<X NVIDIA.

lllllll
lllllllllll
lllllllllllll
lllllllllll
lllllllll
llllllll

VAVl o=

S LN
/l" />

a\ W\'Qﬂh‘ “I ,
WY e
%ﬂ%ﬂ&. SO

S,

%
N

o\
coe ﬁ..&

PGl VISUAL FORTRAN USER'S GUIDE

AR A N
TV, A =S\VRANE DIg e
PAwaimE\EVa e s S0,

\
AT | o\ ==

[(= - Lol =N Xii

AUdIENCE DESCIIPEION. 1ttt tttterttttet ettt tertteeeeeteraeeeeeeeanneerenaeeesneeeenneessnnesesneeesnness xii
Compatibility and Conformance to Standards.........ceeeiiiiiiiiieeiiriiiieeeereriineeeeeeennnneeeenes xii
L0 1= 2= 101 2 1 o] o 1 e xiii
Hardware and Software Constraints........oo.eeiiiiiiiitiiiiiiiii i iiiiriiiereieeeeneeeenees xiv
L0010 31 o] o1 P PPN xiv
L= 00 XV
Related PUDlICAtIONS. . v ittt i it e it et ittt eetireeeeeaeaaeeeesasannseeeesennnnnnes Xvi
Chapter 1. Getting Started with PVF.........ciiiiiiiiii it iiiiieiiieeesneeennneeennccennneannns 1
1.1. PVF on the Start Screen and Start MENU.ccuiiiiiiiiii i eeeeeeneeeaneenns 1
1.1.1. Shortcuts to Launch PVF.......oueieiiiii it eaeeaes 2
1.1.2. CommaNnds SUDMENU.......uiiteiii ettt e et e eeeeeeaeerenaeeaanaeseannesannnens 2
1.1.3. Profiler SUDMENU. ..ot i et e ettt e eeieaeeeeeeannaeaeeanns 2
1.1.4. DOCUMENTALION MENU. ..\ uuteitiiet ettt et et e et eeaaeereaneesanneeaaneesannnenen 2
1.1.5. Licensing SUDMENU.......oiuiiiiiiii it reeaaae 3
1.2, Introduction £0 PVF. ...t ettt ettt et e e et eeenaeeeannens 3
1.2.1. Visual StUAIo SEtEINGS. .. vuitiiiiiii ittt ettt et ettt et teeaaeeeeteeaneaeeeeannnnes 3
1.2.2. SOLULIONS @NA PrOJeCES. i euettitiieiiittieeiiieeeeeeenneeeeseeannneeessessnnnneesessnnnnnesens 3
1.3. Creating a Hello World Project....cc.uueiiiiiiiiiiii it ettt eiie e e i e eeanes 4
L VS [T Y o o T o F PP 6
(0 T A AT 1011 o] (I o o) =T ot £ PP PP PPN 6
I T 0]y 0T L] o]] 1 PP PPN 7
1.6.1. Win32 API SUPPOIt (AfWin)..eeeiiiiiiiiiiiiiii ittt eeeiiieeeeeesenaeeeeessnnnesaseanns 7
1.6.2. Unix/Linux Portability Interfaces (dflib, dfport)......c.ccceeviiiiiiiiiiiiiiiiiiiiiiiiieneneen. 8
1.6.3. Windows Applications and Graphical User Interfaces........cooeeviieiiiineiiiniiinneennnn. 8
Chapter 2. Build With PVF...cciiiiiiiiiiiiiiiiiiietieirneeteteersneneeeecesssnssescesssssscsccesnnnssecces 10
2.1, Creating @ PVF ProJeCl. . ..ueeiiiiiiitiiieiiiitetieeiieeeteeeennneeeeeesnneeesssssnnnsesssssnnnnes 10
0 It T Vo) =Tt A 1Y/ =3 N 10
2.1.2. Creating @ NeW ProJeCl. .. .ueeiiiiiiiiitiieiiiieteerernneeeeereannaneeeesennneeessennnnnneens 10
2.2, PVF SOWUTION EXPLOTEI ... utiiiiiiiiii ittt et e e ettt eeeeieaeeeeeanseeeseanannnnes 11
2.3. Adding Files t0 @ PVF ProjeCl....cciiiiiiiiiiiiiiiiiiieiiieeeeeeieteereeennnneeseesnnnneesees 11
2.3.1. Add @ NEW File. .ot ittt ettt ettt et et eiieeeeeaeeainaaaeeannn 11
2.3.2. Add an EXiSting File...couiiiiiiiiiiiiiii ittt i e e et e e iaeeeaneeeaaneans 12
2.4. Adding a New Project to a SOlULION. ..ottt e e e ee i eaenaaas 12
2.5. Project Dependencies and Build Order.......co.viiieiiiiiiiiiiiiiiiiieiieieeeneeeaneeeanns 13
P T o] 01 i 1V - L o] o [P PP 13
0 R - L 0 o 13 PN 13
2.8. Setting Global User OptioNS......ueeeeieerieteereerrneeeeeessneeeeeessnnsneeesessnnesessessnnnneess 13
2.9. Setting Configuration Options using Property Pages........c..cevviviiiiiiiiiiiiiiiiiiiiininnnennes 14
2. 10, PrO eIty PageS. . uuetttieiiiittteeeeiieeeeeeernnaeeeeessnnneeeesssnnneeessssnnnsesssssnnnnessesonns 14

PGI Visual Fortran User's Guide Version 2017 | ii

2.11. Setting File Properties Using the Properties Window........ccceiiiiiiiiiiiiiiiiiiiiiiniiinnnes 19

2.12. Setting Fixed FOrmMat. . coouiiiiiiiii it e e e e e ettt e et e eanaeeaanaeeanas 20
2.13. Building @ Project With PVF. ...t ettt et ettt eeeiieeeeeaannaes 20
2.13.1. Order of PVF Build Operations.......cieeetiiiieiiiitiiiitiiiieeiaieeraieeeeneeeenneennnens 21
2.14. Build Events and Custom Build Steps.....ccviuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiiieeeeeaannns 21
2 T T - 10 [V B =T | o F N 21
2.14.2. CUSEOM BUIld StOPS.ttuttttttiiiiiettteeiiiteeeeeeiraeeeeeeenrnneeeessssnnsesesssnsnssseesanns 22
0 B TR oV o 10 e I = Vel o PN 22
2.16. Static and DynamiC LiNKiNG.eeeiieiiietttireriieeeererineteeressnnneeeesssnnnseseessnnnneess 22
2.17. VCH# INEeroperability.....ceereeireieiiii it e e e et eenneeeeneeeenneeeanneennn 23
2.18. VC++ INteroperability. ceeeeeeeeiiiiiiii it teeeieeeeeeennnneeesresnnnnnesssssnnnnsessenns 23
2.19. Linking PVF and VC++ ProJeCtS. . ciiiiiiiiitiiiiiiiiitetiiiiiieeteeeiiteeeeeeeaieseeeseennsseeeenn 23
2.20. Common LinK-time Errors.. ... coineiiiiiiiii i e e e eaes 24
2.21. Migrating an Existing Application t0 PVF......ciiiiiiiiiiiiiiiiiii ittt ccii e eeiaes 24
2.22. Fortran Editing FOatUIres. ...uuiiiti it ie et e e i e et e e eeiaeeaeneeeanneens 25
Chapter 3. Debug With PVF.......uueiiiiiiiiiiiiiiiinnetteeeienneceteceesnnssteccsssnssscecssssnsssccannns 26
3.1. Windows Used in DEBUZGING.cuiuuiiiitiiiiitiiiieiiteeiieeeeieeeeieeeaaneeeanaeeeenneeeanens 26
301,71, AULOS WINAOW. ..ttt ettt et ee et et et e eaaeeraraeesannesananesanaeseannens 26
3.1.2. Breakpoints WiNAOW. ...ciiiuiiiiiiiiiitiiitii et eeneeeeeeeeeraeeeaneeeanneeesnneennnens 26
3.1.3. Call STtAaCK WINAOW.eiiiiie ittt r et ettt e s et eeeeerenneeranneaannes 27
3.1.4. Disassembly WindOW.ccouuiiiiiiiiiiiiiiiiiiiiieeiterenteeeneeeenneerenneeeaneesannes 27
3.1.5. Immediate WINAOW.ottt e et et et e renneeeeneeranaes 27
T N O o Tat= Y R 1T [0)Y S PP 28
3.1.7. MEMOTY WINAOW. .. uuteeiiiiiiitttieeeiieteeteeenneeeeeeeannneeeseessnnneesssessnnneessssnnnneess 28
3.1.8. MOAULES WiNAOW. e iiitiiiiii ittt ettt eeeeiiaeeeeeeeaaneaeeeeesnaesseenannnnes 28
T R O 10 o T A, [e (o) PP 28
3.1.10. Processes WiNAOW. . ..ceuuutirntereteeenteeeeerenneeeanneeeaneesesnnesenaessennesssnnesennnes 28
3.1.11. REGiStErs WiNAOW. .. uuiiiiiiiii ittt e e it et eeeetenaeeeaneeeanaeeeanaeeannens 29
T IO A I 0 = T 1 T o 29
T I B T - 1 e T T Te (01 O PP 29
3.2, Variable ROWOVET. ...ttt ettt et et e e e e e e eeaesaannasananeeanaens 29
I Vet T -V = o = PP 30
KOV R N -\ A - L T o] U P 30
3.2.3. User-Defined Type Variables....c..ueeeuiiiiiiiiiiiiii i eeieeieeeeeeeenneeaaneeanns 30
3.3. Debugging an MPI Application in PVF......ciiiiiiiiiiiiiiiii i eeeiieeeeeeennnneeeaanns 31
3.4. Attaching the PVF Debugger to a Running Application.........cccoiiiiiiiiiiiiiiiiiiiiiiiiiinnn., 31
3.4.1. Attach to a Native Windows Application.......ccceeiiiiiiiiiiiiiiiiiiiiiiiereiiiieeeraennnnes 31
3.5. Using PVF to Debug a Standalone Executable........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeeeen 32
3.5.1. Launch PGl Visual Fortran from a Native Windows Command Prompt..................... 32
3.5.2. Using PGI Visual Fortran After a Command Line Launch........cccovviiiiiiiiiiiiinnnnnnn.. 33
3.5.3. Tips on Launching PVF from the Command Line........ccceiiiiiiiiiiiiiiiiiiiiiiiiiinennns 34
Chapter 4. Using MPI in PVcciiiiiiiiiiiiiiiiinetieierenneeeeeesonnasecccessnnsssccsssnnssssccssnnnnes 35
T IO | o I 1=V 1 N 35

PGI Visual Fortran User's Guide Version 2017 | iii

4.2. System and Software ReqUIrEmMENtS.iiiiiiiii ittt ettt e ieiiee et eeeeiiaeeeeeanns 35

4.3, Compile USTNG MS-MPL. ...ttt i i et er et et teiaeeeeeeeeraeeeanneeanneens 36
4.4, ENADBLEe MPl EX@CULION. c. e ettt ettt eeeiteeeiteeeeeeeaneerenanesanaeeeannesannnesenanssenness 36
4.4.1. MPI Debugging Property Options.....ceeeeieieeiriietiriiereiieeeeieeeeaieeeenneeeeneeeeannens 36
4.5, Launch an MPl AppPliCation. .ccciieiiiiiiiiiii it ettt et e ittt eeeiaaeeeeaannneaees 36
4.6. Debug an MPIl AppPliCation.ciiueiiiii i e e e et eere e eeaeerenneeeanaaeanas 36
Chapter 5. Getting Started with The Command Line Compilers......cccceiiieeeieeiiinnneeecennnes 38
o T O O 1Y =T T PN 38
5.2, Creating an EXamPle. .o ettt eiiet et eeeenneeeeeaenaneaeesesnnnnnesssennnnes 39
5.3. Invoking the Command-level PGl COMPIlers......vieeiuiiriieiiiieiieeeieeeieeeenneeeannens 39
5.3.1. Command-liNe SYNTaX....ceuueiiiieiieteereerieeeeeeearnneeeeressnnnneeesessnnnsessssannnneess 40
5.3.2. Command-ling OPtioNS.ueetiiiiiitttiiiiiieeteeeiieeeeeeeaiaeeeeesessseeeeeennnnaseens 40
5.3.3. FOrtran DireCtiVES. . ..ueii it e et 40
5.4. Filename ConVENTIONS.utirentttiitttertteetererteeeeereaaeerenaesaaneesenaessennesssnneeenness 41
2 0 B 1o T A o U= PPN 41

o T 3 A 01 i o1V Ll o 1 =L T PP PP 42
T T o - T I D - Y - T 1Y o = S P 43
5.6. Parallel Programming Using the PGl Compilers......ccuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeenannnnes 44
5.6.1. Run SMP Parallel Programs.coeeeiieiiitiiitiiiteinteiitiitiitiitiatiineeneenneeaneenns 44
5.7. Site-Specific Customization of the Compilers......coveiiiiiiiiiiiiiiiiiiiiiii i ieeainns 45
5.7.1. USE SIEEIC FileS. uuetiitiiiit i i iii ettt e et eerteeeeerenneerenneeeaneesenneesanes 45
5.7.2. USING USEI IC FileS..uuetiiiiiiiiiiieiiiiitieiiiiteeeeerrneeeeresssnnneesssssnnneessessnnnnes 45
5.8. CommON DeVelOPMENT TaSKS. .. .eeeuutterneerernteeeeeeeaeeeenneeeeneeeeeeeessneeesnaeseenaeesanees 45
Chapter 6. Use Command-line OPtioNns.......ccveiieiiieeeeiieieieeeeenaeeeeeaceeneneecsnncecnnscennnees 47
6.1. Command-line OPtioN OVEIVIEW. ...uiiiiiiiiii ittt ettt et ettt eeeeeseaeeeanannaaes 47
6.1.1. Command-line OPtioNs SYNtaX....ieuetiiiteiiitiiiiiiiieeiaieeeiieereieeeraneeeenneeeannens 47
6.1.2. Command-line SUDOPLIONS. . ciiiii i it it e ee i eeeiaaaeeanan 48
6.1.3. Command-line Conflicting OptioNS.......civiriiiiiiiiiiiiiiii i eii et eeeieeeanaeenas 48
6.2. Help with Command-line Options.ciiiiiiiiiiiiiiiiiii ittt eeiiieeeereeaneeeeeeeennnes 48
6.3. Getting Started with Performance.........ccooiiiiiiiiiiiiiiiiiii e e e ee s 50
LT T I U1 = B - 1) P PPN 50
6.4. Targeting Multiple Systems—Using the -tp Option.......cccoviiiiiiiiiiiiiiiiiiiiiiiiiiienee, 51
6.5. Frequently-used OptioNnS. ...ceeieeetiiiiiitttieriiieeeeeeerineeeeeessnneeeseessnnnneeesssnnnnneeens 51
Chapter 7. Optimizing and Parallelizing........cccoeeiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieteienetennscacnanes 53
7.1. Overview of Optimization......cieeeiieeiiiiiiiitttieeeiieeereerrnneeeeeeesnnneeeesessnnnsesssennns 54
2% % R o Tet= B0) 01111 4=\ 4 [o]) P PP PP PPN 54
7.1.2. Global Optimization.iieeeiietetiiiiiiiitteiiiiteeteeinetetreesnnneeessessnnnsessesannnnes 54
7.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization..............ccccooiiueet 55
7.1.4. Interprocedural Analysis (IPA) and Optimization........cceviiiiiiiiiiiiiiiiiiiiiniiianns 55
2% 9 TR ¥ 1 Lot a T o T 101 1 o = SO PP PP 55
7.1.6. Profile-Feedback Optimization (PFO).....cciuiiiiieiiiiiiiiiiiiiiiiiiieeieeeeneeeannaenns 55
7.2. Getting Started with Optimization......c.cccviiiiiiiiiiiiiiiiii ittt eeiiieeeeeeeiaeeeaaanns 56
72 200 TR £ =1 o TR N 56

PGI Visual Fortran User's Guide Version 2017 | iv

A T N [} (o T 57

0 2 TR 1 1= o | o T PPN 57
A 2 R« | 1Y/ 4V] PP PP 57
2 205 TR N 57
0 2 TR = € o0 1 1= o e 58
7.3. Common Compiler Feedback Format (CCFF)..cuuuiiiuiiiiiiiiiiiiiiiiieniieeniieeeeneeeaanaens 58
7.4. Local and Global Optimization.......eieeeieeiiiiiiiieeeieriiieeeeeeeareeeeesesnnneeeeeesennnneees 58
A 2 T O PP PPN 58
7.5. Loop Unrolling using -MUNIOLLuueeiiiiiiiiieiiiieeeeeeireeeeeerannaeeeeessnnnneessennnnes 60
7.6. Vectorization USING -MVECTE. ...ttt ettt et e et e e eeeieeeeeaenanns 62
7.6.1. Vectorization SUD-OPTiONS.uiiriiiii it eeeiieeeereenneeeeeaennnneeeesesnnnnneens 62
7.6.2. Vectorization Example Using SIMD INStructions........ccoieieiiiiiiiiiiiiiiiiiiiieieniinnnss 64
7.7. Auto-Parallelization USTING -MCONCUIciiiiittttiieiieteeeeenreeeeerennnneeessessnaneesssannnnes 66
7.7.1. Auto-Parallelization SUb-OptioNs.ciiiiiiiiiiiiiiiii i i e e 67
7.7.2. Loops That Fail to Parallelize......ccevvieiiiiiiiiiiiiiiii e e 68
7.8. Processor-Specific Optimization and the Unified Binary......ccccovvviiiiiiiiiiiieiiiiinnnnnn. 72
7.9. Profile-Feedback Optimization using -Mpfi/-Mpfo......cciiiiiiiiiiiiiiiiiii e, 72
7.10. Default Optimization LeVels......ciiiiiiiiiiiiiiiiiiieiiiiieeeereeiinteeeeeennnneeeesesnnnaneens 73
7.11. Local Optimization Using Dir€CtiVes.c.ciiuiiieiiieiiiiiiiiiii e reeeeeeaeeaes 73
7.12. Execution Timing and Instruction Counting........civiiiiiiiiiiiiiitiiieiiiieneeeeeninneeeeeanns 74
Chapter 8. Using Function INlNiNG.....cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeteienetcnensecsnnsennnanes 75
8.1. InvoKing FUNCEioN INUINING...coiiiiiiiiiiiii it it eeiiieeeeeaennneeeesennnnneesssnnnnes 75
8.2. Using an NN LibDrary...coiiiiiiiiiiiiiiiii ittt ittt et et eeeieaeeeeeeannaaaeean 77
8.3. Creating an INliNe Library...c.c.ueeeiiiriiiiiiiiiiiiiieeeiieeeeeraeeeeeaenrnneeessensnnnneens 77
8.3.1. Working with Inline Libraries. ...ccceuuiitiiiiiiiiiiiiiiiiiiiii it eeeeiiieeeeeeeaiaaaeenn 78
S B R 1T =] g T [et L= S P 78
8.3.3. Updating Inline Libraries - Makefiles.......ciiiiiiiiiiiiiiiiiiiiiiiiiiiiii i ieiiiiie e eeeiaaes 79
8.4. Error Detection during INliNiNg.....c.eeiiieiiiiiiiiiiiii i e eie e reeeeeeeaaaees 79
SR T = 11] o U= F PP 79
8.6. Restrictions On INliNING...cc.ueiritiiii it e e e et erateeeeeeeaneeeenaeeanneesanns 80
Chapter 9. USiNg OPENMP.......ciiiiiiiietiiiiieieneeteeeeeanaseteesssnnsssecessnssssscsssnnnsssccssennnses 81
9.1, OPENMP OVEIVIEW. .ttt ettt ettt ettt seratestnaesetaaesanas 81
9.1.1. OpenMP Shared-Memory Parallel Programming Model.......cccoveviiiiiiiiiiiiiiinnnnnenn. 81

L I A =14 111 [To 1 o}« PPN 82
9.1.3. OPENMP EXamMPle. . iiiitiiitiiiitttteeeieeeeeeenenneeeeeeesnnnneessessnnenessessnnnneessanns 83
0.2, TaSK OVEIVIEW. . ettt ettt eeettteeeteeeanteeeneeeeannesanneeesnaessennesssneessnnsssennessnnnes 84
9.3. Fortran Parallelization DireCtiVes......coviiiieiiiiiiiiii it aeees 84
9.4, DireCtive RECOGNTLION. .. .tiitiiiiit ittt ettt et eeeeieteeteeaiaeeeeeessnseeeseenannaneens 85
9.5. Directive SUMMaAry Table.iiiiiiiii i i et e e e it e e i eeeieeaannaans 85
9.5.1. Directive SUMMaAry Table.ciiiiiiiiiiiiiiiiii i it et eeeeieeeeeaeannaaaaenns 86
0.6, DIreCtiVe ClaUSES. .. uvuutieiitiit ettt ettt et et eetteaeeeaeeaeetneeseeseeenneenneanss 87
9.7. RUNtiMeE Library ROULINES. ..uuiiiiiiiiiiiiiii it ee ettt eeeenianeeeeeeannnaeeeesannnnes 90
9.8. ENVIroNMENt Variables.uiiiiuiiiitiiiiitiiiieii it eeieeeeeeeenaeeeaneeeanneeeenneennnens 94

PGI Visual Fortran User's Guide Version 2017 | v

Chapter 10. Using an AccCelerator.......cciiiiiiiiiiniiiiieiiiiniieiieeeiseesesssscsnssosensessasssscnsses 96

0T T = TN 96
10,11, COMPONENES. . ttttttiteiitteteeeeiueeeeeeeanaseeeeeesenseeeseessnssasessesenssseseessnnssseseenen 96
L0 B R V7 1 =1 o3 1§ 1 Y2 PP 97
10.1.3. User-directed Accelerator Programming.......cceeeeiiiiineeeeeeeniineeeeeesnnneneeeeeennnes 97
10.1.4. Features Not Covered or Implemented.........covvuiiiiiiiiiiiiiiiiiiiiiieenaneeeannes 97

O R 1= s 1] Lo o= 3V S PPN 97

10.3. System ReqUINEMENTS. . .uiitii ittt ettt ettt ieeeaaeens 99

10.4. Supported Processors and GPUS.c.ueiiiiiiiiitttieiiiieeerreiiieeeeressnneneeesennnnneeeees 99

10.5. Installation and LiCeNSING....ccueireiutirittieriteeeiteeeeeeeaneeeenneeeaneerenneeesnneeesnaeenns 100
10.5.1. Enable Accelerator Compilation.......ceeeieeeiiiiiiieierreiiieeereennneneersesnnneeeenes 100

10.6. EXECULION MOAEL. . .uiiiiiiiiiiii i it ettt ettt et eeeiaeeeeaeenaaaaeenn 100
10.6.1. HOSt FUNCEIONS. .. .eittiiit ittt et e ettt e et e eeneeeenneenas 100
10.6.2. Levels of Parallelism.......coeiiiiiiiiiiiiiiiiiiii it et ceee i e eeniaeaaeaas 101

10.7. MEMOIY MOAEL. . .ueniiiiiiii i it e et e e et tere et eaneeeanaeeeanaeeaaneeennnees 101
10.7.1. Separate Host and Accelerator Memory Considerations........c.ccoevvieeeeiiiiinenennnn. 101
10.7.2. ACCELErator MEMOIY .. uutiittiiittteitteettteteeeeereeeaaneeeenaeeesneeeesneeeenasennneens 101
10.7.3. CaChe ManagemENt. . uueiiiiiietteiiiiittetteeiieeteeteeaneeeeeeessnseeeesessnnanessesnnes 102

10.8. Running an Accelerator Program.eeeeeieeieieiieeeiieeeeieeeaieeeeaneeeanneeesnaeeeennens 102

10.9. AcCelerator DireCHIVES. ..ottt ettt e et e et e e eeeseeeeeanaeeaannens 103
10.9.1. Enable Accelerator DireCtivVes. .. .ueiiiiiiii ittt eeeiie et eeeaniaaeaaean 103
O T o o 1 T | 103
10.9.3. Free-Form Fortran DireCtives. ...coiiiiiiiiiiiiiiiiiiiiiiiii it it iiiiiieiiiereeeeeneenaanes 104
10.9.4. Fixed-Form Fortran DireCtiVes. .. .ccuiiiiiiiiiiiiiiiiiii e e naeeees 104
10.9.5. OpenACC DireCtive SUMIMAIY...ciiiiiiitt ittt ieeeiieeeteeaieeeeteeensseeeeennnnes 105

10.10. Accelerator DireCtive ClauSES.uveereerieeriteiteirteeiteiteeeeeaeraneranernneaneeannenns 109

10.11. OpenAcC RUNLIME Libraries.ueiiiiiiiiiiiiiiii it e eeiree e e eenaaaaens 112
10.11.1. Runtime Library Definitions.coiieiiiiiiiiiiiiiiiii e e i e e i eaeeees 112
10.11.2. Runtime Library ROUTINGES. ..ciiinreiiiiiiiiii it eeiiieeeeeeeiineeeeeeannnneeeens 112

10.12. Environment Variables.......o.veieiieiiiiiiitiiiiii et reeereen s 113

10.13. Applicable PVF Property Pages. ...ccciueiiiiiiiiitttieiiiieetieeeinneeeeeesirnneeeeesennnneess 115

10.14. Applicable Command-line OPtioNS.......cvvuiiieiiieiiiiiiiiiiiiiiiiieeie et eeeeaas 115

10.15. Profiling Accelerator KernelS.ueeiiiiiiieeiiiiiiiiietieeeiieeeeeeenneeeeeessnnnseeeesanns 116

10.16. Related Accelerator Programming TOOUS.....c.ueereueereiueerrneeennieeennneeeeneeereneeeenneens 117
10.16.1. NVIDIA CUDA Profile....ucieiiteitiiitiiitiiiteintretretteneeneeeneeeneenneenneseneeannees 117
10.16.2. TAU - Tuning and Analysis Utility.....cooeiiiiiiiiiiiii i e, 117

10.17. SUPPOITEA INTiNSICS. e nneettteeerteetreeireeeeeeenrnaeeeesesnaneeessessnnseessessnnnnesssennns 117
10.17.1. Supported Fortran Intrinsics Summary Table.......ccoiiiiiiiiiiiiiiiiiiiiiiiiiiieeeens 118

10.18. References related to ACCelerators......oouviiiiiiiiiiiiiiiiiiiiiii e eanees 119

Chapter 11. USiNg DireCtives...ciieiiiieeeiiiiiieneeeeeeresnnneteeeesnneseeccssnsssscecessnnssscccssnnnses 120

11.1. PGl Proprietary FOrtran Dir€CtiVes.....coveeeiiiiiiiiiiiiieiiiieeteeenieeereeannnneeseeanns 120

11.2. PGI Proprietary Optimization Directive SUMMaAry.......ccceviiiiiiiiiiiiiiiiiiiiieeeiineeeens 121

11.3. Scope of Fortran Directives and Command-Line Options.........ccevveiiiiiiiiiniiinininnnnns 122

PGI Visual Fortran User's Guide Version 2017 | vi

11.4. Prefetch Directives and Pragmas.ccuviiiiiiiiiiiiiiiiiiiii ittt ieeeiiie e eeniaaaeens 123

11.4.1. Prefetch Directive Syntax in FOrtran........ooeiiiiiiiiiiiiiiiiiiiiiiiiiii i eeeieeanns 123
11.4.2. Prefetch Directive Format Requirements......covviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaeenns 124
11.4.3. Sample Usage of Prefetch DireCtive......cvuiiiiiiiiiiiiiiiiiiiiii i ei e e 124
11.5. IGNORE_TKR Dir€CtiVe. c.ueittiitieteeteeteeteanteeneeaneeaneeaneeneesneeneesnessneesneeoneens 124
11.5.1. IGNORE_TKR DireCtive SYNtaX....ceeeeeiiuriiiiiiiiietiiiiiieereeaiaeeeereeannnnesseeanns 125
11.5.2. IGNORE_TKR Directive Format Requirements.......covvieeeieieiiiieeeerennieneeeeennnnns 125
11.5.3. Sample Usage of IGNORE_TKR Directive.......ccoouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienennns 125
(T 0 O 0 =Tt 17PN 126
11.6.1. IDECS Dir€CHIVE SYNEAX...eutirtintintetetertentetereereeneensensensensensensensensensensenns 126
11.6.2. FOrmat ReQUITEMENTS. . uuiiiiiiitetieiiieteeteeeineeeeeeennnaeeesessnnnneessesnnnnseseenns 126
11.6.3. SUMMAINY TablE. . ittt ittt ettt et ettt et eeeeataeeeeeeenaeaaeeannn 126
Chapter 12. Creating and Using Libraries......ccceeeiiiieiiiiieiieieiieeeieteennceennceennncennnes 128
12.1. PGl Runtime Libraries on WindoWS.coiiiiiiiitiiiiiiiiteiieiiiieteeeeeiineeeeeeeenneneens 128
12.2. Creating and Using Static Libraries on WindOWs......cccueiiiiiiiiiiiiiiiiiiiiiienieennnnenn. 129
L2250 TR T oo 3 1 1 = T 1 129
12.2.2. ranlib COMMAN.ottt ettt ettt eereeeneeeeeaeeeneeenseanss 130
12.3. Creating and Using Dynamic-Link Libraries on Windows........ccovieiiiiiiiiiiiiiiiiiinnnenn. 130
12.3.1. BUIld @ DLL: FOMTran. . .ueeeueeieittieiieteeeeeeenneeeeneeeeaneeeenneeeeneeeesneeeenneeesnnees 132
12.3.2. Build DLLs Containing Mutual Imports: Fortran........cccceviiiiiiiiiiiiiiiiiennnnnenn. 133
12.3.3. Import a Fortran module from @ DLL.......ueeiiitiiiitiniieenieerrieenaneeeanneeeanness 134
12.4. USING LIB3F .. nnniiiiiiiiiiiitteiiieteteeeeneeeeseesnnneeeesesnneeessessnnneessessnnnnesssennns 135
12.5. LAPACK, BLAS and FFTs. . .iiitiiitiiitiiitiiitiiteeiteeieeenteaeeeneeeneeaneeaseesseenaeeneeennenn 135
12.6. Linking With SCALAPACK. ... ettt ittt eeteetteneeeneeeaesanesanennnasnnesnnes 136
Chapter 13. Using Environment Variables........c.ccceiiiieiiiiiiinneeieeeiirneeeeeeeesnnneeeccennnances 137
13.1. Setting Environment Variables........c.ooiiiiiiiiiiiiiiiiiiii e 137
13.1.1. Setting Environment Variables on Windows........cccoiiiiiiiiiiiiiiiiiiiiiiiiiieenennnnns 137
13.2. PGI-Related Environment Variables........c.oiieiiiiiiitiiiiiiiiiiiiiiiiiiiieiieeeeennaens 138
13.3. PGI Environment Variables.coviriiiiiiiiiiiii et eees 140
13.3.1. FLEXLM BATCH. ettt ettt ettt et et seaetaaeaaeeaneeanaens 140
13.3.2. FORTRANOPT ... ettt tittitttrtteeetereerreeaeeeneeeneeaneeeneeenesenseenssenssonsssnsssnssnnes 140
13.3.3. LM _LICENSE _FILE. .. ntiitiit it iiit ettt e et et ee e eeaeeaaeenaeenaeanaeanaeaneens 140
S0 TR B O I P 141
13,35, MPBIND . .ttt e e i e it e e et et e e e e et e e e aaeeaaaanaaans 141
L T T o) PP 141
LB T A | o | P PP PP PP 142
13.3.8. MP _WARN . ..ttt ettt e et eeteenteenesenaeenssanesanaenneennesnnns 142
130300, NCPUS . o ettt ittt ettt et et eeteeeaeeaaeeaeeeseenaeaneeaneesneesnsesneesnesanaenns 142
13.3.10. NCPUS_MAX. ¢ e ttitiitiit ettt et eeateenteenteenesenssenssenssanssonesnnesnnens 142
13.3.11. NO_STOP_MESSAGE.tiittiiiiiiii ittt eieeereeaieeaneeaneeeneeeneeensesneennsennenns 143
TR T T 1 I O N 143
05 705 T8 1 T = R PP 143
13.3.14, PGl CONTINUE. ..ttt it ii e et e ettt ettt et e e e e eanaeeiteaneennaennaeanaennas 143

PGI Visual Fortran User's Guide Version 2017 | vii

13.3.15. PGILOBUJSUFFIX. . eutiniiiiiiiiiitii i eas 144

13.3.16. PGI_STACK _USAGEL......c ittt ettt eenteenteeneeaneeanaanns 144
13,3017, PGLTERM. ettt ii i et et et e e eeeeeneeeneeanteaneeaneensesnsesnsesneseneennes 144
13.3.18. PGILLTERM_DEBUG. ... etuittttittiiiiiiettietieetieetaeeeaeeeneeeneeenteeneeenseenseanss 145
13.3.19. PGROUPD_LICENSE _FILE. ... eieittiitiiitirieeeieeeneenneeeneenneeeneeeneeenseeneesnseaneenns 146
13.3.20. STATIC_RANDOM_SEED. ... uutintiitiiitiitiit ettt teeeeeteerieetieeeneeeneeanees 146

0 700 70 A O I P 146
13,322, TMPDIR. Lt e et ettt et ettt e e e e e e e e e e e aaaeaa 147
13.4. Stack Traceback and JIT DebUGZiNg.....cciiiiiiririiiiiiiiiiiiieiiieeeeeeenrneeeereennnnneens 147
Chapter 14. Distributing Files - Deployment.......cccveiiiiiiiiieiirnneeeeeeerrneeeeceeesnnneecccenns 148
14.1. Deploying Applications 0N WiNAOWS.ciiiiiieetitreiiiteeireeiineeeeresrnneeeeeeesnnneeeenes 148
14.1.1. PGl Redistributables.coiiiniiiiiiiii i ei e ee e eee e reneeeeeeaeanas 148
14.1.2. Microsoft Redistributables........coouiiiiiiiiiiiiiiii i 149
14.2. Code Generation and Processor ArChiteCture........cvevuiieiiiiiiiiiiriieeiieeeineenennnennn 149
14.2.1. Generating Generic X86-64 Code......uiiiiiiiiiiiiiiieiiieiieeeieeeeieeeeaieeeannaeann 149
14.2.2. Generating Code for a SpecCifiC ProCeSSOr....iviiiiitiiiiiiiieeiiiiiieeeeeeiiineeeeeanns 149
14.3. Generating One Executable for Multiple Types of Processors.......c.cccceeeieeieineiennnnnnn. 150
14.3.1. PGI Unified Binary Command-line Switches.......c.ccoviiiiiiiiiiiiiiiiiiiiiiiiii e 150
14.3.2. PGI Unified Binary Directives and Pragmas.........coooevieiiieiiieiiiiiiiieiieenneenneenns 151
Chapter 15. Inter-language Calling.......c.cciiieieeiiieiernneereeeerennereeecsennasecccesnnsssccannnnses 152
15.1. Overview of Calling ConVENTIONS.cuviiuiiitiiitiiiiiiiiiiii et eeeeneeanaens 152
15.2. Inter-language Calling Considerations.veevieieiiiiiiieeeeieerinneeeerernnneeeeresennnneens 153
15.3. Functions and SUDIOULINES.eernetieitiiiiteeeieeeiteeeeteeeneeeeaneeranneeeaneeeeanaesnns 153
15.4. Upper and Lower Case Conventions, UNAersCores......c.vuveeeriereereernnneeereenrneeeeeenns 154
15.5. ComMPatible Data Ty PES. . .uuueittiiiiiittieiiiieeeeiieeeteeeasneeeeeesannaeeseeeessnseaeeennn 154
15.5.1. Fortran Named Common BlOCKS.......ccvviuiriiiiiiiiiiiii e 155
15.6. Argument Passing and Return Values.......coviiiiiiiiiiiiiiiiiiiiiiiiii i eiiiie e eeeeiiaeaens 156
15.6.1. Passing DY ValUe (JVAL) .. uuuueirntiiiitieiiteeieeeieeeeneeeeaeeeenaeeaaneeeesneseenneens 156
15.6.2. Character REtUIN ValUEs.veriniiiiiiiiirt ittt eeatereaeeeeeerenneerannananns 156
15.6.3. ComMPLleX RELUIN ValUES.uiiineiiiitiiiitieiiteieiteeenteeeneeeeaneeeenaeeesneesanneeenns 157
LT N4 - VA [o | [t~ PP 157
L TR TR - 141 o] = PP PPt 158
15.8.1. Example - Fortran Calling C.....coiiiiiiiiiiiiiiiiiiitetieeiiieeeeeeenrnneeeeessnnnneceeeanns 158
15.8.2. Example - C Calling FOrtran.ceeeiiriiiiiitriitieeieeenteeeneeeeaneeeenneeesnneenns 159
15.8.3. Example - Fortran Calling CH+...uuuiiiiiiiiiiiiiiiiieteeiiieeeereeannneeesesnnnneeeens 160
15.8.4. Example - C++ Calling FOrtran......coiiiiiiieiiiiiiiiiiii ittt ieiiiieeeeeeeainaaeeens 160
Chapter 16. Programming Considerations for 64-Bit Environments........cccccvveeiiieiineinnens 162
16.1. Data Types in the 64-Bit Environment.......coiiiiiiiiiiiiiiiiiii e e eeiaaes 162
16.1.1. FOrtran Data Ty S cceeuuuetetteeeiieeeereeaanaeeeeeeennnneeessesnaneesssessnnseessessnnnaesss 162
16.2. Large Dynamically Allocated Data......ccoueiiiiiiiiiiiiiiiiiiteieiiieeeeeeniieeeeeeennnnes 163
16.3. Compiler Options for 64-bit Programming.........ccovieiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeneens 163
16.4. Practical Limitations of Large Array Programming.......cceveeeeieeiiineeeereennneeeeeenannnnes 164
16.5. Large Array and Small Memory Model in Fortran.........cocoevviiiiiiiiiiiiiiiinieineennee. 164

PGI Visual Fortran User's Guide Version 2017 | viii

Chapter 17. Contact INformation.....c.ciieieeeiiiiiiineieieiieneeeeteeesnneeccecssnneseccccsnnnssccceees 166

PGI Visual Fortran User's Guide Version 2017 | ix

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

PGl Compilers and CoOmMMAaNASceeieiiineeetiiiiieeeererirneteeeessnneneeeeessnneeeesessnnnnes XV
PVF Win32 APl MOAULE MapPPings .uuueeetiieiiineteeieeiieteeeeeenaeeeeeessnaseseesennnseseenanns 7
Property Summary by Property Pageccoiiiiiiiiiiiiiiiiiiiiiiiii it eeeiieeeeanas 15
PVF Project File Properties ..oeeueeieietirettieitteeieteeeeeeeaneeeenneeeaneeresneeeenneeeenneens 19
Runtime Library Values for PVF and VC++ Projectscovvviiiiiiiiiiiiiiiiiiniiinennnnnes, 24
(0]0]4 (o] a I 0TI ol] i (o] o LSNP 43
10701 (or: LS - 1 A 0]] 4 (o] 1 LI PP PP PP 50
Additional -fast OPTiONS «o..uuuetiiiiiiiiieiiiitteeeireeeeteeanneeeeesannnneeessennnnneeens 50
Commonly Used Command-Line OptioNnscevuueeiiiiiiineeeereiiieeeeeeennnneeeeeeesnnnneens 51
Example of Effect of Code UNrollingccvvuieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeneeinneeeenns 61
ATt Y U] 1o] 0] o] o PP PP PP PP 63
S\ Tele] o Tl 8] STU] 1] o] u [o) 3 TR PP PPN 67
Optimization and -0, -g and -M<opt> OpPLioNScvviiiiiiiiiiiiiiii e 73
Directive and Pragma Summary Tablec.viiiiuiiiiiiiiiiiiiiii e eeeeeeaaas 86
Directive and Pragma Summary Table ...covieeiiiiiiiiiiiiiiiiiiiieeeiiieeeereannnnneens 87
Runtime Library ROULINES SUMMAIY ..ciiniiiiiiiiiii i reriiee e reeenneneeeaannns 90
OpenMP-related Environment Variable Summary Tablec.ccovviiiiiiiiiiiiiiiiinennnnns 94
PGI Accelerator Directive Summary Table ...couviiiiiiiiiiiiiiiiiiii e 106
Directive Clauses SUMMAIY ..uuiiiiiiiittiiiiiieetteiieeeeeeeaineeeeeeesnnseeeesesaneneens 109
Accelerator Runtime Library ROULINGEScoiiiiiiiiiiiiiiiiiiii it e eeiaees 113
Accelerator Environment Variablesccoiiiiiiiiiiiiiiiiiiiiiiiii e 114
Supported FOrtran INtrinSiCS ..uueee e eieee i eeieeeieeeieeeeieeeeeneeeanneeeenaeeesnnees 118
Proprietary Optimization-Related Fortran Directive Summarycccovvviiinnnnnnn.. 121
IGNORE_TKR EXAMPLE . uuuettiiiiiiitttteeeiiteteereannaneeeeeenrnneeessessnnneeessesnnnnasssanns 125

PGI Visual Fortran User's Guide Version 2017 | x

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

IDECS Directives SUMMArY Table .oouiiuiieiieiiiiiteeeeeeeeeeeeeereeneeneenaenns 126

PGI-Related Environment Variable SUMMaArycoeviiiiiiiriiiiiiiiiiiiieiieeaeeenns 138
Supported PGILTERM ValUSouuiiiuiiiiiiiiiiii it eiieeit et ee e eeeeeaens 144
Fortran and C/C++ Data Type Compatibilityccceiviieiiiiiiiiiiiiiiiiiiiiiiiieee e, 154
Fortran and C/C++ Representation of the COMPLEX TyPe ..cccuruvriirriiiinneirreinnnnnnnns 155
(2o | A 0o 00T 0 | (< 0] o) {o] o S PPN 163
Effects of Options on Memory and Array SizeSceviiiiiiiiiiiiiiieneeieieineeeeenennns 163
64-Bit LiIMitations ...ooueiiniiiniiiiiiiiiiii i e 164

PGI Visual Fortran User's Guide Version 2017 | xi

PREFACE

This guide is part of a set of manuals that describe how to use the PGI Fortran compilers
and program development tools integrated with Microsoft Visual Studio. These tools,
combined with Visual Studio and assorted libraries, are collectively known as PGI Visual
Fortran®, or PVF®. You can use PVF to edit, compile, debug, optimize, and profile serial
and parallel applications for x86-64 processor-based systems.

The PGI Visual Fortran User’s Guide provides operating instructions for both the Visual
Studio integrated development environment as well as command-level compilation.
The PGI Visual Fortran Reference Manual contains general information about PGI’s
implementation of the Fortran language. This guide does not teach the Fortran
programming language.

Audience Description

This manual is intended for scientists and engineers using PGI Visual Fortran. To fully
understand this guide, you should be aware of the role of high-level languages, such
as Fortran, in the software development process; and you should have some level of
understanding of programming. PGI Visual Fortran is available on a variety of x86-64/
x64 hardware platforms and variants of the Windows operating system. You need to be
familiar with the basic commands available on your system.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of this PGI
product. For information on installing PVF, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following;:

> American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

» ISO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

PGI Visual Fortran User's Guide Version 2017 | xii

Preface

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» The Fortran 2003 Handbook, Adams et al, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://
Www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation
(September, 1984).

» IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard
Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» ISO/IEC 9899:2011, Information Technology — Programming Languages — C, Geneva,
2011 (C11).

» ISO/IEC 14882:2011, Information Technology — Programming Languages — C++,
Geneva, 2011 (C++11).

Organization

Users typically begin by wanting to know how to use a product and often then find that
they need more information and facts about specific areas of the product. Knowing how
as well as why you might use certain options or perform certain tasks is key to using

the PGI compilers and tools effectively and efficiently. However, once you have this
knowledge and understanding, you very likely might find yourself wanting to know
much more about specific areas or specific topics.

This guide contains the essential information on how to use the compiler and is divided
into these sections:

Getting Started with PVF gives an overview of the Visual Studio environment and how
to use PGI Visual Fortran in that environment.

Build with PVF gives an overview of how to use PGI Visual Fortran (PVF) within the
Microsoft Visual Studio IDE (Integrated Development Environment) to create and build
a PVF project.

Debug with PVF gives an overview of how to use the custom debug engine that
provides the language-specific debugging capability required for Fortran.

Using MPI in PVF describes how to use MPI with PGI Visual Fortran.

Getting Started with The Command Line Compilers provides an introduction to the PGI
compilers and describes their use and overall features.

Use Command-line Options provides an overview of the command-line options as well
as task-related lists of options.

Optimizing and Parallelizing describes standard optimization techniques that, with little
effort, allow users to significantly improve the performance of programs.

PGI Visual Fortran User's Guide Version 2017 | xiii

http://www.openmp.org
http://www.openmp.org

Preface

Using Function Inlining describes how to use function inlining and shows how to create
an inline library.

Using OpenMP provides a description of the OpenMP Fortran parallelization directives
and shows examples of their use.

Using an Accelerator describes how to use the PGI Accelerator compilers.

Using Directives provides a description of each Fortran optimization directive, and
shows examples of their use.

Creating and Using Libraries discusses PGI support libraries, shared object files, and
environment variables that affect the behavior of the PGI compilers.

Using Environment Variables describes the environment variables that affect the
behavior of the PGI compilers.

Distributing Files — Deployment describes the deployment of your files once you have
built, debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language calls in a
Fortran program and Fortran language calls in a C program.

Programming Considerations for 64-Bit Environments discusses issues of which
programmers should be aware when targeting 64-bit processors.

Hardware and Software Constraints

This guide describes versions of the PGI Visual Fortran that are intended for use on x64
processor-based systems. Details concerning environment-specific values and defaults
and system-specific features or limitations are presented in the release notes delivered
with the PGI Visual Fortran.

Conventions

This guide uses the following conventions:

italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item?2 or
item3.

PGI Visual Fortran User's Guide Version 2017 | xiv

Preface

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at
https://www.pgicompilers.com/products/index.htm?tab=compat for a comprehensive
listing of supported platforms.

Support for 32-bit development was deprecated in PGl 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

Terms

A number of terms related to systems, processors, compilers and tools are used
throughout this guide. For example:

accelerator FMA -mcmodel=medium static linking
AVX host -mcmodel=small Win32

CUDA hyperthreading (HT) MPI Win64
device large arrays multicore x64

DLL license keys NUMA s86

driver LLVM SIMD x87

DWARF manycore SSE

For a complete definition of these terms and other terms in this guide with
which you may be unfamiliar, please refer to the PGI online glossary at https://
www.pgicompilers.com/support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding
commands:

Table 1 PGI Compilers and Commands

Compiler or Tool | Language or Function Command

PGF77 ANSI FORTRAN 77 pgf77

PGI Visual Fortran User's Guide Version 2017 | xv

https://www.pgicompilers.com/products/index.htm?tab=compat
https://www.pgicompilers.com/products/index.htm?tab=compat
https://www.pgicompilers.com/support/definitions.htm
https://www.pgicompilers.com/support/definitions.htm
https://www.pgicompilers.com/support/definitions.htm

Preface

Compiler or Tool | Language or Function Command
PGFORTRAN ISO/ANSI Fortran 2003 pgfortran
PGI Debugger Source code debugger pgdbg

PGI Profiler Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to the PGI Fortran 2003 compiler,
and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally
reference the pgfortran command, and most source code examples are written in
Fortran. Usage of the PGF77 compiler, whose features are a subset of PGFORTRAN, is
similar.

There are a wide variety of 64-bit x86-compatible processors in use. All are supported by
the PGI compilers and tools. Most of these processors are forward-compatible, but not
backward-compatible, meaning that code compiled to target a given processor will not
necessarily execute correctly on a previous-generation processor.

A table listing the processor options that PGI supports is available in the Release Notes.
The table also includes the features utilized by the PGI compilers that distinguish them
from a compatibility standpoint.

In this manual, the convention is to use "x86" to specify the group of processors that
are "32-bit" but not "64-bit". The convention is to use "x64" to specify the group of
processors that are both "32-bit" and "64-bit". x86 processor-based systems can run only
32-bit operating systems. x64 processor-based systems can run either 32-bit or 64-bit
operating systems, and can execute all 32-bit x86 binaries in either case. x64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI
compilers and tools when running on a 64-bit operating system. The prefetch, SSE1,
SSE2, SSE3, and AVX processor features further distinguish the various processors.
Where such distinctions are important with respect to a given compiler option or
feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions
on targets that support SSE1 and SSE2.

Support for 32-bit development was deprecated in PGl 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
bit or 64-bit operating systems.

Related Publications

The following documents contain additional information related to the x86-64 and x64
architectures, and the compilers and tools available from The Portland Group.

PGI Visual Fortran User's Guide Version 2017 | xvi

Preface

» PGI Fortran Reference Manual, http://www.pgicompilers.com/resources/docs/17.10/
pdf/pvfl7ref.pdf describes the FORTRAN 77, Fortran 90/95, Fortran 2003 statements,
data types, input/output format specifiers, and additional reference material related
to use of the PGI Fortran compilers.

» System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

» System V Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/documentation_folder/abi.pdf.

» Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

PGI Visual Fortran User's Guide Version 2017 | xvii

http://www.pgicompilers.com/resources/docs/17.10/pdf/pvf17ref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pvf17ref.pdf
http://www.x86-64.org/documentation_folder/abi.pdf
http://www.x86-64.org/documentation_folder/abi.pdf

Preface

PGI Visual Fortran User's Guide Version 2017 | xviii

Chapter 1.
GETTING STARTED WITH PVF

This section describes how to use PGI Visual Fortran (PVF) within the Microsoft Visual
Studio IDE (Integrated Development Environment). For information on general use of
Visual Studio, refer to Microsoft’s documentation.

PVF is integrated with two versions of Microsoft Visual Studio. Currently, Visual Studio
2013 and 2015 are supported. Throughout this document, "PGI Visual Fortran" refers

to PVF integrated with either of these supported versions of Visual Studio. Similarly,
"Microsoft Visual Studio" refers to Visual Studio 2013 and VS 2015. When it is necessary
to distinguish among the products, the document does so.

Single-user node-locked and multi-user network floating license options are available
for both products. When a node-locked license is used, one user at a time can use PVF
on the single system where it is installed. When a network floating license is used, a
system is selected as the server and it controls the licensing, and users from any of the
client machines connected to the license server can use PVF. Thus multiple users can
simultaneously use PVF, up to the maximum number of users allowed by the license.

PVF provides a complete Fortran development environment fully integrated with
Microsoft Visual Studio. It includes a custom Fortran Build Engine that automatically
derives build dependencies, Fortran extensions to the Visual Studio editor, a custom PGI
Debug Engine integrated with the Visual Studio debugger, PGI Fortran compilers, and
PVE-specific property pages to control the configuration of all of these.

The following sections provide a general overview of the many features and capabilities
available to you once you have installed PVFE. Exploring the menus and trying the
sample program in this section provide a quick way to get started using PVE.

1.1. PVF on the Start Screen and Start Menu

PGI creates an entry on the Start Menu for PGI Visual Fortran to facilitate access to
PVF, command shells pre-configured with the PVF environment, and documentation.
Microsoft has replaced the Start Menu in the Windows 8, 8.1, 10 and Server 2012
operating systems with a Start Screen. If you are using one of these environments, you
find tiles on the Start Screen for Visual Studio, the PGI profiler and the command shells.
The document links are hidden tiles; to locate one, search for it from the Start Screen by

PGI Visual Fortran User's Guide Version 2017 | 1

Getting Started with PVF

typing the first letter or two of its name. Tip: almost all of the PGI documents start with
the letter ‘p’.

This section provides a quick overview of the PVF menu selections. To access the PGI
Visual Fortran menu, from the Start menu, select Start | All Programs | PGI Visual
Fortran.

1.1.1. Shortcuts to Launch PVF

From the PGI Visual Fortran menu, you have access to PVF in each version of Visual
Studio on your system. For example, if you have VS 2013 and VS 2015 on your system,
you see shortcuts for PVF 2013 and PVF 2015.

PVF runs within Visual Studio, so to invoke PVF you must invoke Visual Studio. If other
languages such as Visual C++ or Visual Basic are installed, they are available in the same
instance of Visual Studio as PVF.

The PVF shortcuts include the following;:

PGI Visual Fortran 2015 —Select this option to invoke PGI Visual Fortran 2015.
PGI Visual Fortran 2013 —Select this option to invoke PGI Visual Fortran 2013.

1.1.2. Commands Submenu

From the Commands menu, you have access to PVF command shells configured for each
version of Visual Studio installed on your system. For example, if you have both PVF
2015 and PVF 2013 installed when you install PVF, then you have selections for PVF 2015
and PVF 2013.

These shortcuts invoke a command shell with the environment configured for the PGI
compilers and tools. The command line compilers and graphical tools may be invoked
from any of these command shells without any further configuration.

Important If you invoke a generic Command Prompt using Start | All Programs |
Accessories | Command Prompt, then the environment is not pre-configured for PGI
products.

1.1.3. Profiler Submenu

Use the profiler menu to launch the PGI performance profiler. The profiler provides a
way to visualize and diagnose the performance of the components of your program and
provides features for helping you to understand why certain parts of your program have
high execution times.

1.1.4. Documentation Menu

All PGI documentation is available online. The Documentation menu contains a link to
the online location.

PGI Visual Fortran User's Guide Version 2017 | 2

Getting Started with PVF

1.1.5. Licensing Submenu

From the Licensing menu, you have access to the PGI License Agreement and an
automated license generating tool:

» Generate License—Select this option to display the PGI License Setup dialog that
walks you through the steps required to download and install a license for PVFE. To
complete this process you need an internet connection.

» License Agreement—Select this option to display the license agreement that is
associated with use of PGI software.

1.2. Introduction to PVF

This section provides an introduction to PGI Visual Fortran as well as basic information
about how things work in Visual Studio. It contains an example of how to create a PVF
project that builds a simple application, along with the information on how to run and
debug this application from within PVF. If you're already familiar with PVF or are
comfortable with project creation in VS, you may want to skip ahead to the next section.

1.2.1. Visual Studio Settings

PVF projects and settings are available as with any other language. The first time Visual
Studio is started it may display a list of default settings from which to choose; select
General Development Settings. If Visual Studio was installed prior to the PVF install, it will
start as usual after PVF is installed, except PVF projects and settings will be available.

1.2.2. Solutions and Projects

The Visual Studio IDE frequently uses the terms solution and project. For consistency of
terminology, it is useful to discuss these here.

solution
All the things you need to build your application, including source code,
configuration settings, and build rules. You can see the graphical representation of
your solution in the Solution Explorer window in the VS IDE.

project
Every solution contains one or more projects. Each project produces one output,
where an output is an executable, a static library, or a dynamic-link library (DLL).
Each project is specific to a single programming language, like PGI Visual Fortran or
Microsoft Visual C++, but you can have projects of different languages in the same
solution.

We examine the relationship between a solution and its projects in more detail by using
an example. But first let’s look at an overview of the process. Typically there are these
steps:

1. Create a new PVF project.
2. Modify the source.
3. Build the solution.

PGI Visual Fortran User's Guide Version 2017 | 3

Getting Started with PVF

4. Run the application.
5. Debug the application.

1.3. Creating a Hello World Project

Let’s walk through how to create a PVF solution for a simple program that prints "Hello
World".

1. Create Hello World Project
Follow these steps to create a PVF project to run "Hello World".
1. Select File | New | Project from the Visual Studio main menu.

The New Project dialog appears.

2. In the Project types window located in the left pane of the dialog box, expand PGI
Visual Fortran, and then select x64.

3. In the Templates window located in the right pane of the dialog box, select Console
Application (64-bit).

4. Inthe Name field located at the bottom of the dialog box, type: HelloWorld.

5. Click OK.

You should see the Solution Explorer window in PVF. If not, you can open it now
using View | Solution Explorer from the main menu. In this window you should see
a solution named HelloWorld that contains a PVF project, which is also named
HelloWorld.

2. Modify the Hello World Source

The project contains a single source file called ConsoleApp. £90. If the source file
is not already opened in the editor, open it by double-clicking the file name in the
Solution Explorer. The source code in this file should look similar to this:

program prog

implicit none

! Variables

! Body
end program prog

Now add a print statement to the body of the main program so this application
produces output. For example, the new program may look similar to this:

program prog

implicit none

! Variables

! Body

print *, "Hello World"
end program prog

3. Build the Solution

You are now ready to build a solution. To do this, from the main menu, select Build |
Build Solution.

The View | Output window shows the results of the build.
4. Run the Application

PGI Visual Fortran User's Guide Version 2017 | 4

Getting Started with PVF

To run the application, select Debug | Start Without Debugging.

This action launches a command window in which you see the output of the
program. It looks similar to this:

Hello World
Press any key to continue .

5. View the Solution, Project, and Source File Properties

The solution, projects, and source files that make up your application have properties
associated with them.

The set of property pages and properties may vary depending on whether you are
looking at a solution, a project, or a file. For a description of the property pages
that PVF supports, refer to the ‘PVF Properties’ section in the PGI Visual Fortran

Reference Guide.

To see a solution’s properties:

1. Select the solution in the Solution Explorer.
2. Right-click to bring up a context menu.
3. Select the Properties option.

This action brings up the Property Pages dialog.
To see the properties for a project or file:

1. Select a project or a file in the Solution Explorer.
2. Right-click to bring up a context menu.
3. Select the Properties option.

This action brings up the Property Pages dialog.

At the top of the Property Pages dialog there is a box labeled Configuration. In a PVF
project, two configurations are created by default:

» The Debug configuration has properties set to build a version of your application
that can be easily examined and controlled using the PVF debugger.

» The Release configuration has properties set so a version of your application is
built with some general optimizations.

When a project is initially created, the Debug configuration is the active
configuration. When you built the HelloWorld solution in Creating a Hello World
Project, you built and ran the Debug configuration of your project. Let’s look now at
how to debug this application.

6. Run the Application Using the Debugger
To debug an application in PVEF:
1. Set a breakpoint on the print statement in ConsoleApp.£90.

To set a breakpoint, left-click in the far left side of the editor on the line where
you want the breakpoint. A red circle appears to indicate that the breakpoint is
set.

PGI Visual Fortran User's Guide Version 2017 | 5

Getting Started with PVF

2. Select Debug | Start Debugging from the main menu to start the PGI Visual
Fortran debug engine.

The debug engine stops execution at the breakpoint set in Step 1.

3. Select Debug | Step Over to step over the print statement. Notice that the program
output appears in a PGI Visual Fortran console window.

4. Select Debug | Continue to continue execution.

The program should exit.

For more information about building and debugging your application, refer to Build
with PVF and Debug with PVF. Now that you have seen a complete example, let’s
take a look at more of the functionality available in several areas of PVFE.

1.4. Using PVF Help

The PGI Visual Fortran User’s Guide, PGI Visual Fortran Reference Manual,
and PGI Fortran Reference are accessible online at PGI Documentation, http://
www.pgicompilers.com/resources/docs/17.10/x86/index.htm.

Context-sensitive (<F1>) help is not currently supported in PVF.

1.5. PVF Sample Projects

The PVF installation includes several sample solutions, available from the PVF
installation directory, typically in a directory called Samples:
$(VSInstallDir) \PGI Visual Fortran\Samples\

These samples provide simple demonstrations of specific PVF project and solution
types.
In the d11s subdirectory of the Samples directory, you find this sample program:

pvE_dll
Creates a DLL that exports routines written in Fortran.

In the gpu subdirectory of the Samples directory, you find these sample programs
which require a PGI Accelerator License to compile and a GPU to run.
AccelPM Matmul
Uses directives from the PGI Accelerator Programming Model to offload a matmul
computation to a GPU.
CUDAFor_ Matmul
Uses CUDA Fortran to offload a matmul computation to a GPU.

In the interlanguage subdirectory of the Samples directory, you find this sample
program which requires that Visual C# be installed to build and run:
csharp calling pvfdll

Calls a routine in a PVF DLL from a Visual C# test program.

In the interlanguage subdirectory of the Samples directory, you find these sample
programs which require that Visual C++ be installed to build and run:

PGI Visual Fortran User's Guide Version 2017 | 6

http://www.pgicompilers.com/resources/docs/17.10/x86/index.htm
http://www.pgicompilers.com/resources/docs/17.10/x86/index.htm

Getting Started with PVF

pvE_calling vc
Creates a solution containing a Visual C++ static library, where the source is compiled
as C, and a PVF main program that calls it.

vcmain calling pvfdll
Calls a routine in a PVF DLL from a main program compiled by VC++.

1.6. Compatibility

PGI Visual Fortran provides features that are compatible with those supported by older
Windows Fortran products, such as Compaq® Visual Fortran. These include:

» Win32 API Support (dfwin)
» Unix/Linux Portability Support (df1ib, dfport)
» Graphical User Interface Support

PVF provides access to a number of libraries that export C interfaces by using Fortran
modules. This is the mechanism used by PVF to support the Win32 Application
Programming Interface (API) and Unix/Linux portability libraries. If C: is your system
drive, and <target> is your target system, such as win64, then source code containing the
interfaces in these modules is located here:

C:\Program Files\PGI\<target>\<release number>\src\
For more information about the specific functions in dfwin, df1ib, and dfport, refer

to the Fortran Module / Library Interfaces for Windows section in the PGI Visual Fortran
Reference Manual.

1.6.1. Win32 API Support (dfwin)

The Microsoft Windows operating system interface (the system call and library
interface) is known collectively as the Win32 API. This is true for both the 32-bit and 64-
bit versions of Windows; there is no "Win64 API" for 64-bit Windows.

PGI Visual Fortran provides access to the Win32 API using Fortran modules. For details
on specific Win32 API routines, refer to the Microsoft MSDN website.

For ease of use, the only module you need to use to access the Fortran interfaces to the
Win32 APl is dfwin. To use this module, simply add the following line to your Fortran
code.

use dfwin

Table 2 lists all of the Win32 API modules and the Win32 libraries to which they
correspond.

Table 2 PVF Win32 APl Module Mappings

PVF Fortran Module C Win32 API Lib C Header File
advapi32 advapi32.lib WinBase.h
comdlg32 comdlg32.lib CombDlg.h

gdi32 gdi32.lib WinGDl.h

PGI Visual Fortran User's Guide Version 2017 | 7

Getting Started with PVF

PVF Fortran Module C Win32 API Lib C Header File
kernel32 kernel32.lib WinBase.h
shell32 shell32.lib ShellAPI.h
user32 user32.lib WinUser.h
winver winver.lib WinVer.h
wsock32 wsock32.lib WinSock.h

1.6.2. Unix/Linux Portability Interfaces (dflib, dfport)

PVF also includes Fortran module interfaces to libraries supporting some standard
C library and Unix/Linux system call functionality. These functions are provided by
the df1ib and dfport modules. To utilize these modules add the appropriate use
statement:

use dflib

use dfport

For more information about the specific functions in df1ib and dfport, refer to
‘Fortran Module/Library Interfaces for Windows’ in the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.

1.6.3. Windows Applications and Graphical User
Interfaces

Programs that manage graphical user interface components using Fortran code are
referred to as Windows Applications within PVF.

PVF Windows Applications are characterized by the lack of a PROGRAM statement.
Instead, Windows Applications must provide a WinMain function like the following;:

PVF WinMain for x64

integer (4) function WinMain (hInstance, hPrevInstance, lpszCmdLine, nCmdShow)
integer (8) hInstance

integer (8) hPrevInstance

integer (8) lpszCmdLine

integer (4) nCmdShow

nCmdShow is an integer specifying how the window is to be shown. For more details

you can look up WinMain using the Microsoft MSDN website.

You can create a PVF Windows Application template by selecting windows
Application in the PVF New Project dialog. The project type of this name provides

a default implementation of WinMain, and the project’s properties are configured
appropriately. You can also change the Configuration Type property of another project
type to Windows Application using the General property page, described in the ‘General
Property Page’ section of the PGI Fortran Reference, http://www.pgicompilers.com/
resources/docs/17.10/pdf/pgil7fortref.pdf. If you do this, the configuration settings
change to expect WinMain instead of PROGRAM, but a WinMain implementation is not
provided.

PGI Visual Fortran User's Guide Version 2017 | 8

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Getting Started with PVF

Building Windows Applications from the Command Line

Windows Applications can also be built using a command line version of pgfortran. To
enable this feature, add the ~winapp option to the compiler driver command line when
linking the application. This option causes the linker to include the correct libraries and
object files needed to support a Windows Application. However, it does not add any
additional system libraries to the link line. Add any required system libraries by adding
the option ~defaultlib:<library name> to the link command line for each library.
For this option, <library name> can be any of the following: advapi32, comdlg32, gdi32,
kernel32, shell32, user32, winver, or wsock32.

For more information about the specific functions in each of these libraries, refer to
‘Fortran Module/Library Interfaces for Windows’ in the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.

PGI Visual Fortran User's Guide Version 2017 | 9

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Chapter 2.
BUILD WITH PVF

This section describes how to use PGI Visual Fortran (PVF) within the Microsoft Visual
Studio IDE (Integrated Development Environment) to create and build a PVF project.

For information on general use of Visual Studio, see Miocrosoft’s MSDN website. PVF
runs within Visual Studio, so to invoke PVF you must invoke Visual Studio. If other
languages such as Visual C++ or Visual Basic are installed, they will be available in the
same instance of Visual Studio as PVF.

2.1. Creating a PVF Project

2.1.1. PVF Project Types

Once Visual Studio is running, you can use it to create a PGI Visual Fortran project. PVF
supports a variety of project types:

» Console Application - An application (. exe) that runs in a console window, using
text input and output.

» Dynamic Library - A dynamically-linked library file (. d11) that provides routines
that can be loaded on-demand when called by the program that needs them.

» Static Library - An archive file (. 11b) containing one or more object files that can be
linked to create an executable.

» Windows Application - An application (. exe) that supports a graphical user
interface that makes use of components like windows, dialog boxes, menus, and so
on. The name of the program entry point for such applications is WinMain.

» Empty Project - A skeletal project intended to allow migration of existing
applications to PVF. This project type does not include any source files. By default,
an empty project is set to build an application (. exe).

2.1.2. Creating a New Project

To create a new project, follow these steps:

1. Select File | New | Project from the File menu.

PGI Visual Fortran User's Guide Version 2017 | 10

Build with PVF

The New Project dialog appears.

2. In the left-hand pane of the dialog, select PGI Visual Fortran.
The right-hand pane displays the icons that correspond to the project types listed in
Table 5.

3. Select the project type icon corresponding to the project type you want to create.

4. Name the project in the edit box labeled Name.

Tip The name of the first project in a solution is also used as the name of the
solution itself.

5. Select where to create the project in the edit box labeled Location.
6. Click OK and the project is created.

Now look in the Solution Explorer to see the newly created project files and folders.

2.2. PVF Solution Explorer

PVF uses the standard Visual Studio Solution Explorer to organize files in PVF projects.

Tip If the Solution Explorer is not already visible in the VS IDE, open it by selecting
View | Solution Explorer.

Visual Studio uses the term project to refer to a set of files, build rules, and so on that are
used to create an output like an executable, DLL, or static library. Projects are collected
into a solution, which is composed of one or more projects that are usually related in
some way.

PVF projects are reference-based projects, which means that although there can be
folders in the representation of the project in the Solution Explorer, there are not
necessarily any corresponding folders in the file system. Similarly, files added to the
project can be located anywhere in the file system; adding them to the project does not
copy them or move them to a project folder in the file system. The PVF project system
keeps an internal record of the location of all the files added to a project.

2.3. Adding Files to a PVF Project

This section describes how to add a new file to a project and how to add an existing file
to a project.

2.3.1. Add a New File

To add a new file to a PVF project, follow these steps:

1. Use the Solution Explorer to select the PVF project to which you want to add the
new file.

2. Right-click on this PVF project to bring up a context menu.

PGI Visual Fortran User's Guide Version 2017 | 11

Build with PVF

3. Select Add => New Item...
In the Add New Item dialog box, select a file type from the available templates.

5. A default name for this new file will be in the Name box. Type in a new name if you
do not want to use the default.

6. Click Add.

2.3.2. Add an Existing File

To add an existing file to a PVF project, follow these steps:

=

1. Use the Solution Explorer to select the PVF project to which you want to add the
new file.

2. Right-click on this PVF project to bring up a context menu.

Select Add => Existing Item...

4. In the Browse window that appears, navigate to the location of the file you want to
add.

5. Select the file and click Add.

®

n Tip You can add more than one file at a time by selecting multiple files.

2.4. Adding a New Project to a Solution

Each project produces one output, where an output is an executable, a static library, or a
dynamic-link library (DLL). For example, if you want one solution to build both a library
and an application that links against that library, you need two projects in the solution.

To add a project to a solution, follow these steps:

1. Use the Solution Explorer to select the solution.
2. Right-click on the solution to bring up a context menu.
3. Select Add => New Project...

The Add New Project dialog appears. To learn how to use this dialog, refer to
Creating a New Project.

4. In the Add New Project dialog box, select a project type from the available templates.
5. When you have selected and named the new project, click OK.

Each project is specific to a single programming language, like PGl Visual Fortran or
Microsoft Visual C++, but you can have projects that use different languages in the
same solution.

PGI Visual Fortran User's Guide Version 2017 | 12

Build with PVF

2.5. Project Dependencies and Build Order

If your solution contains more than one project, set up the dependencies for each project
to ensure that projects are built in the correct order.

To set project dependencies:

1. Right-click a project in the Solution Explorer.
2. From the resulting context menu select Build Dependencies (in older version of VS,
Project Dependencies is not under Build Dependencies.

The dialog box that opens has two tabs: Dependencies and Build Order.

a. Use the Dependencies tab to put a check next to the projects on which the
current project depends.
b. Use the Build Order tab to verify the order in which projects will be built.

2.6. Configurations

Visual Studio projects are generally created with two default configurations: Debug and
Release. The Debug configuration is set up to build a version of your application that can
be easily debugged. The Release configuration is set up to build a generally-optimized
version of your application. Other configurations may be created as desired using the
Configuration Manager.

2.7. Platforms

In Visual Studio, the platform refers to the operating system for which you are building
your application.

When you create a new project, you select its default platform. When more than one
platform is available, you can add additional platforms to your project once it exists. To
do this, you use the Configuration Manager.

2.8. Setting Global User Options

Global user options are settings that affect all Visual Studio sessions for a particular user,
regardless of which project they have open. PVF supports several global user settings
which affect the directories that are searched for executables, include files, and library
tiles. To access these:

1. From the main menu, select Tools | Options...
2. From the Options dialog, expand Projects and Solutions.
3. Select PVF Directories in the dialog’s navigation pane.

The PVF Directories page has two combo boxes at the top:

PGI Visual Fortran User's Guide Version 2017 | 13

Build with PVF

» Platform allows selection of the platform (i.e., x64).
» Show directories for allows selection of the search path to edit.

Search paths that can be edited include the Executable files path, the Include and
module files path, and the Library files path.

Tip It is good practice to ensure that all three paths contain directories from the
same release of the PGl compilers; mixing and matching different releases of the
compiler executables, include files, and libraries can have undefined results.

2.9. Setting Configuration Options using Property
Pages

Visual Studio makes extensive use of property pages to specify configuration options.
Property pages are used to set options for compilation, optimization and linking,

as well as how and where other tools like the debugger operate in the Visual Studio
environment. Some property pages apply to the whole project, while others apply to a
single file and can override the project-wide properties.

You can invoke the Property Page dialog in several ways:

» Select Project | Properties to invoke the property pages for the currently selected item
in the Solution Explorer. This item may be a project, a file, a folder, or the solution
itself.

» Right-click a project node in the Solution Explorer and select Properties from the
resulting context menu to invoke that project’s property pages.

» Right-click a file node in the Solution Explorer and select Properties from the context
menu to invoke that file’s property pages.

The Property Page dialog has two combo boxes at the top: Configuration and Platform.
You can change the configuration box to All Configurations so the property is changed for
all configurations.

Tip A common error is to change a property like ‘Additional Include Directories’ for
the Debug configuration but not the Release configuration, thereby breaking the build
of the Release configuration.

In the PGI Visual Fortran Reference Manual, the ‘Command-Line Options Reference’
section contains descriptions of compiler options in terms of the corresponding
command-line switches. For compiler options that can be set using the PVF property
pages, the description of the option includes instructions on how to do so.

2.10. Property Pages

Properties, or configuration options, are grouped into property pages. Further, property
pages are grouped into categories. Depending on the type of project, the set of available

PGI Visual Fortran User's Guide Version 2017 | 14

Build with PVF

categories and property pages vary. The property pages in a PVF project are organized

into the following categories:

General
Debugging
Fortran
Linker

vV v v Vv

Librarian
Resources

Build Events
Custom Build Step

vV vV v Vv

Tip The Fortran, Linker and Librarian categories contain a Command Line property
page where the command line derived from the properties can be seen. Options that
are not supported by the PVF property pages can be added to the command line from
this property page by entering them in the Additional Options field.

Table 3 shows the properties associated with each property page, listing them in the
order in which you see them in the Properties dialog box. For a complete description
of each property, refer to the PVF Properties section of the PGI Visual Fortran Reference

Guide.

Table 3 Property Summary by Property Page

This Property Page...

Contains these properties...

General Property Page

Output Directory
Intermediate Directory
Extensions to Delete on Clean
Configuration Type

Build Log File

Build Log Level

Debugging

Application Command
Application Arguments
Environment

Merge Environment

Accelerator Profiling

MPI Debugging

Working Directory [Serial]
Number of Processes [Local MPI]
Working Directory [Local MPI]
Additional Arguments: mpiexec [Local MPI]
Location of mpiexec [Local MPI]

Fortran | General

Display Startup Banner
Additional Include Directories
Module Path

Object File Name

Debug Information Format
Optimization

Fortran | Optimization

PGI Visual Fortran User's Guide

Optimization
Global Optimizations
Vectorization

Version 2017 | 15

Build with PVF

This Property Page...

Contains these properties...

Inlining

Use Frame Pointer
Loop Unroll Count
Auto-Parellelization

Fortran | Preprocessing

Preprocess Source File

Additional Include Directories
Ignore Standard Include Path
Preprocessor Definitions
Undefine Preprocessor Definitions

Fortran | Code Generation

Runtime Library

Fortran | Language

Fortran Dialect

Treat Backslash as Character
Extend Line Length

Enable OpenMP Directives

Enable OpenACC Directives
OpenACC Autoparallelization
OpenACC Required

OpenACC Routineseq

OpenACC Wait

OpenACC Conformance Level
OpenACC Sync

MPI

Enable CUDA Fortran

CUDA Fortran Register Limit
CUDA Fortran Use Fused Multiply-Adds
CUDA Fortran Use Fast Math Library
CUDA Fortran Debug

CUDA Fortran Line Information
CUDA Fortran Use LLVM Backend
CUDA Fortran Unroll

CUDA Fortran Flush to Zero

CUDA Fortran Toolkit

CUDA Fortran Compute Capability
CUDA Fortran Fermi

CUDA Fortran Fermi+

CUDA Fortran Kepler

CUDA Fortran Kepler+

CUDA Fortran Keep Binary

CUDA Fortran Keep Kernel Source
CUDA Fortran Keep PTX

CUDA Fortran PTXAS Info

CUDA Fortran Generate RDC
CUDA Fortran Emulation

CUDA Fortran Madconst

Fortran | Floating Point Options

PGI Visual Fortran User's Guide

Floating Point Exception Handling
Floating Point Consistency

Version 2017 | 16

Build with PVF

This Property Page...

Contains these properties...

Flush Denormalized Results to Zero
Treat Denormalized Values as Zero
IEEE Arithmetic

Fortran | External Procedures

Calling Convention
String Length Arguments
Case of External Names

Fortran | Libraries

Use MKL

Fortran | Target Processors

AMD Athlon

AMD Barcelona
AMD Bulldozer
AMD Istanbul

AMD Piledriver
AMD Shanghai
Intel Core 2

Intel Core 17
Intel Penryn

Intel Pentium 4
Intel Sandy Bridge
Generic x86-64 [x64 only]

Fortran | Target Accelerators

Target NVIDIA Tesla

Tesla Register Limit

Tesla Use Fused Multiple-Adds
Tesla Use Fused Math Library
Tesla LLVM

Tesla Noattach

Tesla Pin Host Memory
Tesla Autocollapse

Tesla Debug

Tesla Lineinfo

Tesla Unroll

Tesla Required

Tesla Flush to Zero

Tesla Generate RDC

Tesla CUDA Toolkit

Tesla Compute Capability
Tesla CC Fermi

Tesla CC Fermi+

Tesla CC Kepler

Tesla CC Kepler+

Tesla Keep Kernel Files
Target Host

Fortran | Diagnostics

PGI Visual Fortran User's Guide

Warning Level
Generate Assembly
Annotate Assembly
Accelerator Information

Version 2017 | 17

Build with PVF

This Property Page...

Contains these properties...

CCFF Information

Fortran Language Information
Inlining Information

IPA Information

Loop Intensity Information
Loop Optimization Information
LRE Information

OpenMP Information
Optimization Information
Parallelization Information
Unified Binary Information
Vectorization Information

Fortran | Profiling

Function-Level Profiling
Line-Level Profiling

MPI

Suppress CCFF Information
Enable Limited Dwarf

Fortran | Runtime

Check Array Bounds
Check Pointers
Check Stack

Fortran | Command Line

All options (read-only contents box)
Additional options (contents box you can modify)

Linker | General

Output File

Additional Library Directories
Stack Reserve Size

Stack Commit Size

Export Symbols

Linker | Input

Additional Dependencies

Linker | Command Line

All options (read-only contents box)
Additional options (contents box you can modify)

Librarian | General

Output File
Additional Library Directories
Additional Dependencies

Librarian | Command Line

All options (read-only contents box)
Additional options (contents box you can modify)

Resources | Command Line

All options (read-only contents box)
Additional options (contents box you can modify)

Build Events | Pre-Build Event

PGI Visual Fortran User's Guide

Command Line
Description

Version 2017 | 18

Build with PVF

This Property Page... Contains these properties...
Excluded from Build

Build Events | Pre-Link Event Command Line

Description
Excluded from Build

Build Events | Post-Build Event Command Line

Description
Excluded from Build

Custom Build Step | General Command Line

Description
Outputs
Additional Dependencies

2.11. Setting File Properties Using the Properties
Window

Properties accessed from the Property Pages dialog allow you to change the
configuration options for a project or file. The term property, however, has another
meaning in the context of the Properties Window. In the Properties Window property
means attribute or characteristic.

To see a file's properties, do this:

1. Select the file in the Solution Explorer.
2. From the View menu, open the Properties Window.

Some file properties can be modified, while others are read-only.

The values of the properties in the Properties Window remain constant regardless of the
Configuration (Debug, Release) or Platform (x64) selected.

Table 4 lists the file properties that are available in a PVF project.

Table 4 PVF Project File Properties

This property... Does this...

Name Shows the name of the selected file.

Filename Shows the name of the selected file.

FilePath Shows the absolute path to the file on disk. (Read-only)

FileType Shows the registered type of the file, which is determined by the file’s

extension. (Read-only)

IsCUDA Indicates whether the file is considered a CUDA Fortran file.

True indicatesthe file's extension is . cuf or the Enable CUDA Fortran
property is set to Yes (Read-only).

PGI Visual Fortran User's Guide Version 2017 | 19

Build with PVF

This property... Does this...
False indicatesthe file is not a CUDA Fortran file.

IsFixedFormat Determines whether the Fortran file is fixed format. True indicates fixed
format and Fal se indicates free format.

To change whether a source file is compiledas fixed or free format source,
set this property appropriately. PVF initially uses file extensions to determine
format style: the . £ and . £or extensions imply fixed format, while other
extensions such as . £90 or . £95 imply free format.

The 'C' and *' comment charactersare only valid for fixed
format compilation.

IsincludeFile A boolean value that indicates if the file is an include file.

When T rue,PVF considers the file to be an include file and it does not
attempt to compile it.

When False, if the filenamehas a supported Fortran or Resource file
extension, PVF compiles the file as part of the build.

Tip You can use thisproperty to exclude a source file from a

build.
IsOutput Indicates whether a file is produced by the build. (Read-only)
ModifiedDate Contains the date and time that the file was last saved to disk. (Read-only)
ReadOnly Indicates the status of the Read-Only attribute of the file on disk.
Size Describes the size of the file on disk.

2.12. Setting Fixed Format

Some Fortran source is written in fixed-format style. If your fixed-format code does not
compile, check that it is designated as fixed-format in PVE.

To check fixed-format in PVF, follow these steps:

1. Use the Solution Explorer to select a file: View | Solution Explorer.
2. Open the Properties Window: View | Properties Window.
3. From the dropdown list for the file property IsFixedFormat, select True.

2.13. Building a Project with PVF

Once a PVF project has been created, populated with source files, and any necessary
configuration settings have been made, the project can be built. The easiest way to start a
build is to use the Build | Build Solution menu selection; all projects in the solution will be

built.

PGI Visual Fortran User's Guide Version 2017 | 20

Build with PVF

If there are compile-time errors, the Error List window is displayed, showing a summary
of the errors that were encountered. If the error message shows a line number, then
double-clicking the error record in the Error List window will navigate to the location of
the error in the editor.

When a project is built for the first time, PVF must determine the build dependencies.
Build dependencies are the result of USE or INCLUDE statements or #include
preprocessor directives in the source. In particular, if file A contains a USE statement
referring to a Fortran module defined in file B, file B must be compiled successfully
before file A will compile.

To determine the build dependencies, PVF begins compiling files in alphabetical order.
If a compile fails due to an unsatisfied module dependency, the offending file is placed
back on the build queue and a message is printed to the Output Window, but not to the
Error List. In a correct Fortran program, all dependencies will eventually be met, and
the project will be built successfully. Otherwise, errors will be printed to the Error List as
usual.

Unless the build dependencies change, subsequent builds use the build dependency
information generated during the course of the initial build.

2.13.1. Order of PVF Build Operations

In the default PVF project build, the build operations are executed in the following
order:

Pre-Build Event

Custom Build Steps for Files

Build Resources

Compile Fortran Files to Objects (using the PGI Fortran compiler)
Pre-Link Event

Build Output Files (using linker or librarian)

Custom Build Step for Project

Post-Link Event

PN R

2.14. Build Events and Custom Build Steps

PVF provides default build rules for Fortran files and Resource files. Other files are
ignored unless a build action is specified using a Build Event or a Custom Build Step.

2.14.1. Build Events

Build events allow definition of a specific command to be executed at a predetermined
point during the project build. You define build events using the property pages for the
project. Build events can be specified as Pre-Build, Pre-Link, or Post-Build. For specific
information about where build events are run in the PVF build, refer to Order of PVF
Build Operations. Build events are always run unless the project is up to date. There is
no dependency checking for build events.

PGI Visual Fortran User's Guide Version 2017 | 21

Build with PVF

2.14.2. Custom Build Steps

Custom build steps are defined using the ‘Custom Build Step Property.” You can specify
a custom build step for an entire project or for an individual file, provided the file is not
a Fortran or Resource file.

When a custom build step is defined for a project, dependencies are not checked during
a build. As a result, the custom build step only runs when the project itself is out of date.
Under these conditions, the custom build step is very similar to the post-build event.

When a custom build step is defined for an individual file, dependencies may be
specified. In this case, the dependencies must be out of date for the custom build step to
run.

The 'Outputs’ property for a file-level custom build step must be defined or the
custom build step is skipped.

2.15. PVF Build Macros

PVF implements a subset of the build macros supported by Visual C++ along with a few
PVEF-specific macros. The macro names are not case-sensitive, and they should be usable
in any string field in a property page. Unless otherwise noted, macros that evaluate to
directory names end with a trailing backslash ('\").

In general these items can only be changed if there is an associated PVF project or
tile property. For example, $(VClnstallDir) cannot be changed, while $(IntDir) can be
changed by modifying the General | Intermediate Directory property.

For the names and descriptions of the build macros that PVF supports, refer to the ‘PVF
Build Macros’ section in the PGI Visual Fortran Reference Manual.

2.16. Static and Dynamic Linking

PVF supports both static and dynamic linking to the PGI and Microsoft runtime.

The Fortran | Code Generation | Runtime Library property in a project's property pages
determines which runtime library the project targets.

» For executable and static library projects, the default value of this property is static
linking (-Bstatic). A statically-linked executable can be run on any system for which
it is built; neither the PGI nor the Microsoft redistributable libraries need be installed
on the target system.

» For dynamically linked library projects, the default value of this property is
dynamic linking (-Bdynamic). A dynamically-linked executable can only be run
on a system on which the PGI and Microsoft runtime redistributables have been
installed.

PGI Visual Fortran User's Guide Version 2017 | 22

Build with PVF

For more information on deploying PGI-compiled applications to other systems, refer to
Distributing Files — Deployment.

2.17. VC# Interoperability

If Visual C# is installed along with PVEF, Visual Studio solutions containing both PVF and
VC# projects can be created. Each project, though, must be purely PVF or VC#; Fortran
and C# code cannot be mixed in a single project.

For an example of how to create a Fortran and VC# solution, refer to the PVF sample
project csharp calling pvfdll.

Because calling Visual C++ code (as opposed to C code) from Fortran is very
complicated, it is only recommended for the advanced programmer. Further, to make
interfaces easy to call from Fortran, Visual C++ code should export the interfaces
using extern "C".

2.18. VC++ Interoperability

If Visual C++ is installed along with PVE, Visual Studio solutions containing both PVF
and VC++ projects can be created. Each project, though, must be purely PVF or VC++;
Fortran and C/C++ code cannot be mixed in a single project. This constraint is purely an
organizational issue. Fortran subprograms may call C functions and C functions may
call Fortran subprograms as outlined in Inter-language Calling.

For an example of how to create a solution containing a VC++ static library, where the
source is compiled as C, and a PVF main program that calls into it, refer to the PVF
sample project pvf calling vec.

Because the process of calling Visual C++ code (as opposed to C code) from Fortran
is very complicated, it is only recommended for the advanced programmer. Further,
to make interfaces easy to call from Fortran, Visual C++ code should export the
interfaces using extern "C".

2.19. Linking PVF and VC++ Projects

If you have multiple projects in a solution, be certain to use the same type of runtime
library for all the projects. Further, if you have Microsoft VC++ projects in your solution,
you need to be certain to match the runtime library types in the PVF projects to those of
the VC++ projects.

PVEF's property Fortran | Code Generation | Runtime Library corresponds to the Microsoft
VC++ property named C/C++ | Code Generation | Runtime Library. Table 5 lists the
appropriate combinations of Runtime Library property values when mixing PVF and
VC++ projects.

PGI Visual Fortran User's Guide Version 2017 | 23

Build with PVF

Table 5 Runtime Library Values for PVF and VC++ Projects

If PVF uses ... VC++ should use...
Multi-threaded (-Bstatic) Multi-threaded (/MT)
Multi-threaded DLL (-Bdynamic) Multi-threaded DLL (/MD)
Multi-threaded DLL (-Bdynamic) Multi-threaded debug DLL (/MDd)

2.20. Common Link-time Errors

The runtime libraries specified for all projects in a solution should be the same. If both
PVF and VC++ projects exist in the same solution, the runtime libraries targeted should
be compatible.

Keep in mind the following guidelines:

» Projects that produce DLLs should use the Multi-threaded DLL (-Bdynamic)
runtime.

» Projects that produce executables or static libraries can use either type of linking.

The following examples provide a look at some of the link-time errors you might see
when the runtime library targeted by a PVF project is not compatible with the runtime
library targeted by a VC++ project. To resolve these errors, refer to Table 5 and set the
Runtime Library properties for the PVF and VC++ projects accordingly.

Errors seen when linking a PVF project using -Bstatic and a VC++ library project
using /MDd:

MSVCRTD.1lib (MSVCR80D.dll) : error LNK2005: _printf already defined in
libcmt.lib (printf.obj) LINK : warning LNK4098: defaultlib 'MSVCRTD'
conflicts with use of other libs; use /NODEFAULTLIB:library test.exe : fatal
error LNK1169: one or more multiply defined symbols found

Errors seen when linking a PVF project using -Bstatic and a VC++ project using /MTd:

LIBCMTD.1lib (dbgheap.obj) : error LNK2005: malloc already defined in
libcmt.lib(malloc.obj) ... LINK : warning LNK4098: defaultlib 'LIBCMTD'
conflicts with use of other libs; use /NODEFAULTLIB:library test.exe : fatal
error LNK1169: one or more multiply defined

2.21. Migrating an Existing Application to PVF

An existing non-PVF Fortran application or library project can be migrated to PVF. This
section provides a rough outline of how one might go about such a migration.

Tip Depending on your level of experience with Visual Studio and the complexity of
your existing application, you might want to experiment with a practice project first
to become familiar with the project directory structure and the process of adding
existing files.

PGI Visual Fortran User's Guide Version 2017 | 24

Build with PVF

Start your project migration by creating a new Empty Project. Add the existing source
and include files associated with your application to the project. If some of your source
files build a library, while other files build the application itself, you will need to create a
separate project within your solution for the files that build the library.

Set the configuration options using the property pages. You may need to add include
paths, module paths, library dependency paths and library dependency files. If your
solution contains more than one project, you will want to set up the dependencies
between projects to ensure that the projects are built in the correct order.

When you are ready to try a build, select Build | Build Solution from the main menu. This
action starts a full build. If there are compiler or linker errors, you will probably have a
bit more build or configuration work to do.

2.22. Fortran Editing Features

PVF provides several Fortran-aware features to ease the task of entering and examining
Fortran code in the Visual Studio Editor.

Source Colorization—Fortran source is colorized, so keywords, comments, and strings
are distinguished from other language elements. You can use the Tools | Options |
Environment | Fonts and Colors dialog to assign colors for identifiers and numeric
constants, and to modify the default colors for strings, keywords and comments.

Method Tips—Fortran intrinsic functions are supported with method tips. When an
opening parenthesis is entered in the source editor following an intrinsic name, a
method tip pop-up is displayed that shows the data types of the arguments to the
intrinsic function. If the intrinsic is a generic function supporting more than one set of
arguments, the method tip window supports scrolling through the supported argument
lists.

Keyword Completion—Fortran keywords are supported with keyword completion. When
entering a keyword into the source editor, typing <CTRL>+<SPACE> will open a pop-
up list displaying the possible completions for the portion of the keyword entered so
far. Use the up or down arrow keys or the mouse to select one of the displayed items;
type <ENTER> or double-click to enter the remainder of the highlighted keyword into
the source. Type additional characters to narrow the keyword list or use <BACKSPACE>
to expand it.

PGI Visual Fortran User's Guide Version 2017 | 25

Chapter 3.
DEBUG WITH PVE

PVF utilizes the Visual Studio debugger for debugging Fortran programs. PGI has
implemented a custom debug engine that provides the language-specific debugging
capability required for Fortran. This debug engine also supports Visual C++.

The Debug configuration is usually used for debugging. By default, this configuration
will build the application so that debugging information is provided.

The debugger can be started by selecting Debug | Start Debugging. Then use the Visual
Studio debugger controls as usual.

3.1. Windows Used in Debugging

Visual Studio uses a number of different windows to provide debugging information.
Only a subset of these is opened by default in your initial debugging session. Use the
Debug | Windows menu option to see a list of all the windows available and to select the
one you want to open.

This section provides an overview of most of the debugging windows you can use to get
information about your debug session, along with a few tips about working with some
of these windows.

3.1.1. Autos Window

The autos window provides information about a changing set of variables as determined
by the current debugging location. This window is supported for VC++ code but will not
contain any information when debugging in a Fortran source file.

3.1.2. Breakpoints Window

The breakpoints window contains all the breakpoints that have been set in the current
application. You use the breakpoints window to manage the application's breakpoints.

E This window is available even when the application is not being debugged.

PGI Visual Fortran User's Guide Version 2017 | 26

Debug with PVF

You can disable, enable or delete any or all breakpoints from within this window.

» Double-clicking on a breakpoint opens the editor to the place in the source where
the breakpoint is set.

» Right-clicking on a breakpoint brings up a context menu display that shows the
conditions that are set for the breakpoint. You can update these conditions via this
display.

» During debugging, each breakpoint's status is shown in this window.

Breakpoint States

A breakpoint can be enabled, disabled, or in an error state. A breakpoint in an error state
indicates that it failed to bind to a code location when the program was loaded. An error
breakpoint can be caused by a variety of things. Two of the most common reasons a
breakpoint fails to bind are these:

» The code containing the breakpoint may be in a module (DLL) that has not yet been
loaded.

» A breakpoint audience may contain a syntax error.

Breakpoints in Multi-Process Programs

When debugging a multi-process program, each user-specified breakpoint is bound
on a per-process basis. When this situation occurs, the breakpoints in the breakpoints
window can be expanded to reveal each bound breakpoint.

3.1.3. Call Stack Window

The call stack window shows the call stack based on the current debugging location. Call
frames are listed from the top down, with the innermost function on the top. Double-
click on a call frame to select it.

» The yellow arrow is the instruction pointer, which indicates the current location.

» A green arrow beside a frame indicates the frame is selected but is not the current
frame.

3.1.4. Disassembly Window

The disassembly window shows the assembly code corresponding to the source code
under debug.

Using Step and Step Into in the disassembly window moves the instruction pointer one
assembly instruction instead of one source line. Whenever possible, source lines are
interleaved with disassembly.

3.1.5. Immediate Window

The immediate window provides direct communication with the debug engine. You can
type help in this window to get a list of supported commands.

PGI Visual Fortran User's Guide Version 2017 | 27

Debug with PVF

Variable Values in Multi-Process Programs

When debugging a multi-process program, use the print command in the immediate
window with a process/thread set to display the values of a variable across all processes
at once. For example, the following command prints the value of iVar for all processes
and their threads.

[*.*] print iVar

3.1.6. Locals Window

The locals window lists all variables in the current scope, providing the variable's name,
value, and type. You can expand variables of type array, record, structure, union and
derived type variables to view all members. The variables listed include any Fortran
module variables that are referenced in the current scope.

3.1.7. Memory Window

The memory window lists the contents of memory at a specified address. Type an
address in memory into the memory window’s Address box to display the contents of
memory at that address.

3.1.8. Modules Window

In Visual Studio, the term module means a program unit such as a DLL. It is unrelated to
the Fortran concept of module.

The modules window displays the DLLs that were loaded when the application itself
was loaded. You can view information such as whether or not symbol information is
provided for a given module.

3.1.9. Output Window

The output window displays a variety of status messages. When building an application,
this window displays build information. When debugging, the output window displays
information about loading and unloading modules, and exiting processes and threads.

The output window does not receive application output such as standard out or
standard error. In serial and local MPI debugging, such output is directed to a console
window.

3.1.10. Processes Window

The processes window displays each process that is currently being debugged. For serial
debugging, there is only one process displayed. For MPI debugging, the number of
processes specified in the Debugging property page determines the number of processes
that display in this window. The Title column of the processes window contains the rank
of each process, as well as the name of the system on which the process is running and
the process id.

PGI Visual Fortran User's Guide Version 2017 | 28

Debug with PVF

Switching Processes in Multi-Process Programs

Many of the debugging windows display information for one process at a time. During
multi-process debugging, the information in these windows pertains to the process with
focus in the processes window. The process with focus has a yellow arrow next to it.

You can change the focus from one process to another by selecting the desired process in
one of these ways:

» Double-click on the process.
» Highlight the process and press <Enter>.

3.1.11. Registers Window

The registers window is available during debugging so you can see the value of the OS
registers. Registers are shown in functional groups. The first time you use the registers
window, the CPU registers are shown by default.

» To show other register sets, follow these steps:

1. Right-click in the registers window to bring up a context menu.

2. From the context menu, select the group of registers to add to the registers
window display.
» To remove a group from the display, follow these steps:

1. Right-click in the registers window to bring up a context menu.

2. From the context menu, deselect the group of registers to remove from the
registers window display.

3.1.12. Threads Window

The threads window lists the active threads in the current process. Threads are named
by process and thread rank using the form "process.thread".

Not all threads may be executing in user code at any given time.

3.1.13. Watch Window

You use the watch window during debugging to display a user-selected set of variables.

If a watched variable is no longer in scope, its value is no longer valid in the watch
window, although the variable itself remains listed until you remove it.

3.2. Variable Rollover

Visual Studio provides a debugging feature called variable rollover. This feature is
available when an application in debug mode stops at a breakpoint or is otherwise

PGI Visual Fortran User's Guide Version 2017 | 29

Debug with PVF

suspended. To activate variable rollover, use the mouse pointer to hover over a variable
in the source code editor. After a moment, the value of the variable appears as a data tip
next to the mouse pointer.

The first data tip that you see is often upper level information, such as an array address
or possibly the members of a user-defined type. If additional information is available

for a variable, you see a plus sign in the data tip. Hovering over the plus sign expands
the information. Once the expansion reaches the maximum number of lines available for
display, about fifteen lines, the data tip has up and down triangles which allow you to
scroll to see additional information.

You can use variable rollover to obtain information about scalars, arrays, array elements,
as well as user-defined type variables and their members.

3.2.1. Scalar Variables

If you roll over a scalar variable, such as an integer or a real, the data tip displays the
scalar’s value.

3.2.2. Array Variables

If you roll over an array, the data tip displays the array’s address.

To see the elements of an array, either roll over the specific array element’s subscript
operator (parenthesis), or roll over the array and then expand the data tip by moving
the mouse over the plus sign in the data tip. The expanded view displays the individual
array elements.

The data tip can display up to about fifteen array elements at a time. For arrays with
more than fifteen elements, use the up and down arrows on the top and bottom of the
expanded data tip to scroll through the other elements.

Fortran character arrays work slightly differently.

» When rolling over a single element character array, the data tip displays the value of
the string. To see the individual character elements, expand the string.

» When rolling over a multi-element character array, the initial data tip contains the
array’s address. To see the elements of the array, expand the array. Each expanded
element appears as a string, which is also expandable.

3.2.3. User-Defined Type Variables

User-defined types include derived types, records, structs, and unions. When rolling
over a user-defined type, the initial data tip displays a condensed form of the value of
the user-defined type variable, which is also expandable.

To see a member of a user-defined type, you can either roll over the specific user-defined
variable directly, or roll over the user-defined type and then expand the data tip by
moving the mouse over the plus sign in the data tip. The expanded view displays the
individual members of the variable and their values.

PGI Visual Fortran User's Guide Version 2017 | 30

Debug with PVF

The data tip can display up to about fifteen user-defined type members at a time. For
user-defined types with more than fifteen members, use the up and down arrows on the
top and bottom of the expanded data tip to scroll through the other members.

3.3. Debugging an MPI Application in PVF

PVF has full debugging support for MPI applications running locally. For specific
information on how to do this, refer to Debug an MPI Application.

3.4. Attaching the PVF Debugger to a Running
Application

PGI Visual Fortran can debug a running application using the PVF "Attach to Process"
option. PVF supports attaching to Fortran applications built for native Windows
systems.

PVF includes PGI compilers that build on native Windows applications. A PVF
installation is all that is required to use PVF to attach to PGI-compiled native Windows
applications.

The following instructions describe how to use PVF to attach to a running native
Windows application. As is often true, the richest debugging experience is obtained if
the application being debugged has been compiled with debug information enabled.

3.4.1. Attach to a Native Windows Application

To attach to a native Windows application, follow these steps:

1. Open PVF from the Start menu, invoke PVF as described in PVF on the Start Screen
and Start Menu.

2. From the main Tools menu, select Attach to Process...

3. In the Attach to: box of the Attach to Process dialog, verify that PGI Debug Engine is
selected.

If it is not selected, follow these steps to select it:

1. Click Select.

2. In the Select Code dialog box that appears, choose Debug these code types.
3. Deselect any options that are selected and select PGI Debug Engine.

4. Click OK.

4. Select the application to which you want to attach PVF from the Available Processes
box in the Attach to Process dialog.

This area of the dialog box contains the system’s running processes. If the application
to which you want to attach PVF is missing from this list, try this procedure to locate
it:

PGI Visual Fortran User's Guide Version 2017 | 31

Debug with PVF

1. Depending on where the process may be located, select Show processes in all
sessions or Show processes from all users. You can select both.

2. Click Refresh.
5. With the application to attach to selected, click Attach.

PVF should now be attached to the application.
To debug, there are two ways to stop the application:

» Set a breakpoint using Debug | New Breakpoint | Break at Function... and let execution
stop when the breakpoint is hit.

Tip Be certain to set the breakpoint at a line in the function that has yet to be
executed.

» Use Debug | Break All to stop execution.

With this method, if you see a message box appear that reads There is no
source code available for the current location, click OK. Use Step
Ower (F10) to advance to a line for which source is available.

To detach PVF from the application and stop debugging, select Debug | Stop
Debugging.

3.5. Using PVF to Debug a Standalone Executable

You can invoke the PVF debug engine to debug an executable that was not created by
a PVF project. To do this, you invoke Visual Studio from a command shell with special
arguments implemented by PVFE. You can use this method in any native Windows
command prompt environment.

PGI Visual Fortran includes PGI compilers that build native Windows applications. A
PVF installation is all that is required to use the PVF standalone executable debugging
feature with PGI-compiled native Windows applications. The following instructions
describe how to invoke the PGI Visual Fortran debug engine from a native Windows
prompt.

Tip The richest debugging experience is obtained when the application being
debugged has been compiled and linked with debug information enabled.

3.5.1. Launch PGl Visual Fortran from a Native Windows
Command Prompt

To launch PGI Visual Fortran from a native Windows Command Prompt, follow these
steps:

PGI Visual Fortran User's Guide Version 2017 | 32

Debug with PVF

1. Set the environment by opening a PVF Command Prompt window using the PVF
Start menu, as described in Shortcuts to Launch PVF.

» To debug a 64-bit executable, choose the 64-bit command prompt: PVF Cmd (64).

The environment in the option you choose is automatically set to debug a native
Windows application.

2. Start PGI Visual Fortran using the executable devenv.exe.

If you followed Step 1 to open the PVF Command Prompt, this executable should
already be on your path.

In the PVF Command Prompt window, you must supply the switch /PVF: DebugExe,
your executable, and any arguments that your executable requires. The following
examples illustrate this requirement.

Use PVF to Debug an Application

This example uses PVF to debug an application, MyApp1 . exe, that requires no
arguments.
CMD> devenv /PVF:DebugExe MyAppl

Use PVF to Debug an Application with Arguments

This example uses PVF to debug an application, MyApp2 . exe, and pass it two
arguments: argl, arg2.
CMD> devenv /PVF:DebugExe MyApp2 argl arg2

Once PVF starts, you should see a Solution and Project with the same name as the name
of the executable you passed in on the command line, such as MyApp2 in the previous
example.

You are now ready to use PGI Visual Fortran after a command line launch, as described
in the next section.

3.5.2. Using PGl Visual Fortran After a Command Line
Launch

Once you have started PVF from the command line, it does not matter how you started
it, you are now ready to run and debug your application from within PVE.

To run your application from within PVE, from the main menu, select Debug | Start
Without Debugging.

To debug your application using PVEF:

1. Set a breakpoint using the Debug | New Breakpoint | Break at Function dialog box.
2. Enter either a function or a function and line that you know will be executed.

Tip You can always use the routine name MAIN for the program’s entry point (i.e.
main program) in a Fortran program compiled by PGI compilers.

3. Start the application using Debug | Start Debugging.

PGI Visual Fortran User's Guide Version 2017 | 33

Debug with PVF

When the debugger hits the breakpoint, execution stops and, if available, the source file
containing the breakpoint is opened in the PVF editor.

3.5.3. Tips on Launching PVF from the Command Line

If you choose to launch PVF from a command line, here are a few tips to help you be
successful:

» The path to the executable you want to debug must be specified using a full or
relative path. Further, paths containing spaces must be quoted using double quotes
(")

» If you specify an executable that does not exist, PVF starts up with a warning
message and no solution is created.

» If you specify a file to debug that exists but is not in an executable format, PVF starts
up with a warning message and no solution is created.

PGI Visual Fortran User's Guide Version 2017 | 34

Chapter 4.
USING MPI' IN PVF

Message Passing Interface (MPI) is an industry-standard application programming
interface designed for rapid data exchange between processors in a cluster application.
MP1 is software used in computer clusters that allows many computers to communicate
with one another.

PGI provides MPI support with PGI compilers and tools. You can build, run, debug,

and profile MPI applications on Windows using PVF and Microsoft’s implementation of
MPI, MS-MPL. This section describes how to use these capabilities and indicates some

of their limitations, provides the requirements for using MPI in PVF, explains how to
compile and enable MPI execution, and describes how to launch, debug, and profile
your MPI application. In addition, there are tips on how to get the most out of PVF’s MPI
capabilities.

4.1. MP| Overview

MP1 is a set of function calls and libraries that are used to send messages between
multiple processes. These processes can be located on the same system or on a collection
of distributed servers. Unlike OpenMP, the distributed nature of MPI allows it to work
in almost any parallel environment. Further, distributed execution of a program does not
necessarily mean that an MPI job must run on multiple machines.

PVF has built-in support for Microsoft's version of MPI: MS-MP], on single systems. PVF
does not support using MS-MPI on Windows clusters.

4.2. System and Software Requirements

To use PVF's MPI capabilities, MS-MPI must be installed on your system. The MS-MPI
components include headers, libraries, and mpiexec, which PVF uses to launch MPI
applications. The 2017 release of PVF includes a version of MS-MPI that is installed
automatically when PVF is installed. MS-MPI can also be downloaded directly from
Microsoft.

PGI Visual Fortran User's Guide Version 2017 | 35

Using MPI in PVF

4.3. Compile using MS-MPI

The PVF Fortran | Language | MPI property enables MPI compilation and linking with
the Microsoft MPI headers and libraries. Set this property to Microsoft MPI to enable an
MPI build.

4.4, Enable MPI Execution

Once your MPI application is built, you can run and debug it. The PVF Debugging
property page is the key to both running and debugging an MPI application. For
simplicity, in this section we use the term execution to mean either running or debugging
the application.

Use the MPI Debugging property to determine the type of execution you need, provided
you have the appropriate system configuration and license.

4.4.1. MPI Debugging Property Options

The MPI Debugging property can be set to either of these options: Disabled or Local.

Disabled
When Disabled is selected, execution is performed serially.

Local
When Local is selected, MPI execution is performed locally. That is, multiple processes
are used but all of them run on the local host.

Additional MPI properties become available when you select the Local MPI Debugging
option. For more information about these properties, refer to the ‘Debugging Property
Page’ in the PGI Visual Fortran Reference Manual.

4.5. Launch an MPI Application

As soon as you have built your MPI application, and selected Local MPI Debugging, you
can launch your executable using the Debug | Start Without Debugging menu option.

PVF uses Microsoft’s version of mpiexec to support Local MPI execution.

4.6. Debug an MPI Application

To debug your MPI application, select Debug | Start Debugging or hit F5. As with
running your MPI application, PVF uses mpiexec for Local MPI jobs.

PVF’s style of MPI debugging can be described as ‘run altogether.” With this style of
debugging, execution of all processes occurs at the same time. When you select Continue,
all processes are continued. When one process hits a breakpoint, it stops. The other
processes do not stop, however, until they hit a breakpoint or some other type of barrier.

PGI Visual Fortran User's Guide Version 2017 | 36

Using MPI in PVF

When you select Step, all processes are stepped. Control returns to you as soon as one
or more processes finish its step. If some process does not finish its step when the other
processes are finished, it continues execution until it completes.

PGI Visual Fortran User's Guide Version 2017 | 37

Chapter 0.
GETTING STARTED WITH THE COMMAND

LINE COMPILERS

This section describes how to use the command-line PGI compilers. The PGI Visual
Fortran IDE invokes the PGI compilers when you build a PVF project. You can also
invoke the compilers directly from a command prompt which you can launch from the
Start menu, as described in Shortcuts to Launch PVEF.

5.1. Overview

The command used to invoke a compiler, such as the pgfortran command, is called

a compiler driver. The compiler driver controls the following phases of compilation:
preprocessing, compiling, assembling, and linking. Once a file is compiled and an
executable file is produced, you can execute, debug, or profile the program on your
system. Executables produced by the PGI compilers are unconstrained, meaning
they can be executed on any compatible x86-64 processor-based system, regardless of
whether the PGI compilers are installed on that system.

In general, using a PGI compiler involves three steps:

1. Produce program source code in a file containing a .f extension or another
appropriate extension, as described in Input Files. This program may be one that
you have written or one that you are modifying.

2. Compile the program using the appropriate compiler command.
3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The PGI compilers allow many variations on these general program development steps.
These variations include the following;:

» Stop the compilation after preprocessing, compiling or assembling to save and
examine intermediate results.

» Provide options to the driver that control compiler optimization or that specify
various features or limitations.

PGI Visual Fortran User's Guide Version 2017 | 38

>

Getting Started with The Command Line Compilers

Include as input intermediate files such as preprocessor output, compiler output, or
assembler output.

5.2. Creating an Example

Let's look at a simple example of using the PGI compiler to create, compile, and execute
a program that prints:

hello

1.

Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello. f:

print *, "hello"
end

. Compile the program.

When you created your program, you called it hello. f. In this example, we compile
it from a shell command prompt using the default pgfortran driver option. Use the
following syntax:

$ pgfortran hello.f

By default, the executable output is placed in a filename based on the name of the
first source or object file on the command line. However, you can specify an output
tile name by using the -o option.

To place the executable output in the file hello, use this command:
$ pgfortran -o hello hello.f

. Execute the program.

To execute the resulting hello program, simply type the filename at the command
prompt and press the Return or Enter key on your keyboard:

$ hello

Below is the expected output:

hello

5.3. Invoking the Command-level PGl Compilers

To translate and link a Fortran language program, the pg£77, pgf£95, and pgfortran
commands do the following;:

1.

2.
3.
4

Preprocess the source text file.

Check the syntax of the source text.

Generate an assembly language file.

Pass control to the subsequent assembly and linking steps.

PGI Visual Fortran User's Guide Version 2017 | 39

Getting Started with The Command Line Compilers

5.3.1. Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:
pgfortran [options] [path]filename [...]

Where:

options
is one or more command-line options, all of which are described in detail in Use
Command-line Options.

path
is the pathname to the directory containing the file named by filename. If you do not
specify the path for a filename, the compiler uses the current directory. You must
specify the path separately for each filename not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object
tile, or library to be processed by the compilation system. You can specify more than
one [path]filename.

5.3.2. Command-line Options

The command-line options control various aspects of the compilation process. For a
complete alphabetical listing and a description of all the command-line options, refer to
Use Command-Line Options.

The following list provides important information about proper use of command-line
options.

» Command-line options and their arguments are case sensitive.

» The compiler drivers recognize characters preceded by a hyphen (-) as command-
line options. For example, the -M11ist option specifies that the compiler creates a
listing file.

The convention for the text of this manual is to show command-line options using
a dash instead of a hyphen; for example, you see -M1ist.

» The order of options and the filename is flexible. That is, you can place options
before and after the filename argument on the command line. However, the
placement of some options is significant, such as the -1 option, in which the order of
the filenames determines the search order.

If two or more options contradict each other, the last one in the command line
takes precedence.

5.3.3. Fortran Directives

You can insert Fortran directives in program source code to alter the effects of certain
command-line options and to control various aspects of the compilation process for a
specific routine or a specific program loop. For more information on Fortran directives,
refer to Using OpenMP and Using Directives.

PGI Visual Fortran User's Guide Version 2017 | 40

Getting Started with The Command Line Compilers

5.4. Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and
to create input and output files. This section describes the input and output filename
conventions for the phases of the compilation process.

5.4.1. Input Files

You can specify assembly-language files, preprocessed source files, Fortran source files,
object files, and libraries as inputs on the command line. The compiler driver determines
the type of each input file by examining the filename extensions.

For systems with a case-insensitive file system, use the —Mpreprocess option,
described in ‘Command-Line Options Reference’ section of the PGl Fortran Reference,
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf, under the
commands for Fortran preprocessing.

The drivers use the following conventions:

filename.f
indicates a Fortran source file.
filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).
filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).
filename.F90
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).
filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).
filename. fpp
indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).
filename.£90
indicates a Fortran 90/95 source file that is in freeform format.
filename.£95
indicates a Fortran 90/95 source file that is in freeform format.
filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.
filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and
that can contain macros and preprocessor directives (to be preprocessed).
filename.s
indicates an assembly-language file.

PGI Visual Fortran User's Guide Version 2017 | 41

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Getting Started with The Command Line Compilers

filename.obj
(Windows systems only) indicates an object file.
filename.lib
(Windows systems only) indicates a statically-linked library of object files or an
import library.
filename.dll
(Windows systems only) indicates a dynamically-linked library.
filename.dylib
(macOS systems only) indicates a dynamically-linked library.

The driver passes files with . s extensions to the assembler and files with .ob3j, .d11,
and . 1ib extensions to the linker. Input files with unrecognized extensions, or no
extension, are also passed to the linker.

Files with a . fpp suffix are first preprocessed by the Fortran compilers and the output
is passed to the compilation phase. The Fortran preprocessor is built in to the Fortran
compilers. This design ensures consistency in the preprocessing step regardless of the
type or revision of operating system under which you’re compiling.

Any input files not needed for a particular phase of processing are not processed. For
example, if on the command line you specify an assembly-language file (filename. s)
and the -S option to stop before the assembly phase, the compiler takes no action on
the assembly language file. Processing stops after compilation and the assembler does
not run. In this scenario, the compilation must have been completed in a previous pass
which created the . s file. For a complete description of the -S option, refer to Output
Files.

In addition to specifying primary input files on the command line, code within other
files can be compiled as part of include files using the INCLUDE statement in a Fortran
source file or the preprocessor #include directive in Fortran source files that use a . F
extension.

When linking a program with a library, the linker extracts only those library components
that the program needs. The compiler drivers link in several libraries by default. For
more information about libraries, refer to Create and Use Libraries.

5.4.2. Output Files

By default, an executable output file produced by one of the PGI compilers is placed in
the file a . out, or, on Windows, in a filename based on the name of the first source or
object file on the command line. As the Hello example shows, you can use the -o option
to specify the output file name.

If you use option -F (Fortran only), -S or -¢c, the compiler produces a file containing
the output of the last completed phase for each input file, as specified by the option
supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked
object file respectively. Similarly, the -E option does not produce a file, but displays
the preprocessed source file on the standard output. Using any of these options,

the -o option is valid only if you specify a single input file. If no errors occur during

PGI Visual Fortran User's Guide Version 2017 | 42

Getting Started with The Command Line Compilers

processing, you can use the files created by these options as input to a future invocation
of any of the PGI compiler drivers.

The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also indicates the accepted input files.

Table 6 Option Descriptions

Option Stop After Input Output

-E preprocessing | Source files preprocessed file to standard out
-F preprocessing Source files preprocessed file (. f)

-S compilation Source files or preprocessed files | assembly-language file (. s)

-C assembly Source files, or preprocessed unlinked object file (. ob7j)

files, or assembly-language files

none linking Source files, or preprocessed executable file (. exe)
files, assembly-language files,
object files, or libraries

If you specify multiple input files or do not specify an object filename, the compiler uses
the input filenames to derive corresponding default output filenames of the following
form, where filename is the input filename without its extension:

filename.f

indicates a preprocessed file, if you compiled a Fortran file using the -F option.
filename.i

indicates a preprocessed file, if you compiled using the -P option.
filename.lst

indicates a listing file from the -Mlist option.
filename.obj

indicates a object file from the -c option.
filename.s

indicates an assembly-language file from the -S option.

Unless you specify otherwise, the destination directory for any output file is the
current working directory. If the file exists in the destination directory, the compiler
overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output files proto.obJj and protol.obj which are binary object
tiles. Prior to compilation, the file protol . F is preprocessed because it has a . F
filename extension.

5.5. Fortran Data Types

The PGI Fortran compilers recognize scalar and aggregate data types. A scalar data type
holds a single value, such as the integer value 42 or the real value 112.6. An aggregate

PGI Visual Fortran User's Guide Version 2017 | 43

Getting Started with The Command Line Compilers

data type consists of one or more scalar data type objects, such as an array of integer
values.

For information about the format and alignment of each data type in memory,
and the range of values each type can have on x64 processor-based systems, refer
to ‘Fortran, C, and C++ Data Types’ section of the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.

For more information on x86-64-specific data representation, refer to the System V
Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.) listed in the “Related Publications’ section in the Preface.

For more information on x64 processor-based systems and the application binary
interface (ABI) for those systems, see http://www.x86-64.org/documentation/abi.pdf.

5.6. Parallel Programming Using the PGI Compilers

The PGI compilers support many styles of parallel programming;:

» Automatic shared-memory parallel programs compiled using the -Mconcur option
to pgf77, pgf 95, or pgfortran. Parallel programs of this variety can be run
on shared-memory parallel (SMP) systems such as dual-core or multi-processor
workstations.

» OpenMP shared-memory parallel programs compiled using the -mp option to
pgf77, pgf95, or pgfortran. Parallel programs of this variety can be run on
SMP systems. Carefully coded user-directed parallel programs using OpenMP
directives can often achieve significant speed-ups on dual-core workstations or large
numbers of processors on SMP server systems. Using OpenMP contains complete
descriptions of user-directed parallel programming.

» Distributed computing using an MPI message-passing library for communication
between distributed processes.

» Accelerated computing using either a low-level model such as CUDA Fortran or a
high-level model such as the PGI Accelerator model or OpenACC to target a many-
core GPU or other attached accelerator.

On a single silicon die, today's CPUs incorporate two or more complete processor cores
— functional units, registers, level 1 cache, level 2 cache, and so on. These CPUs are
known as multicore processors. For purposes of threads or OpenMP parallelism, these
cores function as two or more distinct processors. However, the processing cores are on
a single chip occupying a single socket on a system motherboard. For purposes of PGI
software licensing, a multicore processor is treated as a single CPU.

5.6.1. Run SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To
run on more than one processor, set the NCPUS environment variable to the desired

PGI Visual Fortran User's Guide Version 2017 | 44

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.x86-64.org/documentation/abi.pdf

Getting Started with The Command Line Compilers

number of processors. For information on how to set environment variables, refer to
Setting Environment Variables.

If you set NCPUS to a number larger than the number of physical processors, your
program may execute very slowly.

5.7. Site-Specific Customization of the Compilers

If you are using the PGI compilers and want all your users to have access to specific
libraries or other files, there are special files that allow you to customize the compilers
for your site.

5.7.1. Use siterc Files

The PGI compiler drivers utilize a file named siterc to enable site-specific
customization of the behavior of the PGI compilers. The siterc file is located in the
bin subdirectory of the PGI installation directory. Using siterc, you can control how
the compiler drivers invoke the various components in the compilation tool chain.

5.7.2. Using User rc Files

In addition to the siterc file, user rc files can reside in a given user's home directory, as
specified by the user's HOME environment variable. You can use these files to control
the respective PGI compilers. All of these files are optional.

On Windows, these files are named mypgf77rc, mypgf90rc, mypgf9o5rc,
mypgfortranrc and mypgccrec.

On Windows, these files are named mypgf77rc, mypgf90rc, mypgf95rc and
mypgfortranrc.

5.8. Common Development Tasks

Now that you have a brief introduction to the compiler, let's look at some common
development tasks that you might wish to perform.

» When you compile code you can specify a number of options on the command
line that define specific characteristics related to how the program is compiled and
linked, typically enhancing or overriding the default behavior of the compiler. For a
list of the most common command line options and information on all the command
line options, refer to Use Command-line Options.

» Code optimization and parallelization allows the compiler to organize your code
for efficient execution. While possibly increasing compilation time and making the
code more difficult to debug, these techniques typically produce code that runs
significantly faster than code that does not use them. For more information on
optimization and parallelization, refer to Optimizing and Parallelizing.

PGI Visual Fortran User's Guide Version 2017 | 45

Getting Started with The Command Line Compilers

» Function inlining, a special type of optimization, replaces a call to a function or a
subroutine with the body of the function or subroutine. This process can speed up
execution by eliminating parameter passing and the function or subroutine call and
return overhead. In addition, function inlining allows the compiler to optimize the
function with the rest of the code. However, function inlining may also result in
much larger code size with no increase in execution speed. For more information on
function inlining, refer to Using Function Inlining.

» Directives allow users to place hints in the source code to help the compiler generate
better assembly code. You typically use directives to control the actions of the
compiler in a particular portion of a program without affecting the program as a
whole. You place them in your source code where you want them to take effect. A
directive typically stays in effect from the point where included until the end of the
compilation unit or until another directive changes its status. For more information
on directives, refer to Using OpenMP and Using Directives.

» A library is a collection of functions or subprograms used to develop software.
Libraries contain "helper" code and data, which provide services to independent
programs, allowing code and data to be shared and changed in a modular fashion.
The functions and programs in a library are grouped for ease of use and linking.
When creating your programs, it is often useful to incorporate standard libraries or
proprietary ones. For more information on this topic, refer to Creating and Using
Libraries.

» Environment variables define a set of dynamic values that can affect the way
running processes behave on a computer. It is often useful to use these variables to
set and pass information that alters the default behavior of the PGI compilers and
the executables which they generate. For more information on these variables, refer
to Using Environment Variables.

» Deployment, though possibly an infrequent task, can present some unique issues
related to concerns of porting the code to other systems. Deployment, in this context,
involves distribution of a specific file or set of files that are already compiled and
configured. The distribution must occur in such a way that the application executes
accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you
might need to know to successfully deploy your code, refer to Distributing Files —
Deployment.

PGI Visual Fortran User's Guide Version 2017 | 46

Chapter 6.
USE COMMAND-LINE OPTIONS

A command line option allows you to control specific behavior when a program is
compiled and linked. This section describes the syntax for properly using command-line
options and provides a brief overview of a few of the more common options.

For a complete list of command-line options, their descriptions and use, refer to the
‘Command-Line Options Reference’ section of the PGl Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf.

6.1. Command-line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for
these options. There are a large number of options available to you, yet most users only
use a few of them. So, start simple and progress into using the more advanced options.

By default, the PGI compilers generate code that is optimized for the type of processor
on which compilation is performed, the compilation host. Before adding options to your
command-line, review Help with Command-line Options and Frequently-used Options.

6.1.1. Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler
does not recognize an option, you get an unknown switch error. The error can be
downgraded to a warning by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical
bar (|) separates the choices.

PGI Visual Fortran User's Guide Version 2017 | 47

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Use Command-line Options

Horizontal ellipses indicate that zero or more instances of the preceding item are
valid.

Some options do not allow a space between the option and its argument or within
an argument. When applicable, the syntax section of the option description in the
‘Command-Line Options Reference’ section of the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf contains this

information.

6.1.2. Command-line Suboptions

Some options accept several suboptions. You can specify these suboptions either by
using the full option statement multiple times or by using a comma-separated list for the
suboptions.

The following two command lines are equivalent:
pgfortran -Mvect=simd -Mvect=noaltcode

pgfortran -Mvect=simd,noaltcode

6.1.3. Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both -Mvect and
-Mnovect are available. -Mvect enables vectorization and -Mnovect disables it. If you
used both of these commands on a command line, they would conflict.

Rule: When you use conflicting options on a command line, the last encountered
option takes precedence over any previous one.

The conflicting options rule is important for a number of reasons.

» Some options, such as -fast, include other options. Therefore, it is possible for you
to be unaware that you have conflicting options.

» You can use this rule to create makefiles that apply specific flags to a set of files, as
shown in the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the
flags defined for CCFLAGS but disables vectorization.

CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=S$ (CCFLAGS) -Mnovect

6.2. Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know
which options are available, when to use them, and which options most users find
effective.

PGI Visual Fortran User's Guide Version 2017 | 48

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Use Command-line Options

Using -help

The -help option is useful because it provides information about all options supported
by a given compiler.

You can use ~help in one of three ways:

» Use -help with no parameters to obtain a list of all the available options with a
brief one-line description of each.

» Add a parameter to ~help to restrict the output to information about a specific
option. The syntax for this usage is:

-help <command line option>

Suppose you use the following command to restrict the output to information about
the -fast option:
$ pgfortran -help -fast

The output you see is similar to:

-fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the ~help parameter to restrict the output to
information about the help command. The usage information for ~help shows how
groups of options can be listed or examined according to function.

$ pgfortran -help -help
~help[=groups|asm|debug|language|linker|opt|other|overall |phase|prepro]
suffix|switch|target|variable]

» Add a parameter to ~help to restrict the output to a specific set of options or to a
building process. The syntax for this usage is this:
-help=<subgroup>

By using the command pgfortran -help -help, as previously shown, we can see
output that shows the available subgroups. You can use the following command to
restrict the output on the ~help command to information about only the options
related to only one group, such as debug information generation.

$ pgfortran -help=debug

The output you see is similar to this:

Debugging switches:

-M[no]bounds Generate code to check array bounds

-Mchkstk Check for sufficient stack space upon subprogram entry
-Mcoff Generate COFF format object

-Mdwarfl Generate DWARF1l debug information with -g
-Mdwarf2 Generate DWARF2 debug information with -g
-Mdwarf3 Generate DWARF3 debug information with -g

-Melf Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optimizations

For a complete description of subgroups, refer to the ~help description in the
Command-line Options Reference section of the PVF Reference Manual.

PGI Visual Fortran User's Guide Version 2017 | 49

Use Command-line Options

6.3. Getting Started with Performance

One of the top priorities of most users is performance and optimization. This section
provides a quick overview of a few of the command-line options that are useful in
improving performance.

6.3.1. Using -fast

PGI compilers implement a wide range of options that allow users a fine degree of
control on each optimization phase. When it comes to optimization of code, the quickest
way to start is to use the option -fast. These options create a generally optimal set of
flags. They incorporate optimization options to enable use of vector streaming SIMD
instructions for 64-bit targets. They enable vectorization with SIMD instructions, cache
alignment, and flush to zero mode.

The contents of the -fast option are host-dependent. Further, you should use these
options on both compile and link command lines.

The following table shows the typical -fast options.

Table 7 Typical -fast Options

Use this option... To do this...

-02 Specifies a code optimization level of 2.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each
iteration.

-Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

-Mpre Indicates partial redundancy elimination

-fast typically includes the options shown in this table:

Table 8 Additional -fast Options

Use this option... To do this...

-Mvect=simd Generates packed SIMD instructions.
-Mcache_align Aligns long objects on cache-line boundaries.
-Mflushz Sets flush-to-zero mode.

PGI Visual Fortran User's Guide Version 2017 | 50

Use Command-line Options

Use this option... To do this...

-M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SIMD instructions, use the
PGFORTRAN compiler, even for FORTRAN 77 code, and the -fast option.

To see the specific behavior of -fast for your target, use the following command:

$ pgfortran -help -fast

6.4. Targeting Multiple Systems—Using the -tp
Option

The -tp option allows you to set the target architecture. By default, the PGI compiler
uses all supported instructions wherever possible when compiling on a given system.
As a result, executables created on a given system may not be usable on previous
generation systems. For example, executables created on a Pentium 4 may fail to execute
on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the -tp
option. Thus, it is possible to create executables that are usable on previous generation
systems. Using a -tp flag option of k8 or p7 produces an executable that runs on most
x86-64 hardware in use today.

For more information about the -tp option, refer to the -tp <target>

[, target...] description in the ‘Command-Line Options Reference” section of
the PGI Fortran Reference, http://www.pgicompilers.com/resources/docs/17.10/pdf/
pgil7fortref.pdf.

6.5. Frequently-used Options

In addition to overall performance, there are a number of other options that many users
find useful when getting started. The following table provides a brief summary of these
options.

For more information on these options, refer to the complete description of each
option available in the ‘Command-Line Options Reference’ section of the PGI Fortran
Reference, http://www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.
Also, there are a number of suboptions available with each of the -M options listed.
For more information on those options, refer to the specific section on ‘M Options by
Category’.

Table 9 Commonly Used Command-Line Options

Use this option... To do this...
-fast These options create a generally optimal set of flags for targets that
support SIMD capability. They incorporate optimization options to

PGI Visual Fortran User's Guide Version 2017 | 51

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Use Command-line Options

Use this option...

To do this...

-fastsse

enable use of vector streaming SIMD instructions (64-bit targets)
and enable vectorization with SIMD instructions, cache aligned and
flushz.

Instructs the compiler to include symbolic debugging information in
the object module; sets the optimization level to zero unless a -O
option is present on the command line.

-—gopt

Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when —qg is not specified.

-help

Provides information about available options.

-Mconcur

Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple processors to execute loops
that it determines to be parallelizable; thus, loop iterations are split
to execute optimally in a multithreaded execution context.

-Minfo

Instructs the compiler to produce information on standard error.

-Minline

Enables function inlining.

-Mpfi or -Mpfo

Enable profile feedback driven optimizations

-Mkeepasm

Keeps the generated assembly files.

-Munroll

Invokes the loop unroller to unroll loops, executing multiple
instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no -O or
-g options are supplied.

-M[no]vect

Enables/Disables the code vectorizer.

-0

Names the output file.

-0 <level>

Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

-tp <target>
[, target...]

Specify the target processor(s); for the 64-bit compilers, more than
one target is allowed, and enables generation of PGl Unified Binary
executables.

PGI Visual Fortran User's Guide

Version 2017 | 52

Chapter 7.
OPTIMIZING AND PARALLELIZING

Source code that is readable, maintainable, and produces correct results is not always
organized for efficient execution. Normally, the first step in the program development
process involves producing code that executes and produces the correct results. This first
step usually involves compiling without much worry about optimization. After code is
compiled and debugged, code optimization and parallelization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler
to generate optimized code. Optimization is not always performed since it increases
compilation time and may make debugging difficult. However, optimization produces
more efficient code that usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. In PVF,

you use the Fortran | Optimization property page to specify optimization levels; on

the command line, the options you commonly use include -O, -Mvect, and -Mconcur.
In addition, you can use several of the -M<pgflag> switches to control specific types

of optimization and parallelization. You can set the options not supported by the
Fortran | Optimization property page by using the Additional Options field of the
Fortran | Command Line property page. For more information, refer to Fortran Property
Pages section in the PGI Fortran Reference, http://www.pgicompilers.com/resources/
docs/17.10/pdf/pgil7fortref.pdf.

E As of the PGI 16.3 release, -Mipa has been disabled on Windows.

-fast -Minline -0 -Munroll
-Mconcur -Mipa=fast -Mpfi -Mvect
-Minfo -Mneginfo -Mpfo -Msafeptr

-Mipa=fast,inline

This chapter describes these optimization options:

-fast -Minline -0 -Munroll
-Mconcur -Mpfi -Mvect -Minfo
-Mneginfo -Mpfo

PGI Visual Fortran User's Guide Version 2017 | 53

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Optimizing and Parallelizing

This chapter also describes how to choose optimization options to use with the PGI
compilers. This overview is helpful if you are just getting started with one of the PGI
compilers, or wish to experiment with individual optimizations.

Complete specifications of each of these options is available in the Command-Line Options
Reference section of the PGI Fortran Reference, http://www.pgicompilers.com/resources/
docs/17.10/pdf/pgil7fortref.pdf.

7.1. Overview of Optimization

In general, optimization involves using transformations and replacements that generate
more efficient code. This is done by the compiler and involves replacements that are
independent of the particular target processor's architecture as well as replacements that
take advantage of the x86-64 architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization

Global Optimization

Loop Optimization

Interprocedural Analysis (IPA) and Optimization
Optimization Through Function Inlining

Profile Feedback Optimization (PFO)

7.1.1. Local Optimization

A basic block is a sequence of statements in which the flow of control enters at the
beginning and leaves at the end without the possibility of branching, except at the end.
Local optimization is performed on a block-by-block basis within a program’s basic
blocks.

The PGI compilers perform many types of local optimization including: algebraic
identity removal, constant folding, common sub-expression elimination, redundant load
and store elimination, scheduling, strength reduction, and peephole optimizations.

7.1.2. Global Optimization

This optimization is performed on a subprogram/function over all its basic blocks. The
optimizer performs control-flow and data-flow analysis for an entire program unit. All
loops, including those formed by ad hoc branches such as IFs or GOTOs, are detected
and optimized.

Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable
elimination.

PGI Visual Fortran User's Guide Version 2017 | 54

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Optimizing and Parallelizing

7.1.3. Loop Optimization: Unrolling, Vectorization and
Parallelization

The performance of certain classes of loops may be improved through vectorization

or unrolling options. Vectorization transforms loops to improve memory access
performance and make use of packed SSE instructions which perform the same
operation on multiple data items concurrently. Unrolling replicates the body of loops to
reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with
multiple processors may also improve using the parallelization features of the PGI
compilers.

7.1.4. Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries
to perform optimizations that would otherwise be unavailable. For example, if the
actual argument to a function is in fact a constant in the caller, it may be possible to
propagate that constant into the callee and perform optimizations that are not valid if
the dummy argument is treated as a variable. A wide range of optimizations are enabled
or improved by using IPA, including but not limited to data alignment optimizations,
argument removal, constant propagation, pointer disambiguation, pure function
detection, F90/F95 array shape propagation, data placement, empty function removal,
automatic function inlining, inlining of functions from pre-compiled libraries, and
interprocedural optimization of functions from pre-compiled libraries.

7.1.5. Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of
that function. This optimization will sometimes speed up execution by eliminating
the function call and return overhead. Function inlining may also create opportunities
for other types of optimization. Function inlining is not always beneficial. When used
improperly it may increase code size and generate less efficient code.

7.1.6. Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from a trace file
produced by specially instrumented executables which capture and save information on
branch frequency, function and subroutine call frequency, semi-invariant values, loop
index ranges, and other input data dependent information that can only be collected
dynamically during execution of a program.

By definition, use of profile-feedback optimization is a two-phase process: compilation
and execution of a specially-instrumented executable, followed by a subsequent
compilation which reads a trace file generated during the first phase and uses the
information in that trace file to guide compiler optimizations.

PGI Visual Fortran User's Guide Version 2017 | 55

Optimizing and Parallelizing

7.2. Getting Started with Optimization

The first concern should be getting the program to execute and produce correct results.
To get the program running, start by compiling and linking without optimization.
Add -O0 to the compile line to select no optimization; or add -g to debug the program
easily and isolate any coding errors exposed during porting to x86-64 platforms.

For more information on debugging, refer to the PGI Debugger User's Guide, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7dbug.pdf.

As of the PGI 16.3 release,
-Mipa

has been disabled on Windows.

In PVF, similar options may be accessed using the Optimization property in the Fortran
| Optimization property page. For more information on these property pages, refer to
the Optimization section in the PGI Fortran Reference, http://www.pgicompilers.com/
resources/docs/17.10/pdf/pgil7fortref.pdf.

By experimenting with individual compiler options on a file-by-file basis, further
significant performance gains can sometimes be realized. However, depending on the
coding style, individual optimizations can sometimes cause slowdowns, and must be
used carefully to ensure performance improvements.

In PVF, you may access the -O3, -Minline, and -Mconcur options by using the
Global Optimizations, Inlining, and Auto-Parallelization properties on the Fortran |
Optimization property page, respectively. For more information on these property
pages, refer to the Optimization section in the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.

There are other useful command line options related to optimization and parallelization,
such as -help, -Minfo, -Mneginfo, -dryrun, and -v.

7.2.1. -help

As described in Help with Command-Line Options, you can see a specification of any
command-line option by invoking any of the PGI compilers with ~help in combination
with the option in question, without specifying any input files.

For example, you might want information on -0:

$ pgfortran -help -O

The resulting output is similar to this:

-0 Set opt level. All -01 optimizations plus traditional scheduling and
global scalar optimizations performed

Or you can see the full functionality of ~help itself, which can return information on
either an individual option or groups of options:
S pgfortran -help -help

PGI Visual Fortran User's Guide Version 2017 | 56

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17dbug.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17dbug.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Optimizing and Parallelizing

The resulting output is similar to this:
-help|[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]

Show compiler switches

In PVF these options may be accessed via the Fortran | Command Line property page,
or perhaps more appropriately for the ~help option via a Build Event or Custom
Build Step. For more information on these property pages, refer to the “‘Command
Line’ section in the PGI Fortran Reference, http://www.pgicompilers.com/resources/
docs/17.10/pdf/pgil7fortref.pdf.

7.2.2. -Minfo

You can use the -Minfo option to display compile-time optimization listings. When

this option is used, the PGI compilers issue informational messages to standard error
(stderr) as compilation proceeds. From these messages, you can determine which

loops are optimized using unrolling, SSE instructions , vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You can also see
where and whether functions are inlined.

For more information on -Minfo, refer to ‘Optimization Controls” section of the
PGI Fortran Reference, http://www.pgicompilers.com/resources/docs/17.10/pdf/
pgil7Zfortref.pdf.

7.2.3. -Mneginfo

You can use the -Mneginfo option to display informational messages to standard error
(stderr) that explain why certain optimizations are inhibited.

In PVF, you can use the Warning Level property available in the Fortran | General
property page to specify the option -Mneginfo.

For more information on -Mneginfo, refer to ‘Optimization Controls’ section of
the PGI Fortran Reference, http://www.pgicompilers.com/resources/docs/17.10/pdf/
pgil7fortref.pdf.

7.2.4. -dryrun

The -dryrun option can be useful as a diagnostic tool if you need to see the steps used
by the compiler driver to preprocess, compile, assemble and link in the presence of a
given set of command line inputs. When you specify the ~dryrun option, these steps
are printed to standard error (stderr) but are not actually performed. For example, you
can use this option to inspect the default and user-specified libraries that are searched
during the link phase, and the order in which they are searched by the linker.

7.2.5. -v

The -v option is similar to -dryrun, except each compilation step is performed and not
simply printed.

PGI Visual Fortran User's Guide Version 2017 | 57

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Optimizing and Parallelizing

7.2.6. PGI Profiler

The PGI profiler is a profiling tool that provides a way to visualize the performance

of the components of your program. Using tables and graphs, the profiler associates
execution time and resource utilization data with the source code and instructions of
your program. This association allows you to see where a program’s execution time is
spent. Through resource utilization data and compiler analysis information, the profiler
helps you to understand why certain parts of your program have high execution times.
This information may help you with selecting which optimization options to use with
your program.

The profiler also allows you to correlate the messages produced by -Minfo and
-Mneginfo, described above, to your program'’s source code. This feature is known as
the Common Compiler Feedback Format (CCFF).

For more information on the profiler, refer to the Profiler User's Guide, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7profug.pdf.

7.3. Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information
about how your program was optimized, or why a particular optimization was not
made, in the executable file. To append this information to the object file, use the
compiler option ~-Minfo=ccff.

If you choose to use the PGI profiler to aid with your optimization, it can extract this
information and associate it with source code and other performance data, allowing you
to view all of this information simultaneously in one of the available profiler panels.

7.4. Local and Global Optimization

This section describes local and global optimization.

7.4.1. -0

Using the PGI compiler commands with the -O<level> option (the capital O is for
Optimize), you can specify any integer level from 0 to 4.

-00

Level zero specifies no optimization. A basic block is generated for each language
statement. At this level, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. This level

is useful for the initial execution of a program. It is also useful for debugging, since
there is a direct correlation between the program text and the code generated. To enable
debugging, include -g on your compile line.

PGI Visual Fortran User's Guide Version 2017 | 58

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17profug.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17profug.pdf

Optimizing and Parallelizing

-O01

Level one specifies local optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

Local optimization is a good choice when the code is very irregular, such as code that
contains many short statements containing IF statements and does not contain loops
(DO or DO WHILE statements). Although this case rarely occurs, for certain types of
code, this optimization level may perform better than level-two (-02).

-0

When no level is specified, level two global optimizations are performed, including
traditional scalar optimizations, induction recognition, and loop invariant motion. No
SIMD vectorization is enabled.

-02

Level two specifies global optimization. This level performs all level-one local
optimization as well as level two global optimization described in -0. In addition, more
advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination are enabled.

-03

Level three specifies aggressive global optimization. This level performs all level-
one and level-two optimizations and enables more aggressive hoisting and scalar
replacement optimizations that may or may not be profitable.

-04

Level four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

Types of Optimizations

The PGI compilers perform many different types of local optimizations, including but
not limited to:

Algebraic identity removal

Constant folding

Common subexpression elimination
Local register optimization

Peephole optimizations

Redundant load and store elimination

Strength reductions

PGI Visual Fortran User's Guide Version 2017 | 59

Optimizing and Parallelizing

Level-two optimization (-02 or -0) specifies global optimization. The -fast option
generally specifies global optimization; however, the -fast switch varies from release
to release, depending on a reasonable selection of switches for any one particular
release. The -0 or —02 level performs all level-one local optimizations as well as global
optimizations. Control flow analysis is applied and global registers are allocated for
all functions and subroutines. Loop regions are given special consideration. This
optimization level is a good choice when the program contains loops, the loops are
short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but
not limited to:

Branch to branch elimination
Constant propagation

Copy propagation

Dead store elimination

Global register allocation
Induction variable elimination
Invariant code motion

You can explicitly select the optimization level on the command line. For example,
the following command line specifies level-two optimization which results in global
optimization:

$ pgfortran -02 prog.f

The default optimization level changes depending on which options you select on the
command line. For example, when you select the —g debugging option, the default
optimization level is set to level-zero (-00). However, if you need to debug optimized
code, you can use the ~gopt option to generate debug information without perturbing
optimization. For a description of the default levels, refer to Default Optimization
Levels.

The -fast option includes -02 on all targets. If you want to override the default for
-fast with -03 while maintaining all other elements of -fast, simply compile as
follows:

$ pgfortran -fast -03 prog.f

7.5. Loop Unrolling using -Munroll

This optimization unrolls loops, which reduces branch overhead, and can improve
execution speed by creating better opportunities for instruction scheduling. A loop
with a constant count may be completely unrolled or partially unrolled. A loop with a
non-constant count may also be unrolled. A candidate loop must be an innermost loop
containing one to four blocks of code.

PGI Visual Fortran User's Guide Version 2017 | 60

Optimizing and Parallelizing

The following example shows the use of the ~-Munroll option:
$ pgfortran -Munroll prog.f

The -Munroll option is included as part of ~fast on all targets. The loop unroller
expands the contents of a loop and reduces the number of times a loop is executed.
Branching overhead is reduced when a loop is unrolled two or more times, since each
iteration of the unrolled loop corresponds to two or more iterations of the original loop;
the number of branch instructions executed is proportionately reduced. When a loop is
unrolled completely, the loop’s branch overhead is eliminated altogether.

In PVF, this option is accessed using the Loop Unroll Count property in the Fortran |
Optimization property page. For more information on these property pages, refer to
‘Fortran Optimization” in the PGI Fortran Reference, http://www.pgicompilers.com/
resources/docs/17.10/pdf/pgil7fortref.pdf.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is
completely unrolled or unrolled two or more times, opportunities for improved
scheduling may be presented. The code generator can take advantage of more
possibilities for instruction grouping or filling instruction delays found within the loop.

Examples Showing Effect of Unrolling

The following side-by-side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop;
it is not meant to imply that the programmer needs to manually change code. In
fact, manually unrolling your code can sometimes inhibit the compiler’s analysis and
optimization.

Table 10 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code
REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z

INTEGER I INTEGER I

DO I=1, 100 DO I=1, 100, 2

7 =7 + A(i) * B(i) 7 =7 + A(i) * B(i)

END DO Z =7 + A(i+l) * B(i+1)

END END DO
END

Using the -Minfo option, the compiler informs you when a loop is being unrolled. For
example, a message similar to the following, indicating the line number, and the number
of times the code is unrolled, displays when a loop is unrolled:
dot:

5, Loop unrolled 5 times
Using the c:<m> and n:<m> sub-options to ~Munroll, or using ~-Mnounroll, you can
control whether and how loops are unrolled on a file-by-file basis. Using directives, you

PGI Visual Fortran User's Guide Version 2017 | 61

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Optimizing and Parallelizing

can precisely control whether and how a given loop is unrolled. For more information
on -Munroll, refer to Use Command-line Options.

7.6. Vectorization using -Mvect

The -Mvect option is included as part of -fast on all targets. If your program contains
computationally-intensive loops, the -Mvect option may be helpful. If in addition you
specify -Minfo, and your code contains loops that can be vectorized, the compiler reports
relevant information on the optimizations applied.

When a PGI compiler command is invoked with the -Mvect option, the vectorizer scans
code searching for loops that are candidates for high-level transformations such as
loop distribution, loop interchange, cache tiling, and idiom recognition (replacement
of a recognizable code sequence, such as a reduction loop, with optimized code
sequences or function calls). When the vectorizer finds vectorization opportunities,

it internally rearranges or replaces sections of loops (the vectorizer changes the code
generated; your source code’s loops are not altered). In addition to performing these
loop transformations, the vectorizer produces extensive data dependence information
for use by other phases of compilation and detects opportunities to use vector or
packed Streaming SIMD Extensions (SSE) instructions on x86 processors where these are
supported.

The -Mvect option can speed up code which contains well-behaved countable loops
which operate on large floating point arrays in Fortran and their C/C++ counterparts.
However, it is possible that some codes will show a decrease in performance when
compiled with the -Mvect option due to the generation of conditionally executed code
segments, inability to determine data alignment, and other code generation factors. For
this reason, it is recommended that you check carefully whether particular program
units or loops show improved performance when compiled with this option enabled.

In PVF, you can access the basic forms of this option using the Vectorization property
in the Fortran | Optimization property page. For more advanced use of this option,
use the Fortran | Command Line property page. For more information on these
property pages, refer to Fortran Property Pages in the PGI Fortran Reference, http://
www.pgicompilers.com/resources/docs/17.10/pdf/pgil7fortref.pdf.

7.6.1. Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop
is countable if the number of iterations is set only before loop execution and cannot
be modified during loop execution. Some of the vectorizer transformations can be
controlled by arguments to the -Mvect command line option. The following sections
describe the arguments that affect the operation of the vectorizer. In addition, some of
these vectorizer operations can be controlled from within code using directives and
pragmas. For details on the use of directives, refer to Using Directives.

The vectorizer performs the following operations:

» Loop interchange
» Loop splitting

PGI Visual Fortran User's Guide Version 2017 | 62

http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf
http://www.pgicompilers.com/resources/docs/17.10/pdf/pgi17fortref.pdf

Loop fusion

vV Vv v v Vv

Optimizing and Parallelizing

Memory-hierarchy (cache tiling