter :: accx_mem_prefetch_location_
↪→device = 1

subroutine accx_mem_advise (advice, location, ptr, bytes) bind(c,name='accx_mem_advise
↪→')
subroutine accx_mem_prefetch (location, ptr, bytes, async) bind(c,name='accx_mem_
↪→prefetch')

OpenACC Runtime Interface (C)

typedef enum {
accx_mem_advise_set_read_mostly,
accx_mem_advise_unset_read_mostly,
accx_mem_advise_set_preferred_location,
accx_mem_advise_unset_preferred_location,
accx_mem_advise_set_accessed_by,
accx_mem_advise_unset_accessed_by,

} accx_mem_advise_t;

typedef enum {
accx_mem_advise_location_none,
accx_mem_advise_location_host,
accx_mem_advise_location_device

} accx_mem_advise_location_t;

typedef enum {
accx_mem_prefetch_location_host,
accx_mem_prefetch_location_device

} accx_mem_prefetch_location_t;

void accx_mem_advise(accx_mem_advise_t advice,
accx_mem_advise_location_t location,
void *ptr, size_t size);

void accx_mem_prefetch(accx_mem_prefetch_location_t location,
void *ptr, size_t size,
int async);

The accx_mem_advise function maps directly to the CUDA Runtime function cudaMemAdvise.
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The accx_mem_prefetch function maps to the CUDA Runtime function cudaMemPrefetchAsync. A
notable difference is the async parameter, which is associated with an OpenACC async queue, rather
than a specific CUDA stream.

For more information, refer to the Memory Management section in CUDA Toolkit Documentation.

12.4.3. Memory Pool Allocator

Dynamic memory allocations may be made using cudaMallocManaged(), a routine which has higher
overhead than allocating non-managed memory using cudaMalloc(). The more calls to cudaMal-
locManaged(), the more significant the impact on performance.

To mitigate the overhead of cudaMallocManaged() or other CUDA allocation API calls,
there is a pool allocator enabled by default in the presence of the -gpu=mem:managed,
-gpu=mem:separate:pinnedalloc, or -gpu=mem:unified compiler options. It can be disabled, or
its behavior modified, using these environment variables:

Table 14: Pool Allocator Environment Variables

Environment Variable Use

NVCOM-
PILER_ACC_POOL_ALLOC

Disable the pool allocator. The pool allocator is enabled by default;
to disable it, set NVCOMPILER_ACC_POOL_ALLOC to 0.

NVCOM-
PILER_ACC_POOL_SIZE

Set the of the pool. The default size is 1GB but other sizes (i.e.,
2GB, 100MB, 500KB, etc.) can be used. The actual pool size is
set such that the size is the nearest, smaller number in the Fi-
bonacci series compared to the provided or default size. If nec-
essary, the pool allocator will add more pools but only up to the
NVCOMPILER_ACC_POOL_THRESHOLD value.

NVCOM-
PILER_ACC_POOL_ALLOC_MAXSIZE

Set the maximum size for allocations. The default maximum size for
allocations is 500MB but another size (i.e., 100KB, 10MB, 250MB,
etc.) can be used as long as it is greater than or equal to 16B.

NVCOM-
PILER_ACC_POOL_ALLOC_MINSIZE

Set the minimum size for allocation blocks. The default size is 128B
but other sizes can be used. The size must be greater than or equal
to 16B.

NVCOM-
PILER_ACC_POOL_THRESHOLD

Set the percentage of total device memory that the pool allocator
can occupy. Values from 0 to 100 are accepted. The default value
is 50, corresponding to 50% of device memory.

Note: Note that where the size is specified if the unit suffix (B, KB, MB or GB) is ommited, the value is
set by default in bytes.
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12.4.4. Interception of Deallocations

While NVIDIA HPC Compilers facilitate the use of managed or pinned memory automatically, the appli-
cation must ensure that memory is deallocated using the API which “matches” the API used to allocate
said memory. For example, if cudaMallocManaged is used to allocate, then cudaFree must be used
to deallocate; if cudaMallocHost is used for allocations, cudaFreeHost must be used for dealloca-
tions. Understanding this requirement is particularly important when third party or standard libraries
are used; these libraries may have been compiled without any memory mode settings which sets up a
situation where the deallocation routines in the libraries may not match the allocations made. When
data is deallocated with an unmatching API call, the application may exhibit undefined behavior in-
cluding crashing. To mitigate this issue, the compiler supports an interception mode in which calls to
the standard deallocation function (e.g. free in C, delete in C++, or deallocate in Fortran) are inspected
by the runtime and, if the memory is not detected as being system-allocated, the runtime replaces
the standard deallocation function with the deallocation API corresponding to the allocation scheme
in use. To activate this interception mode, use the -gpu=interceptdeallocations compiler flag.
The interception is enabled by default for Stdpar in the presence of managed memory allocations. To
deactivate the interception use the -gpu=nointerceptdeallocations compiler switch. This inter-
ception can incur extra runtime overhead.

12.4.5. Command-line Options Selecting Compiler
Memory Modes

The following table maps the new memory model flags to their deprecated equivalents.

Table 15: Command-line Options Corresponding to Compiler
Memory Modes

Current Flags Deprecated Flags Brief Description

-gpu=mem:managed -gpu=managed Managed Memory Mode

-gpu=mem:managed
-stdpar

-gpu=nounified
-stdpar

Managed Memory Mode

-gpu=mem:unified -gpu=unified Unified Memory Mode

-gpu=mem:unified:managedalloc-gpu=unified,managed Unified Memory Mode, all dynamically al-
located data are implicitly in CUDA Man-
aged Memory.

-gpu=mem:unified:nomanagedalloc-gpu=unified,
nomanaged

Unified Memory Mode, CUDA Managed
Memory is not used implicitly.

-gpu=mem:separate -gpu=nomanaged Separate Memory Mode

-gpu=mem:separate -gpu=nounified Separate Memory Mode

-gpu=mem:separate -gpu=nomanaged,
nounified

Separate Memory Mode

-gpu=mem:separate:pinnedalloc-gpu=pinned Separate Memory Mode, dynamically al-
located data are in CPU pinned memory
implicitly.
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12.5. Fortran pointers in device code

A Fortran pointer variable is implemented with a pointer and a descriptor, where the descriptor (often
called a “dope vector”) holds the array bounds and strides for each dimension, among other informa-
tion, such as the size for each element and whether the pointer is associated. A Fortran scalar pointer
has no bounds information, but does have a minimal descriptor. In Fortran, referring to the pointer
variable always refers to the pointer target. There is no syntax to explicitly refer to the pointer and
descriptor that implement the pointer variable.

Fortran allocatable arrays and variables are implemented much the same way as pointer arrays and
variables. Much of the discussion below applies both to allocatables and pointers.

In OpenACC and OpenMP, when a pointer variable reference appears in a data clause, it’s the pointer
target that gets allocated or moved to device memory. The pointer and descriptor are neither allocated
nor moved.

When a pointer variable is declared in a module declaration section and appears in an !$acc declare
create() or !$omp declare target to() directive, then the pointer and descriptor are statically
allocated in device memory. When the pointer variable appears in a data clause, the pointer target
is allocated or copied to the device, and the pointer and descriptor are ‘attached’ to the device copy
of the data. If the pointer target is already present in device memory, no new memory is allocated or
copied, but the pointer and descriptor are still ‘attached’, making the pointer valid in device memory. An
important side effect of adding declare create in the module declaration section is that when the
program executes an ‘allocate’ statement for the pointer (or allocatable), memory is allocated in both
CPU and device memory. This means the newly allocated data is already present in device memory. To
get values from CPU to device memory or back, you’ll have to use update directives.

When a pointer variable is used in an OpenACC or OpenMP compute construct, the compiler creates a
private copy of the pointer and descriptor for each thread, unless the pointer variable was in a module
as described above. The private pointer and descriptor will contain information about the device copy
of the pointer target. In the compute construct, the pointer variables may be used pretty much as
they can in host code outside a compute construct. However, there are some limitations. The pro-
gram can do a pointer assignment to the pointer, changing the pointer, but that will only change the
private pointer for that thread. The modified pointer in the compute construct will not change the
corresponding pointer and descriptor in host memory.

12.6. Calling routines in a compute kernel

Using explicit interfaces is a common occurrence when writing Fortran applications. Here are some
cases where doing so is required for GPU programming.

▶ Explicit interfaces are required when using OpenACC routine bind or OpenMP declare vari-
ant.

▶ Fortran do concurrent requires routines to be pure which creates the need for an explicit
interface.
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12.7. Supported Processors and GPUs

This NVIDIA HPC Compilers release supports x86-64 and Arm Server CPUs. Cross-compilation across
the different families of CPUs is not supported, but you can use the - tp=<target> flag as docu-
mented in the man pages to specify a target processor within a family.

To direct the compilers to generate code for NVIDIA GPUs, use the - acc flag to enable OpenACC
directives, the - mp=gpu flag to enable OpenMP directives, the - stdpar flag for standard language
parallelism, and the -cuda flag for CUDA Fortran. Use the - gpu flag to select specific options for GPU
code generation. You can then use the generated code on any supported system with CUDA installed
that has a CUDA-enabled GeForce, Quadro, or Tesla card.

For more information on these flags as they relate to accelerator technology, refer to Compiling an
OpenACC Program.

For a complete list of supported CUDA GPUs, refer to the NVIDIA website at: http://www.nvidia.com/
object/cuda_learn_products.html

12.8. CUDA Versions

The NVIDIA HPC compilers use components from NVIDIA’s CUDA Toolkit to build programs for exe-
cution on an NVIDIA GPU. The NVIDIA HPC SDK puts the CUDA Toolkit components into an HPC SDK
installation sub-directory; the HPC SDK currently bundles two versions of recently-released Toolkits.

You can compile a program for an NVIDIA GPU on any system supported by the HPC compilers. You
will be able to run that program only on a system with an NVIDIA GPU and an installed NVIDIA CUDA
driver. NVIDIA HPC SDK products do not contain CUDA device drivers. You must download and install
the appropriate CUDA Driver from NVIDIA.

The NVIDIA HPC SDK utility nvaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 26.1 includes components from the following versions of the CUDA Toolkit:

▶ CUDA 12.9U1

▶ CUDA 13.0

If you are compiling a program for GPU execution on a system without an installed CUDA driver, the
compiler selects the version of the CUDA Toolkit to use based on the value of the DEFCUDAVERSION
variable contained in a file called localrc which is created during installation of the HPC SDK.

If you are compiling a program for GPU execution on a system with an installed CUDA driver, the com-
piler detects the version of the CUDA driver and selects the appropriate CUDA Toolkit version to use
from those bundled with the HPC SDK.

The compilers look for a CUDA Toolkit version in the /opt/nvidia/hpc_sdk/target/26.1/cuda directory
that matches the version of the CUDA Driver installed on the system. If an exact match is not found,
the compiler searches for the closest match. For CUDA Driver versions 12.0 through 12.9, the compiler
will use the CUDA 12.9 Toolkit. For CUDA Driver versions 13.0 and later, the compiler will use the CUDA
13.0 Toolkit.

You can change the compiler’s default selection of CUDA Toolkit version using a compiler option.
Add the cudaX.Y sub-option to -gpu where X.Y denotes the CUDA version. Using a compiler op-
tion changes the CUDA Toolkit version for one invocation of the compiler. For example, to compile an
OpenACC C file with the CUDA 12.9 Toolkit you would use:
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nvc -acc -gpu=cuda12.9

12.9. Compute Capability

The compilers can generate code for NVIDIA GPU compute capabilities 5.0 through 12.1. The compilers
construct a default list of compute capabilities that matches the compute capabilities supported by
the GPUs found on the system used in compilation. If there are no GPUs detected, the compilers
generate code for every supported compute capability.

You can override the default by specifying one or more compute capabilities using either command-
line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of compute capa-
bilities to the -gpu option.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-separated list of
compute capabilities in the siterc file located in your installation’s bin directory:

set DEFCOMPUTECAP=80 90;

Alternatively, if you don’t have permissions to change the sitercfile, you can add the DEFCOMPUTECAP
definition to a separate .mynvrc file in your home directory.

The generation of device code can be time consuming, so you may notice an increase in compile time
as the number of compute capabilities increases.

12.10. PTX JIT Compilation

As of HPC SDK 22.9, support for PTX JIT compilation is enabled in all compilers for relocatable device
code mode. This means that applications built with -gpu=rdc (that is, with relocatable device code
enabled, which is the default mode) are forward-compatible with newer GPUs thanks to the embed-
ded PTX code. The embedded PTX code is dynamically compiled when the application runs on a GPU
architecture newer than the architecture specified at compile time.

The support for PTX JIT compilation is enabled automatically, which means that you do not need to
change the compiler invocation command lines for your existing projects.

Use scenarios

▶ As an example, you can compile your application targeting the Ampere GPU without having to
worry about the Hopper GPU architecture. Once the application runs on a Hopper GPU, it will
seamlessly use the embedded PTX code.

▶ In CUDA Fortran, or with the CUDA Interoperability mode enabled, you can mix in object files
compiled with the CUDA NVCC compiler containing PTX code. This PTX code from NVCC will be
handled by the JIT compiler alongside the PTX code contained in object files produced by the
HPC SDK compilers. When using the CUDA NVCC compiler, the relocatable device code genera-
tion must be enabled explicitly using the NVCC --relocatable-device-code true switch, as
explained in the CUDA Compiler Driver guide. More information is available in the Interoperability
with CUDA section of this guide and in the CUDA Fortran Programming Guide.
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By default, the compiler will choose the compute capability that matches the GPU on the system
where the code is being compiled. For code that is going to run on the system where it is compiled,
we recommend letting the compiler set the compute capability.

When the default won’t work, we recommend compiling applications for a range of compute capa-
bilities that the application is expected to run against, for example, using the -gpu=ccall compiler
option. When running the application on a system that supports one of those compute capabilities,
the CUDA driver minor version is allowed to be less than the version of the CUDA toolkit used at com-
pile time, as covered in section CUDA Versions.

Performance considerations

PTX JIT compilation, when it occurs, can have a start-up overhead for the application. The JIT compiler
keeps a cached copy of the produced device code, which reduces the overhead on subsequent runs.
Please refer to the CUDA Programming Guide for detailed information about how the JIT compiler
works.

Known limitations

In general, in order for PTX JIT compilation to work, the CUDA driver installed on the deployment
system must be at least of the version that matches the CUDA toolkit used to compile the application.
This requirement is stricter than those explained in section CUDA Versions.

For example, as explained in that section, the compilers will use the CUDA 12.9 toolkit that is shipped
as part of the HPC SDK toolkit when the CUDA driver installed in the system is at least 12.0. However,
while the CUDA 12.0 driver is commonly sufficient to run the application, it will not be able to compile
the PTX code produced by the CUDA 12.9 toolkit. This means that any deployment system where the
PTX JIT compilation is expected to be used must have at least the CUDA 12.9 driver installed. Please
refer to the CUDA Compatibility guide for further information about the CUDA Driver compatibility
with CUDA Toolkits.

When the application is expected to run on a newer GPU architecture than specified at compile time,
we recommend having a CUDA driver installed on the deployment system matching the CUDA toolkit
used to build the application. One way to achieve that is to use the NVHPC_CUDA_HOME environment
variable at compile time to provide a specific CUDA toolkit.

Below are a few examples of how the PTX version incompatibility can be diagnosed and fixed. As a
general rule, if the CUDA driver is unable to run the application due to incompatible PTX, the application
will terminate with an error message indicating the cause. OpenACC and OpenMP applications will in
most cases suggest compiler flags to target the current CUDA installation.

OpenACC

Consider this program that we will compile for Volta GPU and attempt to run on an Ampere GPU, on a
system that has CUDA 12.1 installed:

#include <stdio.h>
#define N 1000
int array[N];
int main() {
#pragma acc parallel loop copy(array[0:N])

for(int i = 0; i < N; i++) {
array[i] = 3.0;

(continues on next page)
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(continued from previous page)

}
printf("Success!\n");

}

When we build the program, HPC SDK will choose the CUDA 12.9 toolkit that is included as the default.
When we attempt to run it, it fails because code generated with 12.9 does not work with the 12.1 driver:

$ nvc -acc -gpu=cc70 app.c
$ ./a.out
Accelerator Fatal Error: This file was compiled: -acc=gpu -gpu=cc70
Rebuild this file with -gpu=cc80 to use NVIDIA Tesla GPU 0
NVIDIA CUDA PTX JIT Compiler was unable to compile device code.
This file was compiled with NVIDIA CUDA Toolkit 12.9, the current CUDA Driver is 12.1.
Rebuild the application with the NVHPC_CUDA_HOME environment variable set to the�
↪→matching CUDA Tookit.
Please consult the NVIDIA HPC Compilers User's Guide for details.
File: /tmp/app.c
Function: main:5
Line: 5

From the error message it follows that the system is unable to execute the Volta GPU instructions
on the current system. The embedded Volta PTX could not be compiled, which implies a CUDA driver
incompatibility. A way to fix this is to use the installed CUDA 12.1 toolkit at compile time:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc -acc -gpu=cc70 app.c
$ ./a.out
Success!

OpenMP

Likewise, an OpenMP program will compile but not run:

#include <stdio.h>
#define N 1000
int array[N];
int main() {
#pragma omp target loop

for(int i = 0; i < N; i++) {
array[i] = 0;

}
printf("Success!\n");

}

$ nvc -mp=gpu -gpu=cc70 app.c
$ ./a.out
Accelerator Fatal Error: Failed to find device function 'nvkernel_main_F1L7_2'! File�
↪→was compiled with: -gpu=cc70
Rebuild this file with -gpu=cc80 to use NVIDIA Tesla GPU 0
NVIDIA CUDA PTX JIT Compiler was unable to compile device code.
This file was compiled with NVIDIA CUDA Toolkit 12.9, the current CUDA Driver is 12.1.
Rebuild the application with the NVHPC_CUDA_HOME environment variable set to the�
↪→matching CUDA Tookit.

(continues on next page)
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(continued from previous page)

Please consult the NVIDIA HPC Compilers User's Guide for details.
File: /tmp/app.c
Function: main:4
Line: 7

We can also fix it by having NVHPC_CUDA_HOME point at the matching CUDA toolkit location:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc -acc -gpu=cc70 app.c
$ ./a.out
Success!

C++

In contrast to OpenACC and OpenMP applications that simply terminate when PTX JIT encounters
an insufficient CUDA driver version, C++ applications throw a system exception when there is a PTX
incompatibility:

#include <vector>
#include <algorithm>
#include <execution>
#include <iostream>
#include <assert.h>
int main() {

std::vector<int> x(1000, 0);
x[1] = -20;
auto result = std::count(std::execution::par, x.begin(), x.end(), -20);
assert(result == 1);
std::cout << "Success!" << std::endl;

}

$ nvc++ -stdpar -gpu=cc70 app.cpp
$ ./a.out
terminate called after throwing an instance of 'thrust::system::system_error'

what(): after reduction step 1: cudaErrorUnsupportedPtxVersion: the provided PTX�
↪→was compiled with an unsupported toolchain.
Aborted (core dumped)

The exception message contains a direct reference to an incompatible PTX, which in turn implies an
mismatch between the CUDA toolkit and the CUDA driver version.

We can fix it similarly by setting NVHPC_CUDA_HOME:

$ export NVHPC_CUDA_HOME=/usr/local/cuda-12.1
$ nvc++ -stdpar -gpu=cc70 app.cpp
$ ./a.out
Success!
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12.11. Supported Intrinsics

An intrinsic is a function available in a given language whose implementation is handled specifically
by the compiler. Typically, an intrinsic substitutes a sequence of automatically-generated instructions
for the original function call. Since the compiler has an intimate knowledge of the intrinsic function,
it can better integrate it and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a language
interface to assembly instructions. In doing so, the compiler manages things that the user would
normally have to be concerned with, such as register names, register allocations, and memory locations
of data.

This section contains an overview of the Fortran and C intrinsics that the accelerator supports.

12.11.1. Supported Fortran Intrinsics Summary Table

Table 16 is an alphabetical summary of the supported Fortran intrinsics that the accelerator supports.
These functions are specific to Fortran 90/95 unless otherwise specified.

In most cases support is provided for all the data types for which the intrinsic is valid. When support
is available for only certain data types, the middle column of the table specifies which ones, using the
following codes:

I for inte-
ger

S for single precision real D for double
precision real

C for single precision complex Z for double pre-
cision complex

Table 16: Supported Fortran Intrinsics

This intrinsic Return value

ABS I,S,D absolute value of the argument.

ACOS arccosine of the specified argument.

AINT truncation of the argument to a whole number.

ANINT nearest whole number of the real argument.

ASIN arcsine of the argument.

ATAN arctangent of the argument.

ATAN2 angle in radians of the complex value first-argument + i*second-argument.

COS S,D,C,Z cosine of the argument.

COSH hyperbolic cosine of the argument.

DBLE S,D conversion of the argument to double precision real.

DPROD double precision product of two single precision arguments.

EXP S,D,C,Z natural exponential value of the argument.

IAND result of logical AND of the two integer arguments.

continues on next page
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Table 16 – continued from previous page

This intrinsic Return value

IEOR result of the boolean exclusive OR of the two integer arguments.

INT I,S,D conversion of the argument to integer type.

IOR result of the boolean inclusive OR of the two integer arguments.

LOG S,D,C,Z base-e (natural logarithm) of the argument.

LOG10 base-10 logarithm of the argument.

MAX maximum value of the arguments.

MIN minimum value of the arguments.

MOD I remainder of the first argument divided by the second argument.

NINT nearest integer of the real argument.

NOT logical complement of the integer argument.

REAL I,S,D conversion of the argument to real.

SIGN absolute value of first argument times the sign of second argument.

SIN S,D,C,Z sine of the argument.

SINH hyperbolic sine of the argument.

SQRT S,D,C,Z square root of the argument.

TAN tangent of the argument.

TANH hyperbolic tangent of the argument.

12.11.2. Supported C Intrinsics Summary Table

This section contains two alphabetical summaries – one for double functions and a second for float
functions. These lists contain only those C intrinsics that the accelerator supports.
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Table 17: Supported C Intrinsic Double Functions

This intrinsic Return value

acos arccosine of the argument.

asin arcsine of the argument.

atan arctangent of the argument.

atan2 arctangent of y/x, where y is the first argument, x the second.

cos cosine of the argument.

cosh hyperbolic cosine of the argument.

exp exponential value of the argument.

fabs absolute value of the argument.

fmax maximum value of the two arguments

fmin minimum value of the two arguments

log natural logarithm of the argument.

log10 base-10 logarithm of the argument.

pow value of the first argument raised to the power of the second argument.

sin value of the sine of the argument.

sinh hyperbolic sine of the argument.

sqrt square root of the argument.

tan tangent of the argument.

tanh hyperbolic tangent of the argument.
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Table 18: Supported C Intrinsic Float Functions

This intrinsic Return value

acosf arccosine of the argument.

asinf arcsine of the argument.

atanf arctangent of the argument.

atan2f arctangent of y/x, where y is the first argument, x the second.

cosf cosine of the argument.

coshf hyperbolic cosine of the argument.

expf exponential value of the argument.

fabsf absolute value of the argument.

logf natural logarithm of the argument.

log10f base-10 logarithm of the argument.

powf value of the first argument raised to the power of the second argument.

sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrtf square root of the argument.

tanf tangent of the argument.

tanhf hyperbolic tangent of the argument.
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Chapter 13. Using OpenACC

This chapter gives an overview of directive-based OpenACC programming in which compiler directives
are used to specify regions of code in Fortran, C and C++ programs to be offloaded from a host CPU to
an NVIDIA GPU. For complete details on using OpenACC with NVIDIA GPUs, see the OpenACC Getting
Started Guide.

13.1. OpenACC Programming Model

With the emergence of GPU architectures in high performance computing, programmers want the
ability to program using a familiar, high level programming model that provides both high performance
and portability to a wide range of computing architectures. OpenACC emerged in 2011 as a program-
ming model that uses high-level compiler directives to expose parallelism in the code and parallelizing
compilers to build the code for a variety of parallel accelerators.

This chapter will not attempt to describe OpenACC itself. For that, please refer to the OpenACC spec-
ification on the OpenACC www.openacc.org website. Here, we will discuss differences between the
OpenACC specification and its implementation by the NVIDIA HPC Compilers.

Other resources to help you with your parallel programming including video tutorials, course materials,
code samples, a best practices guide and more are available on the OpenACC website.

13.1.1. Levels of Parallelism

OpenACC supports three levels of parallelism:

▶ an outer doall (fully parallel) loop level

▶ a workgroup or threadblock (worker parallel) loop level

▶ an inner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly rectangu-
lar. The synchronous level may not be fully implemented with SIMD or vector operations, so explicit
synchronization is supported and required across this level. No synchronization is supported between
parallel threads across the doall level.

The OpenACC execution model on the device side exposes these levels of parallelism and the program-
mer is required to understand the difference between, for example, a fully parallel loop and a loop that
is vectorizable but requires synchronization across iterations. All fully parallel loops can be scheduled
for any of doall, workgroup or synchronous parallel execution, but by definition SIMD vector loops that
require synchronization can only be scheduled for synchronous parallel execution.
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13.1.2. Enable OpenACC Directives

NVIDIA HPC compilers enable OpenACC directives with the -acc and -gpu command line options. For
more information on these options refer to Compiling an OpenACC Program.

_OPENACC macro

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is the
month designation of the version of the OpenACC directives supported by the implementation. For
example, the version for November, 2017 is 201711. All OpenACC compilers define this macro when
OpenACC directives are enabled.

13.1.3. OpenACC Support

The NVIDIA HPC Compilers implement most features of OpenACC 2.7 as defined in The OpenACC Ap-
plication Programming Interface, Version 2.7, November 2018, http://www.openacc.org, with the ex-
ception that the following OpenACC 2.7 features are not supported:

▶ nested parallelism

▶ declare link

▶ enforcement of the cache clause restriction that all references to listed variables must lie within
the region being cached

▶ Subarrays and composite variables in reduction clauses

▶ The self clause

▶ The default clause on data constructs

13.1.4. OpenACC Extensions

The NVIDIA Fortran compiler supports an extension to the collapse clause on the loop construct.
The OpenACC specification defines collapse:

collapse(n)

NVIDIA Fortran supports the use of the identifier force within collapse:

collapse(force:n)

Using collapse(force:n) instructs the compiler to enforce collapsing parallel loops that are not
perfectly nested.
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13.2. Compiling an OpenACC Program

Several compiler options are applicable specifically when working with OpenACC. These options include
-acc, -gpu, and -Minfo.

13.2.1. -[no]acc

Enable [disable] OpenACC directives. The following suboptions may be used following an equals sign
(“=”), with multiple sub-options separated by commas:

gpu OpenACC directives are compiled for GPU execution only.

host
Compile for serial execution on the host CPU.

multicore
Compile for parallel execution on the host CPU.

legacy
Suppress warnings about deprecated NVIDIA accelerator directives.

[no]autopar
Enable [disable] loop autoparallelization within acc parallel. The default is to autoparallelize, that
is, to enable loop autoparallelization.

[no]routinepar
Infer parallelism level clause (gang, worker, vector) in implicit routine directives. This sub-option
is supported by the C/C++ compilers. The inference is performed for C/C++ regular functions
and C++ lambdas by analysing contained parallel loops and acceleration routines as detailed in
OpenACC Technical Report 24-1.

[no]routineseq
Compile every routine for the devicee. The default behavior is to not treat every routine as a seq
directive.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

sync
Ignore async clauses

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator directive.

[no]wait
Wait for each device kernel to finish. Kernel launching is blocked by default unless the async
clause is used.
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Default

By default OpenACC directives are compiled for GPU and sequential CPU host execution (i.e. equivalent
to explicitly setting -acc=gpu,host).

Usage

The following command-line requests that OpenACC directives be enabled and that an error be issued
for any non-OpenACC accelerator directive.

$ nvfortran -acc=verystrict prog.f

Predefined Macros

The following macros corresponding to the target compiled for are added implicitly:

▶ __NVCOMPILER_OPENACC_GPU when the OpenACC directives are compiled for GPU.

▶ __NVCOMPILER_OPENACC_MULTICORE when the OpenACC directives are compiled for multicore
CPU.

▶ __NVCOMPILER_OPENACC_HOST when the OpenACC directives are compiled for serial execution
on CPU.

13.2.2. -gpu

Used in combination with the -acc, -cuda, -mp, and -stdpar flags to specify options for GPU code
generation. The following sub-options may be used following an equals sign (“=”), with multiple sub-
options separated by commas:

autocompare
Automatically compare CPU vs GPU results at execution time: implies redundant

ccXY
Generate code for a device with compute capability X.Y. Multiple compute capabilities can be
specified, and one version will be generated for each. By default, the compiler will detect the
compute capability for each installed GPU. Use -help -gpu to see the valid compute capabilities
for your installation.

ccall
Generate code for all compute capabilities supported by this platform and by the selected or
default CUDA Toolkit.

ccall-major
Compile for all major supported compute capabilities.

ccnative
Detects the visible GPUs on the system and generates codes for them. If no device is available,
the compute capability matching NVCC’s default will be used.

cudaX.Y
Use CUDA X.Y Toolkit compatibility, where installed

[no]debug
Enable [disable] debug information generation in device code
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deepcopy
Enable full deep copy of aggregate data structures in OpenACC; Fortran only

fastmath
Use routines from the fast math library

[no]flushz
Enable [disable] flush-to-zero mode for floating point computations on the GPU

[no]fma
Generate [do not generate] fused multiply-add instructions on the GPU; default at -O1. This can
be used in conjunction with the global -M[no]fma option to explicitly enable/disable FMAs on
the CPU or GPU.

[no]implicitsections
Change [do not change] array element references in a data clause into an array section. In
C++, the implicitsections option will change update device(a[n]) to update de-
vice(a[0:n]). In Fortran, it will change enter data copyin(a(n)) to enter data
copyin(a(:n)). The default behavior, noimplicitsections, can also be changed using rc-
files; for example, one could add set IMPLICITSECTIONS=0; to siterc or another rcfile.

[no]interceptdeallocations
Intercept [do not intercept] calls to standard library memory deallocations (e.g. free) and call the
corresponding CUDA memory deallocation version if address is in pinned or managed memory,
regular version otherwise.

keep
Keep the kernel files (.cubin, .ptx, source)

[no]lineinfo
Enable [disable] GPU line information generation

loadcache:{L1|L2}
Choose what hardware level cache to use for global memory loads; options include the default,
L1, or L2

[no]managed
Allocate [do not allocate] any dynamically allocated data in CUDA Managed memory. Use
-gpu=nomanagedwith -stdpar to prevent that flag’s implicit use of -gpu=managedwhen CUDA
Managed memory capability is detected. This option is deprecated.

maxregcount:n
Specify the maximum number of registers to use on the GPU; leaving this blank indicates no limit

mem:{separate|managed|unified}
Select GPU memory mode for the generated binary. This controls CUDA memory capability to
be utilised such as separate GPU memory only (separate), GPU Managed Memory for the dy-
namically allocated data (managed), or system memory aka full CUDA Unified Memory (unified).
Use of Managed or Unified Memory facilitates simpler programming by eliminating the need to
detect all data to be copied into and outside of the code region executing on the GPU.

pinned
Use CUDA Pinned Memory. This option is deprecated.

ptxinfo
Print PTX info

[no]rdc
Generate [do not generate] relocatable device code.
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redundant
Redundant CPU/GPU execution

safecache
Allow variable-sized array sections in cache directives; compiler assumes they fit into CUDA
shared memory

sm_XY
Generate code for a device with compute capability X.Y. Multiple compute capabilities can be
specified, and one version will be generated for each. By default, the compiler will detect the
compute capability for each installed GPU. Use -help -gpu to see the valid compute capabilities
for your installation.

stacklimit:<l>nostacklimit
Sets the limit (l) of stack variables in a procedure or kernel, in KB. This option is deprecated.

tripcount:{host|device|[no]check|[no]warn}
Determine whether the trip count values for loops in compute constructs are calculated on the
host (default) or the device. Also can be used to enable [disable] runtime checks and compile-
time warnings related to using host vs. device trip count values.

[no]unified
Compile [do not compile] for CUDA Unified memory capability, where system memory is acces-
sible from the GPU. This mode utilizes system and managed memory for dynamically allocated
data unless explicit behavior is set through -gpu=[no]managed. Use -gpu=nounified with
-stdpar to prevent that flag’s implicit use of -gpu=unified when CUDA Unified memory ca-
pability is detected. This option must appear in both the compile and link lines. This option is
deprecated.

[no]unroll
Enable [disable] automatic inner loop unrolling; default at -O3

zeroinit
Initialize allocated device memory with zero

Usage

In the following example, the compiler generates code for NVIDIA GPUs with compute capabilities 8.0
and 9.0.

$ nvfortran -acc -gpu=cc80,cc90 myprog.f

The compiler automatically invokes the necessary software tools to create the kernel code and embeds
the kernels in the object file.

To link in the appropriate GPU libraries, you must link an OpenACC program with the -acc flag, and
similarly for -cuda, -mp, or -stdpar.
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DWARF Debugging Formats

Use the -g option to enable generation of full DWARF information on both the host and device; in the
absence of other optimization flags, -g sets the optimization level to zero. If a -O option raises the
optimization level to one or higher, only GPU line information is generated in device code even when -g
is specified. To enforce full DWARF generation for device code at optimization levels above zero, use
the debug sub-option to -gpu. Conversely, to prevent the generation of dwarf information for device
code, use the nodebug sub-option to -gpu. Both debug and nodebug can be used independently of
-g.

13.3. OpenACC for Multicore CPUs

The NVIDIA OpenACC compilers support the option -acc=multicore, to set the target accelerator
for OpenACC programs to the host multicore CPU. This will compile OpenACC compute regions for
parallel execution across the cores of the host processor or processors. The host multicore CPU will
be treated as a shared-memory accelerator, so the data clauses (copy, copyin, copyout, create) will
be ignored and no data copies will be executed.

By default, -acc=multicore will generate code that will use all the available cores of the processor. If
the compute region specifies a value in the num_gangs clause, the minimum of the num_gangs value
and the number of available cores will be used. At runtime, the number of cores can be limited by set-
ting the environment variable ACC_NUM_CORES to a constant integer value. The number of cores can
also be set with the void acc_set_num_cores(int numcores) runtime call. If an OpenACC com-
pute construct appears lexically within an OpenMP parallel construct, the OpenACC compute region
will generate sequential code. If an OpenACC compute region appears dynamically within an OpenMP
region or another OpenACC compute region, the program may generate many more threads than there
are cores, and may produce poor performance.

The -acc=multicore option differs from the -acc=host option in that -acc=host generates se-
quential host CPU code for the OpenACC compute regions.

13.4. OpenACC with CUDA Unified Memory

When developing OpenACC source for a target supporting CUDA Unified Memory, you can take advan-
tage of a simplified approach to programming because there is no need for data clauses and directives,
either in full or in part, depending on the exact memory capability the target supports and the compiler
options used.

The discussion in this section assumes you have become familiar with the Separate, Managed, and
Unified Memory Modes covered in the Memory Model and Managed and Unified Memory Modes sec-
tions.

In Managed Memory Mode, only dynamically-allocated data are implicitly managed by the CUDA run-
time; OpenACC data clauses and directives are therefore not needed for movement of this “managed”
data. Data clauses and directives are still required to handle static data (C static and extern variables,
Fortran module, common block and save variables) and function local data.

In Unified Memory Mode, all data is managed by the CUDA runtime. Explicit data clauses and directives
are no longer required to indicate which data should reside in GPU memory. All variables are accessi-
ble from the OpenACC compute regions executing on the GPU. The NVHPC compiler implementation
closely adheres to the shared memory mode detailed in the OpenACC specification, meaning that
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copy, copyin, copyout, and create clauses will not result in any device allocation or data transfer.
The device_resident clause is still honored as in discrete memory mode and results in an alloca-
tion of data only accessible from device code. Device memory can also be allocated or deallocated in
OpenACC programs in Unified Memory Mode by using the acc_malloc or acc_free API calls.

Understanding Data Movement

In the absence of visible data clauses or directives, when the compiler encounters a compute construct
it attempts to determine what data is required for correct execution of the region on the GPU. When
the compiler is unable to determine the size and shape of data needing to be accessible on the device,
it behaves as follows:

▶ In Separate Memory Mode, the compiler emits an error requesting an explicit data clause be
added to specify size/shape of the data to be copied.

▶ In Managed Memory Mode (-gpu=mem:managed), the compiler assumes the data is allocated in
managed memory and thus is accessible from the device; if this assumption is wrong, if the data
was defined globally or is located on the CPU stack, the program may fail at runtime.

▶ In Unified Memory Mode (-gpu=mem:unified), all data is accessible from the device making
information about size and shape unnecessary.

Take the following example in C:

void set(int* ptr, int i, int j, int dim){
int idx = i * dim + j;
return ptr[idx] = someval(i, j);

}

void fill2d(int* ptr, int dim){
#pragma acc parallel loop

for (int i = 0; i < dim; i++)
for (int j = 0; j < dim; j++)

set(ptr, i, j, dim);
}

In Separate Memory Mode, the only way to guarantee correctness for this example is to change the
line with the acc directive as follows:

#pragma acc parallel loop create(ptr[0:dim*dim]) copyout(ptr[0:dim*dim])

This change explicitly instructs the OpenACC implementation about the precise data segment used
within the parallel loop.

In Unified Memory Mode, that is, by compiling with -acc -gpu=mem:unified and executing on a
platform with unified memory capability, the create and copyout clauses are not required.

The next example, in Fortran, illustrates how a global variable can be accessed in an OpenACC routine
without requiring any explicit annotation.

module m
integer :: globmin = 1234
contains
subroutine findmin(a)
!$acc routine seq

integer, intent(in) :: a(:)
integer :: i
do i = 1, size(a)

if (a(i) .lt. globmin) then
globmin = a(i)

(continues on next page)
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endif
end do

end subroutine
end module m

Compile the example above for Unified Memory Mode:

nvfortran -acc -gpu=mem:unified example.f90

The source does not need any OpenACC directives to access module variable globmin, to either read
or update its value, in the routine invoked from CPU and GPU. Moreover, any access to globmin will be
made to the same exact instance of the variable from CPU and GPU; its value is synchronized automat-
ically. In Separate or Managed Memory Modes, such behavior can only be achieved with a combination
of OpenACC declare and update directives in the source code.

In most cases, migrating existing OpenACC applications written for Separate Memory Mode should
be a seamless process requiring no source changes. Some data access patterns, however, may lead to
different results produced during application execution in Unified Memory Mode.

Applications which rely on having separate data copies in GPU memory to conduct temporary compu-
tations on the GPU – without maintaining data synchronization with the CPU – pose a challenge for
migration to Unified Memory.

For the following Fortran example, the value of variable c after the last loop will differ depending on
whether the example is compiled with or without -gpu=mem:unified.

b(:) = ...
c = 0

!$acc kernels copyin(b) copyout(a)
!$acc loop
do i = 1, N

b(i) = b(i) * i
end do
!$acc loop
do i = 1, N

a(i) = b(i) + i
end do
!$acc end kernels

do i = 1, N
c = c + a(i) + b(i)

end do

Without Unified Memory, array b is copied into the GPU memory at the beginning of the OpenACC
kernels region. It is then updated in the GPU memory and used to compute elements of array a.
As instructed by the data clause copyin(b), b is not copied back to the CPU memory at the end
of the kernels region and therefore its initial value is used in the computation of c. With -acc
-gpu=mem:unified, the updated value of b in the first loop is automatically visible in the last loop
leading to a different value of c at its end. Implications of Asynchronous Execution

Additional complexities can arise when dealing with asynchronous execution, particularly when CPU-
GPU shared data is accessed within async compute regions instead of using an independent data copy
on GPU. The programmer should be especially careful about accessing local variables in asynchronous
GPU code. Unless the GPU code execution is explicitly synchronized before the end of the scope in
which local variables are defined, the GPU can access stale data thus resulting in undefined behavior.
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Consider the following OpenACC C example, where a local array is used to hold temporary data on the
GPU:

void bar() {
int x[N];
#pragma acc enter data create(x[0:N]) async
#pragma acc parallel loop async
for (int i = 0; i < N; i++)

x[i] = i;
...
#pragma acc exit data delete(x[0:N]) async

}

When compiled for Separate Memory Mode, the bar() function creates a copy of the array x in GPU
memory and initializes it as written in the loop construct. That copy is eventually deleted. In Unified
Memory Mode, however, the compiler ignores the acc enter data and acc exit data directives, so
the loop construct executed on the GPU accesses the array x in local CPU memory. Moreover, since
all constructs in this example are made asynchronous, the access to x on the GPU leads to undefined
behavior of the program because the variable x goes out of scope once the bar() function finishes.

Here is a similar example, where the local array x is dynamically allocated:

void bar() {
int *x = (int *)malloc(N * sizeof(int));
#pragma acc enter data create(x[0:N]) async
#pragma acc parallel loop async
for (int i = 0; i < N; i++)

x[i] = i;
...
#pragma acc exit data delete(x[0:N]) async
free(x);

}

To help detect programming mistakes like this, the NVIDIA OpenACC Runtime provides the NVCOM-
PILER_ACC_CHECK_UNIFIED environment variable. When set to a non-zero integer value, it enables
the runtime to emit information to the standard error output about variables still used on the device
after they have been deallocated on the host.

For the example with the x array dynamically allocated with malloc, you can compile the application
normally and run it as follows:

$ nvc -acc -gpu=mem:unified app.c
$ NVCOMPILER_ACC_CHECK_UNIFIED=1 ./a.out
Deallocated pointer 0x4a1d00000a80 still referenced on device! File ./app.c, function�
↪→bar, line 6, variable 'x[:1000]'.

When the x array is automatically allocated in stack memory, the OpenACC runtime will be unable to
recognize the problem on its own. You can compile the application with the -Mstack_frame_trace
switch added, which will result in generating additional facilities that will assist the runtime when au-
tomatic memory is deallocated:

$ nvc -acc -gpu=mem:unified -Mstack_frame_trace app.c
$ NVCOMPILER_ACC_CHECK_UNIFIED=1 ./a.out
Stack pointer 0xffffd71a13c0 still referenced on device! File ./app.c, function bar,�
↪→line 6, variable 'x[:]'.

Note that the NVCOMPILER_ACC_CHECK_UNIFIED environment variable as well as the compiler switch
-Mstack_frame_trace, are designed for diagnostic purposes. Either of them can add run-time over-
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head, impacting application performance. We recommend avoiding their use when the application is
deployed in a production environment.

Performance Considerations

In Unified Memory Mode, the OpenACC runtime may leverage data action information such as cre-
ate/delete or copyin/copyout to communicate preferable data placement to the CUDA runtime
by means of memory hint APIs as elaborated in the following blog post on the NVIDIA website:
Simplifying GPU Application Development with Heterogeneous Memory Management. Such actions
originate either from explicit data clauses in the source code or via implicit data movement gen-
erated by the compiler. This approach can minimize the amount of automatic data migration and
may let a developer fine-tune application performance. For the C example above, while adding the
data clauses create(ptr[0:dim*dim]) and copyout(ptr[0:dim*dim]) becomes optional with
-gpu=mem:unified, their uses in the OpenACC parallel loop directive may improve performance.

13.5. OpenACC Error Handling

The OpenACC specification provides a mechanism to allow you to intercept errors triggered during
execution on a GPU and execute a specific routine in response before the program exits. For example, if
an MPI process fails while allocating memory on the GPU, the application may want to call MPI_Abort
to shut down all the other processes before the program exits. This section explains how to take
advantage of this feature.

To intercept errors the application must give a callback routine to the OpenACC runtime. To provide
the callback, the application calls acc_set_error_routine with a pointer to the callback routine.

The interface is the following, where err_msg contains a description of the error:

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

When the OpenACC runtime detects a runtime error, it will invoke the callback_routine.

Note: This feature is not the same as error recovery. If the callback routine returns to the application,
the behavior is decidedly undefined.

Let’s look at this feature in more depth using an example.

Take the MPI program below and run it with two processes. Process 0 tries to allocate a large array on
the GPU, then sends a message to the second process to acknowledge the success of the operation.
Process 1 waits for the acknowledgment and terminates upon receiving it.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);
(continues on next page)
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MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int ack;
if(rank == 0) {

float *a = (float*) malloc(sizeof(float) * N);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent

for(int i = 0; i < N; i++) {
a[i] = i *0.5;

}
#pragma acc exit data copyout(a[0:N])

printf("I am process %d, I have initialized a vector of size %ld bytes on the GPU.
↪→ Sending acknowledgment to process 1.", rank, N);

ack = 1;
MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if(rank == 1) {
MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("I am process %d, I have received the acknowledgment from process 0 that�

↪→data in the GPU has been initialized.\n", rank, N);
fflush(stdout);

}

// do some more work

MPI_Finalize();

return 0;
}

We compile the program with:

$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

If we run this program with two MPI processes, the output will look like the following:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
call to cuMemAlloc returned error 2: Out of memory

-------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status,
thus causing the job to be terminated.

Process 0 failed while allocating memory on the GPU and terminated unexpectedly with an error. In
this case mpirun was able to identify that one of the processes failed, so it shut down the remaining
process and terminated the application. A simple two-process program like this is straightforward to
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debug. In a real world application though, with hundreds or thousands of processes, having a process
exit prematurely may cause the application to hang indefinitely. Therefore it would be ideal to catch
the failure of a process, control the termination of the other processes, and provide a useful error
message.

We can use the OpenACC error handling feature to improve the previous program and correctly ter-
minate the application in case of failure of an MPI process.

In the following sample code, we have added an error handling callback routine that will shut down the
other processes if a process encounters an error while executing on the GPU. Process 0 tries to allocate
a large array into the GPU and, if the operation is successful, process 0 will send an acknowledgment
to process 1. Process 0 calls the OpenACC function acc_set_error_routine to set the function
handle_gpu_errors as an error handling callback routine. This routine prints a message and calls
MPI_Abort to shut down all the MPI processes. If process 0 successfully allocates the array on the
GPU, process 1 will receive the acknowledgment. Otherwise, if process 0 fails, it will terminate itself
and trigger the call to handle_gpu_errors. Process 1 is then terminated by the code executed in
the callback routine.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

void handle_gpu_errors(char *err_msg) {
printf("GPU Error: %s", err_msg);
printf("Exiting...\n\n");
MPI_Abort(MPI_COMM_WORLD, 1);
exit(-1);

}

int main(int argc, char **argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int ack;
if(rank == 0) {

float *a = (float*) malloc(sizeof(float) * N);

acc_set_error_routine(&handle_gpu_errors);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent

for(int i = 0; i < N; i++) {
a[i] = i *0.5;

}
(continues on next page)
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#pragma acc exit data copyout(a[0:N])
printf("I am process %d, I have initialized a vector of size %ld bytes on the GPU.

↪→ Sending acknowledgment to process 1.", rank, N);
fflush(stdout);
ack = 1;
MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if(rank == 1) {
MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf("I am process %d, I have received the acknowledgment from process 0 that�

↪→data in the GPU has been initialized.\n", rank, N);
fflush(stdout);

}

// more work

MPI_Finalize();

return 0;
}

Again, we compile the program with:

$ mpicc -acc -o error_handling_mpi error_handling_mpi.c

We run the program with two MPI processes and obtain the output below:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
GPU Error: call to cuMemAlloc returned error 2: Out of memory
Exiting...

--------------------------------------------------------------------------
MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD
with errorcode 1.

This time the error on the GPU was intercepted by the application which managed it with the error
handling callback routine. In this case the routine printed some information about the problem and
called MPI_Abort to terminate the remaining processes and avoid any unexpected behavior from the
application.

13.6. OpenACC and CUDA Graphs

NVIDIA provides an optimized model for work submission onto GPUs called CUDA Graphs. A graph is
a series of operations, such as kernel launches and other stream-oriented tasks, connected by their
dependencies. A graph can be defined once, “captured”, then launched repeatedly. This has potential
benefits in reducing launch latencies and other overheads associated with kernel setup.

A complete write-up explaining CUDA Graphs and the CUDA API for graph definition, instantiation,
and execution can be found in Chapter 3 of the CUDA C Programming Guide. In OpenACC, we cur-
rently expose just the minimal set of operations to allow capture and replay of a graph containing
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OpenACC compute regions and data directives. The code executed between a “begin capture” call,
accx_begin_capture_async(), and the “end capture” call, accx_end_capture_async(), is called
the capture region.

The CUDA graph API captures (or records) all the device work between accx_begin_capture_async and
accx_end_capture_async. The host code in the capture region will be executed once normally, with the
exception that no device work is actually executed on the device. Instead, a graph object is created
that can be used to replay the captured work multiple times.

Note: Graph capture is similar to a closure concept in many programming languages, like lambda-
functions in C++. In lambda-function terms, CUDA graphs capture all the variables by value. That
means that all the FIRSTPRIVATE scalars, array shapes, and those derived types, arrays and scalar ad-
dresses for data resident on the GPU, are baked into the graph object and cannot be altered. The device
data behind the pointers, of course, can be updated by the graph execution normally, and updated by
the host between replays.

It is important to understand both what can and cannot be captured within a CUDA Graph capture
region:

▶ Asynchronous data directives, including data create, can be captured. The OpenACC runtime
will use the stream-ordered cudaMallocAsync() call in the capture region for variables which
need allocation in data clauses, an API call allowed in CUDA Graphs.

▶ Asynchronous compute regions, preferably ACC parallel regions, can be captured. For ACC
kernels regions, verify that no work is performed on the host. Host compute sections cannot
be captured.

▶ Asynchronous ACC update host (self) and update device directives can be captured. The
host and device addresses which are captured must be valid during the graph replay/execution.

▶ Since only the device work is captured and replayed, any data dependencies between the host
and device inside the capture region are erroneous. For example, downloading data from the
device, processing it on host and uploading it back to the device within the capture region is
invalid.

▶ Host code, even host code containing conditionals, can occur within a capture region. Note
though that the path taken through the host code will be the path captured by the graph, i.e.
the conditionals must likely be consistent during the replay for correct results. Host code which
updates host variables, such as i=i+1 will not be captured in the graph, which might affect
proper indexing into device-side arrays or other kernel arguments.

▶ Similarly, device work initiated in host code loops can be captured in the CUDA Graph. The graph
will not contain a notion of looping, just the sequence of device operations submitted to the
device during the loop.

▶ Subroutine and function calls within a capture region, which contain further compute regions
or other work which runs on the device, are captured. Care must be taken that the device data
addresses passed to the kernels are valid throughout graph execution, and don’t come and go
based on stack addresses or something similar.

▶ Codes which double-buffer, or ping-pong between source and destination arrays that are input
on odd iterations and output on even iterations (for example, the snippet shown below), can be
accommodated by capturing two graphs: one per even iteration, one per odd iteration.

int* src;
int* dest;
while (err > tolerance) {

(continues on next page)
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for (int i = 0; i < N; i++) {
dest[i] = foo(src[i]);

}
err = bar(dest);
int* tmp = dest;
dest = src;
src = tmp;

}

▶ Many CUDA library calls, like cublas, etc. can occur in a captured region. Setup for the library
calls, such as creating handles, and computing and allocating workspace requirements, should
be done before the capture region.

▶ Graph capturing is thread-safe with respect to each async queue. Host threads can indepen-
dently capture graphs using different async queues.

▶ When -gpu=tripcount:device is used, loop trip counts can vary between runs of the same
captured graph, as long as the trip count is updated on the device.

The OpenACC API follows the basic portion of the CUDA Graph API fairly closely. The major difference
is OpenACC includes the cudaGraphInstantiate() call as part of the end capture function.

From Fortran, the graph type is defined in the OpenACC module:

type, bind(c) :: acc_graph_t
type(c_ptr) :: graph
type(c_ptr) :: graph_exec

end type acc_graph_t

These subroutines are available in the OpenACC runtime. Here, pGraph is type(acc_graph_t) and async
is just the asynchronous queue value:

subroutine accx_async_begin_capture( async )
subroutine accx_async_end_capture( async, pGraph )
subroutine accx_graph_launch( pGraph, async )
subroutine accx_graph_delete( pGraph )
type(c_ptr) function accx_get_graph( pGraph )
type(c_ptr) function accx_get_graph_exec( pGraph )

From C, the graph type is defined in OpenACC.h:

typedef struct { void *graph; void *graph_exec; } acc_graph_t;

These void functions are available in the OpenACC runtime:

extern void accx_async_begin_capture(long async);
extern void accx_async_end_capture(long async, acc_graph_t *pgraph);
extern void accx_graph_launch(acc_graph_t *pgraph, long async);
extern void accx_graph_delete(acc_graph_t *pgraph);
extern void *accx_get_graph(acc_graph_t *pgraph);
extern void *accx_get_graph_exec(acc_graph_t *pgraph);

We will use a simple Fortran example code which demonstrates some of the modifications needed to
use CUDA Graphs from OpenACC. The original serial code for a conjugate gradient iterative solver:

subroutine RunCG(N, A, b, x, tol, max_iter)
implicit none

(continues on next page)
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integer, intent(in) :: N, max_iter
real(WP), intent(in) :: A(N, N), b(N), tol
real(WP), intent(inout) :: x(N)

real(WP) :: alpha, rr0, rr
real(WP), allocatable :: Ax(:), r(:), p(:)
integer :: it, i

allocate(Ax(N), r(N), p(N))

call symmatvec(N, N, A, x, Ax)
do i = 1, N

r(i) = b(i) - Ax(i)
p(i) = r(i)

enddo
rr0 = dot(N, r, r)

do it = 1, max_iter
call symmatvec(N, N, A, p, Ax)
alpha = rr0 / dot(N, p, Ax)

do i = 1, N
x(i) = x(i) + alpha * p(i)
r(i) = r(i) - alpha * Ax(i)

enddo

rr = dot(N, r, r)

print*, "Iteration ", it, " residual: ", sqrt(rr)
if (sqrt(rr) <= tol) then
deallocate(Ax, r, p)
return

endif
do i = 1, N

p(i) = r(i) + (rr / rr0) * p(i)
enddo
rr0 = rr

enddo

deallocate(Ax, r, p)

end subroutine RunCG

For this exercise we wish to put the do it = 1,max_iter work for each iteration into a CUDA graph.
Step one is to port the code to OpenACC, keeping in mind that we want to use asynchronous queues.
We annotate the dot function with OpenACC directives like this:

function dot(N, x, y) result(r)
integer, intent(in) :: N
real(WP), intent(in) :: x(N), y(N)
integer :: i
real(WP) :: r

r = 0.d0
!$acc parallel loop present(x, y) reduction(+:r) async(1)
do i = 1, N

(continues on next page)
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r = r + x(i) * y(i)
enddo
!$acc wait(1)

end function dot

We write the symmetric matrix multiply like this:

subroutine symmatvec(M, N, AT, x, Ax)
implicit none
integer, intent(in) :: M, N
real(WP), intent(in) :: AT(N, M), x(N)
real(WP), intent(out) :: Ax(M)

integer :: i, j
real(WP) :: s

! Note: Since A is symmetric, we can use the "transpose"
! for better memory access here
!$acc parallel loop gang present(AT, x, Ax) async(1)
do i = 1, M

s = 0.d0
!$acc loop vector reduction(+:s)
do j = 1, N

s = s + AT(j,i) * x(j)
end do
Ax(i) = s

end do
end subroutine

And now our main loop of the conjugate gradient solver looks like this:

do it = 1, max_iter
call symmatvec(N, N, A, p, Ax)
alpha = rr0 / dot(N, p, Ax)

!$acc parallel loop gang vector async(1)
do i = 1, N

x(i) = x(i) + alpha * p(i)
r(i) = r(i) - alpha * Ax(i)

enddo

rr = dot(N, r, r)

print*, "Iteration ", it, " residual: ", sqrt(rr)
if (sqrt(rr) <= tol) exit

!$acc parallel loop gang vector async(1)
do i = 1, N

p(i) = r(i) + (rr / rr0) * p(i)
enddo
rr0 = rr

enddo

Step 2 is to prepare the code for running under CUDA Graphs. There is a lot of host code executing in
the main loop. While the dot() function runs on the GPU, the rest of the statement alpha = rr0
/ dot(...) runs on the host. Similarly, the 2nd dot() call returns its value to the host. The print
statement occurs on the host, as does the residual check. Finally, this iteration’s value for rr is moved
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to rr0 in the last statement of the loop, on the host.

The dot product is tricky. We wish to compute the dot product on the GPU, and leave the result on
the GPU, so the reduction variable must be present on the GPU. Here, we change the function call to
a subroutine, and remove the initialization which is outside of the parallel region:

subroutine dot(N, x, y, r)
implicit none
integer, intent(in) :: N
real(WP), intent(in) :: x(N), y(N)
integer :: i
real(WP) :: r

!$acc parallel loop present(x, y, r) reduction(+:r) async(1)
do i = 1, N

r = r + x(i) * y(i)
enddo

end subroutine dot

We add one serial kernel to do some of the swapping between rr0 and rr, as well as zeroing out the
scalar that will hold the dot product reduction, and move the print and check outside of the GPU
capture region, replaced by a update host operation. The finished loop, complete with graph control,
looks like this:

do it = 1, max_iter
if (it .eq. 1) then ! First time capture

call accx_async_begin_capture(1)

call symmatvec(N, N, A, p, Ax)
call dot(N, p, Ax, rden)

!$acc serial async(1)
rr0 = rr
alpha = rr0 / rden
rden = 0.0d0
rr = 0.0d0
!$acc end serial

!$acc parallel loop gang vector async(1)
do i = 1, N

x(i) = x(i) + alpha * p(i)
r(i) = r(i) - alpha * Ax(i)

enddo

call dot(N, r, r, rr)

!$acc update host(rr) async(1)

!$acc parallel loop gang vector async(1)
do i = 1, N

p(i) = r(i) + (rr / rr0) * p(i)
enddo
call accx_async_end_capture(1, graph)

endif
! Always launch, then wait
call accx_graph_launch(graph, 1)
!$acc wait(1)

(continues on next page)
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rra(it) = rr
if (sqrt(rr) <= tol) exit

enddo

Step 3 is to compile, run, and profile the result. No special compiler options are needed besides -
acc=gpu. When running, you may be advised to set the NVCOMPILER_ACC_USE_GRAPH environment
variable. This is currently necessary to properly set the OpenACC runtime for graph capture. Failure
to abide by the guidelines above may result in wrong answers, which can be hard to debug. See the
following sections on how to use environment variables to help. A common issue is that the pointers
passed to the device kernels during graph playback will be the same every time. Make sure that is the
case between iterations in the code without graph capture.

The Nsight Systems tool has very good support for profiling CUDA graphs. The timeline view will
provide information on whether you have reduced the launch overhead gaps between the GPU kernels.
Figure 1 shows a timeline of the iterations of the original OpenACC loop:

Figure 1: Nsight Systems Report1 Timeline

Figure 2 shows a timeline of the iterations when using CUDA Graphs. When the size N is less than a
few thousand, launch latency becomes a major contributor to the overall time and here we can see
about a 2x speedup:

Figure 2: Nsight Systems Report2 Timeline

You can see a more-detailed trace of the CUDA Graph components by adding the
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--cuda-graph-trace=node option to the nsys profile command.

The above loop demonstrates several of the guidelines outlined at the top of this section, namely,
capturing compute regions, whether at the top level or in subprogram units, capturing data movement,
and restructuring code regions to minimize or eliminate the host code within a capture region. And
the minimal API to begin capture, end capture, then launch the captured graph.

13.7. Host and Device Trip Count Options

The -gpu=tripcount option controls whether the trip counts for loops in a compute construct, such
as acc parallel loop, are calculated on the host or on the device. The default behavior of the
NVHPC compilers is to use the values calculated on the host, though the OpenACC specification
states that trip count values should be calculated on the device. We have chosen to maintain, as-
is, the default behavior so as not to interfere with existing applications that currently depend on it for
correctness. To ensure compliance with the specification, please use the -gpu=tripcount:device
option. To maintain the default behavior, please use -gpu=tripcount:host or do not specify a
-gpu=tripcount option.

To emit a warning at compile-time that an OpenACC program may be using host values for trip counts,
use -gpu=tripcount:warn, or use -gpu=tripcount:nowarn to disable these warnings.

To check at runtime whether the host and device values for trip counts are the same, use
-gpu=tripcount:check. Set the environment variable NVCOMPILER_ACC_CHECK_TRIPCOUNT
to enable reporting of any differences discovered. To disable these checks, use
-gpu=tripcount:nocheck.

13.7.1. When to Use -gpu=tripcount:device or
-gpu=tripcount:host

Consider the following example code snippet:

real :: array(1000, 10)
integer :: i, j, n, m

!$acc data create(n, m) copy(array)

!$acc kernels
n = 1000
m = 10
!$acc end kernels

!$acc parallel loop defualt(none) collapse(2)
do j=1,m

do i=1,n
array(i, j) = i+j

end do
end do

The trip count variables n and m are created on the device, and then their values are set on the de-
vice in the acc kernels construct. Their values are not set on the host. Therefore, when the par-
allel loop is run on the device, if the host values for n and m are used, the loop will not run for the
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correct number of iterations. In this and similar cases, to ensure the correctness of the program,
-gpu=tripcount:device should be used.

In cases where the values of n and m are set on the host, it is sufficient to rely on the default behavior
or to specify -gpu=tripcount:host. There are two ways to verify whether or not the program’s
correctness may be affected by the use of -gpu=tripcount:device versus -gpu=tripcount:host.
The -gpu=tripcount:check option can be used to detect discrepancies between host and device
values for trip counts at runtime, and the -gpu=tripcount:warn option can be used to issue compile-
time warnings that host values for trip counts may be used.

Note: For CUDA Graphs, -gpu=tripcount:device allows trip counts to vary between runs for cap-
tured graphs on the device, as long as the trip count is updated on the device. This behavior can affect
the correctness of CUDA Graphs, and some applications may require this option to use CUDA Graphs
correctly.

13.8. Environment Variables

This section summarizes the environment variables that NVIDIA OpenACC supports. These environ-
ment variables are user-setable environment variables that control behavior of accelerator-enabled
programs at execution. These environment variables must comply with these rules:

▶ The names of the environment variables must be upper case.

▶ The values of environment variables are case insensitive and may have leading and trailing white
space.

▶ The behavior is implementation-defined if the values of the environment variables change after
the program has started, even if the program itself modifies the values.

The following table contains the environment variables that are currently supported and provides a
brief description of each.
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Table 19: Supported Environment Variables

Use this environment vari-
able…

To do this…

NVCOM-
PILER_ACC_CHECK_TRIPCOUNT

Enable output for checking differences between host and device trip
counts when -gpu=tripcount:check is used.

NVCOM-
PILER_ACC_CUDA_PROFSTOP

Set to 1 (or any positive value) to tell the runtime environment to in-
sert an ‘atexit(cuProfilerStop)’ call upon exit. This behavior may be
desired in the case where a profile is incomplete or where a message
is issued to call cudaProfilerStop().

NVCOM-
PILER_ACC_DEVICE_NUM

Sets the default device number to use. NVCOM-
PILER_ACC_DEVICE_NUM. Specifies the default device number
to use when executing accelerator regions. The value of this environ-
ment variable must be a nonnegative integer between zero and the
number of devices attached to the host.

ACC_DEVICE_NUM Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_NUM.

NVCOM-
PILER_ACC_DEVICE_TYPE

Sets the default device type to use for OpenACC regions. NVCOM-
PILER_ACC_DEVICE_TYPE. Specifies which accelerator device to use
when executing accelerator regions when the program has been com-
piled to use more than one different type of device. The value of this
environment variable is implementation-defined, and in the NVIDIA
OpenACC implementation may be the strings NVIDIA, MULTICORE or
HOST

ACC_DEVICE_TYPE Legacy name. Superseded by NVCOMPILER_ACC_DEVICE_TYPE.

NVCOM-
PILER_ACC_GANGLIMIT

For NVIDIA CUDA devices, this defines the maximum number of
gangs (CUDA thread blocks) that will be launched by a kernel.

NVCOMPILER_ACC_NOTIFY With no argument, a debug message will be written to stderr for each
kernel launch and/or data transfer. When set to an integer value,
the value is used as a bit mask to print information about: 1: kernel
launches
2: data transfers
4: region entry/exit
8: wait operations or synchronizations with the device
16: device memory allocates and deallocates

NVCOM-
PILER_ACC_PROFLIB

Enables 3rd party tools interface using the new profiler dynamic li-
brary interface.

NVCOM-
PILER_ACC_SYNCHRONOUS

Disables asynchronous launches and data movement.

NVCOMPILER_ACC_TIME Enables a lightweight profiler to measure data movement and accel-
erator kernel execution time and print a summary at the end of pro-
gram execution.
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13.9. Profiling Accelerator Kernels

Support for Profiler/Trace Tool Interface

The NVIDIA HPC Compilers support the OpenACC Profiler/Trace Tools Interface. This is the interface
used by the NVIDIA profilers to collect performance measurements of OpenACC programs.

Using NVCOMPILER_ACC_TIME

Setting the environment variable NVCOMPILER_ACC_TIME to a nonzero value enables collection and
printing of simple timing information about the accelerator regions and generated kernels.

Note: Turn off all CUDA Profilers (NVIDIA’s Visual Profiler, NVPROF, CUDA_PROFILE, etc) when enabling
NVCOMPILER_ACC_TIME, they use the same library to gather performance data and cannot be used
concurently.

Accelerator Kernel Timing Data

bb04.f90
s1
15: region entered 1 times

time(us): total=1490738
init=1489138 region=1600
kernels=155 data=1445

w/o init: total=1600 max=1600
min=1600 avg=1600

18: kernel launched 1 times
time(us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

▶ For each accelerator region, the file name bb04.f90 and subroutine or function name s1 is printed,
with the line number of the accelerator region, which in the example is 15.

▶ The library counts how many times the region is entered (1 in the example) and the microseconds
spent in the region (in this example 1490738), which is split into initialization time (in this example
1489138) and execution time (in this example 1600).

▶ The execution time is then divided into kernel execution time and data transfer time between
the host and GPU.

▶ For each kernel, the line number is given, (18 in the example), along with a count of kernel
launches, and the total, maximum, minimum, and average time spent in the kernel, all of which
are 155 in this example.

13.10. OpenACC Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are avail-
able for use by programmers to query the accelerator features and to control behavior of accelerator-
enabled programs at runtime.
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Note: In Fortran, none of the OpenACC runtime library routines may be called from a PURE or ELE-
MENTAL procedure.

13.10.1. Runtime Library Definitions

There are separate runtime library files for Fortran, and for C++ and C.

C++ and C Runtime Library Files

In C++ and C, prototypes for the runtime library routines are available in a header file named accel.h.
All the library routines are extern functions with ‘C’ linkage. This file defines:

▶ The prototypes of all routines in this section.

▶ Any data types used in those prototypes, including an enumeration type to describe types of
accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named accel_lib.h and in a
Fortran module named accel_lib. These files define:

▶ Interfaces for all routines in this section.

▶ Integer parameters to define integer kinds for arguments to those routines.

▶ Integer parameters to describe types of accelerators.

13.10.2. Runtime Library Routines

Table 20 lists and briefly describes the runtime library routines supported by the NVIDIA HPC Compilers
in addition to the standard OpenACC runtine API routines.

13.10. OpenACC Runtime Libraries 105



NVIDIA HPC Compilers User's Guide, Release 26.1

Table 20: Accelerator Runtime Library Routines

This Runtime Library
Routine…

Does this…

acc_allocs Returns the number of arrays allocated in data or compute regions.

acc_bytesalloc Returns the total bytes allocated by data or compute regions.

acc_bytesin Returns the total bytes copied in to the accelerator by data or compute
regions.

acc_bytesout Returns the total bytes copied out from the accelerator by data or com-
pute regions.

acc_copyins Returns the number of arrays copied in to the accelerator by data or com-
pute regions.

acc_copyouts Returns the number of arrays copied out from the accelerator by data or
compute regions.

acc_disable_time Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time Tells the runtime to start profiling accelerator regions and kernels, if it is
not already doing so.

acc_exec_time Returns the number of microseconds spent on the accelerator executing
kernels.

acc_frees Returns the number of arrays freed or deallocated in data or compute re-
gions.

acc_get_device Returns the type of accelerator device used to run the next accelerator
region, if one is selected.

acc_get_device_num Returns the number of the device being used to execute an accelerator
region.

acc_get_free_memory Returns the total available free memory on the attached accelerator de-
vice.

acc_get_memory Returns the total memory on the attached accelerator device.

acc_get_num_devices Returns the number of accelerator devices of the given type attached to
the host.

acc_kernels Returns the number of accelerator kernels launched since the start of the
program.

acc_present_dump Summarizes all data present on the current device.

acc_present_dump_all Summarizes all data present on all devices.

acc_regions Returns the number of accelerator regions entered since the start of the
program.

acc_total_time Returns the number of microseconds spent in accelerator compute re-
gions and in moving data for accelerator data regions.
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OpenMP is a specification for a set of compiler directives, an applications programming interface (API),
and a set of environment variables that can be used to specify parallel execution in Fortran, C++, and
C programs. For general information about using OpenMP and to obtain a copy of the OpenMP spec-
ification, refer to the OpenMP organization’s website.

The NVFORTRAN, NVC++, and NVC compilers support a subset of the OpenMP Application Program
Interface for CPUs and GPUs. In defining this subset, we have focused on OpenMP 5.0 features that
will enable CPU and GPU targeting for OpenMP applications with a goal of encouraging programming
practices that are portable and scalable. For features that are to be avoided, wherever possible, the di-
rectives and API calls related to those features are parsed and ignored to maximize portability. Where
ignoring such features is not possible, or could result in ambiguous or incorrect execution, the com-
pilers emit appropriate error messages at compile- or run-time.

OpenMP applications properly structured for GPUs, meaning they expose massive parallelism and have
relatively little or no synchronization in GPU-side code segments, should compile and execute with
performance on par with or close to equivalent OpenACC. Codes that are not well-structured for GPUs
may perform poorly but should execute correctly.

Use the -mp compiler switch to enable processing of OpenMP directives and pragmas. The most im-
portant sub-options to -mp are the following:

▶ gpu: OpenMP directives are compiled for GPU execution plus multicore CPU fallback; this feature
is supported on NVIDIA V100 or later GPUs.

▶ multicore: OpenMP directives are compiled for multicore CPU execution only; this sub-option
is the default.

Predefined Macros

The following macros corresponding to the offload target compiled for are added implicitly:

▶ __NVCOMPILER_OPENMP_GPU when OpenMP target directives are compiled for GPU.

▶ __NVCOMPILER_OPENMP_MULTICOREwhen OpenMP target directives are compiled for multicore
CPU.
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14.1. Environment Variables

The OpenMP specification includes many environment variables related to program execution.

Thread affinity

One important environment variable is OMP_PROC_BIND. It controls the OpenMP CPU thread affinity
policy. When thread affinity is disabled, the operating system is free to move threads between the
available CPU cores. When thread affinity is enabled, each thread is bound to a subset of the available
CPU cores. The environment variable OMP_PLACES can be used to specify how a subset of the available
CPU cores is determined for each thread. When set to a valid value, this environment variable will
enable thread affinity and override the default thread affinity policy.

Binding threads to certain CPU cores is often beneficial for application performance, because that
can improve the CPU cache hit rate and limit memory transactions between different NUMA nodes.
Therefore, it is important to consider enabling thread affinity for your application.

The default value of OMP_PROC_BIND is false. Thus, thread affinity is disabled by default. This is
a conservative setting that allows certain classes of applications (such as OpenMP + MPI) to create
multiple processes without taking special care of the thread affinity policy to avoid binding threads in
different processes to the same CPU cores.

The following table explains the simplest possible values of OMP_PROC_BIND. For the comprehensive
explanation of OMP_PROC_BIND and OMP_PLACES, please refer to the OpenMP specification.

Value Behavior

OMP_PROC_BIND=falseThread affinity is disabled unless OMP_PLACES is set to a valid value. When
thread affinity is disabled, the operating system is free to assign threads to
any available CPU core at any time of the application execution. This is the
default value.

OMP_PROC_BIND=trueThread affinity is enabled. Unless OMP_PLACES is set, the implementation at-
tempts to assign threads optimally to CPU cores to maximize the cache hit
rate and minimize the number of memory transactions between NUMA nodes.

Delaying Thread Affinity

Some applications need to initialize non-OpenMP threads or third-party multithreaded libraries before
entering OpenMP logic. In such cases, if thread affinity is enabled, the application may want to prevent
the restricted main thread affinity from being inherited by non-OpenMP threads (which is the standard
behavior in the Linux OS).

To support this use case, the NVIDIA HPC OpenMP Runtime provides the NVCOM-
PILER_OMP_LAZY_PROC_BIND environment variable. This variable controls whether OpenMP
CPU thread affinity binding should be delayed until an OpenMP parallel region is created, or whether
it should be set as early as possible. The table below explains the behavior for each setting:
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Value Behavior

NVCOM-
PILER_OMP_LAZY_PROC_BIND=false

The main thread affinity is set during the initialization of the NVIDIA
HPC OpenMP Runtime. This occurs at an unspecified point in
the application’s lifecycle, before any OpenMP directive or most
OpenMP API functions are executed. This is the default setting.

NVCOM-
PILER_OMP_LAZY_PROC_BIND=true

The OpenMP CPU thread affinity binding is delayed until the first
parallel region is created.

Note: When thread affinity is disabled, the NVCOMPILER_OMP_LAZY_PROC_BIND environment variable
has no effect.

Number of threads

By default, the NVIDIA HPC OpenMP Runtime limits the number of threads that can be created for a
parallel region to 4 times the number of logical CPU processors.

If an application attempts to exceed this limit, a warning message is emitted to the standard error
output. You can suppress this warning by setting the NVCOMPILER_OMP_DISABLE_WARNINGS envi-
ronment variable to the true value.

To override the default limit on the maximum number of threads, use the NVCOM-
PILER_CPU_HARD_THREAD_LIMIT environment variable:

Value Behavior

NVCOMPILER_CPU_HARD_THREAD_LIMIT=<positive_integer>Maximum number of threads in parallel
regions

Device offload

Another important environment variable to understand is OMP_TARGET_OFFLOAD. Use this environ-
ment variable to affect the behavior of execution on host and device including host fallback. The
following table explains the behavior determined by each of the values to which you can set this envi-
ronment variable.

Value Behavior

OMP_TARGET_OFFLOAD=DEFAULTTry to execute on a GPU; if a supported GPU is not available, fallback
to the host

OMP_TARGET_OFFLOAD=DISABLEDDo not execute on the GPU even if one is available; execute on the
host

OMP_TARGET_OFFLOAD=MANDATORYExecute on a GPU or terminate the program
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Number of teams on device

When an application offloads an omp target teams construct to the GPU, the number of teams is
calculated automatically unless the construct has a num_teams clause. The automatic setting of the
number of teams can be limited to a maximum value provided by the OMP_NUM_TEAMS environment
variable. The same maximum value can also be set by the application at run time with the function
omp_set_num_teams.

Value Behavior

OMP_NUM_TEAMS=<positive_integer> Maximum number of teams on device

For the comprehensive explanation of OMP_NUM_TEAMS, please refer to the OpenMP specification.

Number of threads in teams

An omp target teams construct offloaded to the GPU creates a league of teams each consisting
of a certain number of threads. The number of threads is the same for all teams in the league, and is
calculated automatically unless the construct has a thread_limit clause.

The environment variable OMP_TEAMS_THREAD_LIMIT can be used to limit the maximum number of
threads in teams. The same maximum value can be set by the application with the runtime function
omp_set_teams_thread_limit.

For NVIDIA GPUs, we recommend using values that are multiples of 32 (which is the size of the
GPU thread warp). That equally applies to the OMP_TEAMS_THREAD_LIMIT environment variable, the
omp_set_teams_thread_limit function and the thread_limit clause. For any other value, the
actual limit on the number of threads per team will likely be rounded down to the nearest multiple of
32. The same guidance applies to the num_threads clause as well.

Value Behavior

OMP_TEAMS_THREAD_LIMIT=<positive_integer> Maximum number of threads in teams

For the comprehensive explanation of OMP_TEAMS_THREAD_LIMIT, please refer to the OpenMP spec-
ification.

Forcing the number of device teams and threads

In certain situations, for instance for debugging or performance tuning, it may be desirable to specify
an exact number of teams and threads on the GPU. While OpenMP offers a number of convenient ways
to control that, e.g. the num_teams and thread_limit clauses, as well as the environment variables
described above, they do not guarantee an exact teams and threads configuration.

The NVIDIA HPC OpenMP Runtime supports the NVCOMPILER_OMP_CUDA_GRID environment variable.
When set, it requests the runtime to use the exact number of teams and threads per team when
running OpenMP compute constructs on the GPU. Essentially, its effect is to use a specific CUDA grid
configuration for any kernel, bypassing runtime and compiler guidance.
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Value Behavior

NVCOMPILER_OMP_CUDA_GRID=<num_blocks>,
<num_threads>

The <num_blocks> and <num_threads>must be positive
integers. They are used to form a CUDA grid when running
GPU kernels associated with omp target compute con-
structs.

However, even with an exact CUDA grid specified, the runtime may still use a corrected configuration
if that is necessary for a successful kernel launch.

Please refer to the CUDA C++ Programming Guide for the detailed explanation of how the CUDA kernel
execution configurations work.

Runtime warnings

The NVIDIA HPC OpenMP Runtime may issue warnings when it encounters behavior that is non-
standard or not explicitly defined by the OpenMP specification. These warnings are printed to the
application’s standard error output. Warnings do not interrupt execution; the application continues
running normally.

To suppress all runtime warning messages, set the NVCOMPILER_OMP_DISABLE_WARNINGS environ-
ment variable to the true value.

Value Behavior

NVCOM-
PILER_OMP_DISABLE_WARNINGS=false

The runtime can generate warning messages to the standard er-
ror output. This is the default setting.

NVCOM-
PILER_OMP_DISABLE_WARNINGS=true

No warning messages will be generated.

14.2. Fallback Mode

The HPC compilers support host fallback of OpenMP target regions when no GPU is present or
OMP_TARGET_OFFLOAD is set to DISABLED. Execution should always be correct but the performance
of the target region may not always be optimal when run on the host. OpenMP target regions pre-
scriptively structured for optimal execution on GPUs may not perform well when run on the dissimilar
architecture of the CPU. To provide performance portability between host and device, we recommend
use of the loop construct.

firstprivates with nowait not supported for host execution

There is currently a limitation on the use of the nowait clause on target regions intended for execution
on the host (-mp or -mp=gpu with OMP_TARGET_OFFLOAD=DISABLED). If the target region references
variables having the firstprivate data-sharing attribute, their concurrent updates are not guaran-
teed to be safe. To work around this limitation, when running on the host, we recommend avoiding
the nowait clause on such target regions or equivalently using the taskwait construct immediately
following the region.

14.2. Fallback Mode 111

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


NVIDIA HPC Compilers User's Guide, Release 26.1

14.3. Loop

The HPC compilers support the loop construct with an extension to the default binding thread set
mechanism specified by OpenMP in order to allow the compilers the freedom to analyze loops and
dependencies to generate highly parallel code for CPU and GPU targets. In other words, the compilers
map loop to either teams or to threads, as the compiler chooses, unless the user explicitly speci-
fies otherwise. The mapping selected is specific to each target architecture even within the same
executable (i.e., GPU offload and host fallback) thereby facilitating performance portability.

The shape of the parallelism offered by NVIDIA’s GPUs, consisting of thread blocks and three dimen-
sions of threads therein, differs from the multi-threaded vector parallelism of modern CPUs. The
following table summarizes the OpenMP mapping to NVIDIA GPUs and multicore CPUs:

Construct CPU GPU

!$omp target starts offload

!$omp teams single team CUDA thread blocks in grid

!$omp parallel CPU threads CUDA threads within thread block

!$omp simd hint for vector instructions simdlen(1)

HPC programs need to leverage all available parallelism to achieve performance. The programmer can
attempt to become an expert in the intricacies of each target architecture and use that knowledge
to structure programs accordingly. This prescriptive model can be successful but tends to increase
source code complexity and often requires restructuring for each new target architecture. Here’s an
example where a programmer explicitly requests the steps the compiler should take to map parallelism
to two targets:

#ifdef TARGET_GPU
#pragma omp target teams distribute reduction(max:error)

#else
#pragma omp parallel for reduction(max:error)

#endif
for( int j = 1; j < n-1; j++) {
#ifdef TARGET_GPU

#pragma omp parallel for reduction(max:error)
#endif

for( int i = 1; i < m-1; i++ ) {
Anew[j][i] = 0.25f * ( A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);
error = fmaxf( error, fabsf(Anew[j][i]-A[j][i]));

}
}

In this example, the GPU target has nested parallelism in the target teams distribute construct.
In such cases, the compiler may need help from the programmer to allocate the optimal number of
threads for the nested parallel region. We recommend considering the use of the thread_limit
clause on the entire target construct that has nested parallelism.

An alternative is for the programmer to focus on exposing parallelism in a program and allowing a
compiler to do the mapping onto the target architectures. The HPC compilers’ implementation of
loop supports this descriptive model. In this example, the programmer specifies the loop regions to
be parallelized by the compiler and the compilers parallelize loop across teams and threads:
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#pragma omp target teams loop reduction(max:error)
for( int j = 1; j < n-1; j++) {

#pragma omp loop reduction(max:error)
for( int i = 1; i < m-1; i++ ) {

Anew[j][i] = 0.25f * ( A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmaxf( error, fabsf(Anew[j][i]-A[j][i]));
}

}

The programmer’s tuning tool with loop is the bind clause. The following table extends the previous
mapping example:

Construct CPU GPU

!$omp loop bind(teams) threads CUDA thread blocks and
threads

!$omp loop
bind(parallel)

threads CUDA threads

!$omp loop
bind(thread)

single thread (useful for vector in-
structions)

single thread

Orphaned loop constructs within a single file are supported; a binding region of either parallel or
thread must be specified with such loops via the bind clause. The compilers support loop regions
containing procedure calls as long as the callee does not contain OpenMP directives.

Here are a few additional examples using loop. We also show examples of the type of information the
compiler would provide when using the -Minfo compiler option.

Use of loop in Fortran:

!$omp target teams loop
do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown
do ig_blk = 1, ig_blksize

do ig = ig_blk, ncouls, ig_blksize
do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize

!expensive computation codes
enddo

enddo
enddo

enddo
enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp
42, !$omp target teams loop

42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel
Generating Tesla code

43, Loop parallelized across teams ! blockidx%x
44, Loop run sequentially
45, Loop run sequentially
46, Loop run sequentially
47, Loop parallelized across threads(128) ! threadidx%x

42, Generating Multicore code
43, Loop parallelized across threads
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Use of loop, collapse, and bind:

!$omp target teams loop collapse(3)
do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown
do ig_blk = 1, ig_blksize

!$omp loop bind(parallel) collapse(2)
do ig = ig_blk, ncouls, ig_blksize

do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize
!expensive computation codes

enddo
enddo

enddo
enddo

enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop
42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel

Generating Tesla code
43, Loop parallelized across teams collapse(3) ! blockidx%x
44, ! blockidx%x collapsed
45, ! blockidx%x collapsed
47, Loop parallelized across threads(128) collapse(2) ! threadidx%x
48, ! threadidx%x collapsed

42, Generating Multicore code
43, Loop parallelized across threads

Use of loop, collapse, and bind(thread):

!$omp target teams loop collapse(3)
do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown
do ig_blk = 1, ig_blksize

!$omp loop bind(thread) collapse(2)
do ig = ig_blk, ncouls, ig_blksize

do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize
! expensive computation codes

enddo
enddo

enddo
enddo

enddo

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop
42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel

Generating Tesla code
43, Loop parallelized across teams, threads(128) collapse(3) ! blockidx%x�

↪→threadidx%x
44, ! blockidx%x threadidx%x collapsed
45, ! blockidx%x threadidx%x collapsed
47, Loop run sequentially
48, collapsed

42, Generating Multicore code
43, Loop parallelized across threads
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14.4. OpenMP Subset

This section contains the subset of OpenMP 5.0 features that the HPC compilers support. We have
attempted to define this subset of features to be those that enable, where possible, OpenMP-for-
GPU application performance that closely mirrors the success NVIDIA has seen with OpenACC. Almost
every feature supported on NVIDIA GPUs is also supported on multicore CPUs, although the reverse
is not true. Most constructs from OpenMP 3.1 and OpenMP 4.5 that apply to multicore CPUs are
supported for CPU targets, and some features from OpenMP 5.0 are supported as well.

OpenMP target offload to NVIDIA GPUs is supported on NVIDIA V100 or later GPUs.

The section numbers below correspond to the section numbers in the OpenMP Application Program-
ming Interface Version 5.0 November 2018 document.

2. Directives

2.3 Variant Directives

2.3.4 Metadirectives

The target_device/device context selector is supported with the kind(host|nohost|cpu|gpu) and
arch(nvtpx|nvptx64) trait selectors. The arch trait property nvptx is an alias for nvptx64; any other
arch trait properties are treated as not matching or are ignored. The isa selector is treated as not
matching or is ignored; no support is provided to select a context based on NVIDIA GPU compute
capability.

The implementation context selector is supported with the vendor(nvidia) trait selector.

The user context selector is supported with the condition(expression) trait selector including
dynamic user traits.

The syntax begin/end metadirective is not supported.

2.3.5 Declare Variant Directive

The device context selector is supported with the kind(host|nohost|cpu|gpu) and
arch(nvtpx|nvptx64) trait selectors. The arch trait property nvptx is an alias for nvptx64;
any other arch trait properties are treated as not matching or are ignored. The isa selector is also
treated as not matching or is ignored; no support is provided to select a context based on NVIDIA
GPU compute capability.

The implementation context selector is supported with the vendor(nvidia) trait selector; all other
implementation trait selectors are treated as not matching.

The syntax begin/end declare variant is supported for C/C++.

2.4 Requires Directive

The requires directive has limited support. The requirement clauses unified_address and uni-
fied_shared_memory are accepted but have no effect. To activate OpenMP unified shared memory
programming a command-line option needs to be passed in (refer to OpenMPwith CUDAUnifiedMem-
ory for more details).

2.5 Internal Control Variables

ICV support is as follows.

▶ dyn-var, nthread-var, thread-limit-var, max-active-levels-var,
active-levels-var, levels-var, run-sched-var, dyn-sched-var, and stacksize-var
are supported

14.4. OpenMP Subset 115



NVIDIA HPC Compilers User's Guide, Release 26.1

▶ place-partition-var, bind-var, wait-policy-var, display-affinity-var,
default-device-var, and target-offload-var are supported only on the CPU

▶ affinity-format-var is supported only on the CPU; its value is immutable

▶ max-task-priority-var, def-allocator-var are not supported

▶ cancel-var is not supported; it always returns false

2.6 Parallel Construct

Support for parallel construct clauses is as follows.

▶ The num_threads, default, private, firstprivate, and shared clauses are supported

▶ The reduction clause is supported as described in 2.19.5

▶ The if and copyin clauses are supported only for CPU targets; the compiler emits an error for
GPU targets

▶ The proc_bind clause is supported only for CPU targets; it is ignored for GPU targets

▶ The allocate clause is ignored

2.7 Teams Construct

The teams construct is supported only when nested within a target construct that contains no state-
ments, declarations, or directives outside the teams construct, or as a combined targetteams con-
struct. The teams construct is supported for GPU targets. If the target construct falls back to CPU
mode, the number of teams is one. Support for teams construct clauses is as follows.

▶ The num_teams, thread_limit, default, private, and firstprivate clauses are supported

▶ The reduction clause is supported as described in 2.19.5

▶ The shared clause is supported for CPU targets and is supported for GPU targets in unified-
memory mode

▶ The allocate clause is ignored

2.8 Worksharing Constructs

2.8.1 Sections Construct

The sections construct is supported only for CPU targets; the compiler emits an error for GPU tar-
gets. Support for sections construct clauses is as follows.

▶ The private and firstprivate clauses are supported

▶ The reduction clause is supported as described in 2.19.5

▶ The lastprivate clause is supported; the optional lastprivate modifier is not supported

▶ The allocate clause is ignored

2.8.2 Single Construct

Support for single construct clauses is as follows.

▶ The private, firstprivate, and nowait clauses are supported

▶ The copyprivate clause is supported only for CPU targets; the compiler emits an error for GPU
targets

▶ The allocate clause is ignored
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2.8.3 Workshare Construct

The workshare construct is supported in Fortran only for CPU targets; the compiler emits an error
for GPU targets.

2.9 Loop-Related Constructs

2.9.2 Worksharing-Loop Construct (for/do)

Support for worksharing for and do construct clauses is as follows.

▶ The private, firstprivate, and collapse clauses are supported

▶ The reduction clause is supported as described in 2.19.5

▶ The schedule clause is supported; the optional modifiers are not supported

▶ The lastprivate clause is supported; the optional lastprivate modifier is not supported

▶ The ordered clause is supported only for CPU targets; ordered(n) clause is not supported

▶ The linear clause is not supported

▶ The order(concurrent) clause is ignored

▶ The allocate clause is ignored

2.9.3 SIMD Directives

The simd construct can be used to provide tuning hints for CPU targets; the simd construct is ignored
for GPU targets. Support for simd construct clauses is as follows.

▶ The reduction clause is supported as described in 2.19.5

▶ The lastprivate clause is supported; the optional lastprivate modifier is not supported

▶ The if, simdlen, and linear clauses are not supported

▶ The safelen, aligned, nontemporal, and order(concurrent) clauses are ignored

The composite forsimd and dosimd constructs are supported for CPU targets; they are treated as
for and do directives for GPU targets. Supported simd clauses are supported on the composite con-
structs for the CPU. Any simd clauses are ignored for GPU targets.

The declaresimd directive is ignored.

2.9.4 Distribute Directives

The distribute construct is supported within a teams construct. Support for distribute con-
struct clauses is as follows:

▶ The private, firstprivate, collapse, and dist_schedule(static [ ,chunksize])
clauses are supported

▶ The lastprivate clause is not supported

▶ The allocate clause is ignored

The distribute simd construct is treated as a distribute construct and is supported for GPU
targets; valid supported distribute clauses are accepted; simd clauses are ignored. The dis-
tributesimd construct is not supported for CPU targets.

The distributeparallelfor or distributeparalleldo constructs are supported for GPU tar-
gets. Valid supported distribute and parallel and for or do clauses are accepted. The dis-
tributeparallelfor or distributeparalleldo constructs are not supported for CPU targets.
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The distribute parallel `for simd or distribute parallel do simd constructs are treated
as distribute parallel for or distribute parallel do constructs and are supported for GPU
targets. These are not supported for CPU targets.

2.9.5 Loop Construct

Support for loop construct clauses is as follows.

▶ The private, bind, and collapse clauses are supported

▶ The reduction clause is supported as described in 2.19.5

▶ The order(concurrent) clause is assumed

▶ The lastprivate clause is not supported

2.10 Tasking Constructs

2.10.1 Task Construct

The task construct is supported for CPU targets. The compiler emits an error when it encounters
task within a target construct. Support for task construct clauses is as follows:

▶ The if, final, default , private, firstprivate, and shared clauses are supported

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11

2.10.4 Taskyield Construct

The taskyield construct is supported for CPU targets; it is ignored for GPU targets.

2.11 Memory Management Directives

The memory management allocators, memory management API routines, and memory management
directives are not supported

2.12 Device Directives

2.12.1 Device Initialization

Depending on how the program is compiled and linked, device initialization may occur at the first tar-
get construct or API routine call, or may occur implicitly at program startup.

2.12.2 Target Data Construct

The target data construct is supported for GPU targets. Support for target data construct
clauses is as follows.

▶ The if, device, use_device_ptr, and use_device_addr clauses are supported

▶ The map clause is supported as described in 2.19.7

2.12.3 Target Enter Data Construct

The target enter data construct is supported for GPU targets. Support for enter data construct
clauses is as follows.

▶ The if, device, and nowait clauses are supported

▶ The map clause is supported as described in 2.19.7.

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11
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2.12.4 Target Exit Data Construct

The target exit data construct is supported for GPU targets. Support for exit data construct
clauses is as follows.

▶ The if, device, and nowait clauses are supported

▶ The map clause is supported as described in 2.19.7.

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11

2.12.5 Target Construct

The target construct is supported for GPU targets. If there is no GPU or GPU offload is otherwise
disabled, execution falls back to CPU mode. Support for target construct clauses is as follows:

▶ The if, private, firstprivate, is_device_ptr, and nowait clauses are supported

▶ The device clause is supported without the device-modifier ancestor keyword

▶ The map clause is supported as described in 2.19.7

▶ The defaultmap clause is supported using OpenMP 5.0 semantics

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11

▶ The allocate and uses_allocate clauses are ignored

2.12.6 Target Update Construct

The target update construct is supported for GPU targets. Support for target update construct
clauses is as follows.

▶ The if, device, and nowait clauses are supported.

▶ The to and from clauses are supported without mapper or mapid

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11

Array sections are supported in to and from clauses, including noncontiguous array sections. Array
section strides are not supported. If the array section is noncontiguous, the OpenMP runtime may
have to use multiple host-to-device or device-to-host data transfer operations, which increases the
overhead. If the host data is in host-pinned memory, then update data transfers with the nowait
clause are asynchronous. This means the data transfer for a target update to nowait may not
occur immediately or synchronously with the program thread, and any changes to the data may affect
the transfer, until a synchronizing operation is reached. Similarly, a target update from nowait
may not occur immediately or synchronously with the program thread, and the downloaded data may
not be available until a synchronizing operation is reached. If the host data is not in host-pinned mem-
ory, then update data transfers with the nowait clause may require that the data transfer operation
use an intermediate pinned buffer managed by the OpenMP runtime library, and that a memory copy
operation on the host between the program memory and the pinned buffer may be needed before
starting or before finishing the transfer operation, which affects overhead and performance. To learn
more about the pinned buffer, please refer to Staging Memory Buffer <acc-mem-pinned-buffer>.

2.12.7 Declare Target Construct

The declare target construct is supported for GPU targets.

▶ declare target ... end declare target is supported

▶ declare target(list) is supported

14.4. OpenMP Subset 119



NVIDIA HPC Compilers User's Guide, Release 26.1

▶ The to(list) clause is supported

▶ The device_type clause is supported for C/C++

A function or procedure that is referenced in a function or procedure that appears in a declare tar-
get to clause (explicitly or implicitly) is treated as if its name had implicitly appeared in a declare
target to clause.

2.13 Combined Constructs

Combined constructs are supported to the extent that the component constructs are themselves
supported.

2.14 Clauses on Combined and Composite Constructs

Clauses on combined constructs are supported to the extent that the clauses are supported on the
component constructs.

2.16 Master Construct

The master construct is supported for CPU and GPU targets.

2.17 Synchronization Constructs and Clauses

2.17.1 Critical Construct

The critical construct is supported only for CPU targets; the compiler emits an error for GPU tar-
gets.

2.17.2 Barrier Construct

The barrier construct is supported.

2.17.3 Implicit Barriers

Implicit barriers are implemented.

2.17.4 Implementation-Specific Barriers

There may be implementation-specific barriers, and they may be different for CPU targets than for
GPU targets.

2.17.5 Taskwait Construct

The taskwait construct is supported only for CPU targets; it is ignored for GPU targets.

▶ The depend([dependmodifier,] dependtype : list) clause is supported as described in
2.17.11

2.17.6 Taskgroup Construct

The taskgroup construct is supported only for CPU targets. It is ignored for GPU targets.

2.17.7 Atomic Construct

Support for atomic construct clauses is as follows.

▶ The read, write, update, and capture clauses are supported.

▶ The memory order clauses seq_cst, acq_rel, release, acquire, relaxed are not supported

▶ The hint clause is ignored

2.17.8 Flush Construct

The flush construct is supported only for CPU targets.

2.17.9 Ordered Construct and Ordered Directive
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The ordered block construct is supported only for CPU targets.

2.17.11 Depend Clause

The depend clause is supported on CPU targets. It is not supported on GPU targets. The dependence
types in, out, and inout are supported. The dependence types mutexinoutset and depobj, de-
pendence modifier iterator(iters), depend(source), and depend(sink:vector) are not sup-
ported.

2.19 Data Environment

2.19.2 Threadprivate Directive

The threadprivate directive is supported only for CPU targets. It is not supported for GPU targets;
references to threadprivate variables in device code are not supported.

2.19.5 Reduction Clauses and Directives

The reduction clause is supported. The optional modifier is not supported.

2.19.6 Data Copying Clauses

The data copying copyin and copyprivate clauses are supported only for CPU targets; the compiler
emits a compile-time error for GPU targets.

2.19.7 Data Mapping Attribute Rules, Clauses, and Directives

▶ The map([[mapmod[,]...] maptype:] datalist) clause is supported. Of the map-type-
modifiers, always is supported, close is ignored, and mapper(mapid) is not supported.

▶ The defaultmap clause is supported using OpenMP 5.0 semantics.

2.20 Nesting of Regions

For constructs supported in this subset, restrictions on nesting of regions is observed. Additionally,
nested parallel regions on CPU are not supported and nested teams or parallel regions in a target
region are not supported.

Runtime Library Routines

3.2 Execution Environment Routines

The following execution environment runtime API routines are supported.

▶ omp_set_num_threads, omp_get_num_threads, omp_get_max_threads,
omp_get_thread_num, omp_get_thread_limit, omp_get_supported_active_levels,
omp_set_max_active_levels, omp_get_max_active_levels, omp_get_level,
omp_get_ancestor_thread_num, omp_get_team_size, omp_get_num_teams,
omp_get_team_num, omp_is_initial_device

The following execution environment runtime API routines are supported only on the CPU.

▶ omp_get_num_procs, omp_set_dynamic, omp_get_dynamic, omp_set_schedule,
omp_get_schedule, omp_in_final, omp_get_proc_bind, omp_get_num_places,
omp_get_affinity_format, omp_set_default_device, omp_get_default_device,
omp_get_num_devices, omp_get_device_num, omp_get_initial_device

The following execution environment runtime API routines have limited support.

▶ omp_get_cancellation, omp_get_nested; supported only on the CPU; the value returned is
always false

▶ omp_display_affinity, omp_capture_affinity; supported only on the CPU; the format
specifier is ignored

▶ omp_set_nested; supported only on the CPU, the value is ignored
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The following execution environment runtime API routines are not supported.

▶ omp_get_place_num_procs, omp_get_place_proc_ids, omp_get_place_num,
omp_get_partition_num_places, omp_get_partition_place_nums,
omp_set_affinity_format, omp_get_max_task_priority, omp_pause_resource,
omp_pause_resource_all

3.3 Lock Routines

Lock runtime API routines are not supported on the GPU. The following lock runtime API routines are
supported on the CPU.

▶ omp_init_lock, omp_init_nest_lock, omp_destroy_lock, omp_destroy_nest_lock,
omp_set_lock, omp_set_nest_lock, omp_unset_lock, omp_unset_nest_lock,
omp_test_lock, omp_test_nest_lock

The following lock runtime API routines are not supported.

▶ omp_init_lock_with_hint, omp_init_nest_lock_with_hint

3.4 Timing Routines

The following timing runtime API routines are supported.

▶ omp_get_wtime, omp_get_wtick

3.6 Device Memory Routines

The following device memory routines are supported only on the CPU.

▶ omp_target_is_present, omp_target_associate_ptr, omp_target_disassociate_ptr

▶ omp_target_memcpy and omp_target_memcpy_rect are only supported when copying to and
from the same device.

The following device memory routines are supported on the CPU; we extend OpenMP to support these
in target regions on a GPU, but only allocation and deallocation on the same device is supported.

▶ omp_target_alloc, omp_target_free

3.7 Memory Management Routines

The following memory management routines are supported.

▶ omp_alloc, omp_free

The following memory management routines are not supported.

▶ omp_init_allocator, omp_destroy_allocator, omp_set_default_allocator,
omp_get_default_allocator

6 Environment Variables

The following environment variables have limited support.

▶ OMP_SCHEDULE, OMP_NUM_THREADS, OMP_NUM_TEAMS, OMP_DYNAMIC, OMP_PROC_BIND,
OMP_PLACES, OMP_STACKSIZE, OMP_WAIT_POLICY, OMP_MAX_ACTIVE_LEVELS,
OMP_NESTED, OMP_THREAD_LIMIT, OMP_TEAMS_THREAD_LIMIT, OMP_DISPLAY_ENV,
OMP_DISPLAY_AFFINITY, OMP_DEFAULT_DEVICE, and OMP_TARGET_OFFLOAD are supported
on CPU.

▶ OMP_CANCELLATION and OMP_MAX_TASK_PRIORITY are ignored.

▶ OMP_AFFINITY_FORMAT, OMP_TOOL, OMP_TOOL_LIBRARIES, OMP_DEBUG, and OMP_ALLOCATOR
are not supported
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14.5. Using metadirective

This section contains limitations affecting metadirective along with a few guidelines for its use.

The Fortran compiler does not support variants leading to an OpenMP directive for which a corre-
sponding end directive is required.

Nesting user conditions, while legal, may create situations that the HPC Compilers do not handle
gracefully. To avoid potential problems, use device traits inside user conditions instead. The follow-
ing example illustrates this best practice.

Avoid nesting dynamic user conditions like this:

#pragma omp metadirective \
when( user={condition(use_offload)} : target teams distribute) \
default( parallel for schedule(static) )
for (i = 0; i < N; i++) {

...
#pragma omp metadirective \

when( user={condition(use_offload)} : parallel for)
for (j = 0; j < N; j++) {

...
}
...

}

Instead, use target_device and device traits within dynamic user conditions like this:

#pragma omp metadirective \
when( target_device={kind(gpu)}, user={condition(use_offload)} : target teams�

↪→distribute) \
default( parallel for schedule(static) )
for (i = 0; i < N; i++) {

...
#pragma omp metadirective \

when( device={kind(gpu)} : parallel for)
for (j = 0; j < N; j++) {

...
}
...

}

The HPC compilers do not support nesting metadirective inside a target construct applying to a
syntactic block leading to a teams variant. Some examples:

The compilers will emit an error given the following code:

#pragma omp target map(to:v1,v2) map(from:v3)
{
#pragma omp metadirective \
when( device={arch("nvptx")} : teams distribute parallel for) \
default( parallel for)

for (int i = 0; i < N; i++) {
v3[i] = v1[i] * v2[i];

}
}

The compilers will always match device={arch("nvptx")} given the following code:
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#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \
when( device={arch("nvptx")} : teams distribute parallel for) \
default( parallel for)

for (int i = 0; i < N; i++) {
v3[i] = v1[i] * v2[i];

}

The compilers match device={"arch") for GPU code, and default for host fallback, given the fol-
lowing code:

#pragma omp target teams distribute map(to:v1,v2) map(from:v3)
for (...)
{
#pragma omp metadirective \
when( device={arch("nvptx")} : parallel for) \
default( simd )

for (int i = 0; i < N; i++) {
v3[i] = v1[i] * v2[i];

}
}

14.6. Mapping target constructs to CUDA
streams

An OpenMP target task generating construct is executed on the GPU in a CUDA stream. The following
are target task generating constructs:

▶ target enter data

▶ target exit data

▶ target update

▶ target

This section explains how these target constructs are mapped to CUDA streams. The relationship with
the OpenACC queues is also explained below.

Keep in mind that thetarget data construct does not generate a task and is not necessarily executed
in a CUDA stream. It also cannot have the depend and nowait clauses, thus its behavior cannot be
directly controlled by the user application. The rest of this section does not cover the behavior of the
target data construct.

Any task-generating target construct can have depend and nowait clauses. The NVIDIA OpenMP
Runtime takes these clauses as a guidance for how to map the construct to a specific CUDA stream.
Below is a breakdown of how the clauses affect the mapping decisions.

‘target’ without ‘depend’, without ‘nowait’

For these constructs, the per-thread default CUDA stream is normally used. The stream is unique for
each host thread, so target regions created by different host threads will execute independently in
different streams according to the CUDA rules described in CUDA Runtime API; see the rules in the
“Per-thread default stream” section.
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The OpenACC queue acc_async_sync is initially associated with the same per-thread
default CUDA stream. The user is allowed to change the association by calling
acc_set_cuda_stream(acc_async_sync, stream). This will change accordingly the stream
used for target without nowait.

The CUDA stream handle can be directly obtained via the ompx_get_cuda_stream(int device,
int nowait) function, with the nowait parameter set to 0. The per-thread default stream can be
obtained with the CUDA handle CU_STREAM_PER_THREAD or cudaStreamPerThread.

Here is an example of how a custom CUDA stream can be used to substitute the default stream:

extern __global__ void kernel(int *data);

CUstream stream;
cuStreamCreate(&stream, CU_STREAM_DEFAULT);
acc_set_cuda_stream(acc_async_sync, stream);

#pragma omp target enter data map(to:data[:N])
#pragma omp target data use_device_ptr(data)

kernel<<<N/32, 32, 0, stream>>>(data);
#pragma omp target teams distribute parallel for

for (int i = 0; i < N; i++) {
data[i]++;

}
#pragma omp target exit data map(from:data[:N])

Note there is no explicit stream synchronization after the CUDA kernel is launched. The stream is
synchronized automatically at the target constructs that follow.

‘target’ with ‘depend’, without ‘nowait’

For this construct, the runtime will block the current thread until all dependencies listed in the depend
clause are resolved. Then, the target construct will be executed in the default per-thread CUDA
stream as described in the previous section (that is, as if there is no depend clause).

‘target’ with ‘nowait’, without ‘depend’

By default, the runtime will select a CUDA stream for each new target nowait construct. The se-
lected stream may be the same that was used for a prior target nowait construct. That is, there is
no guarantee of uniqueness of the selected stream.

This is different from the OpenACC model that uses the same CUDA stream associated with the
acc_async_noval queue for any asynchronous construct with the async clause without an argu-
ment. To change this behavior, the user can call the ompx_set_cuda_stream_auto(int enable)
function with the enable parameter set to 0. In this case, the CUDA stream associated with the
acc_async_noval OpenACC queue will be used for all OpenMP target nowait constructs. Another
way to enable this behavior is to set the environment variable NVCOMPILER_OMP_AUTO_STREAMS to
FALSE.

To access the stream used for the next target nowait construct, the user can call the
ompx_get_cuda_stream(int device, int nowait) function, with the nowait parameter set
to 1.

‘target’ with both ‘depend’ and ‘nowait’

The decision on which CUDA stream to use in this case relies on previously scheduled target and host
tasks sharing a subset of the dependencies listed in the depend clause:

▶ If the target construct has only one dependency, which is of the type inout or out, and that
dependency maps to a previously scheduled target depend(...) nowait construct, and the
same device is used for both target constructs, then the CUDA stream which the previous target
task was scheduled to will be used.

14.6. Mapping target constructs to CUDA streams 125



NVIDIA HPC Compilers User's Guide, Release 26.1

▶ Otherwise, a CUDA stream will be selected for this target construct according to the stream
selection policy.

Note that target constructs with a single in dependency can be scheduled on a newly selected CUDA
stream. This is to allow parallel execution of multiple target nowait constructs that depend on data
produced by another previously scheduled target nowait construct.

Here is a simplified example of how a target construct, a CUDA library function and a CUDA kernel
can be executed on the GPU in the same stream asynchronously with respect to the host thread:

extern __global__ void kernel(int *data);

cudaStream_t stream = (cudaStream_t)ompx_get_cuda_stream(omp_get_default_device(), 1);
cufftSetStream(cufft_plan, stream);

#pragma omp target enter data map(to:data[:N]) depend(inout:stream) nowait
#pragma omp target data use_device_ptr(data)

{
kernel<<<N/32, 32, 0, stream>>>(data);
cufftExecC2C(cufft_plan, data, data, CUFFT_FORWARD);

}
#pragma omp target teams distribute parallel for depend(inout:stream) nowait

for (int i = 0; i < N; i++) {
data[i]++;

}
#pragma omp target exit data map(from:data[:N]) depend(inout:stream) nowait

Note that the stream variable holds the CUDA stream handle and also serves as the dependency
for the target constructs. This dependency enforces the order of execution and also guarantees
the target constructs are on the same stream that was returned from the ompx_get_cuda_stream
function call.

NVIDIA OpenMP API to access and control CUDA streams

NVIDIA OpenMP Runtime provides the following API to access CUDA streams and to control their use.

void *ompx_get_cuda_stream(int device, int nowait);

This function returns the handle of the CUDA stream that will be used for the next target construct:

▶ If the nowait parameter is set to 0, it returns the CUDA stream associated with the OpenACC
queue acc_async_sync, which is initially mapped to the default per-thread CUDA stream;

▶ Otherwise, it returns a CUDA stream which will be used for the next target nowait construct
that cannot be mapped to an existing stream according to the rules for the depend clause.

void ompx_set_cuda_stream_auto(int enable);

This function sets the policy for how CUDA streams are selected for target nowait constructs:

▶ If the enable parameter is set to a non-zero value, an internally selected CUDA stream will be
used for each target nowait construct that follows. This is the default behavior;

▶ Otherwise, the CUDA stream associated with the OpenACC queue acc_async_noval will be
used for all target nowait constructs that follow. This becomes the default behavior if the
environment variable NVCOMPILER_OMP_AUTO_STREAMS is set to FALSE.

The setting is done only for the host thread which calls this function.
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14.7. Noncontiguous Array Sections

Array sections can be used in to and from clauses, including noncontiguous array sections. The non-
contiguous array section must be specified in a single map clause; it cannot be split between multiple
directives. Although this feature may become a part of a future OpenMP specification, at this time it
is an NVIDIA HPC compilers extension.

14.8. OpenMP with CUDA Unified Memory

This section will focus on OpenMP unified shared memory programming, and assume users are familiar
with Separate, Managed, and Unified Memory Modes explained in the Memory Model and Managed
and UnifiedMemoryModes sections. OpenMP unified shared memory corresponds to Unified Memory
Mode in NVHPC Compilers and it can be enabled with -gpu=mem:unified flag. Source code with
requires unified_shared_memory directive is accepted but requires -gpu=mem:unified flag to
activate Unified Memory Mode.

In Unified Memory Mode, map clauses on target constructs are optional. Additionally, declare tar-
get directives are optional for variables with static storage duration accessed inside functions to
which such directive is applied. The OpenMP unified shared memory eases accelerator programming
on the GPUs removing the need for data management and only requiring to express the parallelism in
the compute regions.

In Unified Memory Mode, all data is managed by the CUDA runtime. Explicit data map clauses which
manage the data movement across the host and devices become optional. All variables are acces-
sible from the OpenMP offload compute regions executing on the GPU. The map clause with alloc,
to, from, and tofrom type will not result in any device allocation or data transfer. The OpenMP run-
time, however, may leverage such clauses to communicate preferable data placement to the CUDA
runtime by means of memory hint APIs as elaborated in the following blog post on the NVIDIA web-
site: Simplifying GPU Application Development with Heterogeneous Memory Management. Device
memory can be allocated or deallocated in OpenMP programs in Unified Memory Mode by using
the omp_target_alloc and omp_target_free API calls. Please, note that the memory allocated
through omp_target_alloc cannot be accessed by the host.

Understanding Data Movement

When the compiler encounters a compute construct without visible target data directives or map
clauses, it attempts to determine what data is required for correct execution of the region on the GPU.
When the compiler is unable to determine the size and shape of data needing to be accessible on the
device, it behaves as follows:

▶ In Separate Memory Mode, the compiler may not be able to alert you to the need for an explicit
data clause specifying size and/or shape of data being copied to/from the GPU. In this case, the
default length of one may be used. This may cause illegal memory access errors at runtime on
the GPU devices.

▶ In Managed Memory Mode (-gpu=mem:managed), the compiler assumes the data is allocated
in managed memory and thus is accessible from the device; if this assumption is wrong, for
example, if the data was defined globally or is located on the CPU stack, the program may fail at
runtime.

▶ In Unified Memory Mode (-gpu=mem:unified), all data is accessible from the device making
information about size and shape unnecessary.

Take the following example in C:
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#pragma omp declare target
void set(int* ptr, int i, int j, int dim){

int idx = i * dim + j;
return ptr[idx] = someval(i, j);

}
#pragma omp end declare target

void fill2d(int* ptr, int dim){
#pragma omp target teams distribute parallel for

for (int i = 0; i < dim; i++)
for (int j = 0; j < dim; j++)

set(ptr, i, j, dim);
}

In Separate Memory Mode, the only way to guarantee correctness for this example is to specify an
array section in the target construct as follows:

#pragma omp target teams distribute parallel for map(from: ptr[0:dim*dim])

This change explicitly instructs the OpenMP implementation about the precise data segment used
within the target for loop.

In Unified Memory Mode, the map clause is not required.

The next example, in Fortran, illustrates how a global variable can be accessed in an OpenMP routine
without requiring any explicit annotation.

module m
integer :: globmin = 1234
contains
subroutine findmin(a)
!$omp declare target

integer, intent(in) :: a(:)
integer :: i
do i = 1, size(a)

if (a(i) .lt. globmin) then
globmin = a(i)

endif
end do

end subroutine
end module m

Compile the example above for Unified Memory Mode:

nvfortran -mp=gpu -gpu=mem:unified example.f90

The source does not need any OpenMP directives to access module variable globmin, to either read
or update its value, in the routine invoked from CPU and GPU. Moreover, any access to globmin will be
made to the same exact instance of the variable from CPU and GPU; its value is synchronized automat-
ically. In Separate or Managed Memory Modes, such behavior can only be achieved with a combination
of OpenMP declare target and target update directives in the source code.

Migrating existing OpenMP applications written for Separate Memory Mode should, in most cases, be
a seamless process requiring no source changes. Some data access patterns, however, may lead to
different results produced during application execution in Unified Memory Mode. Applications which
rely on having separate data copies in GPU memory to conduct temporary computations on the GPU
– without maintaining data synchronization with the CPU – pose a challenge for migration to unified
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memory. For the following Fortran example, the value of variable c after the last loop will differ de-
pending on whether the example is compiled with or without -gpu=mem:unified.

b(:) = ...
c = 0

!$omp target data map(to: b) map(from: a)
!$omp target distribute teams parallel for
do i = 1, N

b(i) = b(i) * i
end do
!$omp target distribute teams parallel for
do i = 1, N

a(i) = b(i) + i
end do
!$omp end target data

do i = 1, N
c = c + a(i) + b(i)

end do

Without Unified Memory, array b is copied into the GPU memory at the beginning of the OpenMP
target data region. It is then updated in the GPU memory and used to compute elements of array
a. As instructed by the data clause map(to:b), b is not copied back to the CPU memory at the end of
the target data region and therefore its initial value is used in the computation of c. With -mp=gpu
-gpu=mem:unified, the updated value of b in the first loop is automatically visible in the last loop
leading to a different value of c at its end.

Additional complications may arise from the asynchronous execution as the use of unified shared
memory may require extra synchronizations to avoid data races.

14.9. Multiple Device Support

A program can use multiple devices on a single node.

This functionality is supported using the omp_set_default_device API call and the device()
clause on the target constructs. Our experience is that most programs use MPI parallelism with
each MPI rank selecting a single GPU to which to offload. Some programs assign multiple MPI ranks
to each GPU, in order to keep the GPU fully occupied, though the fixed memory size of the GPU limits
how effective this strategy can be. Similarly, other programs use OpenMP thread parallelism on the
CPU, with each thread selecting a single GPU to which to offload.

14.10. Interoperability with CUDA

The HPC Compilers support interoperability of OpenMP and CUDA to the same extent they support
CUDA interoperability with OpenACC.

If OpenMP and CUDA code coexist in the same program, the OpenMP runtime and the CUDA runtime
use the same CUDA context on each GPU. To enable this coexistence, use the compilation and linking
option -cuda. CUDA-allocated data is available for use inside OpenMP target regions with the OpenMP
analog is_device_ptr to OpenACC’s deviceptr() clause.
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OpenMP-allocated data is available for use inside CUDA kernels directly if the data was allocated with
the omp_target_alloc() API call; if the OpenMP data was created with a target data map clause,
it can be made available for use inside CUDA kernels using the target data use_device_addr()
clause. Calling a CUDA device function inside an OpenMP target region is supported, as long as the
CUDA function is a scalar function, that is, does not use CUDA shared memory or any inter-thread
synchronization. Calling an OpenMP declare target function inside a CUDA kernel is supported as
long as the declare target function has no OpenMP constructs or API calls.

14.11. Interoperability with Other OpenMP
Compilers

OpenMP CPU-parallel object files compiled with NVIDIA’s HPC compilers are interoperable with
OpenMP CPU-parallel object files compiled by other compilers using the KMPC OpenMP runtime in-
terface. Compilers supporting KMPC OpenMP include Intel and CLANG. The HPC compilers support
a GNU OpenMP interface layer as well which provides OpenMP CPU-parallel interoperability with the
GNU compilers.

For OpenMP GPU computation, there is no similar formal or informal standard library interface for
launching GPU compute constructs or managing GPU memory. There is also no standard way to man-
age the device context in such a way as to interoperate between multiple offload libraries. The HPC
compilers therefore do not support interoperability of device compute offload operations and similar
operations generated with another compiler.

14.12. GNU STL

When using nvc++ on Linux, the GNU STL is thread-safe to the extent listed in the GNU documentation
as required by the C++11 standard. If an STL thread-safe issue is suspected, the suspect code can be
run sequentially inside of an OpenMP region using #pragma omp critical sections.
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This chapter describes the NVIDIA HPC Compiler support for standard language parallelism, also
known as Stdpar:

▶ ISO C++ standard library parallel algorithms with nvc++

▶ ISO Fortran do concurrent loop construct with nvfortran

Use the -stdpar compiler option to enable parallel execution with standard parallelism. The sub-
options to -stdpar are the following:

▶ gpu: compile for parallel execution on GPU; this sub-option is the default. This feature is sup-
ported on the NVIDIA Pascal architecture and newer.

▶ multicore: compile for multicore CPU execution.

By default, NVC++ auto-detects and generates GPU code for the type of GPU that is installed on the
system on which the compiler is running. To generate code for a specific GPU architecture, which
may be necessary when the application is compiled and run on different systems, add the -gpu=ccXX
command-line option. More details can be found in Compute Capability.

Predefined Macros

The following macros corresponding to the parallel execution target compiled for are added implicitly:

▶ __NVCOMPILER_STDPAR_GPU for parallel execution on GPU.

▶ __NVCOMPILER_STDPAR_MULTICORE for parallel execution on multicore CPU.

15.1. GPU Memory Modes

When compiling for GPU execution, Stdpar utilizes Managed and Unified Memory Modes for managing
data accessed from the sequential code running on CPU and from the parallel code on GPU.

The compiler detects the memory capability of the system on which the compiler is running and uses
that information to enable the correct memory mode as follows:

▶ When compiled on the platform with full CUDA Unified Memory capability, -stdpar implies
-gpu=mem:unified.

▶ When compiled on the platform with CUDA Managed Memory capability only, -stdpar implies
-gpu=mem:managed.
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To compile code for a specific Memory Mode regardless of the memory capability of the system on
which you are compiling, add the desired -gpu=mem:unified or -gpu=mem:managed option.

Stdpar with Separate Memory Mode can only be supported when the data are fully managed through
features of other programming models e.g. OpenACC.

All restrictions on variables used on the GPU in standard language parallel code in Managed Memory
Mode have been removed when using Unified Memory Mode.

If the compiler utilises CUDA Managed Memory automatically, the interception of deallocations is en-
abled implicitly at runtime. This is to prevent deallocating the data with unmatching API which may
lead to undefined behavior. The interception incurs some runtime overhead and may be unnecessary if
allocatations and deallocations for all data in the application are performed using the matching APIs.
The interception can be disabled using dedicated command-line options detailed in Interception of
Deallocations. More details about the memory modes supported by the NVIDIA HPC Compilers and
dedicated command-line options can be found in Memory Model.

15.2. Stdpar C++

The NVIDIA HPC C++ compiler, NVC++, supports C++ Standard Language Parallelism (Stdpar) for exe-
cution on NVIDIA GPUs and multicore CPUs. As mentioned previously, use the NVC++ command-line
option -stdpar to enable GPU accelerated C++ Parallel Algorithms. The following sections go into
more detail about the NVC++ support for the ISO C++ Standard Library Parallel Algorithms.

15.2.1. Introduction to Stdpar C++

The C++17 Standard introduced higher-level parallelism features that allow users to request paral-
lelization of Standard Library algorithms.

This higher-level parallelism is expressed by adding an execution policy as the first parameter to any
algorithm that supports execution policies. Most of the existing Standard C++ algorithms were en-
hanced to support execution policies. C++17 defined several new parallel algorithms, including the
useful std::reduce and std::transform_reduce.

C++17 defines three execution policies:

▶ std::execution::seq: Sequential execution. No parallelism is allowed.

▶ std::execution::par: Parallel execution on one or more threads.

▶ std::execution::par_unseq: Parallel execution on one or more threads, with each thread
possibly vectorized.

When you use an execution policy other than std::execution::seq, you are communicating two
important things to the compiler:

▶ You prefer but do not require that the algorithm be run in parallel. A conforming C++17 imple-
mentation may ignore the hint and run the algorithm sequentially, but a performance-oriented
implementation takes the hint and executes in parallel when possible and prudent.

▶ The algorithm is safe to run in parallel. For the std::execution::par and
std::execution::par_unseq policies, any user-provided code—such as iterators, lamb-
das, or function objects passed into the algorithm—must not introduce data races if run
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concurrently on separate threads. For the std::execution::par_unseq policy, any user-
provided code must not introduce data races or deadlocks if multiple calls are interleaved on
the same thread, which is what happens when a loop is vectorized. For more information about
potential deadlocks, see the forward progress guarantees provided by the parallel policies or
watch CppCon 2018: Bryce Adelstein Lelbach “The C++ Execution Model”.

The C++ Standard grants compilers great freedom to choose if, when, and how to execute algorithms
in parallel as long as the forward progress guarantees the user requests are honored. For example,
std::execution::par_unseqmay be implemented with vectorization and std::execution::par
may be implemented with a CPU thread pool. It is also possible to execute parallel algorithms on a GPU,
which is a good choice for invocations with sufficient parallelism to take advantage of the processing
power and memory bandwidth of NVIDIA GPU processors.

15.2.2. NVC++ Compiler Parallel Algorithms Support

NVC++ supports C++ Standard Language Parallelism with the parallel execution policies
std::execution::par or std::execution::par_unseq for execution on GPUs or multicore
CPUs.

Lambdas, including generic lambdas, are fully supported in parallel algorithm invocations. No language
extensions or non-standard libraries are required to enable GPU acceleration. All data movement be-
tween host memory and GPU device memory is performed implicitly and automatically under the con-
trol of Managed and Unified Memory Modes.

It’s straightforward to automatically GPU accelerate C++ Parallel Algorithms with NVC++. However,
there are some restrictions and limitations you need to be aware of as explained below.

15.2.2.1 Enabling Parallel Algorithms with the -stdpar Option

GPU acceleration of C + + Parallel Algorithms is enabled with the - stdpar=gpu command-line option
to NVC++. If - stdpar=gpu is specified (or - stdpar without an argument), almost all algorithms that
use a parallel execution policy are compiled for offloading to run in parallel on an NVIDIA GPU:

nvc++ -stdpar=gpu program.cpp -o program

nvc++ -stdpar program.cpp -o program

In addition, the GPU acceleration sub-option can be further specialized using - stdpar=gpu:acc. This
option directs the compiler to use its OpenACC implementation to GPU-accelerate a subset of algo-
rithm with a parallel execution policy:

nvc++ -stdpar=gpu:acc program.cpp -o program

More details about the OpenACC support of Stdpar C++ is provided in OpenACC Implementation of
Parallel Algorithms.

Acceleration of C + + Parallel Algorithms with multicore CPUs is enabled with the - stdpar=multicore
command-line option to NVC + +. If - stdpar=multicore specified, almost all algorithms that use a
parallel execution policy are compiled to run on a multicore CPU:

nvc++ -stdpar=multicore program.cpp -o program

When either- stdpar=gpu,multicore or- stdpar=gpu:acc,multicore command-line options are
specified to NVC++, the parallel algorithms code is compiled for both GPU and multicore CPU. When
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the execution platform has any GPU the binary executes on the GPU and otherwise on the multicore
CPU.

nvc++ -stdpar=gpu,multicore program.cpp -o program

nvc++ -stdpar=gpu:acc,multicore program.cpp -o program

15.2.3. Stdpar C++ Simple Example

Here are a few simple examples to get a feel for how the C++ Parallel Algorithms work.

From the early days of C++, sorting items stored in an appropriate container has been relatively easy
using a single call like the following:

std::sort(employees.begin(), employees.end(),
CompareByLastName());

Assuming the comparison class CompareByLastName is thread-safe, which is true for most compari-
son functions, parallelizing this sort is simple with C++ Parallel Algorithms. Include <execution> and
add an execution policy to the function call:

std:sort(std::execution::par,
employees.begin(), employees.end(),
CompareByLastName());

Calculating the sum of all the elements in a container is also simple with the std::accumulate al-
gorithm. Prior to C++17, transforming the data in some way while taking the sum was somewhat
awkward. For example, to compute the average age of your employees, you might write the following
code:

int ave_age =
std::accumulate(employees.begin(), employees.end(), 0,

[](int sum, const Employee& emp){
return sum + emp.age();

})
/ employees.size();

The std::transform_reduce algorithm introduced in C++17 makes it simple to parallelize this code.
It also results in cleaner code by separating the reduction operation, in this case std::plus, from the
transformation operation, in this case emp.age():

int ave_age =
std::transform_reduce(std::execution::par_unseq,

employees.begin(), employees.end(),
0, std::plus<int>(),
[](const Employee& emp){

return emp.age();
})

/ employees.size();
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15.2.4. OpenACC Implementation of Parallel Algorithms

NVC++ has an experimental GPU support for a subset of algorithms with parallel execution policies
std::par and std::par_unseq accelerated through the OpenACC implementation. This feature,
enabled with the -stdpar=gpu:acc option, may result in better application performance on the GPU
and faster compilation speed.

The following subset of algorithms have OpenACC implementation support:

▶ std::adjacent_find

▶ std::all_of, std::any_of, std::none_of

▶ std::copy, std::copy_n

▶ std::count, std::count_if

▶ std::equal

▶ std::fill, std::fill_n

▶ std::find, std::find_if

▶ std::for_each, std::for_each_n

▶ std::max_element, std::min_element, std::minmax_element

▶ std::merge

▶ std::mismatch

▶ std::reduce

▶ std::replace, std::replace_if, std::replace_copy, std::replace_copy_if

▶ std::reverse, std::reverse_copy

▶ std::rotate_copy

▶ std::search

▶ std::swap_ranges

▶ std::transform

▶ std::transform_reduce

The remainder of the parallel algorithms are parallelized using the default GPU implementation as if
-stdpar=gpu was specified.

When the code is compiled for GPU with the OpenACC acceleration __NVCOM-
PILER_STDPAR_OPENACC_GPU macro is defined implicitly.

15.2.5. Coding Guidelines for GPU-accelerating Parallel
Algorithms

GPUs are not simply CPUs with more threads. To effectively take advantage of the massive parallelism
and memory bandwidth available on GPUs, it is typical for GPU programming models to put some
limitations on code executed on the GPU. The NVC++ implementation of C++ Parallel Algorithms is
no exception in this regard. The sections which follow detail the limitations that apply in the current
release.
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15.2.5.1 Parallel Algorithms and Device Function Annotations

Functions to be executed on the GPU within parallel algorithms do not need any __device__ anno-
tations or other special markings to be compiled for GPU execution. The NVC++ compiler walks the
call graph for each source file and automatically infers which functions must be compiled for GPU
execution.

However, this only works when the compiler can see the function definition in the same source file
where the function is called. This is true for most inline functions and template functions but may fail
when functions are defined in a different source file or linked in from an external library. You need to
be aware of this when formulating parallel algorithms invocations that you expect to be offloaded and
accelerated on NVIDIA GPUs.

When calling an externally defined function from within a parallel algorithm region, such functions
require some form of device annotations from other GPU programming models e.g. OpenACC routine
directive (refer to External Device Function Annotations for more information).

15.2.5.2 Data Management in Parallel Algorithms

When offloading parallel algorithms to a GPU, it’s essential to consider how data is accessed from the
parallel region. Some GPUs may not access certain segments of the CPU’s address space. Developers
targeting platforms without unified shared memory or those seeking to optimize performance must
be aware of these memory distinctions, as they may affect the folowing types of data accessed in
parallel algorithm regions:

▶ Pointer data passed into lambda functions within the parallel algorithm.

▶ Data captured by reference in lambda functions or pointer data captured by value.

▶ Variables with static storage duration referenced inside the parallel algorithm.

To avoid memory access violations, developers must ensure that all of the above data is accessible to
the GPU before the parallel algorithm is executed.

Stdpar C++ only supports Managed and Unified Memory Modes which allow data being accessed from
CPU and GPU. Through support in both the CUDA device driver and the NVIDIA GPU hardware, the
CUDA Unified Memory manager automatically moves some types of data based on usage.

Stdpar with Separate Memory Mode can only be supported when the data are fully managed through
the OpenACC data directives, refer to Interoperability with OpenACC.

Since object-oriented design is fundamental to C++, special consideration must be given to composite
data types with pointer or reference members. The data referenced or pointed to may not be stored
contiguously within the composite data type. Moreover, such data might not even be allocated in the
same memory segment as the composite type itself. As a result, when accessing both the composite
data type and its referenced or pointed-to data from parallel algorithms, the developer must ensure
that the member data is also made accessible to the GPU. These considerations should also be taken
into account when standard library containers are used in the parallel algorithms as the containers
frequently contain member pointers to their elements.

The discussion in this section assumes familiarity with the Managed and Unified Memory Modes cov-
ered in MemoryModel and Managed and UnifiedMemoryModes. The code executing within the parallel
algorithm is referred to as the accelerator subprogram. In contrast to the code executing outside of
the parallel algorithm which is referred to as the host subprogram.

Managed Memory Mode
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When Stdpar code is compiled with Managed Memory Mode (as default mode or by passing
-gpu=mem:managed) only data dynamically allocated on the heap in CPU code can be managed auto-
matically. CPU and GPU automatic storage (stack memory) and static storage (global or static data)
cannot be automatically managed. Likewise, data that is dynamically allocated in program units not
compiled by nvc++ with the -stdpar option is not automatically managed by CUDA Unified Memory
even though it is on the CPU heap. The compiler utilizes CUDA Managed Memory for dynamic allo-
cations to make data accessible from CPU and GPU. As managed memory allocation calls can incur
higher runtime overhead than standard allocator calls, the implementation uses memory pools for
performance reasons by default as detailed in Memory Pool Allocator <gpu-mem-poolallocator>.

The Managed Memory Mode is intended for binaries run on targets with CUDA Managed Memory
capability only. Any pointer that is dereferenced and any C++ object that is referenced within a parallel
algorithm invocation must refer to data on the CPU heap that is allocated in a program unit compiled by
nvc++ with -stdpar. Dereferencing a pointer to a CPU stack or a global object will result in a memory
violation in GPU code.

Unified Memory Mode

When Unified Memory is the default memory mode or is selected explicitly on the command line by
passing -gpu=mem:unified, there are no restrictions on variables accessed in the parallel algorithms.
Therefore, all CPU data (either residing on stack, heap, or globally) are simply accessible in the parallel
algorithm functions. Note that memory dynamically allocated in GPU code is only visible from GPU
code and can never be accessed by the CPU regardless of the CUDA Unified Memory capability.

When compiling a binary for platforms with full CUDA Unified Memory capability, only those source
files using features from the standard parallel algorithms library must be compiled by nvc++ with the
-stdpar option. There is no requirement that the code dynamically allocating memory accessed on
GPU is also compiled in such a way.

Unified Memory Mode may utilize CUDA Managed Memory for dynamic allocation, more details can be
found in Managed and Unified Memory Modes.

Summary

The following table provides a key summary of important command-line options selecting memory
modes and the impact of memory modes on the Stdpar features.
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Table 21: Stdpar C++ Feature Differences for Memory Modes

Command-line options Dynamically al-
located variables
outside of parallel
algorithm region

Automatic or static
storage variables
outside of parallel
algorithm region

Dynamic allocator

No memory-specific
flags passed, compiling
on target with CUDA
Managed Memory only

Can be accessed
within parallel re-
gion code

Cannot be accessed
within parallel algo-
rithm code

cudaMallocManaged

No memory-specific
flags passed, compiling
on target with full CUDA
Unified Memory

Can be accessed
within parallel re-
gion code

Can be accessed
within parallel algo-
rithm code

cudaMallocManaged
or system allocators:
new/malloc (compiler picks
the most suitable allocator)

-gpu=mem:managed Can be accessed
within parallel re-
gion code

Cannot be accessed
within parallel algo-
rithm code

cudaMallocManaged

-gpu=mem:unified Can be accessed
within parallel re-
gion code

Can be accessed
within parallel algo-
rithm code

cudaMallocManaged
or system allocators:
new/malloc (compiler picks
the most suitable allocator)

-gpu=mem:unified:managedallocCan be accessed
within parallel re-
gion code

Can be accessed
within parallel algo-
rithm code

cudaMallocManaged

-gpu=mem:unified:nomanagedallocCan be accessed
within parallel re-
gion code

Can be accessed
within parallel algo-
rithm code

System allocators:
new/malloc

Examples

For example, std::vector uses dynamically allocated memory, which is accessible from the GPU
when using Stdpar. Iterating over the contents of a std::vector in a parallel algorithm works as
expected when compiling with either -gpu=mem:managed or -gpu=mem:unified:

std::vector<int> v = ...;
std::sort(std::execution::par,

v.begin(), v.end()); // Okay, accesses heap memory.

On the other hand, std::array performs no dynamic allocations. Its contents are stored within the
std::array object itself, which is often on a CPU stack. Iterating over the contents of a std::array
will not work on systems with only CUDA Managed Memory support unless the std::array itself is
allocated on the heap and the code is compiled with -gpu=mem:managed:

std::array<int, 1024> a = ...;
std::sort(std::execution::par,

a.begin(), a.end()); // Fails on targets with CUDA Managed
// Memory capability only, array is on
// a CPU stack inaccessible from GPU.
// Works correctly on targets whith full
// CUDA Unified Memory support.

The above example works as expected when run on a target supporting full CUDA Unified Memory
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capability.

When executing on targets with CUDA Managed Memory capability only, pay particular attention
to lambda captures, especially capturing data objects by reference, which may contain non-obvious
pointer dereferences:

void saxpy(float* x, float* y, int N, float a) {
std::transform(std::execution::par_unseq, x, x + N, y, y,

[&](float xi, float yi){ return a * xi + yi; });
}

In the earlier example, the containing function parameter a is captured by reference. The code within
the body of the lambda, which is running on the GPU, tries to access a, which is in the CPU stack
memory. This attempt results in a memory violation and undefined behavior. In this case, the problem
can easily be fixed by changing the lambda to capture by value:

void saxpy(float* x, float* y, int N, float a) {
std::transform(std::execution::par_unseq, x, x + N, y, y,

[=](float xi, float yi){ return a * xi + yi; });
}

With this one-character change, the lambda makes a copy of a, which is then copied to the GPU, and
there are no attempts to reference CPU stack memory from GPU code. Such code will run correctly
without requiring modifications on targets with full CUDA Unified Memory capability.

If std::vector is accessed through a subscript operator from the device this would require such
a vector object to be accessible from the parallel code executing on the GPU. This means that the
std::vector needs to be allocated dynamically in order to make it accessible from the GPU when
compiled for the systems with only CUDA Managed Memory support.

std::vector<int> v = ...;
std::for_each(std::execution::par,

idx.begin(), idx.end(), [&](auto i)
{v[i] = 1;}); // Fails on targets with CUDA Managed

// Memory capability only, vector object is on
// a CPU stack inaccessible from GPU.
// Works correctly on targets with full
// CUDA Unified Memory support.

An alternative approach to managing the content of the std::vector on systems with CUDA Man-
aged Memory support only would be to obtain a pointer to its elements data region using data()
member.

std::vector<int> v = ...;
int* vdataptr = v.data();
std::for_each(std::execution::par,

idx.begin(), idx.end(), [&](auto i)
{vdataptr[i] = 1;}); // Works, vector elements are in heap

// memory

Whether -gpu=mem:unified is enabled by default or passed explicitly on the command line, parallel
algorithms can access global variables and accesses to global variables from CPU and GPU are kept
in sync. Extra care should be taken when accessing global variables within parallel algorithms, as si-
multaneous updates in different iterations running on the GPU can lead to data races. The following
example illustrates the safe update of a global variable in the parallel algorithm since the update only
occurs in one iteration.
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int globvar = 123;
void foo() {

auto r = std::views::iota(0, N);
std::for_each(std::execution::par_unseq, r.begin(), r.end(),

[](auto i) {
if (i == N - 1)

globvar += 345;
});

// globvar is equal to 468.
}

15.2.5.3 Parallel Algorithms and Function Pointers

Functions compiled to run on either the CPU or the GPU must be compiled into two different versions,
one with the CPU machine instructions and one with the GPU machine instructions.

In the current implementation, a function pointer either points to the CPU or the GPU version of the
functions. This causes problems if you attempt to pass function pointers between CPU and GPU code.
You might inadvertently pass a pointer to the CPU version of the function to GPU code. In the future,
it may be possible to automatically and seamlessly support the use of function pointers across CPU
and GPU code boundaries, but it is not supported in the current implementation.

Function pointers can’t be passed to Parallel Algorithms to be run on the GPU, and functions may not
be called through a function pointer within GPU code. For example, the following code example won’t
work correctly:

void square(int& x) { x = x * x; }
void square_all(std::vector<int>& v) {

std::for_each(std::execution::par_unseq,
v.begin(), v.end(), &square);

}

It passes a pointer to the CPU version of the function square to a parallel for_each algorithm invo-
cation. When the algorithm is parallelized and offloaded to the GPU, the program fails to resolve the
function pointer to the GPU version of square.

You can often solve this issue by using a function object, which is an object with a function call operator.
The function object’s call operator is resolved at compile time to the GPU version of the function,
instead of being resolved at run time to the incorrect CPU version of the function as in the previous
example. For example, the following code example works:

struct squared {
void operator()(int& x) const { x = x * x; }

};
void square_all(std::vector<int>& v) {

std::for_each(std::execution::par_unseq,
v.begin(), v.end(), squared{});

}

Another possible workaround is to change the function to a lambda, because a lambda is implemented
as a nameless function object:

void square_all(std::vector<int>& v) {
std::for_each(std::execution::par_unseq, v.begin(), v.end(),

[](int& x) { x = x * x; });
}
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If the function in question is too big to be converted to a function object or a lambda, then it should
be possible to wrap the call to the function in a lambda:

void compute(int& x) {
// Assume lots and lots of code here.

}
void compute_all(std::vector<int>& v) {

std::for_each(std::execution::par_unseq, v.begin(), v.end(),
[](int& x) { compute(x); });

}

No function pointers are used in this example.

The restriction on calling a function through a function pointer unfortunately means passing poly-
morphic objects from CPU code to GPU-accelerated Parallel Algorithms is not currently supported, as
virtual tables are implemented using function pointers.

15.2.5.4 Random Access Iterators

The C++ Standard requires that the iterators passed to most C++ Parallel Algorithms be forward iter-
ators. However, C++ Parallel Algorithms on GPUs only works with random access iterators. Passing
a forward iterator or a bidirectional iterator to a GPU/CPU-accelerated Parallel Algorithm results in a
compilation error. Passing raw pointers or Standard Library random access iterators to the algorithms
has the best performance, but most other random-access iterators work correctly.

15.2.5.5 Interoperability with the C++ Standard Library

Large parts of the C++ Standard Library can be used with stdpar on GPUs.

▶ std::atomic<T> objects within GPU code work provided that T is a four-byte or eight-byte
integer type.

▶ Math functions that operate on floating-point types—such as sin, cos, log, and most of the
other functions declared in <cmath> —can be used in GPU code and resolve to the same imple-
mentations that are used in CUDA C++ programs.

▶ std::complex, std::tuple, std::pair, std::optional, std::variant, and
<type_traits>, are supported and work as expected in GPU code.

The parts of the C++ Standard Library that aren’t supported in GPU code include I/O functions and in
general any function that accesses the CPU operating system. As a special case, basic printf calls
can be used within GPU code and leverage the same implementation that is used in NVIDIA CUDA C++.

15.2.5.6 No Exceptions in GPU Code

As with most other GPU programming models, throwing and catching C++ exceptions is not supported
within Parallel Algorithm invocations that are offloaded to the GPU.

Unlike some other GPU programming models where try/catch blocks and throw expressions are compi-
lation errors, exception code does compile but with non-standard behavior. Catch clauses are ignored,
and throw expressions abort the GPU kernel if actually executed. Exceptions in CPU code work without
restrictions.
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15.2.6. NVC++ Experimental Features

nvc++ experimental features are enabled with the –experimental–stdpar compiler flag. Experimental
feature headers are exposed via the <experimental/...> namespaces and limited support for these
features is available in older C++ versions. Table 22 lists all experimental features available and the
minimum language version required to use them.

Table 22: Experimental features information

Feature Recom-
mended

Limited
support

Standard
proposal

Other notes

Multi-dimensional spans
(mdspan)

C++23 C++17 P0009 https://github.com/
NVIDIA/libcudacxx

Slices of multi-dimensional
spans (submdspan)

C++23 C++17 P2630 https://github.com/
NVIDIA/libcudacxx

Multi-dimensional arrays
(mdarray)

C++23 C++17 P1684 https://github.com/
kokkos/mdspan

Senders and receivers C++23 C++20 P2300 https://github.com/
NVIDIA/stdexec

Linear algebra C++23 C++17 P1673 https://github.com/
kokkos/stdblas

15.2.6.1 Multi-dimensional Spans

Multi-dimensional spans (std::mdspan) enable customizable multi-dimensional access to data. This
feature was added to C++23 (see P0009 and follow-on papers). A Gentle Introduction to mdspan gives
a tutorial. The reference mdspan implementation https://github.com/kokkos/mdspan also has many
useful examples.

nvc++ provides an implementation available in the <experimental/mdspan> namespace that works
with C++17 or newer. It enables applications that are not targeting the C++23 version of the standard
to use mdspan.

C++23’s mdspan uses operator[] for array access. For example, if A is a rank-2 mdspan, and i and
j are integers, then A[i, j] accesses the element of A at row i and column j. Before C++23,
operator[] was only allowed to take one argument. C++23 changed the language to permit any
number of arguments (zero or more). nvc++ does not support this new language feature. As a re-
sult, the implementation of mdspan provided by nvc++ permits use of operator() as a fall-back
(e.g., A(i, j) instead of A[i, j]). Users may enable this fall-back manually, by defining the macro
MDSPAN_USE_PAREN_OPERATOR to 1 before including any mdspan headers.

The following example (godbolt):

#include <experimental/mdspan>
#include <iostream>

namespace stdex = std::experimental;

int main() {
(continues on next page)
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(continued from previous page)

std::array d{
0, 5, 1,
3, 8, 4,
2, 7, 6,

};

stdex::mdspan m{d.data(), stdex::extents{3, 3}};
static_assert(m.rank()==2, "Rank is two");

for (std::size_t i = 0; i < m.extent(0); ++i)
for (std::size_t j = 0; j < m.extent(1); ++j)

std::cout << "m(" << i << ", " << j << ") == " << m(i, j) << "\n";

return 0;
}

is compiled as follows

nvc++ -std=c++17 -o example example.cpp

and outputs

m(0, 0) == 0
m(0, 1) == 5
m(0, 2) == 1
m(1, 0) == 3
m(1, 1) == 8
m(1, 2) == 4
m(2, 0) == 2
m(2, 1) == 7
m(2, 2) == 6

15.2.6.2 Senders and Receivers

P2300 - std::execution proposes a model of asynchronous programming for adoption into the C++26
Standard. For an introduction to this feature, see Design - user side section of the proposal. The
NVIDIA implementation of Senders and receivers is open source and its repository contains many use-
ful examples. nvc++ provides access to the NVIDIA implementation which works in C++20 or newer.
Since the proposal is still evolving, our implementation is not stable. It is experimental in nature and will
change to follow the proposal closely without any warning. The NVIDIA implementation is structured
as follows:

Includes Namespace Description

<stdexec/…> ::stdexec Approved for C++ standard

<sexec/…> ::exec Generic additions and extensions

<nvexec/…> ::nvexec NVIDIA-specific extensions and customizations

The following example (godbolt) builds a task graph in which two different vectors, v0 and v1, are
concurrently modified in bulk, using a CPU thread pool and a GPU stream context, respectively. This
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graph then transfers execution to the CPU thread pool, and adds both vectors into v2 on the CPU,
returning the sum of all elements:

int main()
{

// Declare a pool of 8 worker CPU threads:
exec::static_thread_pool pool(8);

// Declare a GPU stream context:
nvexec::stream_context stream_ctx{};

// Get a handle to the thread pool:
auto cpu_sched = pool.get_scheduler();
auto gpu_sched = stream_ctx.get_scheduler();

// Declare three dynamic array with N elements
std::size_t N = 5;
std::vector<int> v0 {1, 1, 1, 1, 1};
std::vector<int> v1 {2, 2, 2, 2, 2};
std::vector<int> v2 {0, 0, 0, 0, 0};

// Describe some work:
auto work = stdexec::when_all(

// Double v0 on the CPU
stdexec::just()

| exec::on(cpu_sched,
stdexec::bulk(N, [v0 = v0.data()](std::size_t i) {

v0[i] *= 2;
})),

// Triple v1 on the GPU
stdexec::just()

| exec::on(gpu_sched,
stdexec::bulk(N, [v1 = v1.data()](std::size_t i) {

v1[i] *= 3;
}))

)
| stdexec::transfer(cpu_sched)
// Add the two vectors into the output vector v2 = v0 + v1:
| stdexec::bulk(N, [&](std::size_t i) { v2[i] = v0[i] + v1[i]; })
| stdexec::then([&] {

int r = 0;
for (std::size_t i = 0; i < N; ++i) r += v2[i];
return r;

});
auto [sum] = stdexec::sync_wait(work).value();
// Print the results:
std::printf("sum = %d\n", sum);
for (int i = 0; i < N; ++i) {

std::printf("v0[%d] = %d, v1[%d] = %d, v2[%d] = %d\n",
i, v0[i], i, v1[i], i, v2[i]);

}
return 0;

}

is compiled as follows:
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nvc++ --stdpar=gpu --experimental-stdpar -std=c++20 -o example example.cpp

and outputs:

sum = 40
v0[0] = 2, v1[0] = 6, v2[0] = 8
v0[1] = 2, v1[1] = 6, v2[1] = 8
v0[2] = 2, v1[2] = 6, v2[2] = 8
v0[3] = 2, v1[3] = 6, v2[3] = 8
v0[4] = 2, v1[4] = 6, v2[4] = 8

15.2.6.3 Linear Algebra

P1673 - A free function linear algebra interface based on the BLAS proposes standardizing an id-
iomatic C++ interface based on std::mdspan for a subset of the Basic Linear Algebra Subroutines
(BLAS) standard. For an introduction to this feature, see P1673 (C++ linear algebra library) background
& motivation. There are many useful examples available in $HPCSDK_HOME/examples/stdpar/stdblas
and in the repository of the reference implementation. A detailed documentation is available at
$HPCSDK_HOME/compilers/include/experimental/__p1673_bits/README.md. nvc++ provides access
to the NVIDIA implementation which works in C++17 or newer. Since the proposal is still evolving, our
implementation is not stable. It is experimental in nature and will change to follow the proposal closely
without any warning. To use the linear algebra library facilities, a suitable linear algebra library must
be linked: cuBLAS for GPU execution via the -cudalib=cublas flag, and a CPU BLAS library for CPU
execution. The HPC SDK bundles OpenBLAS which may be linked using the -lblas linker flag.

Execution BLAS library Architectures Compiler flags

Multicore OpenBLAS x86_64, aarch64 -stdpar=multicore -lblas

GPU cuBLAS All -stdpar=gpu -cudalib=cublas

The following example (godbolt):

#include <experimental/mdspan>
#include <experimental/linalg>
#include <vector>
#include <array>

namespace stdex = std::experimental;

int main()
{
constexpr size_t N = 4;
constexpr size_t M = 2;

std::vector<double> A_vec(N*M);
std::vector<double> x_vec(M);
std::array<double, N> y_vec(N);

stdex::mdspan A(A_vec.data(), N, M);
(continues on next page)
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(continued from previous page)

stdex::mdspan x(x_vec.data(), M);
stdex::mdspan y(y_vec.data(), N);

for(int i = 0; i < A.extent(0); ++i)
for(int j = 0; j < A.extent(1); ++j)

A(i,j) = 100.0 * i + j;

for(int j = 0; j < x.extent(0); ++j) x(j) = 1.0 * j;
for(int i = 0; i < y.extent(0); ++i) y(i) = -1.0 * i;

stdex::linalg::matrix_vector_product(A, x, y); // y = A * x

// y = 0.5 * y + 2 * A * x
stdex::linalg::matrix_vector_product(std::execution::par,
stdex::linalg::scaled(2.0, A), x,
stdex::linalg::scaled(0.5, y), y);

// Print the results:
for (int i = 0; i < N; ++i) std::printf("y[%d] = %f\n", i, y(i));
return 0;

}

is compiled as follows for GPU execution:

nvc++ -std=c++17 -stdpar=gpu -cudalib=cublas -o example example.cpp

And as follows for CPU execution:

nvc++ -std=c++17 -stdpar=multicore -o example example.cpp -lblas

and produces the same outputs in both cases:

y[0] = 2.500000
y[1] = 252.500000
y[2] = 502.500000
y[3] = 752.500000

15.2.7. Stdpar C++ Larger Example: LULESH

The LULESH hydrodynamics mini-app was developed at Lawrence Livermore National Laboratory to
stress test compilers and model performance of hydrodynamics applications. It is about 9,000 lines
of C++ code, of which 2,800 lines are the core computation that should be parallelized.

We ported LULESH to C++ Parallel Algorithms and made the port available on LULESH’s GitHub repos-
itory. To compile it, install the NVIDIA HPC SDK, check out the 2.0.2-dev branch of the LULESH repos-
itory, go to the correct directory, and run make.
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git clone --branch 2.0.2-dev https://github.com/LLNL/LULESH.git
cd LULESH/stdpar/build
make run

While LULESH is too large to show the entire source code here, there are some key code sequences
that demonstrate the use of stdpar.

The LULESH code has many loops with large bodies and no loop-carried dependencies, mak-
ing them good candidates for parallelization. Most of these were easily converted into calls to
std::for_each_n with the std::execution::par policy, where the body of the lambda passed
to std::for_each_n is identical to the original loop body.

The function CalcMonotonicQRegionForElems is an example of this. The loop header written for
OpenMP looks as follows:

#pragma omp parallel for firstprivate(qlc_monoq, qqc_monoq, \
monoq_limiter_mult, monoq_max_slope, ptiny)

for ( Index_t i = 0 ; i < domain.regElemSize(r); ++i ) {

This loop header in the C++ Parallel Algorithms version becomes the following:

std::for_each_n(
std::execution::par, counting_iterator(0), domain.regElemSize(r),
[=, &domain](Index_t i) {

The loop body, which in this case is almost 200 lines long, becomes the body of the lambda but is
otherwise unchanged from the OpenMP version.

In a number of places, an explicit for loop was changed to use C++ Parallel Algorithms that better
express the intent of the code, such as the function CalcPressureForElems:

#pragma omp parallel for firstprivate(length)
for (Index_t i = 0; i < length ; ++i) {

Real_t c1s = Real_t(2.0)/Real_t(3.0) ;
bvc[i] = c1s * (compression[i] + Real_t(1.));
pbvc[i] = c1s;

}

This function was rewritten as as follows:

constexpr Real_t cls = Real_t(2.0) / Real_t(3.0);
std::transform(std::execution::par,

compression, compression + length, bvc,
[=](Real_t compression_i) {

return cls * (compression_i + Real_t(1.0));
});

std::fill(std::execution::par, pbvc, pbvc + length, cls);
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15.2.8. Interoperability with OpenACC

A subset of OpenACC features can be used when compiling Stdpar code for GPUs. Such a subset is
documented in this section. To activate OpenACC directives recognition with Stdpar code add -acc
command line flag to nvc++.

nvc++ -stdpar -acc example.cpp

OpenACC functionality is detailed in the OpenACC specification and the NVHPC compiler specific dif-
ferences are detailed in Using OpenACC of this guide.

Combining OpenACC features with Stdpar offers greater flexibility in how code is written. For instance,
it allows external functions to be called from within parallel algorithms. Additionally, it provides op-
portunities for performance tuning, such as through explicit data management.

15.2.8.1 Data Management Directives

C++ parallel algorithms can be offloaded to the GPU when the data accessed in such algorithms is
managed through the OpenACC directives. With data fully managed through the OpenACC directives,
Stdpar code can run with all GPU Memory Modes including Separate Memory Mode (compiled with
-gpu=mem:separate).

The following data directives are supported:

▶ OpenACC structured data construct directive

▶ OpenACC unstructured enter/exit data directives

▶ OpenACC host_data directive

▶ OpenACC update directive

Only the data that are captured by reference or pointer-like data captured by values as well as pointer-
like data passed as arguments in the parallel algorithm lambdas can be managed through OpenACC.
Any non-pointer variables that are captured by value in the parallel algorithm lambda or non-pointer
data passed in as lambda arguments are managed by the C++ implementation. A copy of such data
is automatically created in the memory accessible from the GPU. For additional details refer to Data
Management in Parallel Algorithms.

OpenACC data management can serve two main purposes:

▶ Explicit Data Management: This is necessary for data that cannot be managed implicitly, such
as on platforms without full CUDA Unified Memory support and when data is not allocated in the
CUDA Managed Memory segment.

▶ Performance Tuning: Even when data is located in the GPU-accessible memory, performance can
be optimized via OpenACC features. Many OpenACC data directives and clauses provide hints to
the CUDA device driver, which can improve implicit data management.

Data management strategies may differ depending on the specific goals being pursued. These differ-
ences are outlined where applicable.

General Rules

All directives, except host_data, can be used for data management tasks such as allocating memory
in the GPU and copying data between the CPU and the GPU. These directives can be used to ensure
that the data is present on the device during the execution of parallel algorithms. The host_data
construct, on the other hand, is used for address translation between CPU and GPU address spaces
when data is accessed in parallel algorithms.
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int n = get_n();
T* in = new T[nelem];
T* out = new T[nelem];
// Data captured by the lambda are managed explicitly with OpenACC
#pragma acc enter data copyin(n, in[0:nelem]) create(out[0:nelem])
#pragma acc host_data use_device(n, in, out)
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[&,in,out](auto i) {

out[i] = in[i] * n;
});

}
#pragma acc exit data copyout(out[0:nelem])

In the above example all data accessed from std::for_each through the lambda capture are man-
aged explicitly through the OpenACC data directives. Since the data inside the parallel algorithms are
either captured by reference or capturing a pointer, the application code must ensure that such data
is accessible from the GPU. To make non-GPU resident data accessible in the parallel region, such a
region must be enclosed into the host_data construct region with all variables that are managed ex-
plicitly via OpenACC runtime listed in the use_device clause. The data need to be present (copied
or created) at the time the host_data directive is encountered/executed at runtime and the data
must also be present for the duration of parallel algorithm execution. The implications of the above
are such that lambdas accessing variables enclosed in use_device regions can not be additionally in-
voked from the host code (from outside the parallel region executing on the GPU) because the variable
addresses from the GPU obtained through host_data may not be accessible on the CPU.

Note: If the iterator in the above example would be a pointer type it would require explicit data man-
agement in addition to the data captured by the lambda.

If the example below is compiled for Separate Memory Mode (-gpu=mem:separate) calling fn from
within a parallel std::for_each works fine but not from outside of any parallel algorithm function
since the data resident on GPU would need to be accessed from the CPU.

int n = get_n();
T* in = new T[nelem];
T* out = new T[nelem];
#pragma acc enter data copyin(n, in[0:nelem]) create(out[0:nelem])
#pragma acc host_data use_device(n, in, out)
{

auto fn = [&,in,out](auto i) { out[i] = in[i] * n;};
std::for_each(std::execution::par_unseq, r.begin(), r.end(), fn);
// The following line would not be legal, fn accesses variables in GPU memory
//std::for_each(r.begin(), r.end(), fn);

}
#pragma acc exit data copyout(out[0:nelem])

Note: The behavior of using use_device with non-pointer data type is such that all occurrences of
non-pointer variables inside thehost_data region are converted to using the addresses of the variable
in the GPU address space before accessing that variable. This is essentially equivalent to translating
original occurrences of such variable var into dvar = *acc_device(&var).

Composite Data Types

Composite data types with pointer members can also be managed explicitly but require explicit deep
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copy to work correctly including pointer attach/detach.

struct S {
float *ptr;

}

int idx[N] = {/*...*/};
float arr[N];
S s{arr};
// Deep copying ptr member with OpenACC
#pragma acc enter data copyin(s.ptr[0:N])
#pragma acc enter data copyin(s, idx)
#pragma acc data attach(s.ptr)
#pragma acc host_data use_device(s, idx)
{

std::for_each_n(std::execution::par, idx, N,
[&](int i) { s.ptr[i] += 5.0; });

}
#pragma acc exit data copyout(s.ptr[0:N])
#pragma acc exit data copyout(s)

When variable of struct S type in the above example is copied to the device, a deep copy is performed
with the content pointed by S.ptr copied separately. The pointer attachment is used to ensure the
address of the pointer is changed to the device memory equivalent before it is accessed from the GPU.
Depending on the order of the copies, the pointer attach clause may not be required.

Note: In the above example the pointer-like iterator idx is managed through the OpenACC directives
in addition to the data captured by the lambda.

Standard Containers

If the standard containers with non-contiguous storage must be used in host code with explicit data
management to GPU memory, the only viable option is to access the raw data directly using the raw
pointer to data (e.g. obtained via data() member of std::vector) unless the iterator over the data
can be used.

std::vector<T> in(nelem);
std::vector<T> out(nelem);
T *inptr=in.data(),*outptr=out.data();
#pragma acc data copyin(inptr[0:nelem]) copyout(outptr[0:nelem])
#pragma acc host_data use_device(inptr,outptr)
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[=](auto i) {

outptr[i] = inptr[i];
});

}

In the above example vector elements are accessed through raw pointers to their elements ob-
tained throughvector::data()member, they are explicitly management through the OpenACC data
clauses.

Static Storage Data

Global or static variables can be made accessible in the parallel algorithms using OpenACC data direc-
tives similarly to other variables.
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int glob_arr[N] = {/*...*/};
void foo(){
#pragma acc data copy(glob_arr)
#pragma acc host_data use_device(glob_arr)

{
std::for_each_n(std::execution::par, glob_arr, N,

[](int &e) { e += 1; });
}

}

In the above example the global array glob_arr is updated on the GPU with help of OpenACC data
directives.

Member Functions

When the data members are managed inside the member functions the implicit object pointer this
needs to be explicitly managed for correctness as accessing members is always done through the
dereference of the object itself.

struct S {
float *ptr;

void update_member() {
#pragma acc data copy(ptr[0:N], this)
#pragma acc host_data use_device(ptr, this)

{
std::for_each(std::execution::par, ptr, ptr + N,

[=](float &e) { ptr[&e - ptr] += 5.0; });
}

}
};

GPU Memory Mode Related Differences

In Separate Memory Mode all data must be managed explicitly via extra device allocations and mem-
cpy between the host and device and the address translations. This also applies to variables with
automatic or static storage duration in Managed Memory Mode.

In Unified Memory Mode all data is automatically managed by the CUDA device driver. Additionally in
Managed Memory Mode all dynamic allocations are managed by the CUDA device driver. Use of data
clauses and directives can only propagate memory usage hints to the CUDA device driver which are
used to improve the data management performance. More details can be found in Memory Model and
OpenACC with CUDA Unified Memory .

All the data managed by the CUDA device driver can benefit from the simplified uses of the OpenACC
features, particularly:

▶ Use of host_data directive is not required since the host and device address of data in unified
shared memory is identical.

▶ Use of pointer attach or detach is not required since the host and device pointers in unified
shared memory are identical.

The following example illustrates simplified data managment with only OpenACC data construct en-
closing the std::for_each with Unified Memory Mode.

int n = get_n();
T* in = new T[nelem];
T* out = new T[nelem];

(continues on next page)
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#pragma acc data copyin(in[0:nelem]) copyout(out[0:nelem])
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[&](auto i) {

out[i] = in[i] * n;
});

}

In the above example we leverage OpenACC explicit data management construct to indicate how data
is used on GPU for the computation executed in std::for_each:

▶ in is moved into the GPU memory;

▶ out is moved from the GPU memory.

Both in and out are captured by reference and therefore their host address is used in the lambda
of std::for_each. The scalar variable n is not managed. The use of host_data construct is not
required.

When standard containers are used in data directives and clauses, the underlying data collection can
be managed too. For example, in order to indicate that elements of the std::vector are accessed
from the GPU the application code must first retrieve the pointer to the array elements using its
data() member. Then such pointers can be used in the regular data directives.

std::vector<T> in(nelem);
std::vector<T> out(nelem);
T *inptr=in.data(), *outptr=out.data();
#pragma acc data copyin(inptr[0:nelem]) copyout(outptr[0:nelem])
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[&](auto i) {

out[i] = in[i];
});

}

The above example demonstrates the use of OpenACC data directives with a raw pointer to elements
of std::vector which can improve memory performance for data in unified memory and the full
deep copy of vector content using attach/detach is not required.

int n = get_n();
T* in = new T[nelem];
T* out = new T[nelem];
#pragma acc enter data copyin(n)
#pragma acc host_data use_device(n)
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[&, in, out](auto i) {

out[i] = in[i] * n;
});

}
#pragma acc enter data delete(n)

In the above example, in and out are dynamically allocated and managed by CUDA device driver with
Managed Memory Mode, n is on the stack and therefore managed explicitly via OpenACC directives.
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15.2.8.2 External Device Function Annotations

Using OpenACC routine directive annotations allows calling external device functions.

// In file1.cpp
extern int foo();

void bar()
{

std::for_each(std::execution::par_unseq, r.begin(), r.end(),
[=](auto i) {

ou[i] = foo();
});

}
// In file2.cpp
#pragma acc routine
int foo(){

return 4;
}

The above code can be compiled/linked as follows:

nvc++ -stdpar file1.cpp
nvc++ -acc file2.cpp
nvc++ -stdpar -acc file1.o file2.o

15.2.9. Getting Started with Parallel Algorithms for GPUs

To get started, download and install the NVIDIA HPC SDK on your x86-64 or Arm CPU-based system
running a supported version of Linux.

The NVIDIA HPC SDK is freely downloadable and includes a perpetual use license for all NVIDIA Reg-
istered Developers, including access to future release updates as they are issued. After you have the
NVIDIA HPC SDK installed on your system, the nvc++ compiler is available under the /opt/nvidia/
hpc_sdk directory structure.

▶ To use the compilers including nvc++ on a Linux/x86-64 system, add the directory /opt/nvidia/
hpc_sdk/Linux_x86_64/26.1/compilers/bin to your path.

▶ On an Arm CPU-based system, replace Linux_x86_64 with Linux_aarch64.

15.2.9.1 Supported NVIDIA GPUs

The NVC++ compiler can automatically offload C++ Parallel Algorithms to NVIDIA GPUs based on
the Volta architecture or newer. These architectures include features – such as independent thread
scheduling and hardware optimizations for CUDA Unified Memory – that were specifically designed to
support high-performance, general-purpose parallel programming models like the C++ Parallel Algo-
rithms.

The NVC++ compiler provides limited support for C++ Parallel Algorithms on the Pascal architec-
ture, which does not have the independent thread scheduling necessary to properly support the
std::execution::par policy. When compiling for the Pascal architecture (-gpu=cc60), NVC++ com-
piles algorithms with the std::execution::par policy for serial execution on the CPU. Only algo-
rithms with the std::execution::par_unseq policy will be scheduled to run on Pascal GPUs.
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15.2.9.2 Supported CUDA Versions

The NVC++ compiler is built on CUDA libraries and technologies and uses CUDA to accelerate C++ Par-
allel Algorithms on NVIDIA GPUs. A GPU-accelerated system on which NVC++-compiled applications
are to be run must have a CUDA 11.2 or newer device driver installed.

The NVIDIA HPC SDK compilers ship with an integrated CUDA toolchain, header files, and libraries to
use during compilation, so it is not necessary to have a CUDA Toolkit installed on the system.

When -stdpar is specified, NVC++ compiles using the CUDA toolchain version that best matches the
CUDA driver installed on the system on which compilation is performed. To compile using a different
version of the CUDA toolchain, use the -gpu=cudaX.Y option. For example, use the -gpu=cuda12.9
option to specify that your program should be compiled for a CUDA 12.9 system using the CUDA 12.9
toolchain.

15.3. Stdpar Fortran

Fortran 2008 introduced the do concurrent (DC) loop construct signaling that loop iterations have
no interdependencies. With -stdpar such loop iterations will be executed in parallel on the GPU when
-stdpar (or -stdpar=gpu) is passed to nvfortran or using CPU threads when -stdpar=multicore
is passed to nvfortran. More details can be found in the following blog post on the NVIDIA website:
Accelerating Fortran DO CONCURRENT with GPUs and the NVIDIA HPC SDK.

15.3.1. Calling Routines in DO CONCURRENT on the GPU

When compiling for the GPU, calling routines in the body of do concurrent loop can be constrained.
PURE routines can generally be called inside the do concurrent loop body. The compiler detects
that such routines are to be compiled for the GPU target. External routines, however, can’t be called
from within the DC loop unless they are explicitly annotated with the OpenACC routine directive (refer
to Interoperability with OpenACC <stdpar-fortran-interop-openacc>) or CUDA device attribute (refer to
Interoperability with CUDA Fortran).

The following example will compile successfully.

module m
contains
pure subroutine foo()
return
end subroutine
end module m

program dc
use m
implicit none
integer :: i

do concurrent (i=1:10)
call foo()

enddo
end program

The following example, however, doesn’t compile unless foo is either
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▶ annotated with !$acc routine,

▶ or attributed with attributes(device) and compiled as Stdpar and CUDA Fortran.

program dc
implicit none
interface

pure subroutine foo()
end subroutine foo

end interface
integer :: i

do concurrent (i=1:10)
call foo()

enddo
end program

15.3.2. GPU Data Management

If -gpu=mem:managed is enabled by default or is explicitly passed on the command line, some data
accesses in do concurrent loops are invalid. For example, accessing global variables in the routines
called from the do concurrent loop does not perform expected value updates in the CPU code.

Additionally, there are rare instances where the compiler cannot accurately determine variable sizes
for implicit data movements between CPU and GPU. As demonstrated in the following example, a is an
assumed-size array, and its access region inside the DC construct cannot be determined at compile
time because the element index positions are taken from another array b initialized outside of the
routine. Such code does not update a as expected and may result in a memory violation and undefined
behavior.

subroutine r(a, b)
integer :: a(*)
integer :: b(:)
do concurrent (i = 1 : size(b))

a(b(i)) = i
enddo

end subroutine

There are no limitations on the variable accessed in do concurrent loops described above when the
code is compiled with -gpu=mem:unified, whether this option is enabled by default or explicitly via
an option on the command line.

15.3.3. Interoperability with OpenACC

OpenACC features can be used when compiling Stdpar code for GPUs. To activate OpenACC directives
recognition with Stdpar code add -acc command line flag to nvfortran.

nvfortran -stdpar -acc example.f90

OpenACC functionality and interoperability with DO-CONCURRENT loop is detailed in the OpenACC
specification and the NVIDIA HPC compiler specific differences are detailed in Using OpenACC of this
guide.
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Using OpenACC features can enhance functionality of DC-loop for example with the following:

▶ Explicit data management to improve performance of CPU-GPU implicit data movements or even
leverage separate memory compiling on the GPU when compiling with -gpu=mem:separate
passed in.

▶ Tuning DC-loop execution on the GPU e.g. GPU kernels launch configuration.

▶ Executing DC-loops asynchronously.

▶ Calling external routines from within DC-loops.

▶ Atomic operations in DC-loops.

Examples

Some examples of using OpenACC directives with DC-loops are provided below.

The following example demonstrates how the data accessed inside the DC-loop are fully managed in
the OpenACC data construct.

!$acc data copyin(b) copyout(a)
do concurrent (j=1:N)

do i=1,K
a(j,i) = b(j,i)

end do
end do
!$acc end data

While in the above example the data construct is used for GPU data management, the same effect
can be achieved with the use of data clauses on the compute construct enclosing DC-loop.

The following example shows how the scheduling of DC loop on the GPU is controlled through the
clauses on the compute construct.

!$acc parallel loop num_gangs(50000) vector_length(32)
do concurrent (i=1:K,j=1:N)

a(j,i) = real(j)
end do

Use of OpenACC async clause on the compute constructs can be utilised to perform computations in
DC-loop asynchronously.

!$acc parallel loop async
do concurrent (j=1:N)

a(j) = j
end do

b = foo()

#pragma acc wait

c = sum(a) + b

In the previous example, array a is filled in with values asynchronously in DC-loop.
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15.3.4. Interoperability with CUDA Fortran

CUDA Fortran features can also be used when compiling Stdpar code for GPUs. To recognize CUDA
Fortran features in your source code, compile with the -cuda command line flag using nvfortran.

nvfortran -stdpar -cuda example.f90

Using CUDA Fortran extensions can enhance the functionality of a do concurrent (DC) loop and Stdpar
program, for several cases:

▶ Explicit data locality, accessing CUDA Fortran attributed arrays or other data with the device,
managed, unified, or constant attributes from within DC-loops.

▶ Tuning DC-loop execution on the GPU e.g. controlling the GPU kernels launch configuration.

▶ Executing DC-loops asynchronously using a specific CUDA stream.

▶ Calling external, user-defined CUDA device routines from within DC-loops.

▶ Using CUDA Atomic operations in DC-loops, or other CUDA-specific device-side runtime library
calls.

▶ Inserting CUDA Runtime API calls for memory tuning hints outside of DC-loops.

Examples

Some examples of using CUDA Fortran features with DC-loops are provided below. The following ex-
ample demonstrates how a DC-loop can access CUDA Fortran device data, run on a specific CUDA
stream, call the CUDA Runtime API for creating a stream, and hide non-standard features behind the
CUF sentinel for code portability.

!@cuf use cudafor
!@cuf integer(kind=cuda_stream_kind) :: istrm

real, allocatable :: a(:,:), b(:,:)
!@cuf attributes(device) :: a ! A is device array only, not unified/managed

. . .
!@cuf istat = cudaStreamCreate(istrm)

. . .
a(:,:) = 0.0
. . .

!$cuf kernel do(1) <<< *, *, stream=istrm>>>
do concurrent (j=1:N)

do i=1,K
a(j,i) = a(j,i) + 2.0 * b(j,i)

end do
end do

This program demonstrates how to call low-level CUDA device functions from within a DC-loop. The
function can be written in either CUDA Fortran or CUDA C++, depending on the interface. The CUDA
C function must be compiled for relocatable device code. This can be used for accessing features in
CUDA and NVIDIA GPUs not readily available in directive-based models or standard languages.

module mcuda
contains

attributes(host,device) pure integer function std_dbg(itype)
integer, value :: itype
if (itype.eq.1) then

std_dbg = threadIdx%x
else if (itype.eq.2) then

(continues on next page)
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std_dbg = blockIdx%x
else

std_dbg = (blockIdx%x-1)*blockDim%x + threadIdx%x
end if
end function

end module

program test
use mcuda
integer, parameter :: N = 2000
integer, allocatable :: a(:), b(:), c(:)
allocate(a(N),b(N),c(N))

do concurrent (j=1:N)
a(j) = std_dbg(1)
b(j) = std_dbg(2)
c(j) = std_dbg(3)

end do

print *,a(1),a(N/2),a(N)
print *,b(1),b(N/2),b(N)
print *,c(1),c(N/2),c(N)
end

Many functions from the CUDA Fortran cudadevice module are available within do concurrent loops,
not just atomics. This code snippet shows two uses:

real :: tmp(4), x, y
...
block; use cudadevice
do concurrent (i=1:K,j=1:N)

x = real(j) + a(i,j)
y = atomicAdd(b(1,j), x)

end do

do concurrent (j=1:N)
x = real(j)
tmp(1:4) = __ldca(a(1:4,j))
tmp(1:4) = tmp(1:4) + x
call __stwt(b(1:4,j), tmp)

end do
end block
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Chapter 16. PCAST

Parallel Compiler Assisted Software Testing (PCAST) is a set of API calls and compiler directives useful
in testing program correctness. Numerical results produced by a program can diverge when parts
of the program are mapped onto a GPU, when new or additional compiler options are used, or when
changes are made to the program itself. PCAST can help you determine where these divergences
begin, and pinpoint the changes that cause them. It is useful in other situations as well, including
when using new libraries, determining whether parallel execution is safe, or porting programs from
one ISA or type of processor to another.

16.1. Overview

PCAST Comparisons can be performed in two ways. The first saves the initial run’s data into a file
through the pcast_compare call or directive. Add the calls or directives to your application where
you want intermediate results to be compared. Then, execute the program to save the “golden”
results where the values are known to be correct. During subsequent runs of the program, the
same pcast_compare calls or directives will compare the computed intermediate results to the saved
“golden” results and report the differences.

The second approach works in conjunction with the NVIDIA OpenACC implementation to compare GPU
computation against the same program running on a CPU. In this case, all compute constructs are
performed redundantly, both on the CPU and GPU. GPU results are compared against the CPU results,
and differences reported. This is essentially like the first case where the CPU-calculated values are
treated as the “golden” results. GPU to CPU comparisons can be done implicitly at the end of data
regions with the autocompare flag or explicitly after kernels with the acc_compare call or directive.

With the autocompare flag, OpenACC regions will run redundantly on the CPU and GPU. On an Ope-
nACC region exit where data is to be downloaded from device to host, PCAST will compare the values
calculated on the CPU with those calculated in the GPU. Comparisons done with autocompare or
acc_compare are handled in memory and do not write results to an intermediate file.

The following table outlines the supported data types that can be used with PCAST. Short, integer,
long, and half precision data types are not supported with ABS, REL, ULP, or IEEE options; only a bit-
for-bit comparison is supported.

For floating-point types, PCAST can calculate absolute, relative, and unit-last-place differences. Abso-
lute differences measures only the absolute value of the difference (subtraction) between two values,
i.e. abs(A-B). Relative differences are calculated as a ratio between the difference of values, A-B, and
the previous value A; abs((A-B)/A). Unit-least precision (Unit-last place) is a measure of the smallest
distance between two values A and B. With the ULP option set, PCAST will report if the calculated ULP
between two numbers is greater than some threshold.
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Table 23: Supported Types for Tolerance Measurements

C/C++ Type Fortran Type ABS REL ULP IEEE

float real, real(4) Yes Yes Yes Yes

double double precision, real(8) Yes Yes Yes Yes

float _Complex complex, complex(4) Yes Yes Yes Yes

double _Complex complex(8) Yes Yes Yes Yes

- real(2) No No No No

(un)signed short integer(2) N/A N/A N/A N/A

(un)signed int integer, integer(4) N/A N/A N/A N/A

(un)signed long integer(8) N/A N/A N/A N/A

16.2. PCAST with a “Golden” File

The run-time call pcast_compare highlights differences between successive program runs. It has two
modes of operation, depending on the presence of a data file named pcast_compare.dat by default. If
the file does not exist, pcast_compare assumes this is the first “golden” run. It will create the file
and fill it with the computed data at each call to pcast_compare. If the file exists, pcast_compare
assumes it is a test run. It will read the file and compare the computed data with the saved data from
the file. The default behavior is to consider the first 50 differences to be a reportable error, no matter
how small.

By default, the pcast_compare.dat file is in the same directory as the executable. The behav-
ior of pcast_compare, and other comparison parameters, can be changed at runtime with the
PCAST_COMPARE environment variable discussed in the Environment Variables section.

The signature of pcast_compare for C++ and C is:

void pcast_compare(void*, char*, size_t, char*, char*, char*, int);

The signature of pcast_compare for Fortran is:

subroutine pcast_compare(a, datatype, len, varname, filename, funcname, lineno)
type(*), dimension(..) :: a
character(*) :: datatype, varname, filename, funcname
integer(8),value :: len
integer(4),value :: lineno

The call takes seven arguments:

1. The address of the data to be saved or compared.

2. A string containing the data type.

3. The number of elements to compare.

4. A string treated as the variable name.

5. A string treated as the source file name.

6. A string treated as the function name.
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7. An integer treated as a line number.

For example, the pcast_compare runtime call can be invoked like the following:

pcast_compare(a, "float", N, "a", "pcast_compare03.c", "main", 1);

call pcast_compare(a, 'real', n, 'a', 'pcast_compare1.f90', 'program', 9)

The caller should give meaningful names to the last four arguments. They can be anything, since
they only serve to annotate the report. It is imperative that the identifiers are not modified between
comparisons; comparisons must be called in the same order for each program run. If, for example, you
are calling pcast_compare inside a loop, it is reasonable to set the last argument to be the loop index.

There also exists a directive form of the pcast_compare, which is functionally the same as the runtime
call. It can be used at any point in the program to compare the current value of data to that recorded
in the golden file, same as the runtime call. There are two benefits to using the directive over the API
call:

1. The directive syntax is much simpler than the API syntax. Most of what the compare call needs
to output data to the user can be gleaned by the compiler at compile-time (The type, variable
name, file name, function name, and line number).

#pragma nvidia compare(a[0:n])

as opposed to:

pcast_compare(a, "float", N, "a", "pcast_compare03.c", "main", 1);

2. The directive is only enabled when the -Mpcast flag is set, so the source need not be changed
when testing is complete. Consider the following usage examples:

#pragma nvidia compare(a[0:N]) // C++ and C
!$nvf compare(a(1:N)) ! Fortran

The directive interface is given below in C++ or C style, and in Fortran. Note that for Fortran, var-list
is a variable name, a subarray specification, an array element, or a composite variable member.

#pragma nvidia compare (var-list) // C++ and C
!$nvf compare (var-list) ! Fortran

Let’s look at an example of

#include <stdlib.h>
#include <openacc.h>

int main() {
int size = 1000;
int i, t;
float *a1;
float *a2;

a1 = (float*)malloc(sizeof(float)*size);
a2 = (float*)malloc(sizeof(float)*size);

for (i = 0; i < size; i++) {
a1[i] = 1.0f;
a2[i] = 2.0f;

}
(continues on next page)
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(continued from previous page)

for (t = 0; t < 5; t++) {
for(i = 0; i < size; i++) {

a2[i] += a1[i];
}
pcast_compare(a2, "float", size, "a2", "example.c", "main", 23);
}
return 0;

}

Compile the example using these compiler options:

$ nvc -fast -o a.out example.c

Compiling with redundant or autocompare options are not required to use pcast_compare. Once again,
running the compiled executable using the options below, results in the following output:

$ PCAST_COMPARE=summary,rel=1 ./out.o
datafile pcast_compare.dat created with 5 blocks, 5000 elements, 20000 bytes
$ PCAST_COMPARE=summary,rel=1 ./out.o
datafile pcast_compare.dat compared with 5 blocks, 5000 elements, 20000 bytes
no errors found
relative tolerance = 0.100000, rel=1

Running the program for the first time, the data file “pcast_compare.dat” is created. Subsequent runs
compare calculated data against this file. Use the PCAST_COMPARE environment variable to set the
name of the file, or force the program to create a new file on the disk with PCAST_COMPARE=create.

The same example above can be written with the compare directive. Notice how much more concise
the directive is to the update host and pcast_compare calls.

#include <stdlib.h>
#include <openacc.h>

int main() {
int size = 1000;
int i, t;
float *a1;
float *a2;

a1 = (float*)malloc(sizeof(float)*size);
a2 = (float*)malloc(sizeof(float)*size);

for (i = 0; i < size; i++) {
a1[i] = 1.0f;
a2[i] = 2.0f;

}

for (t = 0; t < 5; t++) {
for(i = 0; i < size; i++) {

a2[i] += a1[i];
}
#pragma nvidia compare(a2[0:size])
}
return 0;

}
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With the directive, you will want to add “-Mpcast” to the compilation line to enable the directive. Other
than that, the output from this program is identical to the runtime example above.

16.3. PCAST with OpenACC

PCAST can also be used with the NVIDIA OpenACC implementation to compare GPU computation
against the same program running on a CPU. In this case, all compute constructs are performed re-
dundantly on both the CPU and GPU. The CPU results are considered to be the “golden master” copy
which GPU results are compared against.

There are two ways to perform comparisons with GPU-calculated results. The first is with the explicit
call or directive acc_compare. To use acc_compare, you must compile with -acc -gpu=redundant
to force the CPU and GPU to compute results redundantly. Then, insert calls to acc_compare or put
an acc compare directive at points where you want to compare the GPU-computed values against
those computed by the CPU.

The second approach is to turn on autocompare mode by compiling with -acc -gpu=autocompare. In
autocompare mode, PCAST will automatically perform a comparison at each point where data is moved
from the device to the host. It does not require the programmer to add any additional directives or
runtime calls; it’s a convenient way to do all comparisons at the end of a data region. If there are
multiple compute kernels within a data region, and you’re only interested in one specific kernel, you
should use the previously-mentioned acc_compare to target a specific kernel. Note that autocompare
mode implies -gpu=redundant.

During redundant execution, the compiler will generate both CPU and GPU code for each compute
construct. At runtime, both the CPU and GPU versions will execute redundantly, with the CPU code
reading and modifying values in system memory and the GPU reading and modifying values in device
memory. Insert calls to acc_compare() calls (or the equivalent acc compare directive) at points
where you want to compare the GPU-computed values against CPU-computed values. PCAST treats
the values generated by the CPU code as the “golden” values. It will compare those results against GPU
values. Unlike pcast_compare, acc_compare does not write to an intermediary file; the comparisons
are done in-memory.

acc_compare only has two arguments: a pointer to the data to be compared, hostptr, and the number
of elements to compare, count. The type can be inferred in the OpenACC runtime, so it doesn’t need
to be specified. The C++ and C interface is given below:

void acc_compare(void *, size_t);

And in Fortran:

subroutine acc_compare(a)
subroutine acc_compare(a, len)

type(*), dimension(*) :: a
integer(8), value :: len

You can call acc_compare on any variable or array that is present in device memory. You can also call
acc_compare_all (no arguments) to compare all values that are present in device memory against
the correponding values in host memory.

void acc_compare_all()

subroutine acc_compare_all()
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Directive forms of the acc_compare calls exist. They work the same as the API calls and can be
used in lieu of them. Similar to PCAST compare directives, acc compare directives are ignored when
redundant or autocompare modes are not enabled on the compilation line.

The acc compare directive takes one or more arguments, or the ‘all’ clause (which corresponds to
acc_compare_all(). The interfaces are given below in C++ or C, and Fortran respectively. Argument
“var-list” can be a variable name, a sub-array specification, and array element, or a composite variable
member.

#pragma acc compare [ (var-list) | all ]

$!acc compare [ (var-list) | all ]

For example:

#pragma acc compare(a[0:N])
#pragma acc compare all
!$acc compare(a, b)
!$acc compare(a(1:N))
!$acc compare all

Consider the following OpenACC program that uses the acc_compare()API call and an acc compare
directive. This Fortran example uses real*4 and real*8 arrays.

program main
use openacc
implicit none
parameter N = 1000
integer :: i
real :: a(N)
real*4 :: b(N)
real(4) :: c(N)
double precision :: d(N)
real*8 :: e(N)
real(8) :: f(N)

d = 1.0d0
e = 0.1d0

!$acc data copyout(a, b, c, f) copyin(d, e)

!$acc parallel loop
do i = 1,N
a(i) = 1.0
b(i) = 2.0
c(i) = 0.0
enddo
!$acc end parallel

!$acc compare(a(1:N), b(1:N), c(1:N))

!$acc parallel loop
do i = 1,N
f(i) = d(i) * e(i)
enddo
!$acc end parallel

!$acc compare(f)
(continues on next page)
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(continued from previous page)

!$acc parallel loop
do i = 1,N
a(i) = 1.0
b(i) = 1.0
c(i) = 1.0
enddo
!$acc end parallel

call acc_compare(a, N)
call acc_compare(b, N)
call acc_compare(c, N)

!$acc parallel loop
do i = 1,N
f(i) = 1.0D0
enddo
!$acc end parallel

call acc_compare_all()

!$acc parallel loop
do i = 1,N
a(i) = 3.14;
b(i) = 3.14;
c(i) = 3.14;
f(i) = 3.14d0;
enddo
!$acc end parallel

! In redundant mode, no comparison is performed here. In
! autocompare mode, a comparison is made for a, b, c, and f (but
! not e and d), since they are copied out of the data region.

!$acc end data

call verify(N, a, b, c, f)
end program

subroutine verify(N, a, b, c, f)
integer, intent(in) :: N
real, intent(in) :: a(N)
real*4, intent(in) :: b(N)
real(4), intent(in) :: c(N)
real(8), intent(in) :: f(N)
integer :: i, errcnt

errcnt = 0
do i=1,N
if(abs(a(i) - 3.14e0) .gt. 1.0e-06) then

errcnt = errcnt + 1
endif
end do
do i=1,N
if(abs(b(i) - 3.14e0) .gt. 1.0e-06) then

errcnt = errcnt + 1

(continues on next page)
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endif
end do
do i=1,N
if(abs(c(i) - 3.14e0) .gt. 1.0e-06) then

errcnt = errcnt + 1
endif
end do
do i=1,N
if(abs(f(i) - 3.14d0) .gt. 1.0d-06) then

errcnt = errcnt + 1
endif
end do

if(errcnt /= 0) then
write (*, *) "FAILED"
else
write (*, *) "PASSED"
endif

end subroutine verify

The program can be compiled with the following command:

$ nvfortran -fast -acc -gpu=redundant -Minfo=accel example.F90
main:

16, Generating copyout(a(:),b(:))
Generating copyin(e(:))
Generating copyout(f(:),c(:))
Generating copyin(d(:))
18, Generating Tesla code

19, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
26, Generating acc compare(c(:),b(:),a(:))
28, Generating Tesla code

29, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
34, Generating acc compare(f(:))
36, Generating Tesla code

37, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
48, Generating Tesla code

49, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
56, Generating Tesla code

57, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

Here, you can see where the acc compare directives are generated on lines 26 and 34. The program
can be run with the following command:

$ ./a.out
PASSED

As you can see, no PCAST output is generated when the comparisons match. We can get more infor-
mation with the summary option:

$ PCAST_COMPARE=summary ./a.out
PASSED

compared 13 blocks, 13000 elements, 68000 bytes
no errors found

absolute tolerance = 0.00000000000000000e+00, abs=0

There are 13 blocks compared. Let’s count the blocks in the compare calls.
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!$acc compare(a(1:N), b(1:N), c(1:N))

Compares three blocks, one each for a, b, and c.

!$acc compare(f)

Compares one block for f.

call acc_compare(a, N)
call acc_compare(b, N)
call acc_compare(c, N)

Each call compares one block for their respective array.

call acc_compare_all()

Compares one block for each array present on the device (a, b, c, d, e, and f) for a total of 6 blocks.

If the same example is compiled with autocompare, we’ll see four additional comparisons, since the
four arrays that are copied out (with the copyout clause) are compared at the end of the data region.

$ nvfortran -fast -acc -gpu=autocompare example.F90
$ PCAST_COMPARE=summary ./a.out
PASSED
compared 17 blocks, 17000 elements, 88000 bytes
no errors found

absolute tolerance = 0.00000000000000000e+00, abs=0

16.4. Limitations

There are currently a few limitations with using PCAST that are worth keeping in mind.

▶ Comparisons are not thread-safe. If you are using PCAST with multiple threads, ensure that only
one thread is doing the comparisons. This is especially true if you are using PCAST with MPI. If
you use pcast_compare with MPI, you must make sure that only one thread is writing to the
comparison file. Or, use a script to set PCAST_COMPARE to encode the file name with the MPI
rank.

▶ Comparisons must be done with like types; you cannot compare one type with another. It is
not possible to, for example, check for differing results after changing from double precision to
single. Comparisons are limited to those present in table Table 23. Currently there is no support
for structured or derived types.

▶ The-gpu=mem:managed or-gpu=mem:unified options are incompatible with autocompare and
acc_compare. Both the CPU and GPU need to calculate result separately and to do so they must
have their own working memory spaces.

▶ If you do any data movement on the device, you must account for it on the host. For example,
if you are using CUDA-aware MPI or GPU-accelerated libraries that modify device data, then you
must also make the host aware of the changes. In these cases it is helpful to use the host_data
clause, which allows you to use device addresses within host code.
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16.5. Environment Variables

Behavior of PCAST/Autocompare is controlled through the PCAST_COMPARE variable. Options can be
specified in a comma-separated list: PCAST_COMPARE=<opt1>,<opt2>,...

If no options are specified, the default is to perform comparisons with abs=0. Comparison options are
not mutually exclusive. PCAST can compare absolute differences with some n=3 and relative differ-
ences with a different threshold, e.g. n=5; PCAST_COMPARE=abs=3,rel=5,….

You can specify either an absolute or relative location to be used with the datafile option. The parent
directory should be owned by the same user executing the comparisons and the datafile should have
the appropriate read/write permissions set.
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Table 24: PCAST_COMPARE Options

Option Description

abs=n Compare absolute difference; tolerate differences up to 10^(-n), only applicable
to floating point types. Default value is 0

create Specifies that this is the run that will produce the reference file
(pcast_compare only)

compare Specifies that the current run will be compared with a reference file
(pcast_compare only)

datafile="name" Name of the file that data will be saved to, or compared against. If empty will
use the default, pcast_compare.dat (pcast_compare only)

disable Calls to pcast_compare, acc_compare, acc_compare_all, and directives
(pcast compare, acc compare, and acc compare) all immediately return
from the runtime with no effect. Note that this doesn’t disable redundant ex-
ecution; that will require a recompile.

ieee Compare IEEE NaN checks (only implemented for floats and doubles)

output-
file="name"

Save comparison output to a specific file. Default behavior is to output to stderr

patch Patch errors (outside tolerance) with correct values

patchall Patch all differences (inside and outside tolerance) with correct values

rel=n Compare relative difference; tolerated differences up to 10^(-n), only applicable
to floating point types. Default value is 0.

report=n Report up to n (default of 50) passes/fails

reportall Report all passes and fails (overrides limit set in report=n)

reportpass Report passes; respects limit set with report=n

silent Suppress output - overrides all other output options, including summary and
verbose

stop Stop at first differences

summary Print summary of comparisons at end of run

ulp=n Compare Unit of Least Precision difference (only for floats and doubles)

verbose Outputs more details of comparison (including patches)

verboseauto-
compare

Outputs verbose reporting of what and where the host is comparing (autocom-
pare only)
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Chapter 17. Using MPI

MPI (Message Passing Interface) is an industry-standard application programming interface designed
for rapid data exchange between processors in a distributed-memory environment. MPI is computer
software used in scalable computer systems that allows the processes of a parallel application to
communicate with one another.

The NVIDIA HPC SDK includes a pre-compiled version of Open MPI. You can build using alternate ver-
sions of MPI with the -I, -L, and -l options.

This section describes how to use Open MPI with the NVIDIA HPC Compilers.

17.1. Using Open MPI on Linux

The NVIDIA HPC Compilers for Linux ship with a pre-compiled version of Open MPI that includes ev-
erything required to compile, execute and debug MPI programs using Open MPI.

To build an application using Open MPI, use the Open MPI compiler wrappers: mpicc, mpic + + and
mpifort. These wrappers automatically set up the compiler commands with the correct include file
search paths, library directories, and link libraries.

The following MPI example program uses Open MPI.

$ cd my_example_dir
$ cp -r /opt/nvidia/hpc_sdk/Linux_x86_64/26.1/examples/MPI/samples/mpihello .
$ cd mpihello
$ export PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/26.1/mpi/openmpi/bin:$PATH
$ mpifort mpihello.f -o mpihello

$ mpiexec mpihello
Hello world! I'm node 0

$ mpiexec -np 4 mpihello
Hello world! I'm node 0
Hello world! I'm node 2
Hello world! I'm node 1
Hello world! I'm node 3

To build an application using Open MPI for debugging, add -g to the compiler wrapper command line
arguments.
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17.2. Using MPI Compiler Wrappers

When you use MPI compiler wrappers to build with the -fpic or -mcmodel=medium options, then you
must specify -fortranlibs to link with the correct libraries. Here are a few examples:

For a static link to the MPI libraries, use this command:

$ mpifort hello.f

For a dynamic link to the MPI libraries, use this command:

$ mpifort hello.f -fortranlibs

To compile with -fpic, which, by default, invokes dynamic linking, use this command:

$ mpifort -fpic -fortranlibs hello.f

To compile with -mcmodel=medium, use this command:

$ mpifort -mcmodel=medium -fortranlibs hello.f

17.3. Testing and Benchmarking

The /opt/nvidia/hpc_sdk/Linux_x86_64/26.1/examples/MPI directory contains various benchmarks
and tests. Copy this directory into a local working directory by issuing the following command:

text

% cp -r /opt/nvidia/hpc_sdk/Linux_x86_64/26.1/examples/MPI .

There are several example programs available in this directory.
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Chapter 18. Creating and Using
Libraries

A library is a collection of functions or subprograms that are grouped for reference and ease of linking.
This section discusses issues related to NVIDIA-supplied compiler libraries. Specifically, it addresses
the use of C++ and C builtin functions in place of the corresponding libc routines, creation of dynami-
cally linked libraries, known as shared objects or shared libraries, and math libraries.

Note: This section does not duplicate material related to using libraries for inlining which are described
in Creating an Inline Library.

NVIDIA provides libraries that export C interfaces by using Fortran modules.

18.1. Using builtin Math Functions in C++ and C

The name of the math header file is math.h. Include the math header file in all of your source files
that use a math library routine as in the following example, which calculates the inverse cosine of 3.5.

#include <math.h>
#include <stdio.h>
#define PI 3.1415926535
void main()
{

double x, y;
x = PI/3.0;
y = acos(0.5);
printf('%f %f\n',x,y);

}

Including math.h causes the NVIDIA C++ and C compilers to use builtin functions, which are much
more efficient than library calls. In particular, if you include math.h, the following intrinsics calls are
processed using builtins:
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abs acosf asinf atan atan2 atan2f

atanf cos cosf exp expf fabs

fabsf fmax fmaxf fmin fminf log

log10 log10f logf pow powf sin

sinf sqrt sqrtf tan tanf

18.2. Using System Library Routines

Release 26.1 of the NVIDIA HPC Compilers runtime libraries makes use of Linux system libraries to
implement, for example, OpenMP and Fortran I/O. The NVIDIA HPC Compilers runtime libraries make
use of several additional system library routines.

On 64-bit Linux systems, the system library routines used include these:

aio_error aio_write pthread_mutex_init sleep

aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock

aio_suspend pthread_attr_init setrlimit

18.3. Creating and Using Shared Object Files on
Linux

All of the NVIDIA HPC Fortran, C++ and C compilers support creation of shared object files. Unlike
statically-linked object and library files, shared object files link and resolve references with an exe-
cutable at runtime via a dynamic linker supplied with your operating system. The NVIDIA HPC Com-
pilers must generate position independent code to support creation of shared objects by the linker.
However, this is not the default. You must create object files with position independent code and
shared object files that will include them.

18.3.1. Procedure to create a use a shared object file

The following steps describe how to create and use a shared object file.

1. Create an object file with position independent code. To do this, compile your code with the
appropriate NVIDIA HPC compiler using the - fpic option, or one of the equivalent options, such
as - fPIC, - Kpic, and - KPIC, which are supported for compatibility with other systems. For
example, use the following command to create an object file with position independent code
using nvfortran:
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% nvfortran -c -fpic tobeshared.f

2. Produce a shared object file. To do this, use the appropriate NVIDIA HPC compiler to invoke
the linker supplied with your system. It is customary to name such files using a .so filename
extension. On Linux, you do this by passing the -shared option to the linker:

% nvfortran -shared -o tobeshared.so tobeshared.o

Note: Compilation and generation of the shared object can be performed in one step using both
the -fpic option and the appropriate option for generation of a shared object file.

3. Use a shared object file. To do this, use the appropriate NVIDIA HPC compiler to compile and link
the program which will reference functions or subroutines in the shared object file, and list the
shared object on the link line, as shown here:

% nvfortran -o myprog myprog.f tobeshared.so

4. Make the executable available.

You now have an executable myprog which does not include any code from functions or sub-
routines in tobeshared.so, but which can be executed and dynamically linked to that code.
By default, when the program is linked to produce myprog, no assumptions are made on the
location of tobeshared.so. Therefore, for myprog to execute correctly, you must initialize
the environment variable LD_LIBRARY_PATH to include the directory containing tobeshared.
so. If LD_LIBRARY_PATH is already initialized, it is important not to overwrite its contents.
If you have placed tobeshared.so in directory /home/myusername/bin, you can initialize
LD_LIBRARY_PATH to include that directory and preserve its existing contents, as shown in the
following:

% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":/home/myusername/bin

If you know that tobeshared.so always resides in a specific directory, you can create the exe-
cutable myprog in a form that assumes this directory by using the -R link-time option. For exam-
ple, you can link as follows:

% nvfortran -o myprog myprof.f tobeshared.so -R/home/myusername/bin

Note: As with the - L option, there is no space between - R and the directory name. If the - R
option is used, it is not necessary to initialize LD_LIBRARY_PATH.

In the previous example, the dynamic linker always looks in /home/myusername/bin to resolve
references to tobeshared.so. By default, if the LD_LIBRARY_PATH environment variable is not
set, the linker only searches /usr/lib and /lib for shared objects.
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18.3.2. ldd Command

The ldd command is a useful tool when working with shared object files and executables that refer-
ence them. When applied to an executable, as shown in the following example, ldd lists all shared
object files referenced in the executable along with the pathname of the directory from which they
will be extracted.

% ldd myprog

If the pathname is not hard-coded using the - R option, and if LD_LIBRARY_PATH is not initialized, the
pathname is listed as “not found”. For more information on ldd, its options and usage, see the online
man page for ldd.

18.4. Using LIB3F

The NVFORTRAN compiler includes support for the de facto standard LIB3F library routines. See the
Fortran Language Reference manual for a complete list of available routines in the NVIDIA implemen-
tation of LIB3F.

18.5. LAPACK, BLAS and FFTs

The NVIDIA HPC SDK includes a BLAS and LAPACK library based on the customized OpenBLAS project
source and built with the NVIDIA HPC Compilers. The LAPACK library is called liblapack.a. The BLAS
library is called libblas.a.

To use these libraries, simply link them in using the -l option when linking your main program:

% nvfortran myprog.f -llapack -lblas

18.6. Linking with ScaLAPACK

The ScaLAPACK libraries are automatically installed with each MPI library version which accompanies
an NVIDIA HPC SDK installation. You can link with the ScaLAPACK libraries by specifying -Mscalapack
on any of the MPI wrapper command lines. For example:

% mpifort myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the - Mscalapack switch is spec-
ified. If you wish to use a different BLAS library, and still use the - Mscalapack switch, then you can
list the set of libraries explicitly on your link line.

If the - Mnvpl switch is also specified in addition to - Mscalapack, then the NVPL ScaLAPACK library
will be used.
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18.7. The C++ Standard Template Library

On Linux, the GNU-compatible nvc++ compiler uses the GNU g++ header files and Standard Template
Library (STL) directly. The versions used are dependent on the version of the GNU compilers installed
on your system, or specified when makelocalrc was run during installation of the NVIDIA HPC Compil-
ers.

18.8. NVIDIA Performance Libraries (NVPL)

The NVIDIA Performance Libraries (NVPL) are a suite of high performance mathematical libraries opti-
mized for the NVIDIA Grace Arm architecture. These CPU-only libraries have no dependencies on CUDA
or CTK, and are drop in replacements for standard C and Fortran mathematical APIs allowing HPC ap-
plications to achieve maximum performance on the Grace platform. They are available for Arm CPUs
only. The NVPL includes the following math libraries: BLAS, FFT, LAPACK, RAND, ScaLAPACK, Sparse,
and Tensor. Refer to the NVPL documentation for more information about these math libraries. The
following section explains how to use them with the NVHPC compilers.

To use the NVPL libraries, use the -Mnvpl option when linking your main program:

% nvfortran myprog.f -Mnvpl

You can link only the NVPL libraries your application needs using the sub-options to -Mnvpl. For ex-
ample, if you only want the BLAS and FFT libraries from the NVPL, link as follows:

% nvfortran myprog.f -Mnvpl=blas,fft

Refer to the NVIDIA HPC Compilers Reference Guide for a complete list of supported options for the
-Mnvpl flag.

ScaLAPACK

Similar to other ScaLAPACK libraries, the NVPL version is designed to be used with MPI. A straight-
forward way to access the NVPL ScaLAPACK library is to use an MPI wrapper (i.e., mpicc, mpic++,
mpifort) and link with both - Mnvpl and - Mscalapack. For example:

% mpic++ myprog.cpp -Mscalapack -Mnvpl

If you choose not to use an MPI wrapper, you can satisfy ScaLAPACK’s dependency on libmpi.so by
explicitly providing this library at link time.

The NVPL ScaLAPACK interfaces are available for the following MPI variants: MPICH, Open MPI 3.x,
Open MPI 4.x (including HPC-X), and Open MPI 5.x. The HPC SDK contains builds of Open MPI 3, Open
MPI 4, and HPC-X; to take advantage of the NVPL’s ScaLAPACK interfaces for MPICH or Open MPI 5.x,
you must supply your own build of these MPI libraries.
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18.9. Linking with the nvmalloc Library

The NVIDIA HPC SDK installation includes a custom host (system) memory allocation library based on
the jemalloc memory allocator. This library, nvmalloc, replaces the system malloc(), free(), and other
related functions used by the nvc, nvc++, and nvfortran runtime for dynamic heap allocations. Using
nvmalloc can improve the performance of your application as the underlying jemalloc avoids memory
fragmentation and provides scalable concurrency. You can link with this library by specifying -nvmalloc
on any of the compiler command lines used for linking. For example:

% nvc main.c -nvmalloc

The -nvmalloc option is turned on by default on Arm systems when building executables. The option
-nonvmalloc can be used to turn off nvmalloc.

18.9.1. Using nvmalloc with Shared Libraries

The -nvmalloc option is not available when building shared libraries due to limitations inherent with
function interception. Instead, use -nvmalloc when building the main executables to handle memory
allocations and frees from all the linked shared libraries.
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Environment variables allow you to set and pass information that can alter the default behavior of the
NVIDIA HPC compilers and the executables which they generate. This section includes explanations
of the environment variables specific to the NVIDIA HPC Compilers. .

▶ Standard OpenMP environment variables are used to control the behavior of OpenMP programs;
these environment variables are described in the OpenMP Specification available online.

▶ Several NVIDIA-specific environment variables can be used to control the behavior of OpenACC
programs. OpenACC-related environment variables are described in the OpenACC section: Envi-
ronment Variables and the OpenACC Getting Started Guide.

19.1. Setting Environment Variables

Before we look at the environment variables that you might use with the HPC compilers and tools,
let’s take a look at how to set environment variables. To illustrate how to set these variables in various
environments, let’s look at how a user might initialize a Linux shell environment to enable use of the
NVIDIA HPC Compilers.

19.1.1. Setting Environment Variables on Linux

Let’s assume that you want access to the NVIDIA products when you log in, and that you installed the
NVIDIA HPC SDK in /opt/nvidia/hpc_sdk. For access at startup, you can add the following lines to your
shell startup files on a Linux_x86_64 system.

For csh, use these commands:

$ setenv NVHPCSDK /opt/nvidia/hpc_sdk
$ setenv MANPATH "$MANPATH":$NVHPCSDK/Linux_x86-64/26.1/compilers/man
$ set path = ($NVHPCSDK/Linux_x86_64/26.1/compilers/bin $path)

For bash, sh, zsh, or ksh, use these commands:

$ NVHPCSDK=/opt/nvidia/hpc_sdk; export NVHPCSDK
$ MANPATH=$MANPATH:$NVHPCSDK/Linux_x86_64/26.1/compilers/man; export MANPATH
$ PATH=$NVHPCSDK/Linux_x86_64/26.1/compilers/bin:$PATH; export PATH

On a Linux/Arm Server system replace Linux_x86_64 with Linux_aarch64.
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19.2. HPC Compiler Related Environment
Variables - General

The following table provides a listing of environment variables that affect the behavior of the NVIDIA
HPC Compilers and the executables they generate.

Table 25: NVIDIA HPC Compilers Environment Variable Sum-
mary

Environment Variable Description

FORTRANOPT Allows the user to specify that the NVIDIA Fortran compiler should use VAX
I/O or other custom I/O conventions.

FORT_CONVERT Allows the user to change the default byte ordering (endianness) of unfor-
matted I/O files.

FORT_CONVERT_UNIT Allows the user to change the default byte ordering (endianness) of specific
unformatted I/O files.

FORT_FMT_RECL Allows the user to change the default Fortran stdout (unit 6) line length
before a line break occurs. Default: 80 bytes.

GMON_OUT_PREFIX Specifies the name of the profiler output file for programs that are compiled
and linked with the -pg option.

LD_LIBRARY_PATH Specifies a colon-separated set of directories where libraries should first be
searched, prior to searching the standard set of directories.

MANPATH Sets the directories that are searched for manual pages associated with the
command that the user types.

NO_STOP_MESSAGE If specified, the execution of a plain STOP statement does not produce the
message FORTRAN STOP.

PATH A colon separated list of directories use to search for executables.

NVCOM-
PILER_FPU_STATE

Manages the initial state of the processor’s floating point control and status
register at program startup.

NVCOMPILER_TERM Controls the stack traceback and just-in-time debugging functionality.

NVCOM-
PILER_TERM_DEBUG

Specifies an alternate debugger to use when NVCOMPILER_TERM is set to
DEBUG.

PWD Absolute path of the current working directory.

STATIC_RANDOM_SEEDForces the seed returned by RANDOM_SEED to be constant.

TMP Sets the directory to use for temporary files created during execution of
the HPC compilers and tools; interchangeable with TMPDIR.

TMPDIR Sets the directory to use for temporary files created during execution of
the HPC compilers and tools.
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19.2.1. HPC Compilers Environment Variables - General

Use the environment variables listed in Table 25 to alter the default behavior of the NVIDIA HPC Compil-
ers and the executables which they generate. This section provides more detailed descriptions about
the variables in this table.

19.2.1.1 FORTRANOPT

FORTRANOPT allows the user to adjust the behavior of the NVIDIA Fortran compiler.

▶ If FORTRANOPT exists and contains the value vaxio, the record length in the open statement is
in units of 4-byte words, and the $ edit descriptor only has an effect for lines beginning with a
space or a plus sign (+).

▶ If FORTRANOPT exists and contains the value format_relaxed, an I/O item corresponding to a
numerical edit descriptor (such as F, E, I, and so on) is not required to be a type implied by the
descriptor.

▶ If FORTRANOPT exists and contains the value no_minus_zero, an I/O item corresponding to a
numerical edit descriptor (such as F, E, I, and so on) equal to negative zero will be output as if it
were positive zero.

▶ If FORTRANOPT exists and contains the value crif, a sequential formatted or list-directed record
is allowed to be terminated with the character sequence \\r\\n (carriage return, newline). This
approach is useful when reading records from a file produced on a Windows system.

The following example causes the NVIDIA Fortran compiler to use VAX I/O conventions:

$ setenv FORTRANOPT vaxio

19.2.1.2 FORT_FMT_RECL

The FORT_FMT_RECL environment variable specifies the maximum line in bytes for Fortran formatted
output to standard out (unit 6) before a newline will be generated.

If the environment variable FORT_FMT_RECL is present, the Fortran runtime library will use the value
specified as the number of bytes to output before a newline is generated.

The default value of FORT_FMT_RECL is 80.

▶ In csh:

$ setenv FORT_FMT_RECL length-in-bytes

▶ In bash, sh, zsh, or ksh:

$ FORT_FMT_RECL=length-in-bytes
$ export FORT_FMT_RECL
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19.2.1.3 FORT_CONVERT

The FORT_CONVERT environment variable specifies the byte ordering (endianness) of Fortran unfor-
matted I/O files.

If the environment variable FORT_CONVERT is present, the Fortran runtime library will use the value
specified as the default byte ordering.

The implicit default value of FORT_CONVERT is NATIVE.

FORT_CONVERT_UNIT=<OPT>
<OPT> 'HELP' | <MODE>
<MODE> 'little_endian' | 'big_endian' | 'native' | 'swap'

▶ In csh:

$ setenv FORT_CONVERT <MODE>

▶ In bash, sh, zsh, or ksh:

$ FORT_FMT_CONVERT=<MODE>
$ export FORT_CONVERT

19.2.1.4 FORT_CONVERT_UNIT

The FORT_CONVERT_UNIT environment variable specifies the byte ordering (endianness) of specific
Fortran unformatted I/O file(s).

If the environment variable FORT_CONVERT_UNIT is present, the Fortran runtime library will use the
value specified as the default byte ordering for a specific file(s).

There is no implicit default value of FORT_CONVERT_UNIT.

FORT_CONVERT_UNIT=<OPT>
<OPT> 'HELP' | <MODE> | <MODE> ';' | <EXCEPTIONS>
<MODE> 'little_endian' | 'big_endian' | 'native' | 'swap'
<EXCEPTIONS> <EXCEPTION> | <EXCEPTIONS> ';' <EXCEPTION>
<EXCEPTION> <MODE> ':' <UNIT-LIST> | <UNIT-LIST>
<UNIT-LIST> <UNIT> | <UNIT> ',' <UNIT-LIST>
<UNIT> <INTEGER> | <INTEGER> '-' <INTEGER>
<INTEGER> [[:digit:]]+

HELP Print options.
<MODE> Global endianness for all unformatted files.
<MODE> ';' Global endianness for all unformatted files followed by

one or more I/O unit number exceptions.
<EXCEPTION> Conversion method for specific unit number(s).

big_endian: Unit(s) formatted with big endianness.
little_endian: Unit(s) formatted with little endianness.
native: Unit(s) formatted with host's endianness.
swap: Unit(s) formatted with ~host's endianness.

▶ In csh:

$ setenv FORT_CONVERT_UNIT <OPT>

▶ In bash, sh, zsh, or ksh:
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$ FORT_FMT_CONVERT_UNIT=<OPT>
$ export FORT_CONVERT_UNIT

Examples:

FORT_CONVERT_UNIT=big_endian

Use big endianness for all unformatted files.

FORT_CONVERT_UNIT=big_endian:10,20-30

Exempt units 10 and 20 through 30 from default endianness and force big endianness.

FORT_CONVERT_UNIT=10,20-30

Shorthand for:

FORT_CONVERT_UNIT=big_endian:10,20-30

FORT_CONVERT_UNIT=big_endian;little_endian:11,12,13;swap:14,15,16:native:17,20-22

Default endianness is big endian. Units 11,12,13 use little endianness. Units 14,15,16 use big endian-
ness if host is little endian, else use little endianness. Units 17 and 20 through 22 use host endianess.

Note:

A) Unformatted file I/O endianness determined in order by:

1) Host’s byte odering.

2) “CONVERT=” OPEN statement connection specifier.

3) Compiler option “-byteswapio”.

4) “FORT_CONVERT=” environment variable.

5) “FORT_CONVERT_UNIT=” environment variable.

B) Exceptions are parsed left to right, so when an exception is specified multiple times for the same
unit or range of units, the rightmost exception is used. Example:

FORT_CONVERT_UNIT=swap:14-18;native:16

Unit 16's endianness will use the host’s byte ordering (“native”).

C) <MODE>s and “HELP” are case insensitive.
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19.2.1.5 GMON_OUT_PREFIX

GMON_OUT_PREFIX specifies the name of the output file for programs that are compiled and linked
with the -pg option. The default name is gmon.out.

IfGMON_OUT_PREFIX is set, the name of the output file has GMON_OUT_PREFIX as a prefix. Further, the
suffix is the pid of the running process. The prefix and suffix are separated by a dot. For example, if the
output file is mygmon, then the full filename may look something similar to this: mygmon.0012348567.

The following example causes the NVIDIA Fortran compiler to use nvout as the output file for pro-
grams compiled and linked with the -pg option.

$ setenv GMON_OUT_PREFIX nvout

19.2.1.6 LD_LIBRARY_PATH

The LD_LIBRARY_PATH variable is a colon-separated set of directories specifying where libraries
should first be searched, prior to searching the standard set of directories. This variable is useful
when debugging a new library or using a nonstandard library for special purposes.

The following csh example adds the current directory to your LD_LIBRARY_PATH variable.

$ setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"./"

19.2.1.7 MANPATH

The MANPATH variable sets the directories that are searched for manual pages associated with the
commands that the user types. When using NVIDIA HPC Compilers, it is important that you set your
PATH to include the location of the compilers and then set the MANPATH variable to include the man
pages associated with the products.

The following csh example targets the Linux_x86_64 version of the compilers and enables access to
the manual pages associated with them. The settings are similar for Linux_aarch64 targets:

$ set path = (/opt/nvidia/hpc_sdk/Linux_x86_64/26.1/compilers/bin $path)
$ setenv MANPATH "$MANPATH":/opt/nvidia/hpc_sdk/Linux_x86_64/26.1/compilers/
↪→man

19.2.1.8 NO_STOP_MESSAGE

If the NO_STOP_MESSAGE variable exists, the execution of a plain STOP statement does not produce
the message FORTRAN STOP. The default behavior of the NVIDIA Fortran compiler is to issue this
message.
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19.2.1.9 PATH

The PATH variable determines the directories that are searched for commands that the user types.
When using the NVIDIA HPC compilers, it is important that you set your PATH to include the location
of the compilers.

The following csh example initializes path settings to use the Linux_x86_64 versions of the NVIDIA
HPC Compilers. Settings for Linux_aarch64 are done similarly:

$ set path = (/opt/nvidia/hpc_sdk/Linux_x86_64/26.1/compilers/bin $path)

19.2.1.10 NVCOMPILER_FPU_STATE

The NVCOMPILER_FPU_STATE environment variable manages the initial state of the processor’s float-
ing point control and status register. NVCOMPILER_FPU_STATE eliminates the need to compile the
main entry point (c/c++/Fortran) of programs with -M[no]daz, -M[no]flushz, or -Ktrap= command
line options, as those options can now be specified at runtime.

Note: Linux only

If the environment variable NVCOMPILER_FPU_STATE is present, all settings from the command line
options -M[no]daz, -M[no]flushz, or -Ktrap= are ignored and the FPU is initialized according to
the options specified. NVCOMPILER_FPU_STATE with no options resets the floating-point control and
status register to the system defaults.

The value of NVCOMPILER_FPU_STATE is a comma-separated list of options. The commands for set-
ting the environment variable follow.

▶ In csh:

$ setenv NVCOMPILER_FPU_STATE option[,option...]

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_FPU_STATE=option[,option...]
$ export NVCOMPILER_FPU_STATE

Table 26 lists the supported values for option.

By default, these options are taken from the compiler command line options -M[no]daz,
-M[no]flushz, and -Ktrap=.
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Table 26: Supported NVCOMPILER_FPU_STATE options

fp Shorthand for inv,divz,ovf

inv Raise exception on floating-point invalid operation (infinity - infinity, infinity / infinity, 0
/ 0, …)

invalid Alias for inv

denorm Raise exception with floating-point denormalized operands (x86_64 only)

divz Raise exception on floating-point divide-by-zero

zero Alias for divz

ovf Raise exception on floating-point overflow in result

over-
flow

Alias for ovf

unf Raise exception on floating-point underflow in result

under-
flow

Alias for unf

inexact Raise exception on floating-point inexact result

daz Convert denormal source operands to zero

nodaz Do not convert denormal source operands to zero

ftz Flush underflow results to zero

flushz Alias for ftz

noftz Do not flush underflow results to zero

noflushz Alias for noftz

print Print to stderr the state of floating point control and status register before and after
processing of environment variable NVCOMPILER_FPU_STATE

debug Alias for print

19.2.1.11 NVCOMPILER_TERM

The NVCOMPILER_TERM environment variable controls the stack traceback and just-in-time debugging
functionality. The runtime libraries use the value of NVCOMPILER_TERM to determine what action to
take when a program abnormally terminates.

The value of NVCOMPILER_TERM is a comma-separated list of options. The commands for setting the
environment variable follow.

▶ In csh:

$ setenv NVCOMPILER_TERM option[,option...]

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_TERM=option[,option...]
$ export NVCOMPILER_TERM
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Table 27 lists the supported values for option. Following the table is a complete description of each
option that indicates specifically how you might apply the option.

By default, all of these options are disabled.

Table 27: Supported NVCOMPILER_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)

[no]trace Enables/disables stack traceback on error

[no]trace- fpEnables/disables stack traceback and printing of SIMD registers (ymm/zmm) on er-
ror (Linux x86_64 only)

[no]signal Enables/disables establishment of signal handlers for common signals that cause
program termination

[no]abort Enables/disables calling the system termination routine abort()

[no]debug

This enables/disables just-in-time debugging. The default is nodebug.

When NVCOMPILER_TERM is set to debug, the command to which NVCOMPILER_TERM_DEBUG is set is
invoked on error.

[no]trace

This enables/disables stack traceback on error.

[no]trace-fp

This enables/disables stack traceback and printing of SIMD registers (ymm/zmm) on error. (Linux
x86_64 only)

[no]signal

This enables/disables establishing signal handlers for the most common signals that cause program
termination. The default is nosignal. Setting trace and debug automatically enables signal.
Specifically setting nosignal allows you to override this behavior.

[no]abort

This enables/disables calling the system termination routine abort(). The default is noabort. When
noabort is in effect the process terminates by calling _exit(127).

On Linux, when abort is in effect, the abort routine creates a core file and exits with code 127.

A few runtime errors just print an error message and call exit(127), regardless of the status of
NVCOMPILER_TERM. These are mainly errors such as specifying an invalid environment variable value
where a traceback would not be useful.

If it appears that abort() does not generate core files on a Linux system, be sure to unlimit the core-
dumpsize. You can do this in these ways:

▶ Using csh:

$ limit coredumpsize unlimited
$ setenv NVCOMPILER_TERM abort

▶ Using bash, sh, zsh, or ksh:

$ ulimit -c unlimited
$ export NVCOMPILER_TERM=abort
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To debug a core file with gdb, invoke gdb with the –core option. For example, to view a core file named
“core” for a program named “a.out”:

$ gdb --core=core a.out

For more information on why to use this variable, refer to Stack Traceback and JIT Debugging.

19.2.1.12 NVCOMPILER_TERM_DEBUG

The NVCOMPILER_TERM_DEBUG variable may be set to override the default behavior when NVCOM-
PILER_TERM is set to debug.

The value ofNVCOMPILER_TERM_DEBUG should be set to the command line used to invoke the program.
For example:

… code:: text

gdb –quiet –pid %d

The first occurrence of %d in the NVCOMPILER_TERM_DEBUG string is replaced by the process id. The
program named in the NVCOMPILER_TERM_DEBUG string must be found on the current PATH or spec-
ified with a full path name.

19.2.1.13 PWD

The PWD variable allows you to display the current directory.

19.2.1.14 STATIC_RANDOM_SEED

You can use STATIC_RANDOM_SEED to force the seed returned by the Fortran 90/95 RANDOM_SEED
intrinsic to be constant. The first call to RANDOM_SEED without arguments resets the random seed
to a default value, then advances the seed by a variable amount based on time. Subsequent calls
to RANDOM_SEED without arguments reset the random seed to the same initial value as the first call.
Unless the time is exactly the same, each time a program is run a different random number sequence is
generated. Setting the environment variable STATIC_RANDOM_SEED to YES forces the seed returned
by RANDOM_SEED to be constant, thereby generating the same sequence of random numbers at each
execution of the program.

19.2.1.15 TMP

You can use TMP to specify the directory to use for placement of any temporary files created during
execution of the NVIDIA HPC Compilers. This variable is interchangeable with TMPDIR.
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19.2.1.16 TMPDIR

You can use TMPDIR to specify the directory to use for placement of any temporary files created during
execution of the NVIDIA HPC Compilers.

19.3. HPC Compiler Related Environment
Variables - CUDA Selection

The following table provides a listing of environment variables that let you override the default location
of CUDA components (toolkit, math libraries, communication librarires, etc.) to point the compilers to
system-installed or custom builds of the same components, when you do not want to use those those
included the HPC SDK.

Table 28: NVIDIA HPC CUDA Components Slection Environ-
ment Variable Summary

Environment Variable Description

NVHPC_CUDA_HOME or NVCOM-
PILER_CUDA_HOME

Set the path to find a CUDA Toolkit installation.

NVCOMPILER_MATH_LIBS_HOME Set the path to find CUDA math libraries (e.g. cuBlas,
cuFFT, cuSPARSE, etc.).

NVCOMPILER_COMM_LIBS_HOME Set the path to find communication-libraries (e.g. NCCL,
NVSHMEM).

NVCOMPILER_NCCL_HOME Set the path to find NCCL libraries.

NVCOMPILER_SHMEM_HOME Set the path to find NVSHMEM libraries.

NVCOMPILER_CUPTI_LIBS_HOME Set the path to find CUPTI libraries.

NVCOMPILER_NSIGHT_COMPUTE_HOMESet the path to find NSIGHT Compute.

NVCOMPILER_NSIGHT_SYSTEMS_HOME Set the path to find NSIGHT Systems.

NVCOMPILER_COMPUTE_SANITIZER_HOMESet the path to find Compute Sanitizer.

19.3.1. HPC Compilers Environment Variables - CUDA
Selection

Use the environment variables listed in Table 28 to override the default location of CUDA components
(toolkit, math libraries, communication librarires, etc.). This section provides more detailed descrip-
tions about the variables in this table. Once any of these variables are set, the compiler driver will use
them during the compilation process and at runtime when the program executes.
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19.3.1.1 NVHPC_CUDA_HOME or NVCOMPILER_CUDA_HOME

The NVHPC_CUDA_HOME and NVCOMPILER_CUDA_HOME environment variables have the same behavior
and tell the compilers where to find a CUDA Toolkit installation when you do not want to use the one
included with the HPC SDK.

If the environment variable NVHPC_CUDA_HOME or NVCOMPILER_CUDA_HOME is present, the NVHPC
SDK compiler will look under the path specified in this variable to find the CUDA toolkit installation
and use it during the compilation process and at runtime during program execution.

By default both variables are unset and the CUDA Toolkit bundled with the HPC SDK is used.

The following example tells the compiler to use the CUDA Toolkit installed under the location specified
in the variable:

▶ In csh:

$ setenv NVHPC_CUDA_HOME /opt/nvidia/hpc_sdk/25.9/cuda/11.8

▶ In bash, sh, zsh, or ksh:

$ NVHPC_CUDA_HOME=/opt/nvidia/hpc_sdk/25.9/cuda/11.8
$ export NVHPC_CUDA_HOME

19.3.1.2 NVCOMPILER_MATH_LIBS_HOME

NVCOMPILER_MATH_LIBS_HOME tells the compilers where to find CUDA math libraries (e.g. cuBlas,
cuFFT, cuSPARSE, etc.) when you do not want to use those included with the HPC SDK.

The following example tells the compiler to use the CUDA math libraries installed under the location
specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_MATH_LIBS_HOME /opt/nvidia/hpc_sdk/25.9/math_libs/11.8

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_MATH_LIBS_HOME=/opt/nvidia/hpc_sdk/25.9/math_libs/11.8
$ export NVCOMPILER_MATH_LIBS_HOME

19.3.1.3 NVCOMPILER_COMM_LIBS_HOME

NVCOMPILER_COMM_LIBS_HOME tells the compilers where to find CUDA communication libraries (e.g.
NCCL, NVSHMEM) when you do not want to use those included with the HPC SDK.

The following example tells the compiler to use the CUDA communication libraries installed under the
location specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_COMM_LIBS_HOME /opt/nvidia/hpc_sdk/25.9/comm_libs/11.8

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_COMM_LIBS_HOME=/opt/nvidia/hpc_sdk/25.9/comm_libs/11.8
$ export NVCOMPILER_COMM_LIBS_HOME
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19.3.1.4 NVCOMPILER_NCCL_HOME

NVCOMPILER_NCCL_HOME tells the compilers where to find the NCCL libraries when you do not want
to use those included with the HPC SDK.

The following example tells the compiler to use the NCCL libraries installed under the location specified
in the variable:

▶ In csh:

$ setenv NVCOMPILER_NCCL_HOME /opt/nvidia/hpc_sdk/25.9/comm_libs/11.8/nccl

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_NCCL_HOME=/opt/nvidia/hpc_sdk/25.9/comm_libs/11.8/nccl
$ export NVCOMPILER_NCCL_HOME

19.3.1.5 NVCOMPILER_SHMEM_HOME

NVCOMPILER_SHMEM_HOME tells the compilers where to find the NVSHMEM libraries when you do not
want use those included with the HPC SDK.

The following example tells the compiler to use the NVSHMEM libraries installed under the location
specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_SHMEM_HOME /opt/nvidia/hpc_sdk/25.9/comm_libs/11.8/nvshmem

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_SHMEM_HOME=/opt/nvidia/hpc_sdk/25.9/comm_libs/11.8/nvshmem
$ export NVCOMPILER_SHMEM_HOME

19.3.1.6 NVCOMPILER_CUPTI_LIBS_HOME

NVCOMPILER_CUPTI_HOME tells the compilers where to find the CUPTI libraries when you do not want
to use those included with the HPC SDK.

The following example tells the compiler to use the CUPTI libraries installed under the location speci-
fied in the variable:

▶ In csh:

$ setenv NVCOMPILER_CUPTI_HOME /opt/nvidia/hpc_sdk/25.9/cuda/11.8/extras/CUPTI

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_CUPTI_HOME=/opt/nvidia/hpc_sdk/25.9/cuda/11.8/extras/CUPTI
$ export NVCOMPILER_CUPTI_HOME
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19.3.1.7 NVCOMPILER_NSIGHT_COMPUTE_HOME

NVCOMPILER_NSIGHT_COMPUTE_HOME tells the compilers where to find the Nsight Compute tools
when you do not want to use those included with the HPC SDK.

The following example tells the compiler to use the Nsight Compute tool installed under the location
specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_NSIGHT_COMPUTE_HOME /opt/nvidia/hpc_sdk/25.9/profilers/Nsight_
↪→Compute

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_NSIGHT_COMPUTE_HOME=/opt/nvidia/hpc_sdk/25.9/profilers/Nsight_Compute
$ export NVCOMPILER_NSIGHT_COMPUTE_HOME

19.3.1.8 NVCOMPILER_NSIGHT_SYSTEMS_HOME

NVCOMPILER_NSIGHT_SYSTEMS_HOME tells the compilers where to find the Nsight Systems tools
when you do not want to use those included with the HPC SDK.

The following example tells the compiler to use the Nsight Systems tool installed under the location
specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_NSIGHT_SYSTEMS_HOME /opt/nvidia/hpc_sdk/25.9/profilers/Nsight_
↪→Systems

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_NSIGHT_SYSTEMS_HOME=/opt/nvidia/hpc_sdk/25.9/profilers/Nsight_Systems
$ export NVCOMPILER_NSIGHT_SYSTEMS_HOME

19.3.1.9 NVCOMPILER_COMPUTE_SANITIZER_HOME

NVCOMPILER_COMPUTE_SANITIZER_HOME tells the compilers where to find the compute-sanitizer
tool when you do not want to use the one included with the HPC SDK.

The following example tells the compiler to use the compute-sanitizer tool installed under the location
specified in the variable:

▶ In csh:

$ setenv NVCOMPILER_COMPUTE_SANITIZER_HOME /opt/nvidia/hpc_sdk/25.9/cuda/11.8/
↪→compute-sanitizer

▶ In bash, sh, zsh, or ksh:

$ NVCOMPILER_COMPUTE_SANITIZER_HOME=/opt/nvidia/hpc_sdk/25.9/cuda/11.8/compute-
↪→sanitizer
$ export NVCOMPILER_COMPUTE_SANITIZER_HOME
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19.4. Using Environment Modules on Linux

On Linux, if you use the Environment Modules package, that is, the module load command, the
NVIDIA HPC Compilers include a script to set up the appropriate module files. The install script will
generate environment module files for you as part of the set up process.

Assuming your installation base directory is /opt/nvidia/hpc_sdk, the environment modules will be
installed under /opt/nvidia/hpc_sdk/modulefiles. There will be three sets of module files:

1. nvhpc

Adds environment variable settings for the NVIDIA HPC Compilers, CUDA libraries, and additional
libraries such as MPI, NCCL, and NVSHMEM.

2. nvhpc-nompi

Adds environment variable settings for the NVIDIA HPC Compilers, CUDA libraries, and additional
libraries such as NCCL and NVSHMEM. This will not include MPI, if you wish to use an alternate
MPI implementation.

3. nvhpc-byo-compilers

Adds environment variable settings for the CUDA libraries and additional libraries such as NCCL
and NVSHMEM. This will not include the NVIDIA HPC Compilers nor MPI, if you wish to use alter-
nate compilers and MPI.

You can load the nvhpc environment module for the 20.11 release as follows:

$ module load nvhpc/26.1

To see what versions of nvhpc are available on this system, use this command:

$ module avail nvhpc

The module load command sets or modifies the environment variables as indicated in the following
table.
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This Environment
Variable…

Is set or modified by the module load command

CC Full path to nvc (nvhpc and nvhpc-nompi only)

CPATH Prepends the math libraries include directory, the MPI include directory
(nvhpc only), and NCCL and NVSHMEM include directories

CPP C preprocessor, normally cpp (nvhpc and nvhpc-nompi only)

CXX Path to nvc++ (nvhpc and nvhpc-nompi only)

FC Full path to nvfortran (nvhpc and nvhpc-nompi only)

F90 Full path to nvfortran (nvhpc and nvhpc-nompi only)

F77 Full path to nvfortran (nvhpc and nvhpc-nompi only)

LD_LIBRARY_PATH Prepends the CUDA library directory, the NVIDIA HPC Compilers library di-
rectory (nvhpc and nvhpc-nompi only), math libraries library directory, MPI
library directory (nvhpc only), and NCCL and NVSHMEM library directories

MANPATH Prepends the NVIDIA HPC Compilers man page directory (nvhpc and nvhpc-
nompi only)

OPAL_PREFIX Full path to the MPI directory (nvhpc only), e.g.
/opt/nvidia/hpc_sdk/Linux_x86_64/26.1/comm_libs/mpi

PATH Prepends the CUDA bin directory, the MPI bin directory (nvhpc only), and
the NVIDIA HPC Compilers bin directory (nvhpc and nvhpc-nompi only)

Note: NVIDIA does not provide support for the Environment Modules package. For more information
about the package, go to: http://modules.sourceforge.net.

19.5. Stack Traceback and JIT Debugging

When a programming error results in a runtime error message or an application exception, a program
will usually exit, perhaps with an error message. The NVIDIA HPC Compilers runtime library includes
a mechanism to override this default action and instead print a stack traceback, start a debugger, or,
on Linux, create a core file for post-mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an environment variable,
NVCOMPILER_TERM, described in NVCOMPILER_TERM. The runtime libraries use the value of NVCOM-
PILER_TERM to determine what action to take when a program abnormally terminates.

When the NVIDIA HPC Compilers runtime library detects an error or catches a signal, it calls the rou-
tine nvcompiler_stop_here() prior to generating a stack traceback or starting the debugger. The
nvcompiler_stop_here() routine is a convenient spot to set a breakpoint when debugging a pro-
gram.
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Chapter 20. Distributing Files -
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it
to users who need to run it on a variety of systems. This section addresses how to effectively distribute
applications built using NVIDIA HPC Compilers. The application must be installed in such a way that it
executes accurately on a system other than the one on which it was built, and which may be configured
differently.

20.1. Deploying Applications on Linux

To successfully deploy your application on Linux, some of the issues to consider include:

▶ Runtime Libraries

▶ 64-bit Linux Systems

▶ Redistribution of Files

20.1.1. Runtime Library Considerations

On Linux systems, the system runtime libraries can be linked to an application either statically or dy-
namically. For example, for the C runtime library, libc, you can use either the static version libc.a
or the shared object version libc.so. If the application is intended to run on Linux systems other
than the one on which it was built, it is generally safer to use the shared object version of the library.
This approach ensures that the application uses a version of the library that is compatible with the
system on which the application is running. Further, it works best when the application is linked on a
system that has an equivalent or earlier version of the system software than the system on which the
application will be run.

Note: Building on a newer system and running the application on an older system may not produce
the desired output.

To use the shared object version of a library, the application must also link to shared object versions of
the NVIDIA HPC Compilers runtime libraries. To execute an application built in such a way on a system
on which NVIDIA HPC Compilers are not installed, those shared objects must be available.To build using
the shared object versions of the runtime libraries, use the -Bdynamic option, as shown here:
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$ nvfortran -Bdynamic myprog.f90

20.1.2. 64-bit Linux Considerations

On 64-bit Linux systems, 64-bit applications that use the- mcmodel=medium option sometimes cannot
be successfully linked statically. Therefore, users with executables built with the - mcmodel=medium
option may need to use shared libraries, linking dynamically. Also, runtime libraries built using the
- fpic option use 32-bit offsets, so they sometimes need to reside near other runtime libs in a shared
area of Linux program memory.

Note: If your application is linked dynamically using shared objects, then the shared object versions
of the NVIDIA HPC Compilers runtime are required.

20.1.3. Linux Redistributable Files

The method for installing the shared object versions of the runtime libraries required for applications
built with NVIDIA HPC Compilers is manual distribution.

When the NVIDIA HPC Compilers are installed, there are directories that have a name that begins with
REDIST; these directories contain the redistributed shared object libraries. These may be redistributed
by licensed NVIDIA HPC Compilers users under the terms of the End-User License Agreement.

20.1.4. Restrictions on Linux Portability

You cannot expect to be able to run an executable on any given Linux machine. Portability depends
on the system you build on as well as how much your program uses system routines that may have
changed from Linux release to Linux release. For example, an area of significant change between some
versions of Linux is inlibpthread.so andlibnuma.so. NVIDIA HPC Compilers use these dynamically
linked libraries for the options -acc (OpenACC), -mp (OpenMP) and -Mconcur (multicore auto-parallel).
Statically linking these libraries may not be possible, or may result in failure at execution.

Typically, portability is supported for forward execution, meaning running a program on the same or
a later version of Linux. But not for backward compatibility, that is, running on a prior release. For ex-
ample, a user who compiles and links a program under RHEL 7.2 should not expect the program to run
without incident on a RHEL 5.2 system, an earlier Linux version. It may run, but it is less likely. Devel-
opers might consider building applications on earlier Linux versions for wider usage. Dynamic linking
of Linux and gcc system routines on the platform executing the program can also reduce problems.
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20.1.5. Licensing for Redistributable (REDIST) Files

The files in the REDIST directories may be redistributed under the terms of the End-User License
Agreement for the product in which they were included.
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Chapter 21. Inter-language Calling

This section describes inter-language calling conventions for C, C++, and Fortran programs using the
HPC compilers. Fortran 2003 ISO_C_Binding provides a mechanism to support the interoperability
with C. This includes the iso_c_binding intrinsic module, binding labels, and the BIND attribute.
Additional interoperability with C is available with Fortran 2018 and the ISO_Fortran_binding.h C
header file. nvfortran supports both the iso_c_binding and the ISO_Fortan_Binding.h header
file. In the absence of these mechanisms, the following sections describe how to call a Fortran function
or subroutine from a C or C++ program and how to call a C or C++ function from a Fortran program.

This section provides examples that use the following options related to inter-language calling.

▶ -c

▶ -Mnomain

▶ -Miface

▶ -Mupcase

21.1. Overview of Calling Conventions

This section includes information on the following topics:

▶ Functions and subroutines in Fortran, C, and C++

▶ Naming and case conversion conventions

▶ Compatible data types

▶ Argument passing and special return values

▶ Arrays and indexes

The sections Inter-language Calling Considerations through Example – C++ Calling Fortran describe how
to perform inter-language calling using the Linux or Win64 convention.
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21.2. Inter-language Calling Considerations

In general, when argument data types and function return values agree, you can call a C or C++ function
from Fortran as well as call a Fortran function from C or C++. When data types for arguments do
not agree, you may need to develop custom mechanisms to handle them. For example, the Fortran
COMPLEX type has a matching type in C99 but does not have a matching type in C89; however, it is still
possible to provide inter-language calls but there are no general calling conventions for such cases.

▶ If a C++ function contains objects with constructors and destructors, calling such a function
from either C or Fortran is not possible unless the initialization in the main program is performed
from a C++ program in which constructors and destructors are properly initialized.

▶ In general, you can call a C or Fortran function from C++ without problems as long as you use the
extern “C” keyword to declare the function in the C++ program. This declaration prevents name
mangling for the C function name. If you want to call a C++ function from C or Fortran, you also
have to use the extern “C” keyword to declare the C++ function. This keeps the C++ compiler
from mangling the name of the function.

▶ You can use the __cplusplus macro to allow a program or header file to work for both C and C++.
For example, the following defines in the header file stdio.h allow this file to work for both C and
C++.

#ifndef _STDIO_H
#define _STDIO_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
.
. /* Functions and data types defined... */
.
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif

▶ C++ member functions cannot be declared extern, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

21.3. Functions and Subroutines

Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value convention:

▶ When a C or C++ function returns a value, call it from Fortran as a function.

▶ When a C or C++ function does not return a value, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type. Table 29, Table
30, lists compatible types. If the call is to a Fortran subroutine, or a Fortran CHARACTER function, or
a Fortran COMPLEX function, call it from C/C++ as a function that returns void. The exception to this
convention is when a Fortran subroutine has alternate returns; call such a subroutine from C/C++ as
a function returning int whose value is the value of the integer expression specified in the alternate
RETURN statement.
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21.4. Upper and Lower Case Conventions,
Underscores

By default on Linux and Win64 systems, all Fortran symbol names are converted to lower case. C and
C++ are case sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the Fortran com-
piler command with the option -Mupcase, in which case it will not convert symbol names to lower-case.

When programs are compiled using one of the HPC Fortran compilers on Linux and Win64 systems,
an underscore is appended to Fortran global names (names of functions, subroutines and common
blocks). This mechanism distinguishes Fortran name space from C/C++ name space. Use these naming
conventions:

▶ If you call a C/C++ function from Fortran, you should rename the C/C++ function by appending
an underscore or use bind(c) in the Fortran program.

▶ If you call a Fortran function from C/C++, you should append an underscore to the Fortran func-
tion name in the calling program.

21.5. Compatible Data Types

Table 29 shows compatible data types between Fortran and C/C++. Table 30 shows how the Fortran
COMPLEX type may be represented in C/C++.

Tip: If you can make your function/subroutine parameters as well as your return values match types,
you should be able to use inter-language calling.
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Table 29: Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) C/C++ Type Size (bytes)

character x char x 1

character*n x char x[n] n

real x float x 4

real*4 x float x 4

real*8 x double x 8

double precision double x 8

integer x int x 4

integer*1 x signed char x 1

integer*2 x short x 2

integer*4 x int x 4

integer*8 x long long x 8

logical x int x 4

logical*1 x char x 1

logical*2 x short x 2

logical*4 int x 4

logical*8 long x 8

Table 30: Fortran and C/C++ Representation of the COMPLEX
Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

float complex x; 8

complex*8 x struct {float r,i;} x; 8

float complex x; 8

double complex x struct {double dr,di;} x; 16

double complex x; 16

complex \*16 x struct {double dr,di;} x; 16

double complex x; 16

Note: For C/C++, the complex type implies C99 or later.
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21.5.1. Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members corre-
spond to the members of the common block. The name of the structure in C/C++ must have the added
underscore. For example, here is a Fortran common block:

INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:

extern struct {
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com_;

This same Fortran Common Block is represented in C++ with the following equivalent:

extern "C" struct {
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com_;

Tip: For global or external data sharing, extern "C" is not required.

21.6. Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed, rather
than the argument itself. In C/C++, arguments are passed by value, except for strings and arrays,
which are passed by reference. Due to the flexibility provided in C/C++, you can work around these
differences. Solving the parameter passing differences generally involves intelligent use of the & and
* operators in argument passing when C/C++ calls Fortran and in argument declarations when Fortran
calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the string
is also passed to a calling function.

On Linux systems, the compiler places the length argument(s) at the end of the parameter list, follow-
ing the other formal arguments.

The length argument is passed by value, not by reference.
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21.6.1. Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to pass by
value using the %VAL function. If you enclose a Fortran parameter with %VAL(), the parameter is
passed by value. For example, the following call passes the integer i and the logical bvar by value.

integer*1 i
logical*1 bvar
call cvalue (%VAL(i), %VAL(bvar))

21.6.2. Character Return Values

Functions and Subroutines describes the general rules for return values for C/C++ and Fortran inter-
language calling. There is a special return value to consider. When a Fortran function returns a char-
acter, two arguments need to be added at the beginning of the C/C++ calling function’s argument
list:

▶ The address of the return character or characters

▶ The length of the return character

The following example illustrates the extra parameters, tmp and 10, supplied by the caller:

Character Return Parameters

! Fortran function returns a character
CHARACTER*(*) FUNCTION CHF(C1,I)

CHARACTER*(*) C1
INTEGER I

END

/* C declaration of Fortran function */
extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example CHARAC-
TER*4 FUNCTION CHF(), the second extra parameter representing the length must still be supplied,
but is not used.

Note: The value of the character function is not automatically NULL-terminated.
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21.6.3. Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning of
the C/C++ calling function’s argument list; this argument is the address of the complex return value.
COMPLEX Return Values illustrates the extra parameter, cplx, supplied by the caller.

COMPLEX Return Values

COMPLEX FUNCTION CF(C, I)
INTEGER I

. . .
END

extern void cf_();
typedef struct {float real, imag;} cplx;
cplx c1;
int i;
cf_(&c1, &i);

21.7. Array Indices

C/C++ arrays and Fortran arrays use different default initial array index values. By default, arrays in
C/C++ start at 0 and arrqays in Fortran start at 1. If you adjust your array comparisons so that a
Fortran second element is compared to a C/C++ first element, and adjust similarly for other elements,
you should not have problems working with this difference. If this is not satisfactory, you can declare
your Fortran arrays to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ uses row-major order. For one-dimensional arrays, this poses no prob-
lems. For two-dimensional arrays, where there are an equal number of rows and columns, row and
column indexes can simply be reversed. For arrays other than single dimensional arrays, and square
two-dimensional arrays, inter-language function mixing is not recommended.

21.8. Examples

This section contains examples that illustrate inter-language calling.
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21.8.1. Example – Fortran Calling C

Note: There are other solutions to calling C from Fortran than the one presented in this section.
For example, you can use the iso_c_binding intrinsic module which NVIDIA does support. For more
information on this module and for examples of how to use it, search the web using the keyword
iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program shown in Fortran
Main Program f2c_main.f . Notice that each argument is defined as a pointer, since Fortran passes by
reference. Also notice that the C function name uses all lower-case and a trailing “_”.

Fortran Main Program f2c_main.f

logical*1 bool1
character letter1
integer*4 numint1, numint2
real numfloat1
double precision numdoub1
integer*2 numshor1
external f2c_func

call f2c_func(bool1, letter1, numint1, numint2, numfloat1, numdoub1, numshor1)

write( *, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
+ bool1, letter1, numint1, numint2, numfloat1,numdoub1, numshor1

end

C function f2c_func_

#define TRUE 0xff
#define FALSE 0
void f2c_func_( bool1, letter1, numint1, numint2, numfloat1,\
numdoub1, numshor1, len_letter1)
char *bool1, *letter1;
int *numint1, *numint2;
float *numfloat1;
double *numdoub1;
short *numshor1;
int len_letter1;

{
*bool1 = TRUE; *letter1 = 'v';
*numint1 = 11; *numint2 = -44;
*numfloat1 = 39.6 ;
*numdoub1 = 39.2;
*numshor1 = 981;

}

Compile and execute the program f2c_main.f with the call to f2c_func\_ using the following com-
mand lines:
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$ nvc -c f2c_func.c
$ nvfortran f2c_func.o f2c_main.f

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

21.8.2. Example - C Calling Fortran

Note: There are other solutions to calling Fortran from C than the one presented in this section.
For example, you can use the ISO_Fortran_binding.h C header file which NVIDIA does support.
For more information on this header file and for examples of how to use it, search the web using the
keyword ISO_Fortran_binding.

The example C Main Program c2f_main.c shows a C main program that calls the Fortran subroutine
shown in Fortran Subroutine c2f_sub.f .

▶ Each call uses the & operator to pass by reference.

▶ The call to the Fortran subroutine uses all lower-case and a trailing “_”.

C Main Program c2f_main.c

void main () {
char bool1, letter1;
int numint1, numint2;
float numfloat1;
double numdoub1;
short numshor1;
extern void c2f_func_();
c2f_sub_(&bool1,&letter1,&numint1,&numint2,&numfloat1,&numdoub1,&numshor1, 1);
printf(" %s %c %d %d %3.1f %.0f %d\n",
bool1?"TRUE":"FALSE", letter1, numint1, numint2,
numfloat1, numdoub1, numshor1);

}

Fortran Subroutine c2f_sub.f

subroutine c2f_func ( bool1, letter1, numint1, numint2,
+ numfloat1, numdoub1, numshor1)

logical*1 bool1
character letter1
integer numint1, numint2
double precision numdoub1
real numfloat1
integer*2 numshor1

bool1 = .true.
letter1 = "v"

(continues on next page)
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(continued from previous page)

numint1 = 11
numint2 = -44
numdoub1 = 902
numfloat1 = 39.6
numshor1 = 299
return

end

To compile this Fortran subroutine and C program, use the following commands:

$ nvc -c c2f_main.c
$ nvfortran -Mnomain c2f_main.o c2_sub.f

Executing the resulting a.out file should produce the following output:

TRUE v 11 -44 39.6 902 299

21.8.3. Example – C++ Calling C

C++MainProgramcp2c_main.CCalling aCFunction shows a C++ main program that calls the C function
shown in Simple C Function c2cp_func.c.

C++ Main Program cp2c_main.C Calling a C Function

extern "C" void cp2c_func(int n, int m, int *p);
#include <iostream>
main()
{
int a,b,c;
a=8;
b=2;
c=0;
cout << "main: a = "<<a<<" b = "<<b<<"ptr c = "<<hex<<&c<< endl;
cp2c_func(a,b,&c);
cout << "main: res = "<<c<<endl;
}

Simple C Function c2cp_func.c

void cp2c_func(num1, num2, res)
int num1, num2, *res;
{
printf("func: a = %d b = %d ptr c = %x\n",num1,num2,res);
*res=num1/num2;
printf("func: res = %d\n",*res);

}

To compile this C function and C++ main program, use the following commands:
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$ nvc -c cp2c_func.c
$ nvc++ cp2c_main.C cp2c_func.o

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

21.8.4. Example – C Calling C ++

The example in CMain Program c2cp_main.c Calling a C++ Function shows a C main program that calls
the C++ function shown in Simple C++ Function c2cp_func.C with Extern C.

C Main Program c2cp_main.c Calling a C++ Function

extern void c2cp_func(int a, int b, int *c);
#include <stdio.h>
main() {
int a,b,c;
a=8; b=2;
printf("main: a = %d b = %d ptr c = %x\n",a,b,&c);
c2cp_func(a,b,&c);
printf("main: res = %d\n",c);
}

Simple C++ Function c2cp_func.C with Extern C

#include <iostream>
extern "C" void c2cp_func(int num1,int num2,int *res)
{
cout << "func: a = "<<num1<<" b = "<<num2<<"ptr c ="<<res<<endl;
*res=num1/num2;
cout << "func: res = "<<res<<endl;

}

To compile this C function and C++ main program, use the following commands:

$ nvc -c c2cp_main.c
$ nvc++ c2cp_main.o c2cp_func.C

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

Note: You cannot use the extern “C” form of declaration for an object’s member functions.
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21.8.5. Example – Fortran Calling C++

The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++ function calls the
C++ function shown in C++ function f2cp_func.C .

Notice:

▶ Each argument is defined as a pointer in the C++ function, since Fortran passes by reference.

▶ The C++ function name uses all lower-case and a trailing “_”:

Fortran Main Program f2cp_main.f calling a C++ function

logical*1 bool1
character letter1
integer*4 numint1, numint2
real numfloat1
double precision numdoub1
integer*2 numshor1

external f2cpfunc
call f2cp_func (bool1, letter1, numint1,
+ numint2, numfloat1, numdoub1, numshor1)

write( *, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
+ bool1, letter1, numint1, numint2, numfloat1,
+ numdoub1, numshor1

end

C++ function f2cp_func.C

#define TRUE 0xff
#define FALSE 0
extern "C"
{
extern void f2cp_func_ (
char *bool1, *letter1,
int *numint1, *numint2,
float *numfloat1,
double *numdoub1,
short *numshort1,
int len_letter1)

{
*bool1 = TRUE; *letter1 = 'v';
*numint1 = 11; *numint2 = -44;
*numfloat1 = 39.6; *numdoub1 = 39.2; *numshort1 = 981;

}
}

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file cpfunc.C, create an
executable, using the following command lines:

$ nvc++ -c f2cp_func.C
$ nvfortran f2cp_func.o f2cp_main.f -c++libs

Executing the a.out file should produce the following output:
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T v 11 -44 39.6 39.2 981

21.8.6. Example – C++ Calling Fortran

Fortran Subroutine cp2f_func.f shows a Fortran subroutine called by the C++ main program shown in
C++ main program cp2f_main.C. Notice that each call uses the & operator to pass by reference. Also
notice that the call to the Fortran subroutine uses all lower-case and a trailing “_”:

C++ main program cp2f_main.C

#include <iostream>
extern "C" { extern void cp2f_func_(char *,char *,int *,int *,
float *,double *,short *); }

main ()
{
char bool1, letter1;
int numint1, numint2;
float numfloat1;
double numdoub1;
short numshor1;

cp2f_func(&bool1,&letter1,&numint1,&numint2,&numfloat1, &numdoub1,&numshor1);
cout << " bool1 = ";
bool1?cout << "TRUE ":cout << "FALSE "; cout <<endl;
cout << " letter1 = " << letter1 <<endl;
cout << " numint1 = " << numint1 <<endl;
cout << " numint2 = " << numint2 <<endl;
cout << " numfloat1 = " << numfloat1 <<endl;
cout << " numdoub1 = " << numdoub1 <<endl;
cout << " numshor1 = " << numshor1 <<endl;

}

Fortran Subroutine cp2f_func.f

subroutine cp2f_func ( bool1, letter1, numint1,
+ numint2, numfloat1, numdoub1, numshor1)
logical*1 bool1
character letter1
integer numint1, numint2
double precision numdoub1
real numfloat1
integer*2 numshor1
bool1 = .true. ; letter1 = "v"
numint1 = 11 ; numint2 = -44
numdoub1 = 902 ; numfloat1 = 39.6 ; numshor1 = 299
return
end

To compile this Fortran subroutine and C++ program, use the following command lines:
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$ nvfortran -c cp2f_func.f
$ nvc++ cp2f_func.o cp2f_main.C -fortranlibs

Executing this C++ main should produce the following output:

bool1 = TRUE
letter1 = v
numint1 = 11
numint2 = -44
numfloat1 = 39.6
numdoub1 = 902
numshor1 = 299

Note: You must explicitly link in the NVFORTRAN runtime support libraries when linking nvfortran-
compiled program units into C++ or C main programs.
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Chapter 22. Programming
Considerations for 64-Bit
Environments

NVIDIA provides 64-bit compilers for 64-bit Linux operating systems running on x86-64 (Linux_x86_64)
and Arm Server (Linux_aarch64) architectures. You can use these compilers to create programs that
use 64-bit memory addresses. The GNU toolchain on 64-bit Linux systems implements an option to
control 32-bit vs 64-bit code generation, as described in Large Static Data in Linux. This section de-
scribes the specifics of how to use the NVIDIA compilers to make use of 64-bit memory addressing.

Note: The NVIDIA HPC compilers themselves are 64-bit applications which can only run on 64-bit
CPUs running 64-bit Operating Systems.

This section describes how to use the following options related to 64-bit programming.

▶ -fPIC

▶ -mcmodel=medium

▶ -Mlarge_arrays

▶ -i8

▶ -Mlargeaddressaware
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22.1. Data Types in the 64-Bit Environment

The size of some data types can differ across 64-bit environments. This section describes the major
differences.

22.1.1. C++ and C Data Types

On 64-bit Linux operating systems, the size of an int is 4 bytes, a long is 8 bytes, a long long is 8 bytes,
and a pointer is 8 bytes.

22.1.2. Fortran Data Types

In Fortran, the default size of the INTEGER type is 4 bytes. The -i8 compiler option may be used to
make the default size of all INTEGER data in the program 8 bytes.

When using the -Mlarge_arrays option, described in 64-Bit Array Indexing, any 4-byte INTEGER vari-
ables that are used to index arrays are silently promoted by the compiler to 8 bytes. This promotion can
lead to unexpected consequences, so 8-byte INTEGER variables are recommended for array indexing
when using the option -Mlarge_arrays.

22.2. Large Static Data in Linux

64-bit Linux operating systems support two different memory models. The default model used by
the NVIDIA HPC compilers on Linux_x86_64 and Linux_aarch64 targets is the small memory model,
which can be specified using -mcmodel=small. This is the 32-bit model, which limits the size of code
plus statically allocated data, including system and user libraries, to 2GB. The medium memory model,
specified by -mcmodel=medium, allows combined code and static data areas (.text and .bss sections)
larger than 2GB. The -mcmodel=medium option must be used on both the compile command and the
link command in order to take effect.

There are implications to using -mcmodel=medium. The generated code requires increased addressing
overhead to support the large data range. This can affect performance, though the compilers seek to
minimize the added overhead through careful instruction selection and optimization.

Linux_aarch64 does not support -mcmodel=medium. If the medium model is specified on the
command-line, the compiler driver will automatically select the large model.
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22.3. Large Dynamically Allocated Data

Dynamically allocated data objects in programs compiled by the NVIDIA HPC compilers can be larger
than 2GB. No special compiler options are required to enable this functionality. The size of the alloca-
tion is only limited by the system. However, to correctly access dynamically allocated arrays with more
than 2G elements you should use the -Mlarge_arrays option, described in the following section.

22.4. 64-Bit Array Indexing

The NVIDIA Fortran compilers provide an option, -Mlarge_arrays, that enables 64-bit indexing of
arrays. This means that, as necessary, 64-bit INTEGER constants and variables are used to index arrays.

Note: In the presence of -Mlarge_arrays, the compiler may silently promote 32-bit integers to 64
bits, which can have unexpected side effects.

On 64-bit Linux, the -Mlarge_arrays option also enables single static data objects larger than 2 GB.
This option is the default in the presence of -mcmodel=medium.

22.5. Compiler Options for 64-bit Programming

The usual switches that apply to 64-bit programmers seeking to increase the data range of their ap-
plications are in the following table.

Table 31: 64-bit Compiler Options

Option Purpose Considerations

- mcmodel=mediumAllow for data declarations larger than 2GB. Linux_aarch64 does not support -
mcmodel=medium. If the medium model
is specified on the command-line, the
compiler driver will automatically select
the large model.

- Mlarge_arraysPerform all array-location-to-address cal-
culations using 64-bit integer arithmetic.

Slightly slower execution. Is implicit with
-mcmodel=medium. Can be used with op-
tion -mcmodel=small.

- fpic Position independent code. Necessary for
shared libraries.

Dynamic linking restricted to a 32-bit off-
set. External symbol references should re-
fer to other shared lib routines, rather than
the program calling them.

- i8 All INTEGER functions, data, and constants
not explicitly declared INTEGER*4 are as-
sumed to be INTEGER*8.

Users should take care to explicitly declare
INTEGER functions as INTEGER*4.

The following table summarizes the limits of these programming models under the specified condi-
tions. The compiler options you use vary by processor.
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Table 32: Effects of Options on Memory and Array Sizes

Condition Addr. Math Max Size Gbytes

A I AS DS TS

64-bit addr limited by option -mcmodel=small 64 32 2 2 2

-fpic incompatible with -mcmodel=medium 64 32 2 2 2

Enable full support for 64-bit data addressing 64 64 >2 >2 >2

A Address Type – size in bits of data used for address calculations, 64-bits.

I Index Arithmetic -bit-size of data used to index into arrays and other aggregate data structures.
If 32-bit, total range of any single data object is limited to 2GB.

AS Maximum Array Size - the maximum size in gigabytes of any single data object.

DS Maximum Data Size - max size in gigabytes combined of all data objects in .bss

TS Maximum Total Size - max size in gigabytes, in aggregate, of all executable code and data ob-
jects in a running program.

22.6. Practical Limitations of Large Array
Programming

The 64-bit addressing capability of 64-bit Linux environments can cause unexpected issues when data
sizes are enlarged significantly. The following table describes the most common occurrences of prac-
tical limitations of large array programming.
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Table 33: 64-Bit Limitations

array initialization Initializing a large array with a data statement
may result in very large assembly and object files,
where a line of assembler source is required for
each element in the initialized array. Compilation
and linking can be very time consuming as well.
To avoid this issue, consider initializing large ar-
rays in a loop at runtime rather than in a data
statement.

stack space Stack space can be a problem for data that is
stack-based. On Linux, stack size is increased
in your shell environment. If setting stacksize to
unlimited is not large enough, try setting the size
explicitly:

limit stacksize new_size ! in csh

ulimit -s new_size ! in bash

page swapping If your executable is much larger than the phys-
ical size of memory, page swapping can cause it
to run dramatically slower; it may even fail. This
is not a compiler problem. Try smaller data sets
to determine whether or not a problem is due to
page thrashing.

configured space Be sure your Linux system is configured with
swap space sufficiently large to support the data
sets used in your application(s). If your mem-
ory+swap space is not sufficiently large, your
application will likely encounter a segmentation
fault at runtime.

support for large address offsets in object file
format

Arrays that are not dynamically allocated are
limited by how the compiler can express the
‘distance’ between them when generating code.
A field in the object file stores this ‘distance’
value, which is limited to 32-bits on Linux with
-mcmodel=small. It is 64-bits on Linux with
-mcmodel=medium.

Note: Without the 64-bit offset support in the
object file format, large arrays cannot be de-
clared statically, or locally on the stack.
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22.7. Medium Memory Model and Large Array in
C

Consider the following example, where the aggregate size of the arrays exceeds 2GB.

Medium Memory Model and Large Array in C

% cat bigadd.c
#include <stdio.h>
#define SIZE 600000000 /* > 2GB/4 */
static float a[SIZE], b[SIZE];
int
main()
{

long long i, n, m;
float c[SIZE]; /* goes on stack */
n = SIZE;
m = 0;
for (i = 0; i < n; i += 10000) {

a[i] = i + 1;
b[i] = 2.0 * (i + 1);
c[i] = a[i] + b[i];
m = i;

}
printf("a[0]=%g b[0]=%g c[0]=%g\n", a[0], b[0], c[0]);
printf("m=%lld a[%lld]=%g b[%lld]=%gc[%lld]=%g\n",m,m,a[m],m,b[m],m,c[m]);
return 0;

}

% nvc -mcmodel=medium -o bigadd bigadd.c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes per element, the size
of each array is greater than 2GB. With nvc, using the -mcmodel=medium switch, a static data object
can now be > 2GB in size. If you execute with these settings in your environment, you may see the
following:

% bigadd
Segmentation fault

Execution fails because the stack size is not large enough. You can most likely correct this error by
using the limit stacksize command to reset the stack size in your environment:

% limit stacksize 3000M

Note: The command limit stacksize unlimited probably does not provide as large a stack as
we are using in the this example.

% bigadd
a[0]=1 b[0]=2 c[0]=3
n=599990000 a[599990000]=5.9999e+08 b[599990000]=1.19998e+09
c[599990000]=1.79997e+09
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22.8. Medium Memory Model and Large Array in
Fortran

The following example works with the NVFORTRAN compiler. It uses 64-bit addresses and index arith-
metic when the -mcmodel=medium option is used.

Consider the following example:

Medium Memory Model and Large Array in Fortran

% cat mat.f
program mat
integer i, j, k, size, l, m, n
parameter (size=16000) ! >2GB
parameter (m=size,n=size)
real*8 a(m,n),b(m,n),c(m,n),d
do i = 1, m

do j = 1, n
a(i,j)=10000.0D0*dble(i)+dble(j)
b(i,j)=20000.0D0*dble(i)+dble(j)

enddo
enddo
!$omp parallel
!$omp do
do i = 1, m

do j = 1, n
c(i,j) = a(i,j) + b(i,j)

enddo
enddo
!$omp do
do i=1,m

do j = 1, n
d = 30000.0D0*dble(i)+dble(j)+dble(j)
if (d .ne. c(i,j)) then

print *,"err i=",i,"j=",j
print *,"c(i,j)=",c(i,j)
print *,"d=",d
stop

endif
enddo

enddo
!$omp end parallel
print *, "M =",M,", N =",N
print *, "c(M,N) = ", c(m,n)

end

When compiled with the NVFORTRAN compiler using -mcmodel=medium:

% nvfortran -Mfree -mp -o mat mat.f -i8 -mcmodel=medium
% setenv OMP_NUM_THREADS 2
% mat
M = 16000 , N = 16000
c(M,N) = 480032000.0000000
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22.9. Large Array and Small Memory Model in
Fortran

The following example uses large, dynamically-allocated arrays. The code is divided into a main and
subroutine so you could put the subroutine into a shared library. Dynamic allocation of large arrays
saves space in the size of executable and saves time initializing data.

Large Array and Small Memory Model in Fortran

% cat mat_allo.f90

program mat_allo
integer i, j
integer size, m, n
parameter (size=16000)
parameter (m=size,n=size)
double precision, allocatable::a(:,:),b(:,:),c(:,:)
allocate(a(m,n), b(m,n), c(m,n))
do i = 100, m, 1

do j = 100, n, 1
a(i,j) = 10000.0D0 * dble(i) + dble(j)
b(i,j) = 20000.0D0 * dble(i) + dble(j)

enddo
enddo
call mat_add(a,b,c,m,n)
print *, "M =",m,",N =",n
print *, "c(M,N) = ", c(m,n)

end

subroutine mat_add(a,b,c,m,n)
integer m, n, i, j
double precision a(m,n),b(m,n),c(m,n)
do i = 1, m

do j = 1, n
c(i,j) = a(i,j) + b(i,j)

enddo
enddo
return

end

% nvfortran -o mat_allo mat_allo.f90 -i8 -Mlarge_arrays -mp -fast
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Chapter 23. C++ and C Inline Assembly
and Intrinsics

The examples in this section are shown using x86-64 assembly instructions. Inline assembly is sup-
ported on Arm Server platforms as well, but is not documented in detail in this section.

23.1. Inline Assembly

Inline Assembly lets you specify machine instructions inside a “C” function. The format for an inline
assembly instruction is this:

{ asm | __asm__ } ("string");

The asm statement begins with the asm or __asm__ keyword. The __asm__ keyword is typically used
in header files that may be included in ISO “C” programs.

string is one or more machine specific instructions separated with a semi-colon (;) or newline (\n) char-
acter. These instructions are inserted directly into the compiler’s assembly-language output for the
enclosing function.

Some simple asm statements are:

asm ("cli");
asm ("sti");

These asm statements disable and enable system interrupts respectively.

In the following example, the eax register is set to zero.

asm( "pushl %eax\n\t" "movl $0, %eax\n\t" "popl %eax");

Notice that eax is pushed on the stack so that it is it not clobbered. When the statement is done with
eax, it is restored with the popl instruction.

Typically a program uses macros that enclose asm statements. The following two examples use the
interrupt constructs created previously in this section:

#define disableInt __asm__ ("cli");
#define enableInt __asm__ ("sti");
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23.2. Extended Inline Assembly

Inline Assembly explains how to use inline assembly to specify machine specific instructions inside a
“C” function. This approach works well for simple machine operations such as disabling and enabling
system interrupts. However, inline assembly has three distinct limitations:

1. The programmer must choose the registers required by the inline assembly.

2. To prevent register clobbering, the inline assembly must include push and pop code for registers
that get modified by the inline assembly.

3. There is no easy way to access stack variables in an inline assembly statement.

Extended Inline Assembly was created to address these limitations. The format for extended inline
assembly, also known as extended asm, is as follows:

{ asm | __asm__ } [ volatile | __volatile__ ]
("string" [: [output operands]] [: [input operands]] [: [clobberlist]]);

▶ Extended asm statements begin with the asm or __asm__ keyword. Typically the __asm__ key-
word is used in header files that may be included by ISO “C” programs.

▶ An optional volatile or __volatile__ keyword may appear after the asm keyword. This keyword in-
structs the compiler not to delete, move significantly, or combine with any other asm statement.
Like __asm__, the __volatile__ keyword is typically used with header files that may be included by
ISO “C” programs.

▶ “string” is one or more machine specific instructions separated with a semi-colon (;) or newline
(\n) character. The string can also contain operands specified in the [output operands], [input
operands], and [clobber list]. The instructions are inserted directly into the compiler’s assembly-
language output for the enclosing function.

▶ The [output operands], [input operands], and [clobber list] items each describe the effect of the
instruction for the compiler. For example:

asm( "movl %1, %%eax\n" "movl %%eax, %0":"=r" (x) : "r" (y) : "%eax" );

where

▶ “=r” (x) is an output operand.

▶ “r” (y) is an input operand.

▶ “%eax” is the clobber list consisting of one register, “%eax”.

The notation for the output and input operands is a constraint string surrounded by quotes,
followed by an expression, and surrounded by parentheses. The constraint string describes how
the input and output operands are used in the asm “string”. For example, “r” tells the compiler
that the operand is a register. The “=” tells the compiler that the operand is write only, which
means that a value is stored in an output operand’s expression at the end of the asm statement.

Each operand is referenced in the asm “string” by a percent “%” and its number. The first operand
is number 0, the second is number 1, the third is number 2, and so on. In the preceding ex-
ample, “%0” references the output operand, and “%1” references the input operand. The asm
“string” also contains “%%eax”, which references machine register “%eax”. Hard coded registers
like “%eax” should be specified in the clobber list to prevent conflicts with other instructions in
the compiler’s assembly-language output. [output operands], [input operands], and [clobber list]
items are described in more detail in the following sections.
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23.2.1. Output Operands

The [output operands] are an optional list of output constraint and expression pairs that specify the
result(s) of the asm statement. An output constraint is a string that specifies how a result is delivered
to the expression. For example, “=r” (x) says the output operand is a write-only register that stores its
value in the “C” variable x at the end of the asm statement. An example follows:

int x;
void example()
{
asm( "movl $0, %0" : "=r" (x) );

}

The previous example assigns 0 to the “C” variable x. For the function in this example, the compiler
produces the following assembly. If you want to produce an assembly listing, compile the example
with the nvc -S compiler option:

example:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

..Dcfi1:

..EN1:
## lineno: 8
movl $0, %eax
movl %eax, x(%rip)

## lineno: 0
popq %rbp
ret

In the generated assembly shown, notice that the compiler generated two statements for the asm
statement at line number 5. The compiler generated “movl $0, %eax” from the asm “string”. Also
notice that %eax appears in place of “%0” because the compiler assigned the %eax register to variable
x. Since item 0 is an output operand, the result must be stored in its expression (x).

In addition to write-only output operands, there are read/write output operands designated with a “+”
instead of a “=”. For example, “+r” (x) tells the compiler to initialize the output operand with variable x
at the beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:

int x=1;
void example2()
{
asm( "addl $1, %0" : "+r" (x) );

}

To perform the increment, the output operand must be initialized with variable x. The read/write con-
straint modifier (“+”) instructs the compiler to initialize the output operand with its expression. The
compiler generates the following assembly code for the example2() function:

example2:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

(continues on next page)
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(continued from previous page)

..Dcfi1:

..EN1:
## lineno: 5
movl x(%rip), %eax
addl $1, %eax
movl %eax, x(%rip)

## lineno: 0
popq %rbp
ret

From the example2() code, two extraneous moves are generated in the assembly: one movl for initial-
izing the output register and a second movl to write it to variable x. To eliminate these moves, use a
memory constraint type instead of a register constraint type, as shown in the following example:

int x=1;
void example2()
{
asm( "addl $1, %0" : "+m" (x) );

}

The compiler generates a memory reference in place of a memory constraint. This eliminates the two
extraneous moves. Because the assembly uses a memory reference to variable x, it does not have to
move x into a register prior to the asm statement; nor does it need to store the result after the asm
statement. Additional constraint types are found in Additional Constraints.

example2:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

..Dcfi1:

..EN1:
## lineno: 5
addl $1, x(%rip)

## lineno: 0
popq %rbp
ret

The examples thus far have used only one output operand. Because extended asm accepts a list of
output operands, asm statements can have more than one result, as shown in the following example:

void example4()
{
int x=1; int y=2;
asm( "addl $1, %1\n" "addl %1, %0": "+r" (x), "+m" (y) );
}

This example increments variable y by 1 then adds it to variable x. Multiple output operands are sep-
arated with a comma. The first output operand is item 0 (“%0”) and the second is item 1 (“%1”) in the
asm “string”. The resulting values for x and y are 4 and 3 respectively.
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23.2.2. Input Operands

The [input operands] are an optional list of input constraint and expression pairs that specify what “C”
values are needed by the asm statement. The input constraints specify how the data is delivered to
the asm statement. For example, “r” (x) says that the input operand is a register that has a copy of the
value stored in “C” variable x. Another example is “m” (x) which says that the input item is the memory
location associated with variable x. Other constraint types are discussed in Additional Constraints. An
example follows:

void example5()
{

int x=1;
int y=2;
int z=3;
asm( "addl %2, %1\n" "addl %2, %0" : "+r" (x), "+m" (y) : "r" (z) );

}

The previous example adds variable z, item 2, to variable x and variable y. The resulting values for x and
y are 4 and 5 respectively.

Another type of input constraint worth mentioning here is the matching constraint. A matching con-
straint is used to specify an operand that fills both an input as well as an output role. An example
follows:

int x=1;
void example6()
{
asm( "addl $1, %1"
: "=r" (x)
: "0" (x) );

}

The previous example is equivalent to the example2() function shown in Output Operands. The con-
straint/expression pair, “0” (x), tells the compiler to initialize output item 0 with variable x at the begin-
ning of the asm statement. The resulting value for x is 2. Also note that “%1” in the asm “string” means
the same thing as “%0” in this case. That is because there is only one operand with both an input and
an output role.

Matching constraints are very similar to the read/write output operands mentioned in Output
Operands. However, there is one key difference between read/write output operands and matching
constraints. The matching constraint can have an input expression that differs from its output expres-
sion.

The following example uses different values for the input and output roles:

int x;
int y=2;
void example7()
{
asm( "addl $1, %1"
: "=r" (x)
: "0" (y) );

}

The compiler generates the following assembly for example7():
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example7:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

..Dcfi1:

..EN1:
## lineno: 8
movl y(%rip), %eax
addl $1, %eax
movl %eax, x(%rip)

## lineno: 0
popq %rbp
ret

Variable x gets initialized with the value stored in y, which is 2. After adding 1, the resulting value for
variable x is 3.

Because matching constraints perform an input role for an output operand, it does not make sense
for the output operand to have the read/write (”+”) modifier. In fact, the compiler disallows matching
constraintswith read/write output operands. The output operand must have a write only (”=”) modifier.

23.2.3. Clobber List

The [clobber list] is an optional list of strings that hold machine registers used in the asm “string”.
Essentially, these strings tell the compiler which registers may be clobbered by the asm statement.
By placing registers in this list, the programmer does not have to explicitly save and restore them as
required in traditional inline assembly (described in Inline Assembly). The compiler takes care of any
required saving and restoring of the registers in this list.

Each machine register in the [clobber list] is a string separated by a comma. The leading ‘%’ is optional
in the register name. For example, “%eax” is equivalent to “eax”. When specifying the register inside the
asm “string”, you must include two leading ‘%’ characters in front of the name (for example., “%%eax”).
Otherwise, the compiler will behave as if a bad input/output operand was specified and generate an
error message. An example follows:

void example8()
{
int x;
int y=2;
asm( "movl %1, %%eax\n"
"movl %1, %%edx\n"
"addl %%edx, %%eax\n"
"addl %%eax, %0"
: "=r" (x)
: "0" (y)
: "eax", "edx" );

}

This code uses two hard-coded registers, eax and edx. It performs the equivalent of 3*y and assigns
it to x, producing a result of 6.

In addition to machine registers, the clobber list may contain the following special flags:

“cc” The asm statement may alter the control code register.
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“memory”
The asm statement may modify memory in an unpredictable fashion.

When the “memory” flag is present, the compiler does not keep memory values cached in registers
across the asm statement and does not optimize stores or loads to that memory. For example:

asm("call MyFunc":::"memory");

This asm statement contains a “memory” flag because it contains a call. The callee may otherwise
clobber registers in use by the caller without the “memory” flag.

The following function uses extended asm and the “cc” flag to compute a power of 2 that is less than
or equal to the input parameter n.

#pragma noinline
int asmDivideConquer(int n)
{
int ax = 0;
int bx = 1;
asm (
"LogLoop:n"
"cmp %2, %1n"
"jnle Donen"
"inc %0n"
"add %1,%1n"
"jmp LogLoopn"
"Done:n"
"dec %0n"
:"+r" (ax), "+r" (bx) : "r" (n) : "cc");
return ax;

}

The ‘cc’ flag is used because the asm statement contains some control flow that may alter the control
code register. The #pragma noinline statement prevents the compiler from inlining the asmDivideCon-
quer() function. If the compiler inlines asmDivideConquer(), then it may illegally duplicate the labels
LogLoop and Done in the generated assembly.

23.2.4. Additional Constraints

Operand constraints can be divided into four main categories:

▶ Simple Constraints

▶ Machine Constraints

▶ Multiple Alternative Constraints

▶ Constraint Modifiers
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23.2.5. Simple Constraints

The simplest kind of constraint is a string of letters or characters, known as Simple Constraints, such
as the “r” and “m” constraints introduced in Output Operands. Table 34 describes these constraints.

Table 34: Simple Constraints

Con-
straint

Description

whites-
pace

Whitespace characters are ignored.

E An immediate floating point operand.

F Same as “E”.

g Any general purpose register, memory, or immediate integer operand is allowed.

i An immediate integer operand.

m A memory operand. Any address supported by the machine is allowed.

n Same as “i”.

o Same as “m”.

p An operand that is a valid memory address. The expression associated with the con-
straint is expected to evaluate to an address (for example, “p” (&x) ).

r A general purpose register operand.

X Same as “g”.

0,1,2,..9 Matching Constraint. See Output Operands for a description.

The following example uses the general or “g” constraint, which allows the compiler to pick an appro-
priate constraint type for the operand; the compiler chooses from a general purpose register, memory,
or immediate operand. This code lets the compiler choose the constraint type for “y”.

void example9()
{
int x, y=2;
asm( "movl %1, %0\n" : "=r"

(x) : "g" (y) );
}

This technique can result in more efficient code. For example, when compiling example9() the compiler
replaces the load and store of y with a constant 2. The compiler can then generate an immediate 2 for
the y operand in the example. The assembly generated by nvc for our example is as follows:

example9:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

..Dcfi1:

..EN1:
## lineno: 3

(continues on next page)
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movl $2, %eax
## lineno: 6
popq %rbp
ret

In this example, notice the use of $2 for the “y” operand.

Of course, if y is always 2, then the immediate value may be used instead of the variable with the “i”
constraint, as shown here:

void example10()
{
int x;
asm( "movl %1, %0\n"
: "=r" (x)
: "i" (2) );

}

Compiling example10() with nvc produces assembly similar to that produced for example9().

23.2.6. Machine Constraints

Another category of constraints is Machine Constraints. The x86_64 architectures has several classes
of registers. To choose a particular class of register, you can use the x86_64 machine constraints
described in Table 35.
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Table 35: x86_64 Machine Constraints

Con-
straint

Description

a a register (e.g., %al, %ax, %eax, %rax)

A Specifies a or d registers. The d register holds the most significant bits and the a regis-
ter holds the least significant bits.

b b register (e.g, %bl, %bx, %ebx, %rbx)

c c register (e.g., %cl, %cx, %ecx, %rcx)

C Not supported.

d d register (e.g., %dl, %dx, %edx, %rdx)

D di register (e.g., %dil, %di, %edi, %rdi)

e Constant in range of 0xffffffff to 0x7fffffff

f Not supported.

G Floating point constant in range of 0.0 to 1.0.

I Constant in range of 0 to 31 (e.g., for 32-bit shifts).

J Constant in range of 0 to 63 (e.g., for 64-bit shifts)

K Constant in range of 0to 127.

L Constant in range of 0 to 65535.

M Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

N Constant in range of 0 to 255 (e.g., for out instruction).

q Same as “r” simple constraint.

Q Same as “r” simple constraint.

R Same as “r” simple constraint.

S si register (e.g., %sil, %si, %edi, %rsi)

t Not supported.

u Not supported.

x XMM SSE register

y Not supported.

Z Constant in range of 0 to 0x7fffffff.

The following example uses the “x” or XMM register constraint to subtract c from b and store the result
in a.

double example11()
{
double a;
double b = 400.99;
double c = 300.98;
asm ( "subpd %2, %0;"

(continues on next page)
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:"=x" (a)
: "0" (b), "x" (c)
);
return a;

}

The generated assembly for this example is this:

example11:
..Dcfb0:
pushq %rbp

..Dcfi0:
movq %rsp, %rbp

..Dcfi1:

..EN1:
## lineno: 4
movsd .C00128(%rip), %xmm1
movsd .C00130(%rip), %xmm2
movapd %xmm1, %xmm0
subpd %xmm2, %xmm0;

## lineno: 10
## lineno: 11
popq %rbp
ret

If a specified register is not available, the nvc and nvc++ compilers issue an error message.

23.2.7. Multiple Alternative Constraints

Sometimes a single instruction can take a variety of operand types. For example, the x86-64 permits
register-to-memory and memory-to-register operations. To allow this flexibility in inline assembly, use
multiple alternative constraints. An alternative is a series of constraints for each operand.

To specify multiple alternatives, separate each alternative with a comma.

Table 36: Multiple Alternative Constraints

Constraint Description

, Separates each alternative for a particular operand.

? Ignored

! Ignored

The following example uses multiple alternatives for an add operation.

void example13()
{
int x=1;
int y=1;
asm( "addl %1, %0\n"
: "+ab,cd" (x)
: "db,cam" (y) );

}
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The preceding example13() has two alternatives for each operand: “ab,cd” for the output operand and
“db,cam” for the input operand. Each operand must have the same number of alternatives; however,
each alternative can have any number of constraints (for example, the output operand in example13()
has two constraints for its second alternative and the input operand has three for its second alterna-
tive).

The compiler first tries to satisfy the left-most alternative of the first operand (for example, the out-
put operand in example13()). When satisfying the operand, the compiler starts with the left-most
constraint. If the compiler cannot satisfy an alternative with this constraint (for example, if the de-
sired register is not available), it tries to use any subsequent constraints. If the compiler runs out of
constraints, it moves on to the next alternative. If the compiler runs out of alternatives, it issues an er-
ror similar to the one mentioned in example12(). If an alternative is found, the compiler uses the same
alternative for subsequent operands. For example, if the compiler chooses the “c” register for the
output operand in example13(), then it will use either the “a” or “m” constraint for the input operand.

23.2.8. Constraint Modifiers

Characters that affect the compiler’s interpretation of a constraint are known as Constraint Modifiers.
Two constraint modifiers, the “=” and the “+”, were introduced in Output Operands. The following table
summarizes each constraint modifier.

Table 37: Constraint Modifier Characters

Constraint
Modifier

Description

= This operand is write-only. It is valid for output operands only. If specified, the
“=” must appear as the first character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output
operands only. The output operand is initialized with its expression before the
first instruction in the asm statement. If specified, the “+” must appear as the
first character of the constraint string.

& A constraint or an alternative constraint, as defined in Multiple Alternative Con-
straints, containing an “&” indicates that the output operand is an early clobber
operand. This type operand is an output operand that may be modified before
the asm statement finishes using all of the input operands. The compiler will not
place this operand in a register that may be used as an input operand or part of
any memory address.

% Ignored.

# Characters following a “#” up to the first comma (if present) are to be ignored in
the constraint.

* The character that follows the “*” is to be ignored in the constraint.

The “=” and “+” modifiers apply to the operand, regardless of the number of alternatives in the con-
straint string. For example, the “+” in the output operand of example13() appears once and applies to
both alternatives in the constraint string. The “&”, “#”, and “*” modifiers apply only to the alternative
in which they appear.

Normally, the compiler assumes that input operands are used before assigning results to the output
operands. This assumption lets the compiler reuse registers as needed inside the asm statement.

232 Chapter 23. C++ and C Inline Assembly and Intrinsics



NVIDIA HPC Compilers User's Guide, Release 26.1

However, if the asm statement does not follow this convention, the compiler may indiscriminately
clobber a result register with an input operand. To prevent this behavior, apply the early clobber “&”
modifier. An example follows:

void example15()
{
int w=1;
int z;
asm( "movl $1, %0\n"
"addl %2, %0\n"
"movl %2, %1"
: "=a" (w), "=r" (z) : "r" (w) );

}

The previous code example presents an interesting ambiguity because “w” appears both as an output
and as an input operand. So, the value of “z” can be either 1 or 2, depending on whether the compiler
uses the same register for operand 0 and operand 2. The use of constraint “r” for operand 2 allows the
compiler to pick any general purpose register, so it may (or may not) pick register “a” for operand 2.
This ambiguity can be eliminated by changing the constraint for operand 2 from “r” to “a” so the value
of “z” will be 2, or by adding an early clobber “&” modifier so that “z” will be 1. The following example
shows the same function with an early clobber “&” modifier:

void example16()
{
int w=1;
int z;
asm( "movl $1, %0\n"
"addl %2, %0\n"
"movl %2, %1"
: "=&a" (w), "=r" (z) : "r" (w) );

}

Adding the early clobber “&” forces the compiler not to use the “a” register for anything other than
operand 0. Operand 2 will therefore get its own register with its own copy of “w”. The result for “z” in
example16() is 1.

23.3. Operand Aliases

Extended asm specifies operands in assembly strings with a percent ‘%’ followed by the operand num-
ber. For example, “%0” references operand 0 or the output item “=&a” (w) in function example16() in
the previous example. Extended asm also supports operand aliasing, which allows use of a symbolic
name instead of a number for specifying operands, as illustrated in this example:

void example17()
{
int w=1, z=0;
asm( "movl $1, %[output1]\n"
"addl %[input], %[output1]\n"
"movl %[input], %[output2]"
: [output1] "=&a" (w), [output2] "=r"

(z)
: [input] "r" (w));

}
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In example18(), “%0” and “%[output1]” both represent the output operand.

23.4. Assembly String Modifiers

Special character sequences in the assembly string affect the way the assembly is generated by the
compiler. For example, the “%” is an escape sequence for specifying an operand, “%%” produces a
percent for hard coded registers, and “\n” specifies a new line. Table 38 summarizes these modifiers,
known as Assembly String Modifiers.
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Table 38: Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

%* Adds a ‘*’ in the assembly string.

%% Adds a ‘%’ in the assembly string.

%A Adds a ‘*’ in front of an operand in the assembly string. (For example,
%A0 adds a ‘*’ in front of operand 0 in the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0
produces ‘b’ on x86-64.)

%L Produces the word op code suffix for this operand. (For example,
%L0 produces ‘l’ on x86-64.)

%P If producing Position Independent Code (PIC), the compiler adds the
PIC suffix for this operand. (For example, %P0 produces @PLT on
x86-64.)

%Q Produces a quad word op code suffix for this operand if it is sup-
ported by the target. Otherwise, it produces a word op code suffix.
(For example, %Q0 produces ‘q’ on x86-64.)

%S Produces ‘s’ suffix for this operand. (For example, %S0 produces ‘s’
on x86-64.)

%T Produces ‘t’ suffix for this operand. (For example, %S0 produces ‘t’
on x86-64.)

%W Produces the half word op code suffix for this operand. (For example,
%W0 produces ‘w’ on x86-64.)

%a Adds open and close parentheses ( ) around the operand.

%b Produces the byte register name for an operand. (For example, if
operand 0 is in register ‘a’, then %b0 will produce ‘%al’.)

%c Cuts the ‘$’ character from an immediate operand.

%k Produces the word register name for an operand. (For example, if
operand 0 is in register ‘a’, then %k0 will produce ‘%eax’.)

%q Produces the quad word register name for an operand if the target
supports quad word. Otherwise, it produces a word register name.
(For example, if operand 0 is in register ‘a’, then %q0 produces %rax
on x86-64.)

%w Produces the half word register name for an operand. (For example,
if operand 0 is in register ‘a’, then %w0 will produce ‘%ax’.)

%z Produces an op code suffix based on the size of an operand. (For
example, ‘b’ for byte, ‘w’ for half word, ‘l’ for word, and ‘q’ for quad
word.)

%+ %C %D %F %O %X %f %h
%l %n %s %y

Not supported.

These modifiers begin with either a backslash “\” or a percent “%”.
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The modifiers that begin with a backslash “\” (e.g., “\n”) have the same effect as they do in a printf
format string. The modifiers that are preceded with a “%” are used to modify a particular operand.

These modifiers begin with either a backslash “\” or a percent “%” For example, “%b0” means, “produce
the byte or 8 bit version of operand 0”. If operand 0 is a register, it will produce a byte register such as
%al, %bl, %cl, and so on.

23.5. Extended Asm Macros

As with traditional inline assembly, described in Inline Assembly, extended asm can be used in a macro.
For example, you can use the following macro to access the runtime stack pointer.

#define GET_SP(x) \
asm("mov %%sp, %0": "=m" (##x):: "%sp" );
void example20()
{
void * stack_pointer;
GET_SP(stack_pointer);

}

The GET_SP macro assigns the value of the stack pointer to whatever is inserted in its argument (for
example, stack_pointer). Another C extension known as statement expressions is used to write the
GET_SP macro another way:

#define GET_SP2 ({ \
void *my_stack_ptr; \
asm("mov %%sp, %0": "=m" (my_stack_ptr) :: "%sp" ); \
my_stack_ptr; \
})
void example21()
{
void * stack_pointer = GET_SP2;

}

The statement expression allows a body of code to evaluate to a single value. This value is specified
as the last instruction in the statement expression. In this case, the value is the result of the asm
statement, my_stack_ptr. By writing an asm macro with a statement expression, the asm result may
be assigned directly to another variable (for example, void * stack_pointer = GET_SP2) or included in a
larger expression, such as: void * stack_pointer = GET_SP2 - sizeof(long).

Which style of macro to use depends on the application. If the asm statement needs to be a part of
an expression, then a macro with a statement expression is a good approach. Otherwise, a traditional
macro, like GET_SP(x), will probably suffice.
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23.6. Intrinsics

Inline intrinsic functions map to actual x86-64 machine instructions. Intrinsics are inserted inline to
avoid the overhead of a function call. The compiler has special knowledge of intrinsics, so with use of
intrinsics, better code may be generated as compared to extended inline assembly code.

The NVIDIA HPC Compilers intrinsics library implements MMX, SSE, SS2, SSE3, SSSE3, SSE4a, ABM,
and AVX instructions. The intrinsic functions are available to C and C++ programs. Unlike most func-
tions which are in libraries, intrinsics are implemented internally by the compiler. A program can call
the intrinsic functions from C/C++ source code after including the corresponding header file.

The intrinsics are divided into header files as follows:

Table 39: Intrinsic Header File Organization

Instructions Header File Instructions Header File

ABM intrin.h SSE2 emmintrin.h

AVX immintrin.h SSE3 pmmintrin.h

MMX mmintrin.h SSSE3 tmmintrin.h

SSE xmmintrin.h SSE4a ammintrin.h

The following is a simple example program that calls XMM intrinsics.

#include <xmmintrin.h>
int main(){
__m128 __A, __B, result;
__A = _mm_set_ps(23.3, 43.7, 234.234, 98.746);
__B = _mm_set_ps(15.4, 34.3, 4.1, 8.6);
result = _mm_add_ps(__A,__B);
return 0;
}
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