
PVF REFERENCE GUIDE

Version 2017

PVF Reference Guide Version 2017 | ii

TABLE OF CONTENTS

Preface... xi
Audience Description.. xi
Compatibility and Conformance to Standards.. xi
Organization..xii
Hardware and Software Constraints.. xiii
Conventions..xiii
Terms..xiv
Related Publications.. xv

Chapter 1. Fortran Data Types.. 1
1.1. Fortran Data Types... 1

1.1.1. Fortran Scalars...1
1.1.2. FORTRAN 77 Aggregate Data Type Extensions.. 3
1.1.3. Fortran 90 Aggregate Data Types (Derived Types)... 4

Chapter 2. Command-Line Options Reference...5
2.1. PGI Compiler Option Summary... 5

2.1.1. Build-Related PGI Options... 6
2.1.2. PGI Debug-Related Compiler Options.. 7
2.1.3. PGI Optimization-Related Compiler Options.. 8
2.1.4. PGI Linking and Runtime-Related Compiler Options...9

2.2. Generic PGI Compiler Options..9
2.2.1. -#... 9
2.2.2. -###...10
2.2.3. -acc...10
2.2.4. -Bdynamic... 11
2.2.5. -Bstatic...12
2.2.6. -Bstatic_pgi..13
2.2.7. -byteswapio... 14
2.2.8. -C... 14
2.2.9. -c..15
2.2.10. -D..16
2.2.11. -dryrun..17
2.2.12. -drystdinc.. 17
2.2.13. -E.. 18
2.2.14. -F.. 18
2.2.15. -fast... 19
2.2.16. -fastsse... 19
2.2.17. --flagcheck... 20
2.2.18. -flags..20
2.2.19. -g.. 21
2.2.20. -gopt.. 21

PVF Reference Guide Version 2017 | iii

2.2.21. -help.. 22
2.2.22. -I...24
2.2.23. -i2, -i4, -i8...25
2.2.24. -K<flag>.. 26
2.2.25. --keeplnk... 27
2.2.26. -L.. 28
2.2.27. -l<library>.. 28
2.2.28. -M..29
2.2.29. -m... 29
2.2.30. -m64.. 30
2.2.31. -M<pgflag>... 30
2.2.32. -module <moduledir>.. 35
2.2.33. -mp..36
2.2.34. -noswitcherror...37
2.2.35. -O<level>... 38
2.2.36. -o.. 40
2.2.37. -pc...40
2.2.38. --pedantic.. 43
2.2.39. -pgc++libs.. 43
2.2.40. -pgf77libs...43
2.2.41. -pgf90libs...44
2.2.42. -r4 and -r8...44
2.2.43. -rc... 45
2.2.44. -S.. 45
2.2.45. -show... 46
2.2.46. -silent...46
2.2.47. -stack... 47
2.2.48. -ta=tesla(tesla_suboptions),host... 48
2.2.49. -time.. 51
2.2.50. -tp <target>[,target...].. 51
2.2.51. -[no]traceback...54
2.2.52. -u.. 54
2.2.53. -U..55
2.2.54. -V[release_number].. 56
2.2.55. -v.. 56
2.2.56. -W... 57
2.2.57. -w... 58

2.3. -M Options by Category.. 58
2.3.1. Code Generation Controls.. 58
2.3.2. Environment Controls... 62
2.3.3. Fortran Language Controls... 63
2.3.4. Inlining Controls..67
2.3.5. Optimization Controls... 69

PVF Reference Guide Version 2017 | iv

2.3.6. Miscellaneous Controls.. 76
Chapter 3. Directives Reference.. 83

3.1. PGI Proprietary Fortran Directive Summary.. 83
3.1.1. altcode (noaltcode)..84
3.1.2. assoc (noassoc)... 85
3.1.3. bounds (nobounds)...85
3.1.4. cncall (nocncall)... 85
3.1.5. concur (noconcur)..85
3.1.6. depchk (nodepchk).. 86
3.1.7. eqvchk (noeqvchk)...86
3.1.8. invarif (noinvarif).. 86
3.1.9. ivdep... 86
3.1.10. lstval (nolstval)... 86
3.1.11. opt.. 86
3.1.12. prefetch.. 87
3.1.13. safe_lastval.. 87
3.1.14. tp.. 88
3.1.15. unroll (nounroll).. 89
3.1.16. vector (novector)... 89
3.1.17. vintr (novintr)... 89

3.2. Prefetch Directives and Pragmas... 89
3.3. IGNORE_TKR Directive..90

3.3.1. IGNORE_TKR Directive Syntax... 90
3.3.2. IGNORE_TKR Directive Format Requirements... 90
3.3.3. Sample Usage of IGNORE_TKR Directive... 91

3.4. !DEC\$ Directives.. 91
3.4.1. ALIAS Directive... 91
3.4.2. ATTRIBUTES Directive... 92
3.4.3. DECORATE Directive... 92
3.4.4. DISTRIBUTE Directive..93

Chapter 4. Runtime Environment... 94
4.1. Win64 Programming Model...94

4.1.1. Function Calling Sequence... 94
4.1.2. Function Return Values... 97
4.1.3. Argument Passing.. 98
4.1.4. Win64 Fortran Supplement..100

Chapter 5. PVF Properties.. 106
5.1. General Property Page.. 106

5.1.1. General... 106
5.1.2. Output Directory..107
5.1.3. Intermediate Directory.. 107
5.1.4. Extensions to Delete on Clean... 107
5.1.5. Configuration Type... 107

PVF Reference Guide Version 2017 | v

5.1.6. Build Log File... 107
5.1.7. Build Log Level... 107

5.2. Debugging Property Page... 107
5.2.1. Debugging.. 107
5.2.2. Application Command..107
5.2.3. Application Arguments...108
5.2.4. Environment... 108
5.2.5. Merge Environment...108
5.2.6. Accelerator Profiling... 108
5.2.7. MPI Debugging...109
5.2.8. Working Directory.. 109
5.2.9. Number of Processes...109
5.2.10. Working Directory... 109
5.2.11. Additional Arguments: mpiexec.. 110
5.2.12. Location of mpiexec..110

5.3. Fortran Property Pages..110
5.4. Fortran | General..110

5.4.1. Display Startup Banner.. 110
5.4.2. Additional Include Directories..111
5.4.3. Module Path... 111
5.4.4. Object File Name...111
5.4.5. Debug Information Format.. 112
5.4.6. Optimization...112

5.5. Fortran | Optimization... 112
5.5.1. Optimization...112
5.5.2. Global Optimizations...113
5.5.3. Vectorization.. 113
5.5.4. Inlining..113
5.5.5. Use Frame Pointer..113
5.5.6. Loop Unroll Count.. 114
5.5.7. Auto-Parallelization.. 114

5.6. Fortran | Preprocessing...114
5.6.1. Preprocess Source File...114
5.6.2. Additional Include Directories..114
5.6.3. Ignore Standard Include Path...115
5.6.4. Preprocessor Definitions...115
5.6.5. Undefine Preprocessor Definitions... 115

5.7. Fortran | Code Generation...116
5.7.1. Runtime Library...116

5.8. Fortran | Language..116
5.8.1. Fortran Dialect..116
5.8.2. Treat Backslash as Character... 116
5.8.3. Extend Line Length...117

PVF Reference Guide Version 2017 | vi

5.8.4. Enable OpenMP Directives.. 117
5.8.5. Enable OpenACC Directives... 117
5.8.6. OpenACC Autoparallelization... 117
5.8.7. OpenACC Required... 118
5.8.8. OpenACC Routineseq... 118
5.8.9. OpenACC Wait...118
5.8.10. OpenACC Conformance Level... 118
5.8.11. OpenACC Sync... 119
5.8.12. MPI...119
5.8.13. Enable CUDA Fortran... 119
5.8.14. CUDA Fortran Register Limit.. 120
5.8.15. CUDA Fortran Use Fused Multiply-Adds..120
5.8.16. CUDA Fortran Use Fast Math Library.. 120
5.8.17. CUDA Fortran Debug..120
5.8.18. CUDA Fortran Line Information... 121
5.8.19. CUDA Fortran Use LLVM Back End.. 121
5.8.20. CUDA Fortran Unroll.. 121
5.8.21. CUDA Fortran Flush to Zero...121
5.8.22. CUDA Fortran Toolkit... 122
5.8.23. CUDA Fortran Compute Capability... 122
5.8.24. CUDA Fortran Fermi.. 123
5.8.25. CUDA Fortran Fermi+...123
5.8.26. CUDA Fortran Kepler... 123
5.8.27. CUDA Fortran Kepler+.. 123
5.8.28. CUDA Fortran Keep Binary...123
5.8.29. CUDA Fortran Keep Kernel Source... 123
5.8.30. CUDA Fortran Keep PTX..124
5.8.31. CUDA Fortran Keep PTXAS...124
5.8.32. CUDA Fortran Generate RDC.. 124
5.8.33. CUDA Fortran Emulation... 124
5.8.34. CUDA Fortran Madconst.. 124

5.9. Fortran | Floating Point Options.. 124
5.9.1. Floating Point Exception Handling...125
5.9.2. Floating Point Consistency.. 125
5.9.3. Flush Denormalized Results to Zero...125
5.9.4. Treat Denormalized Values as Zero..125
5.9.5. IEEE Arithmetic... 125

5.10. Fortran | External Procedures... 126
5.10.1. Calling Convention.. 126
5.10.2. String Length Arguments...126
5.10.3. Case of External Names..126

5.11. Fortran | Libraries... 127
5.11.1. Use MKL...127

PVF Reference Guide Version 2017 | vii

5.12. Fortran | Target Processors...127
5.12.1. AMD Athlon...127
5.12.2. AMD Barcelona...127
5.12.3. AMD Bulldozer... 128
5.12.4. AMD Istanbul... 128
5.12.5. AMD Piledriver... 128
5.12.6. AMD Shanghai.. 128
5.12.7. Intel Core 2.. 128
5.12.8. Intel Core i7... 128
5.12.9. Intel Penryn.. 128
5.12.10. Intel Pentium 4.. 128
5.12.11. Intel Sandy Bridge... 128
5.12.12. Generic x86-64 [x64 only]..129

5.13. Fortran | Target Accelerators.. 129
5.13.1. Target NVIDIA Tesla... 129
5.13.2. Tesla Register Limit...129
5.13.3. Tesla Use Fused Multiply-Adds.. 130
5.13.4. Tesla Use Fast Math Library... 130
5.13.5. Tesla LLVM.. 130
5.13.6. Tesla Noattach...130
5.13.7. Tesla Pin Host Memory... 130
5.13.8. Tesla Autocollapse.. 131
5.13.9. Tesla Debug.. 131
5.13.10. Tesla Lineinfo...131
5.13.11. Tesla Unroll... 131
5.13.12. Tesla Required..132
5.13.13. Tesla Flush to Zero.. 132
5.13.14. Tesla Generate RDC... 132
5.13.15. Tesla CUDA Toolkit...132
5.13.16. Tesla Compute Capability.. 133
5.13.17. Tesla CC Fermi... 133
5.13.18. Tesla CC Fermi+..133
5.13.19. Tesla CC Kepler.. 134
5.13.20. Tesla CC Kepler+... 134
5.13.21. Tesla: Keep Kernel Files.. 134

5.14. Fortran | Diagnostics.. 134
5.14.1. Warning Level..134
5.14.2. Generate Assembly... 134
5.14.3. Annotate Assembly..135
5.14.4. Accelerator Information..135
5.14.5. CCFF Information..135
5.14.6. Fortran Language Information.. 135
5.14.7. Inlining Information...135

PVF Reference Guide Version 2017 | viii

5.14.8. IPA Information.. 135
5.14.9. Loop Intensity Information.. 135
5.14.10. Loop Optimization Information..135
5.14.11. LRE Information.. 136
5.14.12. OpenMP Information...136
5.14.13. Optimization Information...136
5.14.14. Parallelization Information... 136
5.14.15. Unified Binary Information... 136
5.14.16. Vectorization Information.. 136

5.15. Fortran | Profiling..136
5.15.1. Suppress CCFF Information.. 136
5.15.2. Enable Limited DWARF... 137

5.16. Fortran | Runtime..137
5.16.1. Check Array Bounds.. 137
5.16.2. Check Pointers...137
5.16.3. Check Stack.. 137
5.16.4. Command Line...137

5.17. Fortran | Command Line..138
5.17.1. Command Line...138

5.18. Linker Property Pages..138
5.19. Linker | General..138

5.19.1. Output File... 138
5.19.2. Additional Library Directories...139
5.19.3. Stack Reserve Size.. 139
5.19.4. Stack Commit Size.. 139
5.19.5. Export Symbols.. 139

5.20. Linker | Input...139
5.20.1. Additional Dependencies...139

5.21. Linker | Command Line... 140
5.21.1. Command Line...140

5.22. Librarian Property Pages.. 140
5.23. Librarian | General.. 140

5.23.1. Output File... 140
5.23.2. Additional Library Directories...141
5.23.3. Additional Dependencies...141

5.24. Librarian | Command Line..142
5.24.1. Command Line...142

5.25. Resources Property Page.. 142
5.26. Resources | Command Line...142

5.26.1. Command Line...142
5.27. Build Events Property Page... 142

5.27.1. Build Event... 143
5.27.2. Command Line...143

PVF Reference Guide Version 2017 | ix

5.27.3. Description... 143
5.27.4. Excluded From Build..143

5.28. Custom Build Step Property Page..143
5.28.1. Custom Build Step | General... 143
5.28.2. Command Line...143
5.28.3. Description... 144
5.28.4. Outputs... 144
5.28.5. Additional Dependencies...144

Chapter 6. PVF Build Macros... 145
Chapter 7. Fortran Module/Library Interfaces for Windows..148

7.1. Source Files... 148
7.2. Data Types.. 148
7.3. Using DFLIB, LIBM, and DFPORT...149

7.3.1. DFLIB..149
7.3.2. LIBM... 150
7.3.3. DFPORT... 151

7.4. Using the DFWIN module... 156
7.5. Supported Libraries and Modules..156

7.5.1. advapi32..157
7.5.2. comdlg32... 158
7.5.3. dfwbase.. 159
7.5.4. dfwinty... 159
7.5.5. gdi32.. 159
7.5.6. kernel32.. 162
7.5.7. shell32.. 169
7.5.8. user32...169
7.5.9. winver.. 174
7.5.10. wsock32... 174

Chapter 8. Messages..175
8.1. Diagnostic Messages... 175
8.2. Phase Invocation Messages... 176
8.3. Fortran Compiler Error Messages..176

8.3.1. Message Format...176
8.3.2. Message List... 176

8.4. Fortran Run-time Error Messages..212
8.4.1. Message Format...212
8.4.2. Message List... 212

Chapter 9. Contact Information..215

PVF Reference Guide Version 2017 | x

LIST OF TABLES

Table 1 PGI Compilers and Commands ... xiv

Table 2 Representation of Fortran Data Types .. 1

Table 3 Real Data Type Ranges .. 2

Table 4 Scalar Type Alignment ...2

Table 5 PGI Build-Related Compiler Options .. 6

Table 6 PGI Debug-Related Compiler Options ... 8

Table 7 Optimization-Related PGI Compiler Options ...8

Table 8 Linking and Runtime-Related PGI Compiler Options ..9

Table 9 Subgroups for -help Option ... 23

Table 10 -M Options Summary ..30

Table 11 Optimization and -O, -g, -Mvect, and -Mconcur Options 39

Table 12 IGNORE_TKR Example ...91

Table 13 Register Allocation .. 95

Table 14 Standard Stack Frame .. 95

Table 15 Register Allocation for Example A-4 ... 99

Table 16 Win64 Fortran Fundamental Types ..101

Table 17 Fortran and C/C++ Data Type Compatibility .. 103

Table 18 Fortran and C/C++ Representation of the COMPLEX Type103

Table 19 PVF Build Macros ...145

Table 20 Fortran Data Type Mappings ... 148

Table 21 DFLIB Function Summary ... 149

Table 22 LIBM Functions ..150

Table 23 DFPORT Functions ..151

PVF Reference Guide Version 2017 | xi

PREFACE

This guide is part of a set of manuals that describe how to use the PGI Fortran compilers
and program development tools integrated with Microsoft Visual Studio. These tools,
combined with Visual Studio and assorted libraries, are collectively known as PGI Visual
Fortran®, or PVF®. You can use PVF to edit, compile, debug, optimize, and profile serial
and parallel applications for x64 processor-based systems.

The PGI Visual Fortran Reference Manual is the reference companion to the PGI Visual
Fortran User’s Guide which provides operating instructions for both the Visual Studio
integrated development environment as well as command-level compilation and general
information about PGI’s compilers. Neither guide teaches the Fortran programming
language.

Audience Description
This manual is intended for scientists and engineers using PGI Visual Fortran. To fully
understand this guide, you should be aware of the role of high-level languages, such
as Fortran, in the software development process; and you should have some level of
understanding of programming. PGI Visual Fortran is available on a variety of x86-64/
x64 hardware platforms and variants of the Windows operating system. You need to be
familiar with the basic commands available on your system.

Compatibility and Conformance to Standards
Your system needs to be running a properly installed and configured version of this PGI
product. For information on installing PVF, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,

Geneva, 1991 (Fortran 90).
‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,

Geneva, 1997 (Fortran 95).

Preface

PVF Reference Guide Version 2017 | xii

‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,
Geneva, 2004 (Fortran 2003).

‣ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran,
Geneva, 2010 (Fortran 2008).

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ The Fortran 2003 Handbook, Adams et al, Springer, 2009.
‣ OpenMP Application Program Interface, Version 3.1, July 2011, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard

Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).
‣ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva,

2011 (C11).
‣ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++,

Geneva, 2011 (C++11).

Organization
Users typically begin by wanting to know how to use a product and often then find that
they need more information and facts about specific areas of the product. Knowing how
as well as why you might use certain options or perform certain tasks is key to using
the PGI compilers and tools effectively and efficiently. However, once you have this
knowledge and understanding, you very likely might find yourself wanting to know
much more about specific areas or specific topics.

To facilitate ease of use, this manual contains detailed reference information about
specific aspects of the compiler, such as the details of compiler options, directives, and
more. This guide contains these sections:

Fortran Data Types describes the data types that are supported by the PGI Fortran
compilers.

Command-Line Options Reference provides a detailed description of each command-
line option.

Directives Reference contains detailed descriptions of PGI’s proprietary directives.

Runtime Environment describes the programming model supported for compiler code
generation, including register conventions and calling conventions for x64 processor-
based systems running a Windows operating system.

PVF Properties provides a description of Property Pages that PGI supports.

PVF Build Macros provides a description of the build macros that PVF supports.

Fortran Module/Library Interfaces for Windows provides a description of the Fortran
module library interfaces that PVF supports.

http://www.openmp.org
http://www.openmp.org

Preface

PVF Reference Guide Version 2017 | xiii

Messages provides a list of compiler error messages.

Hardware and Software Constraints
This guide describes versions of the PGI Visual Fortran that are intended for use on x64
processor-based systems. Details concerning environment-specific values and defaults
and system-specific features or limitations are presented in the release notes delivered
with the PGI Visual Fortran.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at
https://www.pgroup.com/products/index.htm?tab=compat for a comprehensive listing
of supported platforms.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/products/index.htm?tab=compat

Preface

PVF Reference Guide Version 2017 | xiv

Terms
A number of terms related to systems, processors, compilers and tools are used
throughout this guide. For example:

accelerator FMA -mcmodel=medium static linking

AVX host -mcmodel=small Win32

CUDA hyperthreading (HT) MPI Win64

device large arrays multicore x64

DLL license keys NUMA s86

driver LLVM SIMD x87

DWARF manycore SSE

For a complete definition of these terms and other terms in this guide with which you
may be unfamiliar, please refer to the PGI online glossary at https://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding
commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command

PGF77 ANSI FORTRAN 77 pgf77

PGFORTRAN ISO/ANSI Fortran 2003 pgfortran

PGI Debugger Source code debugger pgdbg

PGI Profiler Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to the PGI Fortran 2003 compiler,
and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally
reference the pgfortran command, and most source code examples are written in
Fortran. Usage of the PGF77 compiler, whose features are a subset of PGFORTRAN, is
similar.

There are a wide variety of 64-bit x86-compatible processors in use. All are supported by
the PGI compilers and tools. Most of these processors are forward-compatible, but not
backward-compatible, meaning that code compiled to target a given processor will not
necessarily execute correctly on a previous-generation processor.

A table listing the processor options that PGI supports is available in the Release Notes.
The table also includes the features utilized by the PGI compilers that distinguish them
from a compatibility standpoint.

https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/support/definitions.htm

Preface

PVF Reference Guide Version 2017 | xv

In this manual, the convention is to use "x86" to specify the group of processors that
are "32-bit" but not "64-bit". The convention is to use "x64" to specify the group of
processors that are both "32-bit" and "64-bit". x86 processor-based systems can run only
32-bit operating systems. x64 processor-based systems can run either 32-bit or 64-bit
operating systems, and can execute all 32-bit x86 binaries in either case. x64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI
compilers and tools when running on a 64-bit operating system. The prefetch, SSE1,
SSE2, SSE3, and AVX processor features further distinguish the various processors.
Where such distinctions are important with respect to a given compiler option or
feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions
on targets that support SSE1 and SSE2.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
bit or 64-bit operating systems.

Related Publications
The following documents contain additional information related to the x86-64 and x64
architectures, and the compilers and tools available from The Portland Group.

‣ PGI Fortran Reference Manual, https://www.pgroup.com/resources/docs.php
describes the FORTRAN 77, Fortran 90/95, Fortran 2003 statements, data types,
input/output format specifiers, and additional reference material related to use of
the PGI Fortran compilers.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

‣ System V Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/documentation_folder/abi.pdf.

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

https://www.pgroup.com/resources/docs.php
http://www.x86-64.org/documentation_folder/abi.pdf
http://www.x86-64.org/documentation_folder/abi.pdf

Preface

PVF Reference Guide Version 2017 | xvi

PVF Reference Guide Version 2017 | 1

Chapter 1.
FORTRAN DATA TYPES

This section describes the scalar and aggregate data types recognized by the PGI Fortran
compilers, the format and alignment of each type in memory, and the range of values
each type can have on 64-bit operating systems.

1.1. Fortran Data Types

1.1.1. Fortran Scalars
A scalar data type holds a single value, such as the integer value 42 or the real value
112.6. The next table lists scalar data types, their size, format and range. Table 3 shows
the range and approximate precision for Fortran real data types. Table 4 shows the
alignment for different scalar data types. The alignments apply to all scalars, whether
they are independent or contained in an array, a structure or a union.

Table 2 Representation of Fortran Data Types

Fortran Data Type Format Range

INTEGER 2's complement integer -231 to 231-1

INTEGER*2 2's complement integer -32768 to 32767

INTEGER*4 2's complement integer -231 to 231-1

INTEGER*8 2's complement integer -263 to 263-1

LOGICAL 32-bit value true or false

LOGICAL*1 8-bit value true or false

LOGICAL*2 16-bit value true or false

LOGICAL*4 32-bit value true or false

LOGICAL*8 64-bit value true or false

BYTE 2's complement -128 to 127

REAL Single-precision floating point 10-37 to 1038 (1)

Fortran Data Types

PVF Reference Guide Version 2017 | 2

Fortran Data Type Format Range

REAL*4 Single-precision floating point 10-37 to 10 38 (1)

REAL*8 Double-precision floating point 10-307 to 10 308 (1)

DOUBLE PRECISION Double-precision floating point 10-307 to 10308 (1)

COMPLEX Single-precision floating point 10-37 to 1038 (1)

DOUBLE COMPLEX Double-precision floating point 10-307 to 10308 (1)

COMPLEX*16 Double-precision floating point 10-307 to 10308 (1)

CHARACTER*n Sequence of n bytes

(1) Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively.
Internally, the value of a logical variable is true if the least significant bit is one and false
otherwise. When the option -Munixlogical is set, a logical variable with a non-zero
value is true and with a zero value is false.

A variable of logical type may appear in an arithmetic context, and the logical type is
then treated as an integer of the same size.

Table 3 Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision

REAL -2-126 to 2128 10-37 to 1038 (1) 7–8

REAL*8 -2-1022 to 21024 10-307 to 10308 (1) 15–16

Table 4 Scalar Type Alignment

This Type... ...Is aligned on this size boundary

LOGICAL*1 1-byte

LOGICAL*2 2-byte

LOGICAL*4 4-byte

LOGICAL*8 8-byte

BYTE 1-byte

INTEGER*2 2-byte

INTEGER*4 4-byte

INTEGER*8 8-byte

REAL*4 4-byte

REAL*8 8-byte

COMPLEX*8 4-byte

COMPLEX*16 8-byte

Fortran Data Types

PVF Reference Guide Version 2017 | 3

1.1.2. FORTRAN 77 Aggregate Data Type Extensions
The PGFORTRAN compiler supports de facto standard extensions to FORTRAN 77 that
allow for aggregate data types. An aggregate data type consists of one or more scalar
data type objects. You can declare the following aggregate data types:

‣ An array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

‣ A structure can contain different data types. The members are allocated in the order
they appear in the definition but may not occupy contiguous locations.

‣ A union is a single location that can contain any of a specified set of scalar or
aggregate data types. A union can have only one value at a time. The data type of
the union member to which data is assigned determines the data type of the union
after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space
the object occupies and how efficiently the processor can address members. Arrays use
the alignment of their members.
Array types

align according to the alignment of the array elements. For example, an array of
INTEGER*2 data aligns on a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure
or union. In the next example, the union aligns on a 4-byte boundary since the
alignment of c, the most restrictive element, is four.

STRUCTURE /astr/
UNION
 MAP
 INTEGER*2 a ! 2 bytes
 END MAP
 MAP
 BYTE b ! 1 byte
 END MAP
 MAP
 INTEGER*4 c ! 4 bytes
 END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between
members of the structure is called internal padding. Padding between the last member
and the end of the space is called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the
member's alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the
offset of an INTEGER*2 member from the beginning of a structure is a multiple of two
bytes.

Fortran Data Types

PVF Reference Guide Version 2017 | 4

1.1.3. Fortran 90 Aggregate Data Types (Derived Types)
The Fortran 90 standard added formal support for aggregate data types. The TYPE
statement begins a derived type data specification or declares variables of a specified
user-defined type. For example, the following would define a derived type ATTENDEE:
TYPE ATTENDEE
 CHARACTER(LEN=30) NAME
 CHARACTER(LEN=30) ORGANIZATION
 CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a
variable, code such as the following would be used:
TYPE (ATTENDEE) ATTLIST(100)
. . .
ATTLIST(1)%NAME = ‘JOHN DOE’

PVF Reference Guide Version 2017 | 5

Chapter 2.
COMMAND-LINE OPTIONS REFERENCE

A command-line option allows you to specify specific behavior when a program is
compiled and linked. Compiler options perform a variety of functions, such as setting
compiler characteristics, describing the object code to be produced, controlling the
diagnostic messages emitted, and performing some preprocessor functions. Most
options that are not explicitly set take the default settings. This reference section
describes the syntax and operation of each compiler option. For easy reference, the
options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks,
refer to the ‘Using Command-line Options’ section of the PVF User's Guide, https://
www.pgroup.com/resources/docs.php, which also provides summary tables of the
different options.

This section uses the following notation:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical
bar (|) separates the choices.

...
Horizontal ellipses indicate that zero or more instances of the preceding item are
valid.

2.1. PGI Compiler Option Summary
The following tables include all the PGI compiler options that are not language-specific.
The options are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this
section.

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 6

2.1.1. Build-Related PGI Options
The options included in the following table pertain to the initial building of your
program or application.

Table 5 PGI Build-Related Compiler Options

Option Description

-# Display invocation information.

-### Shows but does not execute the driver commands (same as the
option -dryrun).

-acc Enable OpenACC directives.

-Bdynamic Compiles for and links to the shared object version of the PGI
runtime libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime
libraries.

-c Stops after the assembly phase and saves the object code in
filename.o.

-D<args> Defines a preprocessor macro.

-dryrun Shows but does not execute driver commands.

-drystdinc Displays the standard include directories and then exits the
compiler.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

-F Stops after the preprocessing phase and saves the preprocessed
file in filename.f. This option is only valid for the PGI Fortran
compilers.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

-I<dirname> Adds a directory to the search path for #include files.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits
for INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

-L<dirname> Specifies a directory to search for libraries.

-l<library> Loads a library.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 7

Option Description

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium (-tp k8-64 and -tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64 environment.

-module <moduledir> Save/search for module files in directory <moduledir>.

-mp[=all, align,bind,[no]numa] Interpret and process user-inserted shared-memory parallel
programming directives.

-noswitcherror Ignore unknown command line switches after printing an warning
message.

-o Names the object file.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

-pgf77libs Append PGF77 runtime libraries to the link line.

-pgf90libs Append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

-r4: Interpret DOUBLE PRECISION variables as REAL.-r4 and -r8

-r8: Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver's startup file.

-S Stops after the compiling phase and saves the assembly-language
code in filename.s.

-show Display driver's configuration parameters after startup.

-silent Do not print warning messages.

-time Print execution times for the various compilation steps.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

-u<symbol> Initializes the symbol table with <symbol>, which is undefined for
the linker. An undefined symbol triggers loading of the first member
of an archive library.

-U<symbol> Undefine a preprocessor macro.

-V[release_number] Displays the version messages and other information, or allows
invocation of a version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

-Xlinker <option> Passes options to the linker.

2.1.2. PGI Debug-Related Compiler Options
The options included in the following table pertain to debugging your program or
application.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 8

Table 6 PGI Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-c Instrument the generated executable to perform array bounds
checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-g Includes debugging information in the object module; sets the
optimization level to zero unless a -O option is present on the
command line.

-gopt Includes debugging information in the object module, but forces
assembly code generation identical to that obtained when -gopt
is not present on the command line.

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

-[no]traceback Adds debug information for runtime traceback for use with the
environment variable PGI_TERM.

2.1.3. PGI Optimization-Related Compiler Options
The options included in the following table pertain to optimizing your program or
application code.

Table 7 Optimization-Related PGI Compiler Options

Option Description

-fast Generally optimal set of flags.

-fastsse Generally optimal set of flags for targets that include SSE/SSE2
capability.

-M<pgflag> Selects variations for code generation and optimization.

-mp[=all, align,bind,[no]numa] Interpret and process user-inserted shared-memory parallel
programming directives.

-O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 9

Option Description

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

2.1.4. PGI Linking and Runtime-Related Compiler
Options
The options included in the following table pertain to defining parameters related to
linking and running your program or application.

Table 8 Linking and Runtime-Related PGI Compiler Options

Option Description

-Bdynamic Compiles for and links to the DLL version of the PGI runtime
libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime
libraries.

-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice
versa on input/output of unformatted data.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits
for INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium (-tp k8-64 and -tp p7-64 targets only) Generate code which supports
the medium memory model in the linux86-64 environment.

-Xlinker <option> Pass options to the linker.

2.2. Generic PGI Compiler Options
The following descriptions are for all the PGI options. For easy reference, the options
are arranged in alphabetical order. For a list of options by tasks, refer to the tables in the
beginning of this section.

2.2.1. -#
Displays the invocations of the compiler, assembler and linker.

Default

The compiler does not display individual phase invocations.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 10

Usage

The following command-line requests verbose invocation information.
$ pgfortran -# prog.f

Description

The -# option displays the invocations of the compiler, assembler and linker. These
invocations are command-lines created by the driver from your command-line input and
the default value.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.2.2. -###
Displays the invocations of the compiler, assembler and linker, but does not execute
them.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -### myprog.f

Description

Use the -### option to display the invocations of the compiler, assembler and linker
but not to execute them. These invocations are command lines created by the compiler
driver from the rc files and the command-line options.

Related options

-#, -dryrun, -Minfo[=option [,option,...]], -V[release_number]

2.2.3. -acc
Enables OpenACC directives.

Default

The compiler enables OpenACC directives.

Syntax
-acc[=[no]autopar|[no]required|strict|verystrict]

Command-Line Options Reference

PVF Reference Guide Version 2017 | 11

[no]autopar
Enable [default] loop autoparallelization within acc parallel. The default is to autopar,
that is, to enable loop autoparallelization.

[no]required
Instructs the compiler to issue a compiler error if the compute regions fail to
accelerate. The default is required.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator
directive.

Usage

The following command-line requests that OpenACC directives be enabled and that an
error be issued for any non-OpenACC accelerator directive.
$ pgfortran -acc=verystrict -g prog.f

Description

The -acc option enables OpenACC directives. You can use the suboptions to specify loop
autoparallelization, how the compiler reports compute regions failures to accelerate, and
whether to issue a warning or an error for non-OpenACC accelerator directives.

Starting in PGI 14.1, you control the OpenACC compiler behavior related to accelerator
code generation failures with the required suboption. The OpenACC compilers now
issue a compile-time error if accelerator code generation fails. In previous releases, the
compiler would issue a warning, then generate code to run the compute kernel on the
host. This previous behavior generates incorrect results if the compute kernels are inside
a data region and the host and device memory values are inconsistent. You can enable
the old behavior by using the -acc norequired switch.

Related options

-g, -ta=tesla(tesla_suboptions),host

2.2.4. -Bdynamic
Compiles for and links to the shared object version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 12

Usage

On Windows, you can create the DLL obj1.dll and its import library obj1.lib using
the following series of commands:
% pgfortran -Bdynamic -c object1.f
% pgfortran -Mmakedll object1.obj -o obj1.dll

Then compile the main program using this command:
$ pgfortran -# prog.f

For a complete example in Windows, refer to the example: ‘Build a DLL: Fortran’ in the
‘Creating and Using Libraries’ section of the PGI Compiler User’s Guide.

Description

Use this option to compile for and link to the shared object version of the PGI runtime
libraries. This flag is required when linking with any DLL built by the PGI compilers.
For Windows, this flag corresponds to the /MD flag used by Microsoft’s cl compilers.

On Windows, -Bdynamic must be used for both compiling and linking.

When you use the PGI compiler flag -Bdynamic to create an executable that links to
the shared object form of the runtime, the executable built is smaller than one built
without -Bdynamic. The PGI runtime shared object(s), however, must be available on
the system where the executable is run. The -Bdynamic flag must be used when an
executable is linked against a shared object built by the PGI compilers.

Related options

-Bstatic , -Mmakedll

2.2.5. -Bstatic
Compiles for and links to the static version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the
PGI runtime libraries:
% pgfortran -Bstatic -c object1.f

Command-Line Options Reference

PVF Reference Guide Version 2017 | 13

Description

You can use this option to explicitly compile for and link to the static version of the PGI
runtime libraries.

On Windows, -Bstatic must be used for both compiling and linking.

For more information on using static libraries on Windows, refer to ‘Creating and Using
Static Libraries on Windows’ in the ‘Creating and Using Libraries’ section of the PGI
Compiler User’s Guide.

Related options

-Bdynamic, -Bstatic_pgi

2.2.6. -Bstatic_pgi
Linux only. Compiles for and links to the static version of the PGI runtime libraries.
Implies -Mnorpath.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the
PGI runtime libraries:
% pgfortran -Bstatic -c object1.f

Description

You can use this option to explicitly compile for and link to the static version of the PGI
runtime libraries.

On Linux, -Bstatic_pgi results in code that runs on most Linux systems without
requiring a Portability package.

For more information on using static libraries on Windows, refer to ‘Creating and Using
Static Libraries on Windows’ in the ‘Creating and Using Libraries’ section of the PVF
User's Guide, https://www.pgroup.com/resources/docs.php.

Related options

-Bdynamic, -Bstatic

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 14

2.2.7. -byteswapio
Swaps the byte-order of data in unformatted Fortran data files on input/output.

Default

The compiler does not byte-swap data on input/output.

Usage

The following command-line requests that byte-swapping be performed on input/
output.
$ pgfortran -byteswapio myprog.f

Description

Use the -byteswapio option to swap the byte-order of data in unformatted Fortran
data files on input/output. When this option is used, the order of bytes is swapped in
both the data and record control words; the latter occurs in unformatted sequential files.

You can use this option to convert big-endian format data files produced by most legacy
RISC workstations to the little-endian format used on x86-64/x64 or OpenPOWER
systems on the fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct
access files are the same on the systems. It further assumes that the IEEE representation
is used for floating-point numbers. In particular, the format of unformatted data files
produced by PGI Fortran compilers is identical to the format used on Sun and SGI
workstations; this format allows you to read and write unformatted Fortran data
files produced on those platforms from a program compiled for an x86-64/x64 or
OpenPOWER platform using the -byteswapio option.

Related options

None.

2.2.8. -C
(Fortran only) Generates code to check array bounds.

Default

The compiler does not enable array bounds checking.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 15

Usage

In this example, the compiler instruments the executable produced from myprog.f to
perform array bounds checking at runtime:
$ pgfortran -C myprog.f

Description

Use this option to enable array bounds checking. If an array is an assumed size array,
the bounds checking only applies to the lower bound. If an array bounds violation
occurs during execution, an error message describing the error is printed and the
program terminates. The text of the error message includes the name of the array, the
location where the error occurred (the source file and the line number in the source), and
information about the out of bounds subscript (its value, its lower and upper bounds,
and its dimension).

Related options

-Mbounds, -Mnobounds

2.2.9. -c
Halts the compilation process after the assembling phase and writes the object code to a
file.

Default

The compiler produces an executable file and does not use the -c option.

Usage

In this example, the compiler produces the object file myprog.obj in the current
directory.
$ pgfortran -c myprog.f

Description

Use the -c option to halt the compilation process after the assembling phase and write
the object code to a file. If the input file is filename.f, the output file is .

Related options

-E, -Mkeepasm, -o, -S

Command-Line Options Reference

PVF Reference Guide Version 2017 | 16

2.2.10. -D
Creates a preprocessor macro with a given value.

You can use the -D option more than once on a compiler command line. The number
of active macro definitions is limited only by available memory.

Syntax
-Dname[=value]

Where name is the symbolic name and value is either an integer value or a character
string.

Default

If you define a macro name without specifying a value, the preprocessor assigns the
string 1 to the macro name.

Usage

In the following example, the macro PATHLENGTH has the value 256 until a
subsequent compilation. If the -D option is not used, PATHLENGTH is set to 128.
$ pgfortran -DPATHLENGTH=256 myprog.F

The source text in myprog.F is this:
 #ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path
 ...
END

Description

Use the -D option to create a preprocessor macro with a given value. The value must be
either an integer or a character string.

You can use macros with conditional compilation to select source text during
preprocessing. A macro defined in the compiler invocation remains in effect for
each module on the command line, unless you remove the macro with an #undef
preprocessor directive or with the -U option. The compiler processes all of the -U
options in a command line after processing the -D options.

To set this option in PVF, use the Fortran | Preprocessor | Preprocessor Definitions
property, described in ‘Preprocessor Definitions’.

Related options

-U

Command-Line Options Reference

PVF Reference Guide Version 2017 | 17

2.2.11. -dryrun
Displays the invocations of the compiler, assembler, and linker but does not execute
them.

Default

The compiler does not display individual phase invocations.

Usage

The following command line requests verbose invocation information.
$ pgfortran -dryrun myprog.f

Description

Use the -dryrun option to display the invocations of the compiler, assembler, and
linker but not have them executed. These invocations are command lines created by the
compiler driver from the rc files and the command-line supplied with -dryrun.

Related options

-Minfo[=option [,option,...]], -V[release_number], -###

2.2.12. -drystdinc
Displays the standard include directories and then exits the compiler.

Default

The compiler does not display standard include directories.

Usage

The following command line requests a display for the standard include directories.
$ pgfortran -drystdinc myprog.f

Description

Use the -drystdinc option to display the standard include directories and then exit
the compiler.

Related options

None.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 18

2.2.13. -E
Halts the compilation process after the preprocessing phase and displays the
preprocessed output on the standard output.

Default

The compiler produces an executable file.

Usage

In the following example the compiler displays the preprocessed myprog.f on the
standard output.
$ pgfortran -E myprog.f

Description

Use the -E option to halt the compilation process after the preprocessing phase and
display the preprocessed output on the standard output.

Related options

-C, -c, -Mkeepasm, -o, -F, -S

2.2.14. -F
Stops compilation after the preprocessing phase.

Default

The compiler produces an executable file.

Usage

In the following example the compiler produces the preprocessed file myprog.f in the
current directory.
$ pgfortran -F myprog.F

Description

Use the -F option to halt the compilation process after preprocessing and write the
preprocessed output to a file. If the input file is filename.F, then the output file is
filename.f.

Related options

-c, -E, -Mkeepasm, -o, -S

Command-Line Options Reference

PVF Reference Guide Version 2017 | 19

2.2.15. -fast
Enables vectorization with SIMD instructions, cache alignment, and flushz for 64-bit
targets.

Default

The compiler enables vectorization with SIMD instructions, cache alignment, and flushz.

Usage

In the following example the compiler produces vector SIMD code when targeting a 64-
bit machine.
$ pgfortran -fast vadd.f95

Description

When you use this option, a generally optimal set of options is chosen for targets that
support SIMD capability. In addition, the appropriate -tp option is automatically
included to enable generation of code optimized for the type of system on which
compilation is performed. This option enables vectorization with SIMD instructions,
cache alignment, and flushz.

Auto-selection of the appropriate -tp option means that programs built using the
-fastsse option on a given system are not necessarily backward-compatible with
older systems.

C/C++ compilers enable -Mautoinline with -fast.

To set this option in PVF, use the Fortran | General | Optimization property, described
in ‘Optimization’.

Related options

-O<level>, -Munroll[=option [,option...]], -Mnoframe , -Mscalarsse , -
M[no]vect[=option [,option,...]], -Mcache_align , -tp <target>[,target...] , -
M[no]autoinline[=option[,option,...]]

2.2.16. -fastsse
Synonymous with -fast.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 20

2.2.17. --flagcheck
Causes the compiler to check that flags are correct and then exit without any
compilation occuring.

Default

The compiler begins a compile without the additional step to first validate that flags are
correct.

Usage

In the following example the compiler checks that flags are correct, and then exits.
$ pgfortran --flagcheck myprog.f

Description

Use this option to make the compiler check that flags are correct and then exit. If flags
are all correct then the compiler returns a zero status. No compilation occurs.

Related options

None.

2.2.18. -flags
Displays valid driver options on the standard output.

Default

The compiler does not display the driver options.

Usage

In the following example the user requests information about the known switches.
$ pgfortran -flags

Description

Use this option to display driver options on the standard output. When you use this
option with -v, in addition to the valid options, the compiler lists options that are
recognized and ignored.

Related options

-#, -###, -v

Command-Line Options Reference

PVF Reference Guide Version 2017 | 21

2.2.19. -g
Instructs the compiler to include symbolic debugging information in the object module;
sets the optimization level to zero unless a -O option is present on the command line.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object file myprog.obj contains symbolic debugging
information.
$ pgfortran -c -g myprog.f

Description

Use the -g option to instruct the compiler to include symbolic debugging information in
the object module. Debuggers, including the PGI debugger, require symbolic debugging
information in the object module to display and manipulate program variables and
source code.

If you specify the -g option on the command-line, the compiler sets the optimization
level to -O0 (zero), unless you specify the -O option. For more information on the
interaction between the -g and -O options, refer to the -O entry. Symbolic debugging
may give confusing results if an optimization level other than zero is selected.

Including symbolic debugging information increases the size of the object module.

To set this option in PVF, use the Fortran | General | Debug Information Format
property, described in ‘Debug Information Format’ on page 377.

Related options

-O<level>, -gopt

2.2.20. -gopt
Instructs the compiler to include symbolic debugging information in the object file, and
to generate optimized code identical to that generated when -g is not specified.

Default

The compiler does not put debugging information into the object module.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 22

Usage

In the following example, the object file myprog.obj contains symbolic debugging
information.
$ pgfortran -c -gopt myprog.f

Description

Using -g alters how optimized code is generated in ways that are intended to enable
or improve debugging of optimized code. The -gopt option instructs the compiler to
include symbolic debugging information in the object file, and to generate optimized
code identical to that generated when -g is not specified.

To set this option in PVF, use the Fortran | General | Debug Information Format
property described in ‘Debug Information Format’.

Related options

-g, -M<pgflag>

2.2.21. -help
Used with no other options, -help displays options recognized by the driver on the
standard output. When used in combination with one or more additional options, usage
information for those options is displayed to standard output.

Default

The compiler does not display usage information.

Usage

In the following example, usage information for -Minline is printed to standard
output.
$ pgcc -help -Minline
-Minline[=lib:<inlib>|<maxsize>|<func>|except:<func>|name:<func>|maxsize:<n>|
totalsize:<n>|smallsize:<n>|reshape]
 Enable function inlining
 lib:<inlib> Use extracted functions from inlib
 <maxsize> Set maximum function size to inline
 <func> Inline function func
 except:<func> Do not inline function func
 name:<func> Inline function func
 maxsize:<n> Inline only functions smaller than n
 totalsize:<n> Limit inlining to total size of n
 smallsize:<n> Always inline functions smaller than n
 reshape Allow inlining in Fortran even when array shapes do not
 match
 -Minline Inline all functions that were extracted

Command-Line Options Reference

PVF Reference Guide Version 2017 | 23

In the following example, usage information for -help shows how groups of options
can be listed or examined according to function.
$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall|phase|prepro|suffix|switch|target|variable]

Description

Use the -help option to obtain information about available options and their syntax. You
can use -help in one of three ways:

‣ Use -help with no parameters to obtain a list of all the available options with a
brief one-line description of each.

‣ Add a parameter to -help to restrict the output to information about a specific
option. The syntax for this usage is this:
-help <command line option>

‣ Add a parameter to -help to restrict the output to a specific set of options or to a
building process. The syntax for this usage is this:
-help=<subgroup>

The following table lists and describes the subgroups available with -help.

Table 9 Subgroups for -help Option

Use this -help option To get this information...

-help=asm A list of options specific to the assembly phase.

-help=debug A list of options related to debug information generation.

-help=groups A list of available switch classifications.

-help=language A list of language-specific options.

-help=linker A list of options specific to link phase.

-help=opt A list of options specific to optimization phase.

-help=other A list of other options, such as ANSI conformance pointer aliasing for C.

-help=overall A list of options generic to any PGI compiler.

-help=phase A list of build process phases and to which compiler they apply.

-help=prepro A list of options specific to the preprocessing phase.

-help=suffix A list of known file suffixes and to which phases they apply.

-help=switch A list of all known options; this is equivalent to usage of -help without any

parameter.

-help=target A list of options specific to target processor.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 24

Use this -help option To get this information...

-help=variable A list of all variables and their current value. They can be redefined on the

command line using syntax VAR=VALUE.

Related options

-#, -###, -show, -V[release_number], -flags

2.2.22. -I
Adds a directory to the search path for files that are included using either the INCLUDE
statement or the preprocessor directive #include.

Default

The compiler searches only certain directories for included files.

Syntax
-Idirectory

Where directory is the name of the directory added to the standard search path for
include files.

Usage

In the following example, the compiler first searches the directory mydir and then
searches the default directories for include files.
$ pgfortran -Imydir

Description

Adds a directory to the search path for files that are included using the INCLUDE
statement or the preprocessor directive #include. Use the -I option to add a directory
to the list of where to search for the included files. The compiler searches the directory
specified by the -I option before the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file.
The compiler uses two rules to locate the file:

‣ If the file name specified in the INCLUDE statement includes a path name, the
compiler begins reading from the file it specifies.

‣ If no path name is provided in the INCLUDE statement, the compiler searches (in
order):

 1. Any directories specified using the -I option (in the order specified)
 2. The directory containing the source file
 3. The current directory

Command-Line Options Reference

PVF Reference Guide Version 2017 | 25

For example, the compiler applies rule (1) to the following statements:
INCLUDE '/bob/include/file1' (absolute path name)
INCLUDE '../../file1' (relative path name)

and rule (2) to this statement:
INCLUDE 'file1'

To set this option in PVF, use the Fortran | General | Additional Include Directories
property, described in ‘Additional Include Directories’, or the Fortran | Preprocessor |
Additional Include Directories property, described in ‘Additional Include Directories’.

Related options

-Mnostdinc

2.2.23. -i2, -i4, -i8
Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default

The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage

In the following example, using the -i8 switch causes the integer variables to be treated
as 64 bits.
$ pgfortran -i8 int.f

int.f is a function similar to this:
int.f
 print *, "Integer size:", bit_size(i)
 end

Description

Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight
bytes. INTEGER*8 values not only occupy 8 bytes of storage, but operations use 64 bits,
instead of 32 bits.

‣ -i2: Treat INTEGER variables as 2 bytes.
‣ -i4: Treat INTEGER variables as 4 bytes.
‣ -i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for

INTEGER*8 operations.

Related options

None.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 26

2.2.24. -K<flag>
Requests that the compiler provide special compilation semantics with regard to
conformance to IEEE 754.

Default

The default is -Knoieee and the compiler does not provide special compilation
semantics.

Syntax

-K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754 standard.

Some optimizations are disabled, and on some systems a more accurate math library is

linked if -Kieee is used during the link step.

To set this option in PVF, use the Fortran | Floating Point Options | IEEE Arithmetic

property, described in ‘IEEE Arithmetic’.

noieee Default flag. Use the fastest available means to perform floating-point operations, link

in faster non-IEEE libraries if available, and disable underflow traps.

trap=option

[,option]...

Controls the behavior of the processor when floating-point exceptions occur.

Possible options include:

fp

align (ignored)

inv

denorm

divz

ovf

unf

inexact

Usage

In the following example, the compiler performs floating-point operations in strict
conformance with the IEEE 754 standard
$ pgfortran -Kieee myprog.f

Description

Use -K to instruct the compiler to provide special compilation semantics.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 27

-Ktrap is only processed by the compilers when compiling main functions or
programs. The options inv, denorm, divz, ovf, unf, and inexact correspond to the
processor’s exception mask bits: invalid operation, denormalized operand, divide-by-
zero, overflow, underflow, and precision, respectively.

Normally, the processor’s exception mask bits are on, meaning that floating-point
exceptions are masked – the processor recovers from the exceptions and continues. If
a floating-point exception occurs and its corresponding mask bit is off, or "unmasked",
execution terminates with an arithmetic exception (C's SIGFPE signal).

-Ktrap=fp is equivalent to -Ktrap=inv,divz,ovf.

To set this option in PVF, use the Fortran | Floating Point Options | Floating Point
Exception Handling property, described in ‘Floating Point Exception Handling’.

The PGI compilers do not support exception-free execution for -Ktrap=inexact.
The purpose of this hardware support is for those who have specific uses for its
execution, along with the appropriate signal handlers for handling exceptions it
produces. It is not designed for normal floating point operation code support.

Related options

None.

2.2.25. --keeplnk
(Windows only.) Preserves the temporary file when the compiler generates a temporary
indirect file for a long linker command.

Usage

In the following example the compiler preserves each temporary file rather than deleting
it.
$ pgfortran --keeplnk myprog.f

Description

If the compiler generates a temporary indirect file for a long linker command, use this
option to instruct the compiler to preserve the temporary file instead of deleting it.

Related options

None.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 28

2.2.26. -L
Specifies a directory to search for libraries.

Multiple -L options are valid. However, the position of multiple -L options is
important relative to -l options supplied.

Default

The compiler searches the standard library directory.

Syntax
-Ldirectory

Where directory is the name of the library directory.

Usage

In the following example, the library directory is /lib and the linker links in the
standard libraries required by PGFORTRAN from this directory.
$ pgfortran -L/lib myprog.f

In the following example, the library directory /lib is searched for the library file
libx.a and both the directories /lib and /libz are searched for liby.a.
$ pgfortran -L/lib -lx -L/libz -ly myprog.f

Description

Use the -L option to specify a directory to search for libraries. Using -L allows you to add
directories to the search path for library files.

Related options

-I

2.2.27. -l<library>
Instructs the linker to load the specified library. The linker searches <library>in addition
to the standard libraries.

The linker searches the libraries specified with -l in order of appearance before
searching the standard libraries.

Syntax
-llibrary

Command-Line Options Reference

PVF Reference Guide Version 2017 | 29

Where library is the name of the library to search.

Usage: In the following example, if the standard library directory is /lib the linker
loads the library /lib/libmylib.a, in addition to the standard libraries.
$ pgfortran myprog.f -lmylib

Description

Use this option to instruct the linker to load the specified library. The compiler prepends
the characters lib to the library name and adds the .a extension following the library
name. The linker searches each library specified before searching the standard libraries.

Related options

-L

2.2.28. -M
Generate make dependence lists. You can use -MD,filename (pgc++ only) to generate
make dependence lists and print them to the specified file.

2.2.29. -m
Displays a link map on the standard output.

Default

The compiler does display the link map and does not use the -m option.

Usage

When the following example is executed on Windows, pgfortran creates a link map in
the file myprog.map.
$ pgfortran -m myprog.f

Description

Use this option to display a link map.

‣ On Linux, the map is written to stdout.
‣ On Windows, the map is written to a .map file whose name depends on the

executable. If the executable is myprog.f, the map file is in myprog.map.

Related options

-c, -o, -u

Command-Line Options Reference

PVF Reference Guide Version 2017 | 30

2.2.30. -m64
Use the 64-bit compiler for the default processor type.

Usage

When the following example is executed, pgfortran uses the 64-bit compiler for the
default processor type.
$ pgfortran -m64 myprog.f

Description

Use this option to specify the 64-bit compiler as the default processor type.

2.2.31. -M<pgflag>
Selects options for code generation. The options are divided into the following
categories:

Code generation Fortran Language Controls Optimization

Environment C/C++ Language Controls Miscellaneous

Inlining

The following table lists and briefly describes the options alphabetically and includes
a field showing the category. For more details about the options as they relate to these
categories, refer to ‘-M Options by Category’ on page 113.

Table 10 -M Options Summary

pgflag Description Category

allocatable=95|03 Controls whether to use Fortran 95 or Fortran 2003

semantics in allocatable array assignments.

Fortran Language

anno Annotate the assembly code with source code. Miscellaneous

[no]autoinline When a C/C++ function is declared with the inline

keyword, inline it at -O2.

Inlining

[no]backslash Determines how the backslash character is treated in

quoted strings.

Fortran Language

[no]bounds Specifies whether array bounds checking is enabled or

disabled.

Miscellaneous

byteswapio Swap byte-order (big-endian to little-endian or vice

versa) during I/O of Fortran unformatted data.

Miscellaneous

Command-Line Options Reference

PVF Reference Guide Version 2017 | 31

pgflag Description Category

cache_align Where possible, align data objects of size greater than

or equal to 16 bytes on cache-line boundaries.

Optimization

chkfpstk Check for internal consistency of the x87 FP stack in

the prologue of a function and after returning from a

function or subroutine call (-tp px/p5/p6/piii targets

only).

Miscellaneous

chkptr Check for NULL pointers (pgf95, pgfortran only). Miscellaneous

chkstk Check the stack for available space upon entry to and

before the start of a parallel region. Useful when many

private variables are declared.

Miscellaneous

concur Enable auto-concurrentization of loops. Multiple

processors or cores will be used to execute

parallelizable loops.

Optimization

cpp Run the PGI cpp-like preprocessor without performing

subsequent compilation steps.

Miscellaneous

cray Force Cray Fortran (CF77) compatibility. Optimization

cuda Enables CUDA Fortran. Fortran Language

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk Determines whether all program variables must be

declared.

Fortran Language

[no]defaultunit Determines how the asterisk character ("*") is treated

in relation to standard input and standard output,

regardless of the status of I/O units 5 and 6..

Fortran Language

[no]depchk Checks for potential data dependencies. Optimization

[no]dse Enables [disables] dead store elimination phase for

programs making extensive use of function inlining.

Optimization

[no]dlines Determines whether the compiler treats lines

containing the letter "D" in column one as executable

statements.

Fortran Language

dll Link with the DLL version of the runtime libraries

(Windows only).

Miscellaneous

dollar,char Specifies the character to which the compiler maps the

dollar sign code.

Fortran Language

[no]dwarf Specifies not to add DWARF debug information. Code Generation

Command-Line Options Reference

PVF Reference Guide Version 2017 | 32

pgflag Description Category

dwarf1 When used with -g, generate DWARF1 format debug

information.

Code Generation

dwarf2 When used with -g, generate DWARF2 format debug

information.

Code Generation

dwarf3 When used with -g, generate DWARF3 format debug

information.

Code Generation

extend Instructs the compiler to accept 132-column source

code; otherwise it accepts 72-column code.

Fortran Language

extract invokes the function extractor. Inlining

[no]f[=option] Perform certain floating point intrinsic functions using

relaxed precision.

Optimization

fixed Instructs the compiler to assume F77-style fixed format

source code (pgf95, pgfortran only).

Fortran Language

[no]flushz Do/don't set SSE flush-to-zero mode Code Generation

[no]fpapprox Specifies not to use low-precision fp approximation

operations.

Optimization

free Instructs the compiler to assume F90-style free format

source code.

Fortran Language

func32 The compiler aligns all functions to 32-byte

boundaries.

Code Generation

gccbug[s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding optimization

and code generation to standard output as compilation

proceeds.

Miscellaneous

inform Specifies the minimum level of error severity that the

compiler displays.

Miscellaneous

inline Invokes the function inliner. Inlining

[no]iomutex Determines whether critical sections are generated

around Fortran I/O calls.

Fortran Language

[no]ipa Invokes interprocedural analysis and optimization. Optimization

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

largeaddressaware [Win64 only] Generates code that allows for addresses

greater than 2GB, using RIP-relative addressing.

Code Generation

Command-Line Options Reference

PVF Reference Guide Version 2017 | 33

pgflag Description Category

[no]large_arrays Enables support for 64-bit indexing and single static

data objects of size larger than 2GB.

Code Generation

list Specifies whether the compiler creates a listing file. Miscellaneous

[no]loop32 Aligns [does not align] innermost loops on 32 byte

boundaries with -tp barcelona

Code Generation

[no]lre Enable [disable] loop-carried redundancy elimination. Optimization

makedll Generate a dynamic link library (DLL).. Miscellaneous

makeimplib Passes the -def switch to the librarian without a

deffile, when used without -def:deffile.

Miscellaneous

mpi=option Link to MPI libraries: MPICH, SGI, or Microsoft MPI

libraries

Code Generation

neginfo Instructs the compiler to produce information on why

certain optimizations are not performed.

Miscellaneous

noframe Eliminates operations that set up a true stack frame

pointer for functions.

Optimization

noi4 Determines how the compiler treats INTEGER

variables.

Optimization

nomain When the link step is called, don’t include the object

file that calls the Fortran main program..

Code Generation

noopenmp When used in combination with the -mp option, the

compiler ignores OpenMP parallelization directives ,

but still processes SGI-style parallelization directives.

Miscellaneous

nopgdllmain Do not link the module containing the default DllMain()

into the DLL.

Miscellaneous

nosgimp When used in combination with the -mp option, the

compiler ignores SGI-style parallelization directives,

but still processes OpenMP directives.

Miscellaneous

nostdinc Instructs the compiler to not search the standard

location for include files. To set this option in PVF, use

the Fortran | Preprocessor | Ignore Standard Include

Path property.

Environment

nostdlib Instructs the linker to not link in the standard libraries. Environment

[no]onetrip Determines whether each DO loop executes at least

once.

Language

Command-Line Options Reference

PVF Reference Guide Version 2017 | 34

pgflag Description Category

novintr Disable idiom recognition and generation of calls to

optimized vector functions.

Optimization

pfi Instrument the generated code and link in libraries for

dynamic collection of profile and data information at

runtime.

Optimization

pre Read a pgfi.out trace file and use the information to

enable or guide optimizations.

Optimization

[no]pre Force [disable] generation of non-temporal moves and

prefetching.

Code Generation

[no]prefetch Enable [disable] generation of prefetch instructions. Optimization

preprocess Perform cpp-like preprocessing on assembly language

and Fortran input source files.

Miscellaneous

prof Enable Compiler feedback and modify DWARF sections. Code Generation

[no]r8 Determines whether the compiler promotes REAL

variables and constants to DOUBLE PRECISION.

Optimization

[no]r8intrinsics Determines how the compiler treats the intrinsics

CMPLX and REAL.

Optimization

[no]recursive Allocate [do not allocate] local variables on the stack;

this allows recursion. SAVEd, data-initialized, or

namelist members are always allocated statically,

regardless of the setting of this switch.

Code Generation

[no]reentrant Specifies whether the compiler avoids optimizations

that can prevent code from being reentrant.

Code Generation

[no]ref_externals Do [do not] force references to names appearing in

EXTERNAL statements.

Code Generation

safe_lastval In the case where a scalar is used after a loop, but

is not defined on every iteration of the loop, the

compiler does not by default parallelize the loop.

However, this option tells the compiler it is safe to

parallelize the loop. For a given loop, the last value

computed for all scalars make it safe to parallelize the

loop.

Code Generation

[no]save Determines whether the compiler assumes that all

local variables are subject to the SAVE statement.

Fortran Language

Command-Line Options Reference

PVF Reference Guide Version 2017 | 35

pgflag Description Category

[no]scalarsse Do [do not] use SSE/SSE2 instructions to perform scalar

floating-point arithmetic.

Optimization

[no]second_underscore Do [do not] add the second underscore to the name

of a Fortran global if its name already contains an

underscore.

Code Generation

[no]signextend Do [do not] extend the sign bit, if it is set. Code Generation

[no]smart Do [do not] enable optional post-pass assembly

optimizer.

Optimization

[no]smartalloc[=huge|

huge:<n>|hugebss]

Add a call to the routine mallopt in the main routine.

Supports large TLBs on Linux and Windows.

Tip To be effective, this switch must
be specified when compiling the file
containing the Fortran, C, or C++ main
program.

Environment

standard Causes the compiler to flag source code that does not

conform to the ANSI standard.

Fortran Language

[no]stride0 Do [do not] generate alternate code for a loop that

contains an induction variable whose increment may

be zero.

Code Generation

[no]unixlogical Determines how the compiler treats logical values.. Fortran Language

[no]unroll Controls loop unrolling. Optimization

[no]upcase Determines whether the compiler preserves uppercase

letters in identifiers..

Fortran Language

varargs Forces Fortran program units to assume calls are to C

functions with a varargs type interface .

Code Generation

[no]vect Do [do not] invoke the code vectorizer. Optimization

2.2.32. -module <moduledir>
Allows you to specify a particular directory in which generated intermediate .mod files
should be placed.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 36

Default

The compiler places .mod files in the current working directory, and searches only in the
current working directory for pre-compiled intermediate .mod files.

Usage

The following command line requests that any intermediate module file produced
during compilation of myprog.f be placed in the directory mymods; specifically, the file
./mymods/myprog.mod is used.
$ pgfortran -module mymods myprog.f

Description

Use the -module option to specify a particular directory in which generated
intermediate .mod files should be placed. If the -module <moduledir> option is
present, and USE statements are present in a compiled program unit, then <moduledir> is
searched for .mod intermediate files prior to a search in the default local directory.

To set this option in PVF, use the Fortran | Output | Module Path property, described in
‘Module Path’.

Related options

None.

2.2.33. -mp
Instructs the compiler to interpret user-inserted OpenMP shared-memory parallel
programming directives, and to generate an executable file which will utilize multiple
processors in a shared-memory parallel system.

Default

The compiler interprets user-inserted shared-memory parallel programming directives
when linking. To disable this option, use the -nomp option when linking.

Usage

The following command line requests processing of any shared-memory directives
present in myprog.f:
$ pgfortran -mp myprog.f

Description

Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-
memory parallel programming directives and to generate an executable file which
utilizes multiple processors in a shared-memory parallel system.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 37

The suboptions are one or more of the following:
align

Forces loop iterations to be allocated to OpenMP processes using an algorithm
that maximizes alignment of vector sub-sections in loops that are both parallelized
and vectorized for SSE. This allocation can improve performance in program units
that include many such loops. It can also result in load-balancing problems that
significantly decrease performance in program units with relatively short loops that
contain a large amount of work in each iteration. The numa suboption uses libnuma
on systems where it is available.

allcores
Instructs the compiler to target all available cores. You specify this suboption at link
time.

bind
Instructs the compiler to bind threads to cores. You specify this suboption at link
time.

[no]numa
Uses [does not use] libnuma on systems where it is available.

For a detailed description of this programming model and the associated directives,
refer to Section 9, ‘Using OpenMP’ of the PGI Compiler User's Guide.

To set this option in PVF, use the Fortran | Language | Enable OpenMP Directives
property, described in ‘Enable OpenMP Directives’.

Related options

-Mconcur[=option [,option,...]], -M[no]vect[=option [,option,...]]

2.2.34. -noswitcherror
Issues warnings instead of errors for unknown switches. Ignores unknown command
line switches after printing a warning message.

Default

The compiler prints an error message and then halts.

Usage

In the following example, the compiler ignores unknown command line switches after
printing a warning message.
$ pgfortran -noswitcherror myprog.f

Command-Line Options Reference

PVF Reference Guide Version 2017 | 38

Description

Use this option to instruct the compiler to ignore unknown command line switches after
printing an warning message.

Tip You can configure this behavior in the siterc file by adding: set
NOSWITCHERROR=1.

Related options

None.

2.2.35. -O<level>
Invokes code optimization at the specified level.

Default

The compiler optimizes at level 2.

Syntax
-O [level]

Where level is an integer from 0 to 4.

Usage

In the following example, since no -O option is specified, the compiler sets the
optimization to level 1.
$ pgfortran myprog.f

In the following example, since no optimization level is specified and a -O option is
specified, the compiler sets the optimization to level 2.
$ pgfortran -O myprog.f

Description

Use this option to invoke code optimization.Using the PGI compiler commands with
the -Olevel option (the capital O is for Optimize), you can specify any of the following
optimization levels:
-O0

Level zero specifies no optimization. A basic block is generated for each language
statement.

-O1
Level one specifies local optimization. Scheduling of basic blocks is performed.
Register allocation is performed.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 39

-O
When no level is specified, level two global optimizations are performed, including
traditional scalar optimizations, induction recognition, and loop invariant motion. No
SIMD vectorization is enabled.

-O2
Level two specifies global optimization. This level performs all level-one local
optimization as well as level-two global optimization described in -O. In addition,
this level enables more advanced optimizations such as SIMD code generation, cache
alignment, and partial redundancy elimination.

-O3
Level three specifies aggressive global optimization. This level performs all level-
one and level-two optimizations and enables more aggressive hoisting and scalar
replacement optimizations that may or may not be profitable.

-O4
Level four performs all level-one, level-two, and level-three optimizations and
enables hoisting of guarded invariant floating point expressions.

To set this option (-O2 or -O3) in PVF, use the Fortran | Optimization | Global
Optimizations property, described in ‘Global Optimizations’.

The following table shows the interaction between the -O option, -g option, -Mvect,
and -Mconcur options.

Table 11 Optimization and -O, -g, -Mvect, and -Mconcur Options

Optimize Option Debug Option -M Option Optimization Level

none none none 1

none none -Mvect 2

none none -Mconcur 2

none -g none 0

-O none or -g none 2

-Olevel none or -g none level

-Olevel < 2 none or -g -Mvect 2

-Olevel < 2 none or -g -Mconcur 2

Unoptimized code compiled using the option -O0 can be significantly slower than code
generated at other optimization levels. Like the -Mvect option, the -Munroll option
sets the optimization level to level-2 if no -O or -g options are supplied. The -gopt
option is recommended for generation of debug information with optimized code. For
more information on optimization, refer to the ‘Optimizing and Parallelizing’ section of
the PVF User's Guide, https://www.pgroup.com/resources/docs.php.

https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 40

Related options

-g, -M<pgflag>, -gopt

2.2.36. -o
Names the executable file. Use the -o option to specify the filename of the compiler
object file. The final output is the result of linking.

Default

The compiler creates executable filenames as needed. If you do not specify the -o
option, the default filename is the linker output file with a name comprised of the base
file name, such as myprog, plus the extension .exe, for example: myprog.exe .

Syntax

-o filename

Where filename is the name of the file for the compilation output. The filename should not
have a .f extension.

Usage

In the following example, the executable file is myp.exe instead of the default a.out
myprog.exe.
$ pgfortran myprog.f -o myp

To set this option in PVF, use the Fortran | Output | Object File Name property,
described in ‘Object File Name’ on page 377.

Related options

-c, -E, -F, -S

2.2.37. -pc

This option is available only for -tp px/p5/p6/piii targets.

Allows you to control the precision of operations performed using the x87 floating point
unit, and their representation on the x87 floating point stack.

Syntax
-pc { 32 | 64 | 80 }

Usage
$ pgfortran -pc 64 myprog.f

Command-Line Options Reference

PVF Reference Guide Version 2017 | 41

Description

The x87 architecture implements a floating-point stack using eight 80-bit registers. Each
register uses bits 0–63 as the significant, bits 64–78 for the exponent, and bit 79 is the sign
bit. This 80-bit real format is the default format, called the extended format. When values
are loaded into the floating point stack they are automatically converted into extended
real format. The precision of the floating point stack can be controlled, however, by
setting the precision control bits (bits 8 and 9) of the floating control word appropriately.
In this way, you can explicitly set the precision to standard IEEE double-precision using
64 bits, or to single precision using 32 bits.

According to Intel documentation, this only affects the x87 operations of add, subtract,
multiply, divide, and square root. In particular, it does not appear to affect the x87
transcendental instructions.

The default precision is system dependent. To alter the precision in a given program
unit, the main program must be compiled with the same -pc option. The command line
option -pc val lets the programmer set the compiler’s precision preference.

Valid values for val are:

32 single precision 64 double precision 80 extended precision

Extended Precision Option – Operations performed exclusively on the floating-point
stack using extended precision, without storing into or loading from memory, can cause
problems with accumulated values within the extra 16 bits of extended precision values.
This can lead to answers, when rounded, that do not match expected results.

For example, if the argument to sin is the result of previous calculations performed on
the floating-point stack, then an 80-bit value used instead of a 64-bit value can result in
slight discrepancies. Results can even change sign due to the sin curve being too close
to an x-intercept value when evaluated. To maintain consistency in this case, you can
assure that the compiler generates code that calls a function. According to the x86 ABI, a
function call must push its arguments on the stack (in this way memory is guaranteed to
be accessed, even if the argument is an actual constant). Thus, even if the called function
simply performs the inline expansion, using the function call as a wrapper to sin has
the effect of trimming the argument precision down to the expected size. Using the
-Mnobuiltin option on the command line for C accomplishes this task by resolving
all math routines in the library libm, performing a function call of necessity. The other
method of generating a function call for math routines, but one that may still produce
the inline instructions, is by using the -Kieee switch.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 42

A second example illustrates the precision control problem using a section of code to
determine machine precision:
program find_precision

 w = 1.0
 100 w=w+w
 y=w+1
 z=y-w
 if (z .gt. 0) goto 100
 C now w is just big enough that |((w+1)-w)-1| >= 1
 ...
 print*,w
 end

In this case, where the variables are implicitly real*4, operations are performed on the
floating-point stack where optimization removes unnecessary loads and stores from
memory. The general case of copy propagation being performed follows this pattern:
a = x
 y = 2.0 + a

Instead of storing x into a, then loading a to perform the addition, the value of x can
be left on the floating-point stack and added to 2.0. Thus, memory accesses in some
cases can be avoided, leaving answers in the extended real format. If copy propagation
is disabled, stores of all left-hand sides will be performed automatically and reloaded
when needed. This will have the effect of rounding any results to their declared sizes.

The find_precision program has a value of 1.8446744E+19 when executed using
default (extended) precision. If, however, -Kieee is set, the value becomes 1.6777216E
+07 (single precision.) This difference is due to the fact that -Kieee disables copy
propagation, so all intermediate results are stored into memory, then reloaded when
needed. Copy propagation is only disabled for floating-point operations, not integer.
With this particular example, setting the -pc switch will also adjust the result.

The -Kieee switch also has the effect of making function calls to perform all
transcendental operations. Except when the -Mnobuiltin switch is set in C, the
function still produces the x86 machine instruction for computation, and arguments are
passed on the stack, which results in a memory store and load.

Finally, -Kieee also disables reciprocal division for constant divisors. That is, for a/b
with unknown a and constant b, the expression is usually converted at compile time
to a*(1/b), thus turning an expensive divide into a relatively fast scalar multiplication.
However, numerical discrepancies can occur when this optimization is used.

Understanding and correctly using the -pc, -Mnobuiltin, and -Kieee switches
should enable you to produce the desired and expected precision for calculations which
utilize floating-point operations.

Related options

-K<flag>, Mnobuiltin

Command-Line Options Reference

PVF Reference Guide Version 2017 | 43

2.2.38. --pedantic
Prints warnings from included <system header files>.

Default

The compiler prints the warnings from the included system header files.

Usage

In the following example, the compiler prints the warnings from the included system
header files.
$ pgc++ --power myprog.cc

Related options

None.

2.2.39. -pgc++libs
Instructs the compiler to append C++ runtime libraries to the link line for programs
built using either PGF77 or PGF90 .

Default

The C/C++ compilers do not append the C++ runtime libraries to the link line.

Usage

In the following example the C++ runtime libraries are linked with an object file
compiled with pgf77 .

$ pgf90 main.f90 mycpp.o -pgc++libs

Description

Use this option to instruct the compiler to append C++ runtime libraries to the link line
for programs built using either PGF77 or PGF90 .

Related options

-pgf90libs , -pgf77libs

2.2.40. -pgf77libs
Instructs the compiler to append PGF77 runtime libraries to the link line.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 44

Default

The C/C++ compilers do not append the PGF77 runtime libraries to the link line.

Usage

In the following example a .c main program is linked with an object file compiled with
pgf77.
$ pgcc main.c myf77.o -pgf77libs

Description

Use this option to instruct the compiler to append PGF77 runtime libraries to the link
line.

Related options

-pgc++libs, -pgf90libs

2.2.41. -pgf90libs
Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the
link line.

Default

The C/C++ compilers do not append the PGF90/PGF95/PGFORTRAN runtime libraries
to the link line.

Usage

In the following example a .c main program is linked with an object file compiled with
pgfortran.
$ pgcc main.c myf95.o -pgf90libs

Description

Use this option to instruct the compiler to append PGF90/PGF95/PGFORTRAN runtime
libraries to the link line.

Related options

-pgc++libs , -pgf77libs

2.2.42. -r4 and -r8
Interprets DOUBLE PRECISION variables as REAL (-r4), or interprets REAL variables as
DOUBLE PRECISION (-r8).

Command-Line Options Reference

PVF Reference Guide Version 2017 | 45

Usage

In this example, the double precision variables are interpreted as REAL.
$ pgfortran -r4 myprog.f

Description

Interpret DOUBLE PRECISION variables as REAL (-r4) or REAL variables as DOUBLE
PRECISION (-r8).

Related options

-i2, -i4, -i8, -Mnor8

2.2.43. -rc
Specifies the name of the driver startup configuration file. If the file or pathname
supplied is not a full pathname, the path for the configuration file loaded is relative
to the $DRIVER path (the path of the currently executing driver). If a full pathname is
supplied, that file is used for the driver configuration file.

Syntax
-rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full
pathname beginning with "/". Filename is the driver configuration file.

Usage

In the following example, the file .pgfortranrctest, relative to /usr/pgi/
linux86-64/bin , the value of $DRIVER, is the driver configuration file.
$ pgfortran -rc .pgfortranrctest myprog.f

Description

Use this option to specify the name of the driver startup configuration file. If the file
or pathname supplied is not a full pathname, the path for the configuration file loaded
is relative to the $DRIVER path – the path of the currently executing driver. If a full
pathname is supplied, that file is used for the driver configuration file.

Related options

-show

2.2.44. -S
Stops compilation after the compiling phase and writes the assembly-language output to
a file.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 46

Default

The compiler does not retain a .s file.

Usage

In this example, pgfortran produces the file myprog.s in the current directory.
$ pgfortran -S myprog.f

Description

Use this option to stop compilation after the compiling phase and then write the
assembly-language output to a file. If the input file is filename.f, then the output file
is filename.s.

Related options

-c, -E, -F, -Mkeepasm, -o

2.2.45. -show
Produces driver help information describing the current driver configuration.

Default

The compiler does not show driver help information.

Usage

In the following example, the driver displays configuration information to the standard
output after processing the driver configuration file.
$ pgfortran -show myprog.f

Description

Use this option to produce driver help information describing the current driver
configuration.

Related options

-V[release_number], -v, -###, -help, -rc

2.2.46. -silent
Do not print warning messages.

Default

The compiler prints warning messages.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 47

Usage

In the following example, the driver does not display warning messages.
$ pgfortran -silent myprog.f

Description

Use this option to suppress warning messages.

Related options

-v, -V[release_number], -w

2.2.47. -stack
(Windows only) Allows you to explicitly set stack properties for your program.

Default

If -stack is not specified, then the defaults are as followed:
Win64

No default setting

Syntax
-stack={ (reserved bytes)[,(committed bytes)] }{, [no]check }

Usage

The following example demonstrates how to reserve 524,288 stack bytes (512KB),
commit 262,144 stack bytes for each routine (256KB), and disable the stack initialization
code with the nocheck argument.
$ pgfortran -stack=524288,262144,nocheck myprog.f

Description

Use this option to explicitly set stack properties for your program. The -stack option
takes one or more arguments: (reserved bytes), (committed bytes), [no]check.
reserved bytes

Specifies the total stack bytes required in your program.
committed bytes

Specifies the number of stack bytes that the Operating System will allocate for each
routine in your program. This value must be less than or equal to the stack reserved
bytes value.

Default for this argument is 4096 bytes.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 48

[no]check
Instructs the compiler to generate or not to generate stack initialization code upon
entry of each routine. Check is the default, so stack initialization code is generated.

Stack initialization code is required when a routine's stack exceeds the committed bytes
size. When your committed bytes is equal to the reserved bytes or equal to the stack bytes
required for each routine, then you can turn off the stack initialization code using the
-stack=nocheck compiler option. If you do this, the compiler assumes that you are
specifying enough committed stack space; and therefore, your program does not have to
manage its own stack size.

For more information on determining the amount of stack required by your program,
refer to -Mchkstk compiler option, described in ‘Miscellaneous Controls’.

-stack=(reserved bytes),(committed bytes) are linker options.

-stack=[no]check is a compiler option.

If you specify -stack=(reserved bytes),(committed bytes) on
your compile line, it is only used during the link step of your build. Similarly, -
stack=[no]check can be specified on your link line, but it's only used during the
compile step of your build.

Related options

-Mchkstk

2.2.48. -ta=tesla(tesla_suboptions),host
Defines the target accelerator and the type of code to generate. This flag is valid for
Fortran, C, and C++ on supported platforms.

There are three major suboptions:

tesla(:tesla_suboptions)

host

multicore

Default

The compiler uses -ta=tesla,host.

Usage

In the following example, tesla is the accelerator target architecture and the accelerator
generates code for compute capability 3.0.
$ pgfortran -ta=tesla,cc30

Command-Line Options Reference

PVF Reference Guide Version 2017 | 49

Description

Use this option to select the accelerator target and, optionally, to define the type of code
to genertate.

The -ta flag has the following options:
tesla

Select the tesla accelerator target. This option has the following tesla-suboptions:
cc30

Generate code for compute capability 3.0.
cc35

Generate code for compute capability 3.5.
cc3x

Generate code for the lowest 3.x compute capability possible.
cc3+

Is equivalent to cc3x.
[no]debug

Enable[disable] debug information generation in device code.
fastmath

Use routines from the fast math library.
[no]flushz

Enable[disable] flush-to-zero mode for floating point computations in the GPU
code generated forPGI Accelerator model compute regions.

keep
Keep the kernel files.

kepler
is equivalent to cc3x.

kepler+
is equivalent to cc3+.

llvm
Generate code using the llvm-based back-end.

[no]debug
Enable[disable] GPU debug information generation.

deepcopy
Enable full deep copy of aggregate data structions in OpenACC; Fortran only.

[no]lineinfo
Enable[disable] GPU line information generation.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank
indicates no limit.

[no]fma
Do not generate fused multiply-add instructions.

noL1
Prevents the use of L1 hardware data cache to cache global variables.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 50

pin+
is equivalent to cc3+.

[no]rdc
Generate [do not generate] relocatable device code.

[no]required
Generate [do not generate] a compiler error if accelerator device code cannot be
generated.

tesla
is equivalent to -ta=tesla,cc2+

host
Use the host option to generate code to execute OpenACC regions on the host.

The -ta=host flag has no suboptions.
multicore

Use the multicore option to generate OpenACC parallel regions to execute in
parallel on individual host cores.

The -ta=multicore flag has no suboptions.

Multiple Targets

When host is one of the multiple targets, such as -ta=tesla,host, the result is
generated code that can be run with or without an attached accelerator.

Relocatable Device Code

A rdc option is available for the -ta and -Mcuda flags that specifies to generate
relocatable device code. Starting in PGI 14.1, the default code generation and linking
mode for NVIDIA-target OpenACC and CUDA Fortran is rdc, relocatable device code.

You can disable the default and enable the old behavior and non-relocatable code by
specifying any of the following: -ta=tesla:nordc, -Mcuda=nordc.

LLVM and Native GPU Code Generation

For accelerator code generation, PGI 2017 has two options.

‣ The compilers generate an LLVM-based intermediate representation by default.
‣ In legacy mode, the compilers generate low-level CUDA C code. To enable this code

generation, use -ta=tesla:nollvm on NVIDIA Tesla hardware.

DWARF Debugging Formats

PGI's debugging capability for Tesla uses the LLVM back-end. Use the compiler's
-g option to enable the generation of full dwarf information on both the host and
device; in the absence of other optimization flags, -g sets the optimization level to
zero. If a -O option raises the optimization level to one or higher, only GPU line

Command-Line Options Reference

PVF Reference Guide Version 2017 | 51

information is generated on the device even when -g is specified. To enforce full dwarf
generation for device code at optimization levels above zero, use the debug suboption
to -ta=tesla. Conversely, to prevent the generation of dwarf information for device
code, use the nodebug suboption to -ta=tesla. Both debug and nodebug can be
used independently of -g.

Related options

-#

2.2.49. -time
Print execution times for various compilation steps.

Default

The compiler does not print execution times for compilation steps.

Usage

In the following example, pgfortran prints the execution times for the various
compilation steps.
$ pgfortran -time myprog.f

Description

Use this option to print execution times for various compilation steps.

Related options

-#

2.2.50. -tp <target>[,target...]
Sets the target processor.

Default

The PGI compilers produce code specifically targeted to the type of processor on
which the compilation is performed. In particular, the default is to use all supported
instructions wherever possible when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the
compilation is performed. You can specify a target processor to compile for a different
processor type, such as to select a more generic processor, allowing the code to run on
more system types. Specifying two or more target processors enables unified binary
code generation, where two or more versions of each function may be generated, each
version optimized for the specific instruction set available in each target processor.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 52

Executables created on a given system without the -tp flag may not be usable on
previous generation systems. For example, executables created on an Intel Sandybridge
processor may use instructions that are not available on earlier Intel Nehalem or Intel P7
systems.

Syntax

Syntax for 64-bit targets:
-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Usage

In the following example, pgfortran sets the target processor to a 64-bit Intel Nehalem
processor:
$ pgfortran -tp=nehalem-64 myprog.f

Description

Use this option to set the target architecture. By default, the PGI compiler uses all
supported instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the -tp
option. Thus, it is possible to create executables that are usable on previous generation
systems.

To set this option in PVF, use the Fortran | Target Processors | Unified Binary
Information property, described in ‘Unified Binary Information’.

The following list contains the possible suboptions for -tp and the processors that each
suboption is intended to target. Options without a bit-length suffix use the current width
associated with the driver on your path.
barcelona

generate code for AMD Opteron/Quadcore and compatible processors.
bulldozer

generate code for AMD Bulldozer and compatible processors.
core2

generate code for Intel Core 2 Duo and compatible processors.
haswell

generate code that is usable on any Haswell processor-based system.
istanbul

generate code that is usable on any Istanbul processor-based system.
k8

generate code hat is usable on any AMD64 and compatible processor.
k8-64e

generate 64-bit code for AMD Opteron Revision E, AMD Turion, and compatible
processors.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 53

nehalem
generate code that is usable on any Nehalem processor-based system.

p7
generate code for Pentium 4 and compatible processors.

penryn
generate code for Intel Penryn Architecture and compatible processors.

piledriver
generate code that is usable on any Piledriver processor-based system.

px
generate code that is usable on any x86-64 processor-based system.

sandybridge
generate code for Intel Sandy Bridge and compatible processors.

shanghai
generate code that is usable on any AMD Shanghai processor-based system.

x64
generate 64-bit unified binary code including full optimizations and support for both
AMD and Intel x86-64 processors.

Refer to the PGI Release Notes for a concise list of the features of these processors that
distinguish them as separate targets when using the PGI compilers and tools.

Using -tp to Generate a Unified Binary

Different processors have differences, some subtle, in hardware features such as
instruction sets and cache size. The compilers make architecture-specific decisions about
such things as instruction selection, instruction scheduling, and vectorization. Any
of these decisions can have significant effects on performance and compatibility. PGI
unified binaries provide a low-overhead means for a single program to run well on a
number of hardware platforms.

You can use the -tp option to produce PGI Unified Binary programs. The compilers
generate, and combine into one executable, multiple binary code streams, each
optimized for a specific platform. At runtime, this one executable senses the
environment and dynamically selects the appropriate code stream.

The target processor switch, -tp , accepts a comma-separated list of 64-bit targets and
will generate code optimized for each listed target. For example, the following switch
generates optimized code for three targets: k8-64, p7-64, and core2-64.

Syntax for optimizing for multiple targets:
-tp k8-64,p7-64,core2-64

The -tp k8-64 and -tp k8-64e options result in generation of code supported
on and optimized for AMD x64 processors, while the -tp p7-64 option results in
generation of code that is supported on and optimized for Intel x86-64 processors.
Performance of k8-64 or k8-64e code executed on Intel x86-64 processors, or of p7-64

Command-Line Options Reference

PVF Reference Guide Version 2017 | 54

code executed on AMD x86-64 processors, can often be significantly less than that
obtained with a native binary.

The special -tp x64 option is equivalent to -tp k8-64,p7-64 . This switch produces
PGI Unified Binary programs containing code streams fully optimized and supported
for bothAMD64 and Intel 64 processors.

For more information on unified binaries, refer to the section ’Processor-Specific
Optimization and the Unified Binary’ in the PGI Compiler User’s Guide.

Related options

All -M<pgflag> options that control environments, as listed in Environment Controls

2.2.51. -[no]traceback
Adds debug information for runtime traceback for use with the environment variable
PGI_TERM.

Default

The compiler enables traceback for FORTRAN and disables traceback for C and C++.

Syntax
-traceback

Usage

In this example, pgfortran enables traceback for the program myprog.f.
$ pgfortran -traceback myprog.f

Description

Use this option to enable or disable runtime traceback information for use with the
environment variable PGI_TERM.

Setting setTRACEBACK=OFF; in siterc or .mypg*rc also disables default traceback.

Using ON instead of OFF enables default traceback.

Related options

None.

2.2.52. -u
Initializes the symbol-table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 55

Default

The compiler does not use the -u option.

Syntax
-usymbol

Where symbol is a symbolic name.

Usage

In this example, pgfortran initializes symbol-table with test.
$ pgfortran -utest myprog.f

Description

Use this option to initialize the symbol-table with <symbol>, which is undefined for the
linker. An undefined symbol triggers loading of the first member of an archive library.

Related options

-c, -o

2.2.53. -U
Undefines a preprocessor macro.

Syntax
-Usymbol

Where symbol is a symbolic name.

Usage

The following examples undefine the macro test.

$ pgfortran -Utest myprog.F
$ pgfortran -Dtest -Utest myprog.F

Description

Use this option to undefine a preprocessor macro. You can also use the #undef pre-
processor directive to undefine macros.

To set this option in PVF, use the Fortran | Preprocessor | Undefine Preprocessor
Definitions property, described in ‘Undefine Preprocessor Definitions’.

Related options

-D, Mnostddef

Command-Line Options Reference

PVF Reference Guide Version 2017 | 56

2.2.54. -V[release_number]
Displays additional information, including version messages. Further, if a
release_number is appended, the compiler driver attempts to compile using the
specified release instead of the default release.

There can be no space between -V and release_number.

Default

The compiler does not display version information and uses the release specified by
your path to compile.

Usage

The following command-line shows the output using the -V option.
% pgfortran -V myprog.f

The following command-line causes pgcc to compile using the 5.2 release instead of the
default release.
% pgcc -V5.2 myprog.c

Description

Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using
the specified release instead of the default release.

The specified release must be co-installed with the default release, and must have a
release number greater than or equal to 4.1, which was the first release that supported
this functionality.

To set this option in PVF, use the Fortran | General | Display Startup Banner property,
described in ‘Display Startup Banner’.

Related options

-Minfo[=option [,option,...]], -v

2.2.55. -v
Displays the invocations of the compiler, assembler, and linker.

Default

The compiler does not display individual phase invocations.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 57

Usage

In the following example you use -v to see the commands sent to compiler tools,
assembler, and linker.
$ pgfortran -v myprog.f90

Description

Use the -v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the -W
options you specify on the compiler command-line.

Related options

-dryrun, -Minfo[=option [,option,...]], -V[release_number], -W

2.2.56. -W
Passes arguments to a specific phase.

Syntax
-W{0 | a | l },option[,option...]

You cannot have a space between the -W and the single-letter pass identifier,
between the identifier and the comma, or between the comma and the option.

0
(the number zero) specifies the compiler.

a
specifies the assembler.

l
(lowercase letter l) specifies the linker.

option
is a string that is passed to and interpreted by the compiler, assembler or linker.
Options separated by commas are passed as separate command line arguments.

Usage

In the following example the linker loads the text segment at address 0xffc00000 and
the data segment at address 0xffe00000.
$ pgfortran -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

Description

Use this option to pass arguments to a specific phase. You can use the -W option to
specify options for the assembler, compiler, or linker.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 58

A given PGI compiler command invokes the compiler driver, which parses the
command-line, and generates the appropriate commands for the compiler, assembler,
and linker.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.2.57. -w
Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example no warning messages are printed.
$ pgfortran -w myprog.f

Description

Use the -w option to not print warning messages. Sometimes the compiler issues many
warning in which you may have no interest. You can use this option to not issue those
warnings.

Related options

-silent

2.3. -M Options by Category
This section describes each of the options available with -M by the categories:

Code Generation Fortran Language Controls Optimization Environment

C/C++ Language Controls Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not all, of the
-M<pgflag> options. For a complete alphabetical list of all the options, refer to Table
10. These options are grouped according to categories and are listed with exact syntax,
defaults, and notes concerning similar or related options.

2.3.1. Code Generation Controls
This section describes the -M<pgflag> options that control code generation.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 59

Default: For arguments that you do not specify, the default code generation controls are
these:

nodaz norecursive nosecond_underscore

noflushz noreentrant nostride0

largeaddressaware noref_externals signextend

Related options: -D, -I, -L, -l, -U.

The following list provides the syntax for each -M<pgflag> option that controls code
generation. Each option has a description and, if appropriate, any related options.
-Mdaz

Set IEEE denormalized input values to zero; there is a performance benefit but
misleading results can occur, such as when dividing a small normalized number by a
denormalized number.

To take effect, this option must be set for the main program. To set this option in PVF,
use the Fortran |

Floating Point Options | Treat Denormalized Values as Zero property, described in
‘Treat Denormalized Values as Zero’

-Mnodaz
Do not treat denormalized numbers as zero.

To take effect, this option must be set for the main program.

-Mnodwarf
Specifies not to add DWARF debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf1
Generate DWARF1 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf2
Generate DWARF2 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf3
Generate DWARF3 format debug information.

To take effect, this option must be used in combination with -g.

-Mflushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to
zero.

To take effect, this option must be set for the main program.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 60

To set this option in PVF, use the Fortran | Floating Point Options | Flush
Denormalized Results to Zero property, described in ‘Flush Denormalized Results to
Zero’ on page 391.

-Mnoflushz
Do not set SSE flush-to-zero mode; generate underflows.

To take effect, this option must be set for the main program.

-Mfunc32
Align functions on 32-byte boundaries.

-Minstrument[=functions] (linux86-64 only)
Generate additional code to enable instrumentation of functions. The option
-Minstrument=functions is the same as -Minstrument.

Implies -Minfo=ccff and -Mframe.

-Mlargeaddressaware=[no]
[Win64 only] Generates code that allows for addresses greater than 2 GB, using RIP-
relative addressing.

Use-Mlargeaddressaware=no for a direct addressing mechanism that restricts the
total addressable memory.

Do not use -Mlargeaddressaware=no if the object file will be placed in a DLL.

If -Mlargeaddressaware=no is used to compile any object file, it must also be used
when linking.

-Mlarge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2 GB
in size. This option is the default in the presence of -mcmodel=medium. It can be
used separately together with the default small memory model for certain 64-bit
applications that manage their own memory space.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PVF User's Guide, https://www.pgroup.com/resources/
docs.php.

-Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2 GB in
size. When this option is placed after -mcmodel=medium on the command line, it
disables use of 64-bit indexing for applications that have no single data object larger
than 2 GB.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PVF User's Guide, https://www.pgroup.com/resources/
docs.php.

-Mnomain
Instructs the compiler not to include the object file that calls the Fortran main
program as part of the link step. This option is useful for linking programs in which

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 61

the main program is written in C/C++ and one or more subroutines are written in
Fortran.

-Mmpi=option
-Mmpi adds the include and library options to the compile and link commands
necessary to build an MPI application using MPI header files and libraries.

To use -Mmpi, you must have a version of MPI installed on your system.

This option tells the compiler to use the headers and libraries for the specified version
of MPI.

-Mmpi=msmpi – Select the default Microsoft MPI libraries on Windows.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PVF User's Guide, https://www.pgroup.com/resources/
docs.php.

-M[no]movnt
Instructs the compiler to generate nontemporal move and prefetch instructions even
in cases where the compiler cannot determine statically at compile-time that these
instructions will be beneficial.

-M[no]pre
enables [disables] partial redundancy elimination.

-Mprof[=option[,option,...]]
Set performance profiling options. Use of these options changes which sections are
included in the binary. These sections can be read by the PGI profiler.

The option argument can be any of the following:
[no]ccff

Enable [disable] common compiler feedback format, CCFF, information.
dwarf

Add limited DWARF symbol information sufficient for most performance
profilers.

-Mrecursive
instructs the compiler to allow Fortran subprograms to be called recursively.

-Mnorecursive
Fortran subprograms may not be called recursively.

-Mref_externals
force references to names appearing in EXTERNAL statements.

-Mnoref_externals
do not force references to names appearing in EXTERNAL statements.

-Mreentrant
instructs the compiler to avoid optimizations that can prevent code from being
reentrant.

-Mnoreentrant
instructs the compiler not to avoid optimizations that can prevent code from being
reentrant.

-Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global
symbol if its name already contains an underscore. This option is useful for

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 62

maintaining compatibility with object code compiled using g77, which uses this
convention by default.

-Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a Fortran global
symbol if its name already contains an underscore.

-Msafe_lastval
When a scalar is used after a loop, but is not defined on every iteration of the loop,
the compiler does not by default parallelize the loop. However, this option tells the
compiler it’s safe to parallelize the loop. For a given loop, the last value computed for
all scalars makes it safe to parallelize the loop.

-Msignextend
instructs the compiler to extend the sign bit that is set as a result of converting an
object of one data type to an object of a larger signed data type.

-Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting
an object of one data type to an object of a larger data type.

-Mstack_arrays
places automatic arrays on the stack.

-Mnostack_arrays
allocates automatic arrays on the heap. -Mnostack_arrays is the default and what
traditionally has been the approach used.

-Mstride0
instructs the compiler to inhibit certain optimizations and to allow for stride 0 array
references. This option may degrade performance and should only be used if zero-
stride induction variables are possible.

-Mnostride0
instructs the compiler to perform certain optimizations and to disallow for stride 0
array references.

-Mvarargs
force Fortran program units to assume procedure calls are to C functions with a
varargs-type interface.

2.3.2. Environment Controls
This section describes the -M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends
on your configuration.

The following list provides the syntax for each -M<pgflag> option that controls
environments. Each option has a description and, if appropriate, a list of any related
options.
-Mnostartup

instructs the linker not to link in the standard startup routine that contains the entry
point (_start) for the program.

If you use the -Mnostartup option and do not supply an entry point, the linker
issues the following error message: Warning: cannot find entry symbol _start

Command-Line Options Reference

PVF Reference Guide Version 2017 | 63

-M[no]smartalloc[=huge|huge:<n>|hugebss|nohuge]
adds a call to the routine mallopt in the main routine. This option supports large
TLBs on Linux and Windows. This option must be used to compile the main routine
to enable optimized malloc routines.

The option arguments can be any of the following:
huge

Link in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number
of TLB entries required to execute a program. This option is most effective on
Barcelona and Core 2 systems; older architectures do not have enough TLB entries
for this option to be beneficial. By itself, the huge suboption tries to allocate as
many huge pages as required.

huge:<n>
Link the huge page runtime library and allocate n huge pages. Use this suboption
to limit the number of huge pages allocated to n.

You can also limit the pages allocated by using the environment variable
PGI_HUGE_PAGES.

hugebss
(64-bit only) Puts the BSS section in huge pages; attempts to put a program's
uninitialized data section into huge pages.

This flag dynamically links the library libhugetlbfs_pgi even if
-Bstatic is used.

nohuge
Overrides a previous -Msmartalloc=huge setting.

Tip To be effective, this switch must be specified when compiling the file
containing the Fortran, C, or C++ main program.

-Mnostdinc
instructs the compiler to not search the standard location for include files. To set
this option in PVF, use the Fortran | Preprocessor | Ignore Standard Include Path
property, described in ‘Ignore Standard Include Path’ on page 381.

-Mnostdlib
instructs the linker not to link in the standard libraries in the library directory lib
within the standard directory. You can link in your own library with the -l option or
specify a library directory with the -L option.

2.3.3. Fortran Language Controls
This section describes the -M<pgflag> options that affect Fortran language
interpretations by the PGI Fortran compilers. These options are valid only for the
Fortran compiler drivers.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 64

Default: Before looking at all the options, let's look at the defaults. For arguments that
you do not specify, the defaults are as follows:

backslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each -M<pgflag> option that affect Fortran
language interpretations. Each option has a description and, if appropriate, a list of any
related options.
-Mallocatable=95|03

controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array
assignments. The default behavior is to use Fortran 95 semantics; the 03 option
instructs the compiler to use Fortran 2003 semantics.

-Mbackslash
instructs the compiler to treat the backslash as a normal character, and not as an
escape character in quoted strings.

-Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted
strings (in accordance with standard C usage).

-Mcuda
instructs the compiler to enable CUDA Fortran.

The following suboptions exist:

If more than one option is on the command line, all the specified options occur.

cc30
Generate code for compute capability 3.0.

cc35
Generate code for compute capability 3.5.

cc3x
Generate code for the lowest 3.x compute capability possible.

cc3+
Is equivalent to cc3x.

cc50
Generate code for compute capability 5.0.

cc60
Generate code for compute capability 6.0.

cuda7.5 or 7.5
Specify the NVIDIA CUDA 7.5 version of the toolkit. This is the default.

cuda8.0 or 8.0
Specify the NVIDIA CUDA 8.0 version of the toolkit.

Compile with the CUDA 7.5 or CUDA 8.0 toolkit either by using the -Mcuda=7.5
or -Mcuda=8.0 option, or by adding set DEFCUDAVERSION=7.5 or set
DEFCUDAVERSION=8.0 to the siterc file. This action generates binaries that
may not work on machines with an earlier CUDA driver.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 65

pgaccelinfo prints the driver version as the first line of output.

For a 7.5 driver: CUDA Driver Version 7050
For an 8.0 driver: CUDA Driver Version 8000

emu
Enable CUDA Fortran emulation mode.

fastmath
Use routines from the fast math library.

fermi
is equivalent to -Mcuda,cc2x

[no]flushz
Enable[disable] flush-to-zero mode for floating point computations in the GPU
code generated for CUDA Fortran kernels.

generate rdc
Generate relocatable device code

keepbin
Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu
Keep the generated GPU code for CUDA Fortran.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

kepler
is equivalent to -Mcuda,cc3x

llvm
Generate code using the llvm-based back-end.

[no]debug
Enable[disable] GPU debug information generation.

[no]lineinfo
Enable[disable] GPU line information generation.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank
indicates no limit.

nofma
Do not generate fused multiply-add instructions.

noL1
Prevent the use of L1 hardware data cache to cache global variables.

ptxinfo
Show PTXAS informational messages during compilation.

rdc
Enable CUDA Fortran separate compilation and linking of device routines,
including device routines in Fortran modules.

To enable separate compilation and linking, include the command line option -
Mcuda=rdc on both the compile and the link steps.

-Mdclchk
instructs the compiler to require that all program variables be declared.

-Mnodclchk
instructs the compiler not to require that all program variables be declared.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 66

-Mdefaultunit
instructs the compiler to treat "*" as a synonym for standard input for reading and
standard output for writing.

-Mnodefaultunit
instructs the compiler to treat "*" as a synonym for unit 5 on input and unit 6 on
output.

-Mdlines
instructs the compiler to treat lines containing "D" in column 1 as executable
statements (ignoring the "D").

-Mnodlines
instructs the compiler not to treat lines containing "D" in column 1 as executable
statements. The compiler does not ignore the "D".

-Mdollar,char
char specifies the character to which the compiler maps the dollar sign. The compiler
allows the dollar sign in names.

-Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-
column code.

-Mfixed
instructs the compiler to assume input source files are in FORTRAN 77-style fixed
form format.

-Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform
format.

-Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.

-Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran I/O
statements.

-Monetrip
instructs the compiler to force each DO loop to execute at least once. This option is
useful for programs written for earlier versions of Fortran.

-Mnoonetrip
instructs the compiler not to force each DO loop to execute at least once.

-Msave
instructs the compiler to assume that all local variables are subject to the SAVE
statement.

This may allow older Fortran programs to run, but it can greatly reduce performance.

-Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE
statement.

-Mstandard
instructs the compiler to flag non-ANSI-conforming source code.

-Munixlogical
directs the compiler to treat logical values as true if the value is non-zero and false
if the value is zero (UNIX F77 convention). When -Munixlogical is enabled, a logical
value or test that is non-zero is .TRUE., and a value or test that is zero is .FALSE.. In

Command-Line Options Reference

PVF Reference Guide Version 2017 | 67

addition, the value of a logical expression is guaranteed to be one (1) when the result
is .TRUE..

-Mnounixlogical
directs the compiler to use the VMS convention for logical values for true and false.
Even values are true and odd values are false.

-Mupcase
instructs the compiler to preserve uppercase letters in identifiers.

With -Mupcase, the identifiers "X" and "x" are different. Keywords must be in lower
case.

This selection affects the linking process. If you compile and link the same source
code using -Mupcase on one occasion and -Mnoupcase on another, you may get two
different executables – depending on whether the source contains uppercase letters.
The standard libraries are compiled using the default -Mnoupcase .

-Mnoupcase
instructs the compiler to convert all identifiers to lower case.

This selection affects the linking process. If you compile and link the same source
code using -Mupcase on one occasion and -Mnoupcase on another, you may get two
different executables, depending on whether the source contains uppercase letters.
The standard libraries are compiled using -Mnoupcase.

2.3.4. Inlining Controls
This section describes the -M<pgflag> options that control function inlining.

Usage:Before looking at all the options, let’s look at a couple examples. In the following
example, the compiler extracts functions that have 500 or fewer statements from the
source file myprog.f and saves them in the file extract.il.
$ pgfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately
100 statements in the source file myprog.f.
$ pgfortran -Minline=maxsize:100 myprog.f

Related options: -o, -Mextract

The following list provides the syntax for each -M<pgflag> option that controls function
inlining. Each option has a description and, if appropriate, a list of any related options.
- M[no]autoinline[=option[,option,...]]

instructs the compiler to inline [not to inline] a C/C++ function at -O2, where the
option can be any of these:
maxsize:n

instructs the compiler not to inline functions of size > n. The default size is 100.
totalsize:n

instructs the compiler to stop inlining when the size equals n. The default size is
800.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 68

-Mextract[=option[,option,...]]
Extracts functions from the file indicated on the command line and creates or
appends to the specified extract directory where option can be any of the following:
name:func

instructs the extractor to extract function func from the file.
size:number

instructs the extractor to extract functions with number or fewer statements from
the file.

lib:filename.ext
instructs the extractor to use directory filename.ext as the extract directory,
which is required to save and re-use inline libraries.

If you specify both name and size, the compiler extracts functions that match func,
or that have number or fewer statements. For examples of extracting functions,
refer to the ‘Using Function Inlining’ section of the PVF User's Guide, https://
www.pgroup.com/resources/docs.php.

-Minline[=option[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be
any of the following:
except:func

Inlines all eligible functions except func, a function in the source text. You can use
a comma-separated list to specify multiple functions.

[name:]func
Inlines all functions in the source text whose name matches func. You can use a
comma-separated list to specify multiple functions.

The function name should be a non-numeric string that does not contain a period.
You can also use a name: prefix followed by the function name. If name: is
specified, what follows is always the name of a function.

[maxsize:]number
A numeric option is assumed to be a size. Functions of size number or less are
inlined. If both number and function are specified, then functions matching the
given name(s) or meeting the size requirements are inlined.

The size number need not exactly equal the number of statements in a selected
function; the size parameter is merely a rough guage.

[no]reshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes
do not match. The default is -Minline=noreshape, except with -Mconcur or
-mp, where the default is -Minline=reshape,=reshape.

smallsize:number
Always inline functions of size smaller than number regardless of other size limits.

totalsize:number
Stop inlining in a function when the function's total inlined size reaches the
number specified.

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Command-Line Options Reference

PVF Reference Guide Version 2017 | 69

[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext.
The compiler assumes that a filename.ext option containing a period is a
library file.

Tip Create the library file using the -Mextract option. You can also use a
lib: prefix followed by the library name.

‣ If lib: is specified, no period is necessary in the library name. Functions
from the specified library are inlined.

‣ If no library is specified, functions are extracted from a temporary library
created during an extract prepass.

If you specify both func and number, the compiler inlines functions that match the
function name or have number or fewer statements.

Inlining can be disabled with -Mnoinline.

To set this option in PVF, use the Fortran | Optimization | Inlining property,
described in ‘Inlining’

For examples of inlining functions, refer to ‘Using Function Inlining’ in the PGI
Compiler User’s Guide.

2.3.5. Optimization Controls
This section describes the -M<pgflag> options that control optimization.

Default: Before looking at all the options, let's look at the defaults. For arguments that
you do not specify, the default optimization control options are as follows:

depchk noipa nounroll nor8

i4 nolre novect nor8intrinsics

nofprelaxed noprefetch

If you do not supply an option to -Mvect, the compiler uses defaults that are
dependent upon the target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE
instructions enabled.
>$ pgfortran -Mvect=sse -Mcache_align myprog.f

Related options: -g, -O

The following list provides the syntax for each -M<pgflag> option that controls
optimization. Each option has a description and, if appropriate, a list of any related
options.
-Mcache_align

Align unconstrained objects of length greater than or equal to 16 bytes on cache-
line boundaries. An unconstrained object is a data object that is not a member of an

Command-Line Options Reference

PVF Reference Guide Version 2017 | 70

aggregate structure or common block. This option does not affect the alignment of
allocatable or automatic arrays.

To effect cache-line alignment of stack-based local variables, the main program or
function must be compiled with -Mcache_align.

-Mconcur[=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -Mconcur is
specified, multiple processors will be used to execute loops that the compiler
determines to be parallelizable.

option is one of the following:
allcores

Instructs the compiler to use all available cores. Use this option at link time.
[no]altcode:n

Instructs the parallelizer to generate alternate serial code for parallelized loops.

‣ If altcode is specified without arguments, the parallelizer determines an
appropriate cutoff length and generates serial code to be executed whenever
the loop count is less than or equal to that length.

‣ If altcode:n is specified, the serial altcode is executed whenever the loop count
is less than or equal to n.

‣ If noaltcode is specified, the parallelized version of the loop is always executed
regardless of the loop count.

cncall
Indicates that calls in parallel loops are safe to parallelize.

Loops containing calls are candidates for parallelization. Also, no minimum loop
count threshold must be satisfied before parallelization will occur, and last values
of scalars are assumed to be safe.

[no]innermost
Instructs the parallelizer to enable parallelization of innermost loops. The default
is to not parallelize innermost loops, since it is usually not profitable on dual-core
processors.

noassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result.
The NCPUS environment variable controls how many processors or cores are used to
execute parallelized loops.

To set this option in PVF, use the Fortran | Optimization | Auto-Parallelization
property, described in ‘Auto-Parallelization’.

This option applies only on shared-memory multi-processor (SMP) or multicore
processor-based systems.

-Mcray[=option[,option,...]]
Force Cray Fortran (CF77) compatibility with respect to the listed options. Possible
values of option include:

Command-Line Options Reference

PVF Reference Guide Version 2017 | 71

pointer
for purposes of optimization, it is assumed that pointer-based variables do not
overlay the storage of any other variable.

-Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

-Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict.
However, if data dependencies exist, this option can produce incorrect code.

-Mdse
Enables a dead store elimination phase that is useful for programs that rely on
extensive use of inline function calls for performance. This is disabled by default.

-Mnodse
Disables the dead store elimination phase. This is the default.

-M[no]fpapprox[=option]
Perform certain floating point operations using low-precision approximation.

-Mnofpapprox specifies not to use low-precision fp approximation operations.

By default -Mfpapprox is not used.

If -Mfpapprox is used without suboptions, it defaults to use approximate div, sqrt,
and rsqrt. The available suboptions are these:
div

Approximate floating point division
sqrt

Approximate floating point square root
rsqrt

Approximate floating point reciprocal square root
-M[no]fpmisalign

Instructs the compiler to allow (not allow) vector arithmetic instructions with
memory operands that are not aligned on 16-byte boundaries. The default is
-Mnofpmisalign on all processors.

Applicable only with one of these options: -tp barcelona or -tp barcelona-64 or
newer processors.

-M[no]fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some
intrinsic functions. Can result in improved performance at the expense of numerical
accuracy.

To set this option in PVF, use the Fortran | Floating Point Options | Floating Point
Consistency property. For more information on this property, refer to ‘Floating Point
Consistency’.

The possible values for option are:
div

Perform divide using relaxed precision.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 72

intrinsic
Enables use of relaxed precision intrinsics.

noorder
Do not allow expression reordering or factoring.

order
Allow expression reordering, including factoring.

recip
Perform reciprocal using relaxed precision.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sqrt
Perform square root with relaxed precision.

With no options, -Mfprelaxed generates relaxed precision code for those operations
that generate a significant performance improvement, depending on the target
processor.

The default is -Mnofprelaxed which instructs the compiler to not use relaxed
precision in the calculation of intrinsic functions.

-Mi4
instructs the compiler to treat INTEGER variables as INTEGER*4.

-Mlre[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the
number of arithmetic operations and memory references in loops. The available
suboptions are:
array

treat individual array element references as candidates for possible loop-carried
redundancy elimination. The default is to eliminate only redundant expressions
involving two or more operands.

assoc
allow expression re-association. Specifying this suboption can increase
opportunities for loop-carried redundancy elimination but may alter numerical
results.

noassoc
disallow expression re-association.

-Mnolre
Disable loop-carried redundancy elimination.

-Mnoframe
Eliminate operations that set up a true stack frame pointer for every function. With
this option enabled, you cannot perform a traceback on the generated code and you
cannot access local variables.

To set this option in PVF, use the Fortran | Optimization | Use Frame Pointer
property, described in ‘Use Frame Pointer’

-Mnoi4
instructs the compiler to treat INTEGER variables as INTEGER*2.

-Mpre
Enables partial redundancy elimination.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 73

-Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported.
Possible values for option include:
d:m

set the fetch-ahead distance for prefetch instructions to m cache lines.
n:p

set the maximum number of prefetch instructions to generate for a given loop to p.
nta

use the prefetch instruction.
plain

use the prefetch instruction (default).
t0

use the prefetcht0 instruction.
w

use the AMD-specific prefetchw instruction.
-Mnoprefetch

Disables generation of prefetch instructions.
-M[no]propcond

Enables or disables constant propagation from assertions derived from equality
conditionals.

The default is enabled.

-Mr8
The compiler promotes REAL variables and constants to DOUBLE PRECISION
variables and constants, respectively. DOUBLE PRECISION elements are 8 bytes in
length.

-Mnor8
The compiler does not promote REAL variables and constants to DOUBLE
PRECISION. REAL variables will be single precision (4 bytes in length).

-Mr8intrinsics
The compiler treats the intrinsics CMPLX and REAL as DCMPLX and DBLE, respectively.

-Mnor8intrinsics
The compiler does not promote the intrinsics CMPLX and REAL to DCMPLX and DBLE,
respectively.

-Mscalarsse
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic. This option is
valid only on option -tp [p7 | k8-32 | k8-64] targets.

-Mnoscalarsse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87
instructions instead. This option is not valid in combination with the -tp k8-64 option.

-Msmart
instructs the compiler driver to invoke a post-pass assembly optimization utility.

-Mnosmart
instructs the compiler not to invoke an AMD64-specific post-pass assembly
optimization utility.

-Munroll[=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each
iteration. This also sets the optimization level to 2 if the level is set to less than 2, or if
no -O or -g options are supplied. The option is one of the following:

Command-Line Options Reference

PVF Reference Guide Version 2017 | 74

c:m
instructs the compiler to completely unroll loops with a constant loop count less
than or equal to m, a supplied constant. If this value is not supplied, the m count is
set to 4.

m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for
loops that have conditional statements. If n is not supplied, then the default value
is 4. The default setting is not to enable -Munroll=m.

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not
completely unrolled, or has a non-constant loop count. If n is not supplied, the
unroller computes the number of times a candidate loop is unrolled.

To set this option in PVF, use the Fortran | Optimization | Loop Unroll Count
property, described in ‘Loop Unroll Count’

-Mnounroll
instructs the compiler not to unroll loops.

-M[no]vect[=option [,option,...]]
enable [disable] the code vectorizer, where option is one of the following:
altcode

Instructs the vectorizer to generate alternate code (altcode) for vectorized loops
when appropriate. For each vectorized loop the compiler decides whether to
generate altcode and what type or types to generate, which may be any or all of:
altcode without iteration peeling, altcode with non-temporal stores and other
data cache optimizations, and altcode based on array alignments calculated
dynamically at runtime. The compiler also determines suitable loop count and
array alignment conditionals for executing the altcode. This option is enabled by
default.

noaltcode
Instructs the vectorizer to disable alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change
the results of a computation due to roundoff error. A typical optimization is to
change an arithmetic operation to an arithmetic operation that is mathematically
correct, but can be computationally different, due to round-off error.

noassoc
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a
cache size of n. The default is set per processor type, either using the -tp switch or
auto-detected from the host computer.

[no]gather
Instructs the vectorizer to vectorize loops containing indirect array references, such
as this one:
sum = 0.d0
do k=d(j),d(j+1)-1
 sum = sum + a(k)*b(c(k))
enddo

The default is gather.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 75

partial
Instructs the vectorizer to enable partial loop vectorization through innermost loop
distribution.

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible,
make use of prefetch instructions.

[no]short
Instructs the vectorizer to enable [disable] short vector operations. -Mvect=short
enables generation of packed SIMD instructions for short vector operations that
arise from scalar code outside of loops or within the body of a loop iteration.

[no]sizelimit
Instructs the vectorizer to generate vector code for all loops where possible
regardless of the number of statements in the loop. This overrides a heuristic in
the vectorizer that ordinarily prevents vectorization of loops with a number of
statements that exceeds a certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length is less than
or equal to n. The vectorizer uses this information to eliminate generation of the
stripmine loop for vectorized loops wherever possible. If the size n is omitted, the
default is 100.

No space is allowed on either side of the colon (:).

[no]sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible,
make use of SSE, SSE2, and prefetch instructions. The default is nosse.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and
residual loops.

This option may affect the performance of the residual loop.

To set this option in PVF, use the Fortran | Optimization Vectorization property,
described in ‘Vectorization’

-Mnovect
instructs the compiler not to perform vectorization. You can use this option to
override a previous instance of -Mvect on the command-line, in particular for cases in
which -Mvect is included in an aggregate option such as -fastsse.

-Mvect=[option]
instructs the compiler to enable loop vectorization, where option is one of the
following:
partial

Enable partial loop vectorization through innermost loop distribution.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 76

[no]short
Enable [disable] short vector operations. Enables [disables] generation of packed
SIMD instructions for short vector operations that arise from scalar code outside of
loops or within the body of a loop iteration.

simd[:{128|256}]
Specifies to vectorize using SIMD instructions and data, either 128 bits or 256 bits
wide, on processors where there is a choice.

tile
Enable tiling/blocking over multiple nested loops for more efficient cache
utilization.

-Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-
optimized vector functions.

2.3.6. Miscellaneous Controls
This section describes the -M<pgflag> options that do not easily fit into one of the other
categories of -M<pgflag> options.

Default: Before looking at all the options, let’s look at the defaults. For arguments that
you do not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Related options: -m, -S, -V, -v

Usage: In the following example, the compiler includes Fortran source code with the
assembly code.
 $ pgfortran -Manno -S myprog.f

In the following example, the assembler does not delete the assembly file myprog.s
after the assembly pass.
 $ pgfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions
with fewer than approximately 20 source lines in the source file myprog.f.
 $ pgfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler creates the listing file myprog.lst.
 $ pgfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.
 $ pgfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous -M<pgflag> option. Each
option has a description and, if appropriate, a list of any related options.
-Manno

annotate the generated assembly code with source code. Implies -Mkeepasm.

To set this option in PVF, use the Fortran | Output | Annotated ASM Listing
property, described in ‘Annotate Assembly’.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 77

-Mbounds
enables array bounds checking.

‣ If an array is an assumed size array, the bounds checking only applies to the
lower bound.

‣ If an array bounds violation occurs during execution, an error message describing
the error is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred (the source
file and the line number in the source), and information about the out of bounds
subscript (its value, its lower and upper bounds, and its dimension).

The following is a sample error message:
PGFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1, upper bound=2, dimension=2

-Mnobounds
disables array bounds checking.

-Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of
Fortran unformatted data files.

-Mchkptr
instructs the compiler to check for pointers that are dereferenced while initialized to
NULL.

-Mchkstk
instructs the compiler to check the stack for available space in the prologue of a
function and before the start of a parallel region. Prints a warning message and aborts
the program gracefully if stack space is insufficient.

This option is useful when many local and private variables are declared in an
OpenMP program.

If the user also sets the PGI_STACK_USAGE environment variable to any value, then
the program displays the stack space allocated and used after the program exits. For
example, you might see something similar to the following message:
thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. This
information is useful when you want to explicitly set a reserved and committed stack
size for your programs, such as using the -stack option on Windows.

For more information on the PGI_STACK_USAGE, refer to ‘PGI_STACK_USAGE’ in
the PGI Compiler User’s Guide.

-Mcpp[=option [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation
steps. This option is useful for generating dependence information to be included in
makefiles.

Only one of the m, md, mm or mmd options can be present; if multiple of these
options are listed, the last one listed is accepted and the others are ignored.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 78

The option is one or more of the following:
m

print makefile dependencies to stdout.
md

print makefile dependencies to filename.d, where filename is the root name of
the input file being processed, ignoring system include files.

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to filename.d, where filename is the root name of
the input file being processed, ignoring system include files.

[no]comment
do [do not] retain comments in output.

[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.

-Mdll
This Windows-only flag has been deprecated. Refer to -Bdynamic. This flag was
used to link with the DLL versions of the runtime libraries, and it was required when
linking with any DLL built by any PGI compilers. This option implied -D_DLL,
which defines the preprocessor symbol _DLL.

-Mgccbug[s]
instructs the compiler to match the behavior of certain gcc bugs.

-Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:
cref

uses CREF calling conventions, no trailing underscores.
mixed_str_len_arg

places the lengths of character arguments immediately after their corresponding
argument. Has affect only with the CREF calling convention.

nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has
affect only with the CREF calling convention.

-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one
of the following:
all

instructs the compiler to produce all available -Minfo information. Implies a
number of suboptions:
-Mneginfo=accel,inline,ipa,loop,lre,mp,opt,par,vect

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append common compiler feedback format information,
such as optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 79

inline
instructs the compiler to display information about extracted or inlined functions.
This option is not useful without either the -Mextract or -Minline option.

intensity
instructs the compiler to provide informational messages about the intensity of the
loop. Specify <n> to get messages on nested loops.

‣ For floating point loops, intensity is defined as the number of floating point
operations divided by the number of floating point loads and stores.

‣ For integer loops, the loop intensity is defined as the total number of integer
arithmetic operations, which may include updates of loop counts and
addresses, divided by the total number of integer loads and stores.

‣ By default, the messages just apply to innermost loops.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination,
information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

time
instructs the compiler to display compilation statistics.

unroll
instructs the compiler to display information about loop unrolling.

vect
instructs the compiler to enable vectorizer information.

-Minform=level
instructs the compiler to display error messages at the specified and higher levels,
where level is one of the following:
fatal

instructs the compiler to display fatal error messages.
[no]file

instructs the compiler to print or not print source file names as they are compiled.
The default is to print the names: -Minform=file.

inform
instructs the compiler to display all error messages (inform, warn, severe and
fatal).

severe
instructs the compiler to display severe and fatal error messages.

Command-Line Options Reference

PVF Reference Guide Version 2017 | 80

warn
instructs the compiler to display warning, severe and fatal error messages.

To set this option in PVF, use the Fortran | Diagnostics | Warning Level property,
described in ‘Warning Level’.

-Minstrumentation=option
specifies the level of instrumentation calls generated. This option implies -
Minfo=ccff, -Mframe.

option is one of the following:
level

specifies the level of instrumentation calls generated.
function (default)

generates instrumentation calls for entry and exit to functions.

Just after function entry and just before function exit, the following profiling
functions are called with the address of the current function and its call site.
(linux86-64 only).

void __cyg_profile_func_enter (void *this_fn, void *call_site);
void __cyg_profile_func_exit (void *this_fn, void *call_site);

In these calls, the first argument is the address of the start of the current function.

To set this option in PVF, use the Fortran | Diagnostics | Warning Level property,
described in ‘Warning Level’.

-Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally,
the assembler deletes this file when it is finished. The assembly file has the same
filename as the source file, but with a .s extension.

To set this option in PVF, use the Fortran | Output | Assembler Output property,
described in ‘Generate Assembly’.

-Mlist
instructs the compiler to create a listing file. The listing file is filename.lst, where
the name of the source file is filename.f.

-Mmakedll
generate a dynamic link library (DLL).

-Mmakeimplib
generate an import library for a DLL without creating the DLL. When used without -
def:deffile, passes the switch -def to the librarian without a deffile.

-Mnames=lowercase|uppercase
specifies the case for the names of Fortran externals.

‣ lowercase - Use lowercase for Fortran externals.
‣ uppercase - Use uppercase for Fortran externals.

-Mneginfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one
of the following:

Command-Line Options Reference

PVF Reference Guide Version 2017 | 81

all
instructs the compiler to produce all available information on why various
optimizations are not performed.

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to
the object file.

concur
instructs the compiler to produce all available information on why loops are
not automatically parallelized. In particular, if a loop is not parallelized due to
potential data dependence, the variable(s) that cause the potential dependence are
listed in the messages that you see when using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions.
This option is not useful without either the -Mextract or -Minline option.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination,
information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

vect
instructs the compiler to enable vectorizer information.

-Mnolist
the compiler does not create a listing file. This is the default.

-Mnoopenmp
when used in combination with the -mp option, the compiler ignores OpenMP
parallelization directives or pragmas, but still processes SGI-style parallelization
directives or pragmas.

-Mnosgimp
when used in combination with the -mp option, the compiler ignores SGI-style
parallelization directives, but still processes OpenMP parallelization directives or
pragmas.

-Mnopgdllmain
(Windows only) do not link the module containing the default DllMain() into the
DLL. This flag applies to building DLLs with the PGFORTRAN compilers. If you

Command-Line Options Reference

PVF Reference Guide Version 2017 | 82

want to replace the default DllMain() routine with a custom DllMain(), use this flag
and add the object containing the custom DllMain() to the link line. The latest version
of the default DllMain() used by PGFORTRAN is included in the Release Notes for
each release. The PGFORTRAN-specific code in this routine must be incorporated
into the custom version of DllMain() to ensure the appropriate function of your DLL.

-Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran
input source files.

To set this option in PVF, use the Fortran | Preprocessor | Preprocess Source File
property, described in ‘Preprocessor Definitions’.

-Mwritable_strings
stores string constants in the writable data segment.

Options -Xs and -Xst include -Mwritable_strings.

PVF Reference Guide Version 2017 | 83

Chapter 3.
DIRECTIVES REFERENCE

PGI Fortran compilers support proprietary directives. These directives override
corresponding command-line options. For usage information such as the scope and
related command-line options, refer to the PGI Compiler User’s Guide.

This section contains detailed descriptions of PGI’s proprietary directives.

3.1. PGI Proprietary Fortran Directive Summary
Directives (Fortran comments) may be supplied by the user in a source file to provide
information to the compiler. Directives alter the effects of certain command line options
or default behavior of the compiler. They provide pragmatic information that control
the actions of the compiler in a particular portion of a program without affecting the
program as a whole. That is, while a command line option affects the entire source file
that is being compiled, directives apply, or disable, the effects of a command line option
to selected subprograms or to selected loops in the source file, for example, to optimize a
specific area of code. Use directives to tune selected routines or loops.

The Fortran directives may have any of the following forms:
!pgi$g directive
!pgi$r directive
!pgi$l directive
!pgi$ directive

where the scope indicator follows the $ and is either g (global), r (routine), or l (loop).
This indicator controls the scope of the directive, though some directives ignore the
scope indicator.

If the input is in fixed format, the comment character, !, * or C, must begin in column
1.

Directives override corresponding command-line options. For usage information such
as the scope and related command-line options, refer to the the ‘Using Directives and
Pragmas’ section of the PVF User's Guide, https://www.pgroup.com/resources/docs.php.

https://www.pgroup.com/resources/docs.php

Directives Reference

PVF Reference Guide Version 2017 | 84

3.1.1. altcode (noaltcode)
The altcode directive instructs the compiler to generate alternate code for vectorized
or parallelized loops.

The noaltcode directive disables generation of alternate code.

Scope: This directive affects the compiler only when -Mvect=sse or -Mconcur is
enabled on the command line.
!pgi$ altcode

Enables alternate code (altcode) generation for vectorized loops. For each loop the
compiler decides whether to generate altcode and what type(s) to generate, which
may be any or all of: altcode without iteration peeling, altcode with non-temporal
stores and other data cache optimizations, and altcode based on array alignments
calculated dynamically at runtime. The compiler also determines suitable loop count
and array alignment conditions for executing the alternate code.

!pgi$ altcode alignment
For a vectorized loop, if possible, generates an alternate vectorized loop containing
additional aligned moves which is executed if a runtime array alignment test is
passed.

!pgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the
loop count is less than or equal to n. If n is omitted or n is 0, the compiler determines
a suitable value of n for each loop.

!pgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each
auto-parallelized reduction loop, generate an alternate serial loop to be executed
if the loop count is less than or equal to n. If n is omitted or n is 0, the compiler
determines a suitable value of n for each loop.

!pgi$ altcode [(n)] nontemporal
For a vectorized loop, if possible, generates an alternate vectorized loop containing
non-temporal stores and other cache optimizations to be executed if the loop count is
greater than n. If n is omitted or n is 1, the compiler determines a suitable value of n
for each loop. The alternate code is optimized for the case when the data referenced in
the loop does not all fit in level 2 cache.

!pgi$ altcode [(n)] nopeel
For a vectorized loop where iteration peeling is performed by default, if possible,
generates an alternate vectorized loop without iteration peeling to be executed if the
loop count is less than or equal to n. If n is omitted or n is 1, the compiler determines
a suitable value of n for each loop, and in some cases it may decide not to generate an
alternate unpeeled loop.

Directives Reference

PVF Reference Guide Version 2017 | 85

!pgi$ altcode [(n)] vector
For each vectorized loop, generates an alternate scalar loop to be executed if the loop
count is less than or equal to n. If n is omitted or n is 1, the compiler determines a
suitable value of n for each loop.

!pgi$ noaltcode
Sets the loop count thresholds for parallelization of all innermost loops to 0, and
disables alternate code generation for vectorized loops.

3.1.2. assoc (noassoc)
This directive toggles the effects of the -Mvect=noassoc command-line option, an
optimization -M control.

Scope: This directive affects the compiler only when -Mvect=sse is enabled on the
command line.

By default, when scalar reductions are present the vectorizer may change the order of
operations, such as dot product, so that it can generate better code. Such transformations
may change the result of the computation due to roundoff error. The noassoc directive
disables these transformations.

3.1.3. bounds (nobounds)
This directive alters the effects of the -Mbounds command line option. This directive
enables the checking of array bounds when subscripted array references are performed.
By default, array bounds checking is not performed.

3.1.4. cncall (nocncall)
This directive indicates that loops within the specified scope are considered for
parallelization, even if they contain calls to user-defined subroutines or functions. A
nocncall directive cancels the effect of a previous cncall.

3.1.5. concur (noconcur)
This directive alters the effects of the -Mconcur command-line option. The directive
instructs the auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive affects the compiler only when -Mconcur is enabled on the
command line.

If concur is specified, the compiler uses multiple processors to execute loops which the
auto-parallelizer determines to be parallelizable. The noconcur directive disables these
transformations; however, use of concur overrides previous noconcur statements.

Directives Reference

PVF Reference Guide Version 2017 | 86

3.1.6. depchk (nodepchk)
This directive alters the effects of the -Mdepchk command line option. When potential
data dependencies exist, the compiler, by default, assumes that there is a data
dependence that in turn may inhibit certain optimizations or vectorizations. nodepchk
directs the compiler to ignore unknown data dependencies.

3.1.7. eqvchk (noeqvchk)
The eqvchk directive specifies to check dependencies between EQUIVALENCE
associated elements. When examining data dependencies, noeqvchk directs the compiler
to ignore any dependencies between variables appearing in EQUIVALENCE statements.

3.1.8. invarif (noinvarif)
This directive has no corresponding command-line option. Normally, the compiler
removes certain invariant if constructs from within a loop and places them outside of
the loop. The directive noinvarif directs the compiler not to move such constructs. The
directive invarif toggles a previous noinvarif.

3.1.9. ivdep
The ivdep directive assists the compiler's dependence analysis and is equivalent to the
directive nodepchk.

3.1.10. lstval (nolstval)
This directive has no corresponding command-line option. The compiler determines
whether the last values for loop iteration control variables and promoted scalars need
to be computed. In certain cases, the compiler must assume that the last values of these
variables are needed and therefore computes their last values. The directive nolstval
directs the compiler not to compute the last values for those cases.

3.1.11. opt
The opt directive overrides the value specified by the -On command line option.

The syntax of this directive is:
!pgi$<scope> opt=<level>

where the optional <scope> is r or g and <level> is an integer constant representing
the optimization level to be used when compiling a subprogram (routine scope) or all
subprograms in a file (global scope).

Directives Reference

PVF Reference Guide Version 2017 | 87

3.1.12. prefetch
The prefetch directive the compiler emits prefetch instructions whereby elements
are fetched into the data cache prior to first use. By varying the prefetch distance,
it is sometimes possible to reduce the effects of main memory latency and improve
performance.

The syntax of this directive is:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

3.1.13. safe_lastval
During parallelization, scalars within loops need to be privatized. Problems are possible
if a scalar is accessed outside the loop. If you know that a scalar is assigned on the last
iteration of the loop, making it safe to parallelize the loop, you use the safe_lastval
directive to let the compiler know the loop is safe to parallelize.

For example, use the following pragma to tell the compiler that for a given loop the last
value computed for all scalars make it safe to parallelize the loop:
cpgi$l safe_lastval

The command-line option-Msafe_lastval provides the same information for all loops
within the routines being compiled, essentially providing global scope.

In the following example, the value of t may not be computed on the last iteration of the
loop.
do i = 1, N
 if(f(x(i)) > 5.0) then
 t = x(i)
 endif
enddo
v = t

If a scalar assigned within a loop is used outside the loop, we normally save the last
value of the scalar. Essentially the value of the scalar on the "last iteration" is saved, in
this case when i=N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be
difficult to determine on what iteration t is last assigned, without resorting to costly
critical sections. Analysis allows the compiler to determine if a scalar is assigned on

Directives Reference

PVF Reference Guide Version 2017 | 88

every iteration, thus the loop is safe to parallelize if the scalar is used later. An example
loop is:
do i = 1, N
 if(x(i) > 0.0) then
 t = 2.0
 else
 t = 3.0
 endif
 ...
 y(i) = t
 ...
enddo
v = t

where t is assigned on every iteration of the loop. However, there are cases where a
scalar may be privatizable. If it is used after the loop, it is unsafe to parallelize. Examine
this loop:
do i = 1,N
 if(x(i) > 0.0) then
 t = x(i)
 ...
 y(i) = t
 ...
 endif
enddo
v = t

where each use of t within the loop is reached by a definition from the same iteration.
Here t is privatizable, but the use of t outside the loop may yield incorrect results since
the compiler may not be able to detect on which iteration of the parallelized loop t is
assigned last.

The compiler detects these cases. When a scalar is used after the loop, but is not defined
on every iteration of the loop, parallelization does not occur.

3.1.14. tp
You use the directive tp to specify one or more processor targets for which to generate
code.
!pgi$ tp [target]...

The tp directive can only be applied at the routine or global level. For more
information about these levels, refer to the PVF User's Guide, https://
www.pgroup.com/resources/docs.php.

Refer to -tp <target>[,target...] for a list of targets that can be used as parameters to the
tp directive.

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Directives Reference

PVF Reference Guide Version 2017 | 89

3.1.15. unroll (nounroll)
The unroll directive enables loop unrolling while nounroll disables loop unrolling.

The unroll directive has no effect on vectorized loops.

The unroll directive takes arguments c, n and m.

‣ c specifies that c complete unrolling should be turned on or off.
‣ n specifies single block loop unrolling.
‣ m specifies multi-block loop unrolling.

In addition, a constant may be specified for the c, n and m arguments.

‣ c:v sets the threshold to which c unrolling applies. v is a constant; and a loop whose
constant loop count is less than or equal to (<=) v is completely unrolled.
!pgi$ unroll = c:v

‣ n:v unrolls single block loops v times.
!pgi$ unroll = n:v

‣ m:v unrolls single block loops v times.
!pgi$ unroll = m:v

The directives unroll and nounroll only apply if-Munroll is selected on the command
line.

3.1.16. vector (novector)
The directive novector disables vectorization. The directive vector re-enables
vectorization after a previous novector directive. The directives vector and novector only
apply if -Mvect has been selected on the command line.

3.1.17. vintr (novintr)
The directive novintr directs the vectorizer to disable recognition of vector intrinsics.
The directive vintr is re-enables recognition of vector intrinsics after a previous novintr
directive. The directives vintr and novintr only apply if -Mvect has been selected on the
command line.

3.2. Prefetch Directives and Pragmas
Prefetch instructions can increase the speed of an application substantially by bringing
data into cache so that it is available when the processor needs it. The PGI prefetch
directive takes the form:

Directives Reference

PVF Reference Guide Version 2017 | 90

The syntax of a prefetch directive in Fortran is as follows:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

For examples on how to use the prefetch directive, refer to the Prefetch Directives
section of the PVF User's Guide, https://www.pgroup.com/resources/docs.php.

3.3. IGNORE_TKR Directive
This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/)
of the specified dummy arguments in an interface of a procedure. The compiler also
ignores the type, kind, and/or rank of the actual arguments when checking all the
specifics in a generic call for ambiguities.

3.3.1. IGNORE_TKR Directive Syntax
The syntax for the IGNORE_TKR directive is this:
!DIR$ IGNORE_TKR [[(<letter>) <dummy_arg>] ...]

<letter>
is one or any combination of the following:

T – type K – kind R – rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to
ignore the type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If
not specified, TKR rules are ignored for all dummy arguments in the procedure that
contains the directive.

3.3.2. IGNORE_TKR Directive Format Requirements
The following rules apply to this directive:

‣ IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90
pointers, or assumed-shape arrays.

‣ IGNORE_TKR may appear in the body of an interface block or in the body of a
module procedure, and may specify dummy argument names only.

‣ IGNORE_TKR may appear before or after the declarations of the dummy arguments
it specifies.

‣ If dummy argument names are specified, IGNORE_TKR applies only to those
particular dummy arguments.

‣ If no dummy argument names are specified, IGNORE_TKR applies to all dummy
arguments except those that are allocatable objects, Fortran 90 pointers, or assumed-
shape arrays.

https://www.pgroup.com/resources/docs.php

Directives Reference

PVF Reference Guide Version 2017 | 91

3.3.3. Sample Usage of IGNORE_TKR Directive
Consider this subroutine fragment:
subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 12 indicates which rules are ignored for which dummy arguments in the
preceding sample subroutine fragment:

Table 12 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank

B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

3.4. !DEC\$ Directives
PGI Fortran compilers for Microsoft Windows support directives that help with inter-
language calling and importing and exporting routines to and from DLLs. These
directives all take the form:
!DEC$ directive

For specific format requirements, refer to the section ‘!DEC$ Directives’ in the PGI
Compiler User's Guide, https://www.pgroup.com/resources/docs.php.

3.4.1. ALIAS Directive
This directive specifies an alternative name with which to resolve a routine.

The syntax for the ALIAS directive is either of the following:
!DEC$ ALIAS routine_name , external_name
!DEC$ ALIAS routine_name : external_name

In this syntax, external_name is used as the external name for the specified
routine_name.

If external_name is an identifier name, the name (in uppercase) is used as the external
name for the specified routine_name. If external_name is a character constant, it is
used as-is; the string is not changed to uppercase, nor are blanks removed.

You can also supply an alias for a routine using the ATTRIBUTES directive, described in
the next section:
!DEC$ ATTIRIBUTES ALIAS : 'alias_name' :: routine_name

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

Directives Reference

PVF Reference Guide Version 2017 | 92

This directive specifies an alternative name with which to resolve a routine, as illustrated
in the following code fragment that provides external names for three routines. In this
fragment, the external name for sub1 is name1, for sub2 is name2, and for sub3 is
name3.
subroutine sub
!DEC$ alias sub1 , 'name1'
!DEC$ alias sub2 : 'name2'
!DEC$ attributes alias : 'name3' :: sub3

3.4.2. ATTRIBUTES Directive
This directive lets you specify properties for data objects and procedures.

The syntax for the ATTRIBUTES directive is this:
!DEC$ ATTRIBUTES <list>

where <list> is one of the following:
ALIAS : 'alias_name' :: routine_name

Specifies an alternative name with which to resolve routine_name.
C :: routine_name

Specifies that the routine routine_name will have its arguments passed by value.
When a routine marked C is called, arguments, except arrays, are sent by value. For
characters, only the first character is passed. The standard Fortran calling convention
is pass by reference.

DLLEXPORT :: name
Specifies that name is being exported from a DLL.

DLLIMPORT :: name
Specifies that name is being imported from a DLL.

NOMIXED_STR_LEN_ARG
Specifies that hidden lengths are placed in sequential order at the end of the list.

This attribute only applies to routines that are compiled with -Miface=cref or
that use the default Windows calling conventions.

REFERENCE :: name
Specifies that the argument name is being passed by reference. Often this attribute is
used in conjunction with STDCALL, where STDCALL refers to an entire routine; then
individual arguments are modified with REFERENCE.

STDCALL :: routine_name
Specifies that routine routine_name will have its arguments passed by value. When
a routine marked STDCALL is called, arguments (except arrays and characters) will be
sent by value. The standard Fortran calling convention is pass by reference.

VALUE :: name
Specifies that the argument 'name' is being passed by value.

3.4.3. DECORATE Directive
The DECORATE directive specifies that the name specified in the ALIAS directive
should have the prefix and postfix decorations performed on it that are associated

Directives Reference

PVF Reference Guide Version 2017 | 93

with the calling conventions that are in effect. These declarations are the same ones
performed on the name when ALIAS is not specified.

The syntax for the DECORATE directive is this:
!DEC$ DECORATE

When ALIAS is not specified, this directive has no effect.

3.4.4. DISTRIBUTE Directive
This directive is front-end based, and tells the compiler at what point within a loop to
split into two loops.

The syntax for the DISTRIBUTE directive is either of the following:
!DEC$ DISTRIBUTE POINT
!DEC$ DISTRIBUTEPOINT

Example:
subroutine dist(a,b,n)
 integer i
 integer n
 integer a(*)
 integer b(*)
 do i = 1,n
 a(i) = a(i)+2
!DEC$ DISTRIBUTE POINT
 b(i) = b(i)*4
 enddo
end subroutine

PVF Reference Guide Version 2017 | 94

Chapter 4.
RUNTIME ENVIRONMENT

This section describes the programming model supported for compiler code generation,
including register conventions and calling conventions for x64 processor-based systems
running a Windows operating system.

In this section we sometimes refer to word, halfword, and double word. The
equivalent byte information is word (4 byte), halfword (2 byte), and double word (8
byte).

4.1. Win64 Programming Model
This section defines compiler and assembly language conventions for the use of certain
aspects of an x64 processor running a Win64 operating system. These standards must
be followed to guarantee that compilers, application programs, and operating systems
written by different people and organizations will work together. The conventions
supported by the Fortran compiler implement the application binary interface (ABI) as
defined in the AMD64 Software Conventions document.

4.1.1. Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame,
register usage, and parameter passing.

Register Usage Conventions

Table 13 defines the standard for register allocation. The 64-bit AMD64 and Intel 64
architectures provide a number of registers. All the general purpose registers, XMM
registers, and x87 registers are global to all procedures in a running program.

Runtime Environment

PVF Reference Guide Version 2017 | 95

Table 13 Register Allocation

Type Name Purpose

General %rax return value register

%rbx callee-saved

%rcx pass 1st argument to functions

%rdx pass 2nd argument to functions

%rsp stack pointer

%rbp callee-saved; optional stack frame pointer

%rsi callee-saved

%rdi callee-saved

%r8 pass 3rd argument to functions

%r9 pass 4th argument to functions

%r10-%r11 temporary registers; used in syscall/sysret instructions

%r12-r15 callee-saved registers

XMM %xmm0 pass 1st floating point argument; return value register

%xmm1 pass 2nd floating point argument

%xmm2 pass 3rd floating point argument

%xmm3 pass 4th floating point argument

%xmm4-%xmm5 temporary registers

%xmm6-%xmm15 callee-saved registers

In addition to the registers, each function has a frame on the run-time stack. This stack
grows downward from high addresses. Table 14 shows the stack frame organization.

Table 14 Standard Stack Frame

Position Contents Frame

8n-120 (%rbp) argument eightbyte n previous

. . .

-80 (%rbp) argument eightbyte 5

-88 (%rbp) %r9 home

-96 (%rbp) %r8 home

Runtime Environment

PVF Reference Guide Version 2017 | 96

Position Contents Frame

-104 (%rbp) %rdx home

-112 (%rbp) %rcx home

-120 (%rbp) return address current

-128 (%rbp) caller's %rbp

. . .

0 (%rsp) variable size

Key points concerning the stack frame:

‣ The parameter area at the bottom of the stack must contain enough space to hold
all the parameters needed by any function call. Space must be set aside for the
four register parameters to be "homed" to the stack even if there are less than four
register parameters used in a given call.

‣ Sixteen-byte alignment of the stack is required except within a function’s prolog and
within leaf functions.

All registers on an x64 system are global and thus visible to both a calling and a called
function. Registers %rbx, %rsp, %rbp, %rsi, %rdi, %r12, %r13, %r14, and %r15 are non-
volatile. Therefore, a called function must preserve these registers’ values for its caller.
Remaining registers are scratch. If a calling function wants to preserve such a register
value across a function call, it must save a value in its local stack frame.

Registers are used in the standard calling sequence. The first four arguments are
passed in registers. Integral and pointer arguments are passed in these general purpose
registers (listed in order): %rcx, %rdx, %r8, %r9. Floating point arguments are passed in
the first four XMM registers: %xmm0, %xmm1, %xmm2, %xmm3. Registers are assigned
using the argument’s ordinal position in the argument list. For example, if a function’s
first argument is an integral type and its second argument is a floating-point type, the
first argument will be passed in the first general purpose register (%rcx) and the second
argument will be passed in the second XMM register (%xmm1); the first XMM register
and second general purpose register are ignored. Arguments after the first four are
passed on the stack.

Integral and pointer type return values are returned in %rax. Floating point return
values are returned in %xmm0.

Additional registers with assigned roles in the standard calling sequence:
%rsp

The stack pointer holds the limit of the current stack frame, which is the address
of the stack’s bottom-most, valid word. The stack pointer should point to a 16-byte
aligned area unless in the prolog or a leaf function.

Runtime Environment

PVF Reference Guide Version 2017 | 97

%rbp
The frame pointer, if used, can provide a way to reference the previous frames on the
stack. Details are implementation dependent. A function must preserve this register
value for its caller.

MXCSR
The flags register MXCSR contains the system flags, such as the direction flag and the
carry flag. The six status flags (MXCSR[0:5]) are volatile; the remainder of the register
is nonvolatile.

x87 - Floating Point Control Word (FPCSR)
The control word contains the floating-point flags, such as the rounding mode and
exception masking. This register is initialized at process initialization time and its
value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no
unusual restriction on their use of registers. Moreover, if a signal handling function
returns, the process resumes its original execution path with registers restored to their
original values. Thus, programs and compilers may freely use all registers without
danger of signal handlers changing their values.

4.1.2. Function Return Values

Functions Returning Scalars or No Value

‣ A function that returns an integral or pointer value that fits in 64 bits places its result
in %rax.

‣ A function that returns a floating point value that fits in the XMM registers returns
this value in %xmm0.

‣ A function that returns a value in memory via the stack places the address of this
memory (passed to the function as a "hidden" first argument in %rcx) in %rax.

‣ Functions that return no value (also called procedures or void functions) put no
particular value in any register.

‣ A call instruction pushes the address of the next instruction (the return address)
onto the stack. The return instruction pops the address off the stack and effectively
continues execution at the next instruction after the call instruction. A function
that returns a scalar or no value must preserve the caller's registers as previously
described. Further, the called function must remove the return address from
the stack, leaving the stack pointer (%rsp) with the value it had before the call
instruction was executed.

Functions Returning Structures or Unions

A function can use either registers or the stack to return a structure or union. The size
and type of the structure or union determine how it is returned. A structure or union

Runtime Environment

PVF Reference Guide Version 2017 | 98

is returned in memory if it is larger than 8 bytes or if its size is 3, 5, 6, or 7 bytes. A
structure or union is returned in %rax if its size is 1, 2, 4, or 8 bytes.

If a structure or union is to be returned in memory, the caller provides space for the
return value and passes its address to the function as a "hidden" first argument in %rcx.
This address will also be returned in %rax.

4.1.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register
of the sequence %rcx, %rdx, %r8, %r9. After this list of registers has been exhausted, all
remaining integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM
register of the sequence %xmm0, %xmm1, %xmm2, %xmm3. After this list of registers
has been exhausted, all remaining XMM floating-point arguments are passed to the
function via the stack.

Array, Structure, and Union Arguments

Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were
integers of the same size. Structures and unions of other sizes will be passed as a
pointer to a temporary, allocated by the caller, and whose value contains the value of the
argument. The caller-allocated temporary memory used for arguments of aggregate type
must be 16-byte aligned.

Passing Arguments on the Stack

Registers are assigned using the argument’s ordinal position in the argument list. For
example, if a function’s first argument is an integral type and its second argument is a
floating-point type, the first argument will be passed in the first general purpose register
(%rcx) and the second argument will be passed in the second XMM register (%xmm1);
the first XMM register and second general purpose register are ignored. Arguments after
the first four are passed on the stack; they are pushed on the stack in reverse order, with
the last argument pushed first.

Runtime Environment

PVF Reference Guide Version 2017 | 99

Parameter Passing

Table 15 shows the register allocation and stack frame offsets for the function declaration
and call shown in the following example.
typedef struct {
 int i; float f;
 }
 struct1; int i; float f; double d; long l; long long ll; struct1 s1;
 extern void
 func (int i, float f, struct1 s1, double d, long long ll, long l);
 func (i, f, s1, d, ll, l);

Table 15 Register Allocation for Example A-4

General Purpose Registers Floating Point Registers Stack Frame Offset

%rcx: i %xmm0: <ignored> 32: ll

%rdx: <ignored> %xmm1: f 40: l

%r8: s1.i, s1.f %xmm2: <ignored>

%r9: <ignored> %xmm3: d

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack
pointer, register %rsp, is set by the operating system for the application when the
program is started. The stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to
allocate space on the stack at run-time (e.g. alloca). Some languages can also return
values from a routine allocated on stack space below the original top-of-stack pointer.
Such a routine prevents the calling function from using %rsp-relative addressing to get
at values on the stack. If the compiler does not call routines that leave %rsp in an altered
state when they return, a frame pointer is not needed and is not used if the compiler
option -Mnoframe is specified.

The stack must always be 16-byte aligned except within the prolog and within leaf
functions.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C
language uses a special method to access variable-count parameters. The stdarg.h
and varargs.h files define several functions to access these parameters. A C routine
with variable parameters must use the va_start macro to set up a data structure before
the parameters can be used. The va_arg macro must be used to access the successive
parameters.

Runtime Environment

PVF Reference Guide Version 2017 | 100

For unprototyped functions or functions that use varargs, floating-point arguments
passed in registers must be passed in both an XMM register and its corresponding
general purpose register.

C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must
match the argument type in the calling function.

‣ If the called function is not prototyped, the calling convention uses the types of the
arguments but promotes char or short to int, and unsigned char or unsigned short to
unsigned int and promotes float to double, unless you use the -Msingle option.

For more information on the -Msingle option, refer to -M Options by Category.
‣ If the called function is prototyped, the unused bits of a register containing a char or

short parameter are undefined and the called function must extend the sign of the
unused bits when needed.

Calling Assembly Language Programs

C Program Calling an Assembly-language Routine
/* File: testmain.c */
main() {
 long l_para1 = 0x3f800000;
 float f_para2 = 1.0;
 double d_para3 = 0.5;
 float f_return;
 extern float sum_3 (long para1, float para2, double para3);
 f_return = sum_3(l_para1,f_para2, d_para3);
 printf("Parameter one, type long = %08x\n",l_para1);
 printf("Parameter two, type float = %f\n",f_para2);
 printf("Parameter three, type double = %g\n",d_para3);
 printf("The sum after conversion = %f\n",f_return);
}
File: sum_3.s
Computes (para1 + para2) + para3
 .text
 .align 16
 .globl sum_3
sum_3:
 pushq %rbp
 leaq 128(%rsp), %rbp
 cvtsi2ss %ecx, %xmm0
 addss %xmm1, %xmm0
 cvtss2sd %xmm0, %xmm0
 addsd %xmm2, %xmm0
 cvtsd2ss %xmm0, %xmm0
 popq %rbp
 ret
 .type sum_3,@function
 .size sum_3,.-sum_3

4.1.4. Win64 Fortran Supplement
Sections A3.4.1 through A3.4.4 of the AMD64 Software Conventions for Win64 define
the Fortran supplement. The register usage conventions set forth in that document
remain the same for Fortran.

Runtime Environment

PVF Reference Guide Version 2017 | 101

Fortran Fundamental Types

Table 16 Win64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

A logical constant is one of:

‣ .TRUE.
‣ .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte value 1 and 0
respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Runtime Environment

PVF Reference Guide Version 2017 | 102

Fortran Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common
blocks) are converted to lower-case. In addition, an underscore is appended to Fortran
global names to distinguish the Fortran name space from the C/C++ name space.

Fortran Argument Passing and Return Conventions

Arguments are passed by reference, meaning the address of the argument is passed
rather than the argument itself. In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument
representing the length of the CHARACTER argument is also passed to the function.
This length argument is a four-byte integer passed by value, and is passed at the end of
the parameter list following the other formal arguments. A length argument is passed
for each CHARACTER argument; the length arguments are passed in the same order as
their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area
created by the caller for the return value; the second additional argument is the length of
the return value. If a Fortran function is declared to return a character value of constant
length, for example CHARACTER*4 FUNCTION CHF(), the second extra parameter
representing the length of the return value must still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for
the return value and passes the address of this storage as if it were the first argument to
the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the
caller. The alternate return function passes the appropriate return value back to the caller
in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal
procedures, pointer arguments, assumed-shape arguments, functions returning arrays,
and functions returning derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine
parameters and return values match types. If a C/C++ function returns a value, call it
from Fortran as a function, otherwise, call it as a subroutine. If a Fortran function has
type CHARACTER or COMPLEX, call it from C/C++ as a void function. If a Fortran
subroutine has alternate returns, call it from C/C++ as a function returning int; the value
of such a subroutine is the value of the integer expression specified in the alternate
RETURN statement. If a Fortran subroutine does not contain alternate returns, call it
from C/C++ as a void function.

Runtime Environment

PVF Reference Guide Version 2017 | 103

Table 17 provides the C/C++ data type corresponding to each Fortran data type.

Table 17 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long long x 8

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long long x 8

The PGI Compiler User’s Guide contains a table that provides the Fortran and C/C++
representation of the COMPLEX type.

Table 18 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

float complex x; 8

complex*8 x struct {float r,i;} x; 8

float complex x; 8

double complex x struct {double dr,di;} x; 16

double complex x; 16

complex *16 x struct {double dr,di;} x; 16

Runtime Environment

PVF Reference Guide Version 2017 | 104

Fortran Type (lower case) C/C++ Type Size (bytes)

double complex x; 16

For C/C++, the complex type implies C99 or later.

Arrays

For a number of reasons inter-language function mixing is not recommended for arrays
other than single dimensional arrays and square two-dimensional arrays.

‣ C/C++ arrays and Fortran arrays use different default initial array index values. By
default, C/C++ arrays start at 0 and Fortran arrays start at 1. However, a Fortran
array can be declared to start at zero.

‣ Fortran and C/C++ arrays use different storage methods. Fortran uses column-major
order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows
and columns, row and column indexes can simply be reversed.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations
within a Fortran union, conform to the same alignment requirements used by C
structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose
members correspond to the members of the common block. The name of the structure in
C/C++ must have the added underscore. Here is an example.

Fortran common block:
 INTEGER I, J
 COMPLEX C
 DOUBLE COMPLEX CD
 DOUBLE PRECISION D
 COMMON /COM/ i, j, c, cd, d

C equivalent:
 extern struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
 } com_;

Runtime Environment

PVF Reference Guide Version 2017 | 105

C++ equivalent:
 extern "C" struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
 } com_;

The compiler-provided name of the BLANK COMMON block is implementation-specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as
straightforward as calling other types of Fortran functions. Additional arguments must
be passed to the Fortran function by the C/C++ caller. A Fortran COMPLEX function
returns its value in memory; the first argument passed to the function must contain
the address of the storage for this value. A Fortran CHARACTER function adds two
arguments to the beginning of its argument list. The following example of calling a
Fortran CHARACTER function from C/C++ illustrates these caller-provided extra
parameters:
CHARACTER*(*) FUNCTION CHF(C1, I)
CHARACTER*(*) C1
INTEGER I
 END

 extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied
as the length of c1.

PVF Reference Guide Version 2017 | 106

Chapter 5.
PVF PROPERTIES

There are a number of property pages that are available in a PVF project. These property
pages are grouped into categories that you can access from the Property Page dialog.
Further, each of PVF’s property pages contains one or more properties, or configuration
options. The set of categories and property pages available vary, depending on the type
of project.

The properties in a PVF project are divided into the following categories:

‣ General
‣ Debugging
‣ Fortran
‣ Linker

‣ Librarian
‣ Resources
‣ Build Events
‣ Custom Build Step

This section contains descriptions of each of PVF’s property pages, and detailed
descriptions of the properties, organized as you would see them in the Property Page
dialog: by category and property page.

Tip The Fortran, Linker, and Librarian categories contain a Command Line property
page where you can see the command line derived from the properties in that
category. Options that are not supported by the PVF property pages can be added to
the command line from this property page by entering them in the Additional Options
field.

5.1. General Property Page
This section contains the properties that are included on the General property page.

5.1.1. General

PVF Properties

PVF Reference Guide Version 2017 | 107

5.1.2. Output Directory
Use this property to specify a relative path to the output file directory. This directory is
where the project’s output files are built.

5.1.3. Intermediate Directory
Use this property to specify a relative path to the intermediate file directory. This
directory is where the intermediate files (i.e., object files) are created when the project is
built.

5.1.4. Extensions to Delete on Clean
Use this property to specify which files in the intermediate directory should be deleted
when the project is cleaned or before it is rebuilt. This property uses a semi-colon-
delimited wildcard specification for the files.

5.1.5. Configuration Type
Use this property to change the output type that the project produces.

When you create a project, you specify the type of output that the project produces:
executable, static library, or dynamic library. If you want to change the output type, use
this property to do so.

5.1.6. Build Log File
Use this property to specify the build log file that is produced when the project is built.

5.1.7. Build Log Level
Use this property to specify the level of detail to be included in the build log file.

Any setting above Default can produce large amounts of output and may potentially
slow down the building of your project.

5.2. Debugging Property Page
This section contains the properties that are included on the Debugging property page.

5.2.1. Debugging

5.2.2. Application Command
Use this property to specify the application to execute when you select Start Debugging
or Start Without Debugging from the Debug menu.

PVF Properties

PVF Reference Guide Version 2017 | 108

‣ If the Startup Project in your solution is a PVF project that builds an executable,
there is probably no need to change this property.

‣ If the Startup Project in your solution is a PVF project that builds a DLL or static
library, you must use the Command property to specify an application to execute
when you run (with or without debugging).

To use the PVF debug engine, the Startup Project must be a PVF project. If, for
example, your main executable is built by a Visual C++ project that links against
a PVF project, you would designate the PVF project as the Startup Project; and in
its Debugging | Application Command property, you would specify the path to the
executable built by the Visual C++ project.

Tip The Startup Project is the project listed in boldface in the solution explorer.
You can change the Startup Project by right-clicking on any project in the solution
explorer and selecting Set as Startup Project from the context menu.

5.2.3. Application Arguments
Use this property to pass command line arguments to the application when it is run or
debugged.

5.2.4. Environment
Use this property to specify any environment variables to set for the application when
it runs. One common use of this property is to augment the PATH environment variable.
For example, if the application requires DLLs to run but the general environment is
not set to find these, the path to these DLLs could be added to the PATH environment
variable.

For more information on PATH, refer to the PVF User's Guide, https://www.pgroup.com/
resources/docs.php.

If the Merge Environment property is set to Yes, then the contents of the Environment
property are merged with the existing environment when the application is run or
debugged.

5.2.5. Merge Environment
Use this property to merge the environment variables in the Environment property with
the existing environment when the application is run or debugged. To do this, set the
Merge Environment property to Yes.

5.2.6. Accelerator Profiling
Use this property to generate accelerator profiling information at runtime. To do this, set
the Accelerator Profiling property to Yes.

Setting this property to Yes sets the PGI_ACC_TIME environment variable to 1.

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php

PVF Properties

PVF Reference Guide Version 2017 | 109

5.2.7. MPI Debugging
Use this property to enable MPI debugging and select local MPI debugging.

The value selected for this property determines which properties are displayed
following it on the Debugging property page.

Important If you change the value of this property and the displayed properties do
not change, be sure to click Apply in the property page dialog box.

‣ When MPI Debugging is set to Disabled, the application is run or debugged in serial
mode.

‣ When MPI Debugging is set to Local, the application is run or debugged using
mpiexec. All processes launched are local to the system on which the application is
run.

5.2.8. Working Directory

[Serial]

Use this property to specify the application's working directory when it is run or
debugged serially. By default, the working directory is set to the solution directory.

This property is displayed when the MPI Debugging property is set to Disabled.

5.2.9. Number of Processes

[Local MPI]

Use this property to specify the number of MPI processes to use when the application is
run or debugged. The number of processes is passed to mpiexec using the -n option.

This property is displayed when the MPI Debugging property is set to Local.

5.2.10. Working Directory

[Local MPI]

Use this property to specify the application's working directory when it is run or
debugged using local MPI. By default, the working directory is set to the solution
directory.

This property is displayed when the MPI Debugging property is set to Local.

PVF Properties

PVF Reference Guide Version 2017 | 110

5.2.11. Additional Arguments: mpiexec

[Local MPI]

Use this property to specify additional arguments to be passed to mpiexec when the
application is run or debugged.

This property is displayed when the MPI Debugging property is set to Local.

5.2.12. Location of mpiexec

[Local MPI]

Use this property to override the default path to mpiexec as specified in the system
PATH variable.

This property is displayed when the MPI Debugging property is set to Local.

5.3. Fortran Property Pages
This section contains the property pages that are included in the Fortran category. This
category is further divided into the following property pages, displayed in the following
order:

‣ General
‣ Optimization
‣ Preprocessing
‣ Code Generation

‣ Language
‣ Floating Point Options
‣ External Procedures
‣ Target Processors

‣ Target Accelerators
‣ Diagnostics
‣ Profiling
‣ Command Line

The following sections describe the properties available on each property page.

5.4. Fortran | General
The following properties are available from the Fortran | General property page.

5.4.1. Display Startup Banner
Use this property to determine whether to display the compiler’s startup banner during
compilation.

Changing the property to Yes adds the -V switch to the compilation line, which causes
the compiler to display the startup banner during compilation.

For more information on -V, refer to -V[release_number].

PVF Properties

PVF Reference Guide Version 2017 | 111

5.4.2. Additional Include Directories
Use this property to add one or more directories to the compiler’s include path.

For every path that is added to this property, PVF adds -I<path> to the compilation
line.

There are two ways to add directories to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each directory.
‣ Click the ellipsis (‘...’) button in the property page box to open the Additional Include

Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

This property is also available from the Fortran | Preprocessing Property page.

5.4.3. Module Path
Use this property to specify the location of module (.mod) files.

For every directory that is added to this property, PVF adds -module <dir> to the
compilation line, causing the compiler to search each listed directory for modules during
compilation.

The first directory in the list is also the module output directory, which is where PVF
puts all module files created when the project is built.

There are two ways to add directories to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each path.
‣ Click the ellipsis (‘...’) button in the property page box to open the Module Path

dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
entries; the semi-colons are added automatically when the box is closed.

5.4.4. Object File Name
Use of this property depends on whether it is being applied to a file or a project:

‣ File level: Use this property to set the name of the object file. Setting the name adds
the -o switch to the compilation line.

For more information on -o, refer to -o.

PVF Properties

PVF Reference Guide Version 2017 | 112

‣ Project level: Use this property to set the location of the object files created by a
build.

To change the default location for the object files, specify a different directory name
for this property.

You must append a backslash (\) to the directory path or the value of this
property will be interpreted as a file.

5.4.5. Debug Information Format
Use this property to specify whether the compiler should generate debug information
and if so, in what format.

‣ The richest debugging experience is obtained when this option is set to "Full Debug
Information (-g).’

‣ If you are debugging a project built with optimizations, you may want to select
"Full Debug Information with Full Optimization (-gopt)." This selection prevents the
generation of debug information from affecting optimizations.

For more information on -g, refer to -g. For more information on -gopt, refer to -gopt.

5.4.6. Optimization
Use this property to select the overall code optimization.

This property can be set to one of the following values:

‣ No Optimization - the default value for Debug configurations.
‣ Maximize Speed - the default value for Release Configurations.
‣ Maximize Speed Across the Whole Program

This property is also available from the Fortran | Optimization Property page.

5.5. Fortran | Optimization
The following properties are available from the Fortran | Optimization property page.

5.5.1. Optimization
Use this property to select the overall code optimization.

This property can be set to one of the following values:

‣ No Optimization - the default value for Debug configurations.
‣ Maximize Speed - the default value for Release Configurations.

PVF Properties

PVF Reference Guide Version 2017 | 113

‣ Maximize Speed Across the Whole Program

This property is also available from the Fortran | General Property page.

5.5.2. Global Optimizations
Use this property to set the compiler’s global optimization level.

Setting this property adds one of the -O options to the compilation line.

For more information on -O, refer to -O<level>.

5.5.3. Vectorization
Use this property to specify the type of vectorization to perform.

The PVF compilers use the -Mvect options to vectorize code that is vectorizable. Select
the appropriate vectorization from these options:

‣ Default: Accepts the default vectorization.
‣ Enable Vectorization: Enables vectorization by adding the -Mvect switch to the

PVF compilation and link lines.
‣ Vectorize using SSE instructions: Enables vectorization using SSE instructions by

adding the -Mvect=sse switch to the PVF compilation line.
‣ Vectorize using SIMD instructions: Enables vectorization using SIMD instructions

and data, by adding the -Mvect=simd switch to the PVF compilation line.
‣ Vectorize using 128-bit SIMD instructions: Enables vectorization using SIMD 128-

bit instructions and data, by adding the -Mvect=simd:128 switch to the PVF
compilation line.

‣ Vectorize using 256-bit SIMD instructions: Enables vectorization using SIMD 256-
bit instructions and data, by adding the -Mvect=simd:256 switch to the PVF
compilation line.

For more information on -Mvect, refer to Optimization Controls.

5.5.4. Inlining
Use this property to enable inlining of certain subprograms.

Setting this property to Yes adds the -Minline switch to the compilation command
line.

For more information on -Minline, refer to -Minline[=option[,option,...]].

5.5.5. Use Frame Pointer
Use this property to specify whether to generate code that uses a frame pointer.

Setting this property to Yes adds the -Mframe switch to the compilation command line
and PVF compilers generate code that uses a frame pointer.

PVF Properties

PVF Reference Guide Version 2017 | 114

Setting this property to No, the default, adds the -Mnoframe switch to the compilation
command line and PVF compilers generate code that does not use frame pointers.

For more information on -Mframe, refer to Optimization Controls.

5.5.6. Loop Unroll Count
Use this property to select the appropriate value for unrolling.

Loop unrolling is a common optimization. This property allows you to specify unrolling
by two or four. Using this option adds the -Munroll option to the compilation line.

For more information on -Munroll, refer to Optimization Controls.

5.5.7. Auto-Parallelization
Use this property to auto-parallelize code that is parallelizable. Using this option adds
the -Mconcur option to the compilation line.

For more information on -Mconcur, refer to Optimization Controls.

5.6. Fortran | Preprocessing
The following properties are available from the Fortran | Preprocessing Property page.

5.6.1. Preprocess Source File
Use this property to specify whether the compiler should preprocess source files.

Setting this property to Yes adds the -Mpreprocess switch to the compilation
command line.

For more information on -Mpreprocess, refer to Miscellaneous Controls.

5.6.2. Additional Include Directories
Use this property to add one or more directories to the compiler’s include path.

For every path that is added to this property, PVF adds -I<path> to the compilation
line.

There are two ways to add directories to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each directory.
‣ Click the ellipsis (‘...’) button in the property page box to open the Additional Include

Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

PVF Properties

PVF Reference Guide Version 2017 | 115

For more information on -I<path>, refer to -I.

This property is also available from the Fortran | General Property page.

5.6.3. Ignore Standard Include Path
Use this property to specify whether the preprocessor should ignore the standard
include path.

Setting this property to Yes adds the -Mnostdinc switch to the compilation command
line.

For more information on -Mnostdinc, refer to Environment Controls.

5.6.4. Preprocessor Definitions
Use this property to add one or more preprocessor definitions to compilation.

For every definition that is added to this property, PVF adds -D<definition> to the
compilation line.

There are two ways to add definitions to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each definition.

For example, DEF1;DEF2=2 defines DEF1, and defines DEF2 and initializes it to 2.
‣ Click the ellipsis (‘...’) button in the property page box to open the Preprocessor

Definitions dialog box.

Enter each definition on its own line in this box. Do not use semi-colons to separate
definitions; the semi-colons are added automatically when the box is closed.

For more information on -D<definition>, refer to -D.

5.6.5. Undefine Preprocessor Definitions
Use this property to undefine one or more preprocessor definitions.

For every definition that is added to this property, PVF adds -U<definition> to the
compilation line.

There are two ways to add definitions to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each definition.

For example, DEF1;DEF2 undefines DEF1 and DEF2.
‣ Click the ellipsis (‘...’) button in the property page box to open the Undefine

Preprocessor Definitions dialog box.

Enter each definition on its own line in this box. Do not use semi-colons to separate
definitions; the semi-colons are added automatically when the box is closed.

PVF Properties

PVF Reference Guide Version 2017 | 116

For more information on -U<definition>, refer to -U.

5.7. Fortran | Code Generation
The following properties are available from the Fortran | Code Generation property
page.

5.7.1. Runtime Library
Use this property to specify the type of runtime libraries to use during linking.

Default: Depends on the project:

‣ For executable and static library projects: multi-threaded static libraries.

Using this option adds the -Bstatic option to the compilation line. This choice
corresponds to Microsoft’s /MT compilation option.

For more information on -Bstatic, refer to -Bstatic.
‣ For dynamic-link library projects: multi-threaded DLL libraries.

Using this option adds the -Bdynamic option to the compilation line. This choice
corresponds to Microsoft’s /MD compilation option.

For more information on -Bdynamic, refer to -Bdynamic.

It is important to keep the type of runtime libraries consistent within a solution. PVF
projects that build DLLs should link to the multi-threaded DLL runtime, and projects
that link to these PVF DLLs should also use the multi-threaded DLL runtime.

5.8. Fortran | Language
The following properties are available from the Fortran | Language property page.

5.8.1. Fortran Dialect
Use this property to select the Fortran dialect to use during compilation.

PVF supports two Fortran language dialects: Fortran 95 and FORTRAN 77. The dialect
determines which PGI compiler driver is used during compilation.

‣ Default: The dialect is set to Fortran 95, even for fixed-format .f files, and the
pgfortran driver is used.

‣ Fortran 77: Use the pgf77 driver. You can select the FORTRAN 77 dialect at the
project or file level.

5.8.2. Treat Backslash as Character
Use this property to specify how the compilers should treat the backslash (\) character.

PVF Properties

PVF Reference Guide Version 2017 | 117

Default: PVF treats the backslash (\) as a regular character.

This default action is equivalent to adding the -Mbackslash switch to compilation.

If you want the backslash character to be treated as an escape character, which is how C
and C++ compilers handle backslashes, set this property to No.

For more information on -Mbackslash, refer to Fortran Language Controls.

5.8.3. Extend Line Length
Use this property to extend the line length for fixed-format Fortran files to 132
characters.

Fixed-format Fortran files limit the accepted line length to 72 characters. To extend the
line length for these types of files to 132 characters, set this property to Yes, which adds
the -Mextend switch to the PVF compilation line.

For more information on -Mextend, refer to Fortran Language Controls.

5.8.4. Enable OpenMP Directives
Use this property to enable OpenMP 3.0 directives.

Setting this property to Yes adds the -mp switch to the PVF compilation and link lines.

For more information on -mp, refer to -mp.

5.8.5. Enable OpenACC Directives
Use this property to enable OpenACC directives.

Setting this property to Yes adds the -acc switch to the PVF compilation and link lines
and activates access to these additional properties:

OpenACC Autoparallelization
OpenACC Required
OpenACC Routineseq
OpenACC Wait
OpenACC Conformance Level
OpenACC Sync

For more information on -acc, refer to -acc.

5.8.6. OpenACC Autoparallelization
When Enable OpenACC Directives is set to Yes, use this property to control loop
autoparallelization within acc parallel.

‣ Default: Allows the compiler to control loop autoparallelization within acc parallel.
This selection adds no additional sub-options to -acc.

‣ Yes: Directs the compiler to enable loop autoparallelization within an OpenACC
parallel region (-acc=autopar).

PVF Properties

PVF Reference Guide Version 2017 | 118

‣ No: Directs the compiler to disable loop autoparallelization within an OpenAcc
parallel region (-acc=noautopar).

5.8.7. OpenACC Required
When Enable OpenACC Directives is set to Yes, use this property to control the
compiler’s behavior when it is unable to accelerate a compute region.

‣ Default: Use the compiler defaults for handling instances where compute regions
cannot be accelerated. This selection adds no additional sub-options to -acc.

‣ Yes: Directs the compiler to stop compilation with an error when it cannot accelerate
a compute region (-acc=required).

‣ No: Directs the compiler to issue warnings when it cannot accelerate a compute
region; compilation does not stop but accelerator kernels are not generated (-
acc=norequired).

5.8.8. OpenACC Routineseq
When Enable OpenACC Directives is set to Yes, use this property to compile every
routine for the device.

‣ Default: Uses compiler defaults handling compile every routine for the device. This
selection adds no additional sub-options to -acc.

‣ Yes: Enables compiling every routine for the device by adding -acc=routineseq
switch to the PVF compilation and link lines.

‣ No: Disables compiling every routine for the device by adding -
acc=noroutineseq switch to the PVF compilation and link lines.

5.8.9. OpenACC Wait
When Enable OpenACC Directives is set to Yes, use this property to wait for each
device kernel to finish.

‣ Default: Uses compiler defaults handling wait for each device kernel to finish. This
selection adds no additional sub-options to -acc.

‣ Yes: Enables wait for each device kernel to finish by adding -acc=wait switch to
the PVF compilation and link lines.

‣ No: Disables wait for each device kernel to finish by adding -acc=nowait switch
to the PVF compilation and link lines.

5.8.10. OpenACC Conformance Level
When Enable OpenACC Directives is set to Yes, use this property to leverage the
compiler’s detection of extensions to standard OpenACC directives.

‣ Default: When non-OpenACC accelerator directives are found, they are ignored..
‣ Strict: Add -acc=strict to the PVF compilation and link lines. The compiler emits

a warning when a non-OpenACC accelerator directive is found.
‣ Very Strict: Add -acc=strict to the PVF compilation and link lines. The compiler

stops with an error when a non-OpenACC accelerator directive is found.

PVF Properties

PVF Reference Guide Version 2017 | 119

5.8.11. OpenACC Sync
When Enable OpenACC Directives is set to Yes, use this property to ignore async
clauses.

Setting this property to Yes adds the -acc=sync switch to the PVF compilation and
link lines.

5.8.12. MPI
Use this property to enable compilation and linking using the Microsoft MPI headers
and libraries.

Setting this property to Microsoft MPI adds the -Mmpi=msmpi switch to the PVF
compilation and link lines.

5.8.13. Enable CUDA Fortran
Use this property to enable CUDA Fortran.

Setting this property to Yes adds the -Mcuda switch to the PVF compilation and link
lines and activates access to these additional properties:

CUDA Fortran Register Limit
CUDA Fortran Use Fused Multiply-Adds
CUDA Fortran Use Fast Math Library
CUDA Fortran Debug
CUDA Fortran Line Information
CUDA Fortran Use LLVM Back End
CUDA Fortran Unroll
CUDA Fortran Flush to Zero
CUDA Fortran Toolkit
CUDA Fortran Compute Capability
CUDA Fortran Keep Binary
CUDA Fortran Keep Kernel Source
CUDA Fortran Keep PTX
CUDA Fortran Keep PTXAS
CUDA Fortran Generate RDC
CUDA Fortran Emulation
CUDA Fortran Madconst

Important If you select Yes and the additional properties do not appear, click Apply
in the Property page dialog.

For more information on -Mcuda, refer to Optimization Controls.

PVF Properties

PVF Reference Guide Version 2017 | 120

5.8.14. CUDA Fortran Register Limit
When Enable CUDA Fortran is set to Yes, use this property to specify the number of
registers to use on the GPU.

Setting this property to an integer value, n, adds the -Mcuda=maxregcount:n switch
to the PVF compilation and link lines.

Leaving this property blank indicates no limit to the number of registers to use on the
GPU.

For more information on -Mcuda, refer to Optimization Controls.

5.8.15. CUDA Fortran Use Fused Multiply-Adds
When Enable CUDA Fortran is set to Yes, use this property to control the generation of
fused multiply-add (FMA) instructions.

‣ Default: Allows the compiler to control generation of FMA instructions. This
selection adds no additional sub-options to -Mcuda.

‣ Yes: Enables generation of FMA instructions by adding -Mcuda=fma switch to the
PVF compilation and link lines.

‣ No: Disables generation of FMA instructions by adding -Mcuda=nofma switch to
the PVF compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.16. CUDA Fortran Use Fast Math Library
When Enable CUDA Fortran is set to Yes, use this property to use routines from the fast
math library.

Setting this property to Yes adds the -Mcuda=fastmath switch to compilation and
linking.

For more information on -Mcuda, refer to Optimization Controls.

5.8.17. CUDA Fortran Debug
When Enable CUDA Fortran is set to Yes, use this property to control generatation of
GPU debug information.

‣ Default: Allows the compiler to control generatation of GPU debug information.
This selection adds no additional sub-options to -Mcuda.

‣ Yes: Enables generatation of GPU debug information by adding the -Mcuda=debug
switch to the PVF compilation and link lines.

‣ No: Disables generatation of GPU debug information by adding the
-Mcuda=nodebug switch to the PVF compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

PVF Properties

PVF Reference Guide Version 2017 | 121

5.8.18. CUDA Fortran Line Information
When Enable CUDA Fortran is set to Yes, use this property to control generatation of
GPU line information.

‣ Default: Allows the compiler to control generatation of GPU line information. This
selection adds no additional sub-options to -Mcuda.

‣ Yes: Enables generatation of GPU line information by adding the
-Mcuda=lineinfo switch to the PVF compilation and link lines.

‣ No: Disables generatation of GPU line information by adding the
-Mcuda=nolineinfo switch to the PVF compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.19. CUDA Fortran Use LLVM Back End
When Enable CUDA Fortran is set to Yes, use this property to control using LLVM back
end.

‣ Default: Allows the compiler to control using LLVM back end. This selection adds
no additional sub-options to -Mcuda.

‣ Yes: Use LLVM back end by adding the -Mcuda=llvm switch to the PVF
compilation and link lines.

‣ No: Use CUDA C back end by adding the -Mcuda=nollvm switch to the PVF
compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.20. CUDA Fortran Unroll
When Enable CUDA Fortran is set to Yes, use this property to control automatic inner
loop unrolling.

‣ Default: Allows the compiler to control automatic inner loop unrolling. This
selection adds no additional sub-options to -Mcuda.

‣ Yes: Enables automatic inner loop unrolling by adding the -Mcuda=unroll switch
to the PVF compilation and link lines.

‣ No: Disables automatic inner loop unrolling by adding the -Mcuda=nounroll
switch to the PVF compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.21. CUDA Fortran Flush to Zero
When Enable CUDA Fortran is set to Yes, use this property to control flush-to-zero
mode for floating point computations on in GPU code generated for CUDA Fortran
kernels.

‣ Default: Accepts the default handling of floating point computations in the GPU
code generated for CUDA Fortran kernels.

PVF Properties

PVF Reference Guide Version 2017 | 122

‣ Yes: Enables flush-to-zero mode by adding the -Mcuda=flushz switch to the PVF
compilation and link lines.

‣ No: Disables flush-to-zero mode by adding the -Mcuda=noflushz switch to the
PVF compilation and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.22. CUDA Fortran Toolkit
When Enable CUDA Fortran is set to Yes, use this property to specify the version of the
CUDA toolkit that is targeted by the compilers.

‣ Default: The compiler selects the default CUDA toolkit version.
‣ 7.5: Use the default version 7.5 of the CUDA toolkit. This selection adds the

-Mcuda=cuda7.5 switch to the PVF compilation and link lines.
‣ 8.0: Use version 8.0 of the CUDA toolkit. This selection adds the -Mcuda=cuda8.0

switch to the PVF compilation and link lines.

pgaccelinfo prints the driver version as the first line of output.

For a 7.5 driver: CUDA Driver Version 7050
For a 8.0 driver: CUDA Driver Version 8000

For more information on -Mcuda, refer to Fortran Language Controls.

5.8.23. CUDA Fortran Compute Capability
When Enable CUDA Fortran is set to Yes, use this property to either automatically
generate code compatible with all applicable compute capabilities, or to direct the
compiler to use a manually-selected set.

Select either Automatic or Manual.

‣ Automatic: Let the compiler generate code for all applicable compute capabilities.
This is the default.

‣ Manual: Choose one or more compute capabilities to target. The compiler generates
code for each capability specified.

If you select Manual, then you can select any or all of the following compute
capabilities that are described in the next sections.

CUDA Fortran Fermi
CUDA Fortran Fermi+
CUDA Fortran Kepler
CUDA Fortran Kepler+

Important If you select Manual and the additional properties do not appear, click
Apply in the Property page dialog.

For more information on -Mcuda, refer to Optimization Controls.

PVF Properties

PVF Reference Guide Version 2017 | 123

5.8.24. CUDA Fortran Fermi
When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set
to Manual, use this property to generate code for the Fermi architecture.

Setting this property to Yes adds the -Mcuda=fermi switch to the PVF compilation
and link lines.

5.8.25. CUDA Fortran Fermi+
When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set
to Manual, use this property to generate code for Fermi architecture and above.

Setting this property to Yes adds the -Mcuda=fermi+ switch to the PVF compilation
and link lines.

5.8.26. CUDA Fortran Kepler
When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set
to Manual, use this property to generate code for the Kepler architecture.

Setting this property to Yes adds the -Mcuda=kepler switch to the PVF compilation
and link lines.

5.8.27. CUDA Fortran Kepler+
When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set
to Manual, use this property to generate code for Kepler architecture and above.

Setting this property to Yes adds the -Mcuda=kepler+ switch to the PVF compilation
and link lines.

5.8.28. CUDA Fortran Keep Binary
Use this property to keep the CUDA binary (.bin) file.

Setting this property to Yes adds the -Mcuda=keepbin switch to the PVF compilation
and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.29. CUDA Fortran Keep Kernel Source
When Enable CUDA Fortran is set to Yes, use this property to keep the kernel source
files.

Setting this property to Yes adds the -Mcuda=keepgpu switch to the PVF compilation
and link lines.

For more information on -Mcuda, refer to Optimization Controls.

PVF Properties

PVF Reference Guide Version 2017 | 124

5.8.30. CUDA Fortran Keep PTX
When Enable CUDA Fortran is set to Yes, use this property to keep the portable
assembly (.ptx) file for the GPU code.

Setting this property to Yes adds the -Mcuda=keepptx switch to the PVF compilation
and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.31. CUDA Fortran Keep PTXAS
Use this property to show PTXAS informational messages during compilation.

Setting this property to Yes adds the -Mcuda=ptxinfo switch to the PVF compilation
and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.32. CUDA Fortran Generate RDC
Use this property to generate relocatable device code (-Mcuda=rdc).

Setting this property to Yes adds the -Mcuda=rdc switch to the PVF compilation and
link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.33. CUDA Fortran Emulation
When Enable CUDA Fortran is set to Yes, use this property to enable CUDA Fortran
emulation mode.

Setting this property to Yes adds the -Mcuda=emu switch to the PVF compilation and
link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.34. CUDA Fortran Madconst
When Enable CUDA Fortran is set to Yes, use this property to control putting module
array descriptors in CUDA constant memory.

Setting this property to Yes adds the -Mcuda=madconst switch to the PVF compilation
and link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.9. Fortran | Floating Point Options
The following properties are available from the Fortran | Floating Point Options
property page.

PVF Properties

PVF Reference Guide Version 2017 | 125

5.9.1. Floating Point Exception Handling
Use this property to enable floating point exceptions.

Setting this property to Yes adds the -Ktrap=fp option to compilation.

For more information on -Ktrap, refer to -K<flag>.

5.9.2. Floating Point Consistency
Use this property to enable relaxed floating point accuracy in favor of speed.

Setting this property to Yes adds the -Mfprelaxed option to compilation.

For more information on -Mfprelaxed, refer to Optimization Controls.

5.9.3. Flush Denormalized Results to Zero
Use this property to specify how to handle denormalized floating point results.

‣ Default: Accepts the default handling of denormalized floating point results.
‣ Yes: Enables SSE flush-to-zero mode using the -Mflushz compilation option.
‣ No: Disables SSE flush-to-zero mode using the -Mnoflushz compilation option.

For more information on -M[no]flushz, refer to Code Generation Controls.

5.9.4. Treat Denormalized Values as Zero
Use this property to specify how to treat denormalized floating point values.

‣ Default: Accept the default treatment of denormalized floating point values.
‣ Yes: Enable the treatment of denormalized floating point values as zero using the

-Mdaz compilation option.
‣ No: Disable the treatment of denormalized floating point values as zero using the

-Mnodaz compilation option.

For more information on -M[no]daz, refer to Code Generation Controls.

5.9.5. IEEE Arithmetic
Use this option to specify IEEE floating point arithmetic.

‣ Default: Accept the default floating point arithmetic.
‣ Yes: Enable IEEE floating point arithmetic using the -Kieee compilation option.
‣ No: Disable IEEE floating point arithmetic using the -Knoieee compilation option.

For more information on -K[no]ieee, refer to -K<flag>.

PVF Properties

PVF Reference Guide Version 2017 | 126

5.10. Fortran | External Procedures
The following properties are available from the Fortran | External Procedures property
page.

5.10.1. Calling Convention
Use this property to specify an alternate Fortran calling convention.

‣ Default: Accept the default calling convention.
‣ C By Reference: Use the CREF calling convention. Adds -Miface=cref to

compilation. On x64 platforms, no trailing underscores are used with this option and
this option also causes Fortran externals to be uppercase and lengths of character
arguments to be put at the end of the argument list.

For more information on -Miface, refer to Miscellaneous Controls.

5.10.2. String Length Arguments
Use this property to change where string length arguments are placed in the argument
list.

‣ Default: Use the calling convention's default placement for passing string length
arguments.

‣ After Every String Argument: Lengths of character arguments are
placed immediately after their corresponding argument. This option adds
-Miface=mixed_str_len_arg to compilation.

‣ After All Arguments: Places lengths of character arguments at the end of the
argument list. This option adds -Miface=nomixed_str_len_arg to the
compilation.

The After Every String Argument and After All Arguments options only have an effect
when using the C By Reference calling convention.

For more information on -Miface, refer to Miscellaneous Controls.

5.10.3. Case of External Names
Use this property to specify the case used for Fortran external names.

‣ Default: Use the calling convention's default case for external names.
‣ Lower Case: Make Fortran external names lower case. This option adds

-Mnames=lowercase to the compilation.

PVF Properties

PVF Reference Guide Version 2017 | 127

‣ Upper Case: Make Fortran external names upper case. This option adds
-Mnames=uppercase to the compilation.

The Lower Case and Upper Case options only have an effect when using the C By
Reference calling convention.

5.11. Fortran | Libraries
The Fortran | Libraries property page contains properties that make it easier to use
third-party libraries. To use these libraries, however, the appropriate binaries, such as
.lib and .dll files, must be installed on your system.

5.11.1. Use MKL
Use this property to build for and link against the Intel Math Kernel Library (MKL),
which is available from Intel.

‣ Yes: Use the Intel Math Kernel Library when building and linking programs.
‣ No: Do not use the Intel Math Kernel Library when building and linking programs.

5.12. Fortran | Target Processors
The properties that are available from the Fortran | Target Processors property page
depend on the platform you are using. The platform selection box in the center of the
Property Pages dialog indicates the platform: x64.

x64 Platform
You can target multiple processors for optimization on the x64 platform.

The Target Processors properties add the -tp=<target> option to compilation. For
more information on the -tp switch referenced throughout the following descriptions,
refer to -tp [k8-64].

5.12.1. AMD Athlon
Use this property to optimize for AMD Athlon64, AMD Opteron and compatible
processors.

x64: Setting this property to Yes adds the -tp=k8-64 switch to compilation.

5.12.2. AMD Barcelona
Use this property to optimize for AMD Opteron/Quadcore and compatible processors.

x64: Setting this property to Yes adds the -tp=barcelona-64 switch to compilation.

PVF Properties

PVF Reference Guide Version 2017 | 128

5.12.3. AMD Bulldozer
Use this property to optimize for AMD Bulldozer and compatible processors.

x64: Setting this property to Yes adds the -tp=bulldozer-64 switch to compilation.

5.12.4. AMD Istanbul
Use this property to optimize for AMD Istanbul processor-based systems.

x64: Setting this property to Yes adds the -tp=istanbul-64 switch to compilation.

5.12.5. AMD Piledriver
Use this property to optimize for AMD Piledriver processor-based systems.

x64: Setting this property to Yes adds the -tp=piledriver-64 switch to compilation.

5.12.6. AMD Shanghai
Use this property to optimize for AMD Shanghai processor-based systems.

x64: Setting this property to Yes adds the -tp=shanghai-64 switch to compilation.

5.12.7. Intel Core 2
Use this property to optimize for Intel Core 2 Duo and compatible processors.

x64: Setting this property to Yes adds the -tp=core2-64 switch to compilation.

5.12.8. Intel Core i7
Use this property to optimize for Intel Core i7 (Nehalem) processor-based systems.

x64: Setting this property to Yes adds the -tp=nehalem-64 switch to compilation.

5.12.9. Intel Penryn
Use this property to optimize for Intel Penryn architecture and compatible processors.

x64: Setting this property to Yes adds the -tp=penryn-64 switch to compilation.

5.12.10. Intel Pentium 4
Use this property to optimize for Intel Pentium 4 and compatible processors.

5.12.11. Intel Sandy Bridge
Use this property to optimize for Intel Sandy Bridge architecture and compatible
processors.

PVF Properties

PVF Reference Guide Version 2017 | 129

x64: Setting this property to Yes adds the -tp=sandybridge-64 switch to
compilation.

5.12.12. Generic x86-64 [x64 only]
Use this property to optimize for any x86-64 processor-based system.

x64: Setting this property to Yes adds the -tp=px-64 switch to compilation.

5.13. Fortran | Target Accelerators
The following properties are available from the Fortran | Target Accelerators property
page.

For more information about the PGI’s accelerator compilers or on the options in this
section, refer to the PVF User's Guide, https://www.pgroup.com/resources/docs.php.

5.13.1. Target NVIDIA Tesla
Use this property to select NVIDIA Tesla targets.

Setting this property to Yes adds the -ta=tesla switch to the PVF compilation and
link lines and activates access to these additional properties:

Tesla Register Limit
Tesla Use Fused Multiply-Adds
Tesla Use Fast Math Library
Tesla LLVM
Tesla Noattach
Tesla Pin Host Memory
Tesla Autocollapse
Tesla Debug
Tesla Lineinfo
Tesla Unroll
Tesla Required
Tesla Flush to Zero
Tesla CUDA Toolkit
Tesla Compute Capability
Tesla: Keep Kernel Files

Important If you change the value of this property and the displayed properties do
not change, be sure to click Apply in the property page dialog box.

5.13.2. Tesla Register Limit
Use this property to specify the number of registers to use on the GPU.

https://www.pgroup.com/resources/docs.php

PVF Properties

PVF Reference Guide Version 2017 | 130

Setting this property to an integer value, n, adds the -ta=tesla:maxregcount:n
switch to the PVF compilation and link lines.

Leaving this property blank indicates no limit to the number of registers to use on the
GPU.

5.13.3. Tesla Use Fused Multiply-Adds
When Target NVIDIA Tesla is set to Yes, use this property to control the generation of
fused multiply-add (FMA) instructions.

‣ Default: Allows the compiler to control generation of FMA instructions. This
selection adds no additional sub-options to -ta=tesla.

‣ Yes: Enables generation of FMA instructions by adding -ta=tesla:fma to the PVF
compilation and link lines.

‣ No: Disables generation of FMA instructions by adding -ta=tesla:nofma to the
PVF compilation and link lines.

5.13.4. Tesla Use Fast Math Library
When Target NVIDIA Tesla is set to Yes, use this property to use routines from the fast
math library.

Setting this property to Yes adds the -ta=tesla:fastmath switch to the PVF
compilation and link lines.

5.13.5. Tesla LLVM
When Target NVIDIA Tesla is set to Yes, use this property to control using of LLVM
back end.

Setting this property to Yes adds the -ta=tesla:llvm switch to the PVF compilation
and link lines.

5.13.6. Tesla Noattach
When Target NVIDIA Tesla is set to Yes, use this property to prevent attaching to
existing CUDA context.

Setting this property to Yes adds the -ta=tesla:noattach switch to the PVF
compilation and link lines.

5.13.7. Tesla Pin Host Memory
When Target NVIDIA Tesla is set to Yes, use this property to set default to pin host
memory.

Setting this property to Yes adds the -ta=tesla:pin switch to the PVF compilation
and link lines.

PVF Properties

PVF Reference Guide Version 2017 | 131

5.13.8. Tesla Autocollapse
When Target NVIDIA Tesla is set to Yes, use this property to automatically collapse
tightly nested loops.

‣ Default: Allows the compiler to control automatic collapse of tightly nested loops.
This select adds no additional sub-options to -ta=tesla.

‣ Yes: Enables automatic collapse of tightly nested loops by adding the
-ta=tesla:autocollapse switch to the PVF compilation and link lines.

‣ No: Disables automatic collapse of tightly nested loops by adding the
-ta=tesla:noautocollapse switch to the PVF compilation and link lines.

5.13.9. Tesla Debug
When Target NVIDIA Tesla is set to Yes, use this property to control generation of GPU
debug information.

‣ Default: Allows the compiler to control generation of GPU debug information. This
select adds no additional sub-options to -ta=tesla.

‣ Yes: Enables generation of GPU debug information by adding the
-ta=tesla:debug switch to the PVF compilation and link lines.

‣ No: Disables generation of GPU debug information by adding the
-ta=tesla:nodebug switch to the PVF compilation and link lines.

5.13.10. Tesla Lineinfo
When Target NVIDIA Tesla is set to Yes, use this property to control generation of GPU
line information.

‣ Default: Allows the compiler to control generation of GPU line information. This
select adds no additional sub-options to -ta=tesla.

‣ Yes: Enables generation of GPU line information by adding the
-ta=tesla:lineinfo switch to the PVF compilation and link lines.

‣ No: Disables generation of GPU line information by adding the
-ta=tesla:nolineinfo switch to the PVF compilation and link lines.

5.13.11. Tesla Unroll
When Target NVIDIA Tesla is set to Yes, use this property to control automatic inner
loop unrolling.

‣ Default: Allows the compiler to control automatic inner loop unrolling. This select
adds no additional sub-options to -ta=tesla.

‣ Yes: Enables automatic inner loop unrolling by adding the -ta=tesla:unroll
switch to the PVF compilation and link lines.

‣ No: Disables automatic inner loop unrolling by adding the -ta=tesla:nounroll
switch to the PVF compilation and link lines.

PVF Properties

PVF Reference Guide Version 2017 | 132

5.13.12. Tesla Required
When Target NVIDIA Tesla is set to Yes, use this property to direct the compiler to issue
error if the compute regions fail to accelerate.

‣ Default: Uses the compiler defaults for handling instances where compute regions
cannot be accelerated. This select adds no additional sub-options to -ta=tesla.

‣ Yes: Directs the compiler to stop compilation with an error when it cannot accelerate
a compute region by adding the -ta=tesla:required switch to the PVF
compilation and link lines.

‣ No: Directs the compiler to issue warnings when it cannot accelerate a compute
region by adding the -ta=tesla:norequired switch to the PVF compilation and
link lines. Compilation does not stop but accelerator kernels are not generated.

5.13.13. Tesla Flush to Zero
When Target NVIDIA Tesla is set to Yes, use this property to control flush-to-zero mode
for floating point computations in the GPU code generated for PGI Accelerator model
compute regions.

‣ Default: Accepts the default handling of floating point computations in the GPU
code generated for CUDA Fortran kernels.

‣ Yes: Enables flush-to-zero mode by adding the -ta=tesla:flushz switch to the
PVF compilation and link lines.

‣ No: Disables flush-to-zero mode by adding the -ta=tesla:noflushz switch to
the PVF compilation and link lines.

5.13.14. Tesla Generate RDC
When Target NVIDIA Tesla is set to Yes, use this property to control generation of
relocatable device code.

‣ Default: Accepts the compiler’s default generation of relocatable device code.
‣ Yes: Directs the compiler to generate relocatable device code by adding

-ta=tesla:rdc switch to the PVF compilation and link lines.
‣ No: Prevents the compiler from generating relocatable device code by adding

-ta=tesla:nordc switch to the PVF compilation and link lines.

5.13.15. Tesla CUDA Toolkit
When Target NVIDIA Tesla is set to Yes, use this property to specify the version of the
NVIDIA CUDA toolkit that is targeted by the compilers:

‣ Default: The compiler selects the default CUDA toolkit version.
‣ 7.5: Use the default version 7.5 of the CUDA toolkit. This selection adds the

-ta=tesla:cuda7.5 switch to the PVF compilation and link lines.

PVF Properties

PVF Reference Guide Version 2017 | 133

‣ 8.0: Use version 8.0 of the CUDA toolkit. This selection adds the
-ta=tesla:cuda8.0 switch to the PVF compilation and link lines.

pgaccelinfo prints the driver version as the first line of output.

For a 7.5 driver: CUDA Driver Version 7050
For an 8.0 driver: CUDA Driver Version 8000

5.13.16. Tesla Compute Capability
When Target NVIDIA Tesla is set to Yes, use this property to either automatically
generate code compatible with all applicable compute capabilities, or to direct the
compiler to use a manually-selected set.

Select either Automatic or Manual.

‣ Automatic: Let the compiler generate code for all applicable compute capabilities.
This is the default.

‣ Manual: Choose one or more compute capabilities to target. The compiler generates
code for each capability specified.

If you select Manual, then you can select any or all of the following compute
capabilities that are described in the next sections.

Tesla CC Fermi
Tesla CC Fermi+
Tesla CC Kepler
Tesla CC Kepler+

Important If you select Manual and the additional properties do not appear, click
Apply in the Property page dialog.

5.13.17. Tesla CC Fermi
When Target NVIDIA Tesla is set to Yes and Tesla Compute Capability is set to Manual,
use this property to generate code for the Fermi Architecture.

Setting this property to Yes adds the -ta=tesla:fermi switch to the PVF compilation
and link lines.

5.13.18. Tesla CC Fermi+
When Target NVIDIA Tesla is set to Yes and Tesla Compute Capability is set to Manual,
use this property to generate code for Fermi Architecture and above.

Setting this property to Yes adds the -ta=tesla:fermi+ switch to the PVF
compilation and link lines.

PVF Properties

PVF Reference Guide Version 2017 | 134

5.13.19. Tesla CC Kepler
When Target NVIDIA Tesla is set to Yes and Tesla Compute Capability is set to Manual,
use this property to generate code for Kepler Architecture.

Setting this property to Yes adds the -ta=tesla:kepler switch to the PVF
compilation and link lines.

5.13.20. Tesla CC Kepler+
When Target NVIDIA Tesla is set to Yes and Tesla Compute Capability is set to Manual,
use this property to generate code for Kepler Architecture and above

Setting this property to Yes adds the -ta=tesla:cc30 switch to the PVF compilation
and link lines.

5.13.21. Tesla: Keep Kernel Files
When Target NVIDIA Tesla is set to Yes, use this property to keep kernel files.

Setting this property to Yes adds the -ta=tesla:keep switch to the PVF compilation
and link lines.

5.14. Fortran | Diagnostics
The following properties are available from the Fortran | Diagnostics property page.
These properties allow you to add switches to the compilation line that control the
amount and type of information that the compiler provides.

For more information on the options referenced in these pages, refer to Miscellaneous
Controls and specifically to the -Minfo option.

5.14.1. Warning Level
Use this property to select the level of diagnostic reporting you want the compiler to use.

There are several levels of the -Minform option available through this property. For
more information on this option, refer to Miscellaneous Controls.

5.14.2. Generate Assembly
Use this property to generate an assembly file for each compiled source file.

Setting this property to Yes adds the -Mkeepasm switch to the compilation line.

For more information on -Mkeepasm, refer to Miscellaneous Controls.

PVF Properties

PVF Reference Guide Version 2017 | 135

5.14.3. Annotate Assembly
Use this property to generate assembly files and to annotate the assembly with source
code.

Setting this property to Yes adds the -Manno switch to the compilation line.

For more information on -Manno, refer to Miscellaneous Controls.

5.14.4. Accelerator Information
Use this property to generate information about accelerator regions.

Setting this property to Yes adds the -Minfo=accel switch to the compilation line.

5.14.5. CCFF Information
Use this property to append common compiler feedback format (CCFF) information to
object files.

Setting this property to Yes adds the -Minfo=ccff switch to the compilation line.

5.14.6. Fortran Language Information
Use this property to generate information about Fortran language features.

Setting this property to Yes adds the -Minfo=ftn switch to the compilation line.

5.14.7. Inlining Information
Use this property to generate information about inlining.

Setting this property to Yes adds the -Minfo=inline switch to the compilation line.

5.14.8. IPA Information
Use this property to generate information about interprocedural analysis (IPA)
optimizations.

Setting this property to Yes adds the -Minfo=ipa switch to the compilation line.

5.14.9. Loop Intensity Information
Use this property to generate compute intensity information about loops.

Setting this property to Yes adds the -Minfo=intensity switch to the compilation
line.

5.14.10. Loop Optimization Information
Use this property to generate information about loop optimizations.

PVF Properties

PVF Reference Guide Version 2017 | 136

Setting this property to Yes adds the -Minfo=loop switch to the compilation line.

5.14.11. LRE Information
Use this property to generate information about loop-carried redundancy (LRE)
elimination.

Setting this property to Yes adds the -Minfo=lre switch to the compilation line.

5.14.12. OpenMP Information
Use this property to generate information about OpenMP.

Setting this property to Yes adds the -Minfo=mp switch to the compilation line.

5.14.13. Optimization Information
Use this property to generate information about general optimizations.

Setting this property to Yes adds the -Minfo=opt switch to the compilation line.

5.14.14. Parallelization Information
Use this property to generate information about parallel optimizations.

Setting this property to Yes adds the -Minfo=par switch to the compilation line.

5.14.15. Unified Binary Information
Use this property to generate information specific to the PGI Unified Binary.

Setting this property to Yes adds the -Minfo=unified switch to the compilation line.

5.14.16. Vectorization Information
Use this property to generate vectorization information.

Setting this property to Yes adds the -Minfo=vect switch to the compilation line.

5.15. Fortran | Profiling
The following properties are available from the Fortran | Profiling property page. These
properties allow you to add switches to the compilation line that control the information
that the compiler provides.

For more information on the options referenced in these pages, refer to Miscellaneous
Controls and specifically to the -Mprof option.

5.15.1. Suppress CCFF Information
Use this property to suppress profiling's default generation of CCFF information.

PVF Properties

PVF Reference Guide Version 2017 | 137

Setting this property to Yes adds the -Mprof=noccff switch to the compiling and
linking lines.

5.15.2. Enable Limited DWARF
Use this property to generate limited DWARF information which can be used with
performance profilers.

Setting this property to Yes adds the -Mprof=dwarf switch to the compiling and
linking lines.

5.16. Fortran | Runtime
The following properties are available from the Fortran | Runtime property page to
allow the application to make additional checks at runtime.

5.16.1. Check Array Bounds
Use this property to enable array bounds checking at runtime.

Setting this property to Yes adds the -Mbounds switch to the compilation line.

Setting this property to No adds no option to the compilation line, and there is no array
bounds checking at runtime. No is the default.

5.16.2. Check Pointers
Use this property to perform runtime checks for pointers that are dereferenced while
initialized to null.

Setting this property to Yes adds the -Mchkptr switch to the compilation line.

Setting this property to No adds no option to the compilation line, and there is no
runtime check for pointers that are dereferenced while initialized to null. No is the
default.

5.16.3. Check Stack
Use this property to perform runtime stack checks for available space in the prologue of
a function and before the start of a parallel region.

Setting this property to Yes adds the -Mchkstk switch to the compilation line.

Setting this property to No adds no option to the compilation line, and there are no
runtime stack checks. No is the default.

5.16.4. Command Line
This property page contains two boxes.

PVF Properties

PVF Reference Guide Version 2017 | 138

‣ The first box, titled All options, is a read-only description of what the compilation
line will be. This description is based on the values of the properties set in the
Fortran property pages.

‣ The second box, titled Additional options, allows you to specify any other options
that you want the compiler to use. Use this box when the option you need is not
available through any of the Fortran property pages.

For more information on all the compiler options that are available, refer to
Command-Line Options Reference.

5.17. Fortran | Command Line
The following properties are available from the Fortran | Command Line property page.

5.17.1. Command Line
This property page contains two boxes.

‣ The first box, titled All options, is a read-only description of what the compilation
line will be. This description is based on the values of the properties set in the
Fortran property pages.

‣ The second box, titled Additional options, allows you to specify any other options
that you want the compiler to use. Use this box when the option you need is not
available through any of the Fortran property pages.

For more information on all the compiler options that are available, refer to
Command-Line Options Reference.

5.18. Linker Property Pages
This section contains the property pages that are included in the Linker category. The
Linker property page category is available for projects that build an executable or a
dynamically linked library (DLL).

5.19. Linker | General
The following properties are available from the Linker | General property page.

5.19.1. Output File
Use this property to override the default output file name.

Providing the file name and the file’s extension is equivalent to using the -o switch.

You must provide the file’s extension.

For more information on -o, refer to -o.

PVF Properties

PVF Reference Guide Version 2017 | 139

5.19.2. Additional Library Directories
Use this property to add one or more directories to the library search path.

For every directory path that is added to this property, PVF adds /LIBPATH:[dir] to
the link line.

There are two ways to add directories to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each directory.
‣ Click the ellipsis (‘...’) button in the property page box to open the Additional Library

Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

Tip To add directories, use this property. To add libraries, use the Additional
Dependencies property on the Linker | Input Property page.

5.19.3. Stack Reserve Size
Use this property to specify the total number of bytes for stack allocation in virtual
memory. Use decimal notation. This property is equivalent to the -stack=reserve
option. Leave this property blank to direct the linker to choose a default size for the
stack.

5.19.4. Stack Commit Size
Use this property to specify the total number of bytes for stack allocation in
physical memory. Use decimal notation. This property is equivalent to the
-stack=reserve,commit option. Commit Size is used only if a size is also specified for
Stack Reserve.

5.19.5. Export Symbols
Use this property to specify whether the DLL will export symbols. This property is only
visible for DLL project types.

5.20. Linker | Input
The following properties are available from the Linker | Input property page.

5.20.1. Additional Dependencies
Use this property to specify additional dependencies, such as libraries, to the link line.

There are two ways to add libraries to this property:

PVF Properties

PVF Reference Guide Version 2017 | 140

‣ Type the information directly into the property page box.

Use spaces, not semi-colons, to separate multiple libraries. If the name of a
library contains a space, use double quotes around that library name.

‣ Click the ellipsis (‘...’) button in the property page box to open the Additional
Dependencies dialog box.

Enter each library on its own line in this box.

If you enter two libraries on the same line in this box, PVF interprets these as a
single library whose name contains spaces.

Tip When you close this dialog box, review the contents of the property to make sure
that any spaces or double quotes automatically added by PVF are appropriate for your
project.

5.21. Linker | Command Line
The following properties are available from the Linker | Command Line property page.

5.21.1. Command Line
This property page contains two boxes.

‣ The first box, titled All options, is a read-only description of what the link line will be.
This value is based on the values of the properties set in the Linker property pages.

‣ The second box, titled Additional options allows you to specify options that you want
the linker to use. Use this box when the option you need is not available through any
of the Linker property pages.

For more information on all the compiler options that are available, refer to
Command-Line Options Reference.

5.22. Librarian Property Pages
This section contains the property pages that are included in the Librarian category. The
Librarian property pages are available for projects that build static libraries.

5.23. Librarian | General
The following properties are available from the Librarian | General property page.

5.23.1. Output File
Use this property to override the default output file name.

PVF Properties

PVF Reference Guide Version 2017 | 141

Providing the file name and the file’s extension is equivalent to using the -o switch.

You must provide the file’s extension.

For more information on -o, refer to -o.

5.23.2. Additional Library Directories
Use this property to add one or more directories to the library search path.

For every directory path that is added to this property, PVF adds /LIBPATH:<dir> to
the link line.

There are two ways to add directories to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each directory.
‣ Click the ellipsis (‘...’) button in the property page box to open the Additional Library

Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

Tip To add directories, use this property. To add libraries, use the Additional
Dependencies property.

5.23.3. Additional Dependencies
Use this property to specify additional dependencies, such as libraries, to the link line.

There are two ways to add libraries to this property:

‣ Type the information directly into the property page box.

Use spaces, not semi-colons, to separate multiple libraries. If the name of a
library contains a space, use double quotes around that library name.

‣ Click the ellipsis (‘...’) button in the property page box to open the Additional
Dependencies dialog box.

Enter each library on its own line in this box.

If you enter two libraries on the same line in this box, PVF interprets these as a
single library whose name contains spaces.

Tip When you close this dialog box, review the contents of the property to make sure
that any spaces or double quotes automatically added by PVF are appropriate for your
project.

PVF Properties

PVF Reference Guide Version 2017 | 142

5.24. Librarian | Command Line
The following properties are available from the Librarian | Command Line property
page.

5.24.1. Command Line
This property page contains two boxes.

‣ The first box, titled All options, is a read-only description of what the link line will
be. This value is based on the values of the properties set in the Librarian property
pages.

‣ The second box, titled Additional options, allows you to specify options that you want
the librarian to use, even though these options are not available through any of the
Librarian property pages.

For more information on all the compiler options that are available, refer to
Command-Line Options Reference.

5.25. Resources Property Page
This section contains the property pages that are included in the Resources category.

5.26. Resources | Command Line
The following properties are available from the Resources | Command Line property
page.

5.26.1. Command Line
Use this property to add options to the Resource compiler’s command line.

PVF’s support of resources is somewhat limited at this time and the property pages in
this category reflect that. To add options to the Resource compiler’s command line, use
the Additional options box on this property page.

5.27. Build Events Property Page
This section contains the property pages that are included in the Build Events category.
Build events include three types of events: Pre-Build, Pre-Link, and Post-Build.

The Build Events property pages provide an opportunity to specify actions, in addition
to compiling and linking, that you want to have happen during the process of a build.

PVF Properties

PVF Reference Guide Version 2017 | 143

5.27.1. Build Event
The name of the build event describes when the event will be fired.

‣ The Pre-Build Event is run before a build starts.
‣ The Pre-Link Event is run after compilation but before linking.
‣ The Post-Build Event is run after the build completes.

Build events will not be run if a project is up-to-date.

The properties for a build event are the same for all three types of build events.

5.27.2. Command Line
Use this property to specify the command line that the build tool will run.

This property is at the core of the build event. For example, to add a time stamp to a
build, you could use time /t as the build event’s command line.

5.27.3. Description
Use this property to provide feedback to the Output window. The contents of the
Description property is echoed to the Output window when this event is fired.

5.27.4. Excluded From Build
Use this property to specify whether this build event should be excluded from the build
for the current configuration.

5.28. Custom Build Step Property Page
This section contains the property pages that are included in the Custom Build Step
category.

You can define a custom build step either for a project or for an individual file. Custom
build steps can only be defined for files that are not Fortran or resource files.

5.28.1. Custom Build Step | General
The following properties are available from the Custom Build Step | General property
page.

5.28.2. Command Line
Use this property to specify the command line that the build tool will run. This property
is at the core of the custom build step.

PVF Properties

PVF Reference Guide Version 2017 | 144

5.28.3. Description
Use this property to provide feedback to the Output window. The contents of the
Description property is echoed to the Output window when the custom build step runs.

5.28.4. Outputs
Use this property to specify the files generated by the custom build step.

Use semi-colons (‘;’) to separate multiple output files.

When a custom build step is specified at the file-level, this property must be non-
empty or the custom build step will be skipped.

5.28.5. Additional Dependencies
Use this property to specify any additional input files to use for the custom build.

The custom build step is run when an additional dependency is out of date.

There are two ways to add files to this property:

‣ Type the information directly into the property page box.

Use a semi-colon (‘;’) to separate each directory.
‣ Click the ellipsis (‘...’) button in the property page box to open the Additional

Dependencies dialog box.

Enter each file on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

PVF Reference Guide Version 2017 | 145

Chapter 6.
PVF BUILD MACROS

PVF implements a subset of the build macros supported by Visual C++ along with a few
PVF-specific macros. The macro names are not case-sensitive, and they should be usable
in any string field in a property page. Unless otherwise noted, macros that evaluate to
directory names end with a trailing backslash ('\').

In general these items can only be changed if there is an associated PVF project or file
property. For example, $(VCInstallDir) cannot be changed, while $(IntDir) can
be changed by modifying the General | Intermediate Directory property.

Table 19 lists the build macros that PVF supports:

Table 19 PVF Build Macros

Macro Name Description

$(Configuration) The name of the current project configuration (for example, "Debug").

$(ConfigurationName) The name of the current project configuration (for example, "Debug").

$(ConfigurationType) The type of the current project configuration - one of the following:

‘Application’
‘StaticLibrary’
‘DynamicLibrary’

$(DevEnvDir) The installation directory of Visual Studio.

$(InputDir) The directory of the input file. If the project is the input, then this macro is
equivalent to $(ProjectDir).

$(InputExt) The file extension of the input file, including the ‘.’ before the file
extension. If the project is the input, then this macro is equivalent to
$(ProjectExt).

$(InputFileName) The file name of the input file. If the project is the input, then this macro
is equivalent to $(ProjectFileName).

$(InputName) The base name of the input file. If the project is the input, then this macro
is equivalent to $(ProjectName).

$(InputPath) The full path name of the input file. If the project is the input, then this
macro is equivalent to $(ProjectPath).

PVF Build Macros

PVF Reference Guide Version 2017 | 146

Macro Name Description

$(IntDir) The path to the directory for intermediate files, relative to the project
directory, as set by the Intermediate Directory property.

$(OpenToolsDir) [PVF only]. The location of the Open Tools installation directory, including
files needed for building Microsoft Windows applications for 64-bit
environments.

$(OutDir) The path to the directory for output files, relative to the project directory,
as set by the Output Directory property.

$(OutputPath) The path to the directory for output files, relative to the project directory,
as set by the Output Directory property.

$(OutputType) The type of the current project output - one of the following:

‘exe’
‘staticlibrary’
‘library’

$(PGIToolsDir) [PVF only]. The location of the active PGI toolset for 64-bit targets.
This directory is the parent of bin, lib, and include directories
containing executables, libraries, and include files for the PGI development
environment.

$(Platform) The name of the current project platform (for example, "x64").

$(PlatformArchitecture) The name of the current project platform architecture.

For x64: 64

$(PlatformName) The name of the current project platform (for example, "x64").

$(PlatformShortName) The description of the architecture ABI for the current project platform.

For x64: amd64

$(ProjectDir) The directory of the project.

$(ProjectExt) The file extension of the project file, including the ‘.’ before the file
extension.

$(ProjectFileName) The file name of the project file.

$(ProjectName) The base name of the project.

$(ProjectPath) The full path name of the project.

$(SolutionDir) The directory of the solution.

$(SolutionExt) The file extension of the solution file, including the ‘.’ before the file
extension.

$(SolutionFileName) The file name of the solution file.

$(SolutionName) The base name of the solution.

$(SolutionPath) The full path name of the solution.

$(TargetDir) The directory of the primary output file of the build.

$(TargetExt) The file extension of the primary output file of the build, including the ‘.’
before the file extension.

$(TargetFileName) The file name of the primary output file of the build.

PVF Build Macros

PVF Reference Guide Version 2017 | 147

Macro Name Description

$(TargetPath) The full path name of the primary output file of the build.

$(VCInstallDir) The Visual C++ installation directory. If Visual C++ is not installed, this
macro may evaluate to a directory that does not exist.

$(VSInstallDir) The Visual Studio installation directory.

$(WinSDKDir) [PVF only] The location of the Windows SDK installation directory, including
files needed for building Microsoft Windows applications for 64-bit
environments.

PVF Reference Guide Version 2017 | 148

Chapter 7.
FORTRAN MODULE/LIBRARY
INTERFACES FOR WINDOWS

PGI Visual Fortran provides access to a number of libraries that export C interfaces by
using Fortran modules. PVF uses this mechanism to support the Win32 API and Unix/
Linux portability libraries. This section describes the Fortran module library interfaces
that PVF supports, describing each property available.

7.1. Source Files
All routines described in this section have their prototypes and interfaces described in
source files that are included in the PGI Windows compiler installation. The location of
these files depends on your operating system version and the PGI release version that
you have installed. These files are typically located in this directory:

C:/Program Files/PGI/win64/[release_version]/src

For example, if you have installed the x64 version of the 17.7 release, look for your files
in this location:

C:/Program Files/PGI/win64/17.7/src

7.2. Data Types
Because the Win32 API and Portability interfaces resolve to C language libraries, it is
important to understand how the data types compare within the two languages. Here is
a table summarizing how C types correspond with Fortran types for some of the more
common data types:

Table 20 Fortran Data Type Mappings

Windows Data Type Fortran Data Type

BOOL LOGICAL(4)

BYTE BYTE

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 149

Windows Data Type Fortran Data Type

CHAR CHARACTER

SHORT, WORD INTEGER(2)

DWORD, INT, LONG INTEGER(4)

LONG LONG INTEGER(8)

FLOAT REAL(4)

DOUBLE REAL(8)

x64 Pointers INTEGER(8)

For more information on data types, refer to Fortran Data Types.

7.3. Using DFLIB, LIBM, and DFPORT
PVF includes Fortran module interfaces to libraries supporting some standard C
library, C math library, and Unix/Linux system call functionality. These functions are
provided by the DFLIB, LIBM, and DFPORT modules. To utilize these modules, add the
appropriate USE statement:
use dflib

use libm

use dfport

7.3.1. DFLIB
Table 21 lists the functions that DFLIB includes. In the table [Generic] refers to a
generic routine. To view the prototype and interfaces, look in the location described in
Source Files.

Table 21 DFLIB Function Summary

Routine Result Description

commitqq LOGICAL*4 Executes any pending write operations for the file associated with
the specified unit to the file’s physical device.

delfilesqq INTEGER*4 Deletes the specified files in a specified directory.

findfileqq INTEGER*4 Searches for a file in the directories specified in the PATH
environment variable.

fullpathqq INTEGER*4 Returns the full path for a specified file or directory.

getdat INTEGER*2,*4,*8 [Generic] Returns the date.

getdrivedirqq INTEGER*4 Returns the current drive and directory path.

getenvqq INTEGER*4 Returns a value from the current environment.

getfileinfoqq INTEGER*4 Returns information about files with names that match the
specified string.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 150

Routine Result Description

getfileinfoqqi8 INTEGER*4 Returns information about files with names that match the
specified string.

gettim INTEGER*2,*4,*8 [Generic] Returns the time.

makedirqq INTEGER*4 Creates a new directory.

packtimeqq INTEGER*4 Packs the time and date values for use by setfiletimeqq

renamefileqq LOGICAL*4 Renames the specified file.

runqq INTEGER*2 Calls another program and waits for it to execute.

setenvqq LOGICAL*4 Sets the values of an existing environment variable or adds a new
one.

setfileaccessqq LOGICAL*4 Sets the file access mode for the specified file.

setfiletimeqq LOGICAL*4 Sets the modification time for the specified file.

signalqq INTEGER*8 Controls signal handling.

sleepqq None Delays execution of the program for a specified time.

splitpathqq LOGICAL*4 Breaks a full path into components.

systemqq LOGICAL*4 Executes a command by passing a command string to the
operating system’s command interpreter.

unpacktimeqq Multiple
INTEGERS

Unpacks a file’s packed time and date value into its component
parts.

7.3.2. LIBM
A Fortran module called libm is available to declare interfaces to many of the routines
in the standard C math library.Table 22 lists the LIBM routines that are available. To view
the prototype and interfaces, look in the location described in Source Files.

Some libm routine names conflict with Fortran intrinsics. These routines are not listed
in this table because they resolve to Fortran intrinsics.

asin acos atan2 cos cosh

exp log log10 sin sinh

sqrt tan tanh

You can also use libm routines in CUDA Fortran global and device subprograms, in
CUF kernels, and in OpenACC compute regions. When targeting NVIDIA devices, the
libm routines translate to the corresponding libm device routine.

Table 22 LIBM Functions

acosf erfc frexp log1p remquo

acosh erff frexpf log1pf remquof

acoshf erfcf ilog log2 rint

asinf expf ilogbf log2f rintf

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 151

asinh exp10 ldexp logb scalbn

asinhf exp10f ldexpf logbf scalbnf

atan2f exp2 lgamma logf scalbln

atanh exp2f lgammaf modf scalblnf

atanhf expf llrint modff sinf

cbrt expm1 llrintf nearbyint sinhf

cbrtf expm1f lrint nearbyintf sqrtf

ceil floor lrint nextafter tanf

ceilf floorf llround nextafterf tanhf

copysign fma llroundf pow tgamma

copysignf fmaf lround powf tgammaf

cosf fmax lroundf remainder trunc

coshf fmaxf log10f remainderf truncf

erf fminf

7.3.3. DFPORT
Table 23 lists the functions that DFPORT includes. In the table [Generic] refers to a
generic routine. To view the prototype and interfaces, look in the location described in
Source Files.

Table 23 DFPORT Functions

Routine Result Description

abort None Immediately terminates the program. If the operating system
supports a core dump, abort produces one that can be used
for debugging.

access INTEGER*4 Determines access mode or existence of a file.

alarm INTEGER*4 Executes a routine after a specified time.

besj0 REAL*4 Computes the BESSEL function of the first kind of order 0 of X,
where X is real.

besj1 REAL*4 Computes the BESSEL function of the first kind of order 1 of X,
where X is real.

besjn REAL*4 Computes the BESSEL function of the first kind of order N of X,
where N is an integer and X is real.

besy0 REAL*4 Computes the BESSEL function of the second kind of order 0 of
X, where X is real.

besy1 REAL*4 Computes the BESSEL function of the second kind of order 1 of
X, where X is real.

besyn REAL*4 Computes the BESSEL function of the second kind of order N of
X, where N is an integer and X is real.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 152

Routine Result Description

chdir INTEGER*4 Changes the current directory to the directory specified.
Returns 0 if successful.

chmod INTEGER*4 Changes the mode of a file by setting the access permissions
of the specified file to the specified mode. Returns 0 if
successful.

ctime STRING(24) Converts and returns the specified time and date as a string.

date STRING Returns the date as a character string: dd-mm-yy.

dbesj0 REAL*8 Computes the double-precision BESSEL function of the first
kind of order 0 of X, where X is a double-precision argument.

dbesj1 REAL*8 Computes the double-precision BESSEL function of the first
kind of order 1 of X, where X is a double-precision argument.

dbesjn REAL*8 Computes the double-precision BESSEL function of the first
kind of order N of X, where N is an integer and X is a double-
precision argument.

dbesy0 REAL*8 Computes the double-precision BESSEL function of the second
kind of order 0 of X, where X, where X is a double-precision
argument.

dbesy1 REAL*8 Computes the double-precision BESSEL function of the second
kind of order 1 of X, where X, where X is a double-precision
argument.

dbesyn REAL*8 Computes the double-precision BESSEL function of the second
kind of order N of X, where N is an integer and X, where X is a
double-precision argument.

derf REAL*8 Computes the double-precision error function of X, where X is
a double-precision argument.

derfc REAL*8 Computes the complementary double-precision error function
of X, where X is a double-precision argument.

dffrac REAL*8 Returns fractional accuracy of a REAL*8 floating-point value.

dflmax REAL*8 Returns the maximum positive REAL*8 floating-point value.

dflmin REAL*8 Returns the minimum positive REAL*8 floating-point value.

drandm REAL*8 Generates a REAL*8 random number.

dsecnds REAL*8 Returns the number of real time seconds since midnight minus
the supplied argument value.

dtime REAL*4 Returns the elapsed user and system time in seconds since the
last call to dtime.

erf REAL*4 Computes the error function of X, where X is Real.

erfc REAL Computes the complementary error function of X, where X is
Real.

etime REAL*4 Returns the elapsed time in seconds since the start of program
execution.

exit None Immediately terminates the program and passes a status to
the parent process.

fdate STRING Returns the current date and time as an ASCII string.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 153

Routine Result Description

ffrac REAL*4 Returns the fractional accuracy of a REAL*4 floating-point
value.

fgetc INTEGER*4 Gets a character or word from an input stream. Returns the
next byte or and integer

flmax REAL*4 Returns the maximum positive REAL*4 lue.

flush None Writes the output to a logical unit.

fputc INTEGER*4 Writes a character or word from an input stream to a logical
unit. Returns 0 if successful or an error.

free None Frees memory previously allocated by MALLOC(). Intended for
users compiling legacy code. Use DEALLOCATE for newer code.

fseek INTEGER*4 Repositions the file pointer associated with the specified file.
Returns 0 if successful, 1 otherwise.

fseek64 INTEGER*4 Repositions the file pointer associated with the specified
stream. Returns 0 if successful, 1 otherwise.

fstat INTEGER*4 Returns file status information about the referenced open file
or shared memory object.

fstat64 INTEGER*4 Returns information in a 64-bit structure about the referenced
open file or shared memory object.

ftell INTEGER*4 Returns the current value of the file pointer associated with
the specified stream.

ftell64 INTEGER*8 Returns the current value of the file pointer associated with
the specified stream.

gerror STRING Writes system error messages.

getarg STRING Returns the list of parameters that were passed to the current
process when it was started.

getc INTEGER*4 Retrieves the character at the front of the specified character
list, or -1 if empty

getcwd INTEGER*4 Retrieves the pathname of the current working directory or
null if fails.

getenv Returns the value of the specified environment variable(s).

getfd INTEGER*4 Returns the file descriptor associated with a Fortran logical
unit.

getgid INTEGER*4 Returns the numerical group ID of the curreni process.

getlog STRING Stores the user’s login name in NAME. If the login name is not
found, then NAME is filled with blanks.

getpid INTEGER*4 Returns the process numerical identifier of the current
process.

getuid INTEGER*4 Returns the numerical user ID of the current process.

gmtime INTEGER*4 Converts and returns the date and time formats to GM
(Greenwich) time as month, day, and so on.

iargc INTEGER*4 Returns an integer representing the number of arguments for
the last program entered on the command line.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 154

Routine Result Description

idate INTEGER*4 Returns the date in numerical form, day, month, year.

ierrno INTEGER*4 Returns the system error number for the last error.

inmax INTEGER*4 Returns the maximum positive integer value.

ioinit None Establishes the properties of file I/O for files opened after the
call to ioinit, such as whether to recognize carriage control,
how to treat blanks and zeros, and whether to open files at
the beginning or end of the file.

irand1 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irand2 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irandm INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

isatty LOGICAL Finds the name of a terminal port. Returns TRUE if the
specified unit is a terminal.

itime numerical form
of time

Fills and returns TARRAY with numerical values at the current
local time, with elements 1,2,and 3 of TARRY being the hour
(1-24), minute (1-60) and seconds (1-60).

kill INTEGER*4 Sends the specified signal to the specified process or group of
processes. Returns 0 if successful, -1 otherwise

link INTEGER*4 Creates an additional directory entry for the specified existing
file.

lnblnk INTEGER*4 Returns the position of the last non-blank string character in
the specified string.

loc INTEGER*4 Returns the address of an object.

long INTEGER*4 Converts INTEGER*2 to INTEGER*4

lstat INTEGER*4 Obtains information about the referenced open file or
shared memory object in a large-file enables programming
environment.

lstat64 INTEGER*4 Obtains information in a 64-bit structure about the referenced
open file or shared memory object in a large-file enables
programming environment.

ltime Array of
INTEGER*4

Converts the system time from seconds into TARRAY, which
contains GMT for the current local time zone.

malloc INTEGER*8 Allocates SIZE byes of dynamic memory, returning the address
of the allocated memory. Intended for users compiling legacy
code. Use ALLOCATE for newer code.

mclock INTEGER*4 Returns time accounting information about the current
process and its child processes in 1/100 or second units
of measure. The returned value is the sum of the current
process’s user time and system time of all child processes.

outstr INTEGER*4 Outputs the value of the specified character to the standard
output file.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 155

Routine Result Description

perror None Writes a message to standard error output that describes the
last error encountered by a system call or library subroutine.

putc INTEGER*4 Puts the specified character at the end of the character list.

putenv INTEGER*4 Sets the value of the specified environment variable or
creates a new environment variable.

qsort INTEGER*4 Uses quick-sort algorithm to sort a table of data.

rand1 REAL*4 Provides a method for generating a random number that can
be used as the starting point for the rand procedure.

rand2 REAL*4 Provides a random value between 0 and 1, which is generated
using the specified seed value, and computed for each
returned row when used in the select list.

random REAL*4 Uses a non-linear additive feedback random-number generator
to return pseudo-random numbers in the range of 0 to (231-1)

rename INTEGER*4 Renames the specified directory or file

rindex INTEGER*4 Returns the index of the last occurrence of a specific string of
characters in a specified string.

rtc REAL*8 Returns the real-time clock value expressed as a number of
clock ticks.

secnds REAL*4 Gets the time in seconds from the real-time system clock. If
the value is zero, the time in seconds from midnight is used.

short INTEGER*2 Converts INTEGER*4 to INTEGER*2.

signal INTEGER*4 Specifies the action to take upon delivery of a signal.

sleep None Puts the calling kernel thread to sleep, requiring it to wait
for a wakeup to be issued to continue to run. Provided for
compatibility with older code and should not be used with
new code.

srand1 None Sets the seed for the pseudo-random number generation that
rand1 provides.

srand2 None Sets the seed for the pseudo-random number generation that
rand2 provides.

stat INTEGER*4 Obtains information about the specified file.

stat64 INTEGER*4 Obtains information in a 64-bit structure about the specified
file.

stime INTEGER*4 Sets the current value of the specified parameter for the
system-wide timer.

symlnk INTEGER*4 Creates a symbolic link with the specified name to the
specified file.

system INTEGER*4 Runs a shell command.

time INTEGER*4 Returns the time in seconds since January 1, 1970.

timef REAL*8 Returns the elapsed time in milliseconds since the first call to
timef.

times INTEGER*4 Fills the specified structure with time-accounting information.

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 156

Routine Result Description

ttynam STRING(100) Either gets the path name of the terminal or determines if the
device is a terminal.

unlink INTEGER*4 Removes the specified directory entry, and decreases the link
count of the file referenced by the link.

wait INTEGER*4 Suspends the calling thread until the process receives a signal
that is not blocked or ignored, or until the calling process’
child processes stop or terminate.

7.4. Using the DFWIN module
The DFWIN module includes all the modules needed to access the Win32 API. You can
use modules supporting specific portions of the Win32 API separately, but DFWIN is
the only module you need to use the Fortran interfaces to the Win32 API. To use this
module, add the following line to your Fortran code.
use dfwin

To utilize any of the Win32 API interfaces, you can add a Fortran use statement for
the specific library or module that includes it. For example, to use user32.lib, add the
following Fortran use statement:
use user32

Function calls made through the module interfaces ultimately resolve to C Language
interfaces, so some accommodation for inter-language calling conventions must be made
in the Fortran application. These accommodations include:

‣ On 64-bit platforms, pointers and pointer types such as HANDLE, HINSTANCE,
WPARAM, and HWND must be treated as 8-byte quantities (INTEGER(8)).

‣ In general, C makes calls by value while Fortran makes calls by reference.
‣ When doing Windows development one must sometimes provide callback functions

for message processing, dialog processing, etc. These routines are called by the
Windows system when events are processed. To provide the expected function
signature for a callback function, the user may need to use the STDCALL attribute
directive (!DEC$ ATTRIBUTE::STDCALL) in the declaration.

7.5. Supported Libraries and Modules
The following tables provide lists of the functions in each library or module that PGI
supports in DFWIN.

For information on the interfaces associated with these functions, refer to the files
located here:
C:\Program Files\PGI\win64\17.7\src

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 157

7.5.1. advapi32
The following table lists the functions that advapi32 includes:

AccessCheckAndAuditAlarm AccessCheckByType

AccessCheckByTypeAndAuditAlarm AccessCheckByTypeResultList

AccessCheckByTypeResultListAndAuditAlarm AccessCheckByTypeResultListAndAuditAlarmByHandle

AddAccessAllowedAce AddAccessAllowedAceEx

AddAccessAllowedObjectAce AddAccessDeniedAce

AddAccessDeniedAceEx AddAccessDeniedObjectAce

AddAce AddAuditAccessAce

AddAuditAccessAceEx AddAuditAccessObjectAce

AdjustTokenGroups AdjustTokenPrivileges

AllocateAndInitializeSid AllocateLocallyUniqueId

AreAllAccessesGranted AreAnyAccessesGranted

BackupEventLog CheckTokenMembership

ClearEventLog CloseEncryptedFileRaw

CloseEventLog ConvertToAutoInheritPrivateObjectSecurity

CopySid CreatePrivateObjectSecurity

CreatePrivateObjectSecurityEx CreatePrivateObjectSecurityWithMultipleInheritance

CreateProcessAsUser CreateProcessWithLogonW

CreateProcessWithTokenW CreateRestrictedToken

CreateWellKnownSid DecryptFile

DeleteAce DeregisterEventSource

DestroyPrivateObjectSecurity DuplicateToken

DuplicateTokenEx EncryptFile

EqualDomainSid EqualPrefixSid

EqualSid FileEncryptionStatus

FindFirstFreeAce FreeSid

GetAce GetAclInformation

GetCurrentHwProfile GetEventLogInformation

GetFileSecurity GetKernelObjectSecurity

GetLengthSid GetNumberOfEventLogRecords

GetOldestEventLogRecord GetPrivateObjectSecurity

GetSecurityDescriptorControl GetSecurityDescriptorDacl

GetSecurityDescriptorGroup GetSecurityDescriptorLength

GetSecurityDescriptorOwner GetSecurityDescriptorRMControl

GetSecurityDescriptorSacl GetSidIdentifierAuthority

GetSidLengthRequired GetSidSubAuthority

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 158

GetSidSubAuthorityCount GetTokenInformation

GetUserName GetWindowsAccountDomainSid

ImpersonateAnonymousToken ImpersonateLoggedOnUser

ImpersonateNamedPipeClient ImpersonateSelf

InitializeAcl InitializeSecurityDescriptor

InitializeSid IsTextUnicode

IsTokenRestricted IsTokenUntrusted

IsValidAcl IsValidSecurityDescriptor

IsValidSid IsWellKnownSid

LogonUser LogonUserEx

LookupAccountName LookupAccountSid

LookupPrivilegeDisplayName LookupPrivilegeName

LookupPrivilegeValue MakeAbsoluteSD

MakeAbsoluteSD2 MakeSelfRelativeSD

MapGenericMask NotifyChangeEventLog

ObjectCloseAuditAlarm ObjectDeleteAuditAlarm

ObjectOpenAuditAlarm ObjectPrivilegeAuditAlarm

OpenBackupEventLog OpenEncryptedFileRaw

OpenEventLog OpenProcessToken

OpenThreadToken PrivilegeCheck

PrivilegedServiceAuditAlarm ReadEncryptedFileRaw

ReadEventLog RegisterEventSource

ReportEvent RevertToSelf

SetAclInformation SetFileSecurity

SetKernelObjectSecurity SetPrivateObjectSecurity

SetPrivateObjectSecurityEx SetSecurityDescriptorControl

SetSecurityDescriptorDacl SetSecurityDescriptorGroup

SetSecurityDescriptorOwner SetSecurityDescriptorRMControl

SetSecurityDescriptorSacl SetThreadToken

SetTokenInformation WriteEncryptedFileRaw

7.5.2. comdlg32
The following table lists the functions that comdlg32 includes:

AfxReplaceText ChooseColor ChooseFont

CommDlgExtendedError FindText GetFileTitle

GetOpenFileName GetSaveFileName PageSetupDlg

PrintDlg PrintDlgEx ReplaceText

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 159

7.5.3. dfwbase
These are the functions that dfwbase includes:

chartoint LoByte MakeWord

chartoreal LoWord MakeWparam

CopyMemory LoWord64 PaletteIndex

GetBlueValue MakeIntAtom PaletteRGB

GetGreenValue MakeIntResource PrimaryLangID

GetRedValue MakeLangID RGB

HiByte MakeLCID RtlCopyMemory

HiWord MakeLong SortIDFromLCID

HiWord64 MakeLParam SubLangID

inttochar MakeLResult

7.5.4. dfwinty
These are the functions that dfwinty includes:

dwNumberOfFunctionKeys rdFunction

7.5.5. gdi32
These are the functions that gdi32 includes:

AbortDoc AbortPath AddFontMemResourceEx

AddFontResource AddFontResourceEx AlphaBlend

AngleArc AnimatePalette Arc

ArcTo BeginPath BitBlt

CancelDC CheckColorsInGamut ChoosePixelFormat

Chord CloseEnhMetaFile CloseFigure

CloseMetaFile ColorCorrectPalette ColorMatchToTarget

CombineRgn CombineTransform CopyEnhMetaFile

CopyMetaFile CreateBitmap CreateBitmapIndirect

CreateBrushIndirect CreateColorSpace CreateCompatibleBitmap

CreateCompatibleDC CreateDC CreateDIBitmap

CreateDIBPatternBrush CreateDIBPatternBrushPt CreateDIBSection

CreateDiscardableBitmap CreateEllipticRgn CreateEllipticRgnIndirect

CreateEnhMetaFile CreateFont CreateFontIndirect

CreateFontIndirectEx CreateHalftonePalette CreateHatchBrush

CreateIC CreateMetaFile CreatePalette

CreatePatternBrush CreatePen CreatePenIndirect

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 160

CreatePolygonRgn CreatePolyPolygonRgn CreateRectRgn

CreateRectRgnIndirect CreateRoundRectRgn CreateScalableFontResource

CreateSolidBrush DeleteColorSpace DeleteDC

DeleteEnhMetaFile DeleteMetaFile DeleteObject

DescribePixelFormat DeviceCapabilities DPtoLP

DrawEscape Ellipse EndDoc

EndPage EndPath EnumEnhMetaFile

EnumFontFamilies EnumFontFamiliesEx EnumFonts

EnumICMProfiles EnumMetaFile EnumObjects

EqualRgn Escape ExcludeClipRect

ExtCreatePen ExtCreateRegion ExtEscape

ExtFloodFill ExtSelectClipRgn ExtTextOut

FillPath FillRgn FixBrushOrgEx

FlattenPath FloodFill FrameRgn

GdiComment GdiFlush GdiGetBatchLimit

GdiSetBatchLimit GetArcDirection GetAspectRatioFilterEx

GetBitmapBits GetBitmapDimensionEx GetBkColor

GetBkMode GetBoundsRect GetBrushOrgEx

GetCharABCWidthsA GetCharABCWidthsFloat GetCharABCWidthsI

GetCharABCWidthsW GetCharacterPlacement GetCharWidth

GetCharWidth32 GetCharWidthFloat GetCharWidthI

GetClipBox GetClipRgn GetColorAdjustment

GetColorSpace GetCurrentObject GetCurrentPositionEx

GetDCBrushColor GetDCOrgEx GetDCPenColor

GetDeviceCaps GetDeviceGammaRamp GetDIBColorTable

GetDIBits GetEnhMetaFile GetEnhMetaFileBits

GetEnhMetaFileDescriptionA GetEnhMetaFileDescriptionW GetEnhMetaFileHeader

GetEnhMetaFilePaletteEntries GetEnhMetaFilePixelFormat GetFontData

GetFontLanguageInfo GetFontUnicodeRanges GetGlyphIndices

GetGlyphOutline GetGraphicsMode GetICMProfileA

GetICMProfileW GetKerningPairs GetLayout

GetLogColorSpace GetMapMode GetMetaFile

GetMetaFileBitsEx GetMetaRgn GetMiterLimit

GetNearestColor GetNearestPaletteIndex GetObject

GetObjectType GetOutlineTextMetrics GetPaletteEntries

GetPath GetPixel GetPixelFormat

GetPolyFillMode GetRandomRgn GetRasterizerCaps

GetRegionData GetRgnBox GetROP2

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 161

GetStockObject GetStretchBltMode GetSystemPaletteEntries

GetSystemPaletteUse GetTextAlign GetTextCharacterExtra

GetTextCharset GetTextCharsetInfo GetTextColor

GetTextExtentExPoint GetTextExtentExPointI GetTextExtentPoint

GetTextExtentPoint32 GetTextExtentPointI GetTextFace

GetTextMetrics GetViewportExtEx GetViewportOrgEx

GetWindowExtEx GetWindowOrgEx GetWinMetaFileBits

GetWorldTransform GradientFill IntersectClipRect

InvertRgn LineDD LineTo

LPtoDP MaskBlt ModifyWorldTransform

MoveToEx OffsetClipRgn OffsetRgn

OffsetViewportOrgEx OffsetWindowOrgEx PaintRgn

PatBlt PathToRegion Pie

PlayEnhMetaFile PlayEnhMetaFileRecord PlayMetaFile

PlayMetaFileRecord PlgBlt PolyBezier

PolyBezierTo PolyDraw Polygon

Polyline PolylineTo PolyPolygon

PolyPolyline PolyTextOut PtInRegion

PtVisible RealizePalette Rectangle

RectInRegion RectVisible RemoveFontMemResourceEx

RemoveFontResource RemoveFontResourceEx ResetDC

ResizePalette RestoreDC RoundRect

SaveDC ScaleViewportExtEx ScaleWindowExtEx

SelectClipPath SelectClipRgn SelectObject

SelectPalette SetAbortProc SetArcDirection

SetBitmapBits SetBitmapDimensionEx SetBkColor

SetBkMode SetBoundsRect SetBrushOrgEx

SetColorAdjustment SetColorSpace SetDCBrushColor

SetDCPenColor SetDeviceGammaRamp SetDIBColorTable

SetDIBits SetDIBitsToDevice SetEnhMetaFileBits

SetGraphicsMode SetICMMode SetICMProfile

SetLayout SetMapMode SetMapperFlags

SetMetaFileBitsEx SetMetaRgn SetMiterLimit

SetPaletteEntries SetPixel SetPixelFormat

SetPixelV SetPolyFillMode SetRectRgn

SetROP2 SetStretchBltMode SetSystemPaletteUse

SetTextAlign SetTextCharacterExtra SetTextColor

SetTextJustification SetViewportExtEx SetViewportOrgEx

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 162

SetWindowExtEx SetWindowOrgEx SetWinMetaFileBits

SetWorldTransform StartDoc StartPage

StretchBlt StretchDIBits StrokeAndFillPath

SwapBuffers TextOut

TranslateCharsetInfo TransparentBlt UnrealizeObject

UpdateColors UpdateICMRegKey wglCopyContext

wglCreateContext wglCreateLayerContext wglDeleteContext

wglDescribeLayerPlane wglGetCurrentContext wglGetCurrentDC

wglGetLayerPaletteEntries wglGetProcAddress wglMakeCurrent

wglRealizeLayerPalette wglSetLayerPaletteEntries wglShareLists

wglSwapLayerBuffers wglSwapMultipleBuffers wglUseFontBitmaps

wglUseFontOutlines WidenPath

7.5.6. kernel32
These are the functions that kernel32 includes:

ActivateActCtx AddAtom

AddConsoleAlias AddRefActCtx

AddVectoredContinueHandler AddVectoredExceptionHandler

AllocateUserPhysicalPages AllocConsole

AreFileApisANSI AssignProcessToJobObject

AttachConsole BackupRead

BackupSeek BackupWrite

Beep BeginUpdateResource

BindIoCompletionCallback BuildCommDCB

BuildCommDCBAndTimeouts CallNamedPipe

CancelDeviceWakeupRequest CancelIo

CancelTimerQueueTimer CancelWaitableTimer

CheckNameLegalDOS8Dot3 CheckRemoteDebuggerPresent

ClearCommBreak ClearCommError

CloseHandle CommConfigDialog

CompareFileTime ConnectNamedPipe

ContinueDebugEvent ConvertFiberToThread

ConvertThreadToFiber ConvertThreadToFiberEx

CopyFile CopyFileEx

CreateActCtx CreateConsoleScreenBuffer

CreateDirectory CreateDirectoryEx

CreateEvent CreateFiber

CreateFiberEx CreateFile

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 163

CreateFileMapping CreateHardLink

CreateIoCompletionPort CreateJobObject

CreateJobSet CreateMailslot

CreateMemoryResourceNotification CreateMutex

CreateNamedPipe CreatePipe

CreateProcess CreateRemoteThread

CreateSemaphore CreateTapePartition

CreateThread CreateTimerQueue

CreateTimerQueueTimer CreateWaitableTimer

DeactivateActCtx DebugActiveProcess

DebugActiveProcessStop DebugBreak

DebugBreakProcess DebugSetProcessKillOnExit

DecodePointer DecodeSystemPointer

DefineDosDevice DeleteAtom

DeleteCriticalSection DeleteFiber

DeleteFile DeleteTimerQueue

DeleteTimerQueueEx DeleteTimerQueueTimer

DeleteVolumeMountPoint DeviceIoControl

DisableThreadLibraryCalls DisconnectNamedPipe

DnsHostnameToComputerName DosDateTimeToFileTime

DuplicateHandle EncodePointer

EncodeSystemPointer EndUpdateResource

EnterCriticalSection EnumResourceLanguages

EnumResourceNames EnumResourceTypes

EnumSystemFirmwareTables EraseTape

EscapeCommFunction ExitProcess

ExitThread ExpandEnvironmentStrings

FatalAppExit FatalExit

FileTimeToDosDateTime FileTimeToLocalFileTime

FileTimeToSystemTime FillConsoleOutputAttribute

FillConsoleOutputCharacter FindActCtxSectionGuid

FindActCtxSectionString FindAtom

FindClose FindCloseChangeNotification

FindFirstChangeNotification FindFirstFile

FindFirstFileEx FindFirstVolume

FindFirstVolumeMountPoint FindNextChangeNotification

FindNextFile FindNextVolume

FindNextVolumeMountPoint FindResource

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 164

FindResourceEx FindVolumeClose

FindVolumeMountPointClose FlsAlloc

FlsFree FlsGetValue

FlsSetValue FlushConsoleInputBuffer

FlushFileBuffers FlushInstructionCache

FlushViewOfFile FormatMessage

FreeConsole FreeEnvironmentStrings

FreeLibrary FreeLibraryAndExitThread

FreeResource FreeUserPhysicalPages

GenerateConsoleCtrlEvent GetAtomName

GetBinaryType GetCommandLine

GetCommConfig GetCommMask

GetCommModemStatus GetCommProperties

GetCommState GetCommTimeouts

GetCompressedFileSize GetComputerName

GetConsoleAlias GetConsoleAliases

GetConsoleAliasesLength GetConsoleAliasExes

GetConsoleAliasExesLength GetConsoleCP

GetConsoleCursorInfo GetConsoleDisplayMode

GetConsoleFontSize GetConsoleMode

GetConsoleOutputCP GetConsoleProcessList

GetConsoleScreenBufferInfo GetConsoleSelectionInfo

GetConsoleTitle GetConsoleWindow

GetCurrentActCtx GetCurrentConsoleFont

GetCurrentDirectory GetCurrentProcess

GetCurrentProcessId GetCurrentProcessorNumber

GetCurrentThread GetCurrentThreadId

GetDefaultCommConfig GetDevicePowerState

GetDiskFreeSpace GetDiskFreeSpaceEx

GetDllDirectory GetDriveType

GetEnvironmentStrings GetEnvironmentVariable

GetExitCodeProcess GetExitCodeThread

GetFileAttributes GetFileAttributesEx

GetFileInformationByHandle GetFileSize

GetFileSizeEx GetFileTime

GetFileType GetFirmwareEnvironmentVariable

GetFullPathName GetHandleInformation

GetLargePageMinimum GetLargestConsoleWindowSize

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 165

GetLastError GetLocalTime

GetLogicalDrives GetLogicalDriveStrings

GetLogicalProcessorInformation GetLongPathName

GetMailslotInfo GetModuleFileName

GetModuleHandle GetModuleHandleEx

GetNamedPipeHandleState GetNamedPipeInfo

GetNativeSystemInfo GetNumaAvailableMemoryNode

GetNumaHighestNodeNumber GetNumaNodeProcessorMask

GetNumaProcessorNode GetNumberOfConsoleInputEvents

GetNumberOfConsoleMouseButtons GetOverlappedResult

GetPriorityClass GetPrivateProfileInt

GetPrivateProfileSection GetPrivateProfileSectionNames

GetPrivateProfileString GetPrivateProfileStruct

GetProcAddress GetProcessAffinityMask

GetProcessHandleCount GetProcessHeap

GetProcessHeaps GetProcessId

GetProcessIdOfThread GetProcessIoCounters

GetProcessPriorityBoost GetProcessShutdownParameters

GetProcessTimes GetProcessVersion

GetProcessWorkingSetSize GetProcessWorkingSetSizeEx

GetProfileInt GetProfileSection

GetProfileString GetQueuedCompletionStatus

GetShortPathName GetVolumeNameForVolumeMountPoint

GetVolumePathName GetVolumePathNamesForVolumeName

GetWindowsDirectory GetWriteWatch

GlobalAddAtom GlobalAlloc

GlobalCompact GlobalDeleteAtom

GlobalFindAtom GlobalFix

GlobalFlags GlobalFree

GlobalGetAtomName GlobalHandle

GlobalLock GlobalMemoryStatus

GlobalMemoryStatusEx GlobalReAlloc

GlobalSize GlobalUnfix

GlobalUnlock GlobalUnWire

GlobalWire HeapAlloc

HeapCompact HeapCreate

HeapDestroy HeapFree

HeapLock HeapQueryInformation

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 166

HeapReAlloc HeapSetInformation

HeapSize HeapUnlock

HeapValidate HeapWalk

InitAtomTable InitializeCriticalSection

InitializeCriticalSectionAndSpinCount InitializeSListHead

InterlockedCompareExchange InterlockedCompareExchange64

InterlockedDecrement InterlockedExchange

InterlockedExchangeAdd InterlockedFlushSList

InterlockedIncrement InterlockedPopEntrySList

InterlockedPushEntrySList IsBadCodePtr

IsBadHugeReadPtr IsBadHugeWritePtr

IsBadReadPtr IsBadStringPtr

IsBadWritePtr IsDebuggerPresent

IsProcessInJob IsProcessorFeaturePresent

IsSystemResumeAutomatic LeaveCriticalSection

LoadLibrary LoadLibraryEx

LoadModule LoadResource

LocalAlloc LocalCompact

LocalFileTimeToFileTime LocalFlags

LocalFree LocalHandle

LocalLock LocalReAlloc

LocalShrink LocalSize

LocalUnlock LockFile

LockFileEx LockResource

lstrcat lstrcmp

lstrcmpi lstrcpy

lstrcpyn lstrlen

MapUserPhysicalPages MapUserPhysicalPagesScatter

MapViewOfFile MapViewOfFileEx

MoveFile MoveFileEx

MoveFileWithProgress MulDiv

NeedCurrentDirectoryForExePath OpenEvent

OpenFile OpenFileMapping

OpenJobObject OpenMutex

OpenProcess OpenSemaphore

OpenThread OpenWaitableTimer

OutputDebugString PeekConsoleInput

PeekNamedPipe PostQueuedCompletionStatus

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 167

PrepareTape ProcessIdToSessionId

PulseEvent PurgeComm

QueryActCtxW QueryDepthSList

QueryDosDevice QueryInformationJobObject

QueryMemoryResourceNotification QueryPerformanceCounter

QueryPerformanceFrequency QueueUserAPC

QueueUserWorkItem RaiseException

ReadConsole ReadConsoleInput

ReadConsoleOutput ReadConsoleOutputAttribute

ReadConsoleOutputCharacter ReadDirectoryChangesW

ReadFile ReadFileEx

ReadFileScatter ReadProcessMemory

RegisterWaitForSingleObject RegisterWaitForSingleObjectEx

ReleaseActCtx ReleaseMutex

ReleaseSemaphore RemoveDirectory

RemoveVectoredContinueHandler RemoveVectoredExceptionHandler

ReOpenFile ReplaceFile

RequestDeviceWakeup RequestWakeupLatency

ResetEvent ResetWriteWatch

RestoreLastError ResumeThread

ScrollConsoleScreenBuffer SearchPath

SetCommBreak SetCommConfig

SetCommMask SetCommState

SetCommTimeouts SetComputerName

SetComputerNameEx SetConsoleActiveScreenBuffer

SetConsoleCP SetConsoleCtrlHandler

SetConsoleCursorInfo SetConsoleCursorPosition

SetConsoleMode SetConsoleOutputCP

SetConsoleScreenBufferSize SetConsoleTextAttribute

SetConsoleTitle SetConsoleWindowInfo

SetCriticalSectionSpinCount SetCurrentDirectory

SetDefaultCommConfig SetDllDirectory

SetEndOfFile SetEnvironmentStrings

SetEnvironmentVariable SetErrorMode

SetEvent SetFileApisToANSI

SetFileApisToOEM SetFileAttributes

SetFilePointer SetFilePointerEx

SetFileShortName SetFileTime

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 168

SetFileValidData SetFirmwareEnvironmentVariable

SetHandleCount SetHandleInformation

SetInformationJobObject SetLastError

SetLocalTime SetMailslotInfo

SetMessageWaitingIndicator SetNamedPipeHandleState

SetPriorityClass SetProcessAffinityMask

SetProcessPriorityBoost SetProcessShutdownParameters

SetProcessWorkingSetSize SetProcessWorkingSetSizeEx

SetStdHandle SetSystemTime

SetSystemTimeAdjustment SetTapeParameters

SetTapePosition SetThreadAffinityMask

SetThreadContext SetThreadExecutionState

SetThreadIdealProcessor SetThreadPriority

SetThreadPriorityBoost SetThreadStackGuarantee

SetTimerQueueTimer SetTimeZoneInformation

SetUnhandledExceptionFilter SetupComm

SetVolumeLabel SetVolumeMountPoint

SetWaitableTimer SignalObjectAndWait

SizeofResource Sleep

SleepEx SuspendThread

SwitchToFiber SwitchToThread

SystemTimeToFileTime SystemTimeToTzSpecificLocalTime

TerminateJobObject TerminateProcess

TerminateThread TlsAlloc

TlsFree TlsGetValue

TlsSetValue TransactNamedPipe

TransmitCommChar TryEnterCriticalSection

TzSpecificLocalTimeToSystemTime UnhandledExceptionFilter

UnlockFile UnlockFileEx

UnmapViewOfFile UnregisterWait

UnregisterWaitEx UpdateResource

VerifyVersionInfo VirtualAlloc

VirtualAllocEx VirtualFree

VirtualFreeEx VirtualLock

VirtualProtect VirtualProtectEx

VirtualQuery VirtualQueryEx

VirtualUnlock WaitCommEvent

WaitForDebugEvent WaitForMultipleObjects

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 169

WaitForMultipleObjectsEx WaitForSingleObject

WaitForSingleObjectEx WaitNamedPipe

WinExec Wow64DisableWow64FsRedirection

Wow64EnableWow64FsRedirection Wow64RevertWow64FsRedirection

WriteConsole WriteConsoleInput

WriteConsoleOutput WriteConsoleOutputAttribute

WriteConsoleOutputCharacter WriteFile

WriteFileEx WriteFileGather

WritePrivateProfileSection WritePrivateProfileString

WritePrivateProfileStruct WriteProcessMemory

WriteProfileSection WriteProfileString

WriteTapemark WTSGetActiveConsoleSessionId

ZombifyActCtx _hread

_hwrite _lclose

_lcreat _llseek

_lopen _lread

_lwrite

7.5.7. shell32
These are the functions that shell32 includes:

DoEnvironmentSubst ShellExecuteEx

DragAcceptFiles Shell_NotifyIcon

DragFinish SHEmptyRecycleBin

DragQueryFile SHFileOperation

DragQueryPoint SHFreeNameMappings

DuplicateIcon SHGetDiskFreeSpaceEx

ExtractAssociatedIcon SHGetFileInfo

ExtractIcon SHGetNewLinkInfo

ExtractIconEx SHInvokePrinterCommand

FindExecutable SHIsFileAvailableOffline

IsLFNDrive SHLoadNonloadedIconOverlayIdentifiers

SHAppBarMessage SHQueryRecycleBin

SHCreateProcessAsUserW SHSetLocalizedName

ShellAbout WinExecError

ShellExecute

7.5.8. user32
These are the functions that user32 includes:

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 170

ActivateKeyboardLayout AdjustWindowRect AdjustWindowRectEx

AllowSetForegroundWindow AnimateWindow AnyPopup

AppendMenu ArrangeIconicWindows AttachThreadInput

BeginDeferWindowPos BeginPaint BringWindowToTop

BroadcastSystemMessage BroadcastSystemMessageEx CallMsgFilter

CallNextHookEx CallWindowProc CascadeWindows

ChangeClipboardChain ChangeDisplaySettings ChangeDisplaySettingsEx

ChangeMenu CharLower CharLowerBuff

CharNext CharNextEx CharPrev

CharPrevEx CharToOem CharToOemBuff

CharUpper CharUpperBuff CheckDlgButton

CheckMenuItem CheckMenuRadioItem CheckRadioButton

ChildWindowFromPoint ChildWindowFromPointEx ClientToScreen

ClipCursor CloseClipboard CloseDesktop

CloseWindow CloseWindowStation CopyAcceleratorTable

CopyCursor CopyIcon CopyImage

CopyRect CountClipboardFormats CreateAcceleratorTable

CreateCaret CreateCursor CreateDesktop

CreateDialogIndirectParam CreateDialogParam CreateIcon

CreateIconFromResource CreateIconFromResourceEx CreateIconIndirect

CreateMDIWindow CreateMenu CreatePopupMenu

CreateWindow CreateWindowEx CreateWindowStation

DeferWindowPos DefFrameProc DefMDIChildProc

DefRawInputProc DefWindowProc DeleteMenu

DeregisterShellHookWindow DestroyAcceleratorTable DestroyCaret

DestroyCursor DestroyIcon DestroyMenu

DestroyWindow DialogBoxIndirectParam DialogBoxParam1

DialogBoxParam2 DisableProcessWindowsGhosting DispatchMessage

DlgDirList DlgDirListComboBox DlgDirSelectComboBoxEx

DlgDirSelectEx DragDetect DragObject

DrawAnimatedRects DrawCaption DrawEdge

DrawFocusRect DrawFrameControl DrawIcon

DrawIconIndirect DrawMenuBar DrawState

DrawText DrawTextEx EmptyClipboard

EnableMenuItem EnableScrollBar EnableWindow

EndDeferWindowPos EndDialog EndMenu

EndPaint EndTask EnumChildWindows

EnumClipboardFormats EnumDesktops EnumDesktopWindows

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 171

EnumDisplayDevices EnumDisplayMonitors EnumDisplaySettings

EnumDisplaySettingsEx EnumProps EnumPropsEx

EnumThreadWindows EnumWindows EnumWindowStations

EqualRect ExcludeUpdateRgn ExitWindowsEx

FillRect FindWindow FindWindowEx

FlashWindow FlashWindowEx FrameRect

GetActiveWindow GetAltTabInfo GetAncestor

GetAsyncKeyState GetCapture GetCaretBlinkTime

GetCaretPos GetClassInfo GetClassInfoEx

GetClassLong GetClassLongPtr GetClassName

GetClassWord GetClientRect GetClipboardData

GetClipboardFormatName GetClipboardOwner GetClipboardSequenceNumber

GetClipboardViewer GetClipCursor GetComboBoxInfo

GetCursor GetCursorInfo GetCursorPos

GetDC GetDCEx GetDesktopWindow

GetDialogBaseUnits GetDlgCtrlID GetDlgItem

GetDlgItemInt GetDlgItemText GetDoubleClickTime

GetFocus GetForegroundWindow GetGuiResources

GetGUIThreadInfo GetIconInfo GetInputState

GetKBCodePage GetKeyboardLayout GetKeyboardLayoutList

GetKeyboardLayoutName GetKeyboardState GetKeyboardType

GetKeyNameText GetKeyState GetLastActivePopup

GetLastInputInfo GetLayeredWindowAttributes GetListBoxInfo

GetMenu GetMenuBarInfo GetMenuCheckMarkDimensions

GetMenuContextHelpId GetMenuDefaultItem GetMenuInfo

GetMenuItemCount GetMenuItemID GetMenuItemInfo

GetMenuItemRect GetMenuState GetMenuString

GetMessage GetMessageExtraInfo GetMessagePos

GetMessageTime GetMonitorInfo GetMouseMovePointsEx

GetNextDlgGroupItem GetNextDlgTabItem GetOpenClipboardWindow

GetParent GetPriorityClipboardFormat GetProcessDefaultLayout

GetProcessWindowStation GetProp GetQueueStatus

GetRawInputBuffer GetRawInputData GetRawInputDeviceInfo

GetRawInputDeviceList GetRegisteredRawInputDevices GetScrollBarInfo

GetScrollInfo GetScrollPos GetScrollRange

GetShellWindow GetSubMenu GetSysColor

GetSysColorBrush GetSystemMenu GetSystemMetrics

GetTabbedTextExtent GetThreadDesktop GetTitleBarInfo

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 172

GetTopWindow GetUpdateRect GetUpdateRgn

GetUserObjectInformation GetUserObjectSecurity GetWindow

GetWindowContextHelpId GetWindowDC GetWindowInfo

GetWindowLong GetWindowLongPtr GetWindowModuleFileName

GetWindowPlacement GetWindowRect GetWindowRgn

GetWindowRgnBox GetWindowText GetWindowTextLength

GetWindowThreadProcessId GetWindowWord GrayString

HideCaret HiliteMenuItem InflateRect

InSendMessage InSendMessageEx InsertMenu

InsertMenuItem InternalGetWindowText IntersectRect

InvalidateRect InvalidateRgn InvertRect

IsCharAlpha IsCharAlphaNumeric IsCharLower

IsCharUpper IsChild IsClipboardFormatAvailable

IsDialogMessage IsDlgButtonChecked IsGUIThread

IsHungAppWindow IsIconic IsMenu

IsRectEmpty IsWindow IsWindowEnabled

IsWindowUnicode IsWindowVisible IsWinEventHookInstalled

IsWow64Message IsZoomed keybd_event

KillTimer LoadAccelerators LoadBitmap

LoadCursor1 LoadCursor2 LoadCursorFromFile

LoadIcon1 LoadIcon2 LoadImage

LoadKeyboardLayout LoadMenu1 LoadMenu2

LoadMenuIndirect LoadString LockSetForegroundWindow

LockWindowUpdate LockWorkStation LookupIconIdFromDirectory

LookupIconIdFromDirectoryEx LRESULT MapDialogRect

MapVirtualKey MapVirtualKeyEx MapWindowPoints

MenuItemFromPoint MessageBeep MessageBox

MessageBoxEx MessageBoxIndirect ModifyMenu1

ModifyMenu2 MonitorFromPoint MonitorFromRect

MonitorFromWindow mouse_event MoveWindow

MsgWaitForMultipleObjects MsgWaitForMultipleObjectsEx NotifyWinEvent

OemKeyScan OemToChar OemToCharBuff

OffsetRect OpenClipboard OpenDesktop

OpenIcon OpenInputDesktop OpenWindowStation

PaintDesktop PeekMessage PostMessage

PostQuitMessage PostThreadMessage PrintWindow

PrivateExtractIcons PtInRect RealChildWindowFromPoint

RealGetWindowClass RedrawWindow RegisterClass

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 173

RegisterClassEx RegisterClipboardFormat RegisterDeviceNotification

RegisterHotKey RegisterRawInputDevices RegisterShellHookWindow

RegisterWindowMessage ReleaseCapture ReleaseDC

RemoveMenu RemoveProp ReplyMessage

ScreenToClient ScrollDC ScrollWindow

ScrollWindowEx SendDlgItemMessage SendInput

SendMessage SendMessageCallback SendMessageTimeout

SendNotifyMessage SetActiveWindow SetCapture

SetCaretBlinkTime SetCaretPos SetClassLong

SetClassLongPtr SetClassWord SetClipboardData

SetClipboardViewer SetCursor SetCursorPos

SetDebugErrorLevel SetDlgItemInt SetDlgItemText

SetDoubleClickTime SetFocus SetForegroundWindow

SetKeyboardState SetLastErrorEx SetLayeredWindowAttributes

SetMenu SetMenuContextHelpId SetMenuDefaultItem

SetMenuInfo SetMenuItemBitmaps SetMenuItemInfo

SetMessageExtraInfo SetMessageQueue SetParent

SetProcessDefaultLayout SetProcessWindowStation SetProp

SetRect SetRectEmpty SetScrollInfo

SetScrollPos SetScrollRange SetSysColors

SetSystemCursor SetThreadDesktop SetTimer

SetUserObjectInformation SetUserObjectSecurity SetWindowContextHelpId

SetWindowLong SetWindowLongPtr SetWindowPlacement

SetWindowPos SetWindowRgn SetWindowsHook

SetWindowsHookEx SetWindowText SetWindowWord

SetWinEventHook ShowCaret ShowCursor

ShowOwnedPopups ShowScrollBar ShowWindow

ShowWindowAsync SubtractRect SwapMouseButton

SwitchDesktop SwitchToThisWindow SystemParametersInfo

TabbedTextOut TileWindows ToAscii

ToAsciiEx ToUnicode ToUnicodeEx

TrackMouseEvent TrackPopupMenu TrackPopupMenuEx

TranslateAccelerator TranslateMDISysAccel TranslateMessage

UnhookWindowsHook UnhookWindowsHookEx UnhookWinEvent

UnionRect UnloadKeyboardLayout UnregisterClass

UnregisterDeviceNotification UnregisterHotKey UpdateLayeredWindow

UpdateLayeredWindowIndirect UpdateWindow UserHandleGrantAccess

ValidateRect ValidateRgn VkKeyScan

Fortran Module/Library Interfaces for Windows

PVF Reference Guide Version 2017 | 174

VkKeyScanEx WaitForInputIdle WaitMessage

WindowFromDC WindowFromPoint WinHelp

wsprintf wvsprintf

7.5.9. winver
These are the functions that winver includes:

GetFileVersionInfo VerFindFile VerLanguageName

GetFileVersionInfoSize VerInstallFile VerQueryValue

7.5.10. wsock32
These are the functions that wsock32 includes:

accept AcceptEx bind

closesocket connect GetAcceptExSockaddrs

getpeername gethostname getprotobyname

getprotobynumber getservbyname getservbyport

getsockname getsockopt htonl

htons inet_addr inet_ntoa

ioctlsocket listen ntohl

ntohs recv select

send sendto setsockopt

shutdown socket TransmitFile

WSAAsyncGetHostByName WSAAsyncGetProtoByName WSAAsyncGetProtoByNumber

WSAAsyncGetServByName WSAAsyncGetServByPort WSAAsyncSelect

WSACancelAsyncRequest WSACancelBlockingCall WSACleanup

WSAGetLastError WSAIsBlocking WSARecvEx

WSASetBlockingHook WSASetLastError WSAStartup

PVF Reference Guide Version 2017 | 175

Chapter 8.
MESSAGES

This section describes the various messages that the compiler produces. These messages
include the sign-on message and diagnostic messages for remarks, warnings, and errors.
The compiler always displays any error messages, along with the erroneous source line,
on the screen. If you specify the -Mlist option, the compiler places any error messages
in the listing file. You can also use the -v option to display more information about
the compiler, assembler, and linker invocations and about the host system. For more
information on the -Mlist and -v options, refer to ‘Using Command-line Options’ in
the PGI Compiler User’s Guide.

8.1. Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information includes information such as syntax errors. Semantic information
includes information such as unreachable code, incorrect number of arguments specified
for a call to a routine, illegal data type usage, etc.

You can specify that the compiler displays error messages at a certain level with the -
Minform option.

The compiler messages refer to a severity level, a message number, and the line number
where the error occurs.

The compiler can also display internal error messages on standard error. If your
compilation produces any internal errors, please contact the PGI technical reporting
service, href="https://www.pgicompilers.com/support/support_request.php.

If you use the listing file option -Mlist, the compiler places diagnostic messages after
the source lines in the listing file, in the following format:
 PGFTN-etype-enum-message (filename: line)

Where:
etype

is a character signifying the severity level
enum

is the error number

https://www.pgicompilers.com/support/support_request.php
https://www.pgicompilers.com/support/support_request.php

Messages

PVF Reference Guide Version 2017 | 176

message
is the error message

filename
is the source filename

line
is the line number where the compiler detected an error.

8.2. Phase Invocation Messages
You can display compiler, assembler, and linker phase invocations by using the -v
command line option. For further information about this option, refer to the ‘Using
Command-line Options’ section of the PVF User's Guide, https://www.pgroup.com/
resources/docs.php.

8.3. Fortran Compiler Error Messages
This section presents the error messages generated by the PGF77, PGF95, and
PGFORTRAN compilers. The compilers display error messages in the program listing
and on standard output. They can also display internal error messages on standard
error.

8.3.1. Message Format
Each message is numbered. Each message also lists the line and column number where
the error occurs. A dollar sign ($) in a message represents information that is specific to
each occurrence of the message.

8.3.2. Message List
Error message severities:
I

informative
W

warning
S

severe error
F

fatal error
V

variable
V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it
may be possible for a user error to cause an internal error. The severity may vary; if it is
informative or warning, correct object code was probably generated, but it is not safe to
rely on this. Regardless of the severity or cause, internal errors should be reported to the
PGI technical reporting service, https://www.pgroup.com/support/support_request.php.

https://www.pgroup.com/resources/docs.php
https://www.pgroup.com/resources/docs.php
https://www.pgicompilers.com/support/support_request.php

Messages

PVF Reference Guide Version 2017 | 177

F001 Source input file name not specified

On the command line, source file name should be specified either before all the switches,
or after them.
F002 Unable to open source input file: $

Source file name is misspelled, file is not in current working directory, or file is read
protected.
F003 Unable to open listing file

This message typically occurs when the user does not have write permission for the
current working directory.
F004 $ $

Generic message for file errors.
F005 Unable to open temporary file

Compiler uses directory specified by the environment variables $TMP or $TMPDIR in
which to create temporary files. If neither of these directories is available on the node on
which the compiler is being used, this error will occur.
S006 Input file empty

Source input file does not contain any Fortran statements other than comments or
compiler directives.
F007 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other
non-recoverable problem related to the size of the subprogram. If this error occurs
at opt level 2, reducing the opt level to 1 may work around the problem. Moving
the subprogram being compiled to its own source file may eliminate the problem. If
this error occurs while compiling a subprogram of fewer than 2000, please report the
problem to the PGI technical reporting service, https://www.pgroup.com/support/
support_request.php.
F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be
reset on the command line.
F009 Unable to open assembly file

This message typically occurs when the user does not have write permission for the
current working directory.
F010 File write error occurred $

The file system may be full.
S011 Unrecognized command line switch: $

Refer to the PGI Compiler User’s Guide for a list of allowed compiler switches.
S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".
S013 Unrecognized value specified for command line switch: $

https://www.pgicompilers.com/support/support_request.php

Messages

PVF Reference Guide Version 2017 | 178

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.
W015 Hexadecimal or octal constant truncated to fit data type

I016 Identifier, $, truncated to 63 chars

An identifier may be at most 63 characters in length; characters after the 63rd are
ignored.
S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember
that the file name should be enclosed in quotes.
S018 Illegal label $ $

Used for label ‘field’ errors or illegal values. E.g., in fixed source form, the label field
(first five characters) of the indicated line contains a non-numeric character.
S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines
were specified.
S020 Unrecognized compiler directive

Refer to Directives Reference for list of allowed compiler directives.
S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.
S022 Unexpected end of file - missing END statement

The source file is missing and END statement, or the file is truncated.
S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.
W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough
to contain all of the characters in the constant. This type conversion occurs when the
constant is used in an arithmetic expression or is assigned to a non-character variable.
The character or hollerith constant is truncated on the right, that is, if 4 characters are
needed then the first 4 are used and the remaining characters are discarded.
W025 Illegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran
character (characters inside of character or Hollerith constants cannot cause this error).
As a general rule, all non-printing characters are treated as white space characters
(blanks and tabs); no error message is generated when this occurs. If for some reason, a
non-printing character is not treated as a white space character, its hex representation is
printed in the form dd where each d is a hex digit.
S026 Unmatched quote

A character constant is missing a closing quote or the source file is truncated.
S027 Illegal integer constant: $

Messages

PVF Reference Guide Version 2017 | 179

Integer constant is too large for 32 bit word.
S028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits
0..9 and letters A..F or a..f; any other character in a hexadecimal constant is illegal. An
octal constant consists of digits 0..7; any other digit or character in an octal constant is
illegal. A binary constant consists of digits 0 or 1; any other digit or character in a binary
constant is illegal.
S030 Explicit shape must be specified for $

A shape for an array expression is effected in this context.
S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a
member of the set of allowed values for this particular data type.
W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax
(e.g. DIMENSION A(10)*4).
S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment
statement or as the target of a data initialization statement.
S034 Syntax error at or near $

Illegal command specified.
I035 Predefined intrinsic $ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for
that intrinsic. The compiler, based on the context, will treat the name as a variable or an
external function.
S036 Illegal implicit character range

First character must alphabetically precede second.
S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and
different data types are specified for it.
S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the
IMPLICIT NONE statement occurs in the subprogram.
W039 Symbol, $, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.
S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has
previously been defined to be something other than a variable or array.
W041 Illegal use of dummy argument $

Messages

PVF Reference Guide Version 2017 | 180

This error can occur in several situations. It can occur if dummy arguments were
specified on a PROGRAM statement. It can also occur if a dummy argument name
occurs in a DATA, COMMON, SAVE, or EQUIVALENCE statement. A program
statement must have an empty argument list.
S042 $ is a duplicate dummy argument

Each dummy argument must have a unique name.
S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier
definition of the same symbol. This can happen for a number of reasons. The message
attempts to indicate the situation that occurred.

intrinsic – An attempt was made to redefine an intrinsic function. A symbol that
represents an intrinsic function may be redefined if that symbol has not been previously
verified to be an intrinsic function. For example, the intrinsic sin can be defined to be
an integer array. If a symbol is verified to be an intrinsic function via the INTRINSIC
statement or via an intrinsic function reference then it must be referred to as an intrinsic
function for the remainder of the program unit.

symbol – An attempt was made to redefine a symbol that was previously defined.
An example of this is to declare a symbol to be a PARAMETER which was previously
declared to be a subprogram argument.
S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made
to declare a symbol as an ENTRY when that symbol was previously declared as an
ENTRY.
S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of
the current function. For example, the function returns type character and an entry point
returns type complex.
S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier
from the other data types. Suppose, we want to declare arrays ARRAYA and ARRAYB
to have 8 elements each having an element length of 4 bytes. The difference is that
ARRAYA is character and ARRAYB is integer. The declarations would be CHARACTER
ARRAYA(8)*4 and INTEGER ARRAYB*4(8).
S047 More than seven dimensions specified for array

The compiler currently supports up to seven dimensions for arrays.
S048 Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.
S049 Illegal use of '*' in non-subroutine subprogram

The alternate return specifier ‘*’ is legal only in the subroutine statement. Programs,
functions, and block data are not allowed to have alternate return specifiers.
S050 Assumed size array, $, is not a dummy argument

Messages

PVF Reference Guide Version 2017 | 181

Arrays with ‘*’ in their dimension(s) may only be declared as dummy arguments.
S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was
encountered that did not match one of these allowed forms.
S052 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in
procedure calls.
W054 Implicit character $ used in a previous implicit statement

An implicit character has been given an implied data type more than once. The implied
data type for the implicit character is changed anyway.
W055 Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.
W056 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE
statement will produce a warning message for IMPLICIT statements.
S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.
S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common
block.
S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.
S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.
S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an
alignment not optimal for variables of its data type. This can occur when INTEGER and
CHARACTER data are equivalenced, for instance.
I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.
S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

Messages

PVF Reference Guide Version 2017 | 182

S068 Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER*1 variable or character array element can be initialized to an integer,
octal, or hexadecimal constant if that constant is in the range 0 through 255.
S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.
S070 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must
precede a specification statement which in turn must precede an executable statement.
S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector
reference. The assignment operation may be by way of an assignment statement, a data
statement, or the index variable of an implied DO-loop. The compiler has determined
that the identifier used as the destination is not a storage location. The error message
attempts to indicate the type of entity used.

entry point – An assignment to an entry point that was not a function procedure was
attempted.

external procedure – An assignment to an external procedure or a Fortran intrinsic
name was attempted. If the identifier is the name of an entry point that is not a function,
an external procedure.
S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or
function, requiring a certain number of arguments of a fixed data type.
S075 Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to
substring and function references.
S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$

S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.
S083 Vector expression used where scalar expression required

Messages

PVF Reference Guide Version 2017 | 183

A vector expression was used in an illegal context. For example, iscalar = iarray,
where a scalar is assigned the value of an array. Also, character and record references are
not vectorizable.
S084 Illegal use of symbol $ $

This message is used for many different errors.
S085 Incorrect number of arguments to statement function $

S086 Dummy argument to statement function must be a variable

S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.
S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as
statement function dummy parameters and statement function names. Also, a dummy
variable of type CHARACTER*(*) cannot be used as a function.
S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.
S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O
statements, must not consist of a concatenation involving a passed length character
variable.
W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of
some other data type. The compiler generates code to convert the expression into the
required type.
S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data
type.
S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of
some other data type.
S096 Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.
S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the
subprogram.
S098 Divide by zero

Messages

PVF Reference Guide Version 2017 | 184

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements,
unformatted I/O statements, and as parameters to subprograms. They may not appear,
for example, in expressions. Also, records with differing structure types may not be
assigned to one another.
S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector
illegally. For example, the assignment of a character constant string to a character array.
Records, too, cannot be promoted to vectors.
S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.
S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or
double precision scalar expression.
S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.
S104 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements, DO loops,
and directives. You may see one of the following messages:
PGF90-S-0104-Illegal control structure - unterminated PARALLEL directive
PGF90-S-0104-Illegal control structure - unterminated block IF

If the line number specified is the last line (END statement) of the subprogram, the error
is probably an unterminated DO loop or IF-THEN statement. If the message contains
unterminated PARALLEL directive, it is likely you are missing the required !$omp
end parallel directive.
S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement.
S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER
name, a function name, a structure name, etc.
S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars.
I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits
produces an overflow. The constant is truncated at left (e.g. ‘1234567890abcdef1’x will be
‘234567890abcdef1’x).
I110 <reserved message number>

Messages

PVF Reference Guide Version 2017 | 185

I111 Underflow of real or double precision constant

I112 Overflow of real or double precision constant

S113 Label $ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.
S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.
I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible
with the operation. For example, a logical expression can consist of only logical elements
of type integer or logical. Real data would be invalid.
I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER
statement has been truncated to fit the declared size of the corresponding identifier.
W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were
present in the character field of the hollerith constant. The length specifier was reduced
to agree with the number of characters present.
S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.
I125 Dummy procedure $ not declared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the
subprogram name in a CALL statement, or is called as a function, and is therefore
assumed to be a dummy procedure. This message can result from a failure to declare a
dummy array.
I126 Name $ is not an intrinsic function

I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits,
such as a BYTE.

Messages

PVF Reference Guide Version 2017 | 186

I129 Floating point overflow. Check constants and constant expressions

I130 Floating point underflow. Check constants and constant expressions

I131 Integer overflow. Check floating point expressions cast to integer

I132 Floating pt. invalid oprnd. Check constants and constant expressions

I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.
W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost
structure.
W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.
W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been
defined.
S140 Variable $ is not a RECORD

S141 RECORD required on left of $

S142 $ is not a member of this RECORD

S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.
W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It
is only valid when used within a STRUCTURE multiline statement even though it is
ignored.
S146 Expression must be character type

S147 Character expression not allowed in this context

S148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but
another data type was found instead.
S149 Record where arithmetic value required

Messages

PVF Reference Guide Version 2017 | 187

An aggregate record reference was encountered when an arithmetic expression was
expected.
S150 Structure, Record, derived type, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported.
S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP -
ENDMAP declaration contains no members.
S152 All dimension specifiers must be ':'

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ $

S156 Number of colons and triplets must be equal in ALIGN $ with $

S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the
SUBROUTINE or ENTRY statements.
S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.
S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced with < or > test.

S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.
S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is
applicable only when an assembly file is the output of the compiler.
S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is
applicable only when an assembly file is the output of the compiler.
I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is
not identical. The maximum size is chosen. The message is applicable only when an
assembly file is the output of the compiler.
S168 Incompatible size of common block $

Messages

PVF Reference Guide Version 2017 | 188

A common block occurs in more than one subprogram of a source file and is initialized
in one subprogram. Its initialized size was found to be less than its size in the other
subprogram(s). The message is applicable only when an assembly file is the output of
the compiler.
W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the
first set of initializations apply. The message is applicable only when an assembly file is
the output of the compiler.
W170 PGI Fortran extension: $ $

Use of a nonstandard feature. A description of the feature is provided.
W171 PGI Fortran extension: nonstandard statement type $

W172 PGI Fortran extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.
W173 PGI Fortran extension: nonstandard use of data type length specifier

W174 PGI Fortran extension: type declaration contains data initialization

W175 PGI Fortran extension: IMPLICIT range contains nonalpha characters

W176 PGI Fortran extension: nonstandard operator $

W177 PGI Fortran extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 PGI Fortran extension: use of structure field reference $

W180 PGI Fortran extension: nonstandard form of constant

W181 PGI Fortran extension: & alternate return

W182 PGI Fortran extension: mixed non-character and character elements in COMMON
$

W183 PGI Fortran extension: mixed non-character and character EQUIVALENCE ($,$)

W184 Mixed type elements (numeric and/or character types) in COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE ($,$)

S186 Argument missing for formal argument $

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual argument to array dummy
argument

S190 Argument number $ to $: non-conformable arrays

Messages

PVF Reference Guide Version 2017 | 189

S191 Argument number $ to $ cannot be an assumed-size array

S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT(IN) argument cannot be defined - $

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement

An illegal qualifier was found or a value was specified for a qualifier which does not
expect a value. In either case, the qualifier for which the error occurred is indicated in
the error message.
S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment
requirement.
S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $

S202 Repeated I/O specifier - $

S203 FORMAT statement has no label

S204 $ $

Miscellaneous I/O error.
S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.
S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/O cannot be performed with internal, unformatted, formatted, and list-
directed I/O. Also, I/O lists must not be present.
S213 $ is not a NAMELIST group name

Messages

PVF Reference Guide Version 2017 | 190

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item or specifier

An assumed size array was used as an item to be read or written or as an I/O specifier
(i.e., FMT = array-name). In these contexts the size of the array must be known.
S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or array element

S218 Statement labeled $ $

S219 <reserved message number>

S220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in
this context.
S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in
this context.
S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).
S224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the
maximum allowed (currently 2048).
W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with
the number of parameters in the macro’s definition.
F226 Can't find include file $

The indicated include file could not be opened.
S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum
allowed (currently 2048).
S228 EOF in comment

The end of a file was encountered while processing a comment.
S229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S230 EOF in string

The end of a file was encountered while processing a quoted string.
S231 Formal parameters too long for $

Messages

PVF Reference Guide Version 2017 | 191

The total length of the parameters in the definition of the indicated macro exceeded the
maximum allowed (currently 2048).
S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W235 Illegal macro name

A macro name was not an identifier.
S236 Illegal number $

The indicated number contained a syntax error.
F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).
W238 Missing #endif

End of file was encountered before a required #endif directive was found.
W239 Missing argument list for $

A call of the indicated macro had no argument list.
S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W241 Redefinition of symbol $

The indicated macro name was redefined.
I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous
definition.
F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
W245 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro’s
definition.
S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S247 Syntax error in #include

The #include directive was not correctly formed.
W248 Syntax error in #line

Messages

PVF Reference Guide Version 2017 | 192

A #line directive was not correctly formed.
W249 Syntax error in #module

A #module directive was not correctly formed.
W250 Syntax error in #undef

A #undef directive was not correctly formed.
W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum
allowed (currently 31).
F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may
be recursive.
W256 Undefined directive $

The identifier following a # was not a directive name.
F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and 0 values are illegal for a position in
a file.
S257 EOF in #include directive

End of file was encountered while processing a #include directive.
S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).
S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

Messages

PVF Reference Guide Version 2017 | 193

I264 Possible nested comment

The characters /* were found within a comment.
S265 <reserved message number>

S266 <reserved message number>

S267 <reserved message number>

W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be severe if the compilation has gone too far to undo the inlining
process.
F270 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram

I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been
assigned a value. The names of the variable and the function in which the use occurred
are listed. The line number, if specified, is the line number of the basic block containing
the use of the variable.
W280 Syntax error in directive $

Messages 280-300 reserved for directives handling
W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $

S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$

S305 $ cannot be named, $

Messages

PVF Reference Guide Version 2017 | 194

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or arithmetic IF

S309 Incorrect name, $, specified in END statement

S310 $ $

Generic message for MODULE errors.
W311 Non-replicated mapping for $ array, $, ignored

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is not an asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the
subprogram should be an asterisk to declare this as the alternate return.
I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural
analysis.
I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural
analysis.
I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.
I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.
I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.
I320 IPA: routine $, $ common blocks optimized

This many mapped common blocks were optimized by interprocedural analysis.
I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis,
either because they were declared differently in different routines, or they did not
appear in the main program.
I322 IPA: analyzing main program $

Interprocedural analysis is building the call graph and propagating information with the
named main program.
I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for
subsequent analysis and propagation.

Messages

PVF Reference Guide Version 2017 | 195

W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to $

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments verified

I335 IPA: $ descriptive/prescriptive distribution formats verified

I336 IPA: $ descriptive/prescriptive distribution targets verified

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information

S342 Unable to open file $ while analyzing IPA information

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.
W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first
appearance.
F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate
options, requires the -ipalib option to specify the library directory.
W348 Common /$/ $ has different distribution target

Messages

PVF Reference Guide Version 2017 | 196

The array was declared in a common block with a different distribution target in another
subprogram.
W349 Common /$/ $ has different distribution format

The array was declared in a common block with a different distribution format in
another subprogram.
W350 Common /$/ $ has different alignment

The array was declared in a common block with a different alignment in another
subprogram.
W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number
of dummy arguments than appear in the call.
W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number
of dummy arguments than appear in the call to the EXTERNAL name given.
W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or
analyzed.
I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.
W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.
I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incomplete; some information
may not be available for optimization.
I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may
not be available for optimization.
W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to a dummy argument that is declared
EXTERNAL.
W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a
function.
W360 FUNCTION $ passed to FUNCTION dummy argument $ with different result
type

The call statement passes a function argument to a function dummy argument, but the
dummy has a different result type.
W361 FUNCTION $ passed to SUBROUTINE dummy argument $

Messages

PVF Reference Guide Version 2017 | 197

The call statement passes a function name to a dummy argument that is used as a
subroutine.
W362 Argument $ has a different type than dummy argument $

The type of the actual argument is different than the type of the corresponding dummy
argument.
W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.
W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is a scalar variable.
W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.
F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to
the compiler maintenance group. If user errors were reported when collecting IPA
information or during IPA analysis, correcting them may avoid this error.
I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying
the array to sequential storage. The most common cause is passing an ALLOCATABLE
array or array expression to a dummy argument that is declared with explicit bounds.
Declaring the dummy argument as assumed shape, with bounds (:,:,:), will remove this
warning.
W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar
variable.
W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than
the dummy argument.
W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than
the dummy argument; this may require copying the actual argument into sequential
storage.
W371 Dummy argument $ is INTENT(IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the
argument may be modified; the INTENT(IN) declaration should be changed.
W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a
dummy argument with non- inherited alignment.
I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution
format to a dummy argument with prescriptive or descriptive distribution format.

Messages

PVF Reference Guide Version 2017 | 198

I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution
target to a dummy argument with prescriptive or descriptive distribution target.
I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different
dimensions.
I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its
template than does the dummy argument.
I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its
template than does the dummy argument.
I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target
sizes.
I379 Alignment of $ is too complex

The alignment specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.
I380 Distribution format of $ is too complex

The distribution format specification of the array is too complex for interprocedural
analysis to verify or propagate; the program will work correctly, but without the benefit
of IPA.
I381 Distribution target of $ is too complex

The distribution target specification of the array is too complex for interprocedural
analysis to verify or propagate; the program will work correctly, but without the benefit
of IPA.
I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in
the whole program.
I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program
that can be replaced by constants.
I384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program
that are not modified and can be declared as INTENT(IN).
W385 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program
that were declared as INTENT(IN) but should be INTENT(INOUT).
I386 IPA: $ array alignments propagated

Messages

PVF Reference Guide Version 2017 | 199

Interprocedural analysis has found this many array dummy arguments that could have
the inherited array alignment replaced by a descriptive alignment.
I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of
this many array dummy arguments match the alignments of the actual argument.
I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have
the transcriptive distribution format replaced by a descriptive format.
I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution
formats of this many array dummy arguments match the formats of the actual
argument.
I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have
the transcriptive distribution target replaced by a descriptive target.
I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution
targets of this many array dummy arguments match the targets of the actual argument.
I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be
optimized, either because the common block was not declared in the main program, or
because it was declared differently in different subprograms.
I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.
I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.
I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural
analysis.
I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural
analysis.
I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural
analysis.
I399 IPA: common block $ not optimized

Messages

PVF Reference Guide Version 2017 | 200

The given common block was not optimized by interprocedural analysis either because
it was not declared in the main program, or because it was declared differently in
different subprograms.
E400 IPA: dummy argument $ is an asterisk, but actual argument is not a label

The subprogram expects an alternate return label for this argument.
E401 Actual argument $ is a subprogram, but Dummy argument $ is not declared
EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a
scalar variable or array.
E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both
arrays are declared with the HPF SEQUENCE attribute.
E404 Sequential array section of $ in argument $ is not contiguous

When passing an array section to a formal argument that has the HPF SEQUENCE
attribute, the actual argument must be a whole array with the HPF SEQUENCE
attribute, or an array section of such an array where the section is a contiguous sequence
of elements.
E405 Array expression argument $ may not be passed to sequential dummy argument $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument
must be a whole array with the HPF SEQUENCE attribute or a contiguous array section
of such an array, unless an INTERFACE block is used.
E406 Actual argument $ and formal argument $ have different character lengths

The actual and formal array character arguments have different character lengths, which
is allowed only if both character arrays are declared with the HPF SEQUENCE attribute,
unless an INTERFACE block is used.
W407 Argument $ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.
W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block
data subprogram.
W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one
found is used.
W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.
W411 Formal argument $ is DYNAMIC but actual argument is an expression

W412 Formal argument $ is DYNAMIC but actual argument $ is not

Messages

PVF Reference Guide Version 2017 | 201

I413 Formal argument $ has two reaching distributions and may be a candidate for
cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased
because the same variable is passed in both argument positions; or one formal argument
and a global or COMMON variable may be aliased, because the global or COMMON
variable is passed as an actual argument. If either alias is assigned in the subroutine,
unexpected results may occur; this message alerts the user that this situation is
disallowed by the Fortran standard.
F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA
directory. One of these files has been renamed or corrupted. This can arise when there
are two files with the same prefix, such as a.hpf and a.f90.
E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy
parameter must have the SEQUENCE attribute or an INTERFACE block must be used.
E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION

E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result type

W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete

W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

Messages

PVF Reference Guide Version 2017 | 202

W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ‘real a(-1)’, or an
upper bound less than the lower bound, as ‘real a(4:2)’.
W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.
E438 $ $ not supported on this platform

This construct is not supported by the compiler for this target.
S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE statement or WHERE
block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The
derived type must have the SEQUENCE attribute, but does not.
E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.
S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number
of dimensions in the dummy argument.
S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - $ $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE
association can appear in a MODULE PROCEDURE statement.

Messages

PVF Reference Guide Version 2017 | 203

S455 A derived type array section cannot appear with a member array section - $

A reference like A(:)%B(:), where ‘A’ is a derived type array and ‘B’ is a member array, is
not allowed; a section subscript may appear after ‘A’ or after ‘B’, but not both.
S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot have the
POINTER attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

S465 Functions returning a POINTER require an explicit interface

S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE attribute

W468 Argument to ISO_C_BINDING intrinsic must have TARGET attribute set

W469 Character argument to C_LOC intrinsic must have length of one

W470 Accelerator feature license not found; accelerator features disabled

W471 CUDA Fortran feature license not found; CUDA Fortran features disabled

E472 A Scalar element of a nonsequential array cannot be passed to a dummy array
argument - $

A subroutine or function call may not pass an element of an array, like 'A(N)', to a
dummy array argument if the array 'A' is not sequential. If the array is sequential, then
Fortran sequence and storage association rules will treat the dummy argument as a new
array equivalenced to the actual argument starting at the element passed. If the array is
not sequential, then Fortran sequence and storage association rules do not apply.
W473 $ must have the PURE attribute

F474 This type EXTRINSIC is not yet implemented - $

Contact PGI to ask when this EXTRINSIC type will be implemented.
E475 A dummy argument may not be distributed in a PURE interface - $

A dummy argument to a routine defined with a PURE interface may not have the
DISTRIBUTE attribute.

Messages

PVF Reference Guide Version 2017 | 204

E476 A dummy argument may only be aligned with another dummy in a PURE
interface - $

E477 The device array section actual argument was not stride-1 in the leading dimension
- $

A device (device, shared, or constant attribute) array passed as an array section to an
assumed-shape dummy argument must be stride-1 in the leading dimension.
E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to a dummy argument with the Accelerator
REFLECTED attribute must be a symbol that has a visible device copy. Expressions are
not allowed.
E479 The dummy argument $ is REFLECTED; the actual argument $ must have a visible
device copy

If a dummy argument has the Accelerator REFLECTED attribute, the actual argument
must be a symbol with a visible device copy. This may be because the symbol appeared
in a MIRROR, REFLECTED, COPYIN, COPYOUT, COPY or LOCAL declarative
Accelerator directive, or because it appeared in a COPYIN, COPYOUT, COPY or LOCAL
clause for an Accelerator DATA REGION or REGION surrounding the procedure call.
E480 Argument $ is passed to dummy argument $, which is REFLECTED; the actual
argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the
actual argument must be copied to a temporary array. This may occur if the dummy
argument is not assumed-shape, and so must be contiguous in memory, or if the actual
argument is not stride-1 in the leftmost (first) dimension. In these cases, the REFLECTED
argument is not supported.
F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a
dummy argument to the subprogram.
482 COMMON /$/ is declared differently in two subprograms - $

The COMMON block name was declared with different distribution or alignment for
one or more members in two different subprograms.
E483 Storage association due to EQUIVALENCE($,$) causes HPF alignments and
distributions to be ignored

An EQUIVALENCE statement causes Fortran storage association between entries
in this COMMON block. The storage association overrides the HPF alignments and
distributions for the COMMON block members.
E484 Datatype conflict in EQUIVALENCE between two distributed or aligned
COMMON block members: $ and $

Two distributed COMMON block members that appear in a COMMON block must have
the same datatype.
E485 Datatype conflict in EQUIVALENCE between a distributed or aligned COMMON
block member and another: $ and $

Messages

PVF Reference Guide Version 2017 | 205

A distributed COMMON block member may not be EQUIVALENCEd with another
COMMON member.
E486 The dummy argument $ is REFLECTED; an array element cannot be passed to a
REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy
argument.
E487 Index variable $ does not appear in a subscript on the left hand side of the FORALL
assignment

In a FORALL statement, each index variable in the FORALL must appear in some
subscript of the left hand side of the FORALL assignment. Otherwise, the FORALL will
assign the same left hand side elements for different values of that index.
I489 An ALLOCATE of a POINTER with transcriptive or inherited distribution causes
replication - $

When an array with the POINTER attribute and with a distribution that is transcriptive
or inherited is allocated, the alignment and distribution are ignored and the array
pointer is treated as replicated, since there is no symbol from which to inherit a
distribution.
E488 The function call in the FORALL does not have the PURE attribute - $

In a FORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise,
they cannot be called in parallel.
E490 An array section of $ is passed to the REFLECTED argument $, which is not
supported

When an actual argument is an array section, the dummy argument must not have the
REFLECTED attribute.
W491 EXTRINSIC($) subprograms require an explicit interface - $

An EXTRINSIC subprogram with the LOCAL or SERIAL attributes require an explicit
interface, either through an INTERFACE block, or by being in the same MODULE as the
caller, or being in a MODULE that is referenced with a USE statement.
E492 DYNAMIC distribution is only supported in HPF_GLOBAL subprograms - $

Variables with DYNAMIC distribution are not supported in EXTRINSIC(F77_LOCAL),
EXTRINSIC(F77_SERIAL), EXTRINSIC(F90_LOCAL), EXTRINSIC(F90_SERIAL),
EXTRINSIC(HPF_LOCAL) or EXTRINSIC(HPF_SERIAL) subprograms.
E493 $ arrays may not be aligned with ALLOCATABLE arrays - $

Static local arrays, common arrays, and dummy argument arrays may not be aligned
with arrays that have the ALLOCATABLE attribute, since the allocatable alignee may
not be allocated.
E494 COMMON arrays may not be aligned with dummy argument arrays - $

An array in a COMMON block may not specify an alignment with a dummy argument
array.
W495 The SHADOW directive for CYCLIC distributed dimensions is ignored - $

Messages

PVF Reference Guide Version 2017 | 206

A shadow boundary specified for array dimensions that are distributed with the
CYCLIC distribution is ignored.
I496 A $ of an unused template is eliminated

The HPF executable REDISTRIBUTE or REALIGN directive appeared specifying an HPF
TEMPLATE that is not used; the REDISTRIBUTE or REALIGN is eliminated.
E497 EXTRINSIC(F77_LOCAL) does not support distributed symbols of this datatype - $

This HPF implementation does not support distributed symbols of character or derived
type in EXTRINSIC(F77_LOCAL) subprograms.
E498 Alignment cycle involving two or more arguments - $

This dummy argument appears in an HPF ALIGN directive specifying alignment to
another dummy argument that is then aligned to this argument, or aligned to another
dummy argument that is eventually aligned to this argument.
W499 The descriptive distribution or alignment for this dummy argument is treated as
prescriptive - $

Even though the distribution or alignment for this dummy argument was specified as
descriptive, it is treated as prescriptive.
E500 MODULE $ uses (directly or indirectly) MODULE $, which causes a USE cycle

If MODULE A has a USE statement for MODULE B, we say that MODULE A directly
uses MODULE B. If MODULE B has a USE statement for MODULE C, we say that
MODULE A indirectly uses MODULE C. If MODULE C then has a USE statement for
MODULE A, then MODULE A indirectly uses itself, which is a USE cycle, and is not
allowed.
E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be
between 1 and the rank of the array or expression being transformed.
E505 DIM argument out of range for this reduction - $

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1
and the rank of the expression being reduced.
E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with
the POINTER attribute.
E507 The arguments to MOVE_ALLOC must be ALLOCATABLE - $

The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE
attribute.
E508 The array objects in a call to an elemental function are not conformable - $

When calling an elemental function, the arguments must be scalars or conformable
arrays or array expressions.
E509 Variables in a PURE subprogram may not have the SAVE attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot
save state in a SAVEd variable.

Messages

PVF Reference Guide Version 2017 | 207

E510 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching
ENDWHERE. The body of the WHERE construct can only contain assignment
statements.
E511 The WHERE mask expression and the array assignment do not conform

The assignment under control of a WHERE mask must have the same shape as the
WHERE mask.
E512 The WHERE mask is not an array expression

The WHERE mask expression must be a logical array expression.
E513 The alignment or distribution target may not be a private variable - $

This is a HPF_CRAFT restriction.
E514 The alignment extends beyond the bounds of the template - $

When aligning to a template, the entire array must align to template elements that lie
within the bounds of the template.
E515 Static variable aligned with allocatable symbol - $

A nonallocatable symbol cannot be aligned to an allocatable symbol.
E516 PURE subprograms may not have distributed variables - $

Distributed arrays are not allowed in PURE subprograms.
E517 Variables in HPF_LOCAL subprograms may not be distributed - $

Distributed arrays are not allowed in HPF_LOCAL subprograms.
W518 Function result could not be distributed; replicating - $

The compiler will replicate the function result.
E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.
E520 Host MODULE data cannot be used in a DEVICE or GLOBAL subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.
E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling for compute capability >= 2.0 - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any
MODULE except the MODULE containing the subprogram, unless they are being
compiled for compute capability 2.0 or higher. This feature requires the unified memory
system provided in compute capability 2.0.
E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any
MODULE except the MODULE containing the subprogram, unless they are being
compiled for compute capability 2.0 or higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.

Messages

PVF Reference Guide Version 2017 | 208

W523 MODULE data used in a DEVICE or GLOBAL subprogram forces compute
capability >= 2.0 only - $

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when
compiled for compute capability 2.0 or greater.
E524 Dependency in assignment causes allocation of a temporary which is not
supported in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which
requires allocation of temporary storage to produce a correct result. Dynamic allocation
of memory is not supported in subprograms that run on the device.
E525 Array reshaping is not supported for device subprogram calls: argument $ to
subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy
argument is not supported in global or device subprograms. This would require a run-
time test and a possible run-time copy to a dynamically allocated temporary array.
W526 SHARED attribute ignored on dummy argument $

The SHARED attribute has no meaning when applied to a dummy argument.
E527 Argument number $ requires allocation of a temporary which is not supported in
DEVICE or GLOBAL subprograms

Evaluation of the specified argument requires allocation of temporary storage for the
result to be passed to the subprogram being called. Dynamic allocation of memory is not
supported in subprograms that run on the device.
E528 Argument number $ to $: device attribute mismatch

Device attributes of the actual and formal arguments are not the same.
E529 PRINT and WRITE statements in device subprograms are only supported when
compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms
requires CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
E530 PRINT and WRITE statements in device subprograms are only supported with
compute capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms
requires CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
W531 PGI extension to OpenACC: $

This program is using a PGI extension to OpenACC.
W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program is using a PGI extension to
OpenACC.
E533 Clause $ not allowed in $ directive

This clause is not allowed on the specified directive.
E534 A loop scheduling directive may not appear within a KERNEL loop

Messages

PVF Reference Guide Version 2017 | 209

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL,
VECTOR, WORKER or GANG, may not appear inside a loop that has an accelerator
loop directive with the KERNEL clause. This clause is not allowed on the specified
directive.
E535 Undeclared symbol $ used in directive

Symbols used in OpenACC directives must be declared.
S901 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in
this context.
S902 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in
this context.
W905 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with
the number of parameters in the macro's definition.
F906 Can't find include file $

The indicated include file could not be opened.
S908 EOFin comment

The end of a file was encountered while processing a comment.
S909 EOFin macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
W914 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W915 Illegal macro name

A macro name was not an identifier.
W918 Missing #endif

End of file was encountered before a required #endif directive was found.
W919 Missing argument list for $

A call of the indicated macro had no argument list.
S920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W921 Redefinition of symbol $

The indicated macro name was redefined.
I922 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous
definition.

Messages

PVF Reference Guide Version 2017 | 210

F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S924 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
S926 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S927 Syntax error in #include

The #include directive was not correctly formed.
W928 Syntax error in #line

A #line directive was not correctly formed.
W929 Syntax error in #module

A #module directive was not correctly formed.
W930 Syntax error in #undef

A #undef directive was not correctly formed.
W931 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W932 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum
allowed (currently 31).
S935 Illegal context for __VA_ARGS__

W936 Undefined directive $

The identifier following a # was not a directive name.
S937 EOFin #include directive

End of file was encountered while processing a #include directive.
S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
W941 Illegal token in directive, $

Messages

PVF Reference Guide Version 2017 | 211

A directive token contains a illegal character.
S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S943 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.
I944 Possible nested comment

The characters /* were found within a comment.
I945 Redefining predefined macro $

I946 Undefining predefined macro $

W947 Can't redefine predefined macro $

W948 Can't undefine predefined macro $

F949 #error -- $

User defined preprocessor error message.
W950 #ident not followed by quoted string

W951 Extraneous tokens ignored following # directive

F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

S954 Illegal number in directive

S955 Illegal token in #if expression

S956 Missing > in #include

W957 Arguments in macro $ are not unique

S959 ## directive occurs at beginning or end of macro definition

S960 $ is not an argument

W961 No macro replacement within a character constant

W962 Macro replacement within a character constant

W964 Macro replacement within a string literal

F965 Recursive include file $

W966 Null argument to macro

Argument to macro is a null value.
F967 #warning -- $

User defined preprocessor warning message.

Messages

PVF Reference Guide Version 2017 | 212

S969 _Pragma $

Pragma operator errors.

8.4. Fortran Run-time Error Messages
This section presents the error messages generated by the run-time system. The run-time
system displays error messages on standard output.

8.4.1. Message Format
The messages are numbered but have no severity indicators because they all terminate
program execution.

8.4.2. Message List
Here are the run-time error messages:

201 illegal value for specifier

An improper specifier value has been passed to an I/O run-time routine. Example:
within an OPEN statement, form='unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an
OPEN statement, form='unformatted', blank='null'.

203 record length must be specified

A recl specifier required for an I/O run-time routine has not been passed. Example:
within an OPEN statement, access='direct' has been passed, but the record length has not
been specified (recl=specifier).

204 illegal use of a readonly file

Self explanatory. Check file and directory modes for readonly status.

205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, a file disposition conflict has occurred. Example: within an
OPEN statement, status='scratch' and dispose='keep' have both been passed.

206 attempt to open a named file as 'SCRATCH'

207 file is already connected to another unit

208 'NEW' specified for file that already exists

209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Messages

PVF Reference Guide Version 2017 | 213

Memory allocation operations occur only in conjunction with namelist I/O. The
most probable cause of fixed buffer overflow is exceeding the maximum number of
simultaneously open file units.

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict

Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string

A run-time encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a run-time format item.

228 end of file reached without finding group

229 end of file reached while processing group

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Messages

PVF Reference Guide Version 2017 | 214

Data types specified by I/O list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

250 error in format - number missing after '.', '-', or '+'

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

255 illegal asynchronous I/O operation

256 POS can only be specified for a 'STREAM' file

257 POS value must be positive

258 NEWUNIT requires FILE or STATUS=SCRATCH

PVF Reference Guide Version 2017 | 215

Chapter 9.
CONTACT INFORMATION

You can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: mailto: sales@pgroup.com
WWW: https://www.pgicompilers.com

The PGI User Forum, https://www.pgicompilers.com/userforum/index.php is monitored
by members of the PGI engineering and support teams as well as other PGI customers.
The forums contain answers to many commonly asked questions. Log in to the PGI
website, https://www.pgicompilers.com/account/login.php" to access the forums.

Many questions and problems can be resolved by following instructions and
the information available in the PGI frequently asked questions (FAQ), https://
www.pgicompilers.com/support/faq.htm.

Submit support requests using the PGI Technical Support Request form, https://
www.pgicompilers.com/support/support_request.php .

mailto: sales@pgroup.com
https://www.pgicompilers.com
https://www.pgicompilers.com/userforum/index.php
https://www.pgicompilers.com/userforum/index.php
https://www.pgicompilers.com/userforum/index.php
https://www.pgicompilers.com/support/faq.htm
https://www.pgicompilers.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2017 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Fortran Data Types
	1.1. Fortran Data Types
	1.1.1. Fortran Scalars
	1.1.2. FORTRAN 77 Aggregate Data Type Extensions
	1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

	Command-Line Options Reference
	2.1. PGI Compiler Option Summary
	2.1.1. Build-Related PGI Options
	2.1.2. PGI Debug-Related Compiler Options
	2.1.3. PGI Optimization-Related Compiler Options
	2.1.4. PGI Linking and Runtime-Related Compiler Options

	2.2. Generic PGI Compiler Options
	2.2.1. -#
	2.2.2. -###
	2.2.3. -acc
	2.2.4. -Bdynamic
	2.2.5. -Bstatic
	2.2.6. -Bstatic_pgi
	2.2.7. -byteswapio
	2.2.8. -C
	2.2.9. -c
	2.2.10. -D
	2.2.11. -dryrun
	2.2.12. -drystdinc
	2.2.13. -E
	2.2.14. -F
	2.2.15. -fast
	2.2.16. -fastsse
	2.2.17. --flagcheck
	2.2.18. -flags
	2.2.19. -g
	2.2.20. -gopt
	2.2.21. -help
	2.2.22. -I
	2.2.23. -i2, -i4, -i8
	2.2.24. -K<flag>
	2.2.25. --keeplnk
	2.2.26. -L
	2.2.27. -l<library>
	2.2.28. -M
	2.2.29. -m
	2.2.30. -m64
	2.2.31. -M<pgflag>
	2.2.32. -module <moduledir>
	2.2.33. -mp
	2.2.34. -noswitcherror
	2.2.35. -O<level>
	2.2.36. -o
	2.2.37. -pc
	2.2.38. --pedantic
	2.2.39. -pgc++libs
	2.2.40. -pgf77libs
	2.2.41. -pgf90libs
	2.2.42. -r4 and -r8
	2.2.43. -rc
	2.2.44. -S
	2.2.45. -show
	2.2.46. -silent
	2.2.47. -stack
	2.2.48. -ta=tesla(tesla_suboptions),host
	2.2.49. -time
	2.2.50. -tp <target>[,target...]
	2.2.51. -[no]traceback
	2.2.52. -u
	2.2.53. -U
	2.2.54. -V[release_number]
	2.2.55. -v
	2.2.56. -W
	2.2.57. -w

	2.3. -M Options by Category
	2.3.1. Code Generation Controls
	2.3.2. Environment Controls
	2.3.3. Fortran Language Controls
	2.3.4. Inlining Controls
	2.3.5. Optimization Controls
	2.3.6. Miscellaneous Controls

	Directives Reference
	3.1. PGI Proprietary Fortran Directive Summary
	3.1.1. altcode (noaltcode)
	3.1.2. assoc (noassoc)
	3.1.3. bounds (nobounds)
	3.1.4. cncall (nocncall)
	3.1.5. concur (noconcur)
	3.1.6. depchk (nodepchk)
	3.1.7. eqvchk (noeqvchk)
	3.1.8. invarif (noinvarif)
	3.1.9. ivdep
	3.1.10. lstval (nolstval)
	3.1.11. opt
	3.1.12. prefetch
	3.1.13. safe_lastval
	3.1.14. tp
	3.1.15. unroll (nounroll)
	3.1.16. vector (novector)
	3.1.17. vintr (novintr)

	3.2. Prefetch Directives and Pragmas
	3.3. IGNORE_TKR Directive
	3.3.1. IGNORE_TKR Directive Syntax
	3.3.2. IGNORE_TKR Directive Format Requirements
	3.3.3. Sample Usage of IGNORE_TKR Directive

	3.4. !DEC\$ Directives
	3.4.1. ALIAS Directive
	3.4.2. ATTRIBUTES Directive
	3.4.3. DECORATE Directive
	3.4.4. DISTRIBUTE Directive

	Runtime Environment
	4.1. Win64 Programming Model
	4.1.1. Function Calling Sequence
	4.1.2. Function Return Values
	4.1.3. Argument Passing
	4.1.4. Win64 Fortran Supplement

	PVF Properties
	5.1. General Property Page
	5.1.1. General
	5.1.2. Output Directory
	5.1.3. Intermediate Directory
	5.1.4. Extensions to Delete on Clean
	5.1.5. Configuration Type
	5.1.6. Build Log File
	5.1.7. Build Log Level

	5.2. Debugging Property Page
	5.2.1. Debugging
	5.2.2. Application Command
	5.2.3. Application Arguments
	5.2.4. Environment
	5.2.5. Merge Environment
	5.2.6. Accelerator Profiling
	5.2.7. MPI Debugging
	5.2.8. Working Directory
	5.2.9. Number of Processes
	5.2.10. Working Directory
	5.2.11. Additional Arguments: mpiexec
	5.2.12. Location of mpiexec

	5.3. Fortran Property Pages
	5.4. Fortran | General
	5.4.1. Display Startup Banner
	5.4.2. Additional Include Directories
	5.4.3. Module Path
	5.4.4. Object File Name
	5.4.5. Debug Information Format
	5.4.6. Optimization

	5.5. Fortran | Optimization
	5.5.1. Optimization
	5.5.2. Global Optimizations
	5.5.3. Vectorization
	5.5.4. Inlining
	5.5.5. Use Frame Pointer
	5.5.6. Loop Unroll Count
	5.5.7. Auto-Parallelization

	5.6. Fortran | Preprocessing
	5.6.1. Preprocess Source File
	5.6.2. Additional Include Directories
	5.6.3. Ignore Standard Include Path
	5.6.4. Preprocessor Definitions
	5.6.5. Undefine Preprocessor Definitions

	5.7. Fortran | Code Generation
	5.7.1. Runtime Library

	5.8. Fortran | Language
	5.8.1. Fortran Dialect
	5.8.2. Treat Backslash as Character
	5.8.3. Extend Line Length
	5.8.4. Enable OpenMP Directives
	5.8.5. Enable OpenACC Directives
	5.8.6. OpenACC Autoparallelization
	5.8.7. OpenACC Required
	5.8.8. OpenACC Routineseq
	5.8.9. OpenACC Wait
	5.8.10. OpenACC Conformance Level
	5.8.11. OpenACC Sync
	5.8.12. MPI
	5.8.13. Enable CUDA Fortran
	5.8.14. CUDA Fortran Register Limit
	5.8.15. CUDA Fortran Use Fused Multiply-Adds
	5.8.16. CUDA Fortran Use Fast Math Library
	5.8.17. CUDA Fortran Debug
	5.8.18. CUDA Fortran Line Information
	5.8.19. CUDA Fortran Use LLVM Back End
	5.8.20. CUDA Fortran Unroll
	5.8.21. CUDA Fortran Flush to Zero
	5.8.22. CUDA Fortran Toolkit
	5.8.23. CUDA Fortran Compute Capability
	5.8.24. CUDA Fortran Fermi
	5.8.25. CUDA Fortran Fermi+
	5.8.26. CUDA Fortran Kepler
	5.8.27. CUDA Fortran Kepler+
	5.8.28. CUDA Fortran Keep Binary
	5.8.29. CUDA Fortran Keep Kernel Source
	5.8.30. CUDA Fortran Keep PTX
	5.8.31. CUDA Fortran Keep PTXAS
	5.8.32. CUDA Fortran Generate RDC
	5.8.33. CUDA Fortran Emulation
	5.8.34. CUDA Fortran Madconst

	5.9. Fortran | Floating Point Options
	5.9.1. Floating Point Exception Handling
	5.9.2. Floating Point Consistency
	5.9.3. Flush Denormalized Results to Zero
	5.9.4. Treat Denormalized Values as Zero
	5.9.5. IEEE Arithmetic

	5.10. Fortran | External Procedures
	5.10.1. Calling Convention
	5.10.2. String Length Arguments
	5.10.3. Case of External Names

	5.11. Fortran | Libraries
	5.11.1. Use MKL

	5.12. Fortran | Target Processors
	5.12.1. AMD Athlon
	5.12.2. AMD Barcelona
	5.12.3. AMD Bulldozer
	5.12.4. AMD Istanbul
	5.12.5. AMD Piledriver
	5.12.6. AMD Shanghai
	5.12.7. Intel Core 2
	5.12.8. Intel Core i7
	5.12.9. Intel Penryn
	5.12.10. Intel Pentium 4
	5.12.11. Intel Sandy Bridge
	5.12.12. Generic x86-64 [x64 only]

	5.13. Fortran | Target Accelerators
	5.13.1. Target NVIDIA Tesla
	5.13.2. Tesla Register Limit
	5.13.3. Tesla Use Fused Multiply-Adds
	5.13.4. Tesla Use Fast Math Library
	5.13.5. Tesla LLVM
	5.13.6. Tesla Noattach
	5.13.7. Tesla Pin Host Memory
	5.13.8. Tesla Autocollapse
	5.13.9. Tesla Debug
	5.13.10. Tesla Lineinfo
	5.13.11. Tesla Unroll
	5.13.12. Tesla Required
	5.13.13. Tesla Flush to Zero
	5.13.14. Tesla Generate RDC
	5.13.15. Tesla CUDA Toolkit
	5.13.16. Tesla Compute Capability
	5.13.17. Tesla CC Fermi
	5.13.18. Tesla CC Fermi+
	5.13.19. Tesla CC Kepler
	5.13.20. Tesla CC Kepler+
	5.13.21. Tesla: Keep Kernel Files

	5.14. Fortran | Diagnostics
	5.14.1. Warning Level
	5.14.2. Generate Assembly
	5.14.3. Annotate Assembly
	5.14.4. Accelerator Information
	5.14.5. CCFF Information
	5.14.6. Fortran Language Information
	5.14.7. Inlining Information
	5.14.8. IPA Information
	5.14.9. Loop Intensity Information
	5.14.10. Loop Optimization Information
	5.14.11. LRE Information
	5.14.12. OpenMP Information
	5.14.13. Optimization Information
	5.14.14. Parallelization Information
	5.14.15. Unified Binary Information
	5.14.16. Vectorization Information

	5.15. Fortran | Profiling
	5.15.1. Suppress CCFF Information
	5.15.2. Enable Limited DWARF

	5.16. Fortran | Runtime
	5.16.1. Check Array Bounds
	5.16.2. Check Pointers
	5.16.3. Check Stack
	5.16.4. Command Line

	5.17. Fortran | Command Line
	5.17.1. Command Line

	5.18. Linker Property Pages
	5.19. Linker | General
	5.19.1. Output File
	5.19.2. Additional Library Directories
	5.19.3. Stack Reserve Size
	5.19.4. Stack Commit Size
	5.19.5. Export Symbols

	5.20. Linker | Input
	5.20.1. Additional Dependencies

	5.21. Linker | Command Line
	5.21.1. Command Line

	5.22. Librarian Property Pages
	5.23. Librarian | General
	5.23.1. Output File
	5.23.2. Additional Library Directories
	5.23.3. Additional Dependencies

	5.24. Librarian | Command Line
	5.24.1. Command Line

	5.25. Resources Property Page
	5.26. Resources | Command Line
	5.26.1. Command Line

	5.27. Build Events Property Page
	5.27.1. Build Event
	5.27.2. Command Line
	5.27.3. Description
	5.27.4. Excluded From Build

	5.28. Custom Build Step Property Page
	5.28.1. Custom Build Step | General
	5.28.2. Command Line
	5.28.3. Description
	5.28.4. Outputs
	5.28.5. Additional Dependencies

	PVF Build Macros
	Fortran Module/Library Interfaces for Windows
	7.1. Source Files
	7.2. Data Types
	7.3. Using DFLIB, LIBM, and DFPORT
	7.3.1. DFLIB
	7.3.2. LIBM
	7.3.3. DFPORT

	7.4. Using the DFWIN module
	7.5. Supported Libraries and Modules
	7.5.1. advapi32
	7.5.2. comdlg32
	7.5.3. dfwbase
	7.5.4. dfwinty
	7.5.5. gdi32
	7.5.6. kernel32
	7.5.7. shell32
	7.5.8. user32
	7.5.9. winver
	7.5.10. wsock32

	Messages
	8.1. Diagnostic Messages
	8.2. Phase Invocation Messages
	8.3. Fortran Compiler Error Messages
	8.3.1. Message Format
	8.3.2. Message List

	8.4. Fortran Run-time Error Messages
	8.4.1. Message Format
	8.4.2. Message List

	Contact Information

