
REFERENCE GUIDE FOR X86-64 CPUS

Version 2018

Reference Guide for x86-64 CPUs Version 2018 | ii

TABLE OF CONTENTS

Preface... xi
Audience Description.. xi
Compatibility and Conformance to Standards.. xi
Organization..xii
Hardware and Software Constraints.. xiii
Conventions..xiii
Terms..xiv
Related Publications.. xv

Chapter 1. Fortran, C, and C++ Data Types.. 1
1.1. Fortran Data Types... 1

1.1.1. Fortran Scalars...1
1.1.2. FORTRAN 77 Aggregate Data Type Extensions.. 3
1.1.3. Fortran 90 Aggregate Data Types (Derived Types)... 4

1.2. C and C++ Data Types... 4
1.2.1. C and C++ Scalars... 4
1.2.2. C and C++ Aggregate Data Types... 6
1.2.3. Class and Object Data Layout...6
1.2.4. Aggregate Alignment..7
1.2.5. Bit-field Alignment.. 8
1.2.6. Other Type Keywords in C and C++.. 8

Chapter 2. Command-Line Options Reference...9
2.1. PGI Compiler Option Summary... 9

2.1.1. Build-Related PGI Options.. 10
2.1.2. PGI Debug-Related Compiler Options...12
2.1.3. PGI Optimization-Related Compiler Options...13
2.1.4. PGI Linking and Runtime-Related Compiler Options... 13

2.2. C and C++ Compiler Options.. 14
2.3. Generic PGI Compiler Options.. 16

2.3.1. -#... 16
2.3.2. -###...16
2.3.3. -acc...17
2.3.4. -Bdynamic... 17
2.3.5. -Bstatic...18
2.3.6. -Bstatic_pgi..19
2.3.7. -byteswapio... 20
2.3.8. -C... 20
2.3.9. -c..21
2.3.10. -d<arg>... 21
2.3.11. -D..22
2.3.12. -dryrun..23

Reference Guide for x86-64 CPUs Version 2018 | iii

2.3.13. -drystdinc.. 24
2.3.14. -E.. 24
2.3.15. -F.. 25
2.3.16. -fast... 25
2.3.17. -fastsse... 26
2.3.18. --flagcheck... 26
2.3.19. -flags..26
2.3.20. -fpic...27
2.3.21. -fPIC...27
2.3.22. -g.. 27
2.3.23. -gopt.. 28
2.3.24. -g77libs... 29
2.3.25. -help.. 29
2.3.26. -I...31
2.3.27. -i2, -i4, -i8...32
2.3.28. -K<flag>.. 33
2.3.29. --keeplnk... 34
2.3.30. -L.. 35
2.3.31. -l<library>.. 36
2.3.32. -M..36
2.3.33. -m... 36
2.3.34. -m64.. 37
2.3.35. -M<pgflag>... 37
2.3.36. -mcmodel=medium... 43
2.3.37. -module <moduledir>.. 44
2.3.38. -mp..45
2.3.39. -noswitcherror...46
2.3.40. -O<level>... 47
2.3.41. -o.. 48
2.3.42. -pc...49
2.3.43. --pedantic.. 51
2.3.44. -pg...52
2.3.45. -pgc++libs.. 52
2.3.46. -pgf77libs...53
2.3.47. -pgf90libs...53
2.3.48. -R<directory>.. 54
2.3.49. -r.. 54
2.3.50. -r4 and -r8...55
2.3.51. -rc... 55
2.3.52. -s.. 56
2.3.53. -S.. 56
2.3.54. -shared... 57
2.3.55. -show... 57

Reference Guide for x86-64 CPUs Version 2018 | iv

2.3.56. -silent...58
2.3.57. -soname.. 58
2.3.58. -stack... 58
2.3.59. -ta... 60
2.3.60. -time.. 62
2.3.61. -tp <target>[,target...].. 62
2.3.62. -[no]traceback...65
2.3.63. -u.. 65
2.3.64. -U..66
2.3.65. -V[release_number].. 66
2.3.66. -v.. 67
2.3.67. -W... 68
2.3.68. -w... 68
2.3.69. -Xs...69
2.3.70. -Xt... 69
2.3.71. -Xlinker... 70

2.4. C and C++ -specific Compiler Options... 70
2.4.1. -A... 71
2.4.2. -a... 71
2.4.3. -alias... 72
2.4.4. --[no_]alternative_tokens...72
2.4.5. -B... 73
2.4.6. -b... 73
2.4.7. -b3.. 74
2.4.8. --[no_]bool.. 74
2.4.9. --[no_]builtin..75
2.4.10. --cfront_2.1..75
2.4.11. --cfront_3.0..76
2.4.12. --[no_]compress_names..76
2.4.13. --create_pch filename... 77
2.4.14. --diag_error <number>...78
2.4.15. --diag_remark <number>.. 78
2.4.16. --diag_suppress <number>.. 78
2.4.17. --diag_warning <number>... 79
2.4.18. --display_error_number..79
2.4.19. -e<number>.. 80
2.4.20. --no_exceptions... 80
2.4.21. --gnu_version <num>... 80
2.4.22. --[no]llalign.. 81
2.4.23. -M..81
2.4.24. -MD.. 82
2.4.25. --optk_allow_dollar_in_id_chars... 82
2.4.26. -P.. 83

Reference Guide for x86-64 CPUs Version 2018 | v

2.4.27. -+p...83
2.4.28. --pch.. 84
2.4.29. --pch_dir directoryname...84
2.4.30. --[no_]pch_messages... 85
2.4.31. --preinclude=<filename>...85
2.4.32. --use_pch filename...85
2.4.33. --[no_]using_std...86
2.4.34. -Xfilename... 86

2.5. -M Options by Category.. 87
2.5.1. Code Generation Controls.. 87
2.5.2. C/C++ Language Controls...91
2.5.3. Environment Controls... 93
2.5.4. Fortran Language Controls... 95
2.5.5. Inlining Controls..98
2.5.6. Optimization Controls..100
2.5.7. Miscellaneous Controls...109

Chapter 3. C++ Name Mangling.. 115
Chapter 4. Directives and Pragmas Reference..117

4.1. PGI Proprietary Fortran Directive and C/C++ Pragma Summary................................117
4.1.1. altcode (noaltcode).. 118
4.1.2. assoc (noassoc)..119
4.1.3. bounds (nobounds)... 119
4.1.4. cncall (nocncall).. 119
4.1.5. concur (noconcur).. 119
4.1.6. depchk (nodepchk)... 120
4.1.7. eqvchk (noeqvchk)... 120
4.1.8. fcon (nofcon)..120
4.1.9. invarif (noinvarif)...120
4.1.10. ivdep.. 120
4.1.11. lstval (nolstval).. 120
4.1.12. opt... 121
4.1.13. prefetch...121
4.1.14. safe (nosafe)... 121
4.1.15. safe_lastval...122
4.1.16. safeptr (nosafeptr)..123
4.1.17. single (nosingle)... 123
4.1.18. tp.. 124
4.1.19. unroll (nounroll)...124
4.1.20. vector (novector)..124
4.1.21. vintr (novintr)..125

4.2. Prefetch Directives and Pragmas..125
4.3. !$PRAGMA C...125
4.4. IGNORE_TKR Directive.. 125

Reference Guide for x86-64 CPUs Version 2018 | vi

4.4.1. IGNORE_TKR Directive Syntax.. 125
4.4.2. IGNORE_TKR Directive Format Requirements.. 126
4.4.3. Sample Usage of IGNORE_TKR Directive..126

4.5. !DEC\$ Directives.. 127
4.5.1. ALIAS Directive..127
4.5.2. ATTRIBUTES Directive.. 127
4.5.3. DECORATE Directive.. 128
4.5.4. DISTRIBUTE Directive.. 128

Chapter 5. Runtime Environment... 130
5.1. Linux86-64 Programming Model... 130

5.1.1. Function Calling Sequence.. 130
5.1.2. Function Return Values.. 133
5.1.3. Argument Passing... 134
5.1.4. Linux86-64 Fortran Supplement..137

5.2. Win64 Programming Model... 142
5.2.1. Function Calling Sequence.. 142
5.2.2. Function Return Values.. 145
5.2.3. Argument Passing... 146
5.2.4. Win64 Fortran Supplement..148

Chapter 6. C++ Dialect Supported...154
6.1. Extensions Accepted in Normal C++ Mode...154
6.2. cfront 2.1 Compatibility Mode...155
6.3. cfront 2.1/3.0 Compatibility Mode... 156
6.4. Extensions accepted in GNU compatibility mode (pgc++)..................................... 157
6.5. C++11 Language Features Accepted.. 157
6.6. C++14 Language Features Accepted.. 161

Chapter 7. Fortran Module/Library Interfaces for Windows..163
7.1. Source Files... 163
7.2. Data Types.. 163
7.3. Using DFLIB, LIBM, and DFPORT...164

7.3.1. DFLIB..164
7.3.2. LIBM... 165
7.3.3. DFPORT... 166

7.4. Using the DFWIN module... 171
7.5. Supported Libraries and Modules..171

7.5.1. advapi32..172
7.5.2. comdlg32... 173
7.5.3. dfwbase.. 174
7.5.4. dfwinty... 174
7.5.5. gdi32.. 174
7.5.6. kernel32.. 177
7.5.7. shell32.. 184
7.5.8. user32...184

Reference Guide for x86-64 CPUs Version 2018 | vii

7.5.9. winver.. 189
7.5.10. wsock32... 189

Chapter 8. C/C++ MMX/SSE Intrinsics... 190
8.1. Using Intrinsic functions.. 190

8.1.1. Required Header File.. 190
8.1.2. Intrinsic Data Types.. 191
8.1.3. Intrinsic Example... 191

8.2. MMX Intrinsics.. 192
8.3. SSE Intrinsics..193
8.4. ABM Intrinsics...197
8.5. AVX Intrinsics... 197

Chapter 9. Messages..199
9.1. Diagnostic Messages... 199
9.2. Phase Invocation Messages... 200
9.3. Fortran Compiler Error Messages..200

9.3.1. Message Format...200
9.3.2. Message List... 200

9.4. Fortran Run-time Error Messages..236
9.4.1. Message Format...236
9.4.2. Message List... 236

Chapter 10. Contact Information.. 239

Reference Guide for x86-64 CPUs Version 2018 | viii

LIST OF FIGURES

Figure 1 Internal Padding in a Structure ...7

Figure 2 Tail Padding in a Structure .. 8

Reference Guide for x86-64 CPUs Version 2018 | ix

LIST OF TABLES

Table 1 PGI Compilers and Commands ... xiv

Table 2 Representation of Fortran Data Types .. 1

Table 3 Real Data Type Ranges .. 2

Table 4 Scalar Type Alignment ...2

Table 5 C/C++ Scalar Data Types ..4

Table 6 Scalar Alignment ... 5

Table 7 PGI Build-Related Compiler Options ... 10

Table 8 PGI Debug-Related Compiler Options ..12

Table 9 Optimization-Related PGI Compiler Options ... 13

Table 10 Linking and Runtime-Related PGI Compiler Options ...13

Table 11 C and C++ -specific Compiler Options ... 14

Table 12 Subgroups for -help Option .. 30

Table 13 -M Options Summary ..37

Table 14 Optimization and -O, -g, -Mvect, and -Mconcur Options 48

Table 15 IGNORE_TKR Example ... 126

Table 16 Register Allocation ...131

Table 17 Standard Stack Frame ...132

Table 18 Register Allocation for Example A-2 .. 135

Table 19 Linux86-64 Fortran Fundamental Types .. 137

Table 20 Fortran and C/C++ Data Type Compatibility .. 140

Table 21 Fortran and C/C++ Representation of the COMPLEX Type140

Table 22 Register Allocation ...143

Table 23 Standard Stack Frame ...143

Table 24 Register Allocation for Example A-4 .. 147

Reference Guide for x86-64 CPUs Version 2018 | x

Table 25 Win64 Fortran Fundamental Types ..149

Table 26 Fortran and C/C++ Data Type Compatibility .. 151

Table 27 Fortran and C/C++ Representation of the COMPLEX Type151

Table 28 Fortran Data Type Mappings ... 163

Table 29 DFLIB Function Summary ... 164

Table 30 LIBM Functions ..165

Table 31 DFPORT Functions ..166

Table 32 MMX Intrinsics (mmintrin.h) ..192

Table 33 SSE Intrinsics (xmmintrin.h) ..193

Table 34 SSE2 Intrinsics (emmintrin.h) .. 194

Table 35 SSE3 Intrinsics (pmmintrin.h) .. 196

Table 36 SSSE3 Intrinsics (tmmintrin.h) ... 196

Table 37 SSE4a Intrinsics (ammintrin.h) ...196

Table 38 ABM Intrinsics (intrin.h) ...197

Table 39 AVX Intrinsics (immintrin.h) .. 197

Reference Guide for x86-64 CPUs Version 2018 | xi

PREFACE

This guide is part of a set of manuals that describe how to use the PGI Fortran, C, and
C++ compilers and program development tools. These compilers and tools include the
PGF77, PGF95, PGFORTRAN, PGC++, PGCC ANSI C compilers, the PGI profiler, and the
PGI debugger. They work in conjunction with an x64 assembler and linker. You can use
the PGI compilers and tools to compile, debug, optimize, and profile serial and parallel
applications for x64 processor-based systems.

The PGI Compiler Reference Manual is the reference companion to the PGI Compiler User's
Guide which provides operating instructions for the PGI command-level development
environment. It also contains details concerning the PGI compilers' interpretation of
the Fortran language, implementation of Fortran language extensions, and command-
level compilation. Users are expected to have previous experience with or knowledge
of the Fortran programming language. Neither guide teaches the Fortran programming
language.

Audience Description
This manual is intended for scientists and engineers using the PGI compilers. To use
these compilers, you should be aware of the role of high-level languages, such as
Fortran, C, and C++, as well as assembly-language in the software development process;
and you should have some level of understanding of programming. The PGI compilers
are available on a variety of x86-64/x64 hardware platforms and operating systems. You
need to be familiar with the basic commands available on your system.

Compatibility and Conformance to Standards
Your system needs to be running a properly installed and configured version of this
PGI product. For information on installing PGI compilers and tools, refer to the Release
Notes and Installation Guide included with your software.

For further information, refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,

Geneva, 1991 (Fortran 90).

Preface

Reference Guide for x86-64 CPUs Version 2018 | xii

‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,
Geneva, 1997 (Fortran 95).

‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,
Geneva, 2004 (Fortran 2003).

‣ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran,
Geneva, 2010 (Fortran 2008).

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ The Fortran 2003 Handbook, Adams et al, Springer, 2009.
‣ OpenMP Application Program Interface, Version 3.1, July 2011, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard

Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).
‣ American National Standard Programming Language C, ANSI X3.159-1989.
‣ ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva,

1999 (C99).
‣ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva,

2011 (C11).
‣ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++,

Geneva, 2011 (C++11).

Organization
Users typically begin by wanting to know how to use a product and often then find that
they need more information and facts about specific areas of the product. Knowing how
as well as why you might use certain options or perform certain tasks is key to using
the PGI compilers and tools effectively and efficiently. However, once you have this
knowledge and understanding, you very likely might find yourself wanting to know
much more about specific areas or specific topics.

To facilitate ease of use, this manual contains detailed reference information about
specific aspects of the compiler, such as the details of compiler options, directives, and
more. This guide contains these sections:

Fortran, C, and C++ Data Types describes the data types that are supported by the PGI
Fortran, C, and C++ compilers.

Command-Line Options Reference provides a detailed description of each command-
line option.

C++ Name Mangling describes the name mangling facility and explains the
transformations of names of entities to names that include information on aspects of the
entity’s type and a fully qualified name.

Directives and Pragmas Reference contains detailed descriptions of PGI’s proprietary
directives and pragmas.

http://www.openmp.org
http://www.openmp.org

Preface

Reference Guide for x86-64 CPUs Version 2018 | xiii

Runtime Environment describes the programming model supported for compiler code
generation, including register conventions and calling conventions for x64 processor-
based systems.

C++ Dialect Supported lists more details of the version of the C++ language that PGC++
supports.

Fortran Module/Library Interfaces for Windows provides a description of the Fortran
module library interfaces that PVF supports.

C/C++ MMX/SSE Intrinsics provides tables that list the MMX Inline Intrinsics
(mmintrin.h), the SSE1 inline intrinsics (xmmintrin.h), and SSE2 inline intrinsics
(emmintrin.h).

Messages provides a list of compiler error messages.

Hardware and Software Constraints
This guide describes versions of the PGI compilers that produce assembly code for x64
processor-based systems. Details concerning environment-specific values and defaults
and system-specific features or limitations are presented in the release notes delivered
with the PGI compilers.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

Preface

Reference Guide for x86-64 CPUs Version 2018 | xiv

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at
https://www.pgroup.com/products/index.htm?tab=compat for a comprehensive listing
of supported platforms.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

Terms
A number of terms related to systems, processors, compilers and tools are used
throughout this guide. For example:

accelerator FMA -mcmodel=medium shared library

AVX host -mcmodel=small SIMD

CUDA hyperthreading (HT) MPI SSE

device large arrays MPICH static linking

DLL license keys multicore Win64

driver linux86-64 NUMA x64

DWARF LLVM OpenPOWER s86

dynamic library manycore osx86-64 x87

For a complete definition of these terms and other terms in this guide with which
you may be unfamiliar, please refer to the PGI online glossary at pgicompilers.com/
definitions.

The following table lists the PGI compilers and tools and their corresponding
commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command

PGF77 ANSI FORTRAN 77 pgf77

PGFORTRAN ISO/ANSI Fortran 2003 pgfortran

PGCC ISO/ANSI C11 and K&R C pgcc

PGC++ ISO/ANSI C++14 with GNU
compatibility

pgc++ on Linux and macOS

PGI Debugger Source code debugger pgdbg

PGI Profiler Performance profiler pgprof

https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/support/definitions.htm

Preface

Reference Guide for x86-64 CPUs Version 2018 | xv

In general, the designation PGI Fortran is used to refer to the PGI Fortran 2003 compiler,
and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally
reference the pgfortran command, and most source code examples are written in
Fortran. Usage of the PGF77 compiler, whose features are a subset of PGFORTRAN, is
similar. Usage of PGC++ and PGCC is consistent with PGFORTRAN and PGF77, though
there are command-line options and features of these compilers that do not apply to
PGFORTRAN and PGF77, and vice versa.

There are a wide variety of 64-bit x86-compatible processors in use. All are supported by
the PGI compilers and tools. Most of these processors are forward-compatible, but not
backward-compatible, meaning that code compiled to target a given processor will not
necessarily execute correctly on a previous-generation processor.

A table listing the processor options that PGI supports is available in the Release Notes.
The table also includes the features utilized by the PGI compilers that distinguish them
from a compatibility standpoint.

In this manual, the convention is to use "x86" to specify the group of processors that
are "32-bit" but not "64-bit". The convention is to use "x64" to specify the group of
processors that are both "32-bit" and "64-bit". x86 processor-based systems can run only
32-bit operating systems. x64 processor-based systems can run either 32-bit or 64-bit
operating systems, and can execute all 32-bit x86 binaries in either case. x64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI
compilers and tools when running on a 64-bit operating system. The prefetch, SSE1,
SSE2, SSE3, and AVX processor features further distinguish the various processors.
Where such distinctions are important with respect to a given compiler option or
feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions
on targets that support SSE1 and SSE2.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
bit or 64-bit operating systems.

Related Publications
The following documents contain additional information related to the x86-64 and x64
architectures, and the compilers and tools available from The Portland Group.

‣ PGI Fortran Reference Manual, www.pgroup.com/resources/docs/18.4/pdf/
pgi18fortref-x86.pdf describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference
material related to use of the PGI Fortran compilers.

Preface

Reference Guide for x86-64 CPUs Version 2018 | xvi

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

‣ System V Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/documentation_folder/abi.pdf.

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ The C Programming Language by Kernighan and Ritchie (Prentice Hall).
‣ C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall,

1987).
‣ The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T

Bell Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

http://www.x86-64.org/documentation_folder/abi.pdf
http://www.x86-64.org/documentation_folder/abi.pdf

Reference Guide for x86-64 CPUs Version 2018 | 1

Chapter 1.
FORTRAN, C, AND C++ DATA TYPES

This section describes the scalar and aggregate data types recognized by the PGI Fortran,
C, and C++ compilers, the format and alignment of each type in memory, and the range
of values each type can have on 64-bit operating systems.

1.1. Fortran Data Types

1.1.1. Fortran Scalars
A scalar data type holds a single value, such as the integer value 42 or the real value
112.6. The next table lists scalar data types, their size, format and range. Table 3 shows
the range and approximate precision for Fortran real data types. Table 4 shows the
alignment for different scalar data types. The alignments apply to all scalars, whether
they are independent or contained in an array, a structure or a union.

Table 2 Representation of Fortran Data Types

Fortran Data Type Format Range

INTEGER 2's complement integer -231 to 231-1

INTEGER*2 2's complement integer -32768 to 32767

INTEGER*4 2's complement integer -231 to 231-1

INTEGER*8 2's complement integer -263 to 263-1

LOGICAL 32-bit value true or false

LOGICAL*1 8-bit value true or false

LOGICAL*2 16-bit value true or false

LOGICAL*4 32-bit value true or false

LOGICAL*8 64-bit value true or false

BYTE 2's complement -128 to 127

REAL Single-precision floating point 10-37 to 1038 (1)

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 2

Fortran Data Type Format Range

REAL*4 Single-precision floating point 10-37 to 10 38 (1)

REAL*8 Double-precision floating point 10-307 to 10 308 (1)

DOUBLE PRECISION Double-precision floating point 10-307 to 10308 (1)

COMPLEX Single-precision floating point 10-37 to 1038 (1)

DOUBLE COMPLEX Double-precision floating point 10-307 to 10308 (1)

COMPLEX*16 Double-precision floating point 10-307 to 10308 (1)

CHARACTER*n Sequence of n bytes

(1) Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively.
Internally, the value of a logical variable is true if the least significant bit is one and false
otherwise. When the option -Munixlogical is set, a logical variable with a non-zero
value is true and with a zero value is false.

A variable of logical type may appear in an arithmetic context, and the logical type is
then treated as an integer of the same size.

Table 3 Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision

REAL -2-126 to 2128 10-37 to 1038 (1) 7–8

REAL*8 -2-1022 to 21024 10-307 to 10308 (1) 15–16

Table 4 Scalar Type Alignment

This Type... ...Is aligned on this size boundary

LOGICAL*1 1-byte

LOGICAL*2 2-byte

LOGICAL*4 4-byte

LOGICAL*8 8-byte

BYTE 1-byte

INTEGER*2 2-byte

INTEGER*4 4-byte

INTEGER*8 8-byte

REAL*4 4-byte

REAL*8 8-byte

COMPLEX*8 4-byte

COMPLEX*16 8-byte

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 3

1.1.2. FORTRAN 77 Aggregate Data Type Extensions
The PGFORTRAN compiler supports de facto standard extensions to FORTRAN 77 that
allow for aggregate data types. An aggregate data type consists of one or more scalar
data type objects. You can declare the following aggregate data types:

‣ An array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

‣ A structure can contain different data types. The members are allocated in the order
they appear in the definition but may not occupy contiguous locations.

‣ A union is a single location that can contain any of a specified set of scalar or
aggregate data types. A union can have only one value at a time. The data type of
the union member to which data is assigned determines the data type of the union
after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space
the object occupies and how efficiently the processor can address members. Arrays use
the alignment of their members.
Array types

align according to the alignment of the array elements. For example, an array of
INTEGER*2 data aligns on a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure
or union. In the next example, the union aligns on a 4-byte boundary since the
alignment of c, the most restrictive element, is four.

STRUCTURE /astr/
UNION
 MAP
 INTEGER*2 a ! 2 bytes
 END MAP
 MAP
 BYTE b ! 1 byte
 END MAP
 MAP
 INTEGER*4 c ! 4 bytes
 END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between
members of the structure is called internal padding. Padding between the last member
and the end of the space is called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the
member's alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the
offset of an INTEGER*2 member from the beginning of a structure is a multiple of two
bytes.

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 4

1.1.3. Fortran 90 Aggregate Data Types (Derived Types)
The Fortran 90 standard added formal support for aggregate data types. The TYPE
statement begins a derived type data specification or declares variables of a specified
user-defined type. For example, the following would define a derived type ATTENDEE:
TYPE ATTENDEE
 CHARACTER(LEN=30) NAME
 CHARACTER(LEN=30) ORGANIZATION
 CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a
variable, code such as the following would be used:
TYPE (ATTENDEE) ATTLIST(100)
. . .
ATTLIST(1)%NAME = ‘JOHN DOE’

1.2. C and C++ Data Types

1.2.1. C and C++ Scalars
Table 5 lists C and C++ scalar data types, providing their size and format. The alignment
of a scalar data type is equal to its size. Table 6 shows scalar alignments that apply to
individual scalars and to scalars that are elements of an array or members of a structure
or union. Wide characters are supported (character constants prefixed with an L). The
size of each wide character is 4 bytes.

Table 5 C/C++ Scalar Data Types

Data Type
Size
(bytes) Format Range

unsigned char 1 ordinal 0 to 255

signed char 1 2's complement integer -128 to 127

char 1 2's complement integer -128 to 127

unsigned short 2 ordinal 0 to 65535

[signed] short 2 2's complement integer -32768 to 32767

unsigned int 4 ordinal 0 to 232 -1

[signed] int 4 2's complement integer -231 to 231-1

[signed] long [int] (win64) 4 2's complement integer -231 to 231-1

[signed] long [int]
(linux86-64)

8 2's complement integer -263 to 263-1

unsigned long [int] (win64) 4 ordinal 0 to 232-1

unsigned long [int]
(linux86-64)

8 ordinal 0 to 264-1

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 5

Data Type
Size
(bytes) Format Range

[signed] long long [int] 8 2's complement integer -263 to 263-1

unsigned long long [int] 8 ordinal 0 to 264-1

float 4 IEEE single-precision
floating-point

10-37 to 1038 (1)

double 8 IEEE double-precision
floating-point

10-307 to 10308 (1)

long double 16 IEEE extended-precision
floating-point

10-4931 to 104932 (1)

bit field(2) (unsigned value) 1 to 32
bits

ordinal 0 to 2size-1, where size is the
number of bits in the bit field

bit field(2) (signed value) 1 to 32
bits

2's complement integer -2size-1 to 2size-1-1, where size is the
number of bits in the bit field

pointer (32-bit operating
system)

4 address 0 to 232-1

pointer 8 address 0 to 264-1

enum 4 2's complement integer -231 to 231-1

(1) Approximate value
(2) Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need
not be a multiple of 8 bits (1 byte)

Table 6 Scalar Alignment

Data Type Alignment on this size boundary

char 1-byte boundary, signed or unsigned.

short 2-byte boundary, signed or unsigned.

int 4-byte boundary, signed or unsigned.

enum 4-byte boundary.

pointer 8-byte boundary.

float 4-byte boundary.

double 8-byte boundary.

long double 8-byte boundary.

long double (64-bit operating system) 16-byte boundary.

long [int] 32-bit on Win64 4-byte boundary, signed or unsigned.

long [int] linux86-64 8-byte boundary, signed or unsigned.

long long [int] 8-byte boundary, signed or unsigned.

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 6

1.2.2. C and C++ Aggregate Data Types
An aggregate data type consists of one or more scalar data type objects. You can declare
the following aggregate data types:
array

consists of one or more elements of a single data type placed in contiguous locations
from first to last.

class
(C++ only) is a class that defines an object and its member functions. The object can
contain fundamental data types or other aggregates including other classes. The class
members are allocated in the order they appear in the definition but may not occupy
contiguous locations.

struct
is a structure that can contain different data types. The members are allocated in the
order they appear in the definition but may not occupy contiguous locations. When a
struct is defined with member functions, its alignment rules are the same as those for
a class.

union
is a single location that can contain any of a specified set of scalar or aggregate data
types. A union can have only one value at a time. The data type of the union member
to which data is assigned determines the data type of the union after that assignment.

1.2.3. Class and Object Data Layout
Class and structure objects with no virtual entities and with no base classes, that is
just direct data field members, are laid out in the same manner as C structures. The
following section describes the alignment and size of these C-like structures. C++ classes
(and structures as a special case of a class) are more difficult to describe. Their alignment
and size is determined by compiler generated fields in addition to user-specified fields.
The following paragraphs describe how storage is laid out for more general classes.
The user is warned that the alignment and size of a class (or structure) is dependent on
the existence and placement of direct and virtual base classes and of virtual function
information. The information that follows is for informational purposes only, reflects the
current implementation, and is subject to change. Do not make assumptions about the
layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the
sequence indicated):

‣ First, storage for all of the direct base classes (which implicitly includes storage for
non-virtual indirect base classes as well):

‣ When the direct base class is also virtual, only enough space is set aside for a
pointer to the actual storage, which appears later.

‣ In the case of a non-virtual direct base class, enough storage is set aside for its
own non-virtual base classes, its virtual base class pointers, its own fields, and
its virtual function information, but no space is allocated for its virtual base
classes.

‣ Next, storage for the class’s own fields.

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 7

‣ Next, storage for virtual function information (typically, a pointer to a virtual
function table).

‣ Finally, storage for its virtual base classes, with space enough in each case for its
own non-virtual base classes, virtual base class pointers, fields, and virtual function
information.

1.2.4. Aggregate Alignment
The alignment of an array, a structure or union (an aggregate) affects how much space
the object occupies and how efficiently the processor can address members.
Arrays

align according to the alignment of the array elements. For example, an array of short
data type aligns on a 2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. In the
following example, the union un1 aligns on a 4-byte boundary since the alignment of
c, the most restrictive element, is four:
union un1 {
 short a; /* 2 bytes */
 char b; /* 1 byte */
 int c; /* 4 bytes */
 };

Structure alignment can result in unused space, called padding. Padding between
members of a structure is called internal padding. Padding between the last member and
the end of the space occupied by the structure is called tail padding. Figure 1 illustrates
structure alignment. Consider the following structure:
struct strc1 {
 char a; /* occupies byte 0 */
 short b; /* occupies bytes 2 and 3 */
 char c; /* occupies byte 4 */
 int d; /* occupies bytes 8 through 11 */
 };

Figure 1 Internal Padding in a Structure

Figure 2 shows how tail padding is applied to a structure aligned on a doubleword (8
byte) boundary.
struct strc2{
 int m1[4]; /* occupies bytes
0 through 15 */
 double m2; /* occupies bytes 16 through 23 */

Fortran, C, and C++ Data Types

Reference Guide for x86-64 CPUs Version 2018 | 8

 short m3; /* occupies bytes 24 and 25 */
} st;

1.2.5. Bit-field Alignment
Bit-fields have the same size and alignment rules as other aggregates, with several
additions to these rules:

‣ Bit-fields are allocated from right to left.
‣ A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields

never cross unit boundaries.
‣ Bit-fields may share a storage unit with other structure/union members, including

members that are not bit-fields.
‣ Unnamed bit-field's types do not affect the alignment of a structure or union.

Figure 2 Tail Padding in a Structure

1.2.6. Other Type Keywords in C and C++
The void data type is neither a scalar nor an aggregate. You can use void or void* as the
return type of a function to indicate the function does not return a value, or as a pointer
to an unspecified data type, respectively.

The const and volatile type qualifiers do not in themselves define data types, but
associate attributes with other types. Use const to specify that an identifier is a constant
and is not to be changed. Use volatile to prevent optimization problems with data that
can be changed from outside the program, such as memory-mapped I/O buffers.

Reference Guide for x86-64 CPUs Version 2018 | 9

Chapter 2.
COMMAND-LINE OPTIONS REFERENCE

A command-line option allows you to specify specific behavior when a program is
compiled and linked. Compiler options perform a variety of functions, such as setting
compiler characteristics, describing the object code to be produced, controlling the
diagnostic messages emitted, and performing some preprocessor functions. Most
options that are not explicitly set take the default settings. This reference section
describes the syntax and operation of each compiler option. For easy reference, the
options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks,
refer to the ‘Using Command-line Options’ section of the PGI Compiler User's Guide,
www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-x86.pdf, which also provides
summary tables of the different options.

This section uses the following notation:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical
bar (|) separates the choices.

...
Horizontal ellipses indicate that zero or more instances of the preceding item are
valid.

2.1. PGI Compiler Option Summary
The following tables include all the PGI compiler options that are not language-specific.
The options are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this
section.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 10

2.1.1. Build-Related PGI Options
The options included in the following table pertain to the initial building of your
program or application.

Table 7 PGI Build-Related Compiler Options

Option Description

-# Display invocation information.

-### Shows but does not execute the driver commands (same as the
option -dryrun).

-acc Enable OpenACC directives.

-Bdynamic Compiles for and links to the shared object version of the PGI
runtime libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime
libraries.

-c Stops after the assembly phase and saves the object code in
filename.o.

-D<args> Defines a preprocessor macro.

-dryrun Shows but does not execute driver commands.

-drystdinc Displays the standard include directories and then exits the
compiler.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

-F Stops after the preprocessing phase and saves the preprocessed
file in filename.f. This option is only valid for the PGI Fortran
compilers.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-fpic (Linux and macOS only) Generate position-independent code.

-fPIC (Linux and macOS only) Equivalent to -fpic.

-g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

-help Display driver help message.

-I<dirname> Adds a directory to the search path for #include files.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits
for INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 11

Option Description

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

-L<dirname> Specifies a directory to search for libraries.

-l<library> Loads a library.

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium (-tp k8-64 and -tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64 environment.

-module <moduledir> (F90/F95 only) Save/search for module files in directory
<moduledir>.

-mp[=all, align,bind,[no]numa] Interpret and process user-inserted shared-memory parallel
programming directives.

-noswitcherror Ignore unknown command line switches after printing an warning
message.

-o Names the object file.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

- -pedantic Prints warnings from included <system header files>

-pg or -qp Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file; -qp is equivalent to -pg.

-pgf77libs Append PGF77 runtime libraries to the link line.

-pgf90libs Append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

-R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the
search path for shared object files.

-r Creates a relocatable object file.

-r4: Interpret DOUBLE PRECISION variables as REAL.-r4 and -r8

-r8: Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver's startup file.

-s Strips the symbol-table information from the object file.

-S Stops after the compiling phase and saves the assembly-language
code in filename.s.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a
shared object file. Implies -fpic.

-show Display driver's configuration parameters after startup.

-silent Do not print warning messages.

-soname Pass the soname option and its argument to the linker.

-time Print execution times for the various compilation steps.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 12

Option Description

-u<symbol> Initializes the symbol table with <symbol>, which is undefined for
the linker. An undefined symbol triggers loading of the first member
of an archive library.

-U<symbol> Undefine a preprocessor macro.

-V[release_number] Displays the version messages and other information, or allows
invocation of a version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

-Xlinker <option> Passes options to the linker.

2.1.2. PGI Debug-Related Compiler Options
The options included in the following table pertain to debugging your program or
application.

Table 8 PGI Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-c Instrument the generated executable to perform array bounds
checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-g Includes debugging information in the object module; sets the
optimization level to zero unless a -O option is present on the
command line.

-gopt Includes debugging information in the object module, but forces
assembly code generation identical to that obtained when -gopt
is not present on the command line.

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

-[no]traceback Adds debug information for runtime traceback for use with the
environment variable PGI_TERM.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 13

2.1.3. PGI Optimization-Related Compiler Options
The options included in the following table pertain to optimizing your program or
application code.

Table 9 Optimization-Related PGI Compiler Options

Option Description

-fast Generally optimal set of flags.

-fastsse Generally optimal set of flags for targets that include SSE/SSE2
capability.

-M<pgflag> Selects variations for code generation and optimization.

-mp[=all, align,bind,[no]numa] Interpret and process user-inserted shared-memory parallel
programming directives.

-O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

2.1.4. PGI Linking and Runtime-Related Compiler
Options
The options included in the following table pertain to defining parameters related to
linking and running your program or application.

Table 10 Linking and Runtime-Related PGI Compiler Options

Option Description

-Bdynamic Compiles for and links to the DLL version of the PGI runtime
libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime
libraries.

-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice
versa on input/output of unformatted data.

-fpic (Linux only) Generate position-independent code.

-fPIC (Linux only) Equivalent to -fpic.

-g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits
for INTEGER*8 operations.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 14

Option Description

-K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium (-tp k8-64 and -tp p7-64 targets only) Generate code which supports
the medium memory model in the linux86-64 environment.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a
shared object file. Implies -fpic.

-soname Pass the soname option and its argument to the linker.

-ta=tesla(:tesla_suboptions) host Specify the target accelerator.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

-Xlinker <option> Pass options to the linker.

2.2. C and C++ Compiler Options
There are a large number of compiler options specific to the PGCC and PGC++
compilers, especially PGC++. The next table lists several of these options, but is not
exhaustive. For a complete list of available options, including an exhaustive list of PGC
++ options, use the -help command-line option. For further detail on a given option,
use -help and specify the option explicitly. The majority of these options are related to
building your program or application.

Table 11 C and C++ -specific Compiler Options

Option Description

-A (pgc++ only) Accept proposed ANSI C++, issuing errors for
non-conforming code.

-a (pgc++ only) Accept proposed ANSI C++, issuing warnings
for non-conforming code.

--[no_]alternative_tokens (pgc++ only) Enable/disable recognition of alternative
tokens. These are tokens that make it possible to write
C++ without the use of the ,, [,], #, &, and ^ and
characters. The alternative tokens include the operator
keywords (e.g., and, bitand, etc.) and digraphs. The
default is --no_alternative_tokens.

-B Allow C++ comments (using //) in C source.

--[no_]bool (pgc++ only) Enable or disable recognition of bool. The
default value is --bool.

--[no_]builtin Do/don’t compile with math subroutine builtin support,
which causes selected math library routines to be inlined.
The default is --builtin.

--compress_names (pgc++ only) Create a precompiled header file with the
name filename.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 15

Option Description

-d<arg> (pgcc only) Prints additional information from the
preprocessor.

--dependencies (see -M) (pgc++ only) Print makefile dependencies to stdout.

--dependencies_to_file filename (pgc++ only) Print makefile dependencies to file
filename.

--display_error_number (pgc++ only) Display the error message number in any
diagnostic messages that are generated.

--diag_error<number> (pgc++ only) Override the normal error severity of the
specified diagnostic messages.

--diag_remark<number> (pgc++ only) Override the normal error severity of the
specified diagnostic messages.

--diag_suppress<number> (pgc++ only) Override the normal error severity of the
specified diagnostic messages.

--diag_warning<number> (pgc++ only) Override the normal error severity of the
specified diagnostic messages.

-e<number> (pgc++ only) Set the C++ front-end error limit to the
specified <number>.

--no_exceptions (pgc++ only) Disable exception handling support.

--gnu_version <num> (pgc++ only) Sets the GNU C++ compatibility version.

--[no]llalign (pgc++ only) Do/don’t align longlong integers on integer
boundaries. The default is --llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

-MD,filename (pgc++ only) Generate make dependence lists and print
them to file filename.

--optk_allow_dollar_in_id_chars (pgc++ only) Accept dollar signs in identifiers.

-P Stops after the preprocessing phase and saves the
preprocessed file in filename.i.

--pch (pgc++ only) Automatically use and/or create a
precompiled header file.

--preinclude=<filename> (pgc++ only) Specify file to be included at the beginning
of compilation so you can set system-dependent macros,
types, and so on.

--[no_]using_std (pgc++ only) Enable/disable implicit use of the std
namespace when standard header files are included.

-X filename (pgc++ only) Generate cross-reference information into file
filename.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 16

2.3. Generic PGI Compiler Options
The following descriptions are for all the PGI options. For easy reference, the options
are arranged in alphabetical order. For a list of options by tasks, refer to the tables in the
beginning of this section.

2.3.1. -#
Displays the invocations of the compiler, assembler and linker.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -# prog.f

Description

The -# option displays the invocations of the compiler, assembler and linker. These
invocations are command-lines created by the driver from your command-line input and
the default value.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.3.2. -###
Displays the invocations of the compiler, assembler and linker, but does not execute
them.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -### myprog.f

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 17

Description

Use the -### option to display the invocations of the compiler, assembler and linker
but not to execute them. These invocations are command lines created by the compiler
driver from the rc files and the command-line options.

Related options

-#, -dryrun, -Minfo[=option [,option,...]], -V[release_number]

2.3.3. -acc
Enable OpenACC directives.

-acc suboptions

The following suboptions may be used:
[no]autopar

Enable [disable] loop autoparallelization within acc parallel. The default is to
autoparallelize, that is, to enable loop autoparallelization.

legacy
Suppress warnings about deprecated PGI accelerator directives.

[no]routineseq
Compile every routine for the device.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

sync
Ignore async clauses

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator
directive.

[no]wait
Wait for each device kernel to finish.

Usage

The following command-line requests that OpenACC directives be enabled and that an
error be issued for any non-OpenACC accelerator directive.
$ pgfortran -acc=verystrict -g prog.f

2.3.4. -Bdynamic
Compiles for and links to the shared object version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 18

Usage

On Windows, you can create the DLL obj1.dll and its import library obj1.lib using
the following series of commands:
% pgfortran -Bdynamic -c object1.f
% pgfortran -Mmakedll object1.obj -o obj1.dll

Then compile the main program using this command:
$ pgfortran -# prog.f

For a complete example in Windows, refer to the example: ‘Build a DLL: Fortran’ in the
‘Creating and Using Libraries’ section of the PGI Compiler User’s Guide.

Description

Use this option to compile for and link to the shared object version of the PGI runtime
libraries. This flag is required when linking with any DLL built by the PGI compilers.
For Windows, this flag corresponds to the /MD flag used by Microsoft’s cl compilers.

On Windows, -Bdynamic must be used for both compiling and linking.

When you use the PGI compiler flag -Bdynamic to create an executable that links to
the shared object form of the runtime, the executable built is smaller than one built
without -Bdynamic. The PGI runtime shared object(s), however, must be available on
the system where the executable is run. The -Bdynamic flag must be used when an
executable is linked against a shared object built by the PGI compilers.

Related options

-Bstatic , -Mmakedll

2.3.5. -Bstatic
Compiles for and links to the static version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the
PGI runtime libraries:
% pgfortran -Bstatic -c object1.f

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 19

Description

You can use this option to explicitly compile for and link to the static version of the PGI
runtime libraries.

On Windows, -Bstatic must be used for both compiling and linking.

For more information on using static libraries on Windows, refer to ‘Creating and Using
Static Libraries on Windows’ in the ‘Creating and Using Libraries’ section of the PGI
Compiler User’s Guide.

Related options

-Bdynamic, -Bstatic_pgi

2.3.6. -Bstatic_pgi
Linux only. Compiles for and links to the static version of the PGI runtime libraries.
Implies -Mnorpath.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the
PGI runtime libraries:
% pgfortran -Bstatic -c object1.f

Description

You can use this option to explicitly compile for and link to the static version of the PGI
runtime libraries.

On Linux, -Bstatic_pgi results in code that runs on most Linux systems without
requiring a Portability package.

For more information on using static libraries on Windows, refer to ‘Creating and Using
Static Libraries on Windows’ in the ‘Creating and Using Libraries’ section of the PGI
Compiler User's Guide, www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-x86.pdf.

Related options

-Bdynamic, -Bstatic

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 20

2.3.7. -byteswapio
Swaps the byte-order of data in unformatted Fortran data files on input/output.

Default

The compiler does not byte-swap data on input/output.

Usage

The following command-line requests that byte-swapping be performed on input/
output.
$ pgfortran -byteswapio myprog.f

Description

Use the -byteswapio option to swap the byte-order of data in unformatted Fortran
data files on input/output. When this option is used, the order of bytes is swapped in
both the data and record control words; the latter occurs in unformatted sequential files.

You can use this option to convert big-endian format data files produced by most legacy
RISC workstations to the little-endian format used on x86-64/x64 or OpenPOWER
systems on the fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct
access files are the same on the systems. It further assumes that the IEEE representation
is used for floating-point numbers. In particular, the format of unformatted data files
produced by PGI Fortran compilers is identical to the format used on Sun and SGI
workstations; this format allows you to read and write unformatted Fortran data
files produced on those platforms from a program compiled for an x86-64/x64 or
OpenPOWER platform using the -byteswapio option.

Related options

None.

2.3.8. -C
(Fortran only) Generates code to check array bounds.

Default

The compiler does not enable array bounds checking.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 21

Usage

In this example, the compiler instruments the executable produced from myprog.f to
perform array bounds checking at runtime:
$ pgfortran -C myprog.f

Description

Use this option to enable array bounds checking. If an array is an assumed size array,
the bounds checking only applies to the lower bound. If an array bounds violation
occurs during execution, an error message describing the error is printed and the
program terminates. The text of the error message includes the name of the array, the
location where the error occurred (the source file and the line number in the source), and
information about the out of bounds subscript (its value, its lower and upper bounds,
and its dimension).

Related options

-Mbounds, -Mnobounds

2.3.9. -c
Halts the compilation process after the assembling phase and writes the object code to a
file.

Default

The compiler produces an executable file and does not use the -c option.

Usage

In this example, the compiler produces the object file myprog.o in the current
directory.
$ pgfortran -c myprog.f

Description

Use the -c option to halt the compilation process after the assembling phase and write
the object code to a file. If the input file is filename.f, the output file is filename.o
.

Related options

-E, -Mkeepasm, -o, -S

2.3.10. -d<arg>
Prints additional information from the preprocessor. [Valid only for c (pgcc)]

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 22

Default

No additional information is printed from the preprocessor.

Syntax
-d[D|I|M|N]

-dD
Print macros and values from source files.

-dI
Print include file names.

-dM
Print macros and values, including predefined and command-line macros.

-dN
Print macro names from source files.

Usage

In the following example, the compiler prints macro names from the source file.
$ pgfortran -dN myprog.f

Description

Use the -d<arg> option to print additional information from the preprocessor.

Related options

-E, -D, -U

2.3.11. -D
Creates a preprocessor macro with a given value.

You can use the -D option more than once on a compiler command line. The number
of active macro definitions is limited only by available memory.

Syntax
-Dname[=value]

Where name is the symbolic name and value is either an integer value or a character
string.

Default

If you define a macro name without specifying a value, the preprocessor assigns the
string 1 to the macro name.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 23

Usage

In the following example, the macro PATHLENGTH has the value 256 until a
subsequent compilation. If the -D option is not used, PATHLENGTH is set to 128.
$ pgfortran -DPATHLENGTH=256 myprog.F

The source text in myprog.F is this:
 #ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path
 ...
END

Description

Use the -D option to create a preprocessor macro with a given value. The value must be
either an integer or a character string.

You can use macros with conditional compilation to select source text during
preprocessing. A macro defined in the compiler invocation remains in effect for
each module on the command line, unless you remove the macro with an #undef
preprocessor directive or with the -U option. The compiler processes all of the -U
options in a command line after processing the -D options.

Related options

-U

2.3.12. -dryrun
Displays the invocations of the compiler, assembler, and linker but does not execute
them.

Default

The compiler does not display individual phase invocations.

Usage

The following command line requests verbose invocation information.
$ pgfortran -dryrun myprog.f

Description

Use the -dryrun option to display the invocations of the compiler, assembler, and
linker but not have them executed. These invocations are command lines created by the
compiler driver from the rc files and the command-line supplied with -dryrun.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 24

Related options

-Minfo[=option [,option,...]], -V[release_number], -###

2.3.13. -drystdinc
Displays the standard include directories and then exits the compiler.

Default

The compiler does not display standard include directories.

Usage

The following command line requests a display for the standard include directories.
$ pgfortran -drystdinc myprog.f

Description

Use the -drystdinc option to display the standard include directories and then exit
the compiler.

Related options

None.

2.3.14. -E
Halts the compilation process after the preprocessing phase and displays the
preprocessed output on the standard output.

Default

The compiler produces an executable file.

Usage

In the following example the compiler displays the preprocessed myprog.f on the
standard output.
$ pgfortran -E myprog.f

Description

Use the -E option to halt the compilation process after the preprocessing phase and
display the preprocessed output on the standard output.

Related options

-C, -c, -Mkeepasm, -o, -F, -S

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 25

2.3.15. -F
Stops compilation after the preprocessing phase.

Default

The compiler produces an executable file.

Usage

In the following example the compiler produces the preprocessed file myprog.f in the
current directory.
$ pgfortran -F myprog.F

Description

Use the -F option to halt the compilation process after preprocessing and write the
preprocessed output to a file. If the input file is filename.F, then the output file is
filename.f.

Related options

-c, -E, -Mkeepasm, -o, -S

2.3.16. -fast
Enables vectorization with SIMD instructions, cache alignment, and flushz for 64-bit
targets.

Default

The compiler enables vectorization with SIMD instructions, cache alignment, and flushz.

Usage

In the following example the compiler produces vector SIMD code when targeting a 64-
bit machine.
$ pgfortran -fast vadd.f95

Description

When you use this option, a generally optimal set of options is chosen for targets that
support SIMD capability. In addition, the appropriate -tp option is automatically
included to enable generation of code optimized for the type of system on which

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 26

compilation is performed. This option enables vectorization with SIMD instructions,
cache alignment, and flushz.

Auto-selection of the appropriate -tp option means that programs built using the
-fastsse option on a given system are not necessarily backward-compatible with
older systems.

C/C++ compilers enable -Mautoinline with -fast.

Related options

-O<level>, -Munroll[=option [,option...]], -Mnoframe , -Mscalarsse , -
M[no]vect[=option [,option,...]], -Mcache_align , -tp <target>[,target...] , -
M[no]autoinline[=option[,option,...]]

2.3.17. -fastsse
Synonymous with -fast.

2.3.18. --flagcheck
Causes the compiler to check that flags are correct and then exit without any
compilation occuring.

Default

The compiler begins a compile without the additional step to first validate that flags are
correct.

Usage

In the following example the compiler checks that flags are correct, and then exits.
$ pgfortran --flagcheck myprog.f

Description

Use this option to make the compiler check that flags are correct and then exit. If flags
are all correct then the compiler returns a zero status. No compilation occurs.

Related options

None.

2.3.19. -flags
Displays valid driver options on the standard output.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 27

Default

The compiler does not display the driver options.

Usage

In the following example the user requests information about the known switches.
$ pgfortran -flags

Description

Use this option to display driver options on the standard output. When you use this
option with -v, in addition to the valid options, the compiler lists options that are
recognized and ignored.

Related options

-#, -###, -v

2.3.20. -fpic
(Linux only) Generates position-independent code suitable for inclusion in shared object
(dynamically linked library) files.

Default

The compiler does not generate position-independent code.

Usage

In the following example the resulting object file, myprog.o, can be used to generate a
shared object.
$ pgfortran -fpic myprog.f

(Linux only) Use the -fpic option to generate position-independent code suitable for
inclusion in shared object (dynamically linked library) files.

Related options

-shared,-fPIC,-R<directory>

2.3.21. -fPIC
(Linux only) Equivalent to -fpic. Provided for compatibility with other compilers.

2.3.22. -g
Instructs the compiler to include symbolic debugging information in the object module;
sets the optimization level to zero unless a -O option is present on the command line.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 28

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object file myprog.o contains symbolic debugging
information.
$ pgfortran -c -g myprog.f

Description

Use the -g option to instruct the compiler to include symbolic debugging information in
the object module. Debuggers, including the PGI debugger, require symbolic debugging
information in the object module to display and manipulate program variables and
source code.

If you specify the -g option on the command-line, the compiler sets the optimization
level to -O0 (zero), unless you specify the -O option. For more information on the
interaction between the -g and -O options, refer to the -O entry. Symbolic debugging
may give confusing results if an optimization level other than zero is selected.

Including symbolic debugging information increases the size of the object module.

Related options

-O<level>, -gopt

2.3.23. -gopt
Instructs the compiler to include symbolic debugging information in the object file, and
to generate optimized code identical to that generated when -g is not specified.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object file myprog.o contains symbolic debugging
information.
$ pgfortran -c -gopt myprog.f

Description

Using -g alters how optimized code is generated in ways that are intended to enable
or improve debugging of optimized code. The -gopt option instructs the compiler to

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 29

include symbolic debugging information in the object file, and to generate optimized
code identical to that generated when -g is not specified.

Related options

-g, -M<pgflag>

2.3.24. -g77libs
(Linux only) Used on the link line, this option instructs the pgfortran driver to search the
necessary g77 support libraries to resolve references specific to g77 compiled program
units.

The g77 compiler must be installed on the system on which linking occurs in order
for this option to function correctly.

Default

The compiler does not search g77 support libraries to resolve references at link time.

Usage

The following command-line requests that g77 support libraries be searched at link time:
$ pgfortran -g77libs myprog.f g77_object.o

Description

(Linux only) Use the -g77libs option on the link line if you are linking g77-compiled
program units into a pgfortran-compiled main program using the pgfortran driver.
When this option is present, the pgfortran driver searches the necessary g77 support
libraries to resolve references specific to g77 compiled program units.

Related options

-pgf77libs

2.3.25. -help
Used with no other options, -help displays options recognized by the driver on the
standard output. When used in combination with one or more additional options, usage
information for those options is displayed to standard output.

Default

The compiler does not display usage information.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 30

Usage

In the following example, usage information for -Minline is printed to standard
output.
$ pgcc -help -Minline
-Minline[=lib:<inlib>|<maxsize>|<func>|except:<func>|name:<func>|maxsize:<n>|
totalsize:<n>|smallsize:<n>|reshape]
 Enable function inlining
 lib:<inlib> Use extracted functions from inlib
 <maxsize> Set maximum function size to inline
 <func> Inline function func
 except:<func> Do not inline function func
 name:<func> Inline function func
 maxsize:<n> Inline only functions smaller than n
 totalsize:<n> Limit inlining to total size of n
 smallsize:<n> Always inline functions smaller than n
 reshape Allow inlining in Fortran even when array shapes do not
 match
 -Minline Inline all functions that were extracted

In the following example, usage information for -help shows how groups of options
can be listed or examined according to function.
$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall|phase|prepro|suffix|switch|target|variable]

Description

Use the -help option to obtain information about available options and their syntax. You
can use -help in one of three ways:

‣ Use -help with no parameters to obtain a list of all the available options with a
brief one-line description of each.

‣ Add a parameter to -help to restrict the output to information about a specific
option. The syntax for this usage is this:
-help <command line option>

‣ Add a parameter to -help to restrict the output to a specific set of options or to a
building process. The syntax for this usage is this:
-help=<subgroup>

The following table lists and describes the subgroups available with -help.

Table 12 Subgroups for -help Option

Use this -help option To get this information...

-help=asm A list of options specific to the assembly phase.

-help=debug A list of options related to debug information generation.

-help=groups A list of available switch classifications.

-help=language A list of language-specific options.

-help=linker A list of options specific to link phase.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 31

Use this -help option To get this information...

-help=opt A list of options specific to optimization phase.

-help=other A list of other options, such as ANSI conformance pointer aliasing for C.

-help=overall A list of options generic to any PGI compiler.

-help=phase A list of build process phases and to which compiler they apply.

-help=prepro A list of options specific to the preprocessing phase.

-help=suffix A list of known file suffixes and to which phases they apply.

-help=switch A list of all known options; this is equivalent to usage of -help without any

parameter.

-help=target A list of options specific to target processor.

-help=variable A list of all variables and their current value. They can be redefined on the

command line using syntax VAR=VALUE.

For more examples of -help, refer to 'Help with Command-line Options.'

Related options

-#, -###, -show, -V[release_number], -flags

2.3.26. -I
Adds a directory to the search path for files that are included using either the INCLUDE
statement or the preprocessor directive #include.

Default

The compiler searches only certain directories for included files.

‣ For gcc-lib includes:/usr/lib64/gcc-lib
‣ For system includes:/usr/include

Syntax
-Idirectory

Where directory is the name of the directory added to the standard search path for
include files.

Usage

In the following example, the compiler first searches the directory mydir and then
searches the default directories for include files.
$ pgfortran -Imydir

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 32

Description

Adds a directory to the search path for files that are included using the INCLUDE
statement or the preprocessor directive #include. Use the -I option to add a directory
to the list of where to search for the included files. The compiler searches the directory
specified by the -I option before the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file.
The compiler uses two rules to locate the file:

‣ If the file name specified in the INCLUDE statement includes a path name, the
compiler begins reading from the file it specifies.

‣ If no path name is provided in the INCLUDE statement, the compiler searches (in
order):

 1. Any directories specified using the -I option (in the order specified)
 2. The directory containing the source file
 3. The current directory

For example, the compiler applies rule (1) to the following statements:
INCLUDE '/bob/include/file1' (absolute path name)
INCLUDE '../../file1' (relative path name)

and rule (2) to this statement:
INCLUDE 'file1'

Related options

-Mnostdinc

2.3.27. -i2, -i4, -i8
Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default

The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage

In the following example, using the -i8 switch causes the integer variables to be treated
as 64 bits.
$ pgfortran -i8 int.f

int.f is a function similar to this:
int.f
 print *, "Integer size:", bit_size(i)
 end

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 33

Description

Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight
bytes. INTEGER*8 values not only occupy 8 bytes of storage, but operations use 64 bits,
instead of 32 bits.

‣ -i2: Treat INTEGER variables as 2 bytes.
‣ -i4: Treat INTEGER variables as 4 bytes.
‣ -i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for

INTEGER*8 operations.

Related options

None.

2.3.28. -K<flag>
Requests that the compiler provide special compilation semantics with regard to
conformance to IEEE 754.

Default

The default is -Knoieee and the compiler does not provide special compilation
semantics.

Syntax

-K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754 standard.

Some optimizations are disabled, and on some systems a more accurate math library is

linked if -Kieee is used during the link step.

noieee Default flag. Use the fastest available means to perform floating-point operations, link

in faster non-IEEE libraries if available, and disable underflow traps.

PIC or pic (Linux only) Generate position-independent code. Equivalent to -fpic. Provided for

compatibility with other compilers.

trap=option

[,option]...

Controls the behavior of the processor when floating-point exceptions occur.

Possible options include:

fp

align (ignored)

inv

denorm

divz

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 34

ovf

unf

inexact

Usage

In the following example, the compiler performs floating-point operations in strict
conformance with the IEEE 754 standard
$ pgfortran -Kieee myprog.f

Description

Use -K to instruct the compiler to provide special compilation semantics.

-Ktrap is only processed by the compilers when compiling main functions or
programs. The options inv, denorm, divz, ovf, unf, and inexact correspond to the
processor’s exception mask bits: invalid operation, denormalized operand, divide-by-
zero, overflow, underflow, and precision, respectively.

Normally, the processor’s exception mask bits are on, meaning that floating-point
exceptions are masked – the processor recovers from the exceptions and continues. If
a floating-point exception occurs and its corresponding mask bit is off, or "unmasked",
execution terminates with an arithmetic exception (C's SIGFPE signal).

-Ktrap=fp is equivalent to -Ktrap=inv,divz,ovf.

The PGI compilers do not support exception-free execution for -Ktrap=inexact.
The purpose of this hardware support is for those who have specific uses for its
execution, along with the appropriate signal handlers for handling exceptions it
produces. It is not designed for normal floating point operation code support.

Related options

None.

2.3.29. --keeplnk
(Windows only.) Preserves the temporary file when the compiler generates a temporary
indirect file for a long linker command.

Usage

In the following example the compiler preserves each temporary file rather than deleting
it.
$ pgfortran --keeplnk myprog.f

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 35

Description

If the compiler generates a temporary indirect file for a long linker command, use this
option to instruct the compiler to preserve the temporary file instead of deleting it.

Related options

None.

2.3.30. -L
Specifies a directory to search for libraries.

Multiple -L options are valid. However, the position of multiple -L options is
important relative to -l options supplied.

Default

The compiler searches the standard library directory.

Syntax
-Ldirectory

Where directory is the name of the library directory.

Usage

In the following example, the library directory is /lib and the linker links in the
standard libraries required by PGFORTRAN from this directory.
$ pgfortran -L/lib myprog.f

In the following example, the library directory /lib is searched for the library file
libx.a and both the directories /lib and /libz are searched for liby.a.
$ pgfortran -L/lib -lx -L/libz -ly myprog.f

Description

Use the -L option to specify a directory to search for libraries. Using -L allows you to add
directories to the search path for library files.

Related options

-I

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 36

2.3.31. -l<library>
Instructs the linker to load the specified library. The linker searches <library>in addition
to the standard libraries.

The linker searches the libraries specified with -l in order of appearance before
searching the standard libraries.

Syntax
-llibrary

Where library is the name of the library to search.

Usage: In the following example, if the standard library directory is /lib the linker
loads the library /lib/libmylib.a, in addition to the standard libraries.
$ pgfortran myprog.f -lmylib

Description

Use this option to instruct the linker to load the specified library. The compiler prepends
the characters lib to the library name and adds the .a extension following the library
name. The linker searches each library specified before searching the standard libraries.

Related options

-L

2.3.32. -M
Generate make dependence lists. You can use -MD,filename (pgc++ only) to generate
make dependence lists and print them to the specified file.

2.3.33. -m
Displays a link map on the standard output.

Default

The compiler does display the link map and does not use the -m option.

Usage

When the following example is executed on Windows, pgfortran creates a link map in
the file myprog.map.
$ pgfortran -m myprog.f

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 37

Description

Use this option to display a link map.

‣ On Linux, the map is written to stdout.
‣ On Windows, the map is written to a .map file whose name depends on the

executable. If the executable is myprog.f, the map file is in myprog.map.

Related options

-c, -o, -s, -u

2.3.34. -m64
Use the 64-bit compiler for the default processor type.

Usage

When the following example is executed, pgfortran uses the 64-bit compiler for the
default processor type.
$ pgfortran -m64 myprog.f

Description

Use this option to specify the 64-bit compiler as the default processor type.

2.3.35. -M<pgflag>
Selects options for code generation. The options are divided into the following
categories:

Code generation Fortran Language Controls Optimization

Environment C/C++ Language Controls Miscellaneous

Inlining

The following table lists and briefly describes the options alphabetically and includes
a field showing the category. For more details about the options as they relate to these
categories, refer to ‘-M Options by Category’ on page 113.

Table 13 -M Options Summary

pgflag Description Category

allocatable=95|03 Controls whether to use Fortran 95 or Fortran 2003

semantics in allocatable array assignments.

Fortran Language

anno Annotate the assembly code with source code. Miscellaneous

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 38

pgflag Description Category

[no]autoinline When a C/C++ function is declared with the inline

keyword, inline it at -O2.

Inlining

[no]asmkeyword Specifies whether the compiler allows the asm

keyword in C/C++ source files (pgcc and pgc++ only).

C/C++ Language

[no]backslash Determines how the backslash character is treated in

quoted strings (Fortran only).

Fortran Language

[no]bounds Specifies whether array bounds checking is enabled or

disabled.

Miscellaneous

--[no_]builtin Do/don't compile with math subroutine builtin support,

which causes selected math library routines to be

inlined (pgcc and pgc++ only).

Optimization

byteswapio Swap byte-order (big-endian to little-endian or vice

versa) during I/O of Fortran unformatted data.

Miscellaneous

cache_align Where possible, align data objects of size greater than

or equal to 16 bytes on cache-line boundaries.

Optimization

chkfpstk Check for internal consistency of the x87 FP stack in

the prologue of a function and after returning from a

function or subroutine call (-tp px/p5/p6/piii targets

only).

Miscellaneous

chkptr Check for NULL pointers (pgf95, pgfortran only). Miscellaneous

chkstk Check the stack for available space upon entry to and

before the start of a parallel region. Useful when many

private variables are declared.

Miscellaneous

concur Enable auto-concurrentization of loops. Multiple

processors or cores will be used to execute

parallelizable loops.

Optimization

cpp Run the PGI cpp-like preprocessor without performing

subsequent compilation steps.

Miscellaneous

cray Force Cray Fortran (CF77) compatibility (Fortran only). Optimization

cuda Enables CUDA Fortran. Fortran Language

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk Determines whether all program variables must be

declared (Fortran only).

Fortran Language

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 39

pgflag Description Category

[no]defaultunit Determines how the asterisk character ("*") is treated

in relation to standard input and standard output,

regardless of the status of I/O units 5 and 6. (Fortran

only).

Fortran Language

[no]depchk Checks for potential data dependencies. Optimization

[no]dse Enables [disables] dead store elimination phase for

programs making extensive use of function inlining.

Optimization

[no]dlines Determines whether the compiler treats lines

containing the letter "D" in column one as executable

statements (Fortran only).

Fortran Language

dll Link with the DLL version of the runtime libraries

(Windows only).

Miscellaneous

dollar,char Specifies the character to which the compiler maps the

dollar sign code(Fortran only).

Fortran Language

[no]dwarf Specifies not to add DWARF debug information. Code Generation

dwarf1 When used with -g, generate DWARF1 format debug

information.

Code Generation

dwarf2 When used with -g, generate DWARF2 format debug

information.

Code Generation

dwarf3 When used with -g, generate DWARF3 format debug

information.

Code Generation

extend Instructs the compiler to accept 132-column source

code; otherwise it accepts 72-column code (Fortran

only).

Fortran Language

extract invokes the function extractor. Inlining

[no]f[=option] Perform certain floating point intrinsic functions using

relaxed precision.

Optimization

fixed Instructs the compiler to assume F77-style fixed format

source code (pgf95, pgfortran only).

Fortran Language

[no]flushz Do/don't set SSE flush-to-zero mode Code Generation

[no]fpapprox Specifies not to use low-precision fp approximation

operations.

Optimization

free Instructs the compiler to assume F90-style free format

source code(pgf95, pgfortran only).

Fortran Language

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 40

pgflag Description Category

func32 The compiler aligns all functions to 32-byte

boundaries.

Code Generation

gccbug[s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding optimization

and code generation to standard output as compilation

proceeds.

Miscellaneous

inform Specifies the minimum level of error severity that the

compiler displays.

Miscellaneous

inline Invokes the function inliner. Inlining

[no]iomutex Determines whether critical sections are generated

around Fortran I/O calls(Fortran only).

Fortran Language

[no]ipa Invokes interprocedural analysis and optimization. Optimization

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

largeaddressaware [Win64 only] Generates code that allows for addresses

greater than 2GB, using RIP-relative addressing.

Code Generation

[no]large_arrays Enables support for 64-bit indexing and single static

data objects of size larger than 2GB.

Code Generation

list Specifies whether the compiler creates a listing file. Miscellaneous

[no]loop32 Aligns [does not align] innermost loops on 32 byte

boundaries with -tp barcelona

Code Generation

[no]lre Enable [disable] loop-carried redundancy elimination. Optimization

[no]m128 Recognizes [ignores] __m128, __m128d, and __m128i

datatypes. (C only)

Code Generation

[no]m128 Instructs the compiler to treat floating-point constants

as float data types (pgcc and pgc++ only).

C/C++ Language

makedll Generate a dynamic link library (DLL).(Windows only). Miscellaneous

makeimplib Passes the -def switch to the librarian

without a deffile, when used without

-def:deffile.(Windows only)

Miscellaneous

mpi=option Link to MPI libraries: MPICH, SGI, or Microsoft MPI

libraries

Code Generation

neginfo Instructs the compiler to produce information on why

certain optimizations are not performed.

Miscellaneous

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 41

pgflag Description Category

noframe Eliminates operations that set up a true stack frame

pointer for functions.

Optimization

noi4 Determines how the compiler treats INTEGER

variables(Fortran only).

Optimization

nomain When the link step is called, don’t include the object

file that calls the Fortran main program.(Fortran only).

Code Generation

noopenmp When used in combination with the -mp option, the

compiler ignores OpenMP parallelization directives or

pragmas, but still processes SGI-style parallelization

directives or pragmas.

Miscellaneous

nopgdllmain Do not link the module containing the default DllMain()

into the DLL(Windows only).

Miscellaneous

norpath On Linux, do not add -rpath paths to the link line. Miscellaneous

nosgimp When used in combination with the -mp option, the

compiler ignores SGI-style parallelization directives

or pragmas, but still processes OpenMP directives or

pragmas.

Miscellaneous

[no]stddef Instructs the compiler to not recognize the standard

preprocessor macros.

Environment

nostdinc Instructs the compiler to not search the standard

location for include files.

Environment

nostdlib Instructs the linker to not link in the standard libraries. Environment

[no]onetrip Determines whether each DO loop executes at least

once(Fortran only).

Language

novintr Disable idiom recognition and generation of calls to

optimized vector functions.

Optimization

pfi Instrument the generated code and link in libraries for

dynamic collection of profile and data information at

runtime.

Optimization

pre Read a pgfi.out trace file and use the information to

enable or guide optimizations.

Optimization

[no]pre Force [disable] generation of non-temporal moves and

prefetching.

Code Generation

[no]prefetch Enable [disable] generation of prefetch instructions. Optimization

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 42

pgflag Description Category

preprocess Perform cpp-like preprocessing on assembly language

and Fortran input source files.

Miscellaneous

prof Enable Compiler feedback and modify DWARF sections. Code Generation

[no]r8 Determines whether the compiler promotes REAL

variables and constants to DOUBLE PRECISION(Fortran

only).

Optimization

[no]r8intrinsics Determines how the compiler treats the intrinsics

CMPLX and REAL(Fortran only).

Optimization

[no]recursive Allocate [do not allocate] local variables on the stack;

this allows recursion. SAVEd, data-initialized, or

namelist members are always allocated statically,

regardless of the setting of this switch(Fortran only).

Code Generation

[no]reentrant Specifies whether the compiler avoids optimizations

that can prevent code from being reentrant.

Code Generation

[no]ref_externals Do [do not] force references to names appearing in

EXTERNAL statements(Fortran only).

Code Generation

safeptr Instructs the compiler to override data dependencies

between pointers and arrays (pgcc and pgc++ only).

Optimization

safe_lastval In the case where a scalar is used after a loop, but

is not defined on every iteration of the loop, the

compiler does not by default parallelize the loop.

However, this option tells the compiler it is safe to

parallelize the loop. For a given loop, the last value

computed for all scalars make it safe to parallelize the

loop.

Code Generation

[no]save Determines whether the compiler assumes

that all local variables are subject to the SAVE

statement(Fortran only).

Fortran Language

[no]scalarsse Do [do not] use SSE/SSE2 instructions to perform scalar

floating-point arithmetic.

Optimization

schar Specifies signed char for characters (pgcc and pgc++

only – also see uchar).

C/C++ Language

[no]second_underscore Do [do not] add the second underscore to the name

of a Fortran global if its name already contains an

underscore(Fortran only).

Code Generation

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 43

pgflag Description Category

[no]signextend Do [do not] extend the sign bit, if it is set. Code Generation

[no]single Do [do not] convert float parameters to double

parameter characters (pgcc and pgc++ only).

C/C++ Language

[no]smart Do [do not] enable optional post-pass assembly

optimizer.

Optimization

[no]smartalloc[=huge|

huge:<n>|hugebss]

Add a call to the routine mallopt in the main routine.

Supports large TLBs on Linux and Windows.

Tip To be effective, this switch must
be specified when compiling the file
containing the Fortran, C, or C++ main
program.

Environment

standard Causes the compiler to flag source code that does not

conform to the ANSI standard(Fortran only).

Fortran Language

[no]stride0 Do [do not] generate alternate code for a loop that

contains an induction variable whose increment may

be zero(Fortran only).

Code Generation

uchar Specifies unsigned char for characters (pgcc and pgc++

only – also see schar).

C/C++ Language

[no]unixlogical Determines how the compiler treats logical

values.(Fortran only).

Fortran Language

[no]unroll Controls loop unrolling. Optimization

[no]upcase Determines whether the compiler preserves uppercase

letters in identifiers.(Fortran only).

Fortran Language

varargs Forces Fortran program units to assume calls are to

C functions with a varargs type interface (pgf77,

pgf95, and pgfortran only).

Code Generation

[no]vect Do [do not] invoke the code vectorizer. Optimization

2.3.36. -mcmodel=medium
(For use only on 64-bit Linux targets) Generates code for the medium memory model in
the linux86-64 execution environment. Implies -Mlarge_arrays.

Default: The compiler generates code for the small memory model.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 44

Usage

The following command line requests position independent code be generated, and the
option -mcmodel=medium be passed to the assembler and linker:
$ pgfortran -mcmodel=medium myprog.f

Description

The default small memory model of the linux86-64 environment limits the combined
area for a user’s object or executable to 1GB, with the Linux kernel managing usage
of the second 1GB of address for system routines, shared libraries, stacks, and so on.
Programs are started at a fixed address, and the program can use a single instruction to
make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss sections.
Program units compiled using either -mcmodel=medium or -fpic require additional
instructions to reference memory. The effect on performance is a function of the data-use
of the application. The -mcmodel=medium switch must be used at both compile time
and link time to create 64-bit executables. Program units compiled for the default small
memory model can be linked into medium memory model executables as long as they
are compiled with the option -fpic, or position-independent.

The linux86-64 environment provides static libxxx.a archive libraries, that are
built both with and without -fpic, and dynamic libxxx.so shared object libraries
that are compiled with -fpic. Using the link switch -mcmodel=medium implies
the -fpic switch and utilizes the shared libraries by default. The directory $PGI/
linux86-64/<rel>/lib contains the libraries for building small memory model
codes; and the directory $PGI/linux86-64/<rel>/libso contains shared libraries
for building both -fpic and -mcmodel=medium executables.

-mcmodel=medium -fpic is not allowed to create shared libraries. However, you
can create static archive libraries (.a) that are -fpic.

Related options

-Mlarge_arrays

2.3.37. -module <moduledir>
Allows you to specify a particular directory in which generated intermediate .mod files
should be placed.

Default

The compiler places .mod files in the current working directory, and searches only in the
current working directory for pre-compiled intermediate .mod files.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 45

Usage

The following command line requests that any intermediate module file produced
during compilation of myprog.f be placed in the directory mymods; specifically, the file
./mymods/myprog.mod is used.
$ pgfortran -module mymods myprog.f

Description

Use the -module option to specify a particular directory in which generated
intermediate .mod files should be placed. If the -module <moduledir> option is
present, and USE statements are present in a compiled program unit, then <moduledir> is
searched for .mod intermediate files prior to a search in the default local directory.

Related options

None.

2.3.38. -mp
Instructs the compiler to interpret user-inserted OpenMP shared-memory parallel
programming directives and pragmas, and to generate an executable file which will
utilize multiple processors in a shared-memory parallel system.

Default

The compiler interprets user-inserted shared-memory parallel programming directives
and pragmas when linking. To disable this option, use the -nomp option when linking.

Usage

The following command line requests processing of any shared-memory directives
present in myprog.f:
$ pgfortran -mp myprog.f

Description

Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-
memory parallel programming directives and to generate an executable file which
utilizes multiple processors in a shared-memory parallel system.

The suboptions are one or more of the following:
align

Forces loop iterations to be allocated to OpenMP processes using an algorithm
that maximizes alignment of vector sub-sections in loops that are both parallelized
and vectorized for SSE. This allocation can improve performance in program units
that include many such loops. It can also result in load-balancing problems that
significantly decrease performance in program units with relatively short loops that

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 46

contain a large amount of work in each iteration. The numa suboption uses libnuma
on systems where it is available.

allcores
Instructs the compiler to target all available cores. You specify this suboption at link
time.

bind
Instructs the compiler to bind threads to cores. You specify this suboption at link
time.

[no]numa
Uses [does not use] libnuma on systems where it is available.

For a detailed description of this programming model and the associated directives and
pragmas, refer to Section 9, ‘Using OpenMP’ of the PGI Compiler User's Guide.

Related options

-Mconcur[=option [,option,...]], -M[no]vect[=option [,option,...]]

2.3.39. -noswitcherror
Issues warnings instead of errors for unknown switches. Ignores unknown command
line switches after printing a warning message.

Default

The compiler prints an error message and then halts.

Usage

In the following example, the compiler ignores unknown command line switches after
printing a warning message.
$ pgfortran -noswitcherror myprog.f

Description

Use this option to instruct the compiler to ignore unknown command line switches after
printing an warning message.

Tip You can configure this behavior in the siterc file by adding: set
NOSWITCHERROR=1.

Related options

None.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 47

2.3.40. -O<level>
Invokes code optimization at the specified level.

Default

The compiler optimizes at level 2.

Syntax
-O [level]

Where level is an integer from 0 to 4.

Usage

In the following example, since no -O option is specified, the compiler sets the
optimization to level 1.
$ pgfortran myprog.f

In the following example, since no optimization level is specified and a -O option is
specified, the compiler sets the optimization to level 2.
$ pgfortran -O myprog.f

Description

Use this option to invoke code optimization.Using the PGI compiler commands with
the -Olevel option (the capital O is for Optimize), you can specify any of the following
optimization levels:
-O0

Level zero specifies no optimization. A basic block is generated for each language
statement.

-O1
Level one specifies local optimization. Scheduling of basic blocks is performed.
Register allocation is performed.

-O
When no level is specified, level two global optimizations are performed, including
traditional scalar optimizations, induction recognition, and loop invariant motion. No
SIMD vectorization is enabled.

-O2
Level two specifies global optimization. This level performs all level-one local
optimization as well as level-two global optimization described in -O. In addition,
this level enables more advanced optimizations such as SIMD code generation, cache
alignment, and partial redundancy elimination.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 48

-O3
Level three specifies aggressive global optimization. This level performs all level-
one and level-two optimizations and enables more aggressive hoisting and scalar
replacement optimizations that may or may not be profitable.

-O4
Level four performs all level-one, level-two, and level-three optimizations and
enables hoisting of guarded invariant floating point expressions.

The following table shows the interaction between the -O option, -g option, -Mvect,
and -Mconcur options.

Table 14 Optimization and -O, -g, -Mvect, and -Mconcur Options

Optimize Option Debug Option -M Option Optimization Level

none none none 1

none none -Mvect 2

none none -Mconcur 2

none -g none 0

-O none or -g none 2

-Olevel none or -g none level

-Olevel < 2 none or -g -Mvect 2

-Olevel < 2 none or -g -Mconcur 2

Unoptimized code compiled using the option -O0 can be significantly slower than code
generated at other optimization levels. Like the -Mvect option, the -Munroll option
sets the optimization level to level-2 if no -O or -g options are supplied. The -gopt
option is recommended for generation of debug information with optimized code. For
more information on optimization, refer to the ‘Optimizing and Parallelizing’ section
of the PGI Compiler User's Guide, www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-
x86.pdf.

Related options

-g, -M<pgflag>, -gopt

2.3.41. -o
Names the executable file. Use the -o option to specify the filename of the compiler
object file. The final output is the result of linking.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 49

Default

The compiler creates executable filenames as needed. If you do not specify the -o
option, the default filename is the linker output file a.out .

Syntax

-o filename

Where filename is the name of the file for the compilation output. The filename should not
have a .f extension.

Usage

In the following example, the executable file ismyprog instead of the default a.out
myprog.exe.
$ pgfortran myprog.f -o myprog

Related options

-c, -E, -F, -S

2.3.42. -pc

This option is available only for -tp px/p5/p6/piii targets.

Allows you to control the precision of operations performed using the x87 floating point
unit, and their representation on the x87 floating point stack.

Syntax
-pc { 32 | 64 | 80 }

Usage
$ pgfortran -pc 64 myprog.f

Description

The x87 architecture implements a floating-point stack using eight 80-bit registers. Each
register uses bits 0–63 as the significant, bits 64–78 for the exponent, and bit 79 is the sign
bit. This 80-bit real format is the default format, called the extended format. When values
are loaded into the floating point stack they are automatically converted into extended
real format. The precision of the floating point stack can be controlled, however, by
setting the precision control bits (bits 8 and 9) of the floating control word appropriately.
In this way, you can explicitly set the precision to standard IEEE double-precision using
64 bits, or to single precision using 32 bits.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 50

According to Intel documentation, this only affects the x87 operations of add, subtract,
multiply, divide, and square root. In particular, it does not appear to affect the x87
transcendental instructions.

The default precision is system dependent. To alter the precision in a given program
unit, the main program must be compiled with the same -pc option. The command line
option -pc val lets the programmer set the compiler’s precision preference.

Valid values for val are:

32 single precision 64 double precision 80 extended precision

Extended Precision Option – Operations performed exclusively on the floating-point
stack using extended precision, without storing into or loading from memory, can cause
problems with accumulated values within the extra 16 bits of extended precision values.
This can lead to answers, when rounded, that do not match expected results.

For example, if the argument to sin is the result of previous calculations performed on
the floating-point stack, then an 80-bit value used instead of a 64-bit value can result in
slight discrepancies. Results can even change sign due to the sin curve being too close
to an x-intercept value when evaluated. To maintain consistency in this case, you can
assure that the compiler generates code that calls a function. According to the x86 ABI, a
function call must push its arguments on the stack (in this way memory is guaranteed to
be accessed, even if the argument is an actual constant). Thus, even if the called function
simply performs the inline expansion, using the function call as a wrapper to sin has
the effect of trimming the argument precision down to the expected size. Using the
-Mnobuiltin option on the command line for C accomplishes this task by resolving
all math routines in the library libm, performing a function call of necessity. The other
method of generating a function call for math routines, but one that may still produce
the inline instructions, is by using the -Kieee switch.

A second example illustrates the precision control problem using a section of code to
determine machine precision:
program find_precision

 w = 1.0
 100 w=w+w
 y=w+1
 z=y-w
 if (z .gt. 0) goto 100
 C now w is just big enough that |((w+1)-w)-1| >= 1
 ...
 print*,w
 end

In this case, where the variables are implicitly real*4, operations are performed on the
floating-point stack where optimization removes unnecessary loads and stores from
memory. The general case of copy propagation being performed follows this pattern:
a = x
 y = 2.0 + a

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 51

Instead of storing x into a, then loading a to perform the addition, the value of x can
be left on the floating-point stack and added to 2.0. Thus, memory accesses in some
cases can be avoided, leaving answers in the extended real format. If copy propagation
is disabled, stores of all left-hand sides will be performed automatically and reloaded
when needed. This will have the effect of rounding any results to their declared sizes.

The find_precision program has a value of 1.8446744E+19 when executed using
default (extended) precision. If, however, -Kieee is set, the value becomes 1.6777216E
+07 (single precision.) This difference is due to the fact that -Kieee disables copy
propagation, so all intermediate results are stored into memory, then reloaded when
needed. Copy propagation is only disabled for floating-point operations, not integer.
With this particular example, setting the -pc switch will also adjust the result.

The -Kieee switch also has the effect of making function calls to perform all
transcendental operations. Except when the -Mnobuiltin switch is set in C, the
function still produces the x86 machine instruction for computation, and arguments are
passed on the stack, which results in a memory store and load.

Finally, -Kieee also disables reciprocal division for constant divisors. That is, for a/b
with unknown a and constant b, the expression is usually converted at compile time
to a*(1/b), thus turning an expensive divide into a relatively fast scalar multiplication.
However, numerical discrepancies can occur when this optimization is used.

Understanding and correctly using the -pc, -Mnobuiltin, and -Kieee switches
should enable you to produce the desired and expected precision for calculations which
utilize floating-point operations.

Related options

-K<flag>, Mnobuiltin

2.3.43. --pedantic
Prints warnings from included <system header files>.

Default

The compiler prints the warnings from the included system header files.

Usage

In the following example, the compiler prints the warnings from the included system
header files.
$ pgc++ --power myprog.cc

Related options

None.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 52

2.3.44. -pg
(Linux only) Instructs the compiler to instrument the generated executable for gprof-
style gmon.out sample-based profiling trace file.

Default

The compiler does not instrument the generated executable for gprof-style profiling.

Usage:

In the following example the program is compiled for profiling using pgdbg or gprof.
$ pgfortran -pg myprog.c

Description

Use this option to instruct the compiler to instrument the generated executable for
gprof-style sample-based profiling. You must use this option at both the compile and
link steps. A gmon.out style trace is generated when the resulting program is executed,
and can be analyzed using gprof.

Related options

None.

2.3.45. -pgc++libs
Instructs the compiler to append C++ runtime libraries to the link line for programs
built using either PGF77 or PGF90 .

Default

The C/C++ compilers do not append the C++ runtime libraries to the link line.

Usage

In the following example the C++ runtime libraries are linked with an object file
compiled with pgf77 .

$ pgf90 main.f90 mycpp.o -pgc++libs

Description

Use this option to instruct the compiler to append C++ runtime libraries to the link line
for programs built using either PGF77 or PGF90 .

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 53

Related options

-pgf90libs , -pgf77libs

2.3.46. -pgf77libs
Instructs the compiler to append PGF77 runtime libraries to the link line.

Default

The C/C++ compilers do not append the PGF77 runtime libraries to the link line.

Usage

In the following example a .c main program is linked with an object file compiled with
pgf77.
$ pgcc main.c myf77.o -pgf77libs

Description

Use this option to instruct the compiler to append PGF77 runtime libraries to the link
line.

Related options

-pgc++libs, -pgf90libs

2.3.47. -pgf90libs
Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the
link line.

Default

The C/C++ compilers do not append the PGF90/PGF95/PGFORTRAN runtime libraries
to the link line.

Usage

In the following example a .c main program is linked with an object file compiled with
pgfortran.
$ pgcc main.c myf95.o -pgf90libs

Description

Use this option to instruct the compiler to append PGF90/PGF95/PGFORTRAN runtime
libraries to the link line.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 54

Related options

-pgc++libs , -pgf77libs

2.3.48. -R<directory>
(Linux only) Instructs the linker to hard-code the pathname <directory>into the search
path for generated shared object (dynamically linked library) files.

There cannot be a space between R and <directory>.

Usage

In the following example, at runtime the a.out executable searches the specified
directory, in this case /home/Joe/myso, for shared objects.
$ pgfortran -R/home/Joe/myso myprog.f

Description

Use this option to instruct the compiler to pass information to the linker to hard-code the
pathname <directory> into the search path for shared object (dynamically linked library)
files.

Related options

-fpic, -shared

2.3.49. -r
Linux only.Creates a relocatable object file.

Default

The compiler does not create a relocatable object file and does not use the -r option.

Usage

In this example, pgfortran creates a relocatable object file.
$ pgfortran -r myprog.f

Description

Use this option to create a relocatable object file.

Related options

-C, -O<level>, -S, -U

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 55

2.3.50. -r4 and -r8
Interprets DOUBLE PRECISION variables as REAL (-r4), or interprets REAL variables as
DOUBLE PRECISION (-r8).

Usage

In this example, the double precision variables are interpreted as REAL.
$ pgfortran -r4 myprog.f

Description

Interpret DOUBLE PRECISION variables as REAL (-r4) or REAL variables as DOUBLE
PRECISION (-r8).

Related options

-i2, -i4, -i8, -Mnor8

2.3.51. -rc
Specifies the name of the driver startup configuration file. If the file or pathname
supplied is not a full pathname, the path for the configuration file loaded is relative
to the $DRIVER path (the path of the currently executing driver). If a full pathname is
supplied, that file is used for the driver configuration file.

Syntax
-rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full
pathname beginning with "/". Filename is the driver configuration file.

Usage

In the following example, the file .pgfortranrctest, relative to /usr/pgi/
linux86-64/bin , the value of $DRIVER, is the driver configuration file.
$ pgfortran -rc .pgfortranrctest myprog.f

Description

Use this option to specify the name of the driver startup configuration file. If the file
or pathname supplied is not a full pathname, the path for the configuration file loaded
is relative to the $DRIVER path – the path of the currently executing driver. If a full
pathname is supplied, that file is used for the driver configuration file.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 56

Related options

-show

2.3.52. -s
(Linux only) Strips the symbol-table information from the executable file.

Default

The compiler includes all symbol-table information and does not use the -s option.

Usage

In this example, pgfortran strips symbol-table information from the a.out. executable
file.
$ pgfortran -s myprog.f

Description

Use this option to strip the symbol-table information from the executable.

Related options

-c, -o, -u

2.3.53. -S
Stops compilation after the compiling phase and writes the assembly-language output to
a file.

Default

The compiler does not retain a .s file.

Usage

In this example, pgfortran produces the file myprog.s in the current directory.
$ pgfortran -S myprog.f

Description

Use this option to stop compilation after the compiling phase and then write the
assembly-language output to a file. If the input file is filename.f, then the output file
is filename.s.

Related options

-c, -E, -F, -Mkeepasm, -o

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 57

2.3.54. -shared
(Linux only) Instructs the compiler to pass information to the linker to produce a shared
object (dynamically linked library) file.

Default

The compiler does not pass information to the linker to produce a shared object file.

Usage

In the following example the compiler passes information to the linker to produce the
shared object file:myso.so.
$ pgfortran -shared myprog.f -o myso.so

Description

Use this option to instruct the compiler to pass information to the linker to produce a
shared object (dynamically linked library) file.

Related options

-fpic, -R<directory>

2.3.55. -show
Produces driver help information describing the current driver configuration.

Default

The compiler does not show driver help information.

Usage

In the following example, the driver displays configuration information to the standard
output after processing the driver configuration file.
$ pgfortran -show myprog.f

Description

Use this option to produce driver help information describing the current driver
configuration.

Related options

-V[release_number], -v, -###, -help, -rc

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 58

2.3.56. -silent
Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example, the driver does not display warning messages.
$ pgfortran -silent myprog.f

Description

Use this option to suppress warning messages.

Related options

-v, -V[release_number], -w

2.3.57. -soname
(Linux only) The compiler recognizes the -soname option and passes it through to the
linker.

Default

The compiler does not recognize the -soname option.

Usage

In the following example, the driver passes the soname option and its argument through
to the linker.
$ pgfortran -soname library.so myprog.f

Description

Use this option to instruct the compiler to recognize the -soname option and pass it
through to the linker.

Related options

None.

2.3.58. -stack
(Windows only) Allows you to explicitly set stack properties for your program.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 59

Default

If -stack is not specified, then the defaults are as followed:
Win64

No default setting

Syntax
-stack={ (reserved bytes)[,(committed bytes)] }{, [no]check }

Usage

The following example demonstrates how to reserve 524,288 stack bytes (512KB),
commit 262,144 stack bytes for each routine (256KB), and disable the stack initialization
code with the nocheck argument.
$ pgfortran -stack=524288,262144,nocheck myprog.f

Description

Use this option to explicitly set stack properties for your program. The -stack option
takes one or more arguments: (reserved bytes), (committed bytes), [no]check.
reserved bytes

Specifies the total stack bytes required in your program.
committed bytes

Specifies the number of stack bytes that the Operating System will allocate for each
routine in your program. This value must be less than or equal to the stack reserved
bytes value.

Default for this argument is 4096 bytes.
[no]check

Instructs the compiler to generate or not to generate stack initialization code upon
entry of each routine. Check is the default, so stack initialization code is generated.

Stack initialization code is required when a routine's stack exceeds the committed bytes
size. When your committed bytes is equal to the reserved bytes or equal to the stack bytes
required for each routine, then you can turn off the stack initialization code using the
-stack=nocheck compiler option. If you do this, the compiler assumes that you are
specifying enough committed stack space; and therefore, your program does not have to
manage its own stack size.

For more information on determining the amount of stack required by your program,
refer to -Mchkstk compiler option, described in ‘Miscellaneous Controls’.

-stack=(reserved bytes),(committed bytes) are linker options.

-stack=[no]check is a compiler option.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 60

If you specify -stack=(reserved bytes),(committed bytes) on
your compile line, it is only used during the link step of your build. Similarly, -
stack=[no]check can be specified on your link line, but it's only used during the
compile step of your build.

Related options

-Mchkstk

2.3.59. -ta
Enable OpenACC and specify the type of accelerator to which to target accelerator
regions.

-ta suboptions

There are three primary suboptions:
host

Compile OpenACC for serial execution on the host CPU; host has no suboptions.
multicore

Compile OpenACC for parallel execution on the host CPU; multicore has no
suboptions.

tesla
Compile OpenACC for parallel execution on a Tesla GPU; tesla supports
suboptions.

Multiple target accelerators can be specified. By default, the compiler generates code for
-ta=tesla,host.

-ta=tesla suboptions

The tesla sub-option to -ta can itself be given suboptions. The following secondary
suboptions are supported:
cc20, cc30, cc35, cc50, cc60, cc70

Generate code for compute capability 2.0, 3.0, 3.5, 5.0, 6.0, or 7.0 respectively; multiple
selections are valid

cudaX.Y
Use CUDA X.Y Toolkit compatibility, where installed

[no]debug
Enable [disable] debug information generation in device code

deepcopy
Enable full deep copy of aggregate data structions in OpenACC; Fortran only

fastmath
Use routines from the fast math library

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 61

[no]flushz
Enable [disable] flush-to-zero mode for floating point computations on the GPU

[no]fma
Generate [do not generate] fused multiply-add instructions; default at -O3

keep
Keep the kernel files (.bin, .ptx, source)

[no]lineinfo
Enable [disable] GPU line information generation

[no]llvm
Generate [do not generate] code using the llvm-based back-end

loadcache:{L1|L2}
Choose what hardware level cache to use for global memory loads; options include
the default, L1, or L2

managed
Use CUDA Managed Memory

maxregcount:n
Specify the maximum number of registers to use on the GPU; leaving this blank
indicates no limit

pinned
Use CUDA Pinned Memory

[no]rdc
Generate [do not generate] relocatable device code.

safecache
Allow variable-sized array sections in cache directives; compiler assumes they fit into
CUDA shared memory

[no]unroll
Enable [disable] automatic inner loop unrolling; default at -O3

zeroinit
Initialize allocated device memory with zero

Usage

In the following example, tesla is the accelerator target architecture and the accelerator
generates code for compute capabilities 6.0 and 7.0.
$ pgfortran -ta=tesla:cc60,cc70

The compiler automatically invokes the necessary software tools to create the kernel
code and embeds the kernels in the object file.

To access accelerator libraries, you must link an accelerator program with the -ta flag.

DWARF Debugging Formats

PGI's debugging capability for Tesla uses the LLVM back-end. Use the compiler's
-g option to enable the generation of full dwarf information on both the host and
device; in the absence of other optimization flags, -g sets the optimization level to

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 62

zero. If a -O option raises the optimization level to one or higher, only GPU line
information is generated on the device even when -g is specified. To enforce full dwarf
generation for device code at optimization levels above zero, use the debug sub-option
to -ta=tesla. Conversely, to prevent the generation of dwarf information for device
code, use the nodebug sub-option to -ta=tesla. Both debug and nodebug can be
used independently of -g.

2.3.60. -time
Print execution times for various compilation steps.

Default

The compiler does not print execution times for compilation steps.

Usage

In the following example, pgfortran prints the execution times for the various
compilation steps.
$ pgfortran -time myprog.f

Description

Use this option to print execution times for various compilation steps.

Related options

-#

2.3.61. -tp <target>[,target...]
Sets the target processor.

Default

The PGI compilers produce code specifically targeted to the type of processor on
which the compilation is performed. In particular, the default is to use all supported
instructions wherever possible when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the
compilation is performed. You can specify a target processor to compile for a different
processor type, such as to select a more generic processor, allowing the code to run on
more system types. Specifying two or more target processors enables unified binary
code generation, where two or more versions of each function may be generated, each
version optimized for the specific instruction set available in each target processor.

Executables created on a given system without the -tp flag may not be usable on
previous generation systems. For example, executables created on an Intel Sandybridge

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 63

processor may use instructions that are not available on earlier Intel Nehalem or Intel P7
systems.

Usage

In the following example, pgfortran sets the target processor to an Intel Skylake Xeon
processor:
$ pgfortran -tp=skylake myprog.f

Description

Use this option to set the target architecture. By default, the PGI compiler uses all
supported instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the -tp
option. Thus, it is possible to create executables that are usable on previous-generation
systems.

The following list contains the possible suboptions for -tp and the processors that each
suboption is intended to target.
px

generate code that is usable on any x86-64 processor-based system.
k8

generate code hat is usable on any AMD64 and compatible processor.
k8-64e

generate code for AMD Opteron Revision E, AMD Turion, and compatible
processors.

barcelona
generate code for AMD Opteron/Quadcore and compatible processors.

shanghai
generate code that is usable on any AMD Shanghai processor-based system.

istanbul
generate code that is usable on any AMD Istanbul processor-based system.

bulldozer
generate code for AMD Bulldozer and compatible processors.

piledriver
generate code that is usable on any AMD Piledriver processor-based system.

zen
generate code that is usable on any AMD Zen processor-based system (Epyc, Ryzen).

p7
generate code for Pentium 4 and compatible processors.

core2
generate code for Intel Core 2 Duo and compatible processors.

penryn
generate code for Intel Penryn Architecture and compatible processors.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 64

nehalem
generate code that is usable on any Nehalem processor-based system.

sandybridge
generate code for Intel Sandy Bridge and compatible processors.

haswell
generate code that is usable on any Intel Haswell processor-based system.

knl
generate code that is usable on any Intel Knights Landing processor-based system.

skylake
generate code that is usable on an Intel Skylake Xeon processor-based system.

x64
generate unified binary code including full optimizations and support for both AMD
and Intel x86-64 processors; equivalent to -tp=k8,p7.

Refer to the PGI Release Notes for a concise list of the features of these processors that
distinguish them as separate targets when using the PGI compilers and tools.

Using -tp to Generate a Unified Binary

Different processors have differences, some subtle, in hardware features such as
instruction sets and cache size. The compilers make architecture-specific decisions about
such things as instruction selection, instruction scheduling, and vectorization. Any
of these decisions can have significant effects on performance and compatibility. PGI
unified binaries provide a low-overhead means for a single program to run well on a
number of hardware platforms.

You can use the -tp option to produce PGI Unified Binary programs. The compilers
generate, and combine into one executable, multiple binary code streams, each
optimized for a specific platform. At runtime, this one executable senses the
environment and dynamically selects the appropriate code stream.

The target processor switch, -tp, accepts a comma-separated list of targets and will
generate code optimized for each listed target. For example, the following switch
generates optimized code for three targets: k8, p7, and core2.

Syntax for optimizing for multiple targets:
-tp k8,p7,core2

The -tp k8 option results in generation of code supported on and optimized for AMD
x64 processors, while the -tp p7 and core2 options result in generation of code that is
supported on and optimized for Intel P7 and Core2 processors.

The special -tp x64 option is equivalent to -tp k8,p7 . This switch produces PGI
Unified Binary programs containing code streams fully optimized and supported for
bothAMD64 and Intel 64 processors.

For more information on unified binaries, refer to Processor-Specific Optimization and
the Unified Binary section in the PGI Compiler User's Guide.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 65

Related options

All -M<pgflag> options that control environments, as listed in Environment Controls

2.3.62. -[no]traceback
Adds debug information for runtime traceback for use with the environment variable
PGI_TERM.

Default

The compiler enables traceback for FORTRAN and disables traceback for C and C++.

Syntax
-traceback

Usage

In this example, pgfortran enables traceback for the program myprog.f.
$ pgfortran -traceback myprog.f

Description

Use this option to enable or disable runtime traceback information for use with the
environment variable PGI_TERM.

Setting setTRACEBACK=OFF; in siterc or .mypg*rc also disables default traceback.

Using ON instead of OFF enables default traceback.

Related options

None.

2.3.63. -u
Initializes the symbol-table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

Default

The compiler does not use the -u option.

Syntax
-usymbol

Where symbol is a symbolic name.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 66

Usage

In this example, pgfortran initializes symbol-table with test.
$ pgfortran -utest myprog.f

Description

Use this option to initialize the symbol-table with <symbol>, which is undefined for the
linker. An undefined symbol triggers loading of the first member of an archive library.

Related options

-c, -o , -s

2.3.64. -U
Undefines a preprocessor macro.

Syntax
-Usymbol

Where symbol is a symbolic name.

Usage

The following examples undefine the macro test.

$ pgfortran -Utest myprog.F
$ pgfortran -Dtest -Utest myprog.F

Description

Use this option to undefine a preprocessor macro. You can also use the #undef pre-
processor directive to undefine macros.

Related options

-D, Mnostddef

2.3.65. -V[release_number]
Displays additional information, including version messages. Further, if a
release_number is appended, the compiler driver attempts to compile using the
specified release instead of the default release.

There can be no space between -V and release_number.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 67

Default

The compiler does not display version information and uses the release specified by
your path to compile.

Usage

The following command-line shows the output using the -V option.
% pgfortran -V myprog.f

The following command-line causes pgcc to compile using the 5.2 release instead of the
default release.
% pgcc -V5.2 myprog.c

Description

Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using
the specified release instead of the default release.

The specified release must be co-installed with the default release, and must have a
release number greater than or equal to 4.1, which was the first release that supported
this functionality.

Related options

-Minfo[=option [,option,...]], -v

2.3.66. -v
Displays the invocations of the compiler, assembler, and linker.

Default

The compiler does not display individual phase invocations.

Usage

In the following example you use -v to see the commands sent to compiler tools,
assembler, and linker.
$ pgfortran -v myprog.f90

Description

Use the -v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the -W
options you specify on the compiler command-line.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 68

Related options

-dryrun, -Minfo[=option [,option,...]], -V[release_number], -W

2.3.67. -W
Passes arguments to a specific phase.

Syntax
-W{0 | a | l },option[,option...]

You cannot have a space between the -W and the single-letter pass identifier,
between the identifier and the comma, or between the comma and the option.

0
(the number zero) specifies the compiler.

a
specifies the assembler.

l
(lowercase letter l) specifies the linker.

option
is a string that is passed to and interpreted by the compiler, assembler or linker.
Options separated by commas are passed as separate command line arguments.

Usage

In the following example the linker loads the text segment at address 0xffc00000 and
the data segment at address 0xffe00000.
$ pgfortran -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

Description

Use this option to pass arguments to a specific phase. You can use the -W option to
specify options for the assembler, compiler, or linker.

A given PGI compiler command invokes the compiler driver, which parses the
command-line, and generates the appropriate commands for the compiler, assembler,
and linker.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.3.68. -w
Do not print warning messages.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 69

Default

The compiler prints warning messages.

Usage

In the following example no warning messages are printed.
$ pgfortran -w myprog.f

Description

Use the -w option to not print warning messages. Sometimes the compiler issues many
warning in which you may have no interest. You can use this option to not issue those
warnings.

Related options

-silent

2.3.69. -Xs
Use legacy standard mode for C and C++.

Default

None.

Usage

In the following example the compiler uses legacy standard mode.
$ pgcc -Xs myprog.c

Description

Use this option to use legacy standard mode for C and C++. Further, this option implies -
alias=traditional.

Related options

-alias, -Xt

2.3.70. -Xt
Use legacy transitional mode for C and C++.

Default

None.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 70

Usage

In the following example the compiler uses legacy transitional mode.
$ pgcc -Xt myprog.c

Description

Use this option to use legacy transitional mode for C and C++. Further, this option
implies -alias=traditional.

Related options

-alias, -Xs

2.3.71. -Xlinker
Pass options to the linker.

Syntax
-Xlinker option[,option...]

Default

None.

Usage

In the following example the option --trace-symbol=foo is passed to the linker, which
will cause the Linux linker to list all the files that reference symbol foo.
$ pgcc -Xliker --trace-symbol=foo myprog.c

Description

Use this option pass options to the linker. This is useful when the link step needs to
be customized but the compiler doesn't understand the necessary linker options. The
options supported by the linker are platform dependent and are not listed here. This
option has the same effect as -Wl.

Related options

-W

2.4. C and C++ -specific Compiler Options
There are a large number of compiler options specific to the PGCC and PGC++
compilers, especially PGC++. This section provides the details of several of these options,
but is not exhaustive. For a complete list of available options, including an exhaustive

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 71

list of PGC++ options, use the -help command-line option. For further detail on a given
option, use -help and specify the option explicitly

2.4.1. -A
(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the ISO C++
standard, issuing errors for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated
Reference Manual.

Usage

The following command-line requests ISO conforming C++.
 $ pgc++ -A hello.cc

Description

Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues errors for non-conforming code.

Related options

-a, -b, -+p

2.4.2. -a
(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the ISO C++
standard, issuing warnings for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated
Reference Manual.

Usage

The following command-line requests ISO conforming C++, issuing warnings for non-
conforming code.
$ pgc++ -a hello.cc

Description

Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues warnings for non-conforming code.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 72

Related options

-A,-b

2.4.3. -alias
select optimizations based on type-based pointer alias rules in C and C++.

Syntax
-alias=[ansi|traditional]

Default

None.

Usage

The following command-line enables optimizations.
 $ pgc++ -alias=ansi hello.cc

Description

Use this option to select optimizations based on type-based pointer alias rules in C and
C++.
ansi

Enable optimizations using ANSI C type-based pointer disambiguation
traditional

Disable type-based pointer disambiguation

Related options

-Xt

2.4.4. --[no_]alternative_tokens
(pgc++ only) Enables or disables recognition of alternative tokens. These are tokens
that make it possible to write C++ without the use of the comma (,) , [,], #, &, ^, and
characters. The alternative tokens include the operator keywords (e.g., and, bitand, etc.)
and digraphs.

Default

The default behavior is --no_alternative_tokens, that is, to disable recognition of
alternative tokens.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 73

Usage

The following command-line enables alternative token recognition.
 $ pgc++ --alternative_tokens hello.cc

(pgc++ only) Use this option to enable or disable recognition of alternative tokens. These
tokens make it possible to write C++ without the use of the comma (,), [,], #, &, ^, and
characters. The alternative tokens include digraphs and the operator keywords, such as
and, bitand, and so on. The default behavior is disabled recognition of alternative tokens:
--no_alternative_tokens.

Related options

None.

2.4.5. -B
(pgcc and pgc++ only) Enables use of C++ style comments starting with // in C program
units.

Default

The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage

In the following example the compiler accepts C++ style comments.
 $ pgcc -B myprog.cc

Description

Use this option to enable use of C++ style comments starting with // in C program units.

Related options

-Mcpp[=option [,option,...]]

2.4.6. -b
(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 74

Usage

In the following example the compiler accepts cfront constructs.
 $ pgc++ -b myprog.cc

Description

Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler
then accepts language constructs that, while not part of the C++ language definition, are
accepted by the AT&T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options

--cfront_2.1,-b3,--cfront_3.0,-+p,-A

2.4.7. -b3
(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage

In the following example, the compiler accepts cfront constructs.
 $ pgc++ -b3 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler
then accepts language constructs that, while not part of the C++ language definition, are
accepted by the AT&T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options

--cfront_2.1,-b,--cfront_3.0,-+p,-A

2.4.8. --[no_]bool
(pgc++ only) Enables or disables recognition of bool.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 75

Default

The compile recognizes bool: --bool.

Usage

In the following example, the compiler does not recognize bool.
 $ pgc++ --no_bool myprog.cc

Description

Use this option to enable or disable recognition of bool.

Related options

None.

2.4.9. --[no_]builtin
Compile with or without math subroutine builtin support.

Default

The default is to compile with math subroutine support: --builtin.

Usage

In the following example, the compiler does not build with math subroutine support.
 $ pgc++ --no_builtin myprog.cc

Description

Use this option to enable or disable compiling with math subroutine builtin support.
When you compile with math subroutine builtin support, the selected math library
routines are inlined.

Related options

None.

2.4.10. --cfront_2.1
(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 76

Usage

In the following example, the compiler accepts cfront constructs.
 $ pgc++ --cfront_2.1 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler
then accepts language constructs that, while not part of the C++ language definition, are
accepted by the AT&T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options

-b,-b3,--cfront_3.0,-+p,-A

2.4.11. --cfront_3.0
(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++
language definition.

Usage

In the following example, the compiler accepts cfront constructs.
 $ pgc++ --cfront_3.0 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler
then accepts language constructs that, while not part of the C++ language definition, are
accepted by the AT&T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options

--cfront_2.1,-b,-b3,-+p,-A

2.4.12. --[no_]compress_names
Compresses long function names in the file.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 77

Default

The compiler does not compress names: --no_compress_names.

Usage

In the following example, the compiler compresses long function names.
 $ pgc++ --ccmpress_names myprog.cc

Description

Use this option to specify to compress long function names. Highly nested template
parameters can cause very long function names. These long names can cause problems
for older assemblers. Users encountering these problems should compile all C++ code,
including library code with --compress_names. Libraries supplied by PGI work with
--compress_names.

Related options

None.

2.4.13. --create_pch filename
(pgc++ only) If other conditions are satisfied, create a precompiled header file with the
specified name.

If --pch (automatic PCH mode) appears on the command line following this option, its
effect is erased.

Default

The compiler does not create a precompiled header file.

Usage

In the following example, the compiler creates a precompiled header file, hdr1.
 $ pgc++ --create_pch hdr1 myprog.cc

Description

If other conditions are satisfied, use this option to create a precompiled header file with
the specified name.

Related options

--pch

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 78

2.4.14. --diag_error <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Description

Use this option to override the normal error severity of the specified diagnostic
messages. The message(s) may be specified using a mnemonic error tag or using an error
number.

Related options

--diag_remark <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

2.4.15. --diag_remark <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Description

Use this option to override the normal error severity of the specified diagnostic
messages. The message(s) may be specified using a mnemonic error tag or using an error
number.

Related options

--diag_error <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

2.4.16. --diag_suppress <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 79

Usage

In the following example, the compiler overrides the normal error severity of the
specified diagnostic messages.
 $ pgc++ --diag_suppress error_tag prog.cc

Description

Use this option to override the normal error severity of the specified diagnostic
messages. The message(s) may be specified using a mnemonic error tag or using an error
number.

Related options

--diag_error <number>,--diag_remark <number>,--diag_warning <number>,--
display_error_number

2.4.17. --diag_warning <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Usage

In the following example, the compiler overrides the normal error severity of the
specified diagnostic messages.
 $ pgc++ --diag_suppress an_error_tag myprog.cc

Description

Use this option to override the normal error severity of the specified diagnostic
messages. The message(s) may be specified using a mnemonic error tag or using an error
number.

Related options

--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--
display_error_number

2.4.18. --display_error_number
(pgc++ only) Displays the error message number in any diagnostic messages that are
generated. The option may be used to determine the error number to be used when
overriding the severity of a diagnostic message.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 80

Default

The compiler does not display error message numbers for generated diagnostic
messages.

Usage

In the following example, the compiler displays the error message number for any
generated diagnostic messages.
 $ pgc++ --display_error_number myprog.cc

Description

Use this option to display the error message number in any diagnostic messages that
are generated. You can use this option to determine the error number to be used when
overriding the severity of a diagnostic message.

Related options

--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--
diag_warning <number>

2.4.19. -e<number>
(pgc++ only) Set the C++ front-end error limit to the specified <number>.

2.4.20. --no_exceptions
(pgc++ only) Disables exception handling support.

Default

Exception handling support is enabled.

Usage

In the following example, the compiler does not provide exception handling support.
 $ pgc++ --no_exceptions myprog.cc

Description

Use this option to disable exception handling support. When exception handling
is turned off, any try/catch blocks or throw expressions in the code will result in a
compilation error, and any exception specifications will be ignored.

2.4.21. --gnu_version <num>
(pgc++ only) Sets the GNU C++ compatibility version.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 81

Default

The compiler uses the latest version.

Usage

In the following example, the compiler sets the GNU version to 4.3.4.
 $ pgc++ --gnu_version 4.3.4 myprog.cc

Description

Use this option to set the GNU C++ compatibility version to use when you compile.

2.4.22. --[no]llalign
(pgc++ only) Enables or disables alignment of long long integers on long long
boundaries.

Default

The compiler aligns long long integers on long long boundaries: --llalign.

Usage

In the following example, the compiler does not align long long integers on long long
boundaries.
 $ pgc++ --nollalign myprog.cc

Description

Use this option to allow enable or disable alignment of long long integers on long long
boundaries.

Related options

-Mipa=<option>[,<option>[,...]]=align-noalign

2.4.23. -M
Generates a list of make dependencies and prints them to stdout.

The compilation stops after the preprocessing phase.

Default

The compiler does not generate a list of make dependencies.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 82

Usage

In the following example, the compiler generates a list of make dependencies.
 $ pgc++ -M myprog.cc

Description

Use this option to generate a list of make dependencies and print them to stdout.

Related options

-MD,-P

2.4.24. -MD
Generates a list of make dependencies and prints them to a file.

Default

The compiler does not generate a list of make dependencies.

Usage

In the following example, the compiler generates a list of make dependencies and prints
them to the file myprog.d.
 $ pgc++ -MD myprog.cc

Description

Use this option to generate a list of make dependencies and print them
to a file. The name of the file is determined by the name of the file under
compilation.dependencies_file<file>.

Related options

-M,-P

2.4.25. --optk_allow_dollar_in_id_chars
(pgc++ only) Accepts dollar signs ($) in identifiers.

Default

The compiler does not accept dollar signs ($) in identifiers.

Usage

In the following example, the compiler allows dollar signs ($) in identifiers.
 $ pgc++ -optk_allow_dollar_in_id_chars myprog.cc

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 83

Description

Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

2.4.26. -P
Halts the compilation process after preprocessing and writes the preprocessed output to
a file.

Default

The compiler produces an executable file.

Usage

In the following example, the compiler produces the preprocessed file myprog.i in the
current directory.
 $ pgc++ -P myprog.cc

Description

Use this option to halt the compilation process after preprocessing and write the
preprocessed output to a file. If the input file is filename.c or filename.cc., then
the output file is filename.i.

Related options

-C,-c,-e<number>,-Mkeepasm,-o,-S

2.4.27. -+p
(pgc++ only) Disallow all anachronistic constructs.

Default

The compiler disallows all anachronistic constructs.

Usage

In the following example, the compiler disallows all anachronistic constructs.
 $ pgc++ -+p myprog.cc

Description

Use this option to disallow all anachronistic constructs.

Related options

None.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 84

2.4.28. --pch
(pgc++ only) Automatically use and/or create a precompiled header file.

If --use_pch or --create_pch (manual PCH mode) appears on the command line
following this option, this option has no effect.

Default

The compiler does not automatically use or create a precompiled header file.

Usage

In the following example, the compiler automatically uses a precompiled header file.
 $ pgc++ --pch myprog.cc

Description

Use this option to automatically use and/or create a precompiled header file.

Related options

--create_pch filename,--pch_dir directoryname,--use_pch filename

2.4.29. --pch_dir directoryname
(pgc++ only) Specifies the directory in which to search for and/or create a precompiled
header file.

The compiler searches your PATH for precompiled header files / use or create a
precompiled header file.

Usage

In the following example, the compiler searches in the directory myhdrdir for a
precompiled header file.
 $ pgc++ --pch_dir myhdrdir myprog.cc

Description

Use this option to specify the directory in which to search for and/or create a
precompiled header file. You may use this option with automatic PCH mode (--pch) or
manual PCH mode (--create_pch or --use_pch).

Related options

--create_pch filename,--pch,--use_pch filename

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 85

2.4.30. --[no_]pch_messages
(pgc++ only) Enables or disables the display of a message indicating that the current
compilation used or created a precompiled header file.

The compiler displays a message when it uses or creates a precompiled header file.

In the following example, no message is displayed when the precompiled header file
located in myhdrdir is used in the compilation.
 $ pgc++ --pch_dir myhdrdir --no_pch_messages myprog.cc

Description

Use this option to enable or disable the display of a message indicating that the current
compilation used or created a precompiled header file.

Related options

--pch_dir directoryname

2.4.31. --preinclude=<filename>
(pgc++ only) Specifies the name of a file to be included at the beginning of the
compilation.

In the following example, the compiler includes the file incl_file.c at the beginning
of the compilation. me
 $ pgc++ --preinclude=incl_file.c myprog.cc

Description

Use this option to specify the name of a file to be included at the beginning of the
compilation. For example, you can use this option to set system-dependent macros and
types.

Related options

None.

2.4.32. --use_pch filename
(pgc++ only) Uses a precompiled header file of the specified name as part of the current
compilation.

If --pch (automatic PCH mode) appears on the command line following this option, its
effect is erased.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 86

Default

The compiler does not use a precompiled header file.

In the following example, the compiler uses the precompiled header file, hdr1 as part of
the current compilation.
 $ pgc++ --use_pch hdr1 myprog.cc

Use a precompiled header file of the specified name as part of the current compilation.
If --pch (automatic PCH mode) appears on the command line following this option, its
effect is erased.

Related options

--create_pch filename,--pch_dir directoryname,--[no_]pch_messages

2.4.33. --[no_]using_std
(pgc++ only) Enables or disables implicit use of the std namespace when standard
header files are included.

Default

The compiler uses std namespace when standard header files are included: --using_std.

Usage

The following command-line disables implicit use of the std namespace:
 $ pgc++ --no_using_std hello.cc

Description

Use this option to enable or disable implicit use of the std namespace when standard
header files are included in the compilation.

Related options

-M[no]stddef

2.4.34. -Xfilename
(pgc++ only) Generates cross-reference information and places output in the specified
file.

Syntax:

-Xfoo

where foo is the specified file for the cross reference information.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 87

Default

The compiler does not generate cross-reference information.

Usage

In the following example, the compiler generates cross-reference information, placing it
in the file:xreffile.
 $ pgc++ -Xxreffile myprog.cc

Description

Use this option to generate cross-reference information and place output in the specified
file. This is an EDG option.

Related options

None.

2.5. -M Options by Category
This section describes each of the options available with -M by the categories:

Code Generation Fortran Language Controls Optimization Environment

C/C++ Language Controls Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not all, of the
-M<pgflag> options. For a complete alphabetical list of all the options, refer to Table
13. These options are grouped according to categories and are listed with exact syntax,
defaults, and notes concerning similar or related options.

For the latest information and description of a given option, or to see all available
options, use the -help command-line option, described in -help.

2.5.1. Code Generation Controls
This section describes the -M<pgflag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are
these:

nodaz norecursive nosecond_underscore

noflushz noreentrant nostride0

largeaddressaware noref_externals signextend

Related options: -D, -I, -L, -l, -U.

The following list provides the syntax for each -M<pgflag> option that controls code
generation. Each option has a description and, if appropriate, any related options.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 88

-Mdaz
Set IEEE denormalized input values to zero; there is a performance benefit but
misleading results can occur, such as when dividing a small normalized number by a
denormalized number.

To take effect, this option must be set for the main program.

-Mnodaz
Do not treat denormalized numbers as zero.

To take effect, this option must be set for the main program.

-Mnodwarf
Specifies not to add DWARF debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf1
Generate DWARF1 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf2
Generate DWARF2 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf3
Generate DWARF3 format debug information.

To take effect, this option must be used in combination with -g.

-Mflushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to
zero.

To take effect, this option must be set for the main program.

-Mnoflushz
Do not set SSE flush-to-zero mode; generate underflows.

To take effect, this option must be set for the main program.

-Mfunc32
Align functions on 32-byte boundaries.

-Minstrument[=functions] (linux86-64 only)
Generate additional code to enable instrumentation of functions. The option
-Minstrument=functions is the same as -Minstrument.

Implies -Minfo=ccff and -Mframe.

-Mlargeaddressaware=[no]
[Win64 only] Generates code that allows for addresses greater than 2 GB, using RIP-
relative addressing.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 89

Use-Mlargeaddressaware=no for a direct addressing mechanism that restricts the
total addressable memory.

Do not use -Mlargeaddressaware=no if the object file will be placed in a DLL.

If -Mlargeaddressaware=no is used to compile any object file, it must also be used
when linking.

-Mlarge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2 GB
in size. This option is the default in the presence of -mcmodel=medium. It can be
used separately together with the default small memory model for certain 64-bit
applications that manage their own memory space.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf .

-Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2 GB in
size. When this option is placed after -mcmodel=medium on the command line, it
disables use of 64-bit indexing for applications that have no single data object larger
than 2 GB.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf .

-Mnomain
Instructs the compiler not to include the object file that calls the Fortran main
program as part of the link step. This option is useful for linking programs in which
the main program is written in C/C++ and one or more subroutines are written in
Fortran (Fortran only).

-Mmpi=option
-Mmpi adds the include and library options to the compile and link commands
necessary to build an MPI application using MPI header files and libraries.

To use -Mmpi, you must have a version of MPI installed on your system.

This option tells the compiler to use the headers and libraries for the specified version
of MPI.

The -Mmpi options are as specified:

‣ -Mmpi=mpich – Selects the default MPICH v3 libraries on Linux and macOS.
‣ -Mmpi=mpich1 – This option has been deprecated. It continues to direct the

compiler to include the appropriate MPICH1 header files and to link against the
correct MPICH1 libraries but only if you set the environment variable MPIDIR to
the root of an MPICH1 installation.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 90

‣ -Mmpi=mpich2 – This option has been deprecated. It continues to direct the
compiler to include the appropriate MPICH2 header files and to link against the
correct MPICH2 libraries but only if you set the environment variable MPIDIR to
the root of an MPICH2 installation.

‣ -Mmpi=mvapich1 – This option has been deprecated. It continues to direct the
compiler to include the appropriate MVAPICH1 header files and to link against
the correct MVAPICH1 libraries but only if you set the environment variable
MPIDIR to the root of an MVAPICH1 installation.

For more information, refer to the ‘Programming Considerations for 64-Bit
Environments’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf .

On Linux and macOS, you can set the environment variable MPIDIR to override
the default locations that the compiler looks to find the MPI directory.

-M[no]movnt
Instructs the compiler to generate nontemporal move and prefetch instructions even
in cases where the compiler cannot determine statically at compile-time that these
instructions will be beneficial.

-M[no]pre
enables [disables] partial redundancy elimination.

-Mprof[=option[,option,...]]
Set performance profiling options. Use of these options changes which sections are
included in the binary. These sections can be read by the PGI profiler.

The option argument can be any of the following:
[no]ccff

Enable [disable] common compiler feedback format, CCFF, information.
dwarf

Add limited DWARF symbol information sufficient for most performance
profilers.

-Mrecursive
instructs the compiler to allow Fortran subprograms to be called recursively.

-Mnorecursive
Fortran subprograms may not be called recursively.

-Mref_externals
force references to names appearing in EXTERNAL statements (Fortran only).

-Mnoref_externals
do not force references to names appearing in EXTERNAL statements (Fortran only).

-Mreentrant
instructs the compiler to avoid optimizations that can prevent code from being
reentrant.

-Mnoreentrant
instructs the compiler not to avoid optimizations that can prevent code from being
reentrant.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 91

-Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global
symbol if its name already contains an underscore. This option is useful for
maintaining compatibility with object code compiled using g77, which uses this
convention by default (Fortran only).

-Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a Fortran global
symbol if its name already contains an underscore (Fortran only).

-Msafe_lastval
When a scalar is used after a loop, but is not defined on every iteration of the loop,
the compiler does not by default parallelize the loop. However, this option tells the
compiler it’s safe to parallelize the loop. For a given loop, the last value computed for
all scalars makes it safe to parallelize the loop.

-Msignextend
instructs the compiler to extend the sign bit that is set as a result of converting an
object of one data type to an object of a larger signed data type.

-Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting
an object of one data type to an object of a larger data type.

-Mstack_arrays
places automatic arrays on the stack.

-Mnostack_arrays
allocates automatic arrays on the heap. -Mnostack_arrays is the default and what
traditionally has been the approach used.

-Mstride0
instructs the compiler to inhibit certain optimizations and to allow for stride 0 array
references. This option may degrade performance and should only be used if zero-
stride induction variables are possible.

-Mnostride0
instructs the compiler to perform certain optimizations and to disallow for stride 0
array references.

-Mvarargs
force Fortran program units to assume procedure calls are to C functions with a
varargs-type interface (pgf77, pgf95, and pgfortran only).

2.5.2. C/C++ Language Controls
This section describes the -M<pgflag> options that affect C/C++ language interpretations
by the PGI C and C++ compilers. These options are only valid to the pgcc and pgc++
compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle

dollar,_ schar

Usage:

In this example, the compiler allows the asm keyword in the source file.
 $ pgcc -Masmkeyword myprog.c

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 92

In the following example, the compiler maps the dollar sign to the dot character.
 $ pgcc -Mdollar,. myprog.c

In the following example, the compiler treats floating-point constants as float values.
 $ pgcc -Mfcon myprog.c

In the following example, the compiler does not convert float parameters to double
parameters.
 $ pgcc -Msingle myprog.c

Without -Muchar or with -Mschar, the variable ch is a signed character:
 char ch;
 signed char sch;

If -Muchar is specified on the command line:
 $ pgcc -Muchar myprog.c

char ch in the preceding declaration is equivalent to:
 unsigned char ch;

The following list provides the syntax for each -M<pgflag> option that controls code
generation in C/C++. Each option has a description and, if appropriate, any related
options.
-Masmkeyword

instructs the compiler to allow the asm keyword in C source files. The syntax of the
asm statement is as follows:
asm("statement");

Where statement is a legal assembly-language statement. The quote marks are
required.

The current default is to support gcc's extended asm, where the syntax of
extended asm includes asm strings. The -M[no]asmkeyword switch is useful
only if the target device is a Pentium 3 or older cpu type (-tp piii|p6|k7|athlon|
athlonxp|px).

-Mnoasmkeyword
instructs the compiler not to allow the asm keyword in C source files. If you use
this option and your program includes the asm keyword, unresolved references are
generated

-Mdollar,char
char specifies the character to which the compiler maps the dollar sign ($). The PGCC
compiler allows the dollar sign in names; ANSI C does not allow the dollar sign in
names.

-M[no]eh_frame
instructs the linker to keep eh_frame call frame sections in the executable.

The eh_frame option is available only on newer Linux systems that supply the
system unwind libraries.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 93

-Mfcon
instructs the compiler to treat floating-point constants as float data types, instead of
double data types. This option can improve the performance of single-precision code.

-M[no]m128
instructs the compiler to recognize [ignore] __m128, __m128d, and __m128i
datatypes. floating-point constants as float data types, instead of double data types.
This option can improve the performance of single-precision code.

-Mschar
specifies signed char characters. The compiler treats "plain" char declarations as
signed char.

-Msingle
do not to convert float parameters to double parameters in non-prototyped functions.
This option can result in faster code if your program uses only float parameters.
However, since ANSI C specifies that routines must convert float parameters to
double parameters in non-prototyped functions, this option results in non-ANSI
conformant code.

-Mnosingle
instructs the compiler to convert float parameters to double parameters in non-
prototyped functions.

-Muchar
instructs the compiler to treat "plain" char declarations as unsigned char.

2.5.3. Environment Controls
This section describes the -M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends
on your configuration.

The following list provides the syntax for each -M<pgflag> option that controls
environments. Each option has a description and, if appropriate, a list of any related
options.
-Mnostartup

instructs the linker not to link in the standard startup routine that contains the entry
point (_start) for the program.

If you use the -Mnostartup option and do not supply an entry point, the linker
issues the following error message: Warning: cannot find entry symbol _start

-M[no]smartalloc[=huge|huge:<n>|hugebss|nohuge]
adds a call to the routine mallopt in the main routine. This option supports large
TLBs on Linux and Windows. This option must be used to compile the main routine
to enable optimized malloc routines.

The option arguments can be any of the following:
huge

Link in the huge page runtime library.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 94

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number
of TLB entries required to execute a program. This option is most effective on
Barcelona and Core 2 systems; older architectures do not have enough TLB entries
for this option to be beneficial. By itself, the huge suboption tries to allocate as
many huge pages as required.

huge:<n>
Link the huge page runtime library and allocate n huge pages. Use this suboption
to limit the number of huge pages allocated to n.

You can also limit the pages allocated by using the environment variable
PGI_HUGE_PAGES.

hugebss
(64-bit only) Puts the BSS section in huge pages; attempts to put a program's
uninitialized data section into huge pages.

This flag dynamically links the library libhugetlbfs_pgi even if
-Bstatic is used.

nohuge
Overrides a previous -Msmartalloc=huge setting.

Tip To be effective, this switch must be specified when compiling the file
containing the Fortran, C, or C++ main program.

-M[no]hugetlb
links in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of
TLB entries required to execute a program. This option is most effective on Barcelona
and Core 2 systems; older architectures do not have enough TLB entries for this
option to be beneficial. By itself, the huge suboption tries to allocate as many huge
pages as required.

You can also limit the pages allocated by using the environment variable
PGI_HUGE_PAGES.

-M[no]stddef
instructs the compiler not to predefine any macros to the preprocessor when
compiling a C program.

-Mnostdinc
instructs the compiler to not search the standard location for include files.

-Mnostdlib
instructs the linker not to link in the standard libraries libpgftnrtl.a, libm.a,
libc.a, and libpgc.a in the library directory lib within the standard directory.
You can link in your own library with the -l option or specify a library directory with
the -L option.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 95

2.5.4. Fortran Language Controls
This section describes the -M<pgflag> options that affect Fortran language
interpretations by the PGI Fortran compilers. These options are valid only for the
Fortran compiler drivers.

Default: Before looking at all the options, let's look at the defaults. For arguments that
you do not specify, the defaults are as follows:

nobackslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each -M<pgflag> option that affect Fortran
language interpretations. Each option has a description and, if appropriate, a list of any
related options.
-Mallocatable=95|03

controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array
assignments. The default behavior is to use Fortran 95 semantics; the 03 option
instructs the compiler to use Fortran 2003 semantics.

-Mbackslash
instructs the compiler to treat the backslash as a normal character, and not as an
escape character in quoted strings.

-Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted
strings (in accordance with standard C usage).

-Mcuda
instructs the compiler to enable CUDA Fortran. If more than one option is on the
command line, all the specified options occur.

The following suboptions exist:
cc30

Generate code for compute capability 3.0.
cc35

Generate code for compute capability 3.5.
cc3x

Generate code for the lowest 3.x compute capability possible.
cc3+

Is equivalent to cc3x.
cc50

Generate code for compute capability 5.0.
cc60

Generate code for compute capability 6.0.
cc70

Generate code for compute capability 7.0.
cudaX.Y

Use CUDA X.Y Toolkit compatibility, where installed.
fastmath

Use routines from the fast math library.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 96

fermi
is equivalent to -Mcuda,cc2x

[no]flushz
Enable[disable] flush-to-zero mode for floating point computations in the GPU
code generated for CUDA Fortran kernels.

generate rdc
Generate relocatable device code

keepbin
Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu
Keep the generated GPU code for CUDA Fortran.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

kepler
is equivalent to -Mcuda,cc3x

llvm
Generate code using the llvm-based back-end.

[no]debug
Enable[disable] GPU debug information generation.

[no]lineinfo
Enable[disable] GPU line information generation.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank
indicates no limit.

nofma
Do not generate fused multiply-add instructions.

noL1
Prevent the use of L1 hardware data cache to cache global variables.

ptxinfo
Show PTXAS informational messages during compilation.

rdc
Enable CUDA Fortran separate compilation and linking of device routines,
including device routines in Fortran modules.

To enable separate compilation and linking, include the command line option -
Mcuda=rdc on both the compile and the link steps.

-Mdclchk
instructs the compiler to require that all program variables be declared.

-Mnodclchk
instructs the compiler not to require that all program variables be declared.

-Mdefaultunit
instructs the compiler to treat "*" as a synonym for standard input for reading and
standard output for writing.

-Mnodefaultunit
instructs the compiler to treat "*" as a synonym for unit 5 on input and unit 6 on
output.

-Mdlines
instructs the compiler to treat lines containing "D" in column 1 as executable
statements (ignoring the "D").

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 97

-Mnodlines
instructs the compiler not to treat lines containing "D" in column 1 as executable
statements. The compiler does not ignore the "D".

-Mdollar,char
char specifies the character to which the compiler maps the dollar sign. The compiler
allows the dollar sign in names.

-Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-
column code.

-Mfixed
instructs the compiler to assume input source files are in FORTRAN 77-style fixed
form format.

-Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform
format.

-Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.

-Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran I/O
statements.

-Monetrip
instructs the compiler to force each DO loop to execute at least once. This option is
useful for programs written for earlier versions of Fortran.

-Mnoonetrip
instructs the compiler not to force each DO loop to execute at least once.

-Msave
instructs the compiler to assume that all local variables are subject to the SAVE
statement.

This may allow older Fortran programs to run, but it can greatly reduce performance.

-Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE
statement.

-Mstandard
instructs the compiler to flag non-ANSI-conforming source code.

-Munixlogical
directs the compiler to treat logical values as true if the value is non-zero and false
if the value is zero (UNIX F77 convention). When -Munixlogical is enabled, a logical
value or test that is non-zero is .TRUE., and a value or test that is zero is .FALSE.. In
addition, the value of a logical expression is guaranteed to be one (1) when the result
is .TRUE..

-Mnounixlogical
directs the compiler to use the VMS convention for logical values for true and false.
Even values are true and odd values are false.

-Mupcase
instructs the compiler to preserve uppercase letters in identifiers.

With -Mupcase, the identifiers "X" and "x" are different. Keywords must be in lower
case.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 98

This selection affects the linking process. If you compile and link the same source
code using -Mupcase on one occasion and -Mnoupcase on another, you may get two
different executables – depending on whether the source contains uppercase letters.
The standard libraries are compiled using the default -Mnoupcase .

-Mnoupcase
instructs the compiler to convert all identifiers to lower case.

This selection affects the linking process. If you compile and link the same source
code using -Mupcase on one occasion and -Mnoupcase on another, you may get two
different executables, depending on whether the source contains uppercase letters.
The standard libraries are compiled using -Mnoupcase.

2.5.5. Inlining Controls
This section describes the -M<pgflag> options that control function inlining.

Usage:Before looking at all the options, let’s look at a couple examples. In the following
example, the compiler extracts functions that have 500 or fewer statements from the
source file myprog.f and saves them in the file extract.il.
$ pgfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately
100 statements in the source file myprog.f.
$ pgfortran -Minline=maxsize:100 myprog.f

Related options: -o, -Mextract

The following list provides the syntax for each -M<pgflag> option that controls function
inlining. Each option has a description and, if appropriate, a list of any related options.
- M[no]autoinline[=option[,option,...]]

instructs the compiler to inline [not to inline] a C/C++ function at -O2, where the
option can be any of these:
maxsize:n

instructs the compiler not to inline functions of size > n. The default size is 100.
totalsize:n

instructs the compiler to stop inlining when the size equals n. The default size is
800.

-Mextract[=option[,option,...]]
Extracts functions from the file indicated on the command line and creates or
appends to the specified extract directory where option can be any of the following:
name:func

instructs the extractor to extract function func from the file.
size:number

instructs the extractor to extract functions with number or fewer statements from
the file.

lib:filename.ext
instructs the extractor to use directory filename.ext as the extract directory,
which is required to save and re-use inline libraries.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 99

If you specify both name and size, the compiler extracts functions that match func,
or that have number or fewer statements. For examples of extracting functions,
refer to the ‘Using Function Inlining’ section of the PGI Compiler User's Guide,
www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-x86.pdf.

-Minline[=option[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be
any of the following:
except:func

Inlines all eligible functions except func, a function in the source text. You can use
a comma-separated list to specify multiple functions.

[name:]func
Inlines all functions in the source text whose name matches func. You can use a
comma-separated list to specify multiple functions.

The function name should be a non-numeric string that does not contain a period.
You can also use a name: prefix followed by the function name. If name: is
specified, what follows is always the name of a function.

[maxsize:]number
A numeric option is assumed to be a size. Functions of size number or less are
inlined. If both number and function are specified, then functions matching the
given name(s) or meeting the size requirements are inlined.

The size number need not exactly equal the number of statements in a selected
function; the size parameter is merely a rough guage.

[no]reshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes
do not match. The default is -Minline=noreshape, except with -Mconcur or
-mp, where the default is -Minline=reshape,=reshape.

smallsize:number
Always inline functions of size smaller than number regardless of other size limits.

totalsize:number
Stop inlining in a function when the function's total inlined size reaches the
number specified.

[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext.
The compiler assumes that a filename.ext option containing a period is a
library file.

Tip Create the library file using the -Mextract option. You can also use a
lib: prefix followed by the library name.

‣ If lib: is specified, no period is necessary in the library name. Functions
from the specified library are inlined.

‣ If no library is specified, functions are extracted from a temporary library
created during an extract prepass.

If you specify both func and number, the compiler inlines functions that match the
function name or have number or fewer statements.

Inlining can be disabled with -Mnoinline.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 100

For examples of inlining functions, refer to ‘Using Function Inlining’ in the PGI
Compiler User’s Guide.

2.5.6. Optimization Controls
This section describes the -M<pgflag> options that control optimization.

Default: Before looking at all the options, let's look at the defaults. For arguments that
you do not specify, the default optimization control options are as follows:

depchk noipa nounroll nor8

i4 nolre novect nor8intrinsics

nofprelaxed noprefetch

If you do not supply an option to -Mvect, the compiler uses defaults that are
dependent upon the target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE
instructions enabled.
>$ pgfortran -Mvect=sse -Mcache_align myprog.f

Related options: -g, -O

The following list provides the syntax for each -M<pgflag> option that controls
optimization. Each option has a description and, if appropriate, a list of any related
options.
-Mcache_align

Align unconstrained objects of length greater than or equal to 16 bytes on cache-
line boundaries. An unconstrained object is a data object that is not a member of an
aggregate structure or common block. This option does not affect the alignment of
allocatable or automatic arrays.

To effect cache-line alignment of stack-based local variables, the main program or
function must be compiled with -Mcache_align.

-Mconcur[=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -Mconcur is
specified, multiple processors will be used to execute loops that the compiler
determines to be parallelizable.

option is one of the following:
allcores

Instructs the compiler to use all available cores. Use this option at link time.
[no]altcode:n

Instructs the parallelizer to generate alternate serial code for parallelized loops.

‣ If altcode is specified without arguments, the parallelizer determines an
appropriate cutoff length and generates serial code to be executed whenever
the loop count is less than or equal to that length.

‣ If altcode:n is specified, the serial altcode is executed whenever the loop count
is less than or equal to n.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 101

‣ If noaltcode is specified, the parallelized version of the loop is always executed
regardless of the loop count.

cncall
Indicates that calls in parallel loops are safe to parallelize.

Loops containing calls are candidates for parallelization. Also, no minimum loop
count threshold must be satisfied before parallelization will occur, and last values
of scalars are assumed to be safe.

[no]innermost
Instructs the parallelizer to enable parallelization of innermost loops. The default
is to not parallelize innermost loops, since it is usually not profitable on dual-core
processors.

noassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result.
The NCPUS environment variable controls how many processors or cores are used to
execute parallelized loops.

This option applies only on shared-memory multi-processor (SMP) or multicore
processor-based systems.

-Mcray[=option[,option,...]]
(Fortran only) Force Cray Fortran (CF77) compatibility with respect to the listed
options. Possible values of option include:
pointer

for purposes of optimization, it is assumed that pointer-based variables do not
overlay the storage of any other variable.

-Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

-Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict.
However, if data dependencies exist, this option can produce incorrect code.

-Mdse
Enables a dead store elimination phase that is useful for programs that rely on
extensive use of inline function calls for performance. This is disabled by default.

-Mnodse
Disables the dead store elimination phase. This is the default.

-M[no]fpapprox[=option]
Perform certain floating point operations using low-precision approximation.

-Mnofpapprox specifies not to use low-precision fp approximation operations.

By default -Mfpapprox is not used.

If -Mfpapprox is used without suboptions, it defaults to use approximate div, sqrt,
and rsqrt. The available suboptions are these:
div

Approximate floating point division

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 102

sqrt
Approximate floating point square root

rsqrt
Approximate floating point reciprocal square root

-M[no]fpmisalign
Instructs the compiler to allow (not allow) vector arithmetic instructions with
memory operands that are not aligned on 16-byte boundaries. The default is
-Mnofpmisalign on all processors.

Applicable only with one of these options: -tp barcelona or -tp barcelona-64 or
newer processors.

-M[no]fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some
intrinsic functions. Can result in improved performance at the expense of numerical
accuracy.

The possible values for option are:
div

Perform divide using relaxed precision.
intrinsic

Enables use of relaxed precision intrinsics.
noorder

Do not allow expression reordering or factoring.
order

Allow expression reordering, including factoring.
recip

Perform reciprocal using relaxed precision.
rsqrt

Perform reciprocal square root (1/sqrt) using relaxed precision.
sqrt

Perform square root with relaxed precision.
With no options, -Mfprelaxed generates relaxed precision code for those operations
that generate a significant performance improvement, depending on the target
processor.

The default is -Mnofprelaxed which instructs the compiler to not use relaxed
precision in the calculation of intrinsic functions.

-Mi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*4.

-Mipa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer. Note: -Mipa is not compatible with
parallel make environments (e.g., pmake).

-Mipa implies -O2, and the minimum optimization level that can be specified in
combination with -Mipa is -O2.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 103

For example, if you specify -Mipa -O1 on the command line, the optimization level is
automatically elevated to -O2 by the compiler driver. Typically, as recommended, you
would use -Mipa=fast.

As of the PGI 16.3 release, -Mipa has been disabled on Windows.

Many of the following suboptions can be prefaced with no, which reverses or
disables the effect of the suboption if it's included in an aggregate suboption such as
-Mipa=fast. The choices of option are:
[no]align

recognize when targets of a pointer dummy are aligned. The default is noalign.
[no]arg

remove arguments replaced by const, ptr. The default is noarg.
[no]cg

generate call graph information for viewing using the pgicg command-line utility.
The default is nocg.

[no]const
perform interprocedural constant propagation. The default is const.

except:<func>
used with inline to specify functions which should not be inlined. The default is
to inline all eligible functions according to internally defined heuristics. Valid only
immediately following the inline suboption.

[no]f90ptr
F90/F95 pointer disambiguation across calls. The default is nof90ptr.

fast
choose IPA options generally optimal for the target. To see settings for -Mipa=fast
on a given target, use -help.

force
force all objects to re-compile regardless of whether IPA information has changed.

[no]globals
optimize references to global variables. The default is noglobals.

inline[:n]
perform automatic function inlining. If the optional :n is provided, limit inlining
to at most n levels. IPA-based function inlining is performed from leaf routines
upward.

ipofile
save IPA information in an .ipo file rather than incorporating it into the object
file.

jobs[:n]
recompile n jobs in parallel and print source file names as they are compiled.

[no]keepobj
keep the optimized object files, using file name mangling, to reduce re-compile
time in subsequent builds. The default is keepobj.

[no]libc
optimize calls to certain standard C library routines. The default is nolibc.

[no]libinline
allow inlining of routines from libraries; implies -Mipa=inline. The default is
nolibinline.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 104

[no]libopt
allow recompiling and optimization of routines from libraries using IPA
information. The default is nolibopt.

[no]localarg
equivalent to arg plus externalization of local pointer targets. The default is
nolocalarg.

main:<func>
specify a function to appear as a global entry point. May appear multiple times
and it disables linking.

reaggregation
Enables IPA-guided structure reaggregation, which automatically attempts to
reorder elements in a struct, or to split structs into substructs to improve memory
locality and cache utilization.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

[no]pfo
enable profile feedback information. The nopfo option is valid only immediately
following the inline suboption. -Mipa=inline,nopfo tells IPA to ignore PFO
information when deciding what functions to inline, if PFO information is
available.

[no]ptr
enable pointer disambiguation across procedure calls. The default is noptr.

[no]pure
pure function detection. The default is nopure.

required
return an error condition if IPA is inhibited for any reason, rather than the default
behavior of linking without IPA optimization.

[no]reshape
enable [disable] Fortran inline with mismatched array shapes. Valid only
immediately following the inline suboption.

safe:[<function>|<library>]
declares that the named function, or all functions in the named library, are safe. A
safe procedure does not call back into the known procedures and does not change
any known global variables.

Without -Mipa=safe, any unknown procedures cause IPA to fail.

[no]safeall
declares that all unknown procedures are safe. The default is nosafeall. For more
information, refer to -Mipa=safe.

[no]shape
perform Fortran 90 array shape propagation. The default is noshape.

summary
only collect IPA summary information when compiling. This option prevents IPA
optimization of this file, but allows optimization for other files linked with this file.

[no]vestigial
remove uncalled (vestigial) functions. The default is novestigial.

If you use -Mipa=vestigial in combination with -Mipa=libopt with PGCC, you may
encounter unresolved references at link time. These unresolved references are

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 105

a result of erroneous removal of functions by the vestigial sub-option to -Mipa.
You can work around this problem by listing specific sub-options to -Mipa, not
including vestigial.

-Mlre[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the
number of arithmetic operations and memory references in loops. The available
suboptions are:
array

treat individual array element references as candidates for possible loop-carried
redundancy elimination. The default is to eliminate only redundant expressions
involving two or more operands.

assoc
allow expression re-association. Specifying this suboption can increase
opportunities for loop-carried redundancy elimination but may alter numerical
results.

noassoc
disallow expression re-association.

-Mnolre
Disable loop-carried redundancy elimination.

-Mnoframe
Eliminate operations that set up a true stack frame pointer for every function. With
this option enabled, you cannot perform a traceback on the generated code and you
cannot access local variables.

-Mnoi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*2.

-Mpre
Enables partial redundancy elimination.

-Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported.
Possible values for option include:
d:m

set the fetch-ahead distance for prefetch instructions to m cache lines.
n:p

set the maximum number of prefetch instructions to generate for a given loop to p.
nta

use the prefetch instruction.
plain

use the prefetch instruction (default).
t0

use the prefetcht0 instruction.
w

use the AMD-specific prefetchw instruction.
-Mnoprefetch

Disables generation of prefetch instructions.
-M[no]propcond

Enables or disables constant propagation from assertions derived from equality
conditionals.

The default is enabled.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 106

-Mr8
(Fortran only) The compiler promotes REAL variables and constants to DOUBLE
PRECISION variables and constants, respectively. DOUBLE PRECISION elements are 8
bytes in length.

-Mnor8
(Fortran only) The compiler does not promote REAL variables and constants to
DOUBLE PRECISION. REAL variables will be single precision (4 bytes in length).

-Mr8intrinsics
(pgf77, pgf95, and pgfortran only) The compiler treats the intrinsics CMPLX and
REAL as DCMPLX and DBLE, respectively.

-Mnor8intrinsics
(pgf77, pgf95, and pgfortran only) The compiler does not promote the intrinsics
CMPLX and REAL to DCMPLX and DBLE, respectively.

-Msafeptr[=option[,option,...]]
(pgcc and pgc++ only) instructs the C/C++ compiler to override data dependencies
between pointers of a given storage class. Possible values of option include:
all

assume all pointers and arrays are independent and safe for aggressive
optimizations, and in particular that no pointers or arrays overlap or conflict with
each other.

arg
instructs the compiler to treat arrays and pointers with the same copyin and
copyout semantics as Fortran dummy arguments.

global
instructs the compiler that global or external pointers and arrays do not overlap or
conflict with each other and are independent.

local/auto
instructs the compiler that local pointers and arrays do not overlap or conflict with
each other and are independent.

static
instructs the compiler that static pointers and arrays do not overlap or conflict
with each other and are independent.

-Mscalarsse
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic. This option is
valid only on option -tp [p7 | k8-32 | k8-64] targets.

-Mnoscalarsse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87
instructions instead. This option is not valid in combination with the -tp k8-64 option.

-Msmart
instructs the compiler driver to invoke a post-pass assembly optimization utility.

-Mnosmart
instructs the compiler not to invoke an AMD64-specific post-pass assembly
optimization utility.

-Munroll[=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each
iteration. This also sets the optimization level to 2 if the level is set to less than 2, or if
no -O or -g options are supplied. The option is one of the following:

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 107

c:m
instructs the compiler to completely unroll loops with a constant loop count less
than or equal to m, a supplied constant. If this value is not supplied, the m count is
set to 4.

m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for
loops that have conditional statements. If n is not supplied, then the default value
is 4. The default setting is not to enable -Munroll=m.

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not
completely unrolled, or has a non-constant loop count. If n is not supplied, the
unroller computes the number of times a candidate loop is unrolled.

-Mnounroll
instructs the compiler not to unroll loops.

-M[no]vect[=option [,option,...]]
enable [disable] the code vectorizer, where option is one of the following:
altcode

Instructs the vectorizer to generate alternate code (altcode) for vectorized loops
when appropriate. For each vectorized loop the compiler decides whether to
generate altcode and what type or types to generate, which may be any or all of:
altcode without iteration peeling, altcode with non-temporal stores and other
data cache optimizations, and altcode based on array alignments calculated
dynamically at runtime. The compiler also determines suitable loop count and
array alignment conditionals for executing the altcode. This option is enabled by
default.

noaltcode
Instructs the vectorizer to disable alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change
the results of a computation due to roundoff error. A typical optimization is to
change an arithmetic operation to an arithmetic operation that is mathematically
correct, but can be computationally different, due to round-off error.

noassoc
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a
cache size of n. The default is set per processor type, either using the -tp switch or
auto-detected from the host computer.

[no]gather
Instructs the vectorizer to vectorize loops containing indirect array references, such
as this one:
sum = 0.d0
do k=d(j),d(j+1)-1
 sum = sum + a(k)*b(c(k))
enddo

The default is gather.
partial

Instructs the vectorizer to enable partial loop vectorization through innermost loop
distribution.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 108

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible,
make use of prefetch instructions.

[no]short
Instructs the vectorizer to enable [disable] short vector operations. -Mvect=short
enables generation of packed SIMD instructions for short vector operations that
arise from scalar code outside of loops or within the body of a loop iteration.

[no]sizelimit
Instructs the vectorizer to generate vector code for all loops where possible
regardless of the number of statements in the loop. This overrides a heuristic in
the vectorizer that ordinarily prevents vectorization of loops with a number of
statements that exceeds a certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length is less than
or equal to n. The vectorizer uses this information to eliminate generation of the
stripmine loop for vectorized loops wherever possible. If the size n is omitted, the
default is 100.

No space is allowed on either side of the colon (:).

[no]sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible,
make use of SSE, SSE2, and prefetch instructions. The default is nosse.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and
residual loops.

This option may affect the performance of the residual loop.

-Mnovect
instructs the compiler not to perform vectorization. You can use this option to
override a previous instance of -Mvect on the command-line, in particular for cases in
which -Mvect is included in an aggregate option such as -fastsse.

-Mvect=[option]
instructs the compiler to enable loop vectorization, where option is one of the
following:
partial

Enable partial loop vectorization through innermost loop distribution.
[no]short

Enable [disable] short vector operations. Enables [disables] generation of packed
SIMD instructions for short vector operations that arise from scalar code outside of
loops or within the body of a loop iteration.

simd[:{128|256}]
Specifies to vectorize using SIMD instructions and data, either 128 bits or 256 bits
wide, on processors where there is a choice.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 109

tile
Enable tiling/blocking over multiple nested loops for more efficient cache
utilization.

-Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-
optimized vector functions.

2.5.7. Miscellaneous Controls
This section describes the -M<pgflag> options that do not easily fit into one of the other
categories of -M<pgflag> options.

Default: Before looking at all the options, let’s look at the defaults. For arguments that
you do not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Related options: -m, -S, -V, -v

Usage: In the following example, the compiler includes Fortran source code with the
assembly code.
 $ pgfortran -Manno -S myprog.f

In the following example, the assembler does not delete the assembly file myprog.s
after the assembly pass.
 $ pgfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions
with fewer than approximately 20 source lines in the source file myprog.f.
 $ pgfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler creates the listing file myprog.lst.
 $ pgfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.
 $ pgfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous -M<pgflag> option. Each
option has a description and, if appropriate, a list of any related options.
-Manno

annotate the generated assembly code with source code. Implies -Mkeepasm.
-Mbounds

enables array bounds checking.

‣ If an array is an assumed size array, the bounds checking only applies to the
lower bound.

‣ If an array bounds violation occurs during execution, an error message describing
the error is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred (the source
file and the line number in the source), and information about the out of bounds
subscript (its value, its lower and upper bounds, and its dimension).

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 110

The following is a sample error message:
PGFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1, upper bound=2, dimension=2

-Mnobounds
disables array bounds checking.

-Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of
Fortran unformatted data files.

-Mchkptr
instructs the compiler to check for pointers that are dereferenced while initialized to
NULL (Fortran only).

-Mchkstk
instructs the compiler to check the stack for available space in the prologue of a
function and before the start of a parallel region. Prints a warning message and aborts
the program gracefully if stack space is insufficient.

This option is useful when many local and private variables are declared in an
OpenMP program.

If the user also sets the PGI_STACK_USAGE environment variable to any value, then
the program displays the stack space allocated and used after the program exits. For
example, you might see something similar to the following message:
thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. This
information is useful when you want to explicitly set a reserved and committed stack
size for your programs, such as using the -stack option on Windows.

For more information on the PGI_STACK_USAGE, refer to ‘PGI_STACK_USAGE’ in
the PGI Compiler User’s Guide.

-Mcpp[=option [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation
steps. This option is useful for generating dependence information to be included in
makefiles.

Only one of the m, md, mm or mmd options can be present; if multiple of these
options are listed, the last one listed is accepted and the others are ignored.

The option is one or more of the following:
m

print makefile dependencies to stdout.
md

print makefile dependencies to filename.d, where filename is the root name of
the input file being processed, ignoring system include files.

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to filename.d, where filename is the root name of
the input file being processed, ignoring system include files.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 111

[no]comment
do [do not] retain comments in output.

[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.

-Mdll
This Windows-only flag has been deprecated. Refer to -Bdynamic. This flag was
used to link with the DLL versions of the runtime libraries, and it was required when
linking with any DLL built by any PGI compilers. This option implied -D_DLL,
which defines the preprocessor symbol _DLL.

-Mgccbug[s]
instructs the compiler to match the behavior of certain gcc bugs.

-Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:
cref

uses CREF calling conventions, no trailing underscores.
mixed_str_len_arg

places the lengths of character arguments immediately after their corresponding
argument. Has affect only with the CREF calling convention.

nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has
affect only with the CREF calling convention.

-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one
of the following:
all

instructs the compiler to produce all available -Minfo information. Implies a
number of suboptions:
-Mneginfo=accel,inline,ipa,loop,lre,mp,opt,par,vect

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append common compiler feedback format information,
such as optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions.
This option is not useful without either the -Mextract or -Minline option.

intensity
instructs the compiler to provide informational messages about the intensity of the
loop. Specify <n> to get messages on nested loops.

‣ For floating point loops, intensity is defined as the number of floating point
operations divided by the number of floating point loads and stores.

‣ For integer loops, the loop intensity is defined as the total number of integer
arithmetic operations, which may include updates of loop counts and
addresses, divided by the total number of integer loads and stores.

‣ By default, the messages just apply to innermost loops.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 112

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination,
information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

time
instructs the compiler to display compilation statistics.

unroll
instructs the compiler to display information about loop unrolling.

vect
instructs the compiler to enable vectorizer information.

-Minform=level
instructs the compiler to display error messages at the specified and higher levels,
where level is one of the following:
fatal

instructs the compiler to display fatal error messages.
[no]file

instructs the compiler to print or not print source file names as they are compiled.
The default is to print the names: -Minform=file.

inform
instructs the compiler to display all error messages (inform, warn, severe and
fatal).

severe
instructs the compiler to display severe and fatal error messages.

warn
instructs the compiler to display warning, severe and fatal error messages.

-Minstrumentation=option
specifies the level of instrumentation calls generated. This option implies -
Minfo=ccff, -Mframe.

option is one of the following:
level

specifies the level of instrumentation calls generated.
function (default)

generates instrumentation calls for entry and exit to functions.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 113

Just after function entry and just before function exit, the following profiling
functions are called with the address of the current function and its call site.
(linux86-64 only).

void __cyg_profile_func_enter (void *this_fn, void *call_site);
void __cyg_profile_func_exit (void *this_fn, void *call_site);

In these calls, the first argument is the address of the start of the current function.
-Mkeepasm

instructs the compiler to keep the assembly file as compilation continues. Normally,
the assembler deletes this file when it is finished. The assembly file has the same
filename as the source file, but with a .s extension.

-Mlist
instructs the compiler to create a listing file. The listing file is filename.lst, where
the name of the source file is filename.f.

-Mmakedll
(Windows only) generate a dynamic link library (DLL).

-Mmakeimplib
(Windows only) generate an import library for a DLL without creating the DLL.
When used without -def:deffile, passes the switch -def to the librarian without a
deffile.

-Mnames=lowercase|uppercase
specifies the case for the names of Fortran externals.

‣ lowercase - Use lowercase for Fortran externals.
‣ uppercase - Use uppercase for Fortran externals.

-Mneginfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one
of the following:
all

instructs the compiler to produce all available information on why various
optimizations are not performed.

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to
the object file.

concur
instructs the compiler to produce all available information on why loops are
not automatically parallelized. In particular, if a loop is not parallelized due to
potential data dependence, the variable(s) that cause the potential dependence are
listed in the messages that you see when using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions.
This option is not useful without either the -Mextract or -Minline option.

ipa
instructs the compiler to display information about interprocedural optimizations.

Command-Line Options Reference

Reference Guide for x86-64 CPUs Version 2018 | 114

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination,
information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

vect
instructs the compiler to enable vectorizer information.

-Mnolist
the compiler does not create a listing file. This is the default.

-Mnoopenmp
when used in combination with the -mp option, the compiler ignores OpenMP
parallelization directives or pragmas, but still processes SGI-style parallelization
directives or pragmas.

-Mnosgimp
when used in combination with the -mp option, the compiler ignores SGI-style
parallelization directives or pragmas, but still processes OpenMP parallelization
directives or pragmas.

-Mnopgdllmain
(Windows only) do not link the module containing the default DllMain() into the
DLL. This flag applies to building DLLs with the PGFORTRAN compilers. If you
want to replace the default DllMain() routine with a custom DllMain(), use this flag
and add the object containing the custom DllMain() to the link line. The latest version
of the default DllMain() used by PGFORTRAN is included in the Release Notes for
each release. The PGFORTRAN-specific code in this routine must be incorporated
into the custom version of DllMain() to ensure the appropriate function of your DLL.

-Mnorpath
(Linux only) Do not add -rpath to the link line.

-Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran
input source files.

-Mwritable_strings
stores string constants in the writable data segment.

Options -Xs and -Xst include -Mwritable_strings.

Reference Guide for x86-64 CPUs Version 2018 | 115

Chapter 3.
C++ NAME MANGLING

Name mangling transforms the names of entities so that the names include information
on aspects of the entity’s type and fully qualified name. This ability is necessary since the
intermediate language into which a program is translated contains fewer and simpler
name spaces than there are in the C++ language; specifically:

‣ Overloaded function names are not allowed in the intermediate language.
‣ Classes have their own scopes in C++, but not in the generated intermediate

language. For example, an entity x from inside a class must not conflict with an
entity x from the file scope.

‣ External names in the object code form a completely flat name space. The names of
entities with external linkage must be projected onto that name space so that they
do not conflict with one another. A function f from a class A, for example, must not
have the same external name as a function f from class B.

‣ Some names are not names in the conventional sense of the word, they're not strings
of alphanumeric characters, for example: operator=.

There are two main problems here:

 1. Generating external names that will not clash.
 2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not
clash, and alphanumeric names for entities with strange names in C++. It also solves the
problem of generating hidden names for some behind-the-scenes language support in
such a way that they match up across separate compilations.

You see mangled names if you view files that are translated by PGC++ or PGCC, and
you do not use tools that demangle the C++ names. Intermediate files that use mangled
names include the assembly and object files created by the PGC++ command. To view
demangled names, use the tool pggdecode, which takes input from stdin. pggdecode
demangles PGC++ names.
prompt> pggdecode
_ZN1A1gEf
A::g(float)

C++ Name Mangling

Reference Guide for x86-64 CPUs Version 2018 | 116

The name mangling algorithm for the PGC++ compiler is IA-64 ABI compliant and is
described at http://mentorembedded.github.io/cxx-abi. Refer to this document for a
complete description of the name mangling algorithm.

http://mentorembedded.github.io/cxx-abi

Reference Guide for x86-64 CPUs Version 2018 | 117

Chapter 4.
DIRECTIVES AND PRAGMAS REFERENCE

PGI Fortran compilers support proprietary directives and pragmas. These directives and
pragmas override corresponding command-line options. For usage information such as
the scope and related command-line options, refer to the PGI Compiler User’s Guide.

This section contains detailed descriptions of PGI’s proprietary directives and pragmas.

4.1. PGI Proprietary Fortran Directive and C/C++
Pragma Summary
Directives (Fortran comments) and C/C++ pragmas may be supplied by the user in a
source file to provide information to the compiler. Directives and pragmas alter the
effects of certain command line options or default behavior of the compiler. They
provide pragmatic information that control the actions of the compiler in a particular
portion of a program without affecting the program as a whole. That is, while a
command line option affects the entire source file that is being compiled, directives and
pragmas apply, or disable, the effects of a command line option to selected subprograms
or to selected loops in the source file, for example, to optimize a specific area of code.
Use directives and pragmas to tune selected routines or loops.

The Fortran directives may have any of the following forms:
!pgi$g directive
!pgi$r directive
!pgi$l directive
!pgi$ directive

where the scope indicator follows the $ and is either g (global), r (routine), or l (loop).
This indicator controls the scope of the directive, though some directives ignore the
scope indicator.

If the input is in fixed format, the comment character, !, * or C, must begin in column
1.

Directives and pragmas override corresponding command-line options. For usage
information such as the scope and related command-line options, refer to the the ‘Using

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 118

Directives and Pragmas’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf.

4.1.1. altcode (noaltcode)
The altcode directive or pragma instructs the compiler to generate alternate code for
vectorized or parallelized loops.

The noaltcode directive or pragma disables generation of alternate code.

Scope: This directive or pragma affects the compiler only when -Mvect=sse or
-Mconcur is enabled on the command line.
!pgi$ altcode

Enables alternate code (altcode) generation for vectorized loops. For each loop the
compiler decides whether to generate altcode and what type(s) to generate, which
may be any or all of: altcode without iteration peeling, altcode with non-temporal
stores and other data cache optimizations, and altcode based on array alignments
calculated dynamically at runtime. The compiler also determines suitable loop count
and array alignment conditions for executing the alternate code.

!pgi$ altcode alignment
For a vectorized loop, if possible, generates an alternate vectorized loop containing
additional aligned moves which is executed if a runtime array alignment test is
passed.

!pgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the
loop count is less than or equal to n. If n is omitted or n is 0, the compiler determines
a suitable value of n for each loop.

!pgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each
auto-parallelized reduction loop, generate an alternate serial loop to be executed
if the loop count is less than or equal to n. If n is omitted or n is 0, the compiler
determines a suitable value of n for each loop.

!pgi$ altcode [(n)] nontemporal
For a vectorized loop, if possible, generates an alternate vectorized loop containing
non-temporal stores and other cache optimizations to be executed if the loop count is
greater than n. If n is omitted or n is 1, the compiler determines a suitable value of n
for each loop. The alternate code is optimized for the case when the data referenced in
the loop does not all fit in level 2 cache.

!pgi$ altcode [(n)] nopeel
For a vectorized loop where iteration peeling is performed by default, if possible,
generates an alternate vectorized loop without iteration peeling to be executed if the
loop count is less than or equal to n. If n is omitted or n is 1, the compiler determines
a suitable value of n for each loop, and in some cases it may decide not to generate an
alternate unpeeled loop.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 119

!pgi$ altcode [(n)] vector
For each vectorized loop, generates an alternate scalar loop to be executed if the loop
count is less than or equal to n. If n is omitted or n is 1, the compiler determines a
suitable value of n for each loop.

!pgi$ noaltcode
Sets the loop count thresholds for parallelization of all innermost loops to 0, and
disables alternate code generation for vectorized loops.

4.1.2. assoc (noassoc)
This directive or pragma toggles the effects of the -Mvect=noassoc command-line
option, an optimization -M control.

Scope: This directive or pragma affects the compiler only when -Mvect=sse is enabled
on the command line.

By default, when scalar reductions are present the vectorizer may change the order of
operations, such as dot product, so that it can generate better code. Such transformations
may change the result of the computation due to roundoff error. The noassoc directive
disables these transformations.

4.1.3. bounds (nobounds)
This directive or pragma alters the effects of the -Mbounds command line option. This
directive enables the checking of array bounds when subscripted array references are
performed. By default, array bounds checking is not performed.

4.1.4. cncall (nocncall)
This directive or pragma indicates that loops within the specified scope are considered
for parallelization, even if they contain calls to user-defined subroutines or functions. A
nocncall directive cancels the effect of a previous cncall.

4.1.5. concur (noconcur)
This directive or pragma alters the effects of the -Mconcur command-line option. The
directive instructs the auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive or pragma affects the compiler only when -Mconcur is enabled on
the command line.

If concur is specified, the compiler uses multiple processors to execute loops which the
auto-parallelizer determines to be parallelizable. The noconcur directive disables these
transformations; however, use of concur overrides previous noconcur statements.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 120

4.1.6. depchk (nodepchk)
This directive or pragma alters the effects of the -Mdepchk command line option. When
potential data dependencies exist, the compiler, by default, assumes that there is a data
dependence that in turn may inhibit certain optimizations or vectorizations. nodepchk
directs the compiler to ignore unknown data dependencies.

4.1.7. eqvchk (noeqvchk)
The eqvchk directive or pragma specifies to check dependencies between
EQUIVALENCE associated elements. When examining data dependencies, noeqvchk
directs the compiler to ignore any dependencies between variables appearing in
EQUIVALENCE statements.

4.1.8. fcon (nofcon)
This C/C++ pragma alters the effects of the -Mfcon (a -M Language control) command-
line option.

The pragma instructs the compiler to treat non-suffixed floating-point constants as float
rather than double. By default, all non-suffixed floating-point constants are treated as
double.

Only routine or global scopes are allowed for this C/C++ pragma.

4.1.9. invarif (noinvarif)
This directive or pragma has no corresponding command-line option. Normally, the
compiler removes certain invariant if constructs from within a loop and places them
outside of the loop. The directive noinvarif directs the compiler not to move such
constructs. The directive invarif toggles a previous noinvarif.

4.1.10. ivdep
The ivdep directive assists the compiler's dependence analysis and is equivalent to the
directive nodepchk.

4.1.11. lstval (nolstval)
This directive or pragma has no corresponding command-line option. The compiler
determines whether the last values for loop iteration control variables and promoted
scalars need to be computed. In certain cases, the compiler must assume that the last
values of these variables are needed and therefore computes their last values. The
directive nolstval directs the compiler not to compute the last values for those cases.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 121

4.1.12. opt
The opt directive or pragma overrides the value specified by the -On command line
option.

The syntax of this directive or pragma is:
!pgi$<scope> opt=<level>

where the optional <scope> is r or g and <level> is an integer constant representing
the optimization level to be used when compiling a subprogram (routine scope) or all
subprograms in a file (global scope).

4.1.13. prefetch
The prefetch directive or pragma the compiler emits prefetch instructions whereby
elements are fetched into the data cache prior to first use. By varying the prefetch
distance, it is sometimes possible to reduce the effects of main memory latency and
improve performance.

The syntax of this directive or pragma is:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

4.1.14. safe (nosafe)
This C/C++ pragma has no corresponding command-line option. By default, the
compiler assumes that all pointer arguments are unsafe. That is, the storage located by
the pointer can be accessed by other pointers.

The formats of the safe pragma are:
#pragma [scope] [no]safe
#pragma safe (variable [, variable]...)

where scope is either global or routine.

‣ When the pragma safe is not followed by a variable name or a list of variable names:

‣ If the scope is routine, then the compiler treats all pointer arguments appearing
in the routine as safe.

‣ If the scope is global, then the compiler treats all pointer arguments appearing
in all routines as safe.

‣ When the pragma safe is followed by a variable name or a list of variable names,
each name is the name of a pointer argument in the current function, and the
compiler considers that named argument to be safe.

If only one variable name is specified, you may omit the surrounding
parentheses.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 122

4.1.15. safe_lastval
During parallelization, scalars within loops need to be privatized. Problems are possible
if a scalar is accessed outside the loop. If you know that a scalar is assigned on the last
iteration of the loop, making it safe to parallelize the loop, you use the safe_lastval
directive or pragma to let the compiler know the loop is safe to parallelize.

For example, use the following Fortran directive or C pragma to tell the compiler that for
a given loop the last value computed for all scalars make it safe to parallelize the loop:
!pgi$l safe_lastval
#pragma loop safe_lastval

The command-line option-Msafe_lastval provides the same information for all loops
within the routines being compiled, essentially providing global scope.

In the following example, the value of t may not be computed on the last iteration of the
loop.
do i = 1, N
 if(f(x(i)) > 5.0) then
 t = x(i)
 endif
enddo
v = t

If a scalar assigned within a loop is used outside the loop, we normally save the last
value of the scalar. Essentially the value of the scalar on the "last iteration" is saved, in
this case when i=N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be
difficult to determine on what iteration t is last assigned, without resorting to costly
critical sections. Analysis allows the compiler to determine if a scalar is assigned on
every iteration, thus the loop is safe to parallelize if the scalar is used later. An example
loop is:
do i = 1, N
 if(x(i) > 0.0) then
 t = 2.0
 else
 t = 3.0
 endif
 ...
 y(i) = t
 ...
enddo
v = t

where t is assigned on every iteration of the loop. However, there are cases where a
scalar may be privatizable. If it is used after the loop, it is unsafe to parallelize. Examine
this loop:
do i = 1,N
 if(x(i) > 0.0) then
 t = x(i)
 ...
 y(i) = t
 ...

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 123

 endif
enddo
v = t

where each use of t within the loop is reached by a definition from the same iteration.
Here t is privatizable, but the use of t outside the loop may yield incorrect results since
the compiler may not be able to detect on which iteration of the parallelized loop t is
assigned last.

The compiler detects these cases. When a scalar is used after the loop, but is not defined
on every iteration of the loop, parallelization does not occur.

4.1.16. safeptr (nosafeptr)
The pragma safeptr directs the compiler to treat pointer variables of the indicated
storage class as safe. The pragma nosafeptr directs the compiler to treat pointer variables
of the indicated storage class as unsafe. This pragma alters the effects of the -Msafeptr
command-line option.

The syntax of this pragma is:
!pgi$[] [no]safeptr={arg|local|auto|global|static|all},..
#pragma [scope] [no]safeptr={arg|local|auto|global|static|all},...

where scope is one of global, routine, or loop. and the values local and auto are
equivalent.

‣ all – All pointers are safe
‣ arg – Argument pointers are safe
‣ local – local pointers are safe
‣ global – global pointers are safe
‣ static – static local pointers are safe

In a file containing multiple functions, the command-line option -Msafeptr might be
helpful for one function, but can’t be used because another function in the file would
produce incorrect results. In such a file, the safeptr pragma, used with routine scope
could improve performance and produce correct results.

4.1.17. single (nosingle)
The pragma single directs the compiler not to implicitly convert float values to double
non-prototyped functions. This can result in faster code if the program uses only float
parameters.

Since ANSI C specifies that floats must be converted to double, this pragma results in
non-ANSI conforming code. Valid only for routine or global scope.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 124

4.1.18. tp
You use the directive or pragma tp to specify one or more processor targets for which to
generate code.
!pgi$ tp [target]...

The tp directive or pragma can only be applied at the routine or global level. For
more information about these levels, refer to the ‘Scope of C/C++ Pragmas and
Command-Line Options’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf.

Refer to -tp <target>[,target...] for a list of targets that can be used as parameters to the
tp directive.

4.1.19. unroll (nounroll)
The unroll directive or pragma enables loop unrolling while nounroll disables loop
unrolling.

The unroll directive or pragma has no effect on vectorized loops.

The unroll directive or pragma takes arguments c, n and m.

‣ c specifies that c complete unrolling should be turned on or off.
‣ n specifies single block loop unrolling.
‣ m specifies multi-block loop unrolling.

In addition, a constant may be specified for the c, n and m arguments.

‣ c:v sets the threshold to which c unrolling applies. v is a constant; and a loop whose
constant loop count is less than or equal to (<=) v is completely unrolled.
!pgi$ unroll = c:v

‣ n:v unrolls single block loops v times.
!pgi$ unroll = n:v

‣ m:v unrolls single block loops v times.
!pgi$ unroll = m:v

The directives unroll and nounroll only apply if-Munroll is selected on the command
line.

4.1.20. vector (novector)
The directive or pragma novector disables vectorization. The directive or pragma vector
re-enables vectorization after a previous novector directive. The directives vector and
novector only apply if -Mvect has been selected on the command line.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 125

4.1.21. vintr (novintr)
The directive or pragma novintr directs the vectorizer to disable recognition of vector
intrinsics. The directive vintr is re-enables recognition of vector intrinsics after a
previous novintr directive. The directives vintr and novintr only apply if -Mvect has
been selected on the command line.

4.2. Prefetch Directives and Pragmas
Prefetch instructions can increase the speed of an application substantially by bringing
data into cache so that it is available when the processor needs it. The PGI prefetch
directive takes the form:

The syntax of a prefetch directive in Fortran is as follows:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

The syntax of a prefetch pragma in C/C++ is as follows:
#pragma mem prefetch <var1>[,<var2>[,...]]

where <varn is any valid variable, member, or array element reference.

For examples on how to use the prefetch directive or pragma, refer to the Prefetch
Directives and Pragmas section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf.

4.3. !$PRAGMA C
When programs are compiled using one of the PGI Fortran compilers on Linux, Win64,
and macOS systems, an underscore is appended to Fortran global names, including
names of functions, subroutines, and common blocks. This mechanism distinguishes
Fortran name space from C/C++ name space.

4.4. IGNORE_TKR Directive
This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/)
of the specified dummy arguments in an interface of a procedure. The compiler also
ignores the type, kind, and/or rank of the actual arguments when checking all the
specifics in a generic call for ambiguities.

4.4.1. IGNORE_TKR Directive Syntax
The syntax for the IGNORE_TKR directive is this:
!DIR$ IGNORE_TKR [[(<letter>) <dummy_arg>] ...]

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 126

<letter>
is one or any combination of the following:

T – type K – kind R – rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to
ignore the type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If
not specified, TKR rules are ignored for all dummy arguments in the procedure that
contains the directive.

4.4.2. IGNORE_TKR Directive Format Requirements
The following rules apply to this directive:

‣ IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90
pointers, or assumed-shape arrays.

‣ IGNORE_TKR may appear in the body of an interface block or in the body of a
module procedure, and may specify dummy argument names only.

‣ IGNORE_TKR may appear before or after the declarations of the dummy arguments
it specifies.

‣ If dummy argument names are specified, IGNORE_TKR applies only to those
particular dummy arguments.

‣ If no dummy argument names are specified, IGNORE_TKR applies to all dummy
arguments except those that are allocatable objects, Fortran 90 pointers, or assumed-
shape arrays.

4.4.3. Sample Usage of IGNORE_TKR Directive
Consider this subroutine fragment:
subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 15 indicates which rules are ignored for which dummy arguments in the
preceding sample subroutine fragment:

Table 15 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank

B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 127

4.5. !DEC\$ Directives
PGI Fortran compilers for Microsoft Windows support directives that help with inter-
language calling and importing and exporting routines to and from DLLs. These
directives all take the form:
!DEC$ directive

For specific format requirements, refer to the section ‘!DEC$ Directives’ in the PGI
Compiler User's Guide, www.pgroup.com/resources/docs/18.4/pdf/pgi18ug-x86.pdf.

4.5.1. ALIAS Directive
This directive specifies an alternative name with which to resolve a routine.

The syntax for the ALIAS directive is either of the following:
!DEC$ ALIAS routine_name , external_name
!DEC$ ALIAS routine_name : external_name

In this syntax, external_name is used as the external name for the specified
routine_name.

If external_name is an identifier name, the name (in uppercase) is used as the external
name for the specified routine_name. If external_name is a character constant, it is
used as-is; the string is not changed to uppercase, nor are blanks removed.

You can also supply an alias for a routine using the ATTRIBUTES directive, described in
the next section:
!DEC$ ATTIRIBUTES ALIAS : 'alias_name' :: routine_name

This directive specifies an alternative name with which to resolve a routine, as illustrated
in the following code fragment that provides external names for three routines. In this
fragment, the external name for sub1 is name1, for sub2 is name2, and for sub3 is
name3.
subroutine sub
!DEC$ alias sub1 , 'name1'
!DEC$ alias sub2 : 'name2'
!DEC$ attributes alias : 'name3' :: sub3

4.5.2. ATTRIBUTES Directive
This directive lets you specify properties for data objects and procedures.

The syntax for the ATTRIBUTES directive is this:
!DEC$ ATTRIBUTES <list>

where <list> is one of the following:
ALIAS : 'alias_name' :: routine_name

Specifies an alternative name with which to resolve routine_name.
C :: routine_name

Specifies that the routine routine_name will have its arguments passed by value.
When a routine marked C is called, arguments, except arrays, are sent by value. For

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 128

characters, only the first character is passed. The standard Fortran calling convention
is pass by reference.

DLLEXPORT :: name
Specifies that name is being exported from a DLL.

DLLIMPORT :: name
Specifies that name is being imported from a DLL.

NOMIXED_STR_LEN_ARG
Specifies that hidden lengths are placed in sequential order at the end of the list.

This attribute only applies to routines that are compiled with -Miface=cref or
that use the default Windows calling conventions.

REFERENCE :: name
Specifies that the argument name is being passed by reference. Often this attribute is
used in conjunction with STDCALL, where STDCALL refers to an entire routine; then
individual arguments are modified with REFERENCE.

STDCALL :: routine_name
Specifies that routine routine_name will have its arguments passed by value. When
a routine marked STDCALL is called, arguments (except arrays and characters) will be
sent by value. The standard Fortran calling convention is pass by reference.

VALUE :: name
Specifies that the argument 'name' is being passed by value.

4.5.3. DECORATE Directive
The DECORATE directive specifies that the name specified in the ALIAS directive
should have the prefix and postfix decorations performed on it that are associated
with the calling conventions that are in effect. These declarations are the same ones
performed on the name when ALIAS is not specified.

The syntax for the DECORATE directive is this:
!DEC$ DECORATE

When ALIAS is not specified, this directive has no effect.

4.5.4. DISTRIBUTE Directive
This directive is front-end based, and tells the compiler at what point within a loop to
split into two loops.

The syntax for the DISTRIBUTE directive is either of the following:
!DEC$ DISTRIBUTE POINT
!DEC$ DISTRIBUTEPOINT

Example:
subroutine dist(a,b,n)
 integer i
 integer n
 integer a(*)

Directives and Pragmas Reference

Reference Guide for x86-64 CPUs Version 2018 | 129

 integer b(*)
 do i = 1,n
 a(i) = a(i)+2
!DEC$ DISTRIBUTE POINT
 b(i) = b(i)*4
 enddo
end subroutine

Reference Guide for x86-64 CPUs Version 2018 | 130

Chapter 5.
RUNTIME ENVIRONMENT

This section describes the programming model supported for compiler code generation,
including register conventions and calling conventions for x64 processor-based systems.
It addresses these conventions for processors running linux86-64 operating systems and
for processors running Win64 operating systems.

In this section we sometimes refer to word, halfword, and double word. The
equivalent byte information is word (4 byte), halfword (2 byte), and double word (8
byte).

5.1. Linux86-64 Programming Model
This section defines compiler and assembly language conventions for the use of
certain aspects of an x86-64 processor running a linux86-64 operating system. These
standards must be followed to guarantee that compilers, application programs, and
operating systems written by different people and organizations will work together. The
conventions supported by the PGCC ANSI C compiler implement the application binary
interface (ABI) as defined in the System V Application Binary Interface: AMD64 Architecture
Processor Supplement and the System V Application Binary Interface, listed in the Related
Publications section in the Preface.

The programming model used for Win64 differs from the Linux86-64 model. For more
information, refer to Win64 Programming Model.

5.1.1. Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame,
register usage, and parameter passing.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 131

Register Usage Conventions

The following table defines the standard for register allocation. The x86-64 Architecture
provides a variety of registers. All the general purpose registers, XMM registers, and x87
registers are visible to all procedures in a running program.

Table 16 Register Allocation

Type Name Purpose

General %rax 1st return register

%rbx callee-saved; optional base pointer

%rcx pass 4th argument to functions

%rdx pass 3rd argument to functions; 2nd return register

%rsp stack pointer

%rbp callee-saved; optional stack frame pointer

%rsi pass 2nd argument to functions

%rdi pass 1st argument to functions

%r8 pass 5th argument to functions

%r9 pass 6th argument to functions

%r10 temporary register; pass a function's static chain pointer

%r11 temporary register

%r12-r15 callee-saved registers

XMM %xmm0-%xmm1 pass and return floating point arguments

%xmm2-%xmm7 pass floating point arguments

%xmm8-%xmm15 temporary registers

x87 %st(0) temporary register; return long double arguments

%st(1) temporary register; return long double arguments

%st(2) - %st(7) temporary registers

In addition to the registers, each function has a frame on the run-time stack. This stack
grows downward from high addresses. Table 17 shows the stack frame organization.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 132

Table 17 Standard Stack Frame

Position Contents Frame

8n+16 (%rbp) argument eightbyte n previous

. . .

16 (%rbp) argument eightbyte 0

8 (%rbp) return address current

0 (%rbp) caller's %rbp current

-8 (%rbp) unspecified

. . .

0 (%rsp) variable size

-128 (%rsp) red zone

Key points concerning the stack frame:

‣ The end of the input argument area is aligned on a 16-byte boundary.
‣ The 128-byte area beyond the location of %rsp is called the red zone and can be used

for temporary local data storage. This area is not modified by signal or interrupt
handlers.

‣ A call instruction pushes the address of the next instruction (the return address)
onto the stack. The return instruction pops the address off the stack and effectively
continues execution at the next instruction after the call instruction. A function must
preserve non-volatile registers, a register whose contents must be preserved across
subroutine calls. Additionally, the called function must remove the return address
from the stack, leaving the stack pointer (%rsp) with the value it had before the call
instruction was executed.

All registers on an x86-64 system are visible to both a calling and a called function.
Registers %rbx, %rsp, %rbp, %r12, %r13, %r14, and %r15 are non-volatile across function
calls. Therefore, a function must preserve these registers' values for its caller. Remaining
registers are volatile (scratch) registers, that is a register whose contents need not be
preserved across subroutine calls. If a calling function wants to preserve such a register
value across a function call, it must save its value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer
and pointer arguments are passed in these registers (listed in order): %rdi, %rsi, %rdx,
%rcx, %r8, %r9. The first eight floating point arguments are passed in the first eight
XMM registers: %xmm0, %xmm1, ..., %xmm7. The registers %rax and %rdx are used to
return integer and pointer values. The registers %xmm0 and %xmm1 are used to return
floating point values.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 133

Additional registers with assigned roles in the standard calling sequence:
%rsp

The stack pointer holds the limit of the current stack frame, which is the address of
the stack's bottom-most, valid word. The stack must be 16-byte aligned.

%rbp
The frame pointer holds a base address for the current stack frame. Consequently, a
function has registers pointing to both ends of its frame. Incoming arguments reside
in the previous frame, referenced as positive offsets from %rbp, while local variables
reside in the current frame, referenced as negative offsets from %rbp. A function must
preserve this register value for its caller.

RFLAGS
The flags register contains the system flags, such as the direction flag and the carry
flag. The direction flag must be set to the "forward" (i.e., zero) direction before entry
and upon exit from a function. Other user flags have no specified role in the standard
calling sequence and are not preserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and
exception masking. This register is initialized at process initialization time and its
value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no
unusual restriction on their use of registers. Moreover, if a signal handling function
returns, the process resumes its original execution path with registers restored to their
original values. Thus, programs and compilers may freely use all registers without
danger of signal handlers changing their values.

5.1.2. Function Return Values

Functions Returning Scalars or No Value

‣ A function that returns an integral or pointer value places its result in the next
available register of the sequence %rax, %rdx.

‣ A function that returns a floating point value that fits in the XMM registers returns
this value in the next available XMM register of the sequence %xmm0, %xmm1.

‣ An X87 floating-point return value appears on the top of the floating point stack in
%st(0) as an 80-bit X87 number. If this X87 return value is a complex number, the
real part of the value is returned in %st(0) and the imaginary part in %st(1).

‣ A function that returns a value in memory also returns the address of this memory
in %rax.

‣ Functions that return no value (also called procedures or void functions) put no
particular value in any register.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 134

Functions Returning Structures or Unions

A function can use either registers or memory to return a structure or union. The size
and type of the structure or union determine how it is returned. If a structure or union is
larger than 16 bytes, it is returned in memory allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or
more return registers, examine the first eight bytes of the structure or union. The type
or types of the structure or union’s fields making up these eight bytes determine how
these eight bytes will be returned. If the eight bytes contain at least one integral type,
the eight bytes will be returned in %rax even if non-integral types are also present in the
eight bytes. If the eight bytes only contain floating point types, these eight bytes will be
returned in %xmm0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the
type or types of the fields making up the second eight bytes of the structure or union. If
these eight bytes contain at least one integral type, these eight bytes will be returned in
%rdx even if non-integral types are also present in the eight bytes. If the eight bytes only
contain floating point types, these eight bytes will be returned in %xmm1.

If a structure or union is returned in memory, the caller provides the space for the return
value and passes its address to the function as a "hidden" first argument in %rdi. This
address will also be returned in %rax.

5.1.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register
of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9. After this list of registers has been
exhausted, all remaining integral and pointer arguments are passed to the function via
the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM
register taken in the order from %xmm0 to %xmm7. After this list of registers has been
exhausted, all remaining float and double arguments are passed to the function via the
stack.

Structure and Union Arguments

Structure and union arguments can be passed to a function in either registers or on
the stack. The size and type of the structure or union determine how it is passed. If a
structure or union is larger than 16 bytes, it is passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to a function
in one or two registers, examine the first eight bytes of the structure or union. The type

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 135

or types of the structure or union’s fields making up these eight bytes determine how
these eight bytes will be passed. If the eight bytes contain at least one integral type, the
eight bytes will be passed in the first available general purpose register of the sequence
%rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also present in the eight
bytes. If the eight bytes only contain floating point types, these eight bytes will be passed
in the first available XMM register of the sequence from %xmm0 to %xmm7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the
type or types of the fields making up the second eight bytes of the structure or union.
If the eight bytes contain at least one integral type, the eight bytes will be passed in the
next available general purpose register of the sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9
even if non-integral types are also present in the eight bytes. If these eight bytes only
contain floating point types, these eight bytes will be passed in the next available XMM
register of the sequence from %xmm0 to %xmm7.

If the first or second eight bytes of the structure or union cannot be passed in a register
for some reason, the entire structure or union must be passed in memory.

Passing Arguments on the Stack

If there are arguments left after every argument register has been allocated, the
remaining arguments are passed to the function on the stack. The unassigned arguments
are pushed on the stack in reverse order, with the last argument pushed first.

Parameter Passing

Table 18 shows the register allocation and stack frame offsets for the function declaration
and call shown in the following example. Both table and example are adapted from
System V Application Binary Interface: AMD64 Architecture Processor Supplement.
typedef struct {
 int a, b;
 double d;
 }
 structparam;
 structparam s;
 int e, f, g, h, i, j, k;
 float flt;
 double m, n;
 extern void func(int e, int f, structparam s, int g, int h,
 float flt, double m, double n, int i, int j, int k);
 void func2()
 {
 func(e, f, s, g, h, flt, m, n, i, j, k);
 }

Table 18 Register Allocation for Example A-2

General Purpose Registers Floating Point Registers Stack Frame Offset

%rdi: e %xmm0: s.d 0: j

%rsi: f %xmm1: flt 8: k

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 136

General Purpose Registers Floating Point Registers Stack Frame Offset

%rdx: s.a,s.b %xmm2: m

%rcx: g %xmm3: n

%r8: h

%r9: i

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack
pointer, register %rsp, is set by the operating system for the application when the
program is started. The stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to
allocate space on the stack at run-time (e.g. alloca). Some languages can also return
values from a routine allocated on stack space below the original top-of-stack pointer.
Such a routine prevents the calling function from using %rsp-relative addressing for
values on the stack. If the compiler does not call routines that leave %rsp in an altered
state when they return, a frame pointer is not needed and may not be used if the
compiler option -Mnoframe is specified.

The stack must be kept aligned on 16-byte boundaries.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C
language uses a special method to access variable-count parameters. The stdarg.h
and varargs.h files define several functions to access these parameters. A C routine
with variable parameters must use the va_start macro to set up a data structure before
the parameters can be used. The va_arg macro must be used to access the successive
parameters.

For calls that use varargs or stdargs, the register %rax acts as a hidden argument
whose value is the number of XMM registers used in the call.

C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must
match the argument type in the calling function. If the called function is not prototyped,
the calling convention uses the types of the arguments but promotes char or short to
int, and unsigned char or unsigned short to unsigned int and promotes float to double,
unless you use the -Msingle option. For more information on the -Msingle option,
refer to -M Options by Category .

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 137

Calling Assembly Language Programs

The following example shows a C program calling an assembly-language routine
sum_3.

C Program Calling an Assembly-language Routine
/* File: testmain.c */
#include <stdio.h>
int
main() {
 long l_para1 = 2;
 float f_para2 = 1.0;
 double d_para3 = 0.5;
 float f_return;
 extern float sum_3(long para1, float para2, double para3);
 f_return = sum_3(l_para1, f_para2, d_para3);
 printf("Parameter one, type long = %ld\n", l_para1);
 printf("Parameter two, type float = %f\n", f_para2);
 printf("Parameter three, type double = %f\n", d_para3);
 printf("The sum after conversion = %f\n", f_return);
 return 0;
}
File: sum_3.s
Computes (para1 + para2) + para3
 .text
 .align 16
 .globl sum_3
sum_3:
 pushq %rbp
 movq %rsp, %rbp
 cvtsi2ssq %rdi, %xmm2
 addss %xmm0, %xmm2
 cvtss2sd %xmm2,%xmm2
 addsd %xmm1, %xmm2
 cvtsd2ss %xmm2, %xmm2
 movaps %xmm2, %xmm0
 popq %rbp
 ret
 .type sum_3, @function
 .size sum_3,.-sum_3

5.1.4. Linux86-64 Fortran Supplement
Sections A2.4.1 through A2.4.4 of the ABI for x64 Linux and macOS define the Fortran
supplement. The register usage conventions set forth in that document remain the same
for Fortran.

Fortran Fundamental Types

Table 19 Linux 86-64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 138

Fortran Type Size (bytes) Alignment (bytes)

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

A logical constant is one of:

‣ .TRUE.
‣ .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and
0 respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common
blocks) are converted to lower-case. In addition, an underscore is appended to Fortran
global names to distinguish the Fortran name space from the C/C++ name space.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 139

Argument Passing and Return Conventions

Arguments are passed by reference (i.e., the address of the argument is passed, rather
than the argument itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument
representing the length of the CHARACTER argument is also passed to the function.
This length argument is a four-byte integer passed by value, and is passed at the end of
the parameter list following the other formal arguments. A length argument is passed
for each CHARACTER argument; the length arguments are passed in the same order as
their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area
created by the caller for the return value; the second additional argument is the length of
the return value. If a Fortran function is declared to return a character value of constant
length, for example CHARACTER*4 FUNCTION CHF(), the second extra parameter
representing the length of the return value must still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for
the return value and passes the address of this storage as if it were the first argument to
the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the
caller. The alternate return function passes the appropriate return value back to the caller
in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal
procedures, pointer arguments, assumed-shape arguments, functions returning arrays,
and functions returning derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine
parameters and return values match types.

‣ If a C/C++ function returns a value, call it from Fortran as a function, otherwise, call
it as a subroutine.

‣ If a Fortran function has type CHARACTER or COMPLEX, call it from C/C++ as a
void function.

‣ If a Fortran subroutine has alternate returns, call it from C/C++ as a function
returning int; the value of such a subroutine is the value of the integer expression
specified in the alternate RETURN statement.

‣ If a Fortran subroutine does not contain alternate returns, call it from C/C++ as a
void function.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 140

Fortran 2003 also provides a mechanism to support interoperability with C. This
mechanism inclues the ISO_C_BINDING intrinsic module, binding labels, and the BIND
attribute.

Table 20 provides the C/C++ data type corresponding to each Fortran data type.

Table 20 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long x, or long long x 8

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long x, or long long x 8

Table 21 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

float complex x;

complex*8 x struct {float r,i;} x; 8

float complex x; 8

double complex x struct {double dr,di;} x; 16

double complex x; 16

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 141

Fortran Type (lower case) C/C++ Type Size (bytes)

complex *16 x struct {double dr,di;} x; 16

double complex x; 16

For C/C++, the complex type implies C99 or later.

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By
default, C/C++ arrays start at 0 and Fortran arrays start at 1. A Fortran array can be
declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used.
Fortran uses column-major order and C/C++ use row-major order. For one-dimensional
arrays, this poses no problems. For two-dimensional arrays, where there are an equal
number of rows and columns, row and column indexes can simply be reversed. Inter-
language function mixing is not recommended for arrays other than single dimensional
arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types

Fields within Fortran structures and derived types, and multiple map declarations
within a Fortran union, conform to the same alignment requirements used by C
structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose
members correspond to the members of the common block. The name of the structure in
C/C++ must have the added underscore.

For example, the Fortran common block:
INTEGER I, J
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, j, c, cd, d

is represented in C with the following equivalent:
extern struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

and in C++ with the following equivalent:
extern "C" struct {

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 142

 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

The compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as
straightforward as calling other types of Fortran functions. Additional arguments must
be passed to the Fortran function by the C/C++ caller. A Fortran COMPLEX function
returns its value in memory; the first argument passed to the function must contain
the address of the storage for this value. A Fortran CHARACTER function adds two
arguments to the beginning of its argument list. The following example of calling a
Fortran CHARACTER function from C/C++ illustrates these caller-provided extra
parameters:
CHARACTER*(*) FUNCTION CHF(C1, I)
CHARACTER*(*) C1
INTEGER I
END

extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as
the length of c1. Refer to Argument Passing, for additional information.

5.2. Win64 Programming Model
This section defines compiler and assembly language conventions for the use of certain
aspects of an x64 processor running a Win64 operating system. These standards must
be followed to guarantee that compilers, application programs, and operating systems
written by different people and organizations will work together. The conventions
supported by the PGCC ANSI C compiler implement the Visual C++ calling conventions
for x645 processors.

5.2.1. Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame,
register usage, and parameter passing.

Register Usage Conventions

Table 22 defines the standard for register allocation. The 64-bit AMD64 and Intel 64
architectures provide a number of registers. All the general purpose registers, XMM
registers, and x87 registers are global to all procedures in a running program.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 143

Table 22 Register Allocation

Type Name Purpose

General %rax return value register

%rbx callee-saved

%rcx pass 1st argument to functions

%rdx pass 2nd argument to functions

%rsp stack pointer

%rbp callee-saved; optional stack frame pointer

%rsi callee-saved

%rdi callee-saved

%r8 pass 3rd argument to functions

%r9 pass 4th argument to functions

%r10-%r11 temporary registers; used in syscall/sysret instructions

%r12-r15 callee-saved registers

XMM %xmm0 pass 1st floating point argument; return value register

%xmm1 pass 2nd floating point argument

%xmm2 pass 3rd floating point argument

%xmm3 pass 4th floating point argument

%xmm4-%xmm5 temporary registers

%xmm6-%xmm15 callee-saved registers

In addition to the registers, each function has a frame on the run-time stack. This stack
grows downward from high addresses. Table 23 shows the stack frame organization.

Table 23 Standard Stack Frame

Position Contents Frame

8n-120 (%rbp) argument eightbyte n previous

. . .

-80 (%rbp) argument eightbyte 5

-88 (%rbp) %r9 home

-96 (%rbp) %r8 home

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 144

Position Contents Frame

-104 (%rbp) %rdx home

-112 (%rbp) %rcx home

-120 (%rbp) return address current

-128 (%rbp) caller's %rbp

. . .

0 (%rsp) variable size

Key points concerning the stack frame:

‣ The parameter area at the bottom of the stack must contain enough space to hold
all the parameters needed by any function call. Space must be set aside for the
four register parameters to be "homed" to the stack even if there are less than four
register parameters used in a given call.

‣ Sixteen-byte alignment of the stack is required except within a function’s prolog and
within leaf functions.

All registers on an x64 system are global and thus visible to both a calling and a called
function. Registers %rbx, %rsp, %rbp, %rsi, %rdi, %r12, %r13, %r14, and %r15 are non-
volatile. Therefore, a called function must preserve these registers’ values for its caller.
Remaining registers are scratch. If a calling function wants to preserve such a register
value across a function call, it must save a value in its local stack frame.

Registers are used in the standard calling sequence. The first four arguments are
passed in registers. Integral and pointer arguments are passed in these general purpose
registers (listed in order): %rcx, %rdx, %r8, %r9. Floating point arguments are passed in
the first four XMM registers: %xmm0, %xmm1, %xmm2, %xmm3. Registers are assigned
using the argument’s ordinal position in the argument list. For example, if a function’s
first argument is an integral type and its second argument is a floating-point type, the
first argument will be passed in the first general purpose register (%rcx) and the second
argument will be passed in the second XMM register (%xmm1); the first XMM register
and second general purpose register are ignored. Arguments after the first four are
passed on the stack.

Integral and pointer type return values are returned in %rax. Floating point return
values are returned in %xmm0.

Additional registers with assigned roles in the standard calling sequence:
%rsp

The stack pointer holds the limit of the current stack frame, which is the address
of the stack’s bottom-most, valid word. The stack pointer should point to a 16-byte
aligned area unless in the prolog or a leaf function.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 145

%rbp
The frame pointer, if used, can provide a way to reference the previous frames on the
stack. Details are implementation dependent. A function must preserve this register
value for its caller.

MXCSR
The flags register MXCSR contains the system flags, such as the direction flag and the
carry flag. The six status flags (MXCSR[0:5]) are volatile; the remainder of the register
is nonvolatile.

x87 - Floating Point Control Word (FPCSR)
The control word contains the floating-point flags, such as the rounding mode and
exception masking. This register is initialized at process initialization time and its
value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no
unusual restriction on their use of registers. Moreover, if a signal handling function
returns, the process resumes its original execution path with registers restored to their
original values. Thus, programs and compilers may freely use all registers without
danger of signal handlers changing their values.

5.2.2. Function Return Values

Functions Returning Scalars or No Value

‣ A function that returns an integral or pointer value that fits in 64 bits places its result
in %rax.

‣ A function that returns a floating point value that fits in the XMM registers returns
this value in %xmm0.

‣ A function that returns a value in memory via the stack places the address of this
memory (passed to the function as a "hidden" first argument in %rcx) in %rax.

‣ Functions that return no value (also called procedures or void functions) put no
particular value in any register.

‣ A call instruction pushes the address of the next instruction (the return address)
onto the stack. The return instruction pops the address off the stack and effectively
continues execution at the next instruction after the call instruction. A function
that returns a scalar or no value must preserve the caller's registers as previously
described. Further, the called function must remove the return address from
the stack, leaving the stack pointer (%rsp) with the value it had before the call
instruction was executed.

Functions Returning Structures or Unions

A function can use either registers or the stack to return a structure or union. The size
and type of the structure or union determine how it is returned. A structure or union

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 146

is returned in memory if it is larger than 8 bytes or if its size is 3, 5, 6, or 7 bytes. A
structure or union is returned in %rax if its size is 1, 2, 4, or 8 bytes.

If a structure or union is to be returned in memory, the caller provides space for the
return value and passes its address to the function as a "hidden" first argument in %rcx.
This address will also be returned in %rax.

5.2.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register
of the sequence %rcx, %rdx, %r8, %r9. After this list of registers has been exhausted, all
remaining integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM
register of the sequence %xmm0, %xmm1, %xmm2, %xmm3. After this list of registers
has been exhausted, all remaining XMM floating-point arguments are passed to the
function via the stack.

Array, Structure, and Union Arguments

Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were
integers of the same size. Structures and unions of other sizes will be passed as a
pointer to a temporary, allocated by the caller, and whose value contains the value of the
argument. The caller-allocated temporary memory used for arguments of aggregate type
must be 16-byte aligned.

Passing Arguments on the Stack

Registers are assigned using the argument’s ordinal position in the argument list. For
example, if a function’s first argument is an integral type and its second argument is a
floating-point type, the first argument will be passed in the first general purpose register
(%rcx) and the second argument will be passed in the second XMM register (%xmm1);
the first XMM register and second general purpose register are ignored. Arguments after
the first four are passed on the stack; they are pushed on the stack in reverse order, with
the last argument pushed first.

Parameter Passing

Table 24 shows the register allocation and stack frame offsets for the function declaration
and call shown in the following example.
typedef struct {
 int i; float f;

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 147

 }
 struct1; int i; float f; double d; long l; long long ll; struct1 s1;
 extern void
 func (int i, float f, struct1 s1, double d, long long ll, long l);
 func (i, f, s1, d, ll, l);

Table 24 Register Allocation for Example A-4

General Purpose Registers Floating Point Registers Stack Frame Offset

%rcx: i %xmm0: <ignored> 32: ll

%rdx: <ignored> %xmm1: f 40: l

%r8: s1.i, s1.f %xmm2: <ignored>

%r9: <ignored> %xmm3: d

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack
pointer, register %rsp, is set by the operating system for the application when the
program is started. The stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to
allocate space on the stack at run-time (e.g. alloca). Some languages can also return
values from a routine allocated on stack space below the original top-of-stack pointer.
Such a routine prevents the calling function from using %rsp-relative addressing to get
at values on the stack. If the compiler does not call routines that leave %rsp in an altered
state when they return, a frame pointer is not needed and is not used if the compiler
option -Mnoframe is specified.

The stack must always be 16-byte aligned except within the prolog and within leaf
functions.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C
language uses a special method to access variable-count parameters. The stdarg.h
and varargs.h files define several functions to access these parameters. A C routine
with variable parameters must use the va_start macro to set up a data structure before
the parameters can be used. The va_arg macro must be used to access the successive
parameters.

For unprototyped functions or functions that use varargs, floating-point arguments
passed in registers must be passed in both an XMM register and its corresponding
general purpose register.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 148

C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must
match the argument type in the calling function.

‣ If the called function is not prototyped, the calling convention uses the types of the
arguments but promotes char or short to int, and unsigned char or unsigned short to
unsigned int and promotes float to double, unless you use the -Msingle option.

For more information on the -Msingle option, refer to -M Options by Category.
‣ If the called function is prototyped, the unused bits of a register containing a char or

short parameter are undefined and the called function must extend the sign of the
unused bits when needed.

Calling Assembly Language Programs

C Program Calling an Assembly-language Routine
/* File: testmain.c */
main() {
 long l_para1 = 0x3f800000;
 float f_para2 = 1.0;
 double d_para3 = 0.5;
 float f_return;
 extern float sum_3 (long para1, float para2, double para3);
 f_return = sum_3(l_para1,f_para2, d_para3);
 printf("Parameter one, type long = %08x\n",l_para1);
 printf("Parameter two, type float = %f\n",f_para2);
 printf("Parameter three, type double = %g\n",d_para3);
 printf("The sum after conversion = %f\n",f_return);
}
File: sum_3.s
Computes (para1 + para2) + para3
 .text
 .align 16
 .globl sum_3
sum_3:
 pushq %rbp
 leaq 128(%rsp), %rbp
 cvtsi2ss %ecx, %xmm0
 addss %xmm1, %xmm0
 cvtss2sd %xmm0, %xmm0
 addsd %xmm2, %xmm0
 cvtsd2ss %xmm0, %xmm0
 popq %rbp
 ret
 .type sum_3,@function
 .size sum_3,.-sum_3

5.2.4. Win64 Fortran Supplement
Sections A3.4.1 through A3.4.4 of the AMD64 Software Conventions for Win64 define
the Fortran supplement. The register usage conventions set forth in that document
remain the same for Fortran.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 149

Fortran Fundamental Types

Table 25 Win64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

A logical constant is one of:

‣ .TRUE.
‣ .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte value 1 and 0
respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 150

Fortran Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common
blocks) are converted to lower-case. In addition, an underscore is appended to Fortran
global names to distinguish the Fortran name space from the C/C++ name space.

Fortran Argument Passing and Return Conventions

Arguments are passed by reference, meaning the address of the argument is passed
rather than the argument itself. In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument
representing the length of the CHARACTER argument is also passed to the function.
This length argument is a four-byte integer passed by value, and is passed at the end of
the parameter list following the other formal arguments. A length argument is passed
for each CHARACTER argument; the length arguments are passed in the same order as
their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area
created by the caller for the return value; the second additional argument is the length of
the return value. If a Fortran function is declared to return a character value of constant
length, for example CHARACTER*4 FUNCTION CHF(), the second extra parameter
representing the length of the return value must still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for
the return value and passes the address of this storage as if it were the first argument to
the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the
caller. The alternate return function passes the appropriate return value back to the caller
in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal
procedures, pointer arguments, assumed-shape arguments, functions returning arrays,
and functions returning derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine
parameters and return values match types. If a C/C++ function returns a value, call it
from Fortran as a function, otherwise, call it as a subroutine. If a Fortran function has
type CHARACTER or COMPLEX, call it from C/C++ as a void function. If a Fortran
subroutine has alternate returns, call it from C/C++ as a function returning int; the value
of such a subroutine is the value of the integer expression specified in the alternate
RETURN statement. If a Fortran subroutine does not contain alternate returns, call it
from C/C++ as a void function.

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 151

Table 26 provides the C/C++ data type corresponding to each Fortran data type.

Table 26 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long long x 8

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long long x 8

The PGI Compiler User’s Guide contains a table that provides the Fortran and C/C++
representation of the COMPLEX type.

Table 27 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

float complex x; 8

complex*8 x struct {float r,i;} x; 8

float complex x; 8

double complex x struct {double dr,di;} x; 16

double complex x; 16

complex *16 x struct {double dr,di;} x; 16

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 152

Fortran Type (lower case) C/C++ Type Size (bytes)

double complex x; 16

For C/C++, the complex type implies C99 or later.

Arrays

For a number of reasons inter-language function mixing is not recommended for arrays
other than single dimensional arrays and square two-dimensional arrays.

‣ C/C++ arrays and Fortran arrays use different default initial array index values. By
default, C/C++ arrays start at 0 and Fortran arrays start at 1. However, a Fortran
array can be declared to start at zero.

‣ Fortran and C/C++ arrays use different storage methods. Fortran uses column-major
order and C/C++ use row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows
and columns, row and column indexes can simply be reversed.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations
within a Fortran union, conform to the same alignment requirements used by C
structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose
members correspond to the members of the common block. The name of the structure in
C/C++ must have the added underscore. Here is an example.

Fortran common block:
 INTEGER I, J
 COMPLEX C
 DOUBLE COMPLEX CD
 DOUBLE PRECISION D
 COMMON /COM/ i, j, c, cd, d

C equivalent:
 extern struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
 } com_;

C++ equivalent:
 extern "C" struct {
 int i;
 int j;

Runtime Environment

Reference Guide for x86-64 CPUs Version 2018 | 153

 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
 } com_;

The compiler-provided name of the BLANK COMMON block is implementation-specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as
straightforward as calling other types of Fortran functions. Additional arguments must
be passed to the Fortran function by the C/C++ caller. A Fortran COMPLEX function
returns its value in memory; the first argument passed to the function must contain
the address of the storage for this value. A Fortran CHARACTER function adds two
arguments to the beginning of its argument list. The following example of calling a
Fortran CHARACTER function from C/C++ illustrates these caller-provided extra
parameters:

CHARACTER*(*) FUNCTION CHF(C1, I)
CHARACTER*(*) C1
INTEGER I
 END

 extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied
as the length of c1.

Reference Guide for x86-64 CPUs Version 2018 | 154

Chapter 6.
C++ DIALECT SUPPORTED

The PGC++ compiler accepts the C++ language of the ISO/IEC 14882:2003 standard, the
ISO/IEC 14882:2011 standard, plus substantially all GNU C++ extensions.

Command-line options provide full support of many C++ variants, including strict
standard conformance. PGC++ provides command line options that enable the user to
specify whether anachronisms and/or cfront 2.1/3.0 compatibility features should be
accepted. C++11 and C++14 are also supported via command line options.

6.1. Extensions Accepted in Normal C++ Mode
The following extensions are accepted in all modes, except when strict ANSI violations
are diagnosed as errors, described in the -A option:

‣ A friend declaration for a class may omit the class keyword:
class A {
 friend B; // Should be "friend class B"
};

‣ Constants of scalar type may be defined within classes:
class A {
 const int size = 10;
 int a[size];
};

‣ In the declaration of a class member, a qualified name may be used:
struct A{
 int A::f(); // Should be int f();
}

‣ The preprocessing symbol c_plusplus is defined in addition to the standard
__cplusplus.

‣ An assignment operator declared in a derived class with a parameter type matching
one of its base classes is treated as a "default'' assignment operator—that is, such a
declaration blocks the implicit generation of a copy assignment operator. (This is
cfront behavior that is known to be relied upon in at least one widely used library.)

Here's an example:
struct A { } ;
struct B : public A {
 B& operator=(A&);

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 155

};

‣ By default, as well as in cfront-compatibility mode, there will be no implicit
declaration of B::operator=(const B&), whereas in strict-ANSI mode
B::operator=(A&) is not a copy assignment operator and B::operator=(const B&) is
implicitly declared.

‣ Implicit type conversion between a pointer to an extern "C" function and a pointer to
an extern "C++" function is permitted. Here’s an example:
extern "C" void f(); // f's type has extern "C" linkage
void (*pf) () // pf points to an extern "C++" function = &f;
 // error unless implicit conv is allowed

6.2. cfront 2.1 Compatibility Mode
The following extensions are accepted in cfront 2.1 compatibility mode in addition to the
extensions listed in the following section. These things were corrected in the 3.0 release
of cfront:

‣ The dependent statement of an if, while, do-while, or for is not considered to define
a scope. The dependent statement may not be a declaration. Any objects constructed
within the dependent statement are destroyed at exit from the dependent statement.

‣ Implicit conversion from integral types to enumeration types is allowed.
‣ A non-const member function may be called for a const object. A warning is issued.
‣ A const void * value may be implicitly converted to a void * value, e.g., when passed

as an argument.
‣ When, in determining the level of argument match for overloading, a reference

parameter is initialized from an argument that requires a non-class standard
conversion, the conversion counts as a user-defined conversion. (This is an outright
bug, which unfortunately happens to be exploited in some class libraries.)

‣ When a builtin operator is considered alongside overloaded operators in overload
resolution, the match of an operand of a builtin type against the builtin type
required by the builtin operator is considered a standard conversion in all cases
(e.g., even when the type is exactly right without conversion).

‣ A reference to a non-const type may be initialized from a value that is a const-
qualified version of the same type, but only if the value is the result of selecting a
member from a const class object or a pointer to such an object.

‣ A cast to an array type is allowed; it is treated like a cast to a pointer to the array
element type. A warning is issued.

‣ When an array is selected from a class, the type qualifiers on the class object (if any)
are not preserved in the selected array. (In the normal mode, any type qualifiers on
the object are preserved in the element type of the resultant array.)

‣ An identifier in a function is allowed to have the same name as a parameter of the
function. A warning is issued.

‣ An expression of type void may be supplied on the return statement in a function
with a void return type. A warning is issued.

‣ cfront has a bug that causes a global identifier to be found when a member of a class
or one of its base classes should actually be found. This bug is not emulated in cfront
compatibility mode.

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 156

‣ A parameter of type "const void *'' is allowed on operator delete; it is treated as
equivalent to "void *".

‣ A period (".") may be used for qualification where "::" should be used. Only "::''
may be used as a global qualifier. Except for the global qualifier, the two kinds of
qualifier operators may not be mixed in a given name (i.e., you may say A::B::C or
A.B.C but not A::B.C or A.B::C). A period may not be used in a vacuous destructor
reference nor in a qualifier that follows a template reference such as A<T>::B.

‣ cfront 2.1 does not correctly look up names in friend functions that are inside class
definitions. In this example function f should refer to the functions and variables
(e.g., f1 and a1) from the class declaration. Instead, the global definitions are used.
int a1;
int e1;
void f1();
class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
};

‣ Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the
following example.
int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

‣ operator= may be declared as a nonmember function. (This is flagged as an
anachronism by cfront 2.1)

‣ A type qualifier is allowed (but ignored) on the declaration of a constructor or
destructor. For example:
class A {
 A() const; // No error in cfront 2.1 mode
};

6.3. cfront 2.1/3.0 Compatibility Mode
The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility
mode (i.e., these are features or problems that exist in both cfront 2.1 and 3.0):

‣ Type qualifiers on this parameter may to be dropped in contexts such as this
example:
struct A {
 void f() const;
};

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 157

void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a
pointer to non-const, because a call using the pointer is permitted to modify the
object and the function pointed to will actually not modify the object. The opposite
assignment would not be safe.

‣ Conversion operators specifying conversion to void are allowed.
‣ A nonstandard friend declaration may introduce a new type. A friend declaration

that omits the elaborated type specifier is allowed in default mode, but in cfront
mode the declaration is also allowed to introduce a new type name.
struct A {
 friend B;
};

‣ The third operator of the ? operator is a conditional expression instead of an
assignment expression.

‣ A reference to a pointer type may be initialized from a pointer value without use
of a temporary even when the reference pointer type has additional type qualifiers
above those present in the pointer value. For example,
int *p;
const int *&r = p;
// No temporary use

‣ A reference may be initialized with a null.

6.4. Extensions accepted in GNU compatibility
mode (pgc++)
New GNU C++ features are added as needed, with priority given to features used in
system headers. Because the GNU compiler frequently changes behavior between
releases, PGC++ is configured to emulate the specific release currently on the user's
system. The most recent versions of GCC implement some C++14 features that the front
end does not yet implement.

A few GCC extensions that are likely not going to be supported in the foreseeable future
are these:

‣ The forward declaration of function parameters (so they can participate in variable-
length array parameters).

‣ GNU-style complex integral types (complex floating-point types are supported)
‣ Nested functions
‣ Local structs with variable-length array fields. Such fields are treated (with a

warning) as zero-length arrays.

6.5. C++11 Language Features Accepted
The following features added in the C++11 standard are enabled in C++11 mode. This
mode can be combined with the option for strict standard conformance. Several of these
features are also enabled in default (nonstrict) C++ mode.

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 158

‣ A ‘right shift token’ (>>) can be treated as two closing angle brackets. For example:
template<typename T> struct S {};
S<S<int>> s; // Okay.
// No whitespace needed between closing angle brackets.

‣ The static_;assert construct is supported. For example:
template<typename T> struct S {
 static_;assert(sizeof(T) > 1, "Type T too small");
};
S<char[2]> s1; // Okay.
S<char> s2; // Instantiation error due to failing static_;assert

‣ The friend class syntax is extended to allow nonclass types as well as class types
expressed through a typedef or without an elaborated type name. For example:
typedef struct S ST;
class C {
 friend S; // Okay (requires S to be in scope).
 friend ST; // Okay (same as "friend S;").
 friend int; // Okay (no effect).
 friend S const; // Error: cv-qualifiers cannot appear directly.
};

‣ Mixed string literal concatenations are accepted, a feature carried over from C99
preprocessor extensions. For example:
wchar_;t *str = "a" L"b"; // Okay, same as L"ab".

‣ Variadic macros and empty macro arguments are accepted, as in C99.
‣ In function bodies, the reserved identifier _;_;func_;_; refers to a predefined

array containing a string representing the function’s name (a feature carried over
from C99).

‣ A trailing comma in the definition of an enumeration type is silently accepted (a
feature carried over from C99):
enum E { e, };

‣ The type long long is accepted. Unsuffixed integer literals that cannot be
represented by type long, but could potentially be represented by type unsigned
long, have type long long instead (this matches C99, but not the treatment of the
long long extension in C89 or default C++ mode).

‣ An explicit instantiation directive may be prefixed with the extern keyword to
suppress the instantiation of the specified entity.

‣ The keyword typename followed by a qualified-id can appear outside a template
declaration.
struct S { struct N {}; };
typename S::N *p; // Silently accepted in C++11 mode.

‣ The keyword auto can be used as a type specifier in the declaration of a variable or
reference. In such cases, the actual type is deduced from the associated initializer.
This feature can be used for variable declarations, for inclass declarations of static
const members, and for new-expressions.
auto x = 3.0; // Same as "double x = 3.0;"
auto p = new auto(x); // Same as "double *p = new double(x);"
struct S {
 static auto const m = 3; // Same as "static int const m = 3;"
};

By default, auto is no longer accepted as a storage class specifier (but an option is
available to re-enable it).

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 159

‣ The keyword decltype is supported: It allows types to be described in terms of
expressions. For example:
template<typename T> struct S {
 decltype(f(T())) *p; // A pointer to the return type of f.
};

‣ The constraints on the code points implied by universal character names (UCNs)
are slightly different: UCNs for surrogate code points (0xD000 through 0xDFFF) are
never permitted, and UCN corresponding to control characters or to characters in
the basic source character set are permitted in string literals.

‣ Scoped enumeration types (defined with the keyword sequence enum class) and
explicit underlying integer types for enumeration types are supported. For example:
enum class Primary { red, green, blue };
enum class Danger { green, yellow, red }; // No conflict on "red".
enum Code: unsigned char { yes, no, maybe };
void f() {
 Primary p = Primary::red; // Enum-qualifier is required to access
 // scoped enumerator filepaths.
 Code c = Code::maybe; // Enum qualifier is allowed (but not
 required)
} // for unscoped enumeration types.

‣ Lambdas are supported. For example:
template<class F> int z(F f) { return f(0); }
int g() {
 int v = 7;
 return z([v](int x)->int { return x+v; });
}

‣ The C99-style _;Pragma operator is supported.
‣ Rvalue references are supported. For example:

int f(int);
int &&rr = f(3);

‣ Functions can be ‘deleted’. For example:
int f(int) = delete;
short f(short);
int x = f(3); // Error: selected function is deleted.
int y = f((short)3); // Okay.

‣ Special member functions can be explicitly ‘defaulted’ (i.e., given a default
definition). For example:
struct S { S(S const&) = default; };
struct T { T(T const&); };
T::T(T const&) = default;

‣ The operand of sizeof, typeid, or decltype can refer directly to a non-static
data member of a class without using a member access expression. For example:
struct S {
 int i;
};
decltype(S::i) j = sizeof(S;;i);

‣ The keyword nullptr, conventionally known by its standard typedef
std::nullptr_;t, can be used as both a null pointer and a null pointer-to-
member filepath. Variables and other expressions whose type is that of the nullptr
keyword can also be used as null pointer(-to-member) filepaths, although they are
only filepath expressions if they wotherwise would be. For example:
#include <cstddef> // to get std::nullptr_;t
struct S { };
template <int *> struct X { };
std::nullptr_;t null();

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 160

void f() {
 void *p = nullptr // Initializes p to null pointer
 int S::* mp = nullptr // Initializes mp to null ptr-to-member
 p = null(); // Sets p to null pointer
 X<nullptr> xnull0; // Instantiates X with null int * value
 x<null()> xnull1 // Error: templeate argument not a
 // filepath expression
}

‣ Attributes delimited by double square brackets ([[...]]) are accepted in declarations.
The standard attributes noreturn and carries_;dependency are supported. For
example:
[[noreturn]] void f();

‣ The context-sensitive keyword final is accepted on class types, to indicate they
cannot be derived from, and on virtual member functions, to indicate they cannot
be overridden. The context-sensitive keyword override can be specified on virtual
member functions to assert that they override a corresponding base class member.

‣ Alias and alias template declarations are supported. For example:
using X = int;
X x; // equivalent to `int x'
template <typename T> using Y = T*
Y<int> yi; // equivalent to `int* yi'

‣ Variadic templates are supported. For example:
template<class ...T> void f(T ...args) {
 int i = sizeof...(args);
}
int main() {
 f(1, 2, 3, 4);
}

‣ U-literals as well as the char16_;t and char32_;t keywords are supported. For
example:
char16_;t *str = U'A 16-bit character string';
char32_;t ch = U'\U00012345'; // A 32-bit character string literal

‣ Substitution Failure is Not An Error (SFINAE) for expressions. Many errors in
expression that arise during the substitution of template parameters in function
templates are now treated as deduction failures rather than definite errors. This
approach may result in a valid program if another (overloaded) function template
allows the substitution. In the original C++ standard (1998, 2003) SFINAE was
mostly limited to simple type substitutions.

‣ Access checking of names used as base classes is done in the context of the class
being defined. For example:
class B {protected: class N {} };
class D: B;;N, B {}; // now allowed

‣ Inline namespaces are supported. For example:
namespace N {
 template <class T> struct A {};
 template <class T> void g(T){}
 inline namespace M {
 template <class T> void f(T){}
 template <> void f(A,int>);
 struct B;
 }
}
template <> void N;;f(a<int>){} // specialized as if member of N
struct N:: B {}; // defined as if member of N
int main() {
 N::A<int> na;

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 161

 f(na); // argument dependent lookup finds N::M::f
 g(na); // argument dependent lookup finds N::g
 N::B nb;
 f(nb); // argument dependent lookup finds N::M::f
 g(nb); // argument dependent lookup finds N::g
}

‣ Initializer lists are supported. These are brace-enclosed lists used as variable
initializes and call arguments, and in casts, mem-initializers, default arguments,
range-based ‘for’ statements, and return statements. For example:
struct A { int a1; double a2; };
struct B { B(int, double); };
A a{1, 2.0}
B b{1, 2.0};
B b2 = B{1, 2.0};

‣ The noexcept specifier and operator are supported. For example:
void f(int) noexcept; // never throws
const int version = 5;
void f(float) noexcept(version >=;5); // does not throw if expr true
int main() {
 int arr[noexcept(f(1.0f))]; // operator is true if expression
 // cannot throw, so true in this case
}

In strict mode, implicit exception specifications are generated for destructors
and deallocation functions declared without an explicit exception specification.
This can also be enabled in nonstrict modes using the command line option --
implicit_;noexcept.

‣ Range-based ‘for’ loops are supported. For example:
int f() {
 auto x = {1, 2, 3};
 int sum = 0;
 for (auto i | x) sum += i;
 return sum;
};

6.6. C++14 Language Features Accepted
The following features added in the C++14 standard are enabled in C++14 mode. This
mode can be combined with the option for strict standard conformance. Several of these
features are also enabled in default (nonstrict) C++ mode.

‣ The implicit conversion rules are modified to allow multiple conversion functions
in a class type such as a smart pointer, with the best match for the context chosen by
overload resolution. Previous versions of the standard required a single conversion
function in such classes.

‣ Binary literals such as 0b0110 are accepted.
‣ Function return types can be deduced from the return statements of the function

definition, and the decl-type(auto) specifier is supported. For example:
auto f() { return 5; } // return type is int

‣ Lambdas can specify expressions, not just local variables, to be captured. For
example:
auto l = [x = 42]{ return x + 1; };

‣ Class aggregates can have member initializers. For example:
struct S { int i = 3; } s{}; // s.i has value 3

C++ Dialect Supported

Reference Guide for x86-64 CPUs Version 2018 | 162

‣ Generic lambdas are accepted, allowing auto parameters to define a call operator
template. For example:
auto l = [](auto p) {return p*2; };

‣ The deprecated standard attribute is accepted.
‣ The apostrophe is accepted in numeric literals as a digit separator. For example:

long l = 123'456'789; // Equivalent to 123456789

Reference Guide for x86-64 CPUs Version 2018 | 163

Chapter 7.
FORTRAN MODULE/LIBRARY
INTERFACES FOR WINDOWS

PGI Fortran for Windows provides access to a number of libraries that export C
interfaces by using Fortran modules. PGI uses this mechanism to support the Win32 API
and Unix/Linux/macOS portability libraries. This section describes the Fortran module
library interfaces that PGI supports, describing each property available.

7.1. Source Files
All routines described in this section have their prototypes and interfaces described in
source files that are included in the PGI Windows compiler installation. The location of
these files depends on your operating system version and the PGI release version that
you have installed. These files are typically located in this directory:

C:/Program Files/PGI/win64/[release_version]/src

For example, if you have installed the x64 version of the 18.4 release, look for your files
in this location:

C:/Program Files/PGI/win64/18.4/src

7.2. Data Types
Because the Win32 API and Portability interfaces resolve to C language libraries, it is
important to understand how the data types compare within the two languages. Here is
a table summarizing how C types correspond with Fortran types for some of the more
common data types:

Table 28 Fortran Data Type Mappings

Windows Data Type Fortran Data Type

BOOL LOGICAL(4)

BYTE BYTE

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 164

Windows Data Type Fortran Data Type

CHAR CHARACTER

SHORT, WORD INTEGER(2)

DWORD, INT, LONG INTEGER(4)

LONG LONG INTEGER(8)

FLOAT REAL(4)

DOUBLE REAL(8)

x64 Pointers INTEGER(8)

For more information on data types, refer to Fortran, C, and C++ Data Types.

7.3. Using DFLIB, LIBM, and DFPORT
PGI includes Fortran module interfaces to libraries supporting some standard C library,
C math library, and Unix/Linux/macOS system call functionality. These functions are
provided by the DFLIB, LIBM, and DFPORT modules. To utilize these modules, add the
appropriate USE statement:
use dflib

use libm

use dfport

7.3.1. DFLIB
Table 29 lists the functions that DFLIB includes. In the table [Generic] refers to a
generic routine. To view the prototype and interfaces, look in the location described in
Source Files.

Table 29 DFLIB Function Summary

Routine Result Description

commitqq LOGICAL*4 Executes any pending write operations for the file associated with
the specified unit to the file’s physical device.

delfilesqq INTEGER*4 Deletes the specified files in a specified directory.

findfileqq INTEGER*4 Searches for a file in the directories specified in the PATH
environment variable.

fullpathqq INTEGER*4 Returns the full path for a specified file or directory.

getdat INTEGER*2,*4,*8 [Generic] Returns the date.

getdrivedirqq INTEGER*4 Returns the current drive and directory path.

getenvqq INTEGER*4 Returns a value from the current environment.

getfileinfoqq INTEGER*4 Returns information about files with names that match the
specified string.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 165

Routine Result Description

getfileinfoqqi8 INTEGER*4 Returns information about files with names that match the
specified string.

gettim INTEGER*2,*4,*8 [Generic] Returns the time.

makedirqq INTEGER*4 Creates a new directory.

packtimeqq INTEGER*4 Packs the time and date values for use by setfiletimeqq

renamefileqq LOGICAL*4 Renames the specified file.

runqq INTEGER*2 Calls another program and waits for it to execute.

setenvqq LOGICAL*4 Sets the values of an existing environment variable or adds a new
one.

setfileaccessqq LOGICAL*4 Sets the file access mode for the specified file.

setfiletimeqq LOGICAL*4 Sets the modification time for the specified file.

signalqq INTEGER*8 Controls signal handling.

sleepqq None Delays execution of the program for a specified time.

splitpathqq LOGICAL*4 Breaks a full path into components.

systemqq LOGICAL*4 Executes a command by passing a command string to the
operating system’s command interpreter.

unpacktimeqq Multiple
INTEGERS

Unpacks a file’s packed time and date value into its component
parts.

7.3.2. LIBM
A Fortran module called libm is available to declare interfaces to many of the routines
in the standard C math library.Table 30 lists the LIBM routines that are available. To view
the prototype and interfaces, look in the location described in Source Files.

Some libm routine names conflict with Fortran intrinsics. These routines are not listed
in this table because they resolve to Fortran intrinsics.

asin acos atan2 cos cosh

exp log log10 sin sinh

sqrt tan tanh

You can also use libm routines in CUDA Fortran global and device subprograms, in
CUF kernels, and in OpenACC compute regions. When targeting NVIDIA devices, the
libm routines translate to the corresponding libm device routine.

Table 30 LIBM Functions

acosf erfc frexp log1p remquo

acosh erff frexpf log1pf remquof

acoshf erfcf ilog log2 rint

asinf expf ilogbf log2f rintf

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 166

asinh exp10 ldexp logb scalbn

asinhf exp10f ldexpf logbf scalbnf

atan2f exp2 lgamma logf scalbln

atanh exp2f lgammaf modf scalblnf

atanhf expf llrint modff sinf

cbrt expm1 llrintf nearbyint sinhf

cbrtf expm1f lrint nearbyintf sqrtf

ceil floor lrint nextafter tanf

ceilf floorf llround nextafterf tanhf

copysign fma llroundf pow tgamma

copysignf fmaf lround powf tgammaf

cosf fmax lroundf remainder trunc

coshf fmaxf log10f remainderf truncf

erf fminf

7.3.3. DFPORT
Table 31 lists the functions that DFPORT includes. In the table [Generic] refers to a
generic routine. To view the prototype and interfaces, look in the location described in
Source Files.

Table 31 DFPORT Functions

Routine Result Description

abort None Immediately terminates the program. If the operating system
supports a core dump, abort produces one that can be used
for debugging.

access INTEGER*4 Determines access mode or existence of a file.

alarm INTEGER*4 Executes a routine after a specified time.

besj0 REAL*4 Computes the BESSEL function of the first kind of order 0 of X,
where X is real.

besj1 REAL*4 Computes the BESSEL function of the first kind of order 1 of X,
where X is real.

besjn REAL*4 Computes the BESSEL function of the first kind of order N of X,
where N is an integer and X is real.

besy0 REAL*4 Computes the BESSEL function of the second kind of order 0 of
X, where X is real.

besy1 REAL*4 Computes the BESSEL function of the second kind of order 1 of
X, where X is real.

besyn REAL*4 Computes the BESSEL function of the second kind of order N of
X, where N is an integer and X is real.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 167

Routine Result Description

chdir INTEGER*4 Changes the current directory to the directory specified.
Returns 0 if successful.

chmod INTEGER*4 Changes the mode of a file by setting the access permissions
of the specified file to the specified mode. Returns 0 if
successful.

ctime STRING(24) Converts and returns the specified time and date as a string.

date STRING Returns the date as a character string: dd-mm-yy.

dbesj0 REAL*8 Computes the double-precision BESSEL function of the first
kind of order 0 of X, where X is a double-precision argument.

dbesj1 REAL*8 Computes the double-precision BESSEL function of the first
kind of order 1 of X, where X is a double-precision argument.

dbesjn REAL*8 Computes the double-precision BESSEL function of the first
kind of order N of X, where N is an integer and X is a double-
precision argument.

dbesy0 REAL*8 Computes the double-precision BESSEL function of the second
kind of order 0 of X, where X, where X is a double-precision
argument.

dbesy1 REAL*8 Computes the double-precision BESSEL function of the second
kind of order 1 of X, where X, where X is a double-precision
argument.

dbesyn REAL*8 Computes the double-precision BESSEL function of the second
kind of order N of X, where N is an integer and X, where X is a
double-precision argument.

derf REAL*8 Computes the double-precision error function of X, where X is
a double-precision argument.

derfc REAL*8 Computes the complementary double-precision error function
of X, where X is a double-precision argument.

dffrac REAL*8 Returns fractional accuracy of a REAL*8 floating-point value.

dflmax REAL*8 Returns the maximum positive REAL*8 floating-point value.

dflmin REAL*8 Returns the minimum positive REAL*8 floating-point value.

drandm REAL*8 Generates a REAL*8 random number.

dsecnds REAL*8 Returns the number of real time seconds since midnight minus
the supplied argument value.

dtime REAL*4 Returns the elapsed user and system time in seconds since the
last call to dtime.

erf REAL*4 Computes the error function of X, where X is Real.

erfc REAL Computes the complementary error function of X, where X is
Real.

etime REAL*4 Returns the elapsed time in seconds since the start of program
execution.

exit None Immediately terminates the program and passes a status to
the parent process.

fdate STRING Returns the current date and time as an ASCII string.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 168

Routine Result Description

ffrac REAL*4 Returns the fractional accuracy of a REAL*4 floating-point
value.

fgetc INTEGER*4 Gets a character or word from an input stream. Returns the
next byte or and integer

flmax REAL*4 Returns the maximum positive REAL*4 lue.

flush None Writes the output to a logical unit.

fputc INTEGER*4 Writes a character or word from an input stream to a logical
unit. Returns 0 if successful or an error.

free None Frees memory previously allocated by MALLOC(). Intended for
users compiling legacy code. Use DEALLOCATE for newer code.

fseek INTEGER*4 Repositions the file pointer associated with the specified file.
Returns 0 if successful, 1 otherwise.

fseek64 INTEGER*4 Repositions the file pointer associated with the specified
stream. Returns 0 if successful, 1 otherwise.

fstat INTEGER*4 Returns file status information about the referenced open file
or shared memory object.

fstat64 INTEGER*4 Returns information in a 64-bit structure about the referenced
open file or shared memory object.

ftell INTEGER*4 Returns the current value of the file pointer associated with
the specified stream.

ftell64 INTEGER*8 Returns the current value of the file pointer associated with
the specified stream.

gerror STRING Writes system error messages.

getarg STRING Returns the list of parameters that were passed to the current
process when it was started.

getc INTEGER*4 Retrieves the character at the front of the specified character
list, or -1 if empty

getcwd INTEGER*4 Retrieves the pathname of the current working directory or
null if fails.

getenv Returns the value of the specified environment variable(s).

getfd INTEGER*4 Returns the file descriptor associated with a Fortran logical
unit.

getgid INTEGER*4 Returns the numerical group ID of the curreni process.

getlog STRING Stores the user’s login name in NAME. If the login name is not
found, then NAME is filled with blanks.

getpid INTEGER*4 Returns the process numerical identifier of the current
process.

getuid INTEGER*4 Returns the numerical user ID of the current process.

gmtime INTEGER*4 Converts and returns the date and time formats to GM
(Greenwich) time as month, day, and so on.

iargc INTEGER*4 Returns an integer representing the number of arguments for
the last program entered on the command line.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 169

Routine Result Description

idate INTEGER*4 Returns the date in numerical form, day, month, year.

ierrno INTEGER*4 Returns the system error number for the last error.

inmax INTEGER*4 Returns the maximum positive integer value.

ioinit None Establishes the properties of file I/O for files opened after the
call to ioinit, such as whether to recognize carriage control,
how to treat blanks and zeros, and whether to open files at
the beginning or end of the file.

irand1 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irand2 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irandm INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

isatty LOGICAL Finds the name of a terminal port. Returns TRUE if the
specified unit is a terminal.

itime numerical form
of time

Fills and returns TARRAY with numerical values at the current
local time, with elements 1,2,and 3 of TARRY being the hour
(1-24), minute (1-60) and seconds (1-60).

kill INTEGER*4 Sends the specified signal to the specified process or group of
processes. Returns 0 if successful, -1 otherwise

link INTEGER*4 Creates an additional directory entry for the specified existing
file.

lnblnk INTEGER*4 Returns the position of the last non-blank string character in
the specified string.

loc INTEGER*4 Returns the address of an object.

long INTEGER*4 Converts INTEGER*2 to INTEGER*4

lstat INTEGER*4 Obtains information about the referenced open file or
shared memory object in a large-file enables programming
environment.

lstat64 INTEGER*4 Obtains information in a 64-bit structure about the referenced
open file or shared memory object in a large-file enables
programming environment.

ltime Array of
INTEGER*4

Converts the system time from seconds into TARRAY, which
contains GMT for the current local time zone.

malloc INTEGER*8 Allocates SIZE byes of dynamic memory, returning the address
of the allocated memory. Intended for users compiling legacy
code. Use ALLOCATE for newer code.

mclock INTEGER*4 Returns time accounting information about the current
process and its child processes in 1/100 or second units
of measure. The returned value is the sum of the current
process’s user time and system time of all child processes.

outstr INTEGER*4 Outputs the value of the specified character to the standard
output file.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 170

Routine Result Description

perror None Writes a message to standard error output that describes the
last error encountered by a system call or library subroutine.

putc INTEGER*4 Puts the specified character at the end of the character list.

putenv INTEGER*4 Sets the value of the specified environment variable or
creates a new environment variable.

qsort INTEGER*4 Uses quick-sort algorithm to sort a table of data.

rand1 REAL*4 Provides a method for generating a random number that can
be used as the starting point for the rand procedure.

rand2 REAL*4 Provides a random value between 0 and 1, which is generated
using the specified seed value, and computed for each
returned row when used in the select list.

random REAL*4 Uses a non-linear additive feedback random-number generator
to return pseudo-random numbers in the range of 0 to (231-1)

rename INTEGER*4 Renames the specified directory or file

rindex INTEGER*4 Returns the index of the last occurrence of a specific string of
characters in a specified string.

rtc REAL*8 Returns the real-time clock value expressed as a number of
clock ticks.

secnds REAL*4 Gets the time in seconds from the real-time system clock. If
the value is zero, the time in seconds from midnight is used.

short INTEGER*2 Converts INTEGER*4 to INTEGER*2.

signal INTEGER*4 Specifies the action to take upon delivery of a signal.

sleep None Puts the calling kernel thread to sleep, requiring it to wait
for a wakeup to be issued to continue to run. Provided for
compatibility with older code and should not be used with
new code.

srand1 None Sets the seed for the pseudo-random number generation that
rand1 provides.

srand2 None Sets the seed for the pseudo-random number generation that
rand2 provides.

stat INTEGER*4 Obtains information about the specified file.

stat64 INTEGER*4 Obtains information in a 64-bit structure about the specified
file.

stime INTEGER*4 Sets the current value of the specified parameter for the
system-wide timer.

symlnk INTEGER*4 Creates a symbolic link with the specified name to the
specified file.

system INTEGER*4 Runs a shell command.

time INTEGER*4 Returns the time in seconds since January 1, 1970.

timef REAL*8 Returns the elapsed time in milliseconds since the first call to
timef.

times INTEGER*4 Fills the specified structure with time-accounting information.

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 171

Routine Result Description

ttynam STRING(100) Either gets the path name of the terminal or determines if the
device is a terminal.

unlink INTEGER*4 Removes the specified directory entry, and decreases the link
count of the file referenced by the link.

wait INTEGER*4 Suspends the calling thread until the process receives a signal
that is not blocked or ignored, or until the calling process’
child processes stop or terminate.

7.4. Using the DFWIN module
The DFWIN module includes all the modules needed to access the Win32 API. You can
use modules supporting specific portions of the Win32 API separately, but DFWIN is
the only module you need to use the Fortran interfaces to the Win32 API. To use this
module, add the following line to your Fortran code.
use dfwin

To utilize any of the Win32 API interfaces, you can add a Fortran use statement for
the specific library or module that includes it. For example, to use user32.lib, add the
following Fortran use statement:
use user32

Function calls made through the module interfaces ultimately resolve to C Language
interfaces, so some accommodation for inter-language calling conventions must be made
in the Fortran application. These accommodations include:

‣ On 64-bit platforms, pointers and pointer types such as HANDLE, HINSTANCE,
WPARAM, and HWND must be treated as 8-byte quantities (INTEGER(8)).

‣ In general, C makes calls by value while Fortran makes calls by reference.
‣ When doing Windows development one must sometimes provide callback functions

for message processing, dialog processing, etc. These routines are called by the
Windows system when events are processed. To provide the expected function
signature for a callback function, the user may need to use the STDCALL attribute
directive (!DEC$ ATTRIBUTE::STDCALL) in the declaration.

For information on the arguments and functionality of a given routine, refer to
Microsoft’s Windows API documentation.

7.5. Supported Libraries and Modules
The following tables provide lists of the functions in each library or module that PGI
supports in DFWIN.

For information on the interfaces associated with these functions, refer to the files
located here:
C:\Program Files\PGI\win64\18.4\src

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 172

7.5.1. advapi32
The following table lists the functions that advapi32 includes:

AccessCheckAndAuditAlarm AccessCheckByType

AccessCheckByTypeAndAuditAlarm AccessCheckByTypeResultList

AccessCheckByTypeResultListAndAuditAlarm AccessCheckByTypeResultListAndAuditAlarmByHandle

AddAccessAllowedAce AddAccessAllowedAceEx

AddAccessAllowedObjectAce AddAccessDeniedAce

AddAccessDeniedAceEx AddAccessDeniedObjectAce

AddAce AddAuditAccessAce

AddAuditAccessAceEx AddAuditAccessObjectAce

AdjustTokenGroups AdjustTokenPrivileges

AllocateAndInitializeSid AllocateLocallyUniqueId

AreAllAccessesGranted AreAnyAccessesGranted

BackupEventLog CheckTokenMembership

ClearEventLog CloseEncryptedFileRaw

CloseEventLog ConvertToAutoInheritPrivateObjectSecurity

CopySid CreatePrivateObjectSecurity

CreatePrivateObjectSecurityEx CreatePrivateObjectSecurityWithMultipleInheritance

CreateProcessAsUser CreateProcessWithLogonW

CreateProcessWithTokenW CreateRestrictedToken

CreateWellKnownSid DecryptFile

DeleteAce DeregisterEventSource

DestroyPrivateObjectSecurity DuplicateToken

DuplicateTokenEx EncryptFile

EqualDomainSid EqualPrefixSid

EqualSid FileEncryptionStatus

FindFirstFreeAce FreeSid

GetAce GetAclInformation

GetCurrentHwProfile GetEventLogInformation

GetFileSecurity GetKernelObjectSecurity

GetLengthSid GetNumberOfEventLogRecords

GetOldestEventLogRecord GetPrivateObjectSecurity

GetSecurityDescriptorControl GetSecurityDescriptorDacl

GetSecurityDescriptorGroup GetSecurityDescriptorLength

GetSecurityDescriptorOwner GetSecurityDescriptorRMControl

GetSecurityDescriptorSacl GetSidIdentifierAuthority

GetSidLengthRequired GetSidSubAuthority

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 173

GetSidSubAuthorityCount GetTokenInformation

GetUserName GetWindowsAccountDomainSid

ImpersonateAnonymousToken ImpersonateLoggedOnUser

ImpersonateNamedPipeClient ImpersonateSelf

InitializeAcl InitializeSecurityDescriptor

InitializeSid IsTextUnicode

IsTokenRestricted IsTokenUntrusted

IsValidAcl IsValidSecurityDescriptor

IsValidSid IsWellKnownSid

LogonUser LogonUserEx

LookupAccountName LookupAccountSid

LookupPrivilegeDisplayName LookupPrivilegeName

LookupPrivilegeValue MakeAbsoluteSD

MakeAbsoluteSD2 MakeSelfRelativeSD

MapGenericMask NotifyChangeEventLog

ObjectCloseAuditAlarm ObjectDeleteAuditAlarm

ObjectOpenAuditAlarm ObjectPrivilegeAuditAlarm

OpenBackupEventLog OpenEncryptedFileRaw

OpenEventLog OpenProcessToken

OpenThreadToken PrivilegeCheck

PrivilegedServiceAuditAlarm ReadEncryptedFileRaw

ReadEventLog RegisterEventSource

ReportEvent RevertToSelf

SetAclInformation SetFileSecurity

SetKernelObjectSecurity SetPrivateObjectSecurity

SetPrivateObjectSecurityEx SetSecurityDescriptorControl

SetSecurityDescriptorDacl SetSecurityDescriptorGroup

SetSecurityDescriptorOwner SetSecurityDescriptorRMControl

SetSecurityDescriptorSacl SetThreadToken

SetTokenInformation WriteEncryptedFileRaw

7.5.2. comdlg32
The following table lists the functions that comdlg32 includes:

AfxReplaceText ChooseColor ChooseFont

CommDlgExtendedError FindText GetFileTitle

GetOpenFileName GetSaveFileName PageSetupDlg

PrintDlg PrintDlgEx ReplaceText

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 174

7.5.3. dfwbase
These are the functions that dfwbase includes:

chartoint LoByte MakeWord

chartoreal LoWord MakeWparam

CopyMemory LoWord64 PaletteIndex

GetBlueValue MakeIntAtom PaletteRGB

GetGreenValue MakeIntResource PrimaryLangID

GetRedValue MakeLangID RGB

HiByte MakeLCID RtlCopyMemory

HiWord MakeLong SortIDFromLCID

HiWord64 MakeLParam SubLangID

inttochar MakeLResult

7.5.4. dfwinty
These are the functions that dfwinty includes:

dwNumberOfFunctionKeys rdFunction

7.5.5. gdi32
These are the functions that gdi32 includes:

AbortDoc AbortPath AddFontMemResourceEx

AddFontResource AddFontResourceEx AlphaBlend

AngleArc AnimatePalette Arc

ArcTo BeginPath BitBlt

CancelDC CheckColorsInGamut ChoosePixelFormat

Chord CloseEnhMetaFile CloseFigure

CloseMetaFile ColorCorrectPalette ColorMatchToTarget

CombineRgn CombineTransform CopyEnhMetaFile

CopyMetaFile CreateBitmap CreateBitmapIndirect

CreateBrushIndirect CreateColorSpace CreateCompatibleBitmap

CreateCompatibleDC CreateDC CreateDIBitmap

CreateDIBPatternBrush CreateDIBPatternBrushPt CreateDIBSection

CreateDiscardableBitmap CreateEllipticRgn CreateEllipticRgnIndirect

CreateEnhMetaFile CreateFont CreateFontIndirect

CreateFontIndirectEx CreateHalftonePalette CreateHatchBrush

CreateIC CreateMetaFile CreatePalette

CreatePatternBrush CreatePen CreatePenIndirect

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 175

CreatePolygonRgn CreatePolyPolygonRgn CreateRectRgn

CreateRectRgnIndirect CreateRoundRectRgn CreateScalableFontResource

CreateSolidBrush DeleteColorSpace DeleteDC

DeleteEnhMetaFile DeleteMetaFile DeleteObject

DescribePixelFormat DeviceCapabilities DPtoLP

DrawEscape Ellipse EndDoc

EndPage EndPath EnumEnhMetaFile

EnumFontFamilies EnumFontFamiliesEx EnumFonts

EnumICMProfiles EnumMetaFile EnumObjects

EqualRgn Escape ExcludeClipRect

ExtCreatePen ExtCreateRegion ExtEscape

ExtFloodFill ExtSelectClipRgn ExtTextOut

FillPath FillRgn FixBrushOrgEx

FlattenPath FloodFill FrameRgn

GdiComment GdiFlush GdiGetBatchLimit

GdiSetBatchLimit GetArcDirection GetAspectRatioFilterEx

GetBitmapBits GetBitmapDimensionEx GetBkColor

GetBkMode GetBoundsRect GetBrushOrgEx

GetCharABCWidthsA GetCharABCWidthsFloat GetCharABCWidthsI

GetCharABCWidthsW GetCharacterPlacement GetCharWidth

GetCharWidth32 GetCharWidthFloat GetCharWidthI

GetClipBox GetClipRgn GetColorAdjustment

GetColorSpace GetCurrentObject GetCurrentPositionEx

GetDCBrushColor GetDCOrgEx GetDCPenColor

GetDeviceCaps GetDeviceGammaRamp GetDIBColorTable

GetDIBits GetEnhMetaFile GetEnhMetaFileBits

GetEnhMetaFileDescriptionA GetEnhMetaFileDescriptionW GetEnhMetaFileHeader

GetEnhMetaFilePaletteEntries GetEnhMetaFilePixelFormat GetFontData

GetFontLanguageInfo GetFontUnicodeRanges GetGlyphIndices

GetGlyphOutline GetGraphicsMode GetICMProfileA

GetICMProfileW GetKerningPairs GetLayout

GetLogColorSpace GetMapMode GetMetaFile

GetMetaFileBitsEx GetMetaRgn GetMiterLimit

GetNearestColor GetNearestPaletteIndex GetObject

GetObjectType GetOutlineTextMetrics GetPaletteEntries

GetPath GetPixel GetPixelFormat

GetPolyFillMode GetRandomRgn GetRasterizerCaps

GetRegionData GetRgnBox GetROP2

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 176

GetStockObject GetStretchBltMode GetSystemPaletteEntries

GetSystemPaletteUse GetTextAlign GetTextCharacterExtra

GetTextCharset GetTextCharsetInfo GetTextColor

GetTextExtentExPoint GetTextExtentExPointI GetTextExtentPoint

GetTextExtentPoint32 GetTextExtentPointI GetTextFace

GetTextMetrics GetViewportExtEx GetViewportOrgEx

GetWindowExtEx GetWindowOrgEx GetWinMetaFileBits

GetWorldTransform GradientFill IntersectClipRect

InvertRgn LineDD LineTo

LPtoDP MaskBlt ModifyWorldTransform

MoveToEx OffsetClipRgn OffsetRgn

OffsetViewportOrgEx OffsetWindowOrgEx PaintRgn

PatBlt PathToRegion Pie

PlayEnhMetaFile PlayEnhMetaFileRecord PlayMetaFile

PlayMetaFileRecord PlgBlt PolyBezier

PolyBezierTo PolyDraw Polygon

Polyline PolylineTo PolyPolygon

PolyPolyline PolyTextOut PtInRegion

PtVisible RealizePalette Rectangle

RectInRegion RectVisible RemoveFontMemResourceEx

RemoveFontResource RemoveFontResourceEx ResetDC

ResizePalette RestoreDC RoundRect

SaveDC ScaleViewportExtEx ScaleWindowExtEx

SelectClipPath SelectClipRgn SelectObject

SelectPalette SetAbortProc SetArcDirection

SetBitmapBits SetBitmapDimensionEx SetBkColor

SetBkMode SetBoundsRect SetBrushOrgEx

SetColorAdjustment SetColorSpace SetDCBrushColor

SetDCPenColor SetDeviceGammaRamp SetDIBColorTable

SetDIBits SetDIBitsToDevice SetEnhMetaFileBits

SetGraphicsMode SetICMMode SetICMProfile

SetLayout SetMapMode SetMapperFlags

SetMetaFileBitsEx SetMetaRgn SetMiterLimit

SetPaletteEntries SetPixel SetPixelFormat

SetPixelV SetPolyFillMode SetRectRgn

SetROP2 SetStretchBltMode SetSystemPaletteUse

SetTextAlign SetTextCharacterExtra SetTextColor

SetTextJustification SetViewportExtEx SetViewportOrgEx

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 177

SetWindowExtEx SetWindowOrgEx SetWinMetaFileBits

SetWorldTransform StartDoc StartPage

StretchBlt StretchDIBits StrokeAndFillPath

SwapBuffers TextOut

TranslateCharsetInfo TransparentBlt UnrealizeObject

UpdateColors UpdateICMRegKey wglCopyContext

wglCreateContext wglCreateLayerContext wglDeleteContext

wglDescribeLayerPlane wglGetCurrentContext wglGetCurrentDC

wglGetLayerPaletteEntries wglGetProcAddress wglMakeCurrent

wglRealizeLayerPalette wglSetLayerPaletteEntries wglShareLists

wglSwapLayerBuffers wglSwapMultipleBuffers wglUseFontBitmaps

wglUseFontOutlines WidenPath

7.5.6. kernel32
These are the functions that kernel32 includes:

ActivateActCtx AddAtom

AddConsoleAlias AddRefActCtx

AddVectoredContinueHandler AddVectoredExceptionHandler

AllocateUserPhysicalPages AllocConsole

AreFileApisANSI AssignProcessToJobObject

AttachConsole BackupRead

BackupSeek BackupWrite

Beep BeginUpdateResource

BindIoCompletionCallback BuildCommDCB

BuildCommDCBAndTimeouts CallNamedPipe

CancelDeviceWakeupRequest CancelIo

CancelTimerQueueTimer CancelWaitableTimer

CheckNameLegalDOS8Dot3 CheckRemoteDebuggerPresent

ClearCommBreak ClearCommError

CloseHandle CommConfigDialog

CompareFileTime ConnectNamedPipe

ContinueDebugEvent ConvertFiberToThread

ConvertThreadToFiber ConvertThreadToFiberEx

CopyFile CopyFileEx

CreateActCtx CreateConsoleScreenBuffer

CreateDirectory CreateDirectoryEx

CreateEvent CreateFiber

CreateFiberEx CreateFile

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 178

CreateFileMapping CreateHardLink

CreateIoCompletionPort CreateJobObject

CreateJobSet CreateMailslot

CreateMemoryResourceNotification CreateMutex

CreateNamedPipe CreatePipe

CreateProcess CreateRemoteThread

CreateSemaphore CreateTapePartition

CreateThread CreateTimerQueue

CreateTimerQueueTimer CreateWaitableTimer

DeactivateActCtx DebugActiveProcess

DebugActiveProcessStop DebugBreak

DebugBreakProcess DebugSetProcessKillOnExit

DecodePointer DecodeSystemPointer

DefineDosDevice DeleteAtom

DeleteCriticalSection DeleteFiber

DeleteFile DeleteTimerQueue

DeleteTimerQueueEx DeleteTimerQueueTimer

DeleteVolumeMountPoint DeviceIoControl

DisableThreadLibraryCalls DisconnectNamedPipe

DnsHostnameToComputerName DosDateTimeToFileTime

DuplicateHandle EncodePointer

EncodeSystemPointer EndUpdateResource

EnterCriticalSection EnumResourceLanguages

EnumResourceNames EnumResourceTypes

EnumSystemFirmwareTables EraseTape

EscapeCommFunction ExitProcess

ExitThread ExpandEnvironmentStrings

FatalAppExit FatalExit

FileTimeToDosDateTime FileTimeToLocalFileTime

FileTimeToSystemTime FillConsoleOutputAttribute

FillConsoleOutputCharacter FindActCtxSectionGuid

FindActCtxSectionString FindAtom

FindClose FindCloseChangeNotification

FindFirstChangeNotification FindFirstFile

FindFirstFileEx FindFirstVolume

FindFirstVolumeMountPoint FindNextChangeNotification

FindNextFile FindNextVolume

FindNextVolumeMountPoint FindResource

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 179

FindResourceEx FindVolumeClose

FindVolumeMountPointClose FlsAlloc

FlsFree FlsGetValue

FlsSetValue FlushConsoleInputBuffer

FlushFileBuffers FlushInstructionCache

FlushViewOfFile FormatMessage

FreeConsole FreeEnvironmentStrings

FreeLibrary FreeLibraryAndExitThread

FreeResource FreeUserPhysicalPages

GenerateConsoleCtrlEvent GetAtomName

GetBinaryType GetCommandLine

GetCommConfig GetCommMask

GetCommModemStatus GetCommProperties

GetCommState GetCommTimeouts

GetCompressedFileSize GetComputerName

GetConsoleAlias GetConsoleAliases

GetConsoleAliasesLength GetConsoleAliasExes

GetConsoleAliasExesLength GetConsoleCP

GetConsoleCursorInfo GetConsoleDisplayMode

GetConsoleFontSize GetConsoleMode

GetConsoleOutputCP GetConsoleProcessList

GetConsoleScreenBufferInfo GetConsoleSelectionInfo

GetConsoleTitle GetConsoleWindow

GetCurrentActCtx GetCurrentConsoleFont

GetCurrentDirectory GetCurrentProcess

GetCurrentProcessId GetCurrentProcessorNumber

GetCurrentThread GetCurrentThreadId

GetDefaultCommConfig GetDevicePowerState

GetDiskFreeSpace GetDiskFreeSpaceEx

GetDllDirectory GetDriveType

GetEnvironmentStrings GetEnvironmentVariable

GetExitCodeProcess GetExitCodeThread

GetFileAttributes GetFileAttributesEx

GetFileInformationByHandle GetFileSize

GetFileSizeEx GetFileTime

GetFileType GetFirmwareEnvironmentVariable

GetFullPathName GetHandleInformation

GetLargePageMinimum GetLargestConsoleWindowSize

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 180

GetLastError GetLocalTime

GetLogicalDrives GetLogicalDriveStrings

GetLogicalProcessorInformation GetLongPathName

GetMailslotInfo GetModuleFileName

GetModuleHandle GetModuleHandleEx

GetNamedPipeHandleState GetNamedPipeInfo

GetNativeSystemInfo GetNumaAvailableMemoryNode

GetNumaHighestNodeNumber GetNumaNodeProcessorMask

GetNumaProcessorNode GetNumberOfConsoleInputEvents

GetNumberOfConsoleMouseButtons GetOverlappedResult

GetPriorityClass GetPrivateProfileInt

GetPrivateProfileSection GetPrivateProfileSectionNames

GetPrivateProfileString GetPrivateProfileStruct

GetProcAddress GetProcessAffinityMask

GetProcessHandleCount GetProcessHeap

GetProcessHeaps GetProcessId

GetProcessIdOfThread GetProcessIoCounters

GetProcessPriorityBoost GetProcessShutdownParameters

GetProcessTimes GetProcessVersion

GetProcessWorkingSetSize GetProcessWorkingSetSizeEx

GetProfileInt GetProfileSection

GetProfileString GetQueuedCompletionStatus

GetShortPathName GetVolumeNameForVolumeMountPoint

GetVolumePathName GetVolumePathNamesForVolumeName

GetWindowsDirectory GetWriteWatch

GlobalAddAtom GlobalAlloc

GlobalCompact GlobalDeleteAtom

GlobalFindAtom GlobalFix

GlobalFlags GlobalFree

GlobalGetAtomName GlobalHandle

GlobalLock GlobalMemoryStatus

GlobalMemoryStatusEx GlobalReAlloc

GlobalSize GlobalUnfix

GlobalUnlock GlobalUnWire

GlobalWire HeapAlloc

HeapCompact HeapCreate

HeapDestroy HeapFree

HeapLock HeapQueryInformation

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 181

HeapReAlloc HeapSetInformation

HeapSize HeapUnlock

HeapValidate HeapWalk

InitAtomTable InitializeCriticalSection

InitializeCriticalSectionAndSpinCount InitializeSListHead

InterlockedCompareExchange InterlockedCompareExchange64

InterlockedDecrement InterlockedExchange

InterlockedExchangeAdd InterlockedFlushSList

InterlockedIncrement InterlockedPopEntrySList

InterlockedPushEntrySList IsBadCodePtr

IsBadHugeReadPtr IsBadHugeWritePtr

IsBadReadPtr IsBadStringPtr

IsBadWritePtr IsDebuggerPresent

IsProcessInJob IsProcessorFeaturePresent

IsSystemResumeAutomatic LeaveCriticalSection

LoadLibrary LoadLibraryEx

LoadModule LoadResource

LocalAlloc LocalCompact

LocalFileTimeToFileTime LocalFlags

LocalFree LocalHandle

LocalLock LocalReAlloc

LocalShrink LocalSize

LocalUnlock LockFile

LockFileEx LockResource

lstrcat lstrcmp

lstrcmpi lstrcpy

lstrcpyn lstrlen

MapUserPhysicalPages MapUserPhysicalPagesScatter

MapViewOfFile MapViewOfFileEx

MoveFile MoveFileEx

MoveFileWithProgress MulDiv

NeedCurrentDirectoryForExePath OpenEvent

OpenFile OpenFileMapping

OpenJobObject OpenMutex

OpenProcess OpenSemaphore

OpenThread OpenWaitableTimer

OutputDebugString PeekConsoleInput

PeekNamedPipe PostQueuedCompletionStatus

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 182

PrepareTape ProcessIdToSessionId

PulseEvent PurgeComm

QueryActCtxW QueryDepthSList

QueryDosDevice QueryInformationJobObject

QueryMemoryResourceNotification QueryPerformanceCounter

QueryPerformanceFrequency QueueUserAPC

QueueUserWorkItem RaiseException

ReadConsole ReadConsoleInput

ReadConsoleOutput ReadConsoleOutputAttribute

ReadConsoleOutputCharacter ReadDirectoryChangesW

ReadFile ReadFileEx

ReadFileScatter ReadProcessMemory

RegisterWaitForSingleObject RegisterWaitForSingleObjectEx

ReleaseActCtx ReleaseMutex

ReleaseSemaphore RemoveDirectory

RemoveVectoredContinueHandler RemoveVectoredExceptionHandler

ReOpenFile ReplaceFile

RequestDeviceWakeup RequestWakeupLatency

ResetEvent ResetWriteWatch

RestoreLastError ResumeThread

ScrollConsoleScreenBuffer SearchPath

SetCommBreak SetCommConfig

SetCommMask SetCommState

SetCommTimeouts SetComputerName

SetComputerNameEx SetConsoleActiveScreenBuffer

SetConsoleCP SetConsoleCtrlHandler

SetConsoleCursorInfo SetConsoleCursorPosition

SetConsoleMode SetConsoleOutputCP

SetConsoleScreenBufferSize SetConsoleTextAttribute

SetConsoleTitle SetConsoleWindowInfo

SetCriticalSectionSpinCount SetCurrentDirectory

SetDefaultCommConfig SetDllDirectory

SetEndOfFile SetEnvironmentStrings

SetEnvironmentVariable SetErrorMode

SetEvent SetFileApisToANSI

SetFileApisToOEM SetFileAttributes

SetFilePointer SetFilePointerEx

SetFileShortName SetFileTime

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 183

SetFileValidData SetFirmwareEnvironmentVariable

SetHandleCount SetHandleInformation

SetInformationJobObject SetLastError

SetLocalTime SetMailslotInfo

SetMessageWaitingIndicator SetNamedPipeHandleState

SetPriorityClass SetProcessAffinityMask

SetProcessPriorityBoost SetProcessShutdownParameters

SetProcessWorkingSetSize SetProcessWorkingSetSizeEx

SetStdHandle SetSystemTime

SetSystemTimeAdjustment SetTapeParameters

SetTapePosition SetThreadAffinityMask

SetThreadContext SetThreadExecutionState

SetThreadIdealProcessor SetThreadPriority

SetThreadPriorityBoost SetThreadStackGuarantee

SetTimerQueueTimer SetTimeZoneInformation

SetUnhandledExceptionFilter SetupComm

SetVolumeLabel SetVolumeMountPoint

SetWaitableTimer SignalObjectAndWait

SizeofResource Sleep

SleepEx SuspendThread

SwitchToFiber SwitchToThread

SystemTimeToFileTime SystemTimeToTzSpecificLocalTime

TerminateJobObject TerminateProcess

TerminateThread TlsAlloc

TlsFree TlsGetValue

TlsSetValue TransactNamedPipe

TransmitCommChar TryEnterCriticalSection

TzSpecificLocalTimeToSystemTime UnhandledExceptionFilter

UnlockFile UnlockFileEx

UnmapViewOfFile UnregisterWait

UnregisterWaitEx UpdateResource

VerifyVersionInfo VirtualAlloc

VirtualAllocEx VirtualFree

VirtualFreeEx VirtualLock

VirtualProtect VirtualProtectEx

VirtualQuery VirtualQueryEx

VirtualUnlock WaitCommEvent

WaitForDebugEvent WaitForMultipleObjects

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 184

WaitForMultipleObjectsEx WaitForSingleObject

WaitForSingleObjectEx WaitNamedPipe

WinExec Wow64DisableWow64FsRedirection

Wow64EnableWow64FsRedirection Wow64RevertWow64FsRedirection

WriteConsole WriteConsoleInput

WriteConsoleOutput WriteConsoleOutputAttribute

WriteConsoleOutputCharacter WriteFile

WriteFileEx WriteFileGather

WritePrivateProfileSection WritePrivateProfileString

WritePrivateProfileStruct WriteProcessMemory

WriteProfileSection WriteProfileString

WriteTapemark WTSGetActiveConsoleSessionId

ZombifyActCtx _hread

_hwrite _lclose

_lcreat _llseek

_lopen _lread

_lwrite

7.5.7. shell32
These are the functions that shell32 includes:

DoEnvironmentSubst ShellExecuteEx

DragAcceptFiles Shell_NotifyIcon

DragFinish SHEmptyRecycleBin

DragQueryFile SHFileOperation

DragQueryPoint SHFreeNameMappings

DuplicateIcon SHGetDiskFreeSpaceEx

ExtractAssociatedIcon SHGetFileInfo

ExtractIcon SHGetNewLinkInfo

ExtractIconEx SHInvokePrinterCommand

FindExecutable SHIsFileAvailableOffline

IsLFNDrive SHLoadNonloadedIconOverlayIdentifiers

SHAppBarMessage SHQueryRecycleBin

SHCreateProcessAsUserW SHSetLocalizedName

ShellAbout WinExecError

ShellExecute

7.5.8. user32
These are the functions that user32 includes:

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 185

ActivateKeyboardLayout AdjustWindowRect AdjustWindowRectEx

AllowSetForegroundWindow AnimateWindow AnyPopup

AppendMenu ArrangeIconicWindows AttachThreadInput

BeginDeferWindowPos BeginPaint BringWindowToTop

BroadcastSystemMessage BroadcastSystemMessageEx CallMsgFilter

CallNextHookEx CallWindowProc CascadeWindows

ChangeClipboardChain ChangeDisplaySettings ChangeDisplaySettingsEx

ChangeMenu CharLower CharLowerBuff

CharNext CharNextEx CharPrev

CharPrevEx CharToOem CharToOemBuff

CharUpper CharUpperBuff CheckDlgButton

CheckMenuItem CheckMenuRadioItem CheckRadioButton

ChildWindowFromPoint ChildWindowFromPointEx ClientToScreen

ClipCursor CloseClipboard CloseDesktop

CloseWindow CloseWindowStation CopyAcceleratorTable

CopyCursor CopyIcon CopyImage

CopyRect CountClipboardFormats CreateAcceleratorTable

CreateCaret CreateCursor CreateDesktop

CreateDialogIndirectParam CreateDialogParam CreateIcon

CreateIconFromResource CreateIconFromResourceEx CreateIconIndirect

CreateMDIWindow CreateMenu CreatePopupMenu

CreateWindow CreateWindowEx CreateWindowStation

DeferWindowPos DefFrameProc DefMDIChildProc

DefRawInputProc DefWindowProc DeleteMenu

DeregisterShellHookWindow DestroyAcceleratorTable DestroyCaret

DestroyCursor DestroyIcon DestroyMenu

DestroyWindow DialogBoxIndirectParam DialogBoxParam1

DialogBoxParam2 DisableProcessWindowsGhosting DispatchMessage

DlgDirList DlgDirListComboBox DlgDirSelectComboBoxEx

DlgDirSelectEx DragDetect DragObject

DrawAnimatedRects DrawCaption DrawEdge

DrawFocusRect DrawFrameControl DrawIcon

DrawIconIndirect DrawMenuBar DrawState

DrawText DrawTextEx EmptyClipboard

EnableMenuItem EnableScrollBar EnableWindow

EndDeferWindowPos EndDialog EndMenu

EndPaint EndTask EnumChildWindows

EnumClipboardFormats EnumDesktops EnumDesktopWindows

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 186

EnumDisplayDevices EnumDisplayMonitors EnumDisplaySettings

EnumDisplaySettingsEx EnumProps EnumPropsEx

EnumThreadWindows EnumWindows EnumWindowStations

EqualRect ExcludeUpdateRgn ExitWindowsEx

FillRect FindWindow FindWindowEx

FlashWindow FlashWindowEx FrameRect

GetActiveWindow GetAltTabInfo GetAncestor

GetAsyncKeyState GetCapture GetCaretBlinkTime

GetCaretPos GetClassInfo GetClassInfoEx

GetClassLong GetClassLongPtr GetClassName

GetClassWord GetClientRect GetClipboardData

GetClipboardFormatName GetClipboardOwner GetClipboardSequenceNumber

GetClipboardViewer GetClipCursor GetComboBoxInfo

GetCursor GetCursorInfo GetCursorPos

GetDC GetDCEx GetDesktopWindow

GetDialogBaseUnits GetDlgCtrlID GetDlgItem

GetDlgItemInt GetDlgItemText GetDoubleClickTime

GetFocus GetForegroundWindow GetGuiResources

GetGUIThreadInfo GetIconInfo GetInputState

GetKBCodePage GetKeyboardLayout GetKeyboardLayoutList

GetKeyboardLayoutName GetKeyboardState GetKeyboardType

GetKeyNameText GetKeyState GetLastActivePopup

GetLastInputInfo GetLayeredWindowAttributes GetListBoxInfo

GetMenu GetMenuBarInfo GetMenuCheckMarkDimensions

GetMenuContextHelpId GetMenuDefaultItem GetMenuInfo

GetMenuItemCount GetMenuItemID GetMenuItemInfo

GetMenuItemRect GetMenuState GetMenuString

GetMessage GetMessageExtraInfo GetMessagePos

GetMessageTime GetMonitorInfo GetMouseMovePointsEx

GetNextDlgGroupItem GetNextDlgTabItem GetOpenClipboardWindow

GetParent GetPriorityClipboardFormat GetProcessDefaultLayout

GetProcessWindowStation GetProp GetQueueStatus

GetRawInputBuffer GetRawInputData GetRawInputDeviceInfo

GetRawInputDeviceList GetRegisteredRawInputDevices GetScrollBarInfo

GetScrollInfo GetScrollPos GetScrollRange

GetShellWindow GetSubMenu GetSysColor

GetSysColorBrush GetSystemMenu GetSystemMetrics

GetTabbedTextExtent GetThreadDesktop GetTitleBarInfo

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 187

GetTopWindow GetUpdateRect GetUpdateRgn

GetUserObjectInformation GetUserObjectSecurity GetWindow

GetWindowContextHelpId GetWindowDC GetWindowInfo

GetWindowLong GetWindowLongPtr GetWindowModuleFileName

GetWindowPlacement GetWindowRect GetWindowRgn

GetWindowRgnBox GetWindowText GetWindowTextLength

GetWindowThreadProcessId GetWindowWord GrayString

HideCaret HiliteMenuItem InflateRect

InSendMessage InSendMessageEx InsertMenu

InsertMenuItem InternalGetWindowText IntersectRect

InvalidateRect InvalidateRgn InvertRect

IsCharAlpha IsCharAlphaNumeric IsCharLower

IsCharUpper IsChild IsClipboardFormatAvailable

IsDialogMessage IsDlgButtonChecked IsGUIThread

IsHungAppWindow IsIconic IsMenu

IsRectEmpty IsWindow IsWindowEnabled

IsWindowUnicode IsWindowVisible IsWinEventHookInstalled

IsWow64Message IsZoomed keybd_event

KillTimer LoadAccelerators LoadBitmap

LoadCursor1 LoadCursor2 LoadCursorFromFile

LoadIcon1 LoadIcon2 LoadImage

LoadKeyboardLayout LoadMenu1 LoadMenu2

LoadMenuIndirect LoadString LockSetForegroundWindow

LockWindowUpdate LockWorkStation LookupIconIdFromDirectory

LookupIconIdFromDirectoryEx LRESULT MapDialogRect

MapVirtualKey MapVirtualKeyEx MapWindowPoints

MenuItemFromPoint MessageBeep MessageBox

MessageBoxEx MessageBoxIndirect ModifyMenu1

ModifyMenu2 MonitorFromPoint MonitorFromRect

MonitorFromWindow mouse_event MoveWindow

MsgWaitForMultipleObjects MsgWaitForMultipleObjectsEx NotifyWinEvent

OemKeyScan OemToChar OemToCharBuff

OffsetRect OpenClipboard OpenDesktop

OpenIcon OpenInputDesktop OpenWindowStation

PaintDesktop PeekMessage PostMessage

PostQuitMessage PostThreadMessage PrintWindow

PrivateExtractIcons PtInRect RealChildWindowFromPoint

RealGetWindowClass RedrawWindow RegisterClass

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 188

RegisterClassEx RegisterClipboardFormat RegisterDeviceNotification

RegisterHotKey RegisterRawInputDevices RegisterShellHookWindow

RegisterWindowMessage ReleaseCapture ReleaseDC

RemoveMenu RemoveProp ReplyMessage

ScreenToClient ScrollDC ScrollWindow

ScrollWindowEx SendDlgItemMessage SendInput

SendMessage SendMessageCallback SendMessageTimeout

SendNotifyMessage SetActiveWindow SetCapture

SetCaretBlinkTime SetCaretPos SetClassLong

SetClassLongPtr SetClassWord SetClipboardData

SetClipboardViewer SetCursor SetCursorPos

SetDebugErrorLevel SetDlgItemInt SetDlgItemText

SetDoubleClickTime SetFocus SetForegroundWindow

SetKeyboardState SetLastErrorEx SetLayeredWindowAttributes

SetMenu SetMenuContextHelpId SetMenuDefaultItem

SetMenuInfo SetMenuItemBitmaps SetMenuItemInfo

SetMessageExtraInfo SetMessageQueue SetParent

SetProcessDefaultLayout SetProcessWindowStation SetProp

SetRect SetRectEmpty SetScrollInfo

SetScrollPos SetScrollRange SetSysColors

SetSystemCursor SetThreadDesktop SetTimer

SetUserObjectInformation SetUserObjectSecurity SetWindowContextHelpId

SetWindowLong SetWindowLongPtr SetWindowPlacement

SetWindowPos SetWindowRgn SetWindowsHook

SetWindowsHookEx SetWindowText SetWindowWord

SetWinEventHook ShowCaret ShowCursor

ShowOwnedPopups ShowScrollBar ShowWindow

ShowWindowAsync SubtractRect SwapMouseButton

SwitchDesktop SwitchToThisWindow SystemParametersInfo

TabbedTextOut TileWindows ToAscii

ToAsciiEx ToUnicode ToUnicodeEx

TrackMouseEvent TrackPopupMenu TrackPopupMenuEx

TranslateAccelerator TranslateMDISysAccel TranslateMessage

UnhookWindowsHook UnhookWindowsHookEx UnhookWinEvent

UnionRect UnloadKeyboardLayout UnregisterClass

UnregisterDeviceNotification UnregisterHotKey UpdateLayeredWindow

UpdateLayeredWindowIndirect UpdateWindow UserHandleGrantAccess

ValidateRect ValidateRgn VkKeyScan

Fortran Module/Library Interfaces for Windows

Reference Guide for x86-64 CPUs Version 2018 | 189

VkKeyScanEx WaitForInputIdle WaitMessage

WindowFromDC WindowFromPoint WinHelp

wsprintf wvsprintf

7.5.9. winver
These are the functions that winver includes:

GetFileVersionInfo VerFindFile VerLanguageName

GetFileVersionInfoSize VerInstallFile VerQueryValue

7.5.10. wsock32
These are the functions that wsock32 includes:

accept AcceptEx bind

closesocket connect GetAcceptExSockaddrs

getpeername gethostname getprotobyname

getprotobynumber getservbyname getservbyport

getsockname getsockopt htonl

htons inet_addr inet_ntoa

ioctlsocket listen ntohl

ntohs recv select

send sendto setsockopt

shutdown socket TransmitFile

WSAAsyncGetHostByName WSAAsyncGetProtoByName WSAAsyncGetProtoByNumber

WSAAsyncGetServByName WSAAsyncGetServByPort WSAAsyncSelect

WSACancelAsyncRequest WSACancelBlockingCall WSACleanup

WSAGetLastError WSAIsBlocking WSARecvEx

WSASetBlockingHook WSASetLastError WSAStartup

Reference Guide for x86-64 CPUs Version 2018 | 190

Chapter 8.
C/C++ MMX/SSE INTRINSICS

An intrinsic is a function available in a given language whose implementation is
handled specifically by the compiler. Typically, an intrinsic substitutes a sequence of
automatically-generated instructions for the original function call. Since the compiler has
an intimate knowledge of the intrinsic function, it can better integrate it and optimize it
for the situation.

PGI provides support for MMX and SSE/SSE2/SSE3/SSSE3/SSE4a/ABM intrinsics in C/C
++ programs.

Intrinsics make the use of processor-specific enhancements easier because they provide
a C/C++ language interface to assembly instructions. In doing so, the compiler manages
things that the user would normally have to be concerned with, such as register names,
register allocations, and memory locations of data.

This section contains these seven tables associated with inline intrinsics:

‣ A table of MMX inline intrinsics (mmintrin.h)
‣ A table of SSE inline intrinsics (xmmintrin.h)
‣ A table of SSE2 inline intrinsics (emmintrin.h)
‣ A table of SSE3 inline intrinsics (pmmintrin.h)
‣ A table of SSSE3 inline intrinsics (tmmintrin.h)
‣ A table of SSE4a inline intrinsics (ammintrin.h)
‣ A table of ABM inline intrinsics (intrin.h)
‣ A table of AVX inline intrinsics (immintrin.h)

8.1. Using Intrinsic functions
The definitions of the intrinsics are provided in the corresponding header files.

8.1.1. Required Header File
To call these intrinsic functions from a C/C++ source, you must include the
corresponding header file – one of the following:

‣ For MMX, use mmintrin.h ‣ For SSSE3 use tmmintrin.h

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 191

‣ For SSE, use xmmintrin.h
‣ For SSE2, use emmintrin.h
‣ For SSE3, use pmmintrin.h

‣ For SSE4a use ammintrin.h
‣ For ABM use intrin.h
‣ For AVX use intrin.h

8.1.2. Intrinsic Data Types
The following table describes the data types that are defined for intrinsics:

Data
Types Defined in Description

__m64 mmintrin.h For use with MMX intrinsics, this 64-bit data type stores one 64-bit or
two 32-bit integer values.

__m128 xmmintrin.h For use with SSE intrinsics, this 128-bit data type, aligned on 16-byte
boundaries, stores four single-precision floating point values.

__m128d emmintrin.h For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on
16-byte boundaries, stores two double-precision floating point values.

__ m128i emmintrin.h For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on
16-byte boundaries, stores two 64-bit integer values.

__m256 immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 31-byte
boundaries, stores eight single-precision floating point values.

__m256d immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 32-byte
boundaries, stores four double-precision floating point values.

__m256i immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 16-byte
boundaries, stores four 64-bit integer values.

8.1.3. Intrinsic Example
The MMX/SSE intrinsics include functions for initializing variables of the types defined
in the preceding table. The following sample program, example.c, illustrates the use
of the SSE intrinsics _mm_add_ps and _mm_set_ps.
#include<xmmintrin.h>
 int main(){
 __m128 A, B, result;
 A = _mm_set_ps(23.3, 43.7, 234.234, 98.746); /* initialize A */
 B = _mm_set_ps(15.4, 34.3, 4.1, 8.6); /* initialize B */
 result = _mm_add_ps(A, B);
 return 0;
 }

To compile this program, use the following command:
$ pgcc example.c -o myprog

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 192

8.2. MMX Intrinsics
PGI supports a set of MMX Intrinsics which allow the use of the MMX instructions
directly from C/C++ code, without writing the assembly instructions. The following table
lists the MMX intrinsics that PGI supports.

Intrinsics with a * are only available on 64-bit systems.

Table 32 MMX Intrinsics (mmintrin.h)

_mm_empty _m_paddd _m_psllw _m_pand

_m_empty _mm_add_si64 _mm_slli_pi16 _mm_andnot_si64

_mm_cvtsi32_si64 _mm_adds_pi8 _m_psllwi _m_pandn

_m_from_int _m_paddsb _mm_sll_pi32 _mm_or_si64

_mm_cvtsi64x_si64* _mm_adds_pi16 _m_pslld _m_por

_mm_set_pi64x* _m_paddsw _mm_slli_pi32 _mm_xor_si64

_mm_cvtsi64_si32 _mm_adds_pu8 _m_pslldi _m_pxor

_m_to_int _m_paddusb _mm_sll_si64 _mm_cmpeq_pi8

_mm_cvtsi64_si64x* _mm_adds_pu16 _m_psllq _m_pcmpeqb

_mm_packs_pi16* _m_paddusw _mm_slli_si64 _mm_cmpgt_pi8

_m_packsswb _mm_sub_pi8 _m_psllqi _m_pcmpgtb

_mm_packs_pi32 _m_psubb _mm_sra_pi16 _mm_cmpeq_pi16

_m_packssdw _mm_sub_pi16 _m_psraw _m_pcmpeqw

_mm_packs_pu16 _m_psubw _mm_srai_pi16 _mm_cmpgt_pi16

_m_packuswb _mm_sub_pi32 _m_psrawi _m_pcmpgtw

_mm_unpackhi_pi8 _m_psubd _mm_sra_pi32 _mm_cmpeq_pi32

_m_punpckhbw _mm_sub_si64 _m_psrad _m_pcmpeqd

_mm_unpackhi_pi16 _mm_subs_pi8 _mm_srai_pi32 _mm_cmpgt_pi32

_m_punpckhwd _m_psubsb _m_psradi _m_pcmpgtd

_mm_unpackhi_pi32 _mm_subs_pi16 _mm_srl_pi16 _mm_setzero_si64

_m_punpckhdq _m_psubsw _m_psrlw _mm_set_pi32

_mm_unpacklo_pi8 _mm_subs_pu8 _mm_srli_pi16 _mm_set_pi16

_m_punpcklbw _m_psubusb _m_psrlwi _mm_set_pi8

_mm_unpacklo_pi16 _mm_subs_pu16 _mm_srl_pi32 _mm_setr_pi32

_m_punpcklwd _m_psubusw _m_psrld _mm_setr_pi16

_mm_unpacklo_pi32 _mm_madd_pi16 _mm_srli_pi32 _mm_setr_pi8

_m_punpckldq _m_pmaddwd _m_psrldi _mm_set1_pi32

_mm_add_pi8 _mm_mulhi_pi16 _mm_srl_si64 _mm_set1_pi16

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 193

_m_paddb _m_pmulhw _m_psrlq _mm_set1_pi8

_mm_add_pi16 _mm_mullo_pi16 _mm_srli_si64

_m_paddw _m_pmullw _m_psrlqi

_mm_add_pi32 _mm_sll_pi16 _mm_and_si64

8.3. SSE Intrinsics
PGI supports a set of SSE Intrinsics which allows the use of the SSE instructions directly
from C/C++ code, without writing the assembly instructions. The following tables list the
SSE intrinsics that PGI supports.

Intrinsics with a * are only available on 64-bit systems.

Table 33 SSE Intrinsics (xmmintrin.h)

_mm_add_ss _mm_comige_ss _mm_load_ss

_mm_sub_ss _mm_comineq_ss _mm_load1_ps

_mm_mul_ss _mm_ucomieq_ss _mm_load_ps1

_mm_div_ss _mm_ucomilt_ss _mm_load_ps

_mm_sqrt_ss _mm_ucomile_ss _mm_loadu_ps

_mm_rcp_ss _mm_ucomigt_ss _mm_loadr_ps

_mm_rsqrt_ss _mm_ucomige_ss _mm_set_ss

_mm_min_ss _mm_ucomineq_ss _mm_set1_ps

_mm_max_ss _mm_cvtss_si32 _mm_set_ps1

_mm_add_ps _mm_cvt_ss2si _mm_set_ps

_mm_sub_ps _mm_cvtss_si64x* _mm_setr_ps

_mm_mul_ps _mm_cvtps_pi32 _mm_store_ss

_mm_div_ps _mm_cvt_ps2pi _mm_store_ps

_mm_sqrt_ps _mm_cvttss_si32 _mm_store1_ps

_mm_rcp_ps _mm_cvtt_ss2si _mm_store_ps1

_mm_rsqrt_ps _mm_cvttss_si64x* _mm_storeu_ps

_mm_min_ps _mm_cvttps_pi32 _mm_storer_ps

_mm_max_ps _mm_cvtt_ps2pi _mm_move_ss

_mm_and_ps _mm_cvtsi32_ss _mm_extract_pi16

_mm_andnot_ps _mm_cvt_si2ss _m_pextrw

_mm_or_ps _mm_cvtsi64x_ss* _mm_insert_pi16

_mm_xor_ps _mm_cvtpi32_ps _m_pinsrw

_mm_cmpeq_ss _mm_cvt_pi2ps _mm_max_pi16

_mm_cmplt_ss _mm_movelh_ps _m_pmaxsw

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 194

_mm_cmple_ss _mm_setzero_ps _mm_max_pu8

_mm_cmpgt_ss _mm_cvtpi16_ps _m_pmaxub

_mm_cmpge_ss _mm_cvtpu16_ps _mm_min_pi16

_mm_cmpneq_ss _mm_cvtpi8_ps _m_pminsw

_mm_cmpnlt_ss _mm_cvtpu8_ps _mm_min_pu8

_mm_cmpnle_ss _mm_cvtpi32x2_ps _m_pminub

_mm_cmpngt_ss _mm_movehl_ps _mm_movemask_pi8

_mm_cmpnge_ss _mm_cvtps_pi16 _m_pmovmskb

_mm_cmpord_ss _mm_cvtps_pi8 _mm_mulhi_pu16

_mm_cmpunord_ss _mm_shuffle_ps _m_pmulhuw

_mm_cmpeq_ps _mm_unpackhi_ps _mm_shuffle_pi16

_mm_cmplt_ps _mm_unpacklo_ps _m_pshufw

_mm_cmple_ps _mm_loadh_pi _mm_maskmove_si64

_mm_cmpgt_ps _mm_storeh_pi _m_maskmovq

_mm_cmpge_ps _mm_loadl_pi _mm_avg_pu8

_mm_cmpneq_ps _mm_storel_pi _m_pavgb

_mm_cmpnlt_ps _mm_movemask_ps _mm_avg_pu16

_mm_cmpnle_ps _mm_getcsr _m_pavgw

_mm_cmpngt_ps _MM_GET_EXCEPTION_STATE _mm_sad_pu8

_mm_cmpnge_ps _MM_GET_EXCEPTION_MASK _m_psadbw

_mm_cmpord_ps _MM_GET_ROUNDING_MODE _mm_prefetch

_mm_cmpunord_ps _MM_GET_FLUSH_ZERO_MODE _mm_stream_pi

_mm_comieq_ss _mm_setcsr _mm_stream_ps

_mm_comilt_ss _MM_SET_EXCEPTION_STATE _mm_sfence

_mm_comile_ss _MM_SET_EXCEPTION_MASK _mm_pause

_mm_comigt_ss _MM_SET_ROUNDING_MODE _MM_TRANSPOSE4_PS

_MM_SET_FLUSH_ZERO_MODE

Table 34 lists the SSE2 intrinsics that PGI supports and that are available in emmintrin.h.

Table 34 SSE2 Intrinsics (emmintrin.h)

_mm_load_sd _mm_cmpge_sd _mm_cvtps_pd _mm_srl_epi32

_mm_load1_pd _mm_cmpneq_sd _mm_cvtsd_si32 _mm_srl_epi64

_mm_load_pd1 _mm_cmpnlt_sd _mm_cvtsd_si64x* _mm_slli_epi16

_mm_load_pd _mm_cmpnle_sd _mm_cvttsd_si32 _mm_slli_epi32

_mm_loadu_pd _mm_cmpngt_sd _mm_cvttsd_si64x* _mm_slli_epi64

_mm_loadr_pd _mm_cmpnge_sd _mm_cvtsd_ss _mm_srai_epi16

_mm_set_sd _mm_cmpord_sd _mm_cvtsi32_sd _mm_srai_epi32

_mm_set1_pd _mm_cmpunord_sd _mm_cvtsi64x_sd* _mm_srli_epi16

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 195

_mm_set_pd1 _mm_comieq_sd _mm_cvtss_sd _mm_srli_epi32

_mm_set_pd _mm_comilt_sd _mm_unpackhi_pd _mm_srli_epi64

_mm_setr_pd _mm_comile_sd _mm_unpacklo_pd _mm_and_si128

_mm_setzero_pd _mm_comigt_sd _mm_loadh_pd _mm_andnot_si128

_mm_store_sd _mm_comige_sd _mm_storeh_pd _mm_or_si128

_mm_store_pd _mm_comineq_sd _mm_loadl_pd _mm_xor_si128

_mm_store1_pd _mm_ucomieq_sd _mm_storel_pd _mm_cmpeq_epi8

_mm_store_pd1 _mm_ucomilt_sd _mm_movemask_pd _mm_cmpeq_epi16

_mm_storeu_pd _mm_ucomile_sd _mm_packs_epi16 _mm_cmpeq_epi32

_mm_storer_pd _mm_ucomigt_sd _mm_packs_epi32 _mm_cmplt_epi8

_mm_move_sd _mm_ucomige_sd _mm_packus_epi16 _mm_cmplt_epi16

_mm_add_pd _mm_ucomineq_sd _mm_unpackhi_epi8 _mm_cmplt_epi32

_mm_add_sd _mm_load_si128 _mm_unpackhi_epi16 _mm_cmpgt_epi8

_mm_sub_pd _mm_loadu_si128 _mm_unpackhi_epi32 _mm_cmpgt_epi16

_mm_sub_sd _mm_loadl_epi64 _mm_unpackhi_epi64 _mm_srl_epi16

_mm_mul_pd _mm_store_si128 _mm_unpacklo_epi8 _mm_cmpgt_epi32

_mm_mul_sd _mm_storeu_si128 _mm_unpacklo_epi16 _mm_max_epi16

_mm_div_pd _mm_storel_epi64 _mm_unpacklo_epi32 _mm_max_epu8

_mm_div_sd _mm_movepi64_pi64 _mm_unpacklo_epi64 _mm_min_epi16

_mm_sqrt_pd _mm_move_epi64 _mm_add_epi8 _mm_min_epu8

_mm_sqrt_sd _mm_setzero_si128 _mm_add_epi16 _mm_movemask_epi8

_mm_min_pd _mm_set_epi64 _mm_add_epi32 _mm_mulhi_epu16

_mm_min_sd _mm_set_epi32 _mm_add_epi64 _mm_maskmoveu_si128

_mm_max_pd _mm_set_epi64x* _mm_adds_epi8 _mm_avg_epu8

_mm_max_sd _mm_set_epi16 _mm_adds_epi16 _mm_avg_epu16

_mm_and_pd _mm_set_epi8 _mm_adds_epu8 _mm_sad_epu8

_mm_andnot_pd _mm_set1_epi64 _mm_adds_epu16 _mm_stream_si32

_mm_or_pd _mm_set1_epi32 _mm_sub_epi8 _mm_stream_si128

_mm_xor_pd _mm_set1_epi64x* _mm_sub_epi16 _mm_stream_pd

_mm_cmpeq_pd _mm_set1_epi16 _mm_sub_epi32 _mm_movpi64_epi64

_mm_cmplt_pd _mm_set1_epi8 _mm_sub_epi64 _mm_lfence

_mm_cmple_pd _mm_setr_epi64 _mm_subs_epi8 _mm_mfence

_mm_cmpgt_pd _mm_setr_epi32 _mm_subs_epi16 _mm_cvtsi32_si128

_mm_cmpge_pd _mm_setr_epi16 _mm_subs_epu8 _mm_cvtsi64x_si128*

_mm_cmpneq_pd _mm_setr_epi8 _mm_subs_epu16 _mm_cvtsi128_si32

_mm_cmpnlt_pd _mm_cvtepi32_pd _mm_madd_epi16 _mm_cvtsi128_si64x*

_mm_cmpnle_pd _mm_cvtepi32_ps _mm_mulhi_epi16 _mm_srli_si128

_mm_cmpngt_pd _mm_cvtpd_epi32 _mm_mullo_epi16 _mm_slli_si128

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 196

_mm_cmpnge_pd _mm_cvtpd_pi32 _mm_mul_su32 _mm_shuffle_pd

_mm_cmpord_pd _mm_cvtpd_ps _mm_mul_epu32 _mm_shufflehi_epi16

_mm_cmpunord_pd _mm_cvttpd_epi32 _mm_sll_epi16 _mm_shufflelo_epi16

_mm_cmpeq_sd _mm_cvttpd_pi32 _mm_sll_epi32 _mm_shuffle_epi32

_mm_cmplt_sd _mm_cvtpi32_pd _mm_sll_epi64 _mm_extract_epi16

_mm_cmple_sd _mm_cvtps_epi32 _mm_sra_epi16 _mm_insert_epi16

_mm_cmpgt_sd _mm_cvttps_epi32 _mm_sra_epi32

Table 35 lists the SSE3 intrinsics that PGI supports and that are available in pmmintrin.h.

Table 35 SSE3 Intrinsics (pmmintrin.h)

_mm_addsub_ps _mm_moveldup_ps _mm_loaddup_pd _mm_mwait

_mm_hadd_ps _mm_addsub_pd _mm_movedup_pd

_mm_hsub_ps _mm_hadd_pd _mm_lddqu_si128

_mm_movehdup_ps _mm_hsub_pd _mm_monitor

Table 36 lists the SSSE3 intrinsics that PGI supports and that are available in
tmmintrin.h.

Table 36 SSSE3 Intrinsics (tmmintrin.h)

_mm_hadd_epi16 _mm_hsubs_pi16 _mm_sign_pi16

_mm_hadd_epi32 _mm_maddubs_epi16 _mm_sign_pi32

_mm_hadds_epi16 _mm_maddubs_pi16 _mm_alignr_epi8

_mm_hadd_pi16 _mm_mulhrs_epi16 _mm_alignr_pi8

_mm_hadd_pi32 _mm_mulhrs_pi16 _mm_abs_epi8

_mm_hadds_pi16 _mm_shuffle_epi8 _mm_abs_epi16

_mm_hsub_epi16 _mm_shuffle_pi8 _mm_abs_epi32

_mm_hsub_epi32 _mm_sign_epi8 _mm_abs_pi8

_mm_hsubs_epi16 _mm_sign_epi16 _mm_abs_pi16

_mm_hsub_pi16 _mm_sign_epi32 _mm_abs_pi32

_mm_hsub_pi32 _mm_sign_pi8

Table 37 lists the SSE4a intrinsics that PGI supports and that are available in
ammintrin.h.

Table 37 SSE4a Intrinsics (ammintrin.h)

_mm_stream_sd _mm_extract_si64 _mm_insert_si64

_mm_stream_ss _mm_extracti_si64 _mm_inserti_si64

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 197

8.4. ABM Intrinsics
PGI supports a set of ABM Intrinsics which allow the use of the ABM instructions
directly from C/C++ code, without writing the assembly instructions. The following table
lists the ABM intrinsics that PGI supports.

Table 38 ABM Intrinsics (intrin.h)

__lzcnt16 __lzcnt64 __popcnt __rdtscp

__lzcnt __popcnt16 __popcnt64

8.5. AVX Intrinsics
The following table lists the AVX intrinsics that PGI supports.

Table 39 AVX Intrinsics (immintrin.h)

_mm256_add_pd _mm256_add_ps _mm256_addsub_pd

_mm256_addsub_ps _mm256_and_pd _mm256_and_ps

_mm256_andnot_pd _mm256_andnot_ps _mm256_blendv_pd

_mm256_blendv_ps _mm256_broadcast_pd _mm256_broadcast_ps

_mm256_broadcast_sd _mm256_broadcast_ss _mm256_castpd_si256

_mm256_castps_si256 _mm256_castpd_ps _mm256_castps_pd

_mm256_castpd128_pd256 _mm256_castpd256_pd128 _mm256_castsi256_pd

_mm256_castsi256_ps _mm256_cvtepi32_pd _mm256_cvtepi32_ps

_mm256_cvtpd_epi32 _mm256_cvtps_epi32 _mm256_cvtpd_ps

_mm256_cvtps_pd _mm256_cvttpd_epi32 _mm256_cvttps_epi32

_mm256_div_pd _mm256_div_ps _mm256_hadd_pd

_mm256_hadd_ps _mm256_hsub_pd _mm256_hsub_ps

_mm256_load_pd _mm256_load_ps _mm256_loadu_pd

_mm256_loadu_ps _mm256_maskload_pd _mm256_maskload_ps

_mm256_maskstore_pd _mm256_maskstore_ps _mm256_max_pd

_mm256_max_ps _mm256_min_pd _mm256_min_ps

_mm256_movemask_pd _mm256_movemask_ps _mm256_mul_pd

_mm256_mul_ps _mm256_or_pd _mm256_or_ps

_mm256_rcp_ps _mm256_rsqrt_ps _mm256_set_pd

_mm256_set_ps _mm256_setr_pd _mm256_setr_ps

_mm256_set1_pd _mm256_set1_ps _mm256_set_epi32

_mm256_set_epi64x _mm256_setzero_pd _mm256_setzero_ps

C/C++ MMX/SSE Intrinsics

Reference Guide for x86-64 CPUs Version 2018 | 198

_mm256_sqrt_pd _mm256_sqrt_ps _mm256_store_pd

_mm256_store_ps _mm256_storeu_pd _mm256_storeu_ps

_mm256_stream_pd _mm256_stream_ps _mm256_stream_si256

_mm256_sub_pd _mm256_sub_ps _mm256_testz_pd

_mm256_testz_ps _mm256_testc_pd _mm256_testc_ps

_mm256_testnzc_pd _mm256_testnzc_ps _mm256_unpackhi_pd

_mm256_unpackhi_ps _mm256_unpacklo_pd _mm256_unpacklo_ps

_mm256_xor_pd _mm256_xor_ps _mm256_zeroupper

_mm256_macc_pd _mm256_macc_ps _mm256_msub_pd

_mm256_msub_ps _mm256_nmacc_pd _mm256_nmacc_ps

_mm256_nmsub_pd _mm256_nmsub_ps _mm256_maddsub_pd

_mm256_maddsub_ps _mm256_msubadd_pd _mm256_msubadd_ps

_mm_macc_pd _mm_macc_ps _mm_msub_pd

_mm_msub_ps _mm_nmacc_pd _mm_nmacc_ps

_mm_nmsub_pd _mm_nmsub_ps _mm_maddsub_pd

_mm_maddsub_ps _mm_msubadd_pd _mm_msubadd_ps

_mm_macc_sd _mm_macc_ss _mm_msub_sd

_mm_msub_ss _mm_nmacc_sd _mm_nmacc_ss

_mm_nmsub_sd _mm_nmsub_ss _mm256_extractf128_pd

_mm256_extractf128_ps _mm256_extractf128_si256 _mm256_permute_pd

_mm256_permute_ps _mm256_permute2f128_pd _mm256_permute2f128_ps

_mm256_permute2f128_si256 _mm256_blend_pd _mm256_blend_ps

_mm256_shuffle_pd _mm256_shuffle_ps _mm256_cmp_pd

_mm256_cmp_ps _mm256_round_pd _mm256_round_ps

_mm256_insertf128_pd _mm256_insertf128_ps _mm256_insertf128_si256

_mm256_dp_ps

Reference Guide for x86-64 CPUs Version 2018 | 199

Chapter 9.
MESSAGES

This section describes the various messages that the compiler produces. These messages
include the sign-on message and diagnostic messages for remarks, warnings, and errors.
The compiler always displays any error messages, along with the erroneous source line,
on the screen. If you specify the -Mlist option, the compiler places any error messages
in the listing file. You can also use the -v option to display more information about
the compiler, assembler, and linker invocations and about the host system. For more
information on the -Mlist and -v options, refer to ‘Using Command-line Options’ in
the PGI Compiler User’s Guide.

9.1. Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information includes information such as syntax errors. Semantic information
includes information such as unreachable code, incorrect number of arguments specified
for a call to a routine, illegal data type usage, etc.

You can specify that the compiler displays error messages at a certain level with the -
Minform option.

The compiler messages refer to a severity level, a message number, and the line number
where the error occurs.

The compiler can also display internal error messages on standard error. If your
compilation produces any internal errors, please contact the PGI technical reporting
service, pgicompilers.com/support-request.

If you use the listing file option -Mlist, the compiler places diagnostic messages after
the source lines in the listing file, in the following format:
 PGFTN-etype-enum-message (filename: line)

Where:
etype

is a character signifying the severity level
enum

is the error number

https://www.pgroup.com/support/support_request.php
https://www.pgroup.com/support/support_request.php

Messages

Reference Guide for x86-64 CPUs Version 2018 | 200

message
is the error message

filename
is the source filename

line
is the line number where the compiler detected an error.

9.2. Phase Invocation Messages
You can display compiler, assembler, and linker phase invocations by using the -v
command line option. For further information about this option, refer to the ‘Using
Command-line Options’ section of the PGI Compiler User's Guide, www.pgroup.com/
resources/docs/18.4/pdf/pgi18ug-x86.pdf.

9.3. Fortran Compiler Error Messages
This section presents the error messages generated by the PGF77, PGF95, and
PGFORTRAN compilers. The compilers display error messages in the program listing
and on standard output. They can also display internal error messages on standard
error.

9.3.1. Message Format
Each message is numbered. Each message also lists the line and column number where
the error occurs. A dollar sign ($) in a message represents information that is specific to
each occurrence of the message.

9.3.2. Message List
Error message severities:
I

informative
W

warning
S

severe error
F

fatal error
V

variable
V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it
may be possible for a user error to cause an internal error. The severity may vary; if it is
informative or warning, correct object code was probably generated, but it is not safe to
rely on this. Regardless of the severity or cause, internal errors should be reported to the
PGI technical reporting service, pgicompilers.com/support-request.

https://www.pgroup.com/support/support_request.php

Messages

Reference Guide for x86-64 CPUs Version 2018 | 201

F001 Source input file name not specified

On the command line, source file name should be specified either before all the switches,
or after them.
F002 Unable to open source input file: $

Source file name is misspelled, file is not in current working directory, or file is read
protected.
F003 Unable to open listing file

This message typically occurs when the user does not have write permission for the
current working directory.
F004 $ $

Generic message for file errors.
F005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" in which to create temporary files. If
neither of these directories is available on the node on which the compiler is being used,
this error will occur.
S006 Input file empty

Source input file does not contain any Fortran statements other than comments or
compiler directives.
F007 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other
non-recoverable problem related to the size of the subprogram. If this error occurs
at opt level 2, reducing the opt level to 1 may work around the problem. Moving
the subprogram being compiled to its own source file may eliminate the problem. If
this error occurs while compiling a subprogram of fewer than 2000, please report the
problem to the PGI technical reporting service, https://www.pgroup.com/support/
support_request.php.
F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be
reset on the command line.
F009 Unable to open assembly file

This message typically occurs when the user does not have write permission for the
current working directory.
F010 File write error occurred $

The file system may be full.
S011 Unrecognized command line switch: $

Refer to the PGI Compiler User’s Guide for a list of allowed compiler switches.
S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".
S013 Unrecognized value specified for command line switch: $

https://www.pgroup.com/support/support_request.php

Messages

Reference Guide for x86-64 CPUs Version 2018 | 202

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.
W015 Hexadecimal or octal constant truncated to fit data type

I016 Identifier, $, truncated to 63 chars

An identifier may be at most 63 characters in length; characters after the 63rd are
ignored.
S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember
that the file name should be enclosed in quotes.
S018 Illegal label $ $

Used for label ‘field’ errors or illegal values. E.g., in fixed source form, the label field
(first five characters) of the indicated line contains a non-numeric character.
S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines
were specified.
S020 Unrecognized compiler directive

Refer to Directives and Pragmas Reference for list of allowed compiler directives.
S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.
S022 Unexpected end of file - missing END statement

The source file is missing and END statement, or the file is truncated.
S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.
W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough
to contain all of the characters in the constant. This type conversion occurs when the
constant is used in an arithmetic expression or is assigned to a non-character variable.
The character or hollerith constant is truncated on the right, that is, if 4 characters are
needed then the first 4 are used and the remaining characters are discarded.
W025 Illegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran
character (characters inside of character or Hollerith constants cannot cause this error).
As a general rule, all non-printing characters are treated as white space characters
(blanks and tabs); no error message is generated when this occurs. If for some reason, a
non-printing character is not treated as a white space character, its hex representation is
printed in the form dd where each d is a hex digit.
S026 Unmatched quote

A character constant is missing a closing quote or the source file is truncated.
S027 Illegal integer constant: $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 203

Integer constant is too large for 32 bit word.
S028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits
0..9 and letters A..F or a..f; any other character in a hexadecimal constant is illegal. An
octal constant consists of digits 0..7; any other digit or character in an octal constant is
illegal. A binary constant consists of digits 0 or 1; any other digit or character in a binary
constant is illegal.
S030 Explicit shape must be specified for $

A shape for an array expression is effected in this context.
S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a
member of the set of allowed values for this particular data type.
W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax
(e.g. DIMENSION A(10)*4).
S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment
statement or as the target of a data initialization statement.
S034 Syntax error at or near $

Illegal command specified.
I035 Predefined intrinsic $ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for
that intrinsic. The compiler, based on the context, will treat the name as a variable or an
external function.
S036 Illegal implicit character range

First character must alphabetically precede second.
S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and
different data types are specified for it.
S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the
IMPLICIT NONE statement occurs in the subprogram.
W039 Symbol, $, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.
S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has
previously been defined to be something other than a variable or array.
W041 Illegal use of dummy argument $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 204

This error can occur in several situations. It can occur if dummy arguments were
specified on a PROGRAM statement. It can also occur if a dummy argument name
occurs in a DATA, COMMON, SAVE, or EQUIVALENCE statement. A program
statement must have an empty argument list.
S042 $ is a duplicate dummy argument

Each dummy argument must have a unique name.
S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier
definition of the same symbol. This can happen for a number of reasons. The message
attempts to indicate the situation that occurred.

intrinsic – An attempt was made to redefine an intrinsic function. A symbol that
represents an intrinsic function may be redefined if that symbol has not been previously
verified to be an intrinsic function. For example, the intrinsic sin can be defined to be
an integer array. If a symbol is verified to be an intrinsic function via the INTRINSIC
statement or via an intrinsic function reference then it must be referred to as an intrinsic
function for the remainder of the program unit.

symbol – An attempt was made to redefine a symbol that was previously defined.
An example of this is to declare a symbol to be a PARAMETER which was previously
declared to be a subprogram argument.
S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made
to declare a symbol as an ENTRY when that symbol was previously declared as an
ENTRY.
S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of
the current function. For example, the function returns type character and an entry point
returns type complex.
S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier
from the other data types. Suppose, we want to declare arrays ARRAYA and ARRAYB
to have 8 elements each having an element length of 4 bytes. The difference is that
ARRAYA is character and ARRAYB is integer. The declarations would be CHARACTER
ARRAYA(8)*4 and INTEGER ARRAYB*4(8).
S047 More than seven dimensions specified for array

The compiler currently supports up to seven dimensions for arrays.
S048 Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.
S049 Illegal use of '*' in non-subroutine subprogram

The alternate return specifier ‘*’ is legal only in the subroutine statement. Programs,
functions, and block data are not allowed to have alternate return specifiers.
S050 Assumed size array, $, is not a dummy argument

Messages

Reference Guide for x86-64 CPUs Version 2018 | 205

Arrays with ‘*’ in their dimension(s) may only be declared as dummy arguments.
S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was
encountered that did not match one of these allowed forms.
S052 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in
procedure calls.
W054 Implicit character $ used in a previous implicit statement

An implicit character has been given an implied data type more than once. The implied
data type for the implicit character is changed anyway.
W055 Multiple implicit none statements

The IMPLICIT NONE statement can occur only once in a subprogram.
W056 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE
statement will produce a warning message for IMPLICIT statements.
S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.
S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common
block.
S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.
S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.
S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an
alignment not optimal for variables of its data type. This can occur when INTEGER and
CHARACTER data are equivalenced, for instance.
I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.
S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

Messages

Reference Guide for x86-64 CPUs Version 2018 | 206

S068 Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER*1 variable or character array element can be initialized to an integer,
octal, or hexadecimal constant if that constant is in the range 0 through 255.
S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.
S070 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must
precede a specification statement which in turn must precede an executable statement.
S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector
reference. The assignment operation may be by way of an assignment statement, a data
statement, or the index variable of an implied DO-loop. The compiler has determined
that the identifier used as the destination is not a storage location. The error message
attempts to indicate the type of entity used.

entry point – An assignment to an entry point that was not a function procedure was
attempted.

external procedure – An assignment to an external procedure or a Fortran intrinsic
name was attempted. If the identifier is the name of an entry point that is not a function,
an external procedure.
S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or
function, requiring a certain number of arguments of a fixed data type.
S075 Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to
substring and function references.
S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$

S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.
S083 Vector expression used where scalar expression required

Messages

Reference Guide for x86-64 CPUs Version 2018 | 207

A vector expression was used in an illegal context. For example, iscalar = iarray,
where a scalar is assigned the value of an array. Also, character and record references are
not vectorizable.
S084 Illegal use of symbol $ $

This message is used for many different errors.
S085 Incorrect number of arguments to statement function $

S086 Dummy argument to statement function must be a variable

S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.
S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as
statement function dummy parameters and statement function names. Also, a dummy
variable of type CHARACTER*(*) cannot be used as a function.
S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.
S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O
statements, must not consist of a concatenation involving a passed length character
variable.
W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of
some other data type. The compiler generates code to convert the expression into the
required type.
S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data
type.
S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of
some other data type.
S096 Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.
S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the
subprogram.
S098 Divide by zero

Messages

Reference Guide for x86-64 CPUs Version 2018 | 208

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements,
unformatted I/O statements, and as parameters to subprograms. They may not appear,
for example, in expressions. Also, records with differing structure types may not be
assigned to one another.
S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector
illegally. For example, the assignment of a character constant string to a character array.
Records, too, cannot be promoted to vectors.
S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.
S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or
double precision scalar expression.
S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.
S104 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements, DO loops,
and directives. You may see one of the following messages:
PGF90-S-0104-Illegal control structure - unterminated PARALLEL directive
PGF90-S-0104-Illegal control structure - unterminated block IF

If the line number specified is the last line (END statement) of the subprogram, the error
is probably an unterminated DO loop or IF-THEN statement. If the message contains
unterminated PARALLEL directive, it is likely you are missing the required !$omp
end parallel directive.
S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement.
S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER
name, a function name, a structure name, etc.
S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars.
I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits
produces an overflow. The constant is truncated at left (e.g. ‘1234567890abcdef1’x will be
‘234567890abcdef1’x).
I110 <reserved message number>

Messages

Reference Guide for x86-64 CPUs Version 2018 | 209

I111 Underflow of real or double precision constant

I112 Overflow of real or double precision constant

S113 Label $ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.
S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.
I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible
with the operation. For example, a logical expression can consist of only logical elements
of type integer or logical. Real data would be invalid.
I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER
statement has been truncated to fit the declared size of the corresponding identifier.
W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were
present in the character field of the hollerith constant. The length specifier was reduced
to agree with the number of characters present.
S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.
I125 Dummy procedure $ not declared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the
subprogram name in a CALL statement, or is called as a function, and is therefore
assumed to be a dummy procedure. This message can result from a failure to declare a
dummy array.
I126 Name $ is not an intrinsic function

I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits,
such as a BYTE.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 210

I129 Floating point overflow. Check constants and constant expressions

I130 Floating point underflow. Check constants and constant expressions

I131 Integer overflow. Check floating point expressions cast to integer

I132 Floating pt. invalid oprnd. Check constants and constant expressions

I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.
W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost
structure.
W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.
W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been
defined.
S140 Variable $ is not a RECORD

S141 RECORD required on left of $

S142 $ is not a member of this RECORD

S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.
W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It
is only valid when used within a STRUCTURE multiline statement even though it is
ignored.
S146 Expression must be character type

S147 Character expression not allowed in this context

S148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but
another data type was found instead.
S149 Record where arithmetic value required

Messages

Reference Guide for x86-64 CPUs Version 2018 | 211

An aggregate record reference was encountered when an arithmetic expression was
expected.
S150 Structure, Record, derived type, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported.
S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP -
ENDMAP declaration contains no members.
S152 All dimension specifiers must be ':'

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ $

S156 Number of colons and triplets must be equal in ALIGN $ with $

S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the
SUBROUTINE or ENTRY statements.
S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.
S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced with < or > test.

S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.
S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is
applicable only when an assembly file is the output of the compiler.
S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is
applicable only when an assembly file is the output of the compiler.
I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is
not identical. The maximum size is chosen. The message is applicable only when an
assembly file is the output of the compiler.
S168 Incompatible size of common block $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 212

A common block occurs in more than one subprogram of a source file and is initialized
in one subprogram. Its initialized size was found to be less than its size in the other
subprogram(s). The message is applicable only when an assembly file is the output of
the compiler.
W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the
first set of initializations apply. The message is applicable only when an assembly file is
the output of the compiler.
W170 PGI Fortran extension: $ $

Use of a nonstandard feature. A description of the feature is provided.
W171 PGI Fortran extension: nonstandard statement type $

W172 PGI Fortran extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.
W173 PGI Fortran extension: nonstandard use of data type length specifier

W174 PGI Fortran extension: type declaration contains data initialization

W175 PGI Fortran extension: IMPLICIT range contains nonalpha characters

W176 PGI Fortran extension: nonstandard operator $

W177 PGI Fortran extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 PGI Fortran extension: use of structure field reference $

W180 PGI Fortran extension: nonstandard form of constant

W181 PGI Fortran extension: & alternate return

W182 PGI Fortran extension: mixed non-character and character elements in COMMON
$

W183 PGI Fortran extension: mixed non-character and character EQUIVALENCE ($,$)

W184 Mixed type elements (numeric and/or character types) in COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE ($,$)

S186 Argument missing for formal argument $

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual argument to array dummy
argument

S190 Argument number $ to $: non-conformable arrays

Messages

Reference Guide for x86-64 CPUs Version 2018 | 213

S191 Argument number $ to $ cannot be an assumed-size array

S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT(IN) argument cannot be defined - $

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement

An illegal qualifier was found or a value was specified for a qualifier which does not
expect a value. In either case, the qualifier for which the error occurred is indicated in
the error message.
S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment
requirement.
S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $

S202 Repeated I/O specifier - $

S203 FORMAT statement has no label

S204 $ $

Miscellaneous I/O error.
S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.
S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/O cannot be performed with internal, unformatted, formatted, and list-
directed I/O. Also, I/O lists must not be present.
S213 $ is not a NAMELIST group name

Messages

Reference Guide for x86-64 CPUs Version 2018 | 214

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item or specifier

An assumed size array was used as an item to be read or written or as an I/O specifier
(i.e., FMT = array-name). In these contexts the size of the array must be known.
S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or array element

S218 Statement labeled $ $

S219 <reserved message number>

S220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in
this context.
S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in
this context.
S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).
S224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the
maximum allowed (currently 2048).
W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with
the number of parameters in the macro’s definition.
F226 Can't find include file $

The indicated include file could not be opened.
S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum
allowed (currently 2048).
S228 EOF in comment

The end of a file was encountered while processing a comment.
S229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S230 EOF in string

The end of a file was encountered while processing a quoted string.
S231 Formal parameters too long for $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 215

The total length of the parameters in the definition of the indicated macro exceeded the
maximum allowed (currently 2048).
S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W235 Illegal macro name

A macro name was not an identifier.
S236 Illegal number $

The indicated number contained a syntax error.
F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).
W238 Missing #endif

End of file was encountered before a required #endif directive was found.
W239 Missing argument list for $

A call of the indicated macro had no argument list.
S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W241 Redefinition of symbol $

The indicated macro name was redefined.
I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous
definition.
F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
W245 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro’s
definition.
S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S247 Syntax error in #include

The #include directive was not correctly formed.
W248 Syntax error in #line

Messages

Reference Guide for x86-64 CPUs Version 2018 | 216

A #line directive was not correctly formed.
W249 Syntax error in #module

A #module directive was not correctly formed.
W250 Syntax error in #undef

A #undef directive was not correctly formed.
W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum
allowed (currently 31).
F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may
be recursive.
W256 Undefined directive $

The identifier following a # was not a directive name.
F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and 0 values are illegal for a position in
a file.
S257 EOF in #include directive

End of file was encountered while processing a #include directive.
S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).
S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 217

I264 Possible nested comment

The characters /* were found within a comment.
S265 <reserved message number>

S266 <reserved message number>

S267 <reserved message number>

W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be severe if the compilation has gone too far to undo the inlining
process.
F270 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram

I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been
assigned a value. The names of the variable and the function in which the use occurred
are listed. The line number, if specified, is the line number of the basic block containing
the use of the variable.
W280 Syntax error in directive $

Messages 280-300 reserved for directives handling
W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $

S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$

S305 $ cannot be named, $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 218

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or arithmetic IF

S309 Incorrect name, $, specified in END statement

S310 $ $

Generic message for MODULE errors.
W311 Non-replicated mapping for $ array, $, ignored

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is not an asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the
subprogram should be an asterisk to declare this as the alternate return.
I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural
analysis.
I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural
analysis.
I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.
I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.
I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.
I320 IPA: routine $, $ common blocks optimized

This many mapped common blocks were optimized by interprocedural analysis.
I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis,
either because they were declared differently in different routines, or they did not
appear in the main program.
I322 IPA: analyzing main program $

Interprocedural analysis is building the call graph and propagating information with the
named main program.
I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for
subsequent analysis and propagation.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 219

W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to $

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments verified

I335 IPA: $ descriptive/prescriptive distribution formats verified

I336 IPA: $ descriptive/prescriptive distribution targets verified

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information

S342 Unable to open file $ while analyzing IPA information

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.
W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first
appearance.
F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate
options, requires the -ipalib option to specify the library directory.
W348 Common /$/ $ has different distribution target

Messages

Reference Guide for x86-64 CPUs Version 2018 | 220

The array was declared in a common block with a different distribution target in another
subprogram.
W349 Common /$/ $ has different distribution format

The array was declared in a common block with a different distribution format in
another subprogram.
W350 Common /$/ $ has different alignment

The array was declared in a common block with a different alignment in another
subprogram.
W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number
of dummy arguments than appear in the call.
W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number
of dummy arguments than appear in the call to the EXTERNAL name given.
W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or
analyzed.
I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.
W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.
I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incomplete; some information
may not be available for optimization.
I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may
not be available for optimization.
W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to a dummy argument that is declared
EXTERNAL.
W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a
function.
W360 FUNCTION $ passed to FUNCTION dummy argument $ with different result
type

The call statement passes a function argument to a function dummy argument, but the
dummy has a different result type.
W361 FUNCTION $ passed to SUBROUTINE dummy argument $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 221

The call statement passes a function name to a dummy argument that is used as a
subroutine.
W362 Argument $ has a different type than dummy argument $

The type of the actual argument is different than the type of the corresponding dummy
argument.
W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.
W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is a scalar variable.
W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.
F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to
the compiler maintenance group. If user errors were reported when collecting IPA
information or during IPA analysis, correcting them may avoid this error.
I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying
the array to sequential storage. The most common cause is passing an ALLOCATABLE
array or array expression to a dummy argument that is declared with explicit bounds.
Declaring the dummy argument as assumed shape, with bounds (:,:,:), will remove this
warning.
W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar
variable.
W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than
the dummy argument.
W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than
the dummy argument; this may require copying the actual argument into sequential
storage.
W371 Dummy argument $ is INTENT(IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the
argument may be modified; the INTENT(IN) declaration should be changed.
W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a
dummy argument with non- inherited alignment.
I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution
format to a dummy argument with prescriptive or descriptive distribution format.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 222

I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution
target to a dummy argument with prescriptive or descriptive distribution target.
I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different
dimensions.
I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its
template than does the dummy argument.
I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its
template than does the dummy argument.
I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target
sizes.
I379 Alignment of $ is too complex

The alignment specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.
I380 Distribution format of $ is too complex

The distribution format specification of the array is too complex for interprocedural
analysis to verify or propagate; the program will work correctly, but without the benefit
of IPA.
I381 Distribution target of $ is too complex

The distribution target specification of the array is too complex for interprocedural
analysis to verify or propagate; the program will work correctly, but without the benefit
of IPA.
I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in
the whole program.
I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program
that can be replaced by constants.
I384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program
that are not modified and can be declared as INTENT(IN).
W385 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program
that were declared as INTENT(IN) but should be INTENT(INOUT).
I386 IPA: $ array alignments propagated

Messages

Reference Guide for x86-64 CPUs Version 2018 | 223

Interprocedural analysis has found this many array dummy arguments that could have
the inherited array alignment replaced by a descriptive alignment.
I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of
this many array dummy arguments match the alignments of the actual argument.
I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have
the transcriptive distribution format replaced by a descriptive format.
I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution
formats of this many array dummy arguments match the formats of the actual
argument.
I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have
the transcriptive distribution target replaced by a descriptive target.
I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution
targets of this many array dummy arguments match the targets of the actual argument.
I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be
optimized, either because the common block was not declared in the main program, or
because it was declared differently in different subprograms.
I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.
I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.
I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural
analysis.
I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural
analysis.
I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural
analysis.
I399 IPA: common block $ not optimized

Messages

Reference Guide for x86-64 CPUs Version 2018 | 224

The given common block was not optimized by interprocedural analysis either because
it was not declared in the main program, or because it was declared differently in
different subprograms.
E400 IPA: dummy argument $ is an asterisk, but actual argument is not a label

The subprogram expects an alternate return label for this argument.
E401 Actual argument $ is a subprogram, but Dummy argument $ is not declared
EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a
scalar variable or array.
E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both
arrays are declared with the HPF SEQUENCE attribute.
E404 Sequential array section of $ in argument $ is not contiguous

When passing an array section to a formal argument that has the HPF SEQUENCE
attribute, the actual argument must be a whole array with the HPF SEQUENCE
attribute, or an array section of such an array where the section is a contiguous sequence
of elements.
E405 Array expression argument $ may not be passed to sequential dummy argument $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument
must be a whole array with the HPF SEQUENCE attribute or a contiguous array section
of such an array, unless an INTERFACE block is used.
E406 Actual argument $ and formal argument $ have different character lengths

The actual and formal array character arguments have different character lengths, which
is allowed only if both character arrays are declared with the HPF SEQUENCE attribute,
unless an INTERFACE block is used.
W407 Argument $ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.
W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block
data subprogram.
W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one
found is used.
W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.
W411 Formal argument $ is DYNAMIC but actual argument is an expression

W412 Formal argument $ is DYNAMIC but actual argument $ is not

Messages

Reference Guide for x86-64 CPUs Version 2018 | 225

I413 Formal argument $ has two reaching distributions and may be a candidate for
cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased
because the same variable is passed in both argument positions; or one formal argument
and a global or COMMON variable may be aliased, because the global or COMMON
variable is passed as an actual argument. If either alias is assigned in the subroutine,
unexpected results may occur; this message alerts the user that this situation is
disallowed by the Fortran standard.
F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA
directory. One of these files has been renamed or corrupted. This can arise when there
are two files with the same prefix, such as a.hpf and a.f90.
E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy
parameter must have the SEQUENCE attribute or an INTERFACE block must be used.
E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION

E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result type

W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete

W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

Messages

Reference Guide for x86-64 CPUs Version 2018 | 226

W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ‘real a(-1)’, or an
upper bound less than the lower bound, as ‘real a(4:2)’.
W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.
E438 $ $ not supported on this platform

This construct is not supported by the compiler for this target.
S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE statement or WHERE
block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The
derived type must have the SEQUENCE attribute, but does not.
E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.
S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number
of dimensions in the dummy argument.
S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - $ $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE
association can appear in a MODULE PROCEDURE statement.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 227

S455 A derived type array section cannot appear with a member array section - $

A reference like A(:)%B(:), where ‘A’ is a derived type array and ‘B’ is a member array, is
not allowed; a section subscript may appear after ‘A’ or after ‘B’, but not both.
S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot have the
POINTER attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

S465 Functions returning a POINTER require an explicit interface

S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE attribute

W468 Argument to ISO_C_BINDING intrinsic must have TARGET attribute set

W469 Character argument to C_LOC intrinsic must have length of one

W470 Accelerator feature license not found; accelerator features disabled

W471 CUDA Fortran feature license not found; CUDA Fortran features disabled

E472 A Scalar element of a nonsequential array cannot be passed to a dummy array
argument - $

A subroutine or function call may not pass an element of an array, like 'A(N)', to a
dummy array argument if the array 'A' is not sequential. If the array is sequential, then
Fortran sequence and storage association rules will treat the dummy argument as a new
array equivalenced to the actual argument starting at the element passed. If the array is
not sequential, then Fortran sequence and storage association rules do not apply.
W473 $ must have the PURE attribute

F474 This type EXTRINSIC is not yet implemented - $

Contact PGI to ask when this EXTRINSIC type will be implemented.
E475 A dummy argument may not be distributed in a PURE interface - $

A dummy argument to a routine defined with a PURE interface may not have the
DISTRIBUTE attribute.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 228

E476 A dummy argument may only be aligned with another dummy in a PURE
interface - $

E477 The device array section actual argument was not stride-1 in the leading dimension
- $

A device (device, shared, or constant attribute) array passed as an array section to an
assumed-shape dummy argument must be stride-1 in the leading dimension.
E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to a dummy argument with the Accelerator
REFLECTED attribute must be a symbol that has a visible device copy. Expressions are
not allowed.
E479 The dummy argument $ is REFLECTED; the actual argument $ must have a visible
device copy

If a dummy argument has the Accelerator REFLECTED attribute, the actual argument
must be a symbol with a visible device copy. This may be because the symbol appeared
in a MIRROR, REFLECTED, COPYIN, COPYOUT, COPY or LOCAL declarative
Accelerator directive, or because it appeared in a COPYIN, COPYOUT, COPY or LOCAL
clause for an Accelerator DATA REGION or REGION surrounding the procedure call.
E480 Argument $ is passed to dummy argument $, which is REFLECTED; the actual
argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the
actual argument must be copied to a temporary array. This may occur if the dummy
argument is not assumed-shape, and so must be contiguous in memory, or if the actual
argument is not stride-1 in the leftmost (first) dimension. In these cases, the REFLECTED
argument is not supported.
F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a
dummy argument to the subprogram.
482 COMMON /$/ is declared differently in two subprograms - $

The COMMON block name was declared with different distribution or alignment for
one or more members in two different subprograms.
E483 Storage association due to EQUIVALENCE($,$) causes HPF alignments and
distributions to be ignored

An EQUIVALENCE statement causes Fortran storage association between entries
in this COMMON block. The storage association overrides the HPF alignments and
distributions for the COMMON block members.
E484 Datatype conflict in EQUIVALENCE between two distributed or aligned
COMMON block members: $ and $

Two distributed COMMON block members that appear in a COMMON block must have
the same datatype.
E485 Datatype conflict in EQUIVALENCE between a distributed or aligned COMMON
block member and another: $ and $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 229

A distributed COMMON block member may not be EQUIVALENCEd with another
COMMON member.
E486 The dummy argument $ is REFLECTED; an array element cannot be passed to a
REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy
argument.
E487 Index variable $ does not appear in a subscript on the left hand side of the FORALL
assignment

In a FORALL statement, each index variable in the FORALL must appear in some
subscript of the left hand side of the FORALL assignment. Otherwise, the FORALL will
assign the same left hand side elements for different values of that index.
I489 An ALLOCATE of a POINTER with transcriptive or inherited distribution causes
replication - $

When an array with the POINTER attribute and with a distribution that is transcriptive
or inherited is allocated, the alignment and distribution are ignored and the array
pointer is treated as replicated, since there is no symbol from which to inherit a
distribution.
E488 The function call in the FORALL does not have the PURE attribute - $

In a FORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise,
they cannot be called in parallel.
E490 An array section of $ is passed to the REFLECTED argument $, which is not
supported

When an actual argument is an array section, the dummy argument must not have the
REFLECTED attribute.
W491 EXTRINSIC($) subprograms require an explicit interface - $

An EXTRINSIC subprogram with the LOCAL or SERIAL attributes require an explicit
interface, either through an INTERFACE block, or by being in the same MODULE as the
caller, or being in a MODULE that is referenced with a USE statement.
E492 DYNAMIC distribution is only supported in HPF_GLOBAL subprograms - $

Variables with DYNAMIC distribution are not supported in EXTRINSIC(F77_LOCAL),
EXTRINSIC(F77_SERIAL), EXTRINSIC(F90_LOCAL), EXTRINSIC(F90_SERIAL),
EXTRINSIC(HPF_LOCAL) or EXTRINSIC(HPF_SERIAL) subprograms.
E493 $ arrays may not be aligned with ALLOCATABLE arrays - $

Static local arrays, common arrays, and dummy argument arrays may not be aligned
with arrays that have the ALLOCATABLE attribute, since the allocatable alignee may
not be allocated.
E494 COMMON arrays may not be aligned with dummy argument arrays - $

An array in a COMMON block may not specify an alignment with a dummy argument
array.
W495 The SHADOW directive for CYCLIC distributed dimensions is ignored - $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 230

A shadow boundary specified for array dimensions that are distributed with the
CYCLIC distribution is ignored.
I496 A $ of an unused template is eliminated

The HPF executable REDISTRIBUTE or REALIGN directive appeared specifying an HPF
TEMPLATE that is not used; the REDISTRIBUTE or REALIGN is eliminated.
E497 EXTRINSIC(F77_LOCAL) does not support distributed symbols of this datatype - $

This HPF implementation does not support distributed symbols of character or derived
type in EXTRINSIC(F77_LOCAL) subprograms.
E498 Alignment cycle involving two or more arguments - $

This dummy argument appears in an HPF ALIGN directive specifying alignment to
another dummy argument that is then aligned to this argument, or aligned to another
dummy argument that is eventually aligned to this argument.
W499 The descriptive distribution or alignment for this dummy argument is treated as
prescriptive - $

Even though the distribution or alignment for this dummy argument was specified as
descriptive, it is treated as prescriptive.
E500 MODULE $ uses (directly or indirectly) MODULE $, which causes a USE cycle

If MODULE A has a USE statement for MODULE B, we say that MODULE A directly
uses MODULE B. If MODULE B has a USE statement for MODULE C, we say that
MODULE A indirectly uses MODULE C. If MODULE C then has a USE statement for
MODULE A, then MODULE A indirectly uses itself, which is a USE cycle, and is not
allowed.
E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be
between 1 and the rank of the array or expression being transformed.
E505 DIM argument out of range for this reduction - $

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1
and the rank of the expression being reduced.
E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with
the POINTER attribute.
E507 The arguments to MOVE_ALLOC must be ALLOCATABLE - $

The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE
attribute.
E508 The array objects in a call to an elemental function are not conformable - $

When calling an elemental function, the arguments must be scalars or conformable
arrays or array expressions.
E509 Variables in a PURE subprogram may not have the SAVE attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot
save state in a SAVEd variable.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 231

E510 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching
ENDWHERE. The body of the WHERE construct can only contain assignment
statements.
E511 The WHERE mask expression and the array assignment do not conform

The assignment under control of a WHERE mask must have the same shape as the
WHERE mask.
E512 The WHERE mask is not an array expression

The WHERE mask expression must be a logical array expression.
E513 The alignment or distribution target may not be a private variable - $

This is a HPF_CRAFT restriction.
E514 The alignment extends beyond the bounds of the template - $

When aligning to a template, the entire array must align to template elements that lie
within the bounds of the template.
E515 Static variable aligned with allocatable symbol - $

A nonallocatable symbol cannot be aligned to an allocatable symbol.
E516 PURE subprograms may not have distributed variables - $

Distributed arrays are not allowed in PURE subprograms.
E517 Variables in HPF_LOCAL subprograms may not be distributed - $

Distributed arrays are not allowed in HPF_LOCAL subprograms.
W518 Function result could not be distributed; replicating - $

The compiler will replicate the function result.
E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.
E520 Host MODULE data cannot be used in a DEVICE or GLOBAL subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.
E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling for compute capability >= 2.0 - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any
MODULE except the MODULE containing the subprogram, unless they are being
compiled for compute capability 2.0 or higher. This feature requires the unified memory
system provided in compute capability 2.0.
E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any
MODULE except the MODULE containing the subprogram, unless they are being
compiled for compute capability 2.0 or higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 232

W523 MODULE data used in a DEVICE or GLOBAL subprogram forces compute
capability >= 2.0 only - $

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when
compiled for compute capability 2.0 or greater.
E524 Dependency in assignment causes allocation of a temporary which is not
supported in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which
requires allocation of temporary storage to produce a correct result. Dynamic allocation
of memory is not supported in subprograms that run on the device.
E525 Array reshaping is not supported for device subprogram calls: argument $ to
subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy
argument is not supported in global or device subprograms. This would require a run-
time test and a possible run-time copy to a dynamically allocated temporary array.
W526 SHARED attribute ignored on dummy argument $

The SHARED attribute has no meaning when applied to a dummy argument.
E527 Argument number $ requires allocation of a temporary which is not supported in
DEVICE or GLOBAL subprograms

Evaluation of the specified argument requires allocation of temporary storage for the
result to be passed to the subprogram being called. Dynamic allocation of memory is not
supported in subprograms that run on the device.
E528 Argument number $ to $: device attribute mismatch

Device attributes of the actual and formal arguments are not the same.
E529 PRINT and WRITE statements in device subprograms are only supported when
compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms
requires CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
E530 PRINT and WRITE statements in device subprograms are only supported with
compute capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms
requires CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
W531 PGI extension to OpenACC: $

This program is using a PGI extension to OpenACC.
W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program is using a PGI extension to
OpenACC.
E533 Clause $ not allowed in $ directive

This clause is not allowed on the specified directive.
E534 A loop scheduling directive may not appear within a KERNEL loop

Messages

Reference Guide for x86-64 CPUs Version 2018 | 233

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL,
VECTOR, WORKER or GANG, may not appear inside a loop that has an accelerator
loop directive with the KERNEL clause. This clause is not allowed on the specified
directive.
E535 Undeclared symbol $ used in directive

Symbols used in OpenACC directives must be declared.
S901 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in
this context.
S902 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in
this context.
W905 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with
the number of parameters in the macro's definition.
F906 Can't find include file $

The indicated include file could not be opened.
S908 EOFin comment

The end of a file was encountered while processing a comment.
S909 EOFin macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
W914 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W915 Illegal macro name

A macro name was not an identifier.
W918 Missing #endif

End of file was encountered before a required #endif directive was found.
W919 Missing argument list for $

A call of the indicated macro had no argument list.
S920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W921 Redefinition of symbol $

The indicated macro name was redefined.
I922 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous
definition.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 234

F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S924 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
S926 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S927 Syntax error in #include

The #include directive was not correctly formed.
W928 Syntax error in #line

A #line directive was not correctly formed.
W929 Syntax error in #module

A #module directive was not correctly formed.
W930 Syntax error in #undef

A #undef directive was not correctly formed.
W931 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W932 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum
allowed (currently 31).
S935 Illegal context for __VA_ARGS__

W936 Undefined directive $

The identifier following a # was not a directive name.
S937 EOFin #include directive

End of file was encountered while processing a #include directive.
S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
W941 Illegal token in directive, $

Messages

Reference Guide for x86-64 CPUs Version 2018 | 235

A directive token contains a illegal character.
S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S943 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.
I944 Possible nested comment

The characters /* were found within a comment.
I945 Redefining predefined macro $

I946 Undefining predefined macro $

W947 Can't redefine predefined macro $

W948 Can't undefine predefined macro $

F949 #error -- $

User defined preprocessor error message.
W950 #ident not followed by quoted string

W951 Extraneous tokens ignored following # directive

F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

S954 Illegal number in directive

S955 Illegal token in #if expression

S956 Missing > in #include

W957 Arguments in macro $ are not unique

S959 ## directive occurs at beginning or end of macro definition

S960 $ is not an argument

W961 No macro replacement within a character constant

W962 Macro replacement within a character constant

W964 Macro replacement within a string literal

F965 Recursive include file $

W966 Null argument to macro

Argument to macro is a null value.
F967 #warning -- $

User defined preprocessor warning message.

Messages

Reference Guide for x86-64 CPUs Version 2018 | 236

S969 _Pragma $

Pragma operator errors.

9.4. Fortran Run-time Error Messages
This section presents the error messages generated by the run-time system. The run-time
system displays error messages on standard output.

9.4.1. Message Format
The messages are numbered but have no severity indicators because they all terminate
program execution.

9.4.2. Message List
Here are the run-time error messages:

201 illegal value for specifier

An improper specifier value has been passed to an I/O run-time routine. Example:
within an OPEN statement, form='unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an
OPEN statement, form='unformatted', blank='null'.

203 record length must be specified

A recl specifier required for an I/O run-time routine has not been passed. Example:
within an OPEN statement, access='direct' has been passed, but the record length has not
been specified (recl=specifier).

204 illegal use of a readonly file

Self explanatory. Check file and directory modes for readonly status.

205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, a file disposition conflict has occurred. Example: within an
OPEN statement, status='scratch' and dispose='keep' have both been passed.

206 attempt to open a named file as 'SCRATCH'

207 file is already connected to another unit

208 'NEW' specified for file that already exists

209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Messages

Reference Guide for x86-64 CPUs Version 2018 | 237

Memory allocation operations occur only in conjunction with namelist I/O. The
most probable cause of fixed buffer overflow is exceeding the maximum number of
simultaneously open file units.

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict

Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string

A run-time encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a run-time format item.

228 end of file reached without finding group

229 end of file reached while processing group

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Messages

Reference Guide for x86-64 CPUs Version 2018 | 238

Data types specified by I/O list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

250 error in format - number missing after '.', '-', or '+'

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

255 illegal asynchronous I/O operation

256 POS can only be specified for a 'STREAM' file

257 POS value must be positive

258 NEWUNIT requires FILE or STATUS=SCRATCH

Reference Guide for x86-64 CPUs Version 2018 | 239

Chapter 10.
CONTACT INFORMATION

You can contact PGI at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2018 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Fortran, C, and C++ Data Types
	1.1. Fortran Data Types
	1.1.1. Fortran Scalars
	1.1.2. FORTRAN 77 Aggregate Data Type Extensions
	1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

	1.2. C and C++ Data Types
	1.2.1. C and C++ Scalars
	1.2.2. C and C++ Aggregate Data Types
	1.2.3. Class and Object Data Layout
	1.2.4. Aggregate Alignment
	1.2.5. Bit-field Alignment
	1.2.6. Other Type Keywords in C and C++

	Command-Line Options Reference
	2.1. PGI Compiler Option Summary
	2.1.1. Build-Related PGI Options
	2.1.2. PGI Debug-Related Compiler Options
	2.1.3. PGI Optimization-Related Compiler Options
	2.1.4. PGI Linking and Runtime-Related Compiler Options

	2.2. C and C++ Compiler Options
	2.3. Generic PGI Compiler Options
	2.3.1. -#
	2.3.2. -###
	2.3.3. -acc
	2.3.4. -Bdynamic
	2.3.5. -Bstatic
	2.3.6. -Bstatic_pgi
	2.3.7. -byteswapio
	2.3.8. -C
	2.3.9. -c
	2.3.10. -d<arg>
	2.3.11. -D
	2.3.12. -dryrun
	2.3.13. -drystdinc
	2.3.14. -E
	2.3.15. -F
	2.3.16. -fast
	2.3.17. -fastsse
	2.3.18. --flagcheck
	2.3.19. -flags
	2.3.20. -fpic
	2.3.21. -fPIC
	2.3.22. -g
	2.3.23. -gopt
	2.3.24. -g77libs
	2.3.25. -help
	2.3.26. -I
	2.3.27. -i2, -⁠i4, -⁠i8
	2.3.28. -K<flag>
	2.3.29. --keeplnk
	2.3.30. -L
	2.3.31. -l<library>
	2.3.32. -M
	2.3.33. -m
	2.3.34. -m64
	2.3.35. -M<pgflag>
	2.3.36. -mcmodel=medium
	2.3.37. -module <moduledir>
	2.3.38. -mp
	2.3.39. -noswitcherror
	2.3.40. -O<level>
	2.3.41. -o
	2.3.42. -pc
	2.3.43. --pedantic
	2.3.44. -pg
	2.3.45. -pgc++libs
	2.3.46. -pgf77libs
	2.3.47. -pgf90libs
	2.3.48. -R<directory>
	2.3.49. -r
	2.3.50. -r4 and -⁠r8
	2.3.51. -rc
	2.3.52. -s
	2.3.53. -S
	2.3.54. -shared
	2.3.55. -show
	2.3.56. -silent
	2.3.57. -soname
	2.3.58. -stack
	2.3.59. -ta
	2.3.60. -time
	2.3.61. -tp <target>[,target...]
	2.3.62. -[no]traceback
	2.3.63. -u
	2.3.64. -U
	2.3.65. -V[release_number]
	2.3.66. -v
	2.3.67. -W
	2.3.68. -w
	2.3.69. -Xs
	2.3.70. -Xt
	2.3.71. -Xlinker

	2.4. C and C++ -specific Compiler Options
	2.4.1. -A
	2.4.2. -a
	2.4.3. -alias
	2.4.4. --[no_]alternative_tokens
	2.4.5. -B
	2.4.6. -b
	2.4.7. -b3
	2.4.8. --[no_]bool
	2.4.9. --[no_]builtin
	2.4.10. --cfront_2.1
	2.4.11. --cfront_3.0
	2.4.12. --[no_]compress_names
	2.4.13. --create_pch filename
	2.4.14. --diag_error <number>
	2.4.15. --diag_remark <number>
	2.4.16. --diag_suppress <number>
	2.4.17. --diag_warning <number>
	2.4.18. --display_error_number
	2.4.19. -e<number>
	2.4.20. --no_exceptions
	2.4.21. --gnu_version <num>
	2.4.22. --[no]llalign
	2.4.23. -M
	2.4.24. -MD
	2.4.25. --optk_allow_dollar_in_id_chars
	2.4.26. -P
	2.4.27. -+p
	2.4.28. --pch
	2.4.29. --pch_dir directoryname
	2.4.30. --[no_]pch_messages
	2.4.31. --preinclude=<filename>
	2.4.32. --use_pch filename
	2.4.33. --[no_]using_std
	2.4.34. -Xfilename

	2.5. -M Options by Category
	2.5.1. Code Generation Controls
	2.5.2. C/C++ Language Controls
	2.5.3. Environment Controls
	2.5.4. Fortran Language Controls
	2.5.5. Inlining Controls
	2.5.6. Optimization Controls
	2.5.7. Miscellaneous Controls

	C++ Name Mangling
	Directives and Pragmas Reference
	4.1. PGI Proprietary Fortran Directive and C/C++ Pragma Summary
	4.1.1. altcode (noaltcode)
	4.1.2. assoc (noassoc)
	4.1.3. bounds (nobounds)
	4.1.4. cncall (nocncall)
	4.1.5. concur (noconcur)
	4.1.6. depchk (nodepchk)
	4.1.7. eqvchk (noeqvchk)
	4.1.8. fcon (nofcon)
	4.1.9. invarif (noinvarif)
	4.1.10. ivdep
	4.1.11. lstval (nolstval)
	4.1.12. opt
	4.1.13. prefetch
	4.1.14. safe (nosafe)
	4.1.15. safe_lastval
	4.1.16. safeptr (nosafeptr)
	4.1.17. single (nosingle)
	4.1.18. tp
	4.1.19. unroll (nounroll)
	4.1.20. vector (novector)
	4.1.21. vintr (novintr)

	4.2. Prefetch Directives and Pragmas
	4.3. !$PRAGMA C
	4.4. IGNORE_TKR Directive
	4.4.1. IGNORE_TKR Directive Syntax
	4.4.2. IGNORE_TKR Directive Format Requirements
	4.4.3. Sample Usage of IGNORE_TKR Directive

	4.5. !DEC\$ Directives
	4.5.1. ALIAS Directive
	4.5.2. ATTRIBUTES Directive
	4.5.3. DECORATE Directive
	4.5.4. DISTRIBUTE Directive

	Runtime Environment
	5.1. Linux86-64 Programming Model
	5.1.1. Function Calling Sequence
	5.1.2. Function Return Values
	5.1.3. Argument Passing
	5.1.4. Linux86-64 Fortran Supplement

	5.2. Win64 Programming Model
	5.2.1. Function Calling Sequence
	5.2.2. Function Return Values
	5.2.3. Argument Passing
	5.2.4. Win64 Fortran Supplement

	C++ Dialect Supported
	6.1. Extensions Accepted in Normal C++ Mode
	6.2. cfront 2.1 Compatibility Mode
	6.3. cfront 2.1/3.0 Compatibility Mode
	6.4. Extensions accepted in GNU compatibility mode (pgc++)
	6.5. C++11 Language Features Accepted
	6.6. C++14 Language Features Accepted

	Fortran Module/Library Interfaces for Windows
	7.1. Source Files
	7.2. Data Types
	7.3. Using DFLIB, LIBM, and DFPORT
	7.3.1. DFLIB
	7.3.2. LIBM
	7.3.3. DFPORT

	7.4. Using the DFWIN module
	7.5. Supported Libraries and Modules
	7.5.1. advapi32
	7.5.2. comdlg32
	7.5.3. dfwbase
	7.5.4. dfwinty
	7.5.5. gdi32
	7.5.6. kernel32
	7.5.7. shell32
	7.5.8. user32
	7.5.9. winver
	7.5.10. wsock32

	C/C++ MMX/SSE Intrinsics
	8.1. Using Intrinsic functions
	8.1.1. Required Header File
	8.1.2. Intrinsic Data Types
	8.1.3. Intrinsic Example

	8.2. MMX Intrinsics
	8.3. SSE Intrinsics
	8.4. ABM Intrinsics
	8.5. AVX Intrinsics

	Messages
	9.1. Diagnostic Messages
	9.2. Phase Invocation Messages
	9.3. Fortran Compiler Error Messages
	9.3.1. Message Format
	9.3.2. Message List

	9.4. Fortran Run-time Error Messages
	9.4.1. Message Format
	9.4.2. Message List

	Contact Information

