<X NVIDIA.

lllllll
lllllllllll
lllllllllllll
lllllllllll
lllllllll
llllllll

VAV =k
ORRESL o

S ST
/l" />

2«»)‘% N
A4\ P(.»l NS
%M%Mﬂ%&m. N

S,

%
N

o\
coe ﬁ..&

DEBUGGER USER'S GUIDE

AR A N
TV, A =S\VRANE DIg e
PAwaimE\EVa e s S0,

\
AT | o\ ==

[(= - Lol =N Xii

Ta 1T Ve [=Te Y0 Lo 11T Vel = PPN xii
[DoTa(U4 1= o1 = o] o FARO xii
Compatibility and Conformance to Standards..........oeeieiiiiiiriiiiriiiiniiriiieeeneeeeneeenns xii
(0= 2= 101 2 1 8 (o] o 1 PPN xiii
L0010 31 o] o1 P PPN xiv
L2011 0] U =425 XV
Related PUDlICAtIONS. . v ittt it et et ittt ee ettt e e eeeaaeaeesaeennssasesennnnnnes XV
Chapter 1. Getting Started.......cccciiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeaeteeeneteenceennncecsnnsennnseannns 1
P R T T o T N = o 0 3 - 1
1.2. Building Applications for DEDUG.ciuuiiiiiiiii e e e e e ee i eeeieeeaanaens 2
1.2.1. Debugging Optimized Code.....cviiiiiiiiiiiiiiii ittt ieiiiiteeeeeenreeeeeeannneeeesanns 2
1.2.2. Building for Debug on WINAOWS.coeuiiuiiieiiiiiiiiiiieii i eiteiteeeeeeeeaeeaaes 2
IO TR U T i [1= i U N 2
1.3.1. Command Line Interface (CLI)..e.uueriuiiritiiiiiiiieiieteieeeeneteeeneerenneeraneaaanns 2
1.3.2. Graphical User INTerfaCe. . ccveenueiiiiiiiiiiiiiieiiiieereeiireeeeaenrnneeessessnnnneesaeannnes 3
1.4. Co-installation ReQUIrEMENES. . ..uui ittt e ettt ettt eeiireeeeeeeannaaaeens 3
1.4.1. Java Virtual Machine.ooiiiiiii i i e eeeeas 3
(S T = Ll =T o0 [T« S P PP 4
1.6, Program LOad. . .oouiiiiiiiiitiiii i ettt ettt et eeeeeeaneeeanaeeeaneeeanneeranneeennes 4
O A 1§ 4= L o T o U= 4
1.8, Program ArChit@CtUIE. ..o ettt e et e it et tetaeeeeneeeasneeeanneeeenaeeannens 4
Chapter 2. The Graphical User INterface.....ccccieiieiiiiiniiiiniieiiniieiniossnsiossasesssstossassosnnse 5
2.1, MaiN COMPONENTES. ... eettttieeiitttteeeitetteearaneeeeeeenaeeesesannnessseesnnsessssesnansasssanns 5
2.2, SOUICE WINAOW. .. nnetittetet ettt e et eeetereanteranneeeannerennnesannneeannesennnesennneenn 6
2.2.1. Source and AsSembLly DiSPlays.ceueeiueeiuteiieitiiiteiitiitiitiitietietiineianernaennes 7
2.2.2. Source Window ContexXt MENU........oiutiiiiiiriiiiii e eriieeererearerenneeenneenans 7
00 T = 1 O o o U o ¥ T N 8
200 T R = 11 o 3 e 8
2.3.2. DrOP-DOWN LiSTS e tiiiiitttttiiiiiittetetiiitteeeteaieeeeeeeeasseeeesesnnseeeesesassseeeseannnes 9
2.4, Program /0 WINAOW.ueiiiiiiiietttrieniineterreeainereeseessnneeessessnnnnessssssnnnsesssssnnnnes 10
2.5. Debug Information Tabs.....cciuuiiiiiiiiiiiii it it ettt e ee et eeeiaaeeaan 10
2 T B 0061110 F= T To B - 1o DO PP 10
R T A < 3 - o J 11

P T T €] o 18 o1 I | o F PP 11
P20 T T o) g <ot [N - o S 12
R T TR O 1L B = Vel G - | T PP 13
P2 TN < T o Tot= 1 3 -1 o T 13

P T A =T 1 1 To] VA - o T O P PSP 14
2.5.8. MPI MESSAgES Tab....uueiiiiiiiiiiiiiii i teiiit et eeeiieteeeeennnaeeessesnnnesessesnnnnnes 15

Debugger User's Guide Version 2019 | ii

2.5.9. Procs & Threads Tab.....eeeiiiiiiiiiiiiiiiiiiii ittt etiiiiieeeeeesssnnteeeeeeannnnns 15

T L T 1 1 =T S - 1 T PP 16
0 T OO - Y UL - o T 17

2 TR T U = - N 18
2 T R o 1 L= T o O 18
2.6.2. Edit MENU...uuiiiiiiii ittt ettt ettt ettt e et et seatsaneanneenneanaeanaanns 18

2 T TR 1T T o T 19
2.6.4. CoNNECHIONS MENU. . iiiiiiiiiiiiiiiiiiiii ittt teeeeeeeeeteeeeeeeeeeeeeeeeesssnnnnnnsnnsnnnnnes 20
2.6.5. DEDUZ MENU. ..ciiiittiiiiiiiittttetiiiteeeeeeineeeeresannaeeesessnnnneesessnnnnsesssssnnnnees 20
2.6.6. HElP MENU. . .uiiiiiitiiii ittt ettt et eeeneeeeaneerenneeeaneesenneesennesesneesannes 21
Chapter 3. Command Line OPtioNs....ccceeiieiiiieneeieeeeenneeteeesenencstecsssenassesssssnssssccsssnnnns 22
3.1. Command-Line OptioNs SYNtaX....ieeiuietiiiiiitttieiiiiteeieeiiieeeeeteeiiseeeeseseinsseeeeennns 22
3.2, CommMaNd-LiNg OPtiONS. .. uueetitteriettereieieteteeenrnneeeeseesnnneessessnnnsessessnnnessssannnns 22
3.3. Command-Line Options for MPI Debugging.......cccuviiiiiiiiiiiiiiiiiiiiii i eeeeiaeeee, 23
I VA Ol 2 =T | = Tot o P PP 23
Chapter 4. Command LangUage......cceeeiieiiinneeteeeenenaeeecessonnscecesessnnssecsessnssssccsssnnnssces 24
4.1, ComMMANA OVEIVIEW. . ettt ettt eet e et e et eeateenteaneeaatsaassanesaresnnesnnesnnens 24
4.1.1. ComMMANd SYNEaX .t eeiiiiittetteeiiieeeereriieeeeeeeeinaeeeeeesnnseseeeessnnnseseessnnnseseeennns 24
4.1.2. COMMANA MOAES. ...t eittieittieetteeitteeeteteanteeennteeaneeeesneeeanneeesneesesnseeenneeenn 24
A]] - 0 25
4.3, SYMDOLS. . et ettt rae e 25
4.4, SCOPE RULES. . ettiiiiiiitt ittt eteeeieeeereenaeeeeeeennnneeeesesnnnnsesssssnnnnesssesnnnneessonnn 25
4.5, Register SYMbDOLS. .ottt i ettt ettt et ettt ee it et eaaaiaaeean 25
N Yo U ol @ [3N o Tat= Y o] 1 1 PN 26
R)4 [or- | 2 (o ol (T PP 26
R TRY - L= 0T 0 3O 27
B TR Y3 28
4.9.1. EVeNnt COMMANGS. . .ueuutennteiteiteeteeteenteentteateantranetanesaeesneesneesnnesseeneeensens 28
4.9.2. Event Command ACTION.ointiiii ittt e e e et e eeneeeaaeeeaaens 29
TR o o =33 o] - P 30
2 T R O P 32
4.11.1. Command-Line DebUZGING.....couuiiuiiitiiitiiiiiiiiii ittt eeereaeaaens 32
4.11.2. GUI DEDUGGING. . eeeiiiiiii ittt it eeeiieeeeeeennneeeesesnnaneessssnnnneesssanns 32
4.11.3. MPL DEDUGZING. ¢ttt ittt ittt et e e eeteateaneeanaeaneeaseeaseeaseenneanes 32
Chapter 5. COmMmMaNd SUMMAIY....ciiiiiieeetieeieaneetecescnassscesosnnssscsssssnssscsssssnssssccsssnnnas 33
5.1. Notation Used in Command SECHIONS.iiiiiiiiiiiiiiiiiiii ittt et eeeeiaaeeeeanas 33
5.2, COmMMANA SUMIMAIY ..t ttittttereenueeeerearnneneeseesnnnneeseesssnnsessessnnnsessesssnnnesssssnnnns 33
Chapter 6. Assembly-Level DebUZGiNgG....ccoeeeiiiiiieeeteeeeisraneeeeeesnneceecesssansececessnnsscccns 46
6.1. Assembly-Level Debugging OVerVIEW.c..uiiiiuiiiiit it iiiteiieteiteeeneteeareerannaeeanes 46
6.1.1. Assembly-Level Debugging on Windows........coiiiiiiiiiiiiiiiiiiiiiiiieeeieiiiieeeeeaeanns 46
6.1.2. Assembly-Level Debugging with Fortran..........cceeiiiiiiiiiiiiiiiiiiiiiiiiieiieeeieeenn. 47
6.1.3. Assembly-Level Debugging with C++. . i i e 47
6.1.4. Assembly-Level Debugging Using the PGl Debugger GUI........cccccvviiiiiiiiiiiiinnnnnnnn. 47

Debugger User's Guide Version 2019 | iii

6.1.5. Assembly-Level Debugging Using the PGI Debugger CLL.......cceiiiiiiiiiiiiiiiiiinnnnnnn. 48

6.2. SSE Register SYMDOLS. . uuut ittt ittt e e ettt i e et et e e eraeeeaiaeeaaeeeanaean 49
Chapter 7. Source-Level Debugging......cccieiiiieneeieieiinneeeeeeiernneereeeesnnaeseccessnasssccsannnnes 50
7.1, DEDUGGING FOrtran. . uiittiiittiiit it e it eeiteeeieteeeneeeennteeanaeeeaneeeanneeesnseeesneeenn 50
2% I O o d - L T 1Y o 1= T PP 50
0 B A - - £ 50
% T TR 0 o= - 1 (] - F P PPN 50
7.1.4. Name of the Main ROUTINE......iviuiiiii i e e e e et eenaeeaaneans 51
2% R TR (o001 14 To] T =1 o T G F O N 51
7.1.6. Internal ProCEAUIES.utiiett et eeit et eeeteeeenteeeneeeeaneeeanneeeannseesnsesennnennn 51
72200 O A T T 11U 52
7.1.8. MOAULE ProCeAUIES. .. ciittreitiie et terteeeeerereeeeeeerenaeesenaeseaneesenneseennens 52
7.2, DEDUGGING . eeiiiiiiiiii ittt teeeieeeeeeaennnneesesesnnnneessssnnneesssesnnnneessssnnnnes 53
7.2.1. Calling C++ Instance Methods.....couiiiiiiiiiiiii i it i e e iiaaaeen 53
Chapter 8. Platform-Specific FEatures......cueiriiiiieiiiiiiiiiieiieeineeeeeeecanecensncccnnncaanns 54
8.1. Pathname ConVENTIONS.cinutirit ittt et e e et eeneeeeaneeeanneesanaeseannesannees 54
8.2. Debugging With Core Files.....cieiuiiriiiiiiiiiii i e ieeeeeneeeeneeeeneeeannaenn 54
S T [T | £ PPN 56
8.3.1. Signals Used Internally by the Debugger.........cccvvuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeas 56
8.3.2. Signals Used by LinuX Libraries......ceeeiieeiiiiiiiieiiiieiiieeeeeeeinneeeeeessnnnneeeeennes 56
Chapter 9. Parallel Debugging OVeIrVIEW.ciieiiiiieieiiereieneeennceesnescscnsscsenssssnnscannaes 57
9.1. Overview of Parallel Debugging Capability......ccceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeereennneeeess 57
9.1.1. Graphical Presentation of Threads and ProCesses........ccveveeeriieeriieeeneneeennneeennnnns 57
9.2. Basic Process and Thread Naming......ooivieiiiiiiiiiietiireiiieeeteeennnneeessessnaneeessennnnes 57
9.3. Thread and Process Grouping and NamiNg......coiiiiiiiiiiiiiiiieeeiieiiieeeeeeiaieeeeeeennnnes 58
0.3.1. DEDUG MOES. .. ettt e et et ettt et e et e renaeeeaaeeaanaeeanneeannes 58
9.3.2. Threads-0nly DebUGGING.uuiiiiiiiiiiiiiiiiiii ittt eeeiieeeeeeeainaeeeeeennnneneens 59
9.3.3. Process-0nly DebUZGGING.cuuuuiiiitiiiitiiiiiiieieietieieeeeieeeaaeeeanaeeaanaeeannesns 59
9.3.4. Multilevel DebUZGING.ciiiiiiiiiiiiiiii it ettt eeeieeeeeaeennneeeesennnnnnes 59
9.4, Process/Thread Sets......oiuueitiiiiitiiitiiitiitii ettt tatetaeetreeeneesnteaneeenseensees 60
b B T - T4 4 1= Ta B oY A] - PPt 60
9.4.2. P/t-set NOTAtION...ouuiiii it 60
9.4.3. Dynamic VSs. STatiC P/ l-SelS.ciieiieiiiiiiiii it eeeiiieeeereenneeeeeaenrnneeeseannn 61
9.4.4. CUrrent VS, PrefiX P/l-SBl . e ieetiiiitieii it reieeertereeeereneeeeaneerenneeseneeennns 62
9.4.5. P/t-SEt COMMANAS. . uuutttttieiiietteteeeieeeeeeeannneeeesesnneeessessnnenesssssnnnneessesnnnes 62
9.4.6. Using Process/Thread Sets in the GUI.......coiiiiiiiiiiiiiiiiiiiiiiii e 63
N T B O =T LI W o 1 < N 64
9.4.6.2. SElECt @ P/t-SOtuuiiiiiiiiiii ittt ittt ettt e ettt ee e eeaaraaaa 65
9.4.6.3. MOify @ P/t-SBtuueiiitiiiiiiii it et ettt e et e it e et e eaaraeaanas 65
9.4.6.4. REMOVE @ P/E-SOt iiiiiiiiiiiiiiiii ettt teeeiieeeeeeeeataeeeeeeennseseesennnnseeens 65

B A o Y Y= A U 1 V=L PN 65

L TR 0o 314 =TT [T = 66
9.5.1. Process Level ComMandsS.ceeuiieeuetiiiuteeeieeieaeerennteeaneeeesneeeenneeesnnesesnneenns 66

Debugger User's Guide Version 2019 | iv

9.5.2. Thread Level Commands......vvuuiiiiiieiiiiiiiiiieeetttiiiieeeeeeessnnteeeeeessssnnseseeeeenes 66

9.5.3. Global COMMANGS. ..cuuttinttitteteeteettetteeeteeeeeeeraeerrereeereeneeeneeenesonssensenns 67
9.6. Process and Thread Control.........cceveiiiiiiiiiiiiiiiiiii i rerereeeerenaeereneeranneens 68
9.7. Configurable StOP MOde.ot i e e e e e it e e eeraeerenaeeannaas 68
9.8. Configurable Wait MO, . .iiiuiiiiiiiiiiiiii ittt et ettt eeeiieeeeeaeennaneeeeeennneaeeens 69
0.0, SLATUS MESSAZES. . e ttttitttterereteeteeeaneeeseananeeessessnansesssessannasssessnnnsessessnnnns 71
9.10. The Command PromPt. ...ttt eeiiie et reeaneeeeeasannneesesssnnnnseseannn 72
B B R - U= 1 (S R =T o 1 PN 73
9.12. Parallel Statements. .. .ot et et e e aaeaaas 74

9.12.1. Parallel Compound/Block Statements......ccceviiieiiiiieiiiiiiriieiiieieieenaneeeannees 74

9.12.2. Parallel If, Else Statements. ...ttt teeeeeeeeeeeeaannnnnn 74

9.12.3. Parallel While StatemeEnts.coiiiiiiiiiiiiiiiiiiii i it ettt e eeieeeeeaaannaas 74

9.12.4. RetUrn StatemMeNntS. . ..ottt ettt et e e eaaees 75

Chapter 10. Parallel Debugging with OpenMP........cccciiiiiiiiiiiiiiiiiiieiiiencieiensescnssonenses 76
10.1. OpenMP and Multi-thread SUPPOIt......ciiiuiiiii e e e e eeieeeenaeeaaneans 76
10.2. Multi-thread and OpenMP DebUZZINgG.uuiiiiiiiiiiittiiiiiiiieeeeiiiieeeeeeaiineeeeeennnnes 76
10.3. Debugging OpenMP Private Data........ceeieeieitiiiintieeieeieieeeaineeeeieeeesneeeenneeennaeens 77

Chapter 11. Parallel Debugging with MPL.......ccceiiiiiiiiiiniiiiieiiiineioienseosessessassosenssosenses 79
11.1. MPI and MULEi-ProCess SUPPOIt.uieuiiieiiiniiitiiit i eiieiiteiiteenteenteenteenteaaeeaaeanns 79
I 1 o o T I P 79
T T 1o I o T 0 = Tl 1T 80
L T o B4 [T [0 N 80
11.5. Deprecated Support for MPICH1, MPICH2, MVAPICHT.....ciuriiiiiiiiii i eeieeenans 80
11.6. Building an MPI Application for Debugging.......ccvvueeiiiiiiiiiiiiiiiiiiiiiieiiiieaeanns 80
11.7. The MPI LaUunCh PrOgram. . cciieiiiietiiiiiitttiiiiiitetieeeiieteeeeeeisseeeeesessssseseesennnnes 80

11.7.1. Launch Debugging Using the Connection Tab.......ccccoeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeaeen 80

11.7.2. Launch Debugging From the Command Lin€.......cccoviiiiiiiiiiiiiiiiiiiiiiiiiiieeenennnns 81

R A TR 1 O P 81

L A o PO PPN 81

LR A TR N/ o (1 N 82

11.7.6. OPEN MP .. ettt ittt e ettt teeernaeeeeeesnneeeesessnnanesssssnnnsesssssnnnes 82

L A A € I | P PSPPI 82
L T o o el 2 R] o o] P N 83
11.9. Process SYNChIrONIZation. ..o .uiiiiiiiiiiii it ittt et it teeeieeeeeeeainaaeanan 84
11.10. MPI MESSAZE QUEBUES. .. uvettiieineettreenreeeeeeeennnneeeesessnnneesssesnnnseessessnnssessssannnns 84
I T TR o I €T (o 16 o - F S PPN 85
11.12. Use halt instead of CHrl+C...o.uiiiiiiiiiiii i e ee e eees 85
11,13, SSH @Nd RSH. ..ttt ittt ettt e et eeeeeneeaeeaneeaneeaneesnsesneesneeaneenns 85
(I T VLS o T o T O I PO TN 86

11.14.1. SEtEING DISPLAY ... u ettt it teteeteeteeteeeeeeaeeeneernreeneeseeeneesnessneesnessnaenns 86

IO B 3 A V1 [T B @ o 4 [11 = S PPN 86

Chapter 12. Parallel Debugging of Hybrid Applications.......c.cceiiiiiiiiniieiiniiiieiciineccincenns 87
12.1. Multilevel Debug MOdE.........uiinuiiiiiii ittt et et et reaeeeaeaaens 87

Debugger User's Guide Version 2019 | v

12.2. MULEIlEVEl DEDUGGING. .. vttt ittt it et et e e eeeeeisaeeeeanannaeas 87

Chapter 13. Command RefereNCe......ciiiieiiiiiiiiieieireteeseeeenneteesnecessnsecanncecsnsscannsacnns 89
13.1. Notation Used in Command SECHIONS.ciiiiiiiittiiiiiiiieieiiiiteeeeeaiaeeeeeeennneneens 89
13.2. Process CONEIOL. .. .uiietiiiitiiiitteet ettt e et e et e eeaaeeeeeeeeaneeeanneeesnsesenneeeennaennn 90

(K T IR Y - Tl DO PP PPP 90
K T 00 A oo] 1 | 90
R T2 TR = o T = PP 91
I T A TR = v Tl o PP 91
L T TR o - | L PP 91
(K T TR o Y- T N 91
LR T A £ =) S PP 91
(A T 1 1= 4 1 PP PPN 91
(I 720 o oo PP 91
(R T A 1 O o] ool PP PPN 91
L T T IR« [0 PP PP 92
(R T A I A =] 4 U o PO PP PP 92
1K 0700 1 TR 4 U o T N 92
(R I B Y - | 1S P PP 92
L0 700 o TR = o 92
(A T = o) PO PP 92
LG T 2 I A = o T T | 92
(0 T TRV o PPN 93
(R I B T o Tt Dt 93
13.2.20. thrEad. ... oottt i e e e et e ettt ettt e et e et e eaaae e aaraeeaaaaann 93
LR T A A T 3] =T Uo £ PP 93
LT - | | PPN 93
13.3. Process-Thread Sets. .. .uiiiiiiiiiii ittt e eiie et eeeaaeeeeeaeninsaeeeeannnnanes 93
L T T B = =T PP PP 93
(I O T A o Yol U - PP PP 94
T B T [Te [=) S P PP PP PP 94
13,304, VIEWSEE .t ttttiiiiiii it ittt et ettt et eeeeaeeeeesennneeessessnnnnesessnnnnasessssnnnnneens 94
I T T TR 1 ol 1Y PP 94
L T T o | PPN 94
(I T S IO o = |~ PP 94
T B o =T | PO PP 95
LR T T T o =T | T P PPN 96
1K T B B ot Y o 1 PPN 96
LR T 0 T o (=T 1 (PP PPP 96
LT T« 1= U] T PP 96
LR R A« | 13101 (= T P PP PP 97
L T 8 T« [T PP PP PP 97
I T T TR« o) PO P 97
R T TR =T o =1 o= 97

Debugger User's Guide Version 2019 | vi

(R T B T 417 ol P PP 98
13.4.12. hWatChbDOth. ... ee i e e ettt e e e ee e eeenes 98
13.4.13. hWatChread. ...coneiiii i ettt e et e et e e ennneeeneeaannanns 98
LG T S T3 o = 98
K T T TR - 1 L N 98
L0 T T TR oo P 99
(I T S I AR o o) PO PP 99
13418, ErAC . it tteeeeeeeeeeeeeeeeeeeeeeeeeeseeseesesssnnnnnnnnnnnnnnnnsssssssssnsnnnnes 99
LR T T TR o - U < 99
(I R - Lol S PP PP 100
TR O A T o - Tt 1 PP 100
(R A 1) (=T | S P PP 100
13.4.23. UNDBIEaKI. .ottt ettt ettt et aaes 100
13,424, WalCh. ..ot i et ettt e et e e e eaaaaaes 100
TR B A T - Y el o | P PP 101
K TR G T = o T PN 101
G TR A Y =T o | P 101
13,5, Program LOCatiONS. ..cuueueeettteeiieteeteeaiiaeeeeeeennneeeeeesannseeeesesnnsesssssssnnssesessnnns 101
LI T I 1 o 1= PP PPPPPP 101
05 70 10 A o « 102
LR T8 TR e | 13T o 1S S 102
S 70 10 T T | L P 102
L T8 T £ (= T PP PPN 102
L E 0 T TR = 102
(R R T A £ [S P PP 102
L0 T8 R o 1V« PO PPN 103
13.5.9. STACKAUMIP . . et itiiiii ittt ittt et ee e ittt e eaeaiaeeeeeeennsaseseesnnssseeenannnnes 103
BT T R - Tel o = ol T PPN 103
K T T I IO = 103
1 T T 2 B PP PPN 103
15 70 T A 104
13.6. Printing Variables and EXPressions..........oeeieeiiieiiieeiiteiiteiiteiiteiiteinteeneeeneeeeenes 104
(0 T T IR o | 1 | P PPN 104
(T o {11 P PO PP 105
L TR TOC TR -l | F 105
(R T T o' | P PP PP 106
S TR TR TR L= o PPN 106
(R I T e 1] - Y PP PP 106
L TR TR A o 1= N 106
K T T TR Tt N 106
TR TR TR o o =R N 106
13.6.10. UNAISPlAY ..t utttiiiiiittiieiiiteteeeiiteeeteetraneeeesessnneeeeesssnnseeeesessnsanessesnnns 106
13.7. Symbols and EXPressions........veuiieeiiieiiitiiitiiitiii ittt eirteeiteenteetreneeeneraaeanaes 106

Debugger User's Guide Version 2019 | vii

1 T A - 13 = o PO PP P 106

L T 7 R ot 1 | R PPN 107
(R T T [=Tol - - L (o] o TR PP PP PP 107
L T 8 T =111 Y2 PN 108
LR T8 T A7 | PP PP 108
L A T o7 | PP PPN 108
LI O A A - R P PPN 108
I T TR 4o) P 108
L 28 R 1Y/ o< PPN 108
I T TR oo o TN 109
I TR T IR o = 13 P 109
(R IR T A o b= < PP PP 109
10 2 TR T =T of 3 PP 109
LR TR T T e (o) o FO PP 109
I TR 705 TR =11 = P 110
LRI T T 1 (= T P PP PPN 110
LT T { (oo T | P PP PP 110
(R IR T T 1 T 11 1= S P P PP 110
L TR R ol = e 110
L T T8 O TR O o PPN 110
(TR T B B 1T o PP 110
L TR T I 2R | [o P 110
LRI A 3 o [(=) ol ol =2 S PP Pt 111
LK T 2 IO o TS P 111
LRI 2 R o TR PP PPN 111
I T TR T = L 111
LRI R T = - Ve [| PP PPN 111
I T 205 T] o J N 111
13,10, MEIMOIY ACCESS. t e tinnttttteeeireteeteeainaneseeesssssesseessnnsseseesesnssessesssnnsseseesennnnes 111
0 T O I [0 1| o T PP 111
(I 0 L0 0 R 1 4T [L1111 o TR P PP 112
1311, CONVEISIONS. .t tttteeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeesesessessssesesnnnnnnnnnnnnnnnnnnnnnnnes 113
11 2 T TP - U [| PP 113
(0 0 I OO 2R ¢ Ut T o 1S P 113
0 T T TP TR 13T 113
(I R R T T <= O PP 113
(0 T 1200 B oo o = o PP 113
LR T A AR« | Y olo] 1 4 1= ot P PP 114
0 T 20 TR - 1 1 114
13,13, MISCELLANEOUS. .. ettt ittt ettt et teeeieeeeeeeeneeeeeessnneseseessnnnseseesannnes 114
0 T B T - 11 - T P PP 114
LR T K B R« || =Tt (o] Y PP 114
0 T T T 1= o T P PP 115

Debugger User's Guide Version 2019 | viii

(I R T S 01 15 o] V2 PP PPN 115

T BT T - 1y (T U« L T PP 115
(I 0 K T T Uo T« S PP PPt 116
100 T 1 T A 4 To o] o | 116
(R T K I TR o= 1= 1 1 PP PPN 116
L T TR TR =7 0] | 118
(0 T 1 T L0 TR T o) PPN 118
13130, B NIV ettt teeeeeeeeeeeeeeeeeeeseeseseeseseessesssnnnnnnnnnnnnnnnnssnnnnnnes 118
0 T I T 0 o = | PP 118
0 T T I TR (=T o T PP 118
L0 T 1 T B TR o 1H | o =T P 119
(R T I T [F- 1 - L P PP PP PP 119
0 T T TR T Y T PP 119
Chapter 14. Contact INformation.....cicieeeeiiiiiieieiiiiiineeeeeerernneereceesoneesecesssnassccecnnns 120

Debugger User's Guide Version 2019 | ix

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

Default Appearance of the Debugger GUIc.vviiiiiiiiiiiiiiiiiiiiii it eeeianeees 5

SOUICE WINAOW . .uiiieiiitiitiiiii ittt ettt e et e eneeeneenees 6
L0000 = A 1T 3T 8
S10 o] 0 o] N FoTo] o - | N 8
Drop-Down Lists 0N TOOIDArciuuiieiiiiiiii e eee e 9
Program 170 WiNAOW ...ueeiiiiiii i i e e et e i e et eeiaeeeeneeeenneeeanaeeannens 10
CommaNnd Tab ..couuiiiniiiiiiiiii i e 11
EVENES Tab cuveieiiii i 11
(€T o0 o3 -1 o T PP 12
CoNNECHiONS Tab c.ueueiiiiiiii e 12
Call StACK Tab .eineiiiiiiii ettt 13
Call Stack Outside Current Framecocuiiiiiiiiiiiiiiiii i neeeeas 13
o Tat= 1 - 1o P 14
LT o] VA F- | o B PP PPPP 14
Memory Tab in Decimal FOrmatuveiiiriiiiiiiiiiiiiiiiiieeiiiieeeeenrneeeereannnnneess 15
MPI MESSAGES Tab v vviiiiiittiiieiiii e teiiiteeeeerrnneeeerasnnnenessessnnnnesssssnnnnsessenns 15
Process (Thread) Grid Tab ...eeeeieiiiiiieiiiiiiitieiiiieeeteenrneeeeessnnneeeesesnnnnseeens 16
General PUrPOSE REGISTOIS . uuuuiiiiiiiiii ittt ettt teeiieeeeeaeennreeeesennnnnnes 17
1 L0 - o N 18
(€T o100 LI - T P 64
Process/Thread Group Dialog BOXc.cieuiiieiiieiiieiiiiiiiiiiiieiieiitiiieieeeeeennees 65
OpenMP Private Data in Debugger GUIoiiiuiiiiiiiiiiiiiiiiiiiiii e eiieeanaeens 78

Debugger User's Guide Version 2019 | x

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Colors Describing Thread State ..cceeeiiiiiiiiii ittt et reeiieeeeeaennnneeeeeanns 16
PGl DEDUGZEr OPEIatOrS «uveeeiiiiiittttteeeiiitteeeeeiiaaeeeeeeesnaeeeeesssssssesesessnnenseeeennns 31
PGl Debugger COmMMANASuiiiiiiiiittiiiiiiteeteeiiieteeteeeiateeeesesssseeeeeessnaseseennn 33
DEDUG MOAES .ottt iii it ettt ettt ittt teetae et teeaaaeeeseeannsaeessennnneseeenn 58
Thread IDs in Threads-only Debug Modeccviiuiiiiiiiiiiiiiiiiiiii i eeeeens 59
Process IDs in Process-only Debug MOdecc.viiiiiiiiiiiiiiiiiiiiiiiiiriieceeiieeeeaees 59
Thread IDs in Multilevel Debug MOdeunuiiiiiiiiiiiiii i eeeeneeeeenns 60
P/E-SET COMMANGAS «itttttitiiiitteteeeriaeeeeeeennaeeeesesnnaneeessennnneeessessnnnnesssennnnes 63
Parallel ComMMAaNdSovuuiiniiiiiiiiii i ettt raeeaeenes 66
) o] o I Vo T = P PP PP 68
LA L oY [P 69
L L 211 - 1Y o) S PPt 70
SEATUS MESSAGES . .eetntiiitiiit ittt ettt ettt ettt e setatesaateeinaanes 71
Thread State Is Described Using Color.....covuiiiiiiiiiiiiiiiiiieiiiieiieeieeeeieeeaanaanns 77
933 =] 0V @] 1 0111 = T L3 N 116

Debugger User's Guide Version 2019 | xi

PREFACE

This guide describes how to use the PGI debugger to debug serial and parallel
applications built with PGI Fortran, C, and c™ compilers for X86, AMD64 and Intel 64
processor-based systems. It contains information about how to use the debugger, as well
as detailed reference information on commands and its graphical interface.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient
in programming with the Fortran, C, and/or C™ languages. The PGI tools are available
on a variety of operating systems for the X86, AMD64, and Intel 64 hardware platforms.
This guide assumes familiarity with basic operating system usage.

Documentation

All documentation for PGI compilers and tools is available online at PGI
Documentation, www.pgroup.com/resources/docs/19.1/x86/index.htm.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of this
PGI product. For information on installing PGI compilers and tools, refer to the Release
Notes and Installation Guide included with your software.

For further information, refer to the following;:

> American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

» ISO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

Debugger User's Guide Version 2019 | xii

https://www.pgroup.com/resources/docs/19.1/x86/index.htm
https://www.pgroup.com/resources/docs/19.1/x86/index.htm

Preface

» Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» The Fortran 2003 Handbook, Adams et al, Springer, 2009.

> OpenMP Application Program Interface, Version 3.1, July 2011, http://
Www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation
(September, 1984).

» IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard
Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» American National Standard Programming Language C, ANSI X3.159-1989.

» ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva,
1999 (C99).

» ISO/IEC 9899:2011, Information Technology — Programming Languages — C, Geneva,
2011 (C11).

» ISO/IEC 14882:2011, Information Technology — Programming Languages — C++,
Geneva, 2011 (C++11).

Organization

The PGI Debugger User’s Guide contains these thirteen sections describing the PGI
symbolic debugger for Fortran, C, C"" and assembly language programs.

Getting Started
contains information on how to start using the debugger, including a description of
how to build a program for debug and how to invoke the debugger.

The Graphical User Interface
describes how to use the debugger's graphical user interface (GUI).

Command Line Options
describes the debugger's command-line options.

Command Language
provides detailed information about the debugger's command language, which
can be used from the command-line user interface or from the Command tab of the
graphical user interface.

Command Summary
provides a brief summary table of the PGI debugger commands with a brief
description of the command as well as information about the category of command
use.

Assembly-Level Debugging
contains information on assembly-level debugging; basic debugger operations,
commands, and features that are useful for debugging assembly code; and how to
access registers.

Sourec-Level Debugging
contains information on language-specific issues related to source debugging.

Platform-Specific Features
contains platform-specific information as it relates to debugging.

Debugger User's Guide Version 2019 | xiii

http://www.openmp.org
http://www.openmp.org

Preface

Parallel Debugging Overview
contains an overview of the debugger's parallel debugging capabilities.

Parallel Debugging with OpenMP
describes the debugger's parallel debugging capabilities and how to use them with
OpenMP.

Parallel Debugging with MPI
describes the debugger's parallel debugging capabilities and how to use them with
MPL.

Parallel Debugging of Hybred Applications
describes the debugger's parallel debugging capabilities and how to use them with
hybrid applications.

Command Reference
provides reference information about each of the debugger's commands, organized
by area of use.

Conventions

This guide uses the following conventions:

italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at

Debugger User's Guide Version 2019 | xiv

https://www.pgroup.com/products/index.htm?tab=compat

Preface

https://www.pgroup.com/products/index.htm?tab=compat for a comprehensive listing
of supported platforms.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGl 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, see the PGI glossary at
pgicompilers.com/definitions.

Related Publications

The following documents contain additional information related to the X86 architecture
and the compilers and tools available from PGI.

» PGI Fortran Reference Manual, www.pgroup.com/resources/docs/19.1/pdf/
pgil9fortref-x86.pdf describes the FORTRAN 77, Fortran 90/95, Fortran 2003, and
HPF statements, data types, input/output format specifiers, and additional reference
material related to the use of PGI Fortran compilers.

> System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

» FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation
(September, 1984).

» IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
» The C Programming Language by Kernighan and Ritchie (Prentice Hall).

» C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall,
1987).

> The Annotated C"" Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T
Bell Laboratories, Inc. (Addison-Wesley Publishing Co., 1990)

» PGI Documentation, www.pgroup.com/resources/docs/19.1/x86/index.htm
including PGI Compiler User’s Guide, PGI Reference Manual, PGI Release Notes,
FAQ, Tutorials and more.

» MPICH https://www.mpich.org
» OpenMP website, http://www.openmp.org

Debugger User's Guide Version 2019 | xv

https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/resources/docs/19.1/x86/index.htm
https://www.mpich.org
http://www.openmp.org

Preface

Debugger User's Guide Version 2019 | xvi

Chapter 1.
GETTING STARTED

The PGI debugger is a symbolic debugger for Fortran, C, C"* and assembly language
programs. It provides debugger features, such as execution control using breakpoints,
single-stepping, and examination and modification of application variables, memory
locations, and registers.

The debugger supports debugging of certain types of parallel applications:

» Multi-threaded and OpenMP applications.

» MPI applications.

» Hybrid applications, which use multiple threads or OpenMP as well as multiple
MPI processes.

Multi-threaded and OpenMP applications may be run using more threads than the
available number of CPUs, and MPI applications may allocate more than one process
to a cluster node. The debugger supports debugging the listed types of applications
regardless of how well the number of threads match the number of CPUs or how well
the number of processes match the number of cluster nodes.

1.1. Definition of Terms

Throughout this manual we use several debugging-specific terms. The program is the
executable being debugged. The platform is the combination of the operating system and
processors(s) on which the program runs. The program architecture is the platform for
which the program was built.

Remote debugging introduces a few more terms. Remote debugging is the process of
running the debugger on one system (the client) and using it to debug a program
running on a different system (the server). Local debugging, by contrast, occurs when

the debugger and program are running on the same system. A connection is the set of
information the debugger needs to begin debugging a program. This information always
includes the program name and whether debugging will be local or remote.

Additional terms are defined as needed. Terminology specific to parallel debugging is
introduced in Parallel Debugging Overview.

Debugger User's Guide Version 2019 | 1

Getting Started

1.2. Building Applications for Debug

To build a program for debug, compile with the -g option. With this option, the
compiler generates information about the symbols and source files in the program and
includes it in the executable file. The option -g also sets the compiler optimization to
level zero (no optimization) unless you specify optimization options such as -0, -fast,
or -fastsse on the command line. Optimization options take effect whether they are
listed before or after —g on the command line.

1.2.1. Debugging Optimized Code

Programs built with —-g and optimization levels higher than -00 can be debugged,
but due to transformations made to the program during optimization, source-level
debugging may not be reliable. Assembly-level debugging (e.g., accessing registers,
viewing assembly code, etc.) is reliable, even with optimized code. Programs built
without -g can be debugged; however, information about types, local variables,
arguments and source file line numbers are not available. For more information on
assembly-level debugging, refer to Assembly-Level Debugging.

In programs built with both ~g and optimization levels higher than -00, some
optimizations may be disabled or otherwise affected by the -g option, possibly changing
the program behavior. An alternative option, ~gopt, can be used to build programs
with full debugging information, but without modifying program optimizations. Unlike
-g, the ~gopt option does not set the optimization to level zero.

1.2.2. Building for Debug on Windows

To build an application for debug on Windows platforms, applications must be linked
with the -g option as well as compiled with -g. This process results in the generation
of debug information stored ina *. dwf’ file and a * . pdb’ file. The PGI compiler driver
should always be used to link applications; except for special circumstances, the linker
should not be invoked directly.

1.3. User Interfaces

The debugger includes both a command-line interface (CLI) and a graphical user
interface (GUI).

1.3.1. Command Line Interface (CLI)

Text commands are entered one line at a time through the command-line interface. A
number of command-line options can be used when launching the debugger.

For information on these options and how they are interpreted, refer to Command Line
Options, Command Language, and Command Reference.

Debugger User's Guide Version 2019 | 2

Getting Started

1.3.2. Graphical User Interface

The GUI, the default user interface, supports command entry through a point-and-click
interface, a view of source and assembly code, a full command-line interface panel,

and several other graphical elements and features. There may be minor variations in
the appearance of the GUI from system to system, depending on the type of display
hardware available, the settings for various defaults and the window manager used.
Except for differences caused by those factors, the basic interface remains the same
across all systems.

For more information on the GUI, refer to The Graphical User Interface.

1.4. Co-installation Requirements

There are co-installation requirements for the PGI debugger.

1.4.1. Java Virtual Machine

The debugger GUI depends on the Java Virtual Machine (JVM) which is part of the Java
Runtime Environment (JRE). The debugger requires that the JRE be a specific minimum
version or above.

Command-line mode debugging does not require the JRE.

Linux and macOS

When PGI software is installed on Linux or macOS, the version of Java required by the
debugger is also installed. The debugger uses this version of Java by default. You can
override this behavior in two ways: set your PATH to include a different version of Java;
or, set the PGI_JAVA environment variable to the full path of the Java executable. The
following example uses a bash command to set PGI_JAVA:

$ export PGI_ JAVA=/home/myuser/myjava/bin/java

Windows

If an appropriately-versioned JRE is not already on your Windows system, the PGI
software installation process installs it for you. The PGI command shell and Start

menu links are automatically configured to use the JRE. If you choose to skip the JRE-
installation step or want to use a different version of Java to run the debugger, then set
your PATH to include the Java bin directory or use the PGI_JAVA environment variable
to specify the full path to the java executable.

The command-line mode debugger does not require the JRE.

Debugger User's Guide Version 2019 | 3

Getting Started

1.5. Start Debugging

You can start debugging a program right away by launching the PGI debugger and
giving it the program name. For example, to load your program into the debugger, do:
$ pgdbg your program

Now you are ready to set breakpoints and start debugging.

You can also launch the debugger without a program. Once the debugger is up, use the
Connections tab to specify the program to debug. To load the specified program into the
debugger, use the Connections tab's Open button.

1.6. Program Load

When the debugger loads a program, it reads symbol information from the executable
file and then loads the application into memory. For large applications this process can
take a few moments.

1.7. Initialization Files

An initialization file can be useful for defining common aliases, setting breakpoints,
and for other startup commands. If an initialization file named . pgdbgrc exists in the
current directory or in your home directory, as defined by the environment variable
HOME, the debugger opens this file when it starts up and executes the commands in it.

If an initialization file is found in the current directory, then the initialization file in the
home directory, if there is one, is ignored. However, a script command placed in the
initialization file can be used to execute the initialization file in the home directory or
any other file.

1.8. Program Architecture
The debugger supports debugging 64-bit programs.

Debugger User's Guide Version 2019 | 4

Chapter 2.
THE GRAPHICAL USER INTERFACE

The debugger's default user interface is a graphical user interface or GUI There may be
minor variations in the appearance of the GUI from host to host, depending on the type
of display hardware available, the settings for various defaults and the window manager
used. Except for differences caused by those factors, the basic interface remains the same
across all systems.

2.1. Main Components

Menu Bar

Eie Eat view Coonections Debug Heip
Toolbar —»| » @ 11 O 333 & CumentProcess: || Apply: || oisplay:| o Eie:| | I
Omp 190 Program 10
(R prowem cmp_private_data = 1]
: integer array(s) |
3 call cmp_set_num_threads (4)
4 '§OMP PARALLEL DO
5 do 1-1,8
. array(i) = 1
7 enddo
Sl_JuI'l:e o 'SOMP END PARALLEL DO
Window 5 print +, array
10 end
\l 7 z 1y Input Enter | | Clear |
f Command Events Groups Connections Coll Stack Locals Memory MPIMessages Procs & Thieads Registers Status
4
: tactive) | [open |[close
Pefauic: ® Local) Remote [l Atach [l Core [IMPI
Program [c: \cap\ ceationp
Program Args
Debug < [
Information Emaroament
Tabs P] coreFie
Host | user
PGl Bin D |
License Keys | -
k « [oy | o
]
< Connected: Default Host: win7-03.pgl.net ;
Status Message Area

Figure 1 Default Appearance of the Debugger GUI

Figure 1 shows the debugger GUI as it appears when it is invoked for the first time.

Debugger User's Guide Version 2019 | 5

The Graphical User Interface

The GUI can be resized according to the conventions of the underlying window
manager. Changes in window size and other settings are saved and used in subsequent
invocations of the debugger. To prevent changes to the default settings from being
saved, uncheck the Save Settings on Exit item on the Edit menu.

As the illustration shows, the GUI is divided into several areas: the menu bar, main
toolbar, source window, program I/O window, and debug information tabs.

The source window and all of the debug information tabs are dockable tabs. A dockable
tab can be separated from the main window by either double-clicking the tab or
dragging the tab off the main window. To return the tab to the main window, double-
click it again or drag it back onto the main window. You can change the placement of
any dockable tab by dragging it from one location to another. Right-click on a dockable
tab to bring up a context menu with additional options, including and option to close the
tab. To reopen a closed tab, use the View menu. To return the GUI to its original state,
use the Edit menu's Restore Default Settings... option.

The following sections explain the parts of the GUI and how they are used in a debug
session.

2.2. Source Window

The source window, illustrated in Figure 2, displays the source code for the current
location. Use the source window to control the debug session, step through source files,
set breakpoints, and browse source code.

omp.fo0

program omp private data
integer array(S)
call omp sSet nun thresds(4)
fFO0MD DARATTET. DO
do i=1,8
arrayi(i)] = 1

enddo
fFOMD END DARATLET. DO
print ¥, array

W00 ed MW R W D

[
[}

end

[
[

4]

1| i I

Figure 2 Source Window

The source window contains a number of visual aids that allow you to know more about
the execution of your code. The following sections describe these features.

Debugger User's Guide Version 2019 | 6

The Graphical User Interface

2.2.1. Source and Assembly Displays

Source code debugging is the default unless source information is unavailable in which
case debugging will be shown using disassembly. When debugging in source code, use
the View | Show Assembly menu option to switch to assembly-level debugging. When
disassembly is shown, use options on the View menu to toggle on or off the display of
source code, assembly addresses, and bytecode. Source or assembly is always shown for
the current process or thread.

Source code line numbers are shown, when known, in their own column to the left of
the source or assembly display. A grayed-out line number indicates a non-executable
source line. Some examples of non-executable source lines are comments, non-applicable
preprocessed code, some routine prologues, and some variable declarations. Non-
executable source lines can also exist for otherwise executable code when a program is
compiled at certain optimization levels. Breakpoints and other events cannot be set on
non-executable lines.

To the left of the line numbers is another column called the gutter. The gutter is where
the program counter and debug events like breakpoints are shown. The program
counter is represented by a blue arrow and shows where program execution is during

a debug session. Breakpoints can be set on executable source lines and any assembly
line just by left clicking in the gutter. A red sphere will appear at the line where the
breakpoint was set. To delete a breakpoint, either left click on any red breakpoint sphere
or right click and select the option from the context menu. By right clicking in the gutter
at a place without an existing breakpoint, the context menu will pop up and provide the
option of setting a hit count breakpoint. After selecting this option, a dialog will appear
for configuring the hit count number and break condition, i.e. break when the hit count
is equal to, greater than or a multiple of the specified number.

2.2.2. Source Window Context Menu

The source window supports a context menu that provides convenient access to
commonly used features. Right-click in the source window to bring up this context
menu. If text is selected when the context menu opens, the selection is used by the
context menu options.

In the example in Figure 3, the variable array (1) is highlighted and the context menu
is set to print its value as a decimal integer:

Debugger User's Guide Version 2019 | 7

The Graphical User Interface

omp.fo0
1 program omwp private data |~
2 integer arrayi(d)
3 call omp set num threads (1)
4 'F0OMP PARALLEL RO
5 do i=1,5 Brint
ﬁ:) 6 arravy(i] = Ltin
7 enddo Frint Ciptions ¥ Print *
g MFOMP END PARAT Type of String _
9 print ¥, arrs .
Ereak In Ein
10 end =
11 Eind Routine | Qct
Call Foutine | Hex
Copy Dec
Select Al AsCIl
Falding p| 20
E
1| i | I

Figure 3 Context Menu

The context menu in Figure 3 provides shortcuts to the Type Of, the Break In, Find
Routine..., and Call Routine menu options.

2.3. Main Toolbar

The debugger's main toolbar contains several buttons and four drop-down lists.

2.3.1. Buttons

Stap Festart Step Display
Debugging Qver Current

Location
Start Stop Step Step

Debugging |Frogram Into Qut l

bubdb

p @ il O

L

Figure 4 Buttons on Toolbar

Most of the buttons on the main toolbar have corresponding entries on the Debug menu.
The functionality invoked from the toolbar is the same as that achieved by selecting the
menu item. Refer to the "Debug Menu" descriptions for details on how Start Debugging
(Continue), Stop Debugging, Stop Program, Restart, Step Into, Step Over, Step Out, and
Display Current Location work.

Debugger User's Guide Version 2019 | 8

The Graphical User Interface

2.3.2. Drop-Down Lists

As illustrated in Figure 5, the main toolbar contains four drop-down lists. A drop-down
list displays information while also offering an opportunity to change the displayed
information if other choices are available. When no or one choice is available, a drop-
down list is grayed-out. When more than one choice is available, the drop-down arrow
in the component can be clicked to display the available choices.

Current Thread: [0 |~ | Apply: [Au v] Display: [Au ~| File:|

Figure 5 Drop-Down Lists on Toolbar

Current Process or Current Thread

The first drop-down list displays the current process or current thread. The list’s label
changes depending on whether processes or threads are described. When more than
one process or thread is available, use this drop-down list to specify which process or
thread should be the current one. The current process or thread controls the contents
of the source and disassembly display tabs. The function of this drop-down list is the
same as that of the Procs & Threads tab in the debug information tabs.

Apply
The second drop-down list is labeled Apply. The selection in the Apply drop-
down determines the set of processes and threads to which action commands are
applied. Action commands are those that control program execution and include, for
example, cont, step, next, and break. By default, action commands are applied
to all processes and threads. When more than one process or thread exists, you have
additional options in this drop-down list from which to choose. The Current Group
option designates the process and thread group selected in the Groups tab, and the
Current Process and Current Thread options designate the process or thread selected
in the Current Process or Current Thread drop-down.

Display

The third drop-down list is labeled Display. The selection in the Display drop-down
determines the set of processes and threads to which data display commands are
applied. Data display commands are those that print the values of expressions and
program state and include, for example, print, names, regs and stack. The options
in the Display drop-down are the same as those in the Apply drop-down but can be
changed independently.

File

The fourth drop-down list is labeled File. It displays the source file that contains the
current target location. It can be used to select another file for viewing in the source
window.

Debugger User's Guide Version 2019 | 9

The Graphical User Interface

2.4. Program |/0 Window

Program output is displayed in the Program IO tab’s central window. Program input is
entered into this tab’s Input field.

Program IO

[¥

-

4] (¥

Input: [][Enter] | Clear]

Figure 6 Program |/0 Window

2.5. Debug Information Tabs

Debug information tabs take up the lower half of the debugger GUI. Each of these tabs
provides a particular function or view of debug information. The following sections
discuss the tabs as they appear from left-to-right in the GUI's default configuration.

2.5.1. Command Tab

The Command tab provides an interface in which to use the PGI debugger's command
language. Commands entered in this panel are executed and the results are displayed
there.

Debugger User's Guide Version 2019 | 10

The Graphical User Interface

Command

Loaded: C:/Windows/system32 /MSCIF.dll
Loaded: C:/Windows/syscem32/flclib.dll
{[1] Hew Thread)

{[2] Hew Thread)

{[3] Hew Thread)

[0] Breakpoint at 0x140001220, function omp private data, file omp.f%0, line &
#6: array(i) = i

pgdbg [all] 0> print i

1 —
pgdbg [all] 0> princ array(i)
0
pgdbg [2ll] 0> next

[0] Stopped at Ox140001234, Ifunction omp_private data, Ifile omp.f90, line 7
#7: enddo

padbg [all] 0>
<] M [[»]

[4

Figure 7 Command Tab

Using this tab is much like interacting with the debugger in text mode; the same list of
commands is supported. For a complete list of commands, refer to Command Summary.

2.5.2. Events Tab

The Events tab displays the current set of events held by the debugger. Events include
breakpoints and watchpoints, as shown in the following illustration.

Events

F
l: break “c:/tmp/test/omp.f90"@& [all]
Z2: break "c:/tmp/test/omp.f90"86 if(i>4) [all] =z
3: watch array at "c:/tmp/test/omp.f20"8% [0]

!
1] [¥]

Figure 8 Events Tab
2.5.3. Groups Tab

The Groups tab displays the current set of user-defined groups of processes and threads.
The group selected (highlighted) in the Groups tab defines the Current Group as used
by the Apply and Display drop-down lists. In the following illustration, the ‘evens’
group is the Current Group.

Debugger User's Guide Version 2019 | 11

The Graphical User Interface

Groups
Group Name Composition
all [*<*]
VEns Bl
odds [*ad4ua]

[Add... M Modify...][Remove...]

Figure 9 Groups Tab

To change the set of defined groups use the Add..., Modify..., and Remove... buttons on
the Groups tab.

A defined group of processes and threads is also known as a process/thread-set or
p/t-set. For more information on p/t-sets, refer to Process/Thread Sets in Parallel
Debugging Overview.

2.5.4. Connections Tab

A connection is the set of information the debugger needs to begin debugging a program.
The Connections tab provides the interface to specifying information for a particular
connection, and allows you to create and save multiple connections. Saved connections
persist from one invocation of the debugger to the next. When you launch the debugger,
the Default connection is created for you. If you launched the debugger with an
executable, the Program field is filled in for you.

Connections

Connections cnnnecﬁun[m:ault {active)] [Open J[Close _]
Default” | @® Local ' Remote Ll Attach [| Core [| MPI
-General =
Frﬂgram[’.‘::\tmpxtesunm.exe] :

Program Argsf_ 1

Environn‘lem[]

|
4 .._..!I:

Figure 10 Connections Tab

Debugger User's Guide Version 2019 | 12

The Graphical User Interface

Fields required by the debugger for program launch are bold. Fields not applicable to
the current configuration options are grayed-out. To display a tooltip describing the use
of a field, hover over its name.

Use the Connections menu to manage your connections.

2.5.5. Call Stack Tab

The Call Stack tab displays the current call stack. A blue arrow indicates the current
stack frame.

Call Stack
ﬁ} 0 sub% line 33 in subs.f90 0x1400011£d -~
1l subd line 27 in subks.f90 0x1400011e2

2 sub3 line 21 in subs.f30 0x1400011c2
3 sub2 line 15 in subs.f30 0x1400011a2
4 subl line 9 in subs.£%0 0x140001182
9 prog line 3 in suba.f%0 0x140001158
E
4] []

Figure 11 Call Stack Tab

Double-click in any call frame to move the debugging scope to that frame. A hollow
arrow is used to indicate when the debug scope is in a frame other than the current
frame.

Call Stack
=» 0 sub5 line 33 in subs.f£30 0x1400011£d -
1 subd line 27 in subs.f90 0x1400011e2
or 2 sub3 line 21 in subs.fi0 0x1400011c2
3 gub2 line 15 in subs.f90 0x1400011a2
4 gubl line 9 in subs.f£90 0x140001182
5 prog line 3 in subs.f%0 0x140001158
E
1] [»]

Figure 12 Call Stack Outside Current Frame

You can also navigate the call stack using the Up and Down options on the Debug menu.

2.5.6. Locals Tab

The Locals tab displays the current set of local variables and each of their values.

Debugger User's Guide Version 2019 | 13

Call 5tack Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

The Graphical User Interface

i =11

i = 22

k= 33

X = 50.5

v = &0.5999498
z =10

[»

4]

[}

Figure 13 Locals Tab
2.5.7. Memory Tab

The Memory tab displays a region of memory starting with a provided Address which
can be a memory address or a symbol name. One element of memory is displayed by
default, but this amount can be changed via the Count field. Figure 14 illustrates this

process.

Call 5tack Locals Memory | MPI Messages | Procs & Threads | Rengisters | Status

0x004228C0: 21
Ox004R28C4: la
Ox004R828CE: b
0x004R28CC: 0O

0x004228D0: O

.

‘|

Figure 14 Memory Tab

The default display format for memory is hexadecimal. The display format can be
changed by providing a printf-like format descriptor in the Format field. A detailed
description of the supported format strings is available in Memory Access in Command

Reference.

Debugger User's Guide

Version 2019 | 14

The Graphical User Interface

Call Stack | Locals | Memory | MPl Messages | Procs & Threads | Registers| Status

Address: | 0x4228C0 Count: |5 | Fnrmat:|%d

Ox002RZECO:| 33 | «—Notice these are now decimal T

0x004228C4: 422 rather than hexadecimal values Decimal
0x004L28CE:| 11 Format

Ox004228CC:| 0
Ox00422800:) 0

| »

4]

4 [¥]

Figure 15 Memory Tab in Decimal Format

2.5.8. MPI Messages Tab

The MPI Messages tab provides a listing of the MPI message queues as illustration in
Figure 16.

Call Stack | Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

[»

[] mgdump :

MPI_COMM_WORLD -
Comm_size 4 |
Comm_rarlk, 0]

Fending sends: none

Fending receives: nane

Inexpected messages: nane

MPI_COMM_SELF

Comm_size 1
Coamm_rank. 4]
Fending sends: nane
Fending receijwves: none
Inexpected messages: nane
|
<] [»]

Figure 16 MPI Messages Tab

Message queue information applies only to MPI applications. When debugging a non-
MPI application, this tab is empty. Additionally, message queue information is not
supported by Microsoft MPI so this tab contains no data on Windows.

2.5.9. Procs & Threads Tab

The Procs & Threads tab provides a graphical display of the processes and threads in a
debug session.

Debugger User's Guide Version 2019 | 15

The Graphical User Interface

The Process Grid in Figure 17 has four processes. The thicker border around process

0 indicates that it is the current process; its threads are represented pictorially. Thread
0.0, as the current thread of the current process, has the thickest border. Clicking on any
process or thread in this grid changes that process or thread to be the current process or
thread.

Call Stack | Locals | Memory MPI Messages Procs & Threads | Reqgisters | Status

O«] .I:'

Figure 17 Process (Thread) Grid Tab

Use the slider at the bottom of the grid to zoom in and out.

The color of each element indicates the state of that process or thread. For a list of colors
and states, refer to Table 1.

Table 1 Colors Describing Thread State

Option Description
Stopped Red

Signaled Blue

Running Green
Terminated Black

2.5.10. Registers Tab

The target machine’s architecture determines the number and type of system registers.
Registers are organized into groups based on their type and function. Each register
group is displayed in its own tab contained in the Registers tab. Registers and their
values are displayed in a table. Values are shown for all the threads of the currently
selected process.

In Figure 18, the General Purpose registers are shown for threads 0-3 of process 0.

Debugger User's Guide Version 2019 | 16

Call 5tack Locals | Memory

GP | FLAGS | X87 | XMM | MXCSR

Format: |hex &4 3 Meode: f

The Graphical User Interface

MPI Messages | Procs & Threads | Reqisters | Status

EC0 T0O T1 T2 T3
rax 0x2 0x2 0x2 Ox2| =~
rbx 0x2E3150 O0x2E3150 0x2E31350 0x2E31350
rex 0x0 0x2 Oxd 0xé
rdx 0x0 0x0 0x0 0x0
rdi 0xl Oxl Oxl 0xl
rai 0x0 0x0 0x0 0x0) =
rbp O0x12FF30 Ox12FF30 0x12FF30 0x12FF30
r3p Ox12FCEOD 0x250FCEQ 0x2DOFCED 0x350FCEQ
rf 0xE 0x8 0xE 0xE
rd 0x40 0x250FERAO 0x2DOFERD 0x350FERD
rlad 0x0 0x0 0x0 0x0f—
rll 0x140001175 0x140001175 0x140001175 0x140001175
rlz 0x0 0x0 0x0 0x0
rl3 0x0 0x0 0x0 0x0
rld 0x0 0x0 0x0 0x0
rls 0x0 0x0 0x0 0x0] |
4] y |

Figure 18 General Purpose Registers

The values in the registers table are updated each time the program stops. Values that

change from one stopping point to the next are highlighted in yellow.

Register values can be displayed in a variety of formats. The formatting choices
provided for each register group depends on the type of registers in the group. Use the
Format drop-down list to change the displayed format.

Vector registers, such as XMM and YMM registers, can be displayed in both scalar and
vector modes. Change the Mode drop-down list to switch between these two modes.

2.5.11. Status Tab

The Status tab provides a text summary of the status of the program being debugged.
The state and location of each thread of each process is shown. In Figure 19, each of four
processes has two threads.

Debugger User's Guide

Version 2019 | 17

The Graphical User Interface

Call Stack | Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

a
0 D FID STATE 5IG/CODE LOCATION
=» 0 5792 Stopped TEAFP prog line: "mpi.f30"@11 address: 0x140001179
1 3432 Stopped S5TIOP HtWaitForMultipleObjects address: 0x774D046R
1 ID FID STATE 5IG/CODE LOCATION
=> 0 5288 Stopped TRLE prog line: "mpi.f£90"@ll address: 0x140001179
1 5696 Stopped STOP NtWaitForMultiplelbjects address: O0xT774D046R |
2 ID FID STATE SIG/CODE LOCATICH -
=> 0 4772 Stopped TRLE prog line: "mpi.f90"@11 address: 0x140001179
1 5228 Stopped STOPR NtWaitForMultipleOkjects address: O0x774D0464
3 D BID STATE 5IG/CODE LOCRTION
=> 0 Se08 Stopped TRLFE prog line: "mpi.f£90"@ll address: Ox140001179
1 4568 Stopped SIOF HtWaitForMultipleCbkjects address: O0x774D0464
-
4] ¥

Figure 19 Status Tab

2.6. Menu Bar

The main menu bar contains these menus: File, Edit, View, Connections, Debug and
Help. This section describes these menus and their contents.

You can navigate the menus using the mouse or the system’s mouseless modifier
(typically the Alt key). Use the mouseless modifier together with a menu’s mnemonic,
usually a single character, to select a menu and then a menu item. Menu mnemonics
are indicated with an underscore. For example, the File menu appears as File which
indicates that ‘F” is the mnemonic.

Keyboard shortcuts, such as Ctrl+V for Edit | Paste, are available for some actions.
Where a keyboard shortcut is available, it is shown in the GUI on the menu next to the
menu item.

Menu items that contain an ellipsis (...) launch a dialog box to assist in performing the
menu’s action.

2.6.1. File Menu
Exit
End the current debug session and close all windows.

2.6.2. Edit Menu

Copy
Copy selected text to the system’s clipboard.

Paste
Paste selected text to the system’s clipboard.
Find
Perform a string search in the current source window.

Debugger User's Guide Version 2019 | 18

The Graphical User Interface

Find Routine...
Find a routine. If symbol and source information is available for the specified routine,
the routine is displayed in the source panel.

Restore Default Settings
Restore the GUI's various settings to their initial default state illustrated in Default
Appearance of the Debugger GUI.

Revert to Saved Settings
Restore the GUI to the state that it was in at the start of the debug session.

Save Settings on Exit
By default, the debugger saves the state (size and settings) of the GUI on exit on a
per-system basis. To prevent settings from being saved from one invocation of the
debugger to another, uncheck this option. This option must be unchecked prior to
every exit since the debugger always defaults to saving the GUI state.

2.6.3. View Menu

Use the View menu to customize the debugger's display of tabs, source code, and
assembly. Some of the items on this menu contain a check box next to the name of a tab.

» When the check box is checked, the tab is visible.
» When the check box is not checked, the tab is hidden.

View menu items that correspond to tabs include Call Stack, Command, Connections,
Events, Groups, Locals, Memory, MPI Messages, Procs & Threads, Program I/O, Source,
and Status.

Show Assembly/ Show Source
Toggle (turn on or off) the display of assembly code during a debug session. Source
code can be shown only when source information is available.

Disable/Enable Syntax Coloring
Toggle syntax coloring of source code.

Hide Source in Assembly/Add Source to Assembly
When assembly code is shown, toggle the display of source code (when available).

Hide Addresses/Show Addresses
When assembly code is shown, toggle the display of assembly addresses.

Show Bytecode/Hide Bytecode
When assembly code is shown, toggle the display of assembly bytecode.

Registers
The Registers menu item opens a submenu containing items representing every
subtab on the Registers tab. Recall that each subtab represents a register group and
the set of register groups is system and architecture dependent. Use the Registers
submenu to hide or show tabs for register groups. Use the Show Selected item to hide
or show the Registers tab itself.

Font...
Use the font chooser dialog box to select the font and size used in the source window
and debug information tabs. The default font is named monospace and the default size
is 12.

Show Tool Tips
Tool tips are small temporary messages that pop up when the mouse pointer
hovers over a component in the GUI. They provide additional information on the

Debugger User's Guide Version 2019 | 19

The Graphical User Interface

functionality of a component. Tool tips are enabled by default. Uncheck the Show
Tools Tips option to prevent them from popping up.

Reload Source
Update the source window.

2.6.4. Connections Menu

Use the items under this menu to manage the connections displayed in the Connections
list on the Connections tab.

Connect Default
Open the currently displayed connection. When the debugger starts, this connection
is named ‘Default.” When a different connection is selected, the name of this menu
option changes to reflect the name of the selected connection. This menu option
works the same way that the Open button on the Connections tab works.

New
Create a new connection.

Save
Save changes to all the connections.

Save As
Save the selected connection as a new connection.

Rename
Change the name of the selected connection.

Delete
Delete the selected connection.

2.6.5. Debug Menu

The items under this menu control the execution of the program.

Go
Run or continue running the program.

Stop Program
Stop the running program. This action halts the running processes or threads. For
more information, refer to the halt command.

Stop Debugging
Stop debugging the program.

Restart Program
Start the program from the beginning.

Step
Continue and stop after executing one source line or one assembly-level instruction
depending on whether source or assembly is displayed. Step steps into called
routines. For more information, refer to the step and stepi commands.

Next
Continue and stop after executing one source line or one assembly-level instruction
depending on whether source or assembly is displayed. Next steps over called
routines. For more information, refer to the next and nexti commands.

Step Out
Continue and stop after returning to the caller of the current routine. For more
information, refer to the stepout command.

Debugger User's Guide Version 2019 | 20

The Graphical User Interface

Set Breakpoint...
Set a breakpoint at the first executable source line in the specified routine.

Call Routine
Specify a routine to call. For more information, refer to the call command.

Display Current Location
Display the current program location in the Source panel. For more information, refer
to the arrive command.

Up
Enter the scope of the routine up one level in the call stack. For more information,
refer to the up command.

Down
Enter the scope of the routine down one level in the call stack. For more information,
refer to the down command.

Custom
Opens a separate window where you can enter a variety of debugger commands.

2.6.6. Help Menu

Debugger Guide
Launch your defulat browser to view the PGI Debugger Guide (this document)
online.

About PGI Debugger
This option displays a dialog box with version and copyright information on the PGI
debugger. It also contains sales and support points of contact.

Debugger User's Guide Version 2019 | 21

Chapter 3.
COMMAND LINE OPTIONS

The debugger accepts a variety of options when it is invoked from the command line.
This section describes these options and how they can be used.

3.1. Command-Line Options Syntax

pgdbg arguments program argl arg2 ... argn

The optional arquments may be any of the command-line arguments described in this
chapter. The program parameter is the name of the executable file being debugged. The
optional arguments arg1 arg? ... argn are the command-line arguments to the program.

3.2. Command-Line Options

-attach <pid>
Attach to a running process with the process ID <pid>.
-c <pgdbg_cmd>
Execute the debugger command pgdbg_cmd before executing the commands in the
startup file.
-cd <workdir>
Sets the working directory to the specified directory.
-core <corefile>
Analyze the core dump named corefile. [Linux only]
-help
Display a list of command-line arguments (this list).
-dryrun
Display commands that would be executed without executing them.
-1 <directory>
Add <directory> to the list of directories that the debugger uses to search for source
tiles. You can use this option multiple times to add multiple directories to the search
path.
-jarg, <javaarg>
Pass specified argument(s) (separated by commas) to java, e.g. -jarg,-Xmx256m.

Debugger User's Guide Version 2019 | 22

Command Line Options

-java <jrepath>
Add a jrepath directory to the JVM search path. Multiple '-java' options are allowed.
-nomin
Do not minimize the debugger's console shell on startup. [Windows only]
-s <pgdbg_script>
Runs the provided debugger command script instead of the configuration file:
pgdbgrc [Linux,macOS] or pgdbg_rc [Windows].
-show
Print debugger configuration information.
-text
Run the debugger using a command-line interface (CLI). The default is for the
debugger to launch in graphical user interface (GUI) mode.
-V
Display the version of the debugger being run.
-v
Enable verbose output; display commands as they are run.

3.3. Command-Line Options for MPI Debugging

-mpil=<launcher_path>
Debug an MPI program. Here the term launcher means the MPI launch program. The
debugger uses mpiexec as the default launcher. If the location of the launcher in your
MPI distribution is not in your PATH environment variable, you must provide the
debugger with the full path to the launcher, including the name of the launch tool
itself. If the location of the launcher is in your PATH, then you just need to provide
the name of the launcher, and then only if the launcher is not mpiexec.

-sgimpil=<launcher_path>]
Debug an SGI MPI (MPT) program. The debugger uses mpirun as the default
launcher for SGI MPI debugging. If the location of mpirun in your installation of SGI
MPI is not in your PATH environment variable, you must provide the debugger with
the full path to mpirun, including the name mpirun itself. If the location of mpirun is
in your PATH, then you can use -sgimpi without a sub-option.

-program_args
Pass subsequent arguments to the program under debug; required when passing
program arguments to an MPI program.

-pgservl=<pgserv_path>]
[Optional] Specify path for pgserv, the per-node debug agent.

3.4. 1/0 Redirection

The command shell interprets any I/O redirection specified on the debugger command
line. For a description of how to redirect I/O using the run command, refer to Process
Control.

Debugger User's Guide Version 2019 | 23

Chapter 4.
COMMAND LANGUAGE

The debugger supports a command language that is capable of evaluating complex
expressions. The command language is composed of commands, constants, symbols,
locations, expressions, and statements.

You can use the command language by invoking the debugger's command-line interface
with the -text option, or in the Command tab of the debugger's graphical user interface,
as described in The Graphical User Interface.

4.1. Command Overview

Commands are named operations, which take zero or more arguments and perform
some action. Commands may also return values that may be used in expressions or as
arguments to other commands.

4.1.1. Command Syntax

Commands are entered one line at a time.

» Lines are delimited by a carriage return.

» Each line must consist of a command and its arguments, if any.

» You can place multiple commands on a single line by using the semi-colon (;) as a
delimiter.

4.1.2. Command Modes

There are two command modes: pgi and dbx.

» The pgi command mode maintains the original PGI debugger command interface.
» In dbx mode, the debugger uses commands compatible with the Unix-based dbx
debugger.

PGI and dbx commands are available in both command modes, but some command
behavior may be slightly different depending on the mode. The mode can be set while
the debugger is running by using the pgienv command.

Debugger User's Guide Version 2019 | 24

Command Language

4.2. Constants

The debugger supports C language style integer (hex, octal and decimal), floating point,
character, and string constants.

4.3. Symbols

The debugger uses the symbolic information contained in the executable object file

to create a symbol table for the target program. The symbol table contains symbols to
represent source files, subroutines, types (including structure, union, pointer, array, and
enumeration types), variables, and arguments. The debugger's command-line interface
is case-sensitive with respect to symbol names; a symbol name on the command line
must match the name as it appears in the object file.

4.4, Scope Rules

Since several symbols in a single application may have the same name, scope rules are
used to bind program identifiers to symbols in the symbol table. The debugger uses
the concept of a search scope for looking up identifiers. The search scope represents a
subroutine, a source file, or global scope. When the user enters a name, the debugger
tirst tries to find the symbol in the search scope. If the symbol is not found, the
containing scope (source file or global) is searched, and so forth, until either the symbol
is located or the global scope is searched and the symbol is not found.

Normally, the search scope is the same as the current scope, which is the subroutine
where execution is currently stopped. The current scope and the search scope are both
set to the current subroutine each time execution of the program stops. However, you
can use the enter command to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f
is a routine with a local variable i, then:
fei

represents the variable i local to f. Identifiers at file scope can be specified using the
quoted file name with this operator. The following example represents the variable i
defined in file xyz . c.

"xyz.c"@1i

4.5. Register Symbols

To provide access to the system registers, the debugger maintains symbols for them.
Register names generally begin with $ to avoid conflicts with program identifiers. Each
register symbol has a default type associated with it, and registers are treated like global
variables of that type, except that their address may not be taken. For more information
on register symbols, refer to SSE Register Symbols.

Debugger User's Guide Version 2019 | 25

Command Language

4.6. Source Code Locations

Some commands must refer to source code locations. Source file names must be enclosed
in double quotes. Source lines are indicated by number, and may be qualified by a
quoted filename using the scope qualifier operator. Further, a range of lines is indicated

non

using the range operator ":".
Here are some examples:

break 37 sets a breakpoint at line 37 of the current source file.

break "xyz.c"@37 sets a breakpoint at line 37 of the source file xyz.c.

list 3:13 lists lines 3 through 13 of the current file.

list "xyz.c"@3:13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these
commands, it is not always obvious whether a numeric constant should be interpreted
as a line number or an address. The description for these commands says which
interpretation is used. However, the debugger provides commands to convert from
source line to address and vice versa. The 1ine command converts an address to a line,
and the addr command converts a line number to an address.

Here are some examples:

line 37 means "line 37".

addr 0x1000 means "address 0x1000".

addr {line 37} means "the address associated with line 37".

line {addr 0x1000} means "the line associated with address 0x1000".

4.7. Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction
contained by a lexical block is used to indicate the start scope of the lexical block.

In the following example, there are two variables named var. One is declared in function
main, and the other is declared in the lexical block starting at line 5. The lexical block has
the unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@5 has the
unique name "lex.c"@main@5@var. The output of the whereis command that follows
shows how these identifiers can be distinguished.

lex.c:

1 main ()

2 {

3 int var = 0;

4 {

5 int var = 1;

6 printf ("var %d/n",var);

Debugger User's Guide Version 2019 | 26

O 0 J

}

Command Language

}

printf ("var %d/n",var)

pgdbg> n

Stopped at 0x8048b10, function main, file
/home/demo/pgdbg/ctest/lex.c,

line 6

#6:

printf ("var %d/n",var);

pgdbg> print var

1

pgdbg> which var
"lex.c"@main@5@var

pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var

pgdbg> names "lex.c"@main@5
var = 1

4.8. Statements

Although the debugger's command-line input is processed one line at a time, statement
constructs allow multiple commands per line, as well as conditional and iterative
execution. The statement constructs roughly correspond to the analogous C language
constructs. Statements may be of the following forms.

>

Simple Statement: A command and its arguments. For example:

print i

Block Statement: One or more statements separated by semicolons and enclosed in
curly braces. Note: these may only be used as arguments to commands or as part of
if or while statements. For example:

if(i>1) {print i; step }

If Statement: The keyword if, followed by a parenthesized expression, followed by
a block statement, followed by zero or more else if clauses, and at most one else
clause. For example:

if(i>j) {print i} else if(i<j) {print J} else {print "i==j"}

While Statement: The keyword while, followed by a parenthesized expression,
followed by a block statement. For example:

while (i==0) {next}

Multiple statements may appear on a line separated by a semicolon. The following
example sets breakpoints in routines main and xyz, continues, and prints the new
current location.

break main; break xyz; cont; where

Debugger User's Guide Version 2019 | 27

Command Language

However, since the where command does not wait until the program has halted, this
statement displays the call stack at some arbitrary execution point in the program. To
control when the call stack is printed, insert a wait command, as shown in this example:

break main; break xyz; cont; wait; where

Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. For more
information, refer to Parallel Statements.

4.9. Events

Breakpoints, watchpoints, and other mechanisms used to define the response to certain
conditions are collectively called events.

» Anevent is defined by the conditions under which the event occurs and by the
action taken when the event occurs.

» A breakpoint occurs when execution reaches a particular address.

The default action for a breakpoint is simply to halt execution and prompt the user
for commands.

» A watchpoint occurs when the value of an expression changes.

» A hardware watchpoint occurs when the specified memory location is accessed or
modified.

4.9.1. Event Commands

The debugger supports six basic commands for defining events. Each command takes
a required argument and may also take one or more optional arguments. The basic
commands are break, watch, hwatch, trace, track, and do.

Event Command Descriptions

» The break command takes an argument specifying a breakpoint location. Execution
stops when that location is reached.

» The watch command takes an expression argument. Execution stops and the new
value is printed when the value of the expression changes.

» The hwatch command takes a data address argument, which can be either an
identifier or a variable name. Execution stops when memory at that address is
written.

» The trace command activates source line tracing, as specified by the arguments
you supply.

» The track command is like watch except that execution continues after the new
value is printed.

» The do command takes a list of commands as an argument. The commands are
executed whenever the event occurs.

Debugger User's Guide Version 2019 | 28

Command Language

Event Command Arguments

The six event commands share a common set of optional arguments. The optional
arguments provide the ability to make the event definition more specific. They are:

at line

Event occurs at indicated line.
at addr

Event occurs at indicated address.
in routine

Event occurs throughout indicated routine.
if (condition)

Event occurs only when condition is true.
do {commands}

When event occurs, execute commands.

The optional arguments may appear in any order after the required argument and
should not be delimited by commas.

Event Command Examples

Here are some event definition examples:

This event definition says to stop and print the value of i
watch 1 at 37 if(y>1)

whenever line 37 is executed and the value of y is greater
than 1.

Slo lpiilnt soyzi im i This event definition says that at each line in the routine f

print the value of xyz.

break funcl if (i==37) This event definition says to print the value of a[37] and do a

d int 37]; stack
EI e N S ek stack trace when i is equal to 37 in routine funct.

4.9.2. Event Command Action

It is useful to know when events take place.

» Event commands that do not explicitly define a location occur at each source line in
the program. Here are some examples:

do {where} prints the current location at the start of each source line.

trace a.b prints the value of a.b each time the value has changed.

i racl: @ .lD prints the value of a.b at the start of each source line if the
value has changed.

Events that occur at every line can be useful, but they can make program
execution very slow. Restricting an event to a particular address minimizes the
impact on program execution speed, and restricting an event that occurs at every

Debugger User's Guide Version 2019 | 29

Command Language

line to a single routine causes execution to be slowed only when that routine is
executed.

The debugger supports instruction-level versions of several commands, such as
breaki, watchi, tracei, tracki, and doi. The basic difference in the instruction-
level version is that these commands interpret integers as addresses rather than line
numbers, and events occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions are taken before
the prompt for input. Defining event actions that resume execution is allowed but
discouraged, since continuing execution may prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:

break 37 do {continue}

break 37 do {print i}

With this sequence, it is not clear whether i will ever be printed.

Events only occur after the continue and run commands. They are ignored by
step, next, call, and other commands.

Identifiers and line numbers in events are bound to the current scope when the
event is defined.

For example, the following command sets a breakpoint at line 37 in the current file.
break 37

The following command tracks the value of whatever variable i is currently in
scope.

track i

If 1 is a local variable, then it is wise to add a location modifier (at or in) to restrict
the event to a scope where i is defined. Scope qualifiers can also specify lines or
variables that are not currently in scope. Events can be parallelized across multiple
threads of execution. See Parallel Events for details.

4.10. Expressions

The debugger supports evaluation of expressions composed of constants, identifiers,
commands that return values, and operators.

The following rules apply:

>

To use a value returned by a command in an expression, the command and
arguments must be enclosed in curly braces.

For example, the following command invokes the pc command to compute the
current address, adds 8 to it, and sets a breakpoint at that address.
breaki {pc}+8

Similarly, the following command compares the start address of the current routine
with the start address of routine xyz. It prints the value 1 if they are equal and 0 if
they are not.

print {addr {func}}=={addr xyz}

Debugger User's Guide Version 2019 | 30

>

Command Language

The @ operator, introduced previously, may be used as a scope qualifier. Its
precedence is the same as the C language field selection operators "." and "->" .

"o

The debugger recognizes a range operator ":" which indicates array sub-ranges or
source line ranges. The precedence of ":' is between 'l |" and '='.
Here are a few examples that use the range operator:

print afl:10] prints elements 1 through 10 of the array a.
list 5:10 lists source lines 5 through 10.

list "xyz.c"@5:10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.
step is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix
p/t-set. For more details, refer to Current vs. Prefix p/t sets.

Table 2 shows the C language operators that the debugger supports. The operator
precedence is the same as in the C language.

Table 2 PGI Debugger Operators

Operator Description Operator Description
* indirection <= less than or equal
direct field selection >= greater than or equal
-> indirect field selection I= not equal
[1 C/ C™* array index && logical and
() routine call I logical or
& address of ! logical not
+ add | bitwise or
(type) cast & bitwise and
subtract ~ bitwise not
/ divide ” bitwise exclusive or
* multiply () FORTRAN array index
= assignment % FORTRAN field selector
== comparison << left shift
>> right shift

Debugger User's Guide Version 2019 | 31

Command Language

4.11. Ctri+C

The effect of Ctrl+C is different when debugging using the command-line interface or
the GUI, and when debugging serial or parallel code.

4.11.1. Command-Line Debugging

If the program is not running, Ctrl+C can be used to interrupt long-running debugger
commands. For example, a command requesting disassembly of thousands of
instructions might run for a long time, and it can be interrupted by Ctrl+C. In such cases
the program is not affected.

If the program is running, entering Ctrl+C at the debugger command prompt halts
execution of the program. This is useful in cases where the program ‘hangs” due to an
infinite loop or deadlock.

Sending Ctrl+C, also known as SIGINT, to a program while it is in the middle of
initializing its threads, by calling omp_set_num_threads() or entering a parallel region,
may kill some of the threads if the signal is sent before each thread is fully initialized.
Avoid sending SIGINT in these situations. Note that when the number of threads
employed by a program is large, thread initialization may take a while.

4.11.2. GUI Debugging

If the program is running, entering Ctrl+C in the Input field of the Program IO tab sends
SIGINT to the program.

4.11.3. MPI Debugging

Sending Ctrl+C to a running MPICH1 program, support for which is now deprecated,
is not recommended. For details, refer to Use halt instead of Ctrl+C. Use the debugger's
halt command as an alternative to sending Ctrl+C to a running program. The
debugger's command prompt must be available in order to issue a halt command. The
command prompt is available while threads are running if pgienv threadwait none
is set.

As described in Using Continue, when debugging an MPI job via the following
command, the debugger spawns the job in a manner that prevents console-generated
interrupts from directly reaching the MPI launcher or any of the MPI processes.

$ pgdbg -mpi ...
In this case, typing Ctrl+C only interrupts the debugger, leaving the MPI processes
running. When debugger's thread wait mode is not set to none, you can halt the MPI

job after using Ctrl+C by entering the debugger's halt command, even if no command
prompt is generated.

Debugger User's Guide Version 2019 | 32

Chapter 0.
COMMAND SUMMARY

This chapter contains a brief summary of the debugger's commands. For a detailed
description of each command, grouped by category of use, refer to Command Reference.

If you are viewing an online version of this manual, you can select the hyperlink under
the selection category to jump to that section in the manual.

5.1. Notation Used in Command Sections

The command sections that follow use these conventions for the command names and
arguments, when the command accepts one.

» Command names may be abbreviated by omitting the portion of the command
name enclosed in brackets ([]).

» Argument names are chosen to indicate what kind of argument is expected.

» Arguments enclosed in brackets([]) are optional.

» Two or more arguments separated by a vertical line (1) indicate that any one of the
arguments is acceptable.

» Anellipsis (...) indicates an arbitrarily long list of arguments.
» Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command 1ist may be abbreviated
to 1is, and that it can be invoked without any arguments or with one of the following
arguments: an integer count, a line range, a routine name, or a line and a count.

lis[t] [count | lo:hi | routine | line,count]

5.2. Command Summary
Table 3 PGI Debugger Commands

Name Arguments Category

ad[dr] [n | linen | routine | var | arg] Conversions

Debugger User's Guide Version 2019 | 33

Command Summary

[number [,number...]]

With arguments, catches the specified signals and runs
the program as though the signal was not sent. With no
arguments, prints the list of signals being caught.

Name Arguments Category
Creates an address conversion under certain conditions.
alfias] [name [string]] Miscellaneous
Create or print aliases.
args Process Control
Print the current program arguments.
arrifve] Program Locations
Print location information for the current location.
asc[ii] exp [,...exp] Printing Variables and
Expressions
Evaluate and print as an ascii character.
as[sign] var=exp Symbols and Expressions
Set variable var to the value of the expression exp.
attfach] pid [exe] Process Control
Attach to a running process with process ID pid. Use exe
to specify the absolute path of the executable file.
bin exp [,...exp] Printing Variables and
Expressions
Evaluate and print the expressions. Integer values are
printed in base 2.
b[reak] [line | routine] [if (condition)] [do {commands}] [hit [>|*] | Events
<num>]
When arguments are specified, sets a breakpoint at
the indicated line or routine. When no arguments are
specified, prints the current breakpoints.
breaki [addr | routine] [if (condition)] [do {commands}] [hit [>| | Events
*] <num>]
When arguments are specified, sets a breakpoint at the
indicated address or routine. When no arguments are
specified, prints the current breakpoints.
breaks Events
Displays all the existing breakpoints
call routine [(exp,...)] Symbols and Expressions
Call the named routine.
catch Events

Debugger User's Guide

Version 2019 | 34

Command Summary

Name

Arguments

Category

cd

[dir]

Change to the SHOME directory or to the specified
directory dir.

Program Locations

clas[s]

[class]

Return the current class or enter the scope of the
specified class.

Scope

classe[s]

Print the C++ class names.

Target

clear

[all | routine | line | addr {addr}]

With arguments, clears the indicated breakpoints. When
no arguments are specified, this command clears all
breakpoints at the current location.

Events

con[nect]

[-t name [args] | -d path [args] | -f file [name [args]]]

Prints the current connection and the list of possible
connection targets.

Target

cl[ont]

Continue execution from the current location.

Process Control

de[bug]

[target [arg1 _ argn]]

Load the specified program with optional command-line
arguments.

Process Control

dec

exp [,...exp]

Evaluate and print the expressions. Integer values are
printed in decimal.

Printing Variables and

Expressions

decl[aration]

name

Print the declaration for the symbol based on its type
according to the symbol table.

Symbols and Expressions

decls

[routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in
the indicated scope. If no scope is given, print the
declarations for global scope.

Scope

defset

name [p/t-set]

Assign a name to a process/thread set. Define a named
set.

Process-Thread Sets

delfete]

event-number | all | 0 | event-number [,.event-number.]

Delete the event event—number or all events (delete
0 is the same as delete all). Multiple event numbers
can be supplied if they are separated by commas. Use

Debugger User's Guide

Events

Version 2019 | 35

Command Summary

Name Arguments Category

delete without arguments to list events by event-
number.

det[ach] Process Control
Detach from the current running process.

dir[ectory] [pathname] Miscellaneous

Add the directory pathname to the search path for source
files. If no argument is specified, the currently defined
directories are printed.

disab[le] event-number | all Printing Variables and
Expressions

With arguments, disables the event event-number or

all events. When no arguments are specified, prints both
enabled and disabled events by event-number.

dis[asm] [count | lo:hi | routine | addr, count] Program Locations

Disassemble memory. If no argument is given, disassemble
four instructions starting at the current address.

disc[onnect] Events
Close connection to target.

display [exp [,...exp]] Printing Variables and
Expressions

With one or more arguments, print expression exp at
every breakpoint. Without arguments, list the expressions
for the debugger to automatically display at breakpoints.

do {commands} [at line | in routine] [if (condition)] Events

Define a do event. Without the optional arguments at
or in, the commands are executed at each line in the
program.

doi {commands} [at addr | in routine] [if (condition)] Events

Define a doi event. If neither the at or in argument
is specified, then the commands are executed at each
instruction in the program.

down [number] Scope

Enter scope of routine down one level or number levels
on the call stack.

du[mp] [addr [,count [,format]]] Memory Access

Dump the contents of a region of memory. The output is
formatted according to a printf-like format descriptor.

edit [filename | routine] Program Locations

Debugger User's Guide Version 2019 | 36

Command Summary

Name Arguments Category
Edit the specified file or file containing the subroutine. If
no argument is supplied, edit the current file starting at
the current location(Command-Lline interface only).
enab[le] [event-number | all] Events
With arguments, this command enables the event
event-number or all events. When no arguments
are specified, prints both enabled and disabled events by
event-number.
en[ter] [routine | "sourcefile" | global] Scope
Set the search scope to be the indicated symbol, which
may be a subroutine, source file or global. Using no
argument is the same as using global.
entr[y] [routine] Symbols and Expressions
Return the address of the first executable statement in
the program or specified subroutine.
fille] [filename] Program Locations
Change the source file to the file filename and change the
scope accordingly. With no argument, print the current
file.
files Scope
Return the list of known source files used to create the
executable file.
focus [p/t-set] Process-Thread Sets
Set the target process/thread set for commands.
Subsequent commands are applied to the members of this
set by default.
fp Register Access
Return the current value of the frame pointer.
func[tion] [addr | line] Conversions
Return a subroutine symbol. If no argument is specified,
return the current routine.
glob[al] Scope
Return a symbol representing global scope.
halt [command] Process Control
Halt the running process or thread.
he[lp] [command] Miscellaneous

If no argument is specified, print a brief summary of
all the commands. If a command name is specified,

Debugger User's Guide

Version 2019 | 37

Command Summary

Name

Arguments

Category

print more detailed information about the use of that
command.

hex

exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

Printing Variables and
Expressions

hi[story]

[num]

List the most recently executed commands. With the
num argument, resize the history list to hold num
commands.

Miscellaneous

hwatch

addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint.

Events

hwatchb[oth]

addr | var [if (condition)] [do {commands}]

Define a hardware read/write watchpoint.

Events

hwatchr[ead]

addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint

Events

ignore

[number [,number...]]

Ignore the specified signals and do not deliver them to
the program. When no arguments are specified, prints the
list of signals being ignored.

Events

language

Print the name of the language of the current file.

Miscellaneous

lin[e]

[n | routine | addr]

Create a source line conversion. If no argument is given,
return the current source line.

Conversions

lines

[routine]

Print the lines table for the specified routine. If no
argument is specified, prints the lines table for the
current routine.

Program Locations

lis[t]

[count | line,count | lo:hi | routine]

With no argument, list 10 lines centered at the current
source line. If an argument is specified, list lines based on
information requested.

Program Locations

lo[ad]

[prog [args]]

Without options, print the name and arguments of the
program being debugged. With arguments, invoke the
debugger using the specified program and program
arguments, if any.

Process Control

Debugger User's Guide

Version 2019 | 38

Command Summary

Name Arguments Category
log filename Miscellaneous
Keep a log of all commands entered by the user and store
it in the named file.
lv[al] expr Symbols and Expressions
Return the lvalue of the expression expr.
mq[dump] Memory Access
Dump MPI message queue information for the current
process.
names [routine | "sourcefile" | {global}] Scope
Print the names of all identifiers defined in the indicated
scope. If no scope is specified, use the search scope.
nat[ive] [command] Target
Without arguments, print a list of the available target
commands. With a command argument, send the native
command directory to the target.
n[ext] [count] Process Control
Stop after executing one or count source line(s) in the
current subroutine.
nexti [count] Process Control
Stop after executing one or count instruction(s) in the
current subroutine.
nop[rint] exp Miscellaneous
Evaluate the expression but do not print the result.
oct exp [,...exp] Printing Variables and
Expressions
Evaluate and print expressions as octal integers.
pc Register Access
Return the current program address.
pgienv [command] Miscellaneous
Define the debugger environment. With no arguments,
display the debugger settings.
p[rint] exp1 [,...expn] Printing Variables and
Expressions
Evaluate and print one or more expressions.
printf “format_string", expr,...expr Printing Variables and

Debugger User's Guide

Expressions

Version 2019 | 39

Command Summary

Return a symbol for the search scope.

Name Arguments Category
Print expressions in the format indicated by the format
string.

proc [id] Process Control
Set the current process to the process identified by id.
When issued with no argument, lists the location of the
current thread of the current process in the current
program.

procs Process Control
Print the status of all active processes, listing each
process by its logical process ID.

pwd Program Locations
Print the current working directory.

qluit] Process Control
Terminate the debugging session.

regs regs [-info] [-grp=grp1[,grp2...]] [-fmt=fmt1[,fmt2...]] [| Register Access
mode=vector|scalar]
Print a formatted display of the names and values of
registers. Specify the register group(s) with the —grp
option and formatting with the —fmt option. Use
—-info to see a listing of available register groups and
formats.

rep[eat] [first, last] | [first: last:n] | [num] | [-num] Miscellaneous
Repeat the execution of one or more previous history list
commands.

rer[un] [arg0 arg1 ... argn] [< inputfile] [[> | >& | >> | >>&] Process Control
outputfile]
Like the run command with one exception: if no args are
specified with rerun, then no args are used when the
program is launched.

ret[addr] Register Access
Return the current return address.

rufn] [arg0 arg1 ... argn] [< inputfile] [> outputfile] Process Control
Execute program from the beginning. If arguments arg0,
arg1, and so on are specified, they are set up as the
command-line arguments of the program. Otherwise, the
arguments for the previous run command are used.

rv[al] expr Symbols and Expressions
Return the rvalue of the expression expr.

sco[pe] Scope

Debugger User's Guide

Version 2019 | 40

Command Summary

Debugger User's Guide

Name Arguments Category
scr(ipt] filename Miscellaneous
Open the indicated file and execute the contents as
though they were entered as commands. If you use-
before the filename, it is expanded to the value of the
environment variable HOME.
set var = exp Symbols and Expressions
Set variable var to the value of expression.
setargs [argl , arg2, ... argn] Process Control
Set program arguments to be used by the current
program.
setenv name [value] Miscellaneous
Print value of environment variable name. With a
specified value, set name to value.
sh[ell] [arg0 , arg1, ... argn] Miscellaneous
Fork a shell (defined by $SHELL) and give it the indicated
arguments (the default shell is sh). Without arguments,
invokes an interactive shell, and executes until a ""D" is
entered.
siz[eof] name Symbols and Expressions
Return the size, in bytes, of the variable type name; or, if
the name refers to a routine, returns the size in bytes of
the subroutine.
sle[ep] [time] Miscellaneous
Pause for time seconds. If no time is specified, pause for
one second.
soufrce] filename Miscellaneous
Open the indicated file and execute the contents as
though they were entered as commands. If you use
~ before the filename, it is expanded to the value of
SHOME.
sp Register Access
Return the current stack pointer address.
stackd[ump] [count] Program Locations
Print a formatted dump of the call stack. This command
displays a hex dump of the stack frame for each active
subroutine.
stack[trace] [count] Program Locations

Version 2019 | 41

Command Summary

Name

Arguments

Category

Print the call stack. For each active subroutine print the
subroutine name, source file, line number, and current
address, provided that this information is available.

stat[us]

Display all the event definitions, including an event
number by which the event can be identified.

Events

s[tep]

[count | up]

Step into the current subroutine and stop after executing
one or count source line(s). If the up argument is
specified, stops execution after stepping out of the
current subroutine.

Process Control

stepi

[count | up]

Step into the current subroutine and stop after executing
one or count source line(s). If the up argument is
specified, stops execution after stepping out of the
current subroutine.

Process Control

stepofut]

Stop after returning to the caller of the current
subroutine.

Process Control

stop

[at line | in routine] [var] [if (condition)] [do
{commands}]

Set a breakpoint at the indicated subroutine or line.
Break when the value of the indicated variable var
changes.

Events

stopi

[at addr | in routine] [var] [if (condition)] [do
{commands}]

Set a breakpoint at the indicated address or subroutine.
Break when the value of the indicated variable var
changes.

Events

str[ing]

exp [,...exp]

Evaluate and print expressions as null-terminated
character strings, up to a maximum of 70 characters.

Printing Variables and
Expressions

sync

[routine | line]

Advance the current process/thread to a specific program
location, ignoring any user-defined events.

Process Control

synci

[routine | addr]

Advance the current process/thread to a specific program
location, ignoring any user-defined events.

Process Control

thread

[number]

Debugger User's Guide

Process Control

Version 2019 | 42

Command Summary

Remove all expressions specified by previous display
commands. With an argument or several arguments,

Debugger User's Guide

Name Arguments Category
Set the current thread to the thread identified by
number; where number is a logical thread ID in the
current process’ active thread list. When issued with
no argument, list the current program location of the
currently active thread.

threads Process Control
Prints the status of all active threads, grouped by process.

trace [at line | in routine] [var | routine] [if (condition)] do Events
{commands}
Activates source line tracing as specified by the
arguments supplied.

tracei [at addr | in routine] [var] [if (condition)] do {commands} | Events
Activates instruction tracing as specified by the
arguments supplied.

track expression [at line | in routine] [if (condition)] [do Events
{commands}]
Define a track event.

tracki expression [at addr | in routine] [if (condition)] [do Events
{commands}]
Define an assembly-level track event.

type expr Symbols and Expressions
Return the type of the expression.

unal[ias] name Miscellaneous
Remove the alias definition for name, if one exists.

unb[reak] line | routine | all Events
Remove a breakpoint from the statement line or
subroutine, or remove all breakpoints.

unbreaki addr | routine | all Events
Remove a breakpoint from the address addr or the
subroutine, or remove all breakpoints.

undefset [name | -all] Process-Thread Sets
Remove a previously defined process/thread set from the
list of process/thread sets

undisplay [all]0]exp] Printing Variables and

Expressions

Version 2019 | 43

Command Summary

Name Arguments Category

remove the expression exp from the list of display
expressions.

ulp] [number] Scope

Move up one level or number levels on the call stack.

use [dir] Miscellaneous

Print the current list of directories or add dir to the list of
directories to search. If the first character in pathname is
~, the value of SHOME is substituted for this character.

viewset name Process-Thread Sets

List the members of a process/thread set that currently
exist as active threads or list defined p/t-sets.

wait [any | all | none] Process Control

Inserts explicit wait points in a command stream.

wa[tch] expression [at line | in routine] [if (condition)] [do Events
{commands}]

Define a watch event. The given expression is evaluated,
and subsequently, each time the value of the expression
changes, the program stops and the new value is printed.

watchi expression [at addr | in routine] [if(condition)] [do Events
{commands}]

Define an assembly-level watch event

whatis [name] Symbols and Expressions

With no arguments, prints the declaration for the current
subroutine. With argument name, prints the declaration
for the symbol name.

when [at line | in routine] [if (condition)] do {commands} Events

Execute commands at every line in the program, at
a specified line in the program or in the specified
subroutine.

wheni [at addr | in routine] [if(condition)] do {commands} Events

Execute commands at each address in the program. If an
address is specified, the commands are executed each
time the address is reached.

wlhere] [count] Program Locations

Print the call stack. For each active subroutine print the
subroutine name, subroutine arguments, source file,

Debugger User's Guide Version 2019 | 44

Command Summary

Name Arguments Category
line number, and current address, provided that this
information is available.

whereis name Symbols and Expressions
Print all declarations for name.

which name Scope
Print full scope qualification of symbol name.

whichsets [p/t-set] Process-Thread Sets
List all defined p/t-sets to which the members of a
process/thread set belong.

/ Program Locations

/ [string] /

Search forward for the specified string of characters in

the current source file.

?[string] ?

Search backward for the specified string of characters in

the current source file.

Program Locations

History modification

Executes a command from the command history list.

The command executed depends on the information that

follows the !.

Miscellaneous

History modification

Quick history command substitution “old"new”"<modifier>

this is equivalent to !:s/old/new/

Miscellaneous

Debugger User's Guide

Version 2019 | 45

Chapter 6.
ASSEMBLY-LEVEL DEBUGGING

This chapter provides information about assembly-level debugging, including an
overview about what to expect if you are using assembly-level debugging or if you did
not compile your program for debugging.

6.1. Assembly-Level Debugging Overview

The PGI debugger supports debugging regardless of how a program was compiled. In
other words, the debugger does not require that the program under debug be compiled
with debugging information, such as using -g. It can debug code that is lacking debug
information, but because it is missing information about symbols and line numbers,

it can only access the program at the assembly level. The debugger also supports
debugging at the assembly level if debug symbols are available.

As described in Building Applications for Debug, the richest debugging experience is
available when the program is compiled using -g or —~gopt with no optimization. When
a program is compiled at higher levels of optimization, less information about source-
level symbols and line numbers is available, even if the program was compiled with -g
or —gopt. In such cases, if you want to find the source of a problem without rebuilding
the program, you may need to debug at the assembly level.

If a program has been "stripped" of all symbols, either by the linker or a separate utility,
then debugging will be at the assembly level. The debugger is only able to examine or
control the program in terms of memory addresses and registers.

6.1.1. Assembly-Level Debugging on Windows

When applications are built without —~g on Windows systems, the resulting binary, the

. exe file, does not contain any symbol information. The Microsoft linker stores symbol
information in a program database, a . pdb file. To generate a . pdb file using the PGI
compiler drivers, you must use —g during the link step. You can do this even if you

did not use -g during the compile step. Having this . pdb file available provides the
debugger with enough symbol information to map addresses to routine names.

Debugger User's Guide Version 2019 | 46

Assembly-Level Debugging

6.1.2. Assembly-Level Debugging with Fortran

To refer to Fortran symbol names when debugging at the assembly level, you must
translate names so these match the calling convention in use by the compiler. For code
compiled by the PGI compilers, in most cases this means translating Fortran names to
lower case and appending an underscore. For example, a routine that appears in the

1

source code as "VADD" would be referred to in the debugger as "vadd ".

Name translation is only necessary for assembly-level debugging. When debugging at
the source level, you may refer to symbol names as they appear in the source.

A special symbol, MAIN , is created by PGFORTRAN to refer to the main program.
PGFORTRAN generates this special symbol whether or not there is a PROGRAM
statement. One way to run to the beginning of a Fortran program is to set a breakpoint
on MAIN , then run.

6.1.3. Assembly-Level Debugging with C++

C"™ symbol names are "mangled" names. For the names of C"" methods, the names are
modified to include not only the name as it appears in the source code, but information
about the enclosing class hierarchy, argument and return types, and other information.
The names are long and arcane. At the source level these names are translated by the
debugger to the names as they appear in the source. At the assembly level, these names
are in the mangled form. Translation is not easy and not recommended. If you have no
other alternative, you can find information about name mangling in the PGI Compiler
User’s Guide.

6.1.4. Assembly-Level Debugging Using the PGI
Debugger GUI

This section describes some basic operations for assembly-level debugging using the
PGI debugger GUIL. If you encounter the message “Can’t find main function
compiled -g” on startup, assembly-level debugging is required.

To get into a program in this situation, you can select the Debug | Set Breakpoint... menu
option. For example, to stop at program entry, in Fortran you could enter MAIN in
response to the dialog query, while in C or C" you could enter main.

Debug information tabs that are useful in assembly-level debugging include the Call
Stack, Memory, and Register tabs. Disassembly is automatically shown in the source
pane when source files are available. You can also switch from source to disassembly
debugging by selecting the View | Show Assembly menu option.

Debugger User's Guide Version 2019 | 47

Assembly-Level Debugging

6.1.5. Assembly-Level Debugging Using the PGI
Debugger CLI

This section describes some basic operations for assembly-level debugging using the
PGI debugger's command-line interface. When you invoke the debugger's CLI and are
presented with a message telling you that "NOTE: Can't find main function
compiled -g", assembly-level debugging is required.

To get into the program, you can set a breakpoint at a named routine. To stop at program
entry, for example, in Fortran you could use
pgdbg> break MAIN

and in C/ C™" you could use
pgdbg> Dbreak main

Some useful commands for assembly-level debugging using the debugger's command-
line interface include:

run

run the program from the beginning

cont

continue program execution from the current point

nexti

single-step one instruction, stepping over calls
stepi

single-step one instruction, stepping into calls
breaki

set a breakpoint at a given address
regs

display the registers
print $<regname>

display the value of the specified register

For more information on register names, refer to SSE Register Symbols.
dump

dump memory locations
stacktrace

display the current call stack.
stackdump

display the current call stack.

Debugger User's Guide Version 2019 | 48

Assembly-Level Debugging

6.2. SSE Register Symbols

X64 processors and x86 processors starting with Pentium III provide SSE (Streaming
SIMD Enhancements) registers and a SIMD floating-point control/status register.

Each SSE register may contain four 32-bit single-precision or two 64-bit floating-point
values. The regs command reports these values individually in both hexadecimal and
floating-point format. The debugger provides command notation to refer to these values
individually or all together.

The component values of each SSE register can be accessed using the same syntax that is
used for array subscripting. Pictorially, the SSE registers can be thought of as follows:

[32-bit]

127 96 95 64 63 32 31 0
$xmm0[3] $xmmo0[2] $xmmoO[1] $xmm0[0]
$xmm1[3] $xmm1[2] Sxmm1[1] $xmm1[0]
$xmm2[3] $xmm2[2] Sxmm2[1] $xmm2[0]

To access $xmm0O[3], the 32-bit single-precision floating point value that occupies bits 96—
127 of SSE register 0, use the following command:

pgdbg> print $xmm0[3]
To set $xmm?2[0] to the value of $xmm3|[2], use the following command:

pgdbg> set $xmm2 [0]=S$Sxmm3[2]

[64-bit]
127 64 63 0
SxmmOd[1] SxmmO0d[0]
Sxmm1d[1] Sxmm1d[0]
Sxmm2d[1] Sxmm2d[0]

To access the 64-bit floating point values in xmm0, append the character 'd' (for double
precision) to the register name and subscript as usual, as illustrated in the following
commands:

pgdbg> print $xmm0d[0]

pgdbg> print S$xmm0d[1]

In most cases, the debugger detects when the target environment supports SSE registers.
In the event the debugger does not allow access to SSE registers on a system that should
have them, set the PGDBG SSE environment variable to on to enable SSE support.

Debugger User's Guide Version 2019 | 49

Chapter 7.
SOURCE-LEVEL DEBUGGING

This section describes source-level debugging, including debugging Fortran and C".

7.1. Debugging Fortran

7.1.1. Fortran Types

The debugger displays Fortran type declarations using Fortran type names. The only
exception is Fortran character types, which are treated as arrays of the C type char.

7.1.2. Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax
convention, denoting subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (Intel 64 or AMD64) support large arrays
(arrays with an aggregate size greater than 2GB). You can enable large array support by
compiling using these options:-mcmodel=medium -Mlarge arrays.The debugger
provides full support for large arrays and large subscripts.

The debugger supports arrays with non-default lower bounds. Access to such arrays
uses the same subscripts that are used in the program.

The debugger also supports adjustable arrays. Access to adjustable arrays may use the
same subscripting that is used in the program.

7.1.3. Operators

In general, the debugger uses C language style operators in expressions and supports
the Fortran array index selector “()” and the Fortran field selector “%” for derived types.

Debugger User's Guide Version 2019 | 50

Source-Level Debugging

However, .eq., .ne., and so forth are not supported. You must use the analogous C
operators ==, !=, and so on, instead.

The precedence of operators matches the C language, which may in some cases be
different than that used in Fortran.

See PGl Debugger Commands for a complete list of operators and their definition.

7.1.4. Name of the Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the
program statement. You can always use the following command to set a breakpoint at
the start of the main routine.

break MAIN

7.1.5. Common Blocks

Each subprogram that defines a common block has a local static variable symbol to
define the common. The address of the variable is the address of the common block.
The type of the variable is a locally-defined structure type with fields defined for each
element of the common block. The name of the variable is the common block name, if
the common block has a name, or _ BLNK _ otherwise.

For each member of the common block, a local static variable is declared which
represents the common block variable. Thus given declarations:

common /xyz/ a, b
integer a
integer b

then the entire common block can be printed out using,
print xyz

Individual elements can be accessed by name. For example:,
print a, b

7.1.6. Internal Procedures

To unambiguously reference an internal procedure, qualify its name with the name of its
host using the scoping operator @.

For example:

subroutine subl ()
call internal proc ()

contains
subroutine internal proc ()
print *, "internal proc in subl"

end subroutine internal proc
end subroutine

subroutine sub2 ()
call internal proc ()

contains
subroutine internal proc ()
print *, "internal proc in sub2"

end subroutine internal proc

Debugger User's Guide Version 2019 | 51

Source-Level Debugging

end subroutine

program main
call subl ()
call sub2 ()
end program

pgdbg> whereis internal proc
function: "/path/ip.£90"@subl@internal proc
function: "/path/ip.£90"@sub2@internal proc

pgdbg> break subl@internal proc
(1)breakpoint set at: internal proc line: "ip.f90"Q@5 address: 0x401E3C 1

pgdbg> break sub2@internal proc
(2)breakpoint set at: internal proc line: "ip.f90"@13 address: O0x401EEC 2

7.1.7. Modules

A member of a Fortran 90 module can be accessed during debugging.

module mod

integer iMod
end module
subroutine useMod ()

use mod

iMod = 1000
end subroutine
program main

call useMod()
end program

» If the module is in the current scope, no qualification is required to access the
module's members.

pgdbg> b useMod
(1) breakpoint set at: usemod line: "modv.f90"@7 address: 0x401CC4
1

Breakpoint at 0x401CC4, function usemod, file modv.f90, line 7
#7: iMod = 1000

pgdbg> p iMod
0
» If the module is not in the current scope, use the scoping operator @ to qualify the
member's name.
Breakpoint at 0x401CF0, function main, file modv.£f90, line 11
#11: call useMod ()

pgdbg> p iMod
"iMod" is not defined in the current scope

pgdbg> p mod@iMod
0

7.1.8. Module Procedures

A module procedure is a subroutine contained within a module. A module procedure
itself can contain internal procedures. The scoping operator @ can be used when
working with these types of subprograms to prevent ambiguity.

module mod
contains
subroutine mod procl ()
call internal proc()

Debugger User's Guide Version 2019 | 52

Source-Level Debugging

contains
subroutine internal proc/()
print *, "internal proc in mod procl"

end subroutine

end subroutine

subroutine mod proc2 ()
call internal proc()
contains
subroutine internal proc()

print *, "internal proc in mod proc2"

end subroutine

end subroutine

end module

program main
use mod
call mod procl
call mod proc2
end program

pgdbg> whereis internal proc
function: "/path/modp.£90"@modEmod procl@internal proc
function: "/path/modp.£90"@mod@mod proc2@internal proc

pgdbg> break mod@mod procl@internal proc

(1)breakpoint set at: internal proc line: "modp.f90"@7 address: 0x401E3C
1

pgdbg> break mod@mod proc2@internal proc

(2)breakpoint set at: internal proc line: "modp.f90"@14 address: 0x401EEC
2

7.2. Debugging C++

7.2.1. Calling C++ Instance Methods

To use the call command to call a C"" instance method, the object must be explicitly
passed as the first parameter to the call. For example, suppose you were given the
following definition of class Person and the appropriate implementation of its
methods:

class Person
{
public:
char name[10];
Person (char * inName) ;
void print () ;
b

int main ()
{
Person * pierre;
pierre = new Person("Pierre");
pierre->print () ;
return 0;

}

Call the instance method print on object pierre as follows:
pgdbg> call Person::print (pierre)

Notice that pierre must be explicitly passed into the method because it is the this
pointer. You can also specify the class name to remove ambiguity.

Debugger User's Guide Version 2019 | 53

Chapter 8.
PLATFORM-SPECIFIC FEATURES

This section describes debugger features specific to particular platforms, such as
pathname conventions, debugging with core files, and signals.

8.1. Pathname Conventions

The debugger uses the forward slash character (/) internally as the path component
separator on all platforms. The backslash (\) is used as the escape character in the
debugger's command language.

On Windows systems, use backslash as the path component separator in the fields of
the Connections tab. Use the forward slash as the path component separator when using
a debugger command in the Command tab or in the CLI. The forward slash separator
convention is still in effect when using a drive letter to specify a full path. For example,
to add the Windows pathname C: /Temp/src to the list of searched source directories,
use the command:

pgdbg> dir C:/Temp/src

To set a breakpoint at line 10 of the source file specified by the relative path
subl\main. c, use this command:
pgdbg> break "subl/main.c":10

8.2. Debugging with Core Files

The debugger supports debugging of core files on Linux platforms. In the GUI, select
the Core option on the Connections tab to enable core file debugging. Fill in the Program
and Core File fields and open the connection to load the core file.

You can also start core file debugging from the command line. To do this, use the
following options:

$ pgdbg -core coreFileName programName

Core files (or core dumps) are generated when a program encounters an exception or
fault. For example, one common exception is the segmentation violation, which can be

Debugger User's Guide Version 2019 | 54

Platform-Specific Features

caused by referencing an invalid memory address. The memory and register states of the
program are written into a core file so that they can be examined by a debugger.

The shell environment in which the application runs must be set up to allow core file
creation. On many systems, the default user setting ulimit does not allow core file
creation.

Check the ulimit as follows:

For sh/bash users:

S ulimit -c

For csh/tcsh users:

o)

% limit coredumpsize

If the core file size limit is zero or something too small for the application, it can be set to
unlimited as follows:

For sh/bash users:

S ulimit -c unlimited

For csh/tcsh users:

o)

% limit coredumpsize unlimited

See the Linux shell documentation for more details. Some versions of Linux provide
system-wide limits on core file creation.

The core file is normally written into the current directory of the faulting application.
It is usually named core or core.pid where pid is the process ID of the faulting
thread. If the shell environment is set correctly and a core file is not generated in the
expected location, the system core dump policy may require configuration by a system
administrator.

Different versions of Linux handle core dumping slightly differently. The state of all
process threads are written to the core file in most modern implementations of Linux.
In some new versions of Linux, if more than one thread faults, then each thread’s state
is written to separate core files using the core . pid file naming convention previously
described. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.so), as
most programs on Linux do, then accurate core file debugging requires that the program
be debugged on the system where the core file was created. Otherwise, slight differences
in the version of a shared library or the dynamic linker can cause erroneous information
to be presented by the debugger. Sometimes a core file can be debugged successfully

on a different system, particularly on more modern Linux systems, but you should take
care when attempting this.

When debugging core files, the debugger:

Supports all non-control commands.
Performs any command that does not cause the program to run.
Generates an error message in for any command that causes the program to run.

May provide the status of multiple threads, depending on the type of core file
created.

vV v v Vv

Debugger User's Guide Version 2019 | 55

Platform-Specific Features

The debugger does not support multi-process core file debugging.

8.3. Signals

The debugger intercepts all signals sent to any of the threads in a multi-threaded
program and passes them on according to that signal's disposition as maintained by
(see the catch and ignore commands), except for signals that cannot be intercepted or
signals used by the debugger internally.

8.3.1. Signals Used Internally by the Debugger

SIGTRAP and SIGSTOP are used by Linux for communication of application events

to the debugger. Management of these signals is handled internally. Changing the
disposition of these signals in the debugger (via catch and ignore) results in undefined
behavior.

8.3.2. Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads
internally. Other Linux thread libraries, on systems that do not have support for real-
time signals in the kernel, use SIGUSR1 and SIGUSR2. Changing the disposition of these
signals in the debugger (via catch and ignore) results in undefined behavior.

Target applications compiled with the options -pg or profiled with pgprof
generate numerous SIGPROF signals. Although SIGPROF can be handled via the
ignore command, debugging of applications built for sample-based profiling is not
recommended.

Debugger User's Guide Version 2019 | 56

Chapter 9.
PARALLEL DEBUGGING OVERVIEW

This section provides an overview of how to debug parallel applications. It includes
important definitions and background information on how the debugger represents
processes and threads.

9.1. Overview of Parallel Debugging Capability

The debugger is a parallel application debugger capable of debugging multi-process
MPI applications, multi-thread and OpenMP applications, and hybrid multi-thread/
multi-process applications that use MPI to communicate between multi-threaded or
OpenMP processes.

For specific information on multi-thread and OpenMP debugging, refer to Parallel
Debugging with OpenMP.

For specific information on multi-process MPI debugging, refer to Parallel Debugging
with MPL

9.1.1. Graphical Presentation of Threads and Processes

The graphical user interface components that provide support for parallelism are
described in detail in The Graphical User Interface.

9.2. Basic Process and Thread Naming

Because the debugger can debug multi-threaded, multi-process, and hybrid multi-
threaded/multi-process applications, it provides a convention for uniquely identifying
each thread in each process. This section gives a brief overview of this naming
convention and how it is used to provide adequate background for the subsequent
sections. A more detailed discussion of this convention, including advanced techniques
for applying it, is provided in Thread and Process Grouping and Naming.

The debugger identifies threads in an OpenMP application using the OpenMP thread
IDs. Otherwise, the debugger assigns arbitrary IDs to threads, starting at zero and
incrementing in order of thread creation.

Debugger User's Guide Version 2019 | 57

Parallel Debugging Overview

The debugger identifies processes in an MPI application using MPI rank (in
communicator MPI_COMM_WORLD). Otherwise, the debugger assigns arbitrary IDs to
processes; starting at zero and incrementing in order of process creation. Process IDs are
unique across all active processes.

In a multi-threaded/multi-process application, each thread can be uniquely identified
across all processes by prefixing its thread ID with the process ID of its parent process.
For example, thread 1.4 identifies the thread with ID 4 in the process with ID 1.

An OpenMP application logically runs as a collection of threads with a single process,
process 0, as the parent process. In this context, a thread is uniquely identified by its
thread ID. The process ID prefix is implicit and optional. For more information on
debugging threads, refer to Thread-only Debugging.

An MPI program logically runs as a collection of processes, each made up of a single
thread of execution. Thread 0 is implicit to each MPI process. A process ID uniquely
identifies a particular process, and thread ID is implicit and optional. For more
information on process debugging, refer to Process-only Debugging.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and
thread IDs to uniquely identify a particular thread. For more information on multilevel
debugging, refer to Multilevel Debugging.

A serial program runs as a single thread of execution, thread 0, belonging to a single
process, process 0. The use of thread IDs and process IDs is allowed but unnecessary.

9.3. Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes
into sets, and how to apply debugger commands to groups of processes and threads.

9.3.1. Debug Modes

The debugger can operate in four debug modes. The mode determines a short form for
uniquely naming threads and processes. The debug mode is set automatically or by the
pgienv mode command.

Table 4 Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution
Multilevel Multiple processes, at least one process employing multiple threads of execution

The debugger initially operates in serial mode reflecting a single thread of execution.
Thread IDs can be ignored in serial debug mode since there is only a single thread of
execution.

Debugger User's Guide Version 2019 | 58

Parallel Debugging Overview

The command prompt displays the ID of the current thread according to the current
debug mode. For a description of the command prompt, refer to The Command Prompt.

The debug mode can be changed at any time during a debug session.

To change debug mode manually, use the pgienv command.

pgienv mode [serial|thread|process|multilevel]

9.3.2. Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a
convenience the process ID portion can be omitted. The debugger automatically enters
threads-only debug mode from serial debug mode when it detects and attaches to new
threads.

Table 5 Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*. 1)
* All threads of process 0 (*. *)
0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs
depending on context.

9.3.3. Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded
processes. As a convenience, the thread ID portion can be omitted. The debugger
automatically enters process-only debug mode from serial debug mode when multiple
processes are detected.

Table 6 Process IDs in Process-only Debug Mode

0 All threads of process 0 (0.%)
= All threads of all processes (*.*)
1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs
depending on context.

9.3.4. Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent
process ID. This forms a unique name for each thread across all processes. This naming
scheme is valid in all debug modes. The debugger changes automatically to multilevel
debug mode when at least one MPI process creates multiple threads.

Debugger User's Guide Version 2019 | 59

Parallel Debugging Overview

Table 7 Thread IDs in Multilevel Debug Mode

0.1 Thread 1 of process 0
0.* All threads of process 0
* All threads of all processes

In multilevel debugging, mode status and error messages are prefixed with process/
thread IDs depending on context.

9.4. Process/Thread Sets

You use a process/thread set (p/t-set) to restrict a debugger command to apply to a
particular set of threads. A p/t-set is a set of threads drawn from all threads of all
processes in the target program. Use p/t-set notation to define a p/t-set.

9.4.1. Named p/t-sets

In the following sections, you will notice frequent references to three named p/t-sets:

» The target p/t-set is the set of processes and threads to which a debugger command
is applied. The target p/t-set is initially defined by the debugger to be the set [all]
which describes all threads of all processes.

» A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger
command. For the prefixed command, the target p/t-set is the prefix p/t-set.

» The current p/t-set is the p/t set currently set in the debugger's environment. You
can use the focus command to define the current p/t-set. Unless a prefix p/t-set
overrides it, the current p/t set is used as the target p/t-set.

9.4.2. p/t-set Notation

The following rules describe how to use and construct p/t-sets:
Use a prefix p/t-set with a simple command:

[p/t-set prefix] command parm0O, parml,

Use a prefix p/t-set with a compound command:

[p/t-set prefix] simple-command [;simple-command ...]
p/t-id:
{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect.
For more information, refer to the pgienv command.

p/t-range:
p/t-id:p/t-id

p/t-list:
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

Debugger User's Guide Version 2019 | 60

Parallel Debugging Overview

p/t-set

[[!]{p/t-1list|set-name}]

p/t-sets in Threads-only Debug Mode

[0,4:6] Threads 0, 4, 5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is valid in threads-only mode
[*.*] All threads

p/t-sets in Process-only Debug Mode

[0,2:3] Processes 0, 2, and 3 (equivalent to [0.%,2:3.*])

[*] All processes (equivalent to [*.*])

(0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is valid in process-only mode.

[0:2.%] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

p/t-sets in Multilevel Debug Mode

[0.1,0.3,0.51] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1, 2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

9.4.3. Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets.
Defining a Dynamic p/t-set

The members of a dynamic p/t-set are those active threads described by the p/t-set at
the time that the p/t-set is used. By default, a p/t-set is dynamic. Threads and processes
are created and destroyed as the target program runs and, therefore, membership in a
dynamic set varies as the target program executes.

defset clients [*.1:3] Defines a dynamic named set ‘clients’ whose members are

threads 1, 2, and 3 of all processes that are currently active whenever

Debugger User's Guide Version 2019 | 61

Parallel Debugging Overview

‘clients’ is used. Membership in c1ients changes as processes
are created and destroyed.

Defining a Static p/t-set

Membership in a static set is fixed when it is defined. The members of a static p/t-set are
those threads described by that p/t-set when it is defined. Use a *!" to specify a static set.

defset clients [!*.1:3] | Defines a state named set ‘clients’ whose members are threads
1, 2, and 3 of those processes that are currently active at the time of
the definition.

p/t-sets defined with defset are not mode-dependent and are valid in any debug
mode.

9.4.4. Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by
the debugger prompt and depends on debug mode. For a description of the command
prompt, refer to The Command Prompt. You can use a p/t-set to prefix a command
that overrides the current p/t-set. The prefix p/t-set becomes the target p/t-set for

the command. The target p/t-set defines the set of threads that will be affected by a
command.

» In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

» In contrast, a prefix p/t-set is used in the following command so that the target p/t-
set is the prefix p/t-set, shown in this example in bold:
pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the
first case, [all] is the target p/t-set. In the second case, the prefix p/t-set overrides [all] and
becomes the target p/t-set. The continue command is applied to all active threads in the
target p/t-set. Also, using a prefix p/t-set does not change the current p/t-set.

9.4.5. p/t-set Commands

You can use the following commands to collect threads and processes into logical
groups.

» Use defset and undefset to manage a list of named p/t-sets.

» Use focus to set the current p/t-set.

» Use viewset to view the active members described by a particular p/t-set, or to list
all the defined p/t-sets.

» Use whichsets to describe the p/t-sets to which a particular process/thread belongs.

Debugger User's Guide Version 2019 | 62

Parallel Debugging Overview

Table 8 p/t-set Commands

Command Description

defset Define a named process/thread set. This set can later be referred to by name. The
debugger stores a list of named sets.

focus Set the target process/thread set for commands. Subsequent commands are applied
to the members of this set by default..

undefset Undefine a previously defined process/thread set. The set is removed from the list.
The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads, or
list all the defined p/t-sets..

whichsets List all defined p/t-sets to which the members of a process/thread set belong..

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-set initial to contain only thread 0:
pgdbg [all] 0> defset initial [O0]

"initial™ [0] : [O]

Use the focus command to change the current p/t-set to initial:
pgdbg [all] 0> focus [initial]

[initial] : [O0]

(0]

Advance the thread using the current p/t-set, whichis initial:
pogdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 belongs to:

all

initial

The viewset command displays all threads that are active and are members of defined
p/t-sets:

pgdbg [initial] 0> viewset

"all" [*.*] : [0.0,0.1,0.2,0.3]

"initial™ [0] : [O]

You can use the focus command to set the current p/t-set back to [all]:
pogdbg [initial] 0> focus [all]

(all] : [0.0,0.1,0.2,0.3]

[*.]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set name "initial" deleted.

9.4.6. Using Process/Thread Sets in the GUI

The previous examples illustrate how to manage named p/t-sets using the command-
line interface. A similar capability is available in the GUI. Figure 9 provides an overview
of the Groups tab.

Debugger User's Guide Version 2019 | 63

Parallel Debugging Overview

Command | Events | Groups

Group Name Composition
all [*.%]

[Add...]| Modify...]| Remove...]

Figure 20 Groups Tab

The Groups tab contains a table with two columns: a Group Name column and a p/t-set
Composition column. The entries in the Composition column are the same p/t-sets used
in the command-line interface.

Using this tab you can create, select, modify and remove p/t-sets.

9.4.6.1. Create a p/t-set

To create a p/t-set in the Groups tab:

1. Click the Add button. This opens a dialog box similar to the one in Figure 21.

2. Enter the name of the p/t-set in the Group Name field and enter the p/t-set in the
Composition field.
3. Click OK to add the p/t-set.

The new p/t-set appears in the Groups table. Clicking the Cancel button or closing the
dialog box aborts the operation.

Debugger User's Guide Version 2019 | 64

Parallel Debugging Overview

rF__‘: Define Process/Thread Group ﬁ“
Group Name: []
Composition: []

A group i3 composed of a et of processes and threads.

Examples:

[0.1,0.2,0.3] - thread 1, 2, and 3 of process 0
[0.%] - all threads of process 0O
[1.1,2.1] — thread 1 of processes 1 and 2
[1:2.1] — thread 1 of processes 1 and 2

|f oK]l Cancel]

L

Figure 21 Process/Thread Group Dialog Box

9.4.6.2. Select a p/t-set

To select a p/t-set, click the desired p/t-set in the table. The selected p/t-set defines the
Current Group used in the Apply and Display drop-down lists on the main toolbar.

9.4.6.3. Modify a p/t-set

To modify an existing p/t-set, select the desired group in the Group table and click the
Modify... button. You see a dialog box similar to that in Figure 21, except that the Group
Name and Composition fields contain the selected group’s name and p/t-set respectively.
You can edit the information in these fields and click OK to save the changes.

9.4.6.4. Remove a p/t-set

To remove an existing p/t-set, select the desired item in the Groups Table and click the
Remove... button. The debugger displays a dialog box asking for confirmation of the
removal request.

9.4.7. p/t-set Usage

When Current Group is selected in either the Apply or Display drop-down lists on the
main toolbar, the currently selected p/t-set in the Groups tab defines the Current Group.

Debugger User's Guide Version 2019 | 65

Parallel Debugging Overview

9.5. Command Set

For the purpose of parallel debugging, the debugger's command set is divided into
three disjoint subsets according to how each command reacts to the current p/t-set.
Process level and thread level commands can be parallelized. Global commands cannot
be parallelized.

Table 9 Parallel Commands

Commands Action

Process Level Commands Parallel by current p/t-set or prefix p/t-set

Thread Level Commands Parallel by prefix p/t-set only; current p/t-set is ignored.
Global Commands Non-parallel commands

9.5.1. Process Level Commands

The process level commands are the debugger's control commands.

The control commands apply to the active members of the current p/t-set by default. A
prefix set can be used to override the current p/t-set. The target p/t-set is the prefix p/t-
set if present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1:2]

pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:
pgdbg [all] 0.0> [0.3] n

9.5.2. Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set
prefix is used, these commands execute in the context of the current thread of the current
process by default. That is, thread level commands ignore the current p/t-set. Thread
level commands can be applied to multiple threads by using a prefix p/t-set. When a
prefix p/t-set is used, the commands in this section are executed in the context of each
active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if
present, or the current thread (not the current p/t-set) if no prefix p/t-set exists.

The thread level commands are:

addr ascii assign bin break*
dec decl disasm do doi
dump entry fp func hex

Debugger User's Guide Version 2019 | 66

Parallel Debugging Overview

hwatch line lines lval noprint
oct pc pf print regs
retaddr rval scope set sizeof
sp stack stackdump string track
tracki watch watchi whatis where

* breakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is
specified, [all] is used (overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:

» The threads described by the prefix are sorted per process by thread ID in increasing
order.

» The processes are sorted by process ID in increasing order, and duplicates are
removed.

» The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current
thread of the current process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print myrank

0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are
removed. The print command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*%,1:2.*] print myrank
[1.0] print myrank:

%2.0] print myrank:
%2.1] print myrank:
%2.2] print myrank:
%3.0] print myrank:
?3.2] print myrank:
?3.1] print myrank:
3

9.5.3. Global Commands

The rest of the debugger commands ignore threads and processes, or are defined
globally for all threads across all processes. The current p/t-set and prefix p/t-set (if any)
are ignored.

The following is a list of commands that are defined globally.

? defset funcs quit threads
/ delete help repeat unalias
alias directory history rerun unbreak
arrive disable ignore run undefset
breaks display log script use

Debugger User's Guide Version 2019 | 67

Parallel Debugging Overview

call edit pgienv shell viewset
catch enable proc source wait

cd files procs status whereis
debug focus pwd thread whichsets

9.6. Process and Thread Control

The debugger supports thread and process control everywhere in the program. Threads
and processes can be advanced in groups anywhere in the program.

The control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If

the current thread single-steps over an mp_ init call (found at the beginning of
every OpenMP parallel region) using the next command, then all threads created by
_mp_init step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So
if the current process returns from a call to MPI Init under the control of a cont
command, the new process does the same.

9.7. Configurable Stop Mode

The debugger supports configuration of how threads and processes stop in relation to
one another. The debugger defines two pgienv environment variables, threadstop and
procstop, for this purpose. The debugger defines two stop modes, synchronous (sync)
and asynchronous (async).

Table 10 Stop Modes

Command Result

sync Synchronous stop mode; when one thread stops at a breakpoint (event), all other
threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other threads. One
thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [syncl|async]

Process stop mode is set using the pgienv command as follows:

pgienv procstop [sync|async]

Debugger User's Guide Version 2019 | 68

Parallel Debugging Overview

The default is asynchronous for both thread and process stop modes. When debugging
an OpenMP program, the debugger automatically enters synchronous thread stop mode
in serial regions, and asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfigand procstopconfig can be
set to automatic (auto) or user defined (user) to enable or disable this behavior:

pgienv threadstopconfig [auto|user]
pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop
modes automatically. Automatic stop configuration is the default for both threads and
processes.

9.8. Configurable Wait Mode

Wait mode describes when the debugger will accept the next command. The wait
mode is defined in terms of the execution state of the program. Wait mode describes to
the debugger which processes/threads must be stopped before it will accept the next
command.

In certain situations, it is desirable to be able to enter commands while the program is
running and not stopped at an event. The debugger prompt does not appear until all
processes/threads are stopped. However, a prompt may be available before all processes/
threads have stopped. Pressing <enter> at the command line brings up a prompt if it is
available. The availability of the prompt is determined by the current wait mode and any
pending wait commands.

The debugger accepts a compound statement at each prompt. Each compound statement
is a sequence of semicolon-separated commands, which are processed immediately in
order.

The wait mode describes when to accept the next compound statement. The debugger
supports three wait modes, which can be applied to processes and/or threads.

Table 11 Wait Modes

Command Result

all The prompt is available only after all threads have stopped since the last control
command.

any The prompt is available only after at least one thread has stopped since the last

control command.

none The prompt is available immediately after a control command is issued.

» Thread wait mode describes which threads the debugger will wait for before
accepting new commands.

Thread wait mode is set using the pgienv command as follows:
pgienv threadwait [any|all|none]

» Process wait mode describes which processes the debugger will wait for before
accepting new commands.

Debugger User's Guide Version 2019 | 69

Parallel Debugging Overview

Process wait mode is set using the pgienv command as follows:

pgienv procwait [any|all|none]
If process wait mode is set to none, then thread wait mode is ignored.

The debugger CLI defaults to:

threadwait all

procwait any

If the target program goes MPI parallel, then procwait is changed to none
automatically.

If the target program goes thread parallel, then threadwait is changed to none
automatically. The pgienv environment variable threadwaitconfig can be set to
automatic (auto) or user defined (user) to enable or disable this behavior.

pgienv threadwaitconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes
automatically. Automatic wait mode is the default thread wait mode.

The GUI defaults to:

threadwait none

procwait none

Setting the wait mode may be necessary when invoking the GUI using the -s (script
file) option. This step ensures that the necessary threads are stopped before the next
command is processed.

The debugger also provides a wait command that can be used to insert explicit wait
points in a command stream. wait uses the target p/t-set by default, which can be set to
wait for any combination of processes/threads. You can use the wait command to insert
wait points between the commands of a compound command.

The pgienv variables threadwait and procwait can be used to configure the
behavior of wait. For more information, refer to pgienv usage in Configurable Wait
Mode.

Table 12 describes the behavior of wait.
Suppose S is the target p/t-set. In the table,

P is the set of all processes described by S.
p is a single process.

T is the set of all threads described by s.

t is a single thread.

vV v v Vv

Table 12 Wait Behavior

Command | threadwait | procwait | Wait Set

wait all all Wait for T

any
none

Debugger User's Guide Version 2019 | 70

Parallel Debugging Overview

Command | threadwait | procwait | Wait Set
wait all any Wait for all threads in at least one p in P
none
wait any any Wait for all t in T for at least one p in P
none none
wait all all all Wait for T
any
none
wait all all any Wait for all threads of at least one p in P
none
wait all any any Wait for all tin T for at least one p in P
none none
wait any all all Wait for at least one thread for each process p in P
wait any all any Wait for at leastone tin T
any none
none
wait any any all Wait for at least one thread in T for each process p in P
none
wait none all all Wait for no threads
any any
none none

9.9. Status Messages

The debugger can produce a variety of status messages during a debug session.

This feature can be useful in the CLI if the graphical aids provided by the GUI are
unavailable. Use the pgienv command to enable or disable the types of status messages
produced by setting the verbose environment variable to an integer-valued bit mask:

pgienv verbose <bitmask>

The values for the bit mask, listed in the following table, control the type of status
messages desired.

Table 13 Status Messages

Debugger User's Guide

Value Type Information

0x0 Standard Disable all messages.

0x1 Standard Report status information on current process/thread only. A message is
printed when the current thread stops and when threads and processes

Version 2019 | 71

Parallel Debugging Overview

Value Type Information

are created and destroyed. Standard messaging is the default and
cannot be disabled.

0x2 Thread Report status information on all threads of current processes. A
message is reported each time a thread stops. If process messaging

is also enabled, then a message is reported for each thread across all
processes. Otherwise, messages are reported for threads of the current
process only.

Ox4 Process Report status information on all processes. A message is reported
each time a process stops. If thread messaging is also enabled, then a
message is reported for each thread across all processes. Otherwise,
messages are reported for the current thread only of each process.

0x8 SMP Report SMP events. A message is printed when a process enters or exits
a parallel region, or when the threads synchronize. The debugger's
OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default).
0x32 Symbolic debug Report any errors encountered while processing symbolic debug
information information (e.g. ELF, DWARF2).

9.10. The Command Prompt

The debugger command prompt reflects the current debug mode, as described in Debug
Modes.

In serial debug mode, the command prompt looks like this:

pgdbg>

In threads-only debug mode, the debugger displays the current p/t-set in square
brackets followed by the ID of the current thread:

pgdbg [all] 0>

Current thread is 0

In process-only debug mode, the debugger displays the current p/t-set in square
brackets followed by the ID of the current process:

pgdbg [all] 0>

Current process is 0

In multilevel debug mode, the debugger displays the current p/t-set in square brackets
followed by the ID of the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted
to printing the current p/t-set at the prompt.

Debugger User's Guide Version 2019 | 72

Parallel Debugging Overview

9.11. Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and
processes. Events, such as breakpoints and watchpoints, are user-defined events. User-
defined events are thread-level commands, described in Thread Level Commands.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be
used to set breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (ii) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.

By default, all other user events are set for the current thread only. A prefix p/t-set can be
used to set user events on specific processes and threads. For example:

i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

(i) sets a watchpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all
threads that are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the
parent process or thread. All other events must be defined explicitly after the process or
thread is created. All processes must be stopped to add, enable, or disable a user event.

Events may contain if and do clauses. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint
fires. The if and do clauses execute in the context of a single thread. The conditional in
the if clause and the body of the do execute in the context of a single thread, the thread
that triggered the event. The conditional definition as above can be restated as follows:

[0] 1if (glob!=0) {[0] set £ = 0}
[1] 1if (glob!=0) {[1l] set £ = 0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to
non-zero, f is bound in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current
thread and are only well defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set
of the current process. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0; c; wait}

If conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example,
the following command is illegal:
pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

The body of a do statement cannot be parallelized.

Debugger User's Guide Version 2019 | 73

Parallel Debugging Overview

9.12. Parallel Statements

This section describes how to use a p/t-set to define a statement that executes for
multiple threads and processes.

9.12.1. Parallel Compound/Block Statements

Each command in a compound statement is executed in order. The target p/t-set is
applied to all statements in a compound statement. The following two examples (i) and
(ii) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print f@11Q;i

ii) pgdbg [all] 0>[*] break main; [*]cont; [*]wait; [*]print f@11@;1i

Use the wait command if subsequent commands require threads to be stopped, as the
print command in the example does.

The threadwait and procwait environment variables do not affect how commands
within a compound statement are processed. These pgienv environment variables
describe under what conditions (state of program) the debugger should accept the next
(compound) statement.

9.12.2. Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the
context of the current thread by default. The following example:
pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

is equivalent to the following pseudo-code:

for the subset of [*] where (i==1)
break func; c; wait; for the subset of [*] where (i!=1) sync func2

9.12.3. Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes
in the context of the current thread by default. The following example:
pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

loop:
if the subset of [*] is the empty set
goto done

endif

for the subset [s] of [*] where (i<10)
[sln; [slwait; [s]print i;

endfor

goto loop

The while statement terminates when either the subset of the target p/t-set matching
the while condition is the empty set, or a return statement is executed in the body of the
while.

Debugger User's Guide Version 2019 | 74

Parallel Debugging Overview

9.12.4. Return Statements

The return statement is defined only in serial context since it cannot return multiple
values. When return is used in a parallel statement, it returns the last value evaluated.

Debugger User's Guide Version 2019 | 75

Chapter 10.
PARALLEL DEBUGGING WITH OPENMP

This section provides information on how to debug OpenMP applications. Before
reading this section, review the information in Parallel Debugging Overview.

10.1. OpenMP and Multi-thread Support

The debugger provides full control of threads in parallel regions. Commands can be
applied to all threads, a single thread, or a group of threads. The debugger uses the
native thread numbering scheme for OpenMP applications to identify threads; for other
types of multi-threaded applications thread numbering is arbitrary. OpenMP private
data can be accessed accurately for each thread. The debugger provides understandable
status displays regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes,
allowing debugger operation that is concurrent with application execution.

10.2. Multi-thread and OpenMP Debugging

The debugger automatically attaches to new threads as they are created during program
execution. The debugger reports when a new thread is created and the thread ID of the
new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through the threads command.
You can use the proecs command to display information about the parent process.

The debugger maintains a conceptual current thread. When using the command-line
interface, the current thread is chosen by using the thread command.

pgdbg [all] 2> thread 3

pgdbg [all] 3>

When using the GUI, the current thread can be selected using the Current Thread drop-
down list or by clicking in the Thread Grid. A subset of debugger commands known as
thread-level commands apply only to the current thread. For more information, refer to
Thread Level Commands.

Debugger User's Guide Version 2019 | 76

Parallel Debugging with OpenMP

The threads command lists all threads currently employed by an active program.
It displays each thread’s unique thread ID, system ID (OS process ID), execution
state (running, stopped, signaled, exited, or killed), signal information and reason
for stopping, and the current location if stopped or signaled. An arrow (=>) indicates
the current thread. The process ID of the parent is printed in the top left corner. The
threads command does not change the current thread.

pgdbg [all] 3> threads

0 ID PID STATE SIGNAL LOCATION

=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address: 0x80490cf
1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address: 0x8048fal

In the GUI, thread state is represented by a color in the process/thread grid.

Table 14 Thread State Is Described Using Color

Thread State Description Color

Stopped The thread is stopped at a breakpoint, or was directed to | Red
stop by the debugger.

Signaled The thread is stopped due to delivery of a signal. Blue

Running The thread is running. Green

Exited or Killed The thread has been killed or has exited. Black

10.3. Debugging OpenMP Private Data

The debugger supports debugging of OpenMP private data for all supported languages.
When an object is declared private in the context of an OpenMP parallel region, it
essentially means that each thread team has its own copy of the object. This capability is
shown in the following Fortran and C/C™ examples, where the loop index variable i is
private by default.

FORTRAN example:

program omp private data

integer array(8)

call omp set num threads(2)
!'SOMP PARALLEL DO

do i=1,8

array (i) = 1i

enddo
!'SOMP END PARALLEL DO

print *, array

end

C/ C™" example:

#include <omp.h>
int main ()
{
int 1i;
int array([8];
omp set num threads(2);

#pragma omp parallel

Debugger User's Guide Version 2019 | 77

Parallel Debugging with OpenMP

{
#pragma omp for
for (1 = 0; 1 < 8; ++1i) {
arrayl[i] = 1i;
}
}
for (i = 0; 1 < 8; ++1i) {
printf ("array[%d] = %d\n",1i, arrayl[il):;
}
}

Compile the examples with a PGI compiler. The display of OpenMP private data in the
resulting executables as debugged is as follows:

pgdbg [all] 0> [*] print i
[0] print i:
1

[1] print i:
5

The example specifies [*] for the p/t-set to execute the print command on all threads.
Figure 22 shows the values for i in the GUI using a Custom Window.

All Threads is selected in the Context drop-down list to display the value on both
threads.

== PGDBG Custom =3
Eile Options

Command> {p i

[Stop][Clear]

[0] print i:
1
[1] pEint 1i:
i

[Reset][Close] | Al Threads : [Update]L Lock |

Figure 22 OpenMP Private Data in Debugger GUI

Debugger User's Guide Version 2019 | 78

Chapter 11.
PARALLEL DEBUGGING WITH MP]

The debugger is capable of debugging multi-process MPI and hybrid multi-thread/
multi-process applications. Hybrid applications use MPI to communicate between multi-
threaded or OpenMP processes. This section begins with a general overview of how to
debug parallel MPI applications before detailing how to launch MPI applications under
debug using the various supported platforms and versions of MPL

For information on compiling a program using MPI, refer to “Using MPI" in the PGI
Compiler User's Guide, www.pgroup.com/resources/docs/19.1/pdf/pgil9ug-x86.pdf.

11.1. MPI and Multi-Process Support

The debugger can debug MPI applications running on the local system and,

on Linux, applications distributed across a cluster. MPI applications must be
started under debugger control. Process identification uses the MPI rank within
MPI_COMM_WORLD.

MPI debugging is supported on Linux, macOS, and Windows. Application debugging
is supported up to a maximum of 256 processes and 64 threads per process, but may
be limited by your PGI license keys. A PGI floating license is required to enable the
debugger's distributed debugging capabilities.

11.2. MPI on Linux

PGI products for Linux ship with a PGI-built version of Open MPI. In addition, users
with permanent license can download PGI-built versions of MVAPICH2 and MPICH v3.

PGI products for Linux support SGI MPI. Any SGI MPI program configured to build
with PGI compilers can be debugged with the PGI debugger without any additional
configuration considerations.

Debugger User's Guide Version 2019 | 79

Parallel Debugging with MPI

11.3. MPI on macOS

PGI products for macOS ship with a PGI-built version of MPICH v3.

11.4. MPI on Windows

PGI products on Windows ship with Microsoft’s HPC Pack 2012 SP1 MS-MPI
redistributable package; MS-MPI is installed by default. The PGI debugger can debug
MS-MPI programs running locally; cluster debugging is not supported.

11.5. Deprecated Support for MPICH1, MPICH2,
MVAPICH1

PGI has deprecated support for MPICH1, MPICH2 and MVAPICHI1. For instructions
on debugging an application using one of these distributions of MPI, please refer to the
documentation for release 13.10 (or prior).

11.6. Building an MPI Application for Debugging

In general, simply add -g to the compilation and linking of an MPI application to
enable the generation of debug information. Instead of invoking a compiler directly,
most versions of MPI include wrapper files (i.e., mpicc, mpif90). That said, the PGI
compilers have direct support for some MPI distributions via the -Mmpi option. For
example, sub-options to -Mmp1i are available for MPICH, SGI, and MS-MPL

11.7. The MPI Launch Program

In the following sections, the term launcher indicates the MPI launch program. The
debugger uses mpiexec as the default launcher. If the location of the launcher in your
MPI distribution is not in your PATH environment variable, you must provide the
debugger with the full path to the launcher, including the name of the launch tool itself.
If the location of the launcher is in your PATH, then you just need to provide the name
of the launcher and then only if the launcher is not mpiexec.

11.7.1. Launch Debugging Using the Connection Tab

You can use the debugger's Connections tab to start debug sessions of programs that
were built using MPICH, MS-MPI, MVAPICH2 and Open MPI. Programs built with SGI
MPI can be debugged with the debugger GUI but the session must be started when the
debugger is launched.

Debugger User's Guide Version 2019 | 80

Parallel Debugging with MPI

To configure an MPI debug session, first select the MPI check box near the top of the
Connections tab to enable its MPI-specific fields. Use the Command field to specify the
MPI launch program and the Arguments field to pass arguments (if any) to the MPI
launch program. The same rules discussed earlier about specifying the MPI launch
program apply here as well. The examples in the following table use eight processes and
a file named ‘hosts’ to illustrate how you might go about filling in the Command and
Argument fields for different MPI distributions:

MPI Distribution Command Arguments

MPICH mpiexec -np 8

MS-MPI mpiexec -n8

MVAPICH2 mpirun_rsh -rsh -hostfile hosts-np 8
Open MPI mpiexec -np 8

11.7.2. Launch Debugging From the Command Line

Debugging sessions for all MPI distributions supported by PGI can be started when the
debugger is launched. The requirements of the MPI distribution itself determine the
command required to start the debugger. The debugger’s text and graphical modes are
both supported from a command line launch.

11.7.3. MPICH

To launch debugging of an MPICH program from the command line, use this command
format:

pgdbg [-text] -mpi[:<launcher path>] <launcher args> [-program args
argl,...argn]

The launcher for MPICH v3 is mpiexec. If the path to mpiexec is not part of the PATH
environment variable, then you must specify the full path to mpiexec in the pgdbg
command line. If mpiexec is in your PATH, you don’t have to supply an argument to
the -mpi option at all because mpiexec is the default launcher name.

For example, to debug an MPICH program named cpi, which takes one program
argument, using four processes, use a command like this one:
$ pgdbg -mpi -np 4 cpi -program args 11000

11.7.4. MS-MPI

MS-MPI applications can be run and debugged locally. Debugging is not supported on
Windows clusters.

To invoke the PGI debugger to debug an MS-MPI application locally, use this command
format:

pgdbg -mpi[=<launcher path>] <launcher args> [-program args argl,...argn]
When MS-MSP1 is installed, it adds the location of mpiexec to the system’s PATH
environment variable so you do not need to supply an argument to the -mpi option. If

the path to mpiexec is not part of your PATH, then you must specify the full path to
mpiexec in the pgdbg command line.

Debugger User's Guide Version 2019 | 81

Parallel Debugging with MPI

For example, to debug an MS-MPI application named prog using four processes
running on the host system, use a command like this one:

$ pgdbg -mpi -n 4 prog.exe

11.7.5. MVAPICH2

To launch debugging of an MVAPICH2 program from the command line, use this
command format:

pgdbg [-text] -mpi=<launcher path> <launcher args> [-program args
argl,...argn]

For MVAPICH?2, the MPI launcher is mpirun rsh, souse -mpi:mpirun_ rsh.

If the path tompirun rshisnotin your PATH environment variable, then you must
specify the full path to mpirun rsh using the -mpi option.

For example, to start debugging an MVAPICH2 program called fpi using four
processes and a host file called ‘hosts’” use a command like:
$ pgdbg -mpi=mpirun rsh -rsh -hostfile hosts -np 4 ./fpi

11.7.6. Open MPI

Open MPI debugging start-up is the same as MPICH debugging start-up. To launch
debugging of an Open MPI program from the command line, use this command format:
pgdbg [-text] -mpi[=<launcher path>] <launcher args> [-program_ args
argl,...argn |
The launcher for Open MPI is mpiexec. If the path to mpiexec is not part of the PATH
environment variable, then you must specify the full path to mpiexec in the pgdbg
command line. If mpiexec is in your PATH, you don’t have to supply an argument to
the -mpi option at all because mpiexec is the default launcher name.

For example, to debug an Open MPI program named cpi, which takes one program
argument, using four processes, use a command like this one:

$ pgdbg -mpi -np 4 cpi -program args 11000

11.7.7. SGI MPI

Use the debugger’s ~sgimpi option instead of -mpi when you want to debug an SGI

MPI program. Otherwise the command format for launching SGI MPI debugging is

similar to that used when debugging programs built with other distributions of MPI:

pgdbg [-text] -sgimpi[=<launcher path>] <launcher args> [-program args
argl,...argn]

The SGI MPI launch program is mpirun. You can use -sgimpi without an argument

if the location of mpirun is in your PATH. If mpirun is not in your PATH, then you

must specify the full path to it, including the mpirun command, as part of the -sgimpi

option.

When running or debugging an SGI MPI program, you need to include the SGI MPI lib
directory in the LD_LIBRARY_PATH environment variable.

Debugger User's Guide Version 2019 | 82

Parallel Debugging with MPI

For example, provided mpirun is in your PATH, to debug an SGI MPI program named
fp1i using four processes, use a command like:

$ pgdbg -sgimpi -np 4 fpi

When an SGI MPI debugging session starts up, a number of messages are printed to the
command prompt. These messages reflect how the debugger is setting up the session
and can be safely ignored.

Program input from stdin is disabled when running an SGI MPI program using the
debugger.

11.8. Process Control

Here are some general things to consider when debugging an MPI program:

» Use the Groups tab (p/t-sets in the CLI) to focus on a set of processes. Be mindful of
process dependencies.

» For a running process to receive a message, the sending process must be allowed to
run.

» Process synchronization points, such as MPI_Barrier, do not return until all
processes have hit the sync point.

» MPI_Finalize acts as an implicit barrier except when using the now deprecated
MPICH1, where Process 0 returns while Processes 1 through n-1 exit.

You can apply a control command, such as cont or step, to a stopped process while
other processes are running. A control command applied to a running process is applied
to the stopped threads of that process and is ignored by its running threads.

The debugger automatically switches to process wait mode none as soon as it attaches
to its first MPI process. See the pgienv command and Configurable Wait Mode for
details.

The debugger automatically attaches to new MPI processes as they are created by the
running MPI application. The debugger displays an informational message as it attaches
to the freshly created processes.

([1] New Process)
The MPI global rank is printed with the message.

You can use the procs command to list the host and the PID of each process by rank.
The current process is indicated by an arrow (=>). You can use the proc command to
change the current process by process ID.

pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPI.c, line 30
#30: aft=time (&aft);

ID IPID STATE THREADS HOST
0 24765 Stopped 1 local
=> 1 17890 Stopped 1 red2.wil.st.com

The execution state of a process is described in terms of the execution state of its
component threads. For a description of how thread state is represented in the GUI, refer
to Thread State Is Described Using Color.

Debugger User's Guide Version 2019 | 83

Parallel Debugging with MPI

The debugger command prompt displays the current process and the current thread.
In the above example, the current process was changed to process 1 by the proc 1
command and the current thread of process 1 is 0; this is written as 1.0:

pgdbg [all] 1.0>

For a complete description of the prompt format, refer to Process and Thread Control.
The following rules apply during a debug session:

» The debugger maintains a conceptual current process and current thread.
» Each active process has a thread set of size >=1.
» The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current
thread. For more information, refer to Process Level Commands and Thread Level
Commands.

The PGI license keys restrict the total number of MPI processes that can be debugged.
In addition, there are internal limits on the number of threads per process that can be
debugged.

11.9. Process Synchronization

Use the debugger's sync command to synchronize a set of processes to a particular
point in the program. The following command runs all processes to MPI_Finalize:
pgdbg [all] 0.0> sync MPI Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:
pgdbg [all] 0.0> [0:1.*] sync MPI Finalize

A sync command only successfully syncs the target processes if the sync address is

well defined for each member of the target process set, and all process dependencies are
satisfied. If these conditions are not met, a member could wait forever for a message. The
debugger cannot predict if a text address is in the path of an executing process.

11.10. MPI Message Queues

The debugger can dump MPI message queues. When using the CLI, use the mgdump
command, described in Memory Access. When using the GUI, the message queues are
displayed in the MPI Messages debug information tab.

The following error message may appear in the MPI Messages tab or when invoking
mgdump:
ERROR: MPI Message Queue library not found.

Try setting ‘PGDBG _MQS LIB OVERRIDE’environment variable
or set via the debugger command: pgienv mgslib <path>.

If this message is displayed, then the PGDBG MQS LIB OVERRIDE environment
variable should be set to the absolute path of 1ibtvmpich. so or another shared object
that is compatible with the version of MPI being used. The default path can also be
overridden via the pgienv variable mgslib.

Debugger User's Guide Version 2019 | 84

Parallel Debugging with MPI

Microsoft MPI does not currently provide support for dumping message queues.

11.11. MPI Groups

The debugger identifies each process by its MPI_ COMM_WORLD rank. In general, the
debugger currently ignores MPI groups.

11.12. Use halt instead of Ctrl+C

Entering Ctrl+C at the debugger's command line can be used to halt all running
processes. However, this is not the preferred method to use while debugging an
MPICHI1 program. (MPICHI1 support has been deprecated.) The debugger automatically
switches to process wait mode none (pgienv procwait none) as soon as it attaches to
its first MPI process.

Setting pgienv procwait none allows commands to be entered while there are
running processes, which allows the use of the halt command to stop running
processes without the use of Ctrl+C.

halt cannot interrupt a wait command. Ctrl+C must be used for this.

In MPI debugging, wait should be used with care.

11.13. SSH and RSH

By default, the debugger uses rsh for communication between remote debugger
components. The debugger can also use ssh for secure environments. The environment
variable PGRSH should be set to ssh or rsh to indicate the desired communication
method.

If you opt to use ssh as the mechanism for launching the debugger's remote
components, you may want to do some additional configuration. The default
configuration of ssh can result in a password prompt for each remote cluster node on
which the debugger runs. Check with your network administrator to make sure that you
comply with your local security policies when configuring ssh.

The following steps provide one way to configure SSH to eliminate this prompt. These
instructions assume $HOME is the same on all nodes of the cluster.

$ ssh-keygen -t dsa

$ eval “ssh-agent -s°

$ ssh-add

<make sure that $HOME is not group-writable>
$ cd SHOME/.ssh

$ cat id dsa.pub >> authorized keys

Then for each cluster node you use in debugging, use:
$ ssh <host>

A few things that are important related to this example are these:

Debugger User's Guide Version 2019 | 85

Parallel Debugging with MPI

» The ssh-keygen command prompts for a passphrase that is used to authenticate to
the ssh-agent during future sessions. The passphrase can be anything you choose.

» Once you answer the prompts to make the initial connection, subsequent
connections should not require further prompting.

» The ssh-agent -s command is correct for sh or bash shells. For csh shells, use
ssh-agent -c.

After logging out and logging back in, the ssh-agent must be restarted and reauthorized.
For example, in a bash shell, this is accomplished as follows:

$ eval “ssh-agent -s°
$ ssh-add

You must enter the passphrase that was initially given to ssh-add to authenticate to the
ssh-agent.

For further information, consult your ssh documentation.

11.14. Using the CLI

11.14.1. Setting DISPLAY

To use MPI debugging in text mode, be certain that the DISPLAY variable is undefined
in the shell that is invoking mpirun. If this variable is set, you can undefine it by using
one of the following commands:

For sh/bash users, use this command:
S unset DISPLAY

For csh/tcsh users, use this command:
% unsetenv DISPLAY

11.14.2. Using Continue

When debugging an MPI job after invoking the debugger's CLI with the -mp1i option,
each process is stopped before the first assembly instruction in the program. Continuing
execution using step or next is not appropriate; instead, use the cont command.

Debugger User's Guide Version 2019 | 86

Chapter 12.
PARALLEL DEBUGGING OF HYBRID

APPLICATIONS

The debugger supports debugging hybrid multi-thread/multi-process applications that
use MPI to communicate between multi-threaded or OpenMP processes. Multi-threaded
and OpenMP applications may be run using more threads than the available number

of CPUs, and MPI applications may allocate more than one process to a cluster node.
The debugger supports debugging the supported types of applications regardless of
how well the requested number of threads matches the number of CPUs or how well the
requested number of processes matches the number of cluster nodes.

12.1. Multilevel Debug Mode

As described in Debug Modes, the debugger can operate in four debug modes. The
mode determines a short form for uniquely naming threads and processes.

The debug mode is set automatically or can be set manually using the pgienv command.

When the debugger detects multilevel debugging, it sets the debug mode to multilevel.
To manually set the debug mode to multilevel, use the pgienv command:

pgdbg> pgienv mode multilevel

12.2. Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent
process ID. This forms a unique name for each thread across all processes. This naming
scheme is valid in all debug modes. The debugger changes automatically to multilevel
debug mode from process-only debug mode or threads-only debug mode when at least
one MPI process creates multiple threads.

Debugger User's Guide Version 2019 | 87

Parallel Debugging of Hybrid Applications

Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0

0.* All threads of process 0

All threads of all processes

In multilevel debug, mode status and error messages are prefixed with process/thread
IDs depending on context. Further, in multilevel debug mode, the debugger displays the
current p/t-set in square brackets followed by the ID of the current thread prefixed by
the ID of its parent process:

pgdbg [all] 1.0>

Current thread 1.0

For more information on p/t sets, refer to Process/Thread Sets.

Debugger User's Guide Version 2019 | 88

Chapter 13.
COMMAND REFERENCE

This section describes the debugger's command set in detail, grouping the commands by
these categories:

Conversions Miscellaneous Process-Thread Sets Scope

Events Printing Variables and Program Locations Symbols and Expressions
Expressings

Memory Access Process Control Register Access Target

For an alphabetical listing of all the commands, with a brief description of each, refer to
the Command Summary.

13.1. Notation Used in Command Sections

The command sections that follow use these conventions for the command names and
arguments, when the command accepts one.

» Command names may be abbreviated by omitting the portion of the command
name enclosed in brackets ([]).

Argument names are italicized.

Argument names are chosen to indicate what kind of argument is expected.
Arguments enclosed in brackets ([]) are optional.

Two or more arguments separated by a vertical line (|) indicate that any one of the
arguments is acceptable.

» Anellipsis (...) indicates an arbitrarily long list of arguments.

» Other punctuation, such as commas and quotes, must be entered as shown.

vV v v Vv

Syntax examples

Example 1:

lis[t] [count | lo:hi | routine | 1line,count]

This syntax indicates that the command 1ist may be abbreviated to 1is, and that it can
be invoked without any arguments or with one of the following: an integer count, a line
range, a routine name, or a line and a count.

Debugger User's Guide Version 2019 | 89

Command Reference

Example 2:
attlach] pid [exe]

This syntax indicates that the command attach may be abbreviated to att, and,
when invoked, must have a process ID argument, pid. Optionally you can specify an
executable file, exe.

13.2. Process Control

The following commands control the execution of the target program. The debugger lets
you easily group and control multiple threads and processes. For more details, refer to
Basic Process and Thread Naming.

13.2.1. attach

attlach] pid [exe]

Attach to a running process with process ID pid. Use exe to specify the absolute path of
the executable file. For example, attach 1234 attempts to attach to a running process
whose process ID is 1234. You may enter something like attach 1234 /home/demo/
a.out to attach to a process ID 1234 called /home/demo/a . out.

The PGI debugger attempts to infer the arguments of the attached program. If the
debugger fails to infer the argument list, then the program behavior is undefined if the
run or rerun command is executed on the attached process.

The stdio channel of the attached process remains at the terminal from which the
program was originally invoked.

The attach command is not supported for MPI programs.

Note that on Ubuntu systems ptrace is, by default, restricted from attaching to non-
child processes. As a result, the PGI debugger, as well as other debuggers utilizing
ptrace on Linux, is not able to attach to a process for debugging. There are two
workarounds:

1) To temporarily allow attaching for debug, modify the file /proc/sys/kernel/
yama/ptrace-scope and change the content
1

to
0

2) To permanently allow attaching for debug, modify the file /etc/sysctl.d/10-
ptrace.conf and change the line

kernel.yama.ptrace scope = 1
to

kernel.yama.ptrace scope = 0
13.2.2. cont

clont]

Debugger User's Guide Version 2019 | 90

Command Reference

Continue execution from the current location.

13.2.3. debug

de[bug] [target [argl...
argn]]

Load the specified target program with optional command-line arguments.

13.2.4. detach

det [ach]

Detach from the current running process.

13.2.5. halt

halt [command]

Halt the running process or thread.

13.2.6. load

lo[ad] [program [args]]

Without arguments, 1oad prints the name and arguments of the program being
debugged. With arguments, 1oad loads the specified program for debugging. Provide
program arguments as needed.

13.2.7. next

nlext] [count]

Stop after executing one source line in the current routine. This command steps over
called routines. The count argument stops execution only after executing count source
lines.

13.2.8. nexti

nexti [count]

Stop after executing one instruction in the current routine. This command steps
over called routines. The count argument stops execution only after executing count
instructions.

13.2.9. proc

proc [id]

Set the current process to the process identified by id. When issued with no argument,
proc lists the location of the current thread of the current process in the current
program. For information on how processes are numbered, refer to Using the CLI.

13.2.10. procs

procs

Debugger User's Guide Version 2019 | 91

Command Reference

Print the status of all active processes, listing each process by its logical process ID.

13.2.11. quit

qluit]

Terminate the debugging session.

13.2.12. rerun

rer[un] [arg0
argl ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

The rerun command is the same as run with one exception: if no args are specified with
rerun, then no args are used when the program is launched.

13.2.13. run

rul[n] [arg0 argl
. argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

Execute the program from the beginning. If arguments arg0, arg1, and so on are
specified, they are set up as the command-line arguments of the program. Otherwise,
the arguments that were used with the previous run command are used. Standard input
and standard output for the target program can be redirected using < or > and an input
or output filename.

13.2.14. setargs

setargs [argl, arg2, ... argn]

Set program arguments for use by the run command. The rerun command does not use
the arguments specified by setargs.

13.2.15. step

s[tep] [count | count]

Stop after executing one source line. This command steps into called routines. The count
argument stops execution after executing count source lines. The up argument stops
execution after stepping out of the current routine (see stepout).

13.2.16. stepi

stepi [count | up]

Stop after executing one instruction. This command steps into called routines. The count
argument stops execution after executing count instructions. The up argument stops the
execution after stepping out of the current routine (see stepout).

13.2.17. stepout

stepo[ut]

Stop after returning to the caller of the current subroutine. This command sets a
breakpoint at the current return address and continues execution to that point. For

Debugger User's Guide Version 2019 | 92

Command Reference

this command to work correctly, it must be possible to compute the value of the return
address. Some subroutines, particularly terminal (i.e. leaf) subroutines at higher
optimization levels, may not set up a stack frame. Executing stepout from such a
routine causes the breakpoint to be set in the caller of the most recent routine that set
up a stack frame. This command halts execution immediately upon return to the calling
subroutine.

13.2.18. sync

sylnc] line | func

Advance to the specified source location, either the specified line or the first line in the
specified function func, ignoring any user-defined events.

13.2.19. synci

synci addr | func

Advance to the specified address addr, or to the first address in the specified function
func, ignoring any user-defined events.

13.2.20. thread

thread [number]

Set the current thread to the thread identified by number; where number is a logical
thread ID in the current process” active thread list. When issued with no argument,
thread lists the current program location of the currently active thread.

13.2.21. threads

threads

Print the status of all active threads. Threads are grouped by process. Each process is
listed by its logical process ID. Each thread is listed by its logical thread ID.

13.2.22. wait

wait [any | all | none]

Return the debugger's prompt only after specific processes or threads stop.

13.3. Process-Thread Sets

The following commands deal with defining and managing process thread sets. For a
detailed discussion of process-thread sets, refer to Process/Thread Sets.

13.3.1. defset

defset name [p/t-set]

Assign a name to a process/thread set. In other words, define a named set of processes/
threads. This set can then be referred to by its name. A list of named sets is stored by the
debugger.

Debugger User's Guide Version 2019 | 93

Command Reference

13.3.2. focus

focus [p/t-set]

Set the target process/thread set for debugger commands. Subsequent commands are
applied to the members of this set by default.

13.3.3. undefset

undefset [name | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The
debugger-defined p/t-set [all] cannot be removed.

13.3.4. viewset

viewset [name]

List the active members of the named process/thread set. If no process/thread set is
given, list the active members of all defined process/thread sets.

13.3.5. whichsets

whichsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no
process/thread set is specified, the target process/thread set is used.

13.4. Events

The following commands deal with defining and managing events.

13.4.1. break

b[reak]
bl[reak] line [if (condition)] [do {commands}] [hit [>|*] <num>]
b[reak] routine [if (condition)] [do {commands}] [hit [>|*] <num>]

When no arguments are specified, the break command prints the current breakpoints.
Otherwise, set a breakpoint at the indicated line or routine. If a routine is specified, and
the routine was compiled for debugging, then the breakpoint is set at the start of the
first statement in the routine (after the routine’s prologue code). If the routine was not
compiled for debugging, then the breakpoint is set at the first instruction of the routine,
prior to any prologue code. This command interprets integer constants as line numbers.
To set a breakpoint at an address, use the addr command to convert the constant to an
address, or use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified
condition is true. If do is specified with a command or several commands as an
argument, the command or commands are executed when the breakpoint occurs. If hit is
specified with a number as an argument, the breakpoint occurs only when the hit count
is equal to that number. Optional operators (greater than, multiple of) can be used to
modify the hit count condition.

Debugger User's Guide Version 2019 | 94

Command Reference

The following table provides examples of using break to set breakpoints at various
locations.

This break command... Sets breakpoints...

break 37 at line 37 in the current file.

break "xyz.c"@37 at line 37 in the file xyz . c.

break main at the first executable line of routine main.

break {addr 0x£0400608} at address 0x£0400608.

break {line} at the current line.

break {pc} at the current address.

The following command stops when routine xyz is entered only if the argument n is
greater than 10.

break xyz if (xyz@n > 10)

The next command prints the value of n and performs a stack trace every time line 100 in
the current file is reached.

break 100 do {print n; stack}

The next command stops at line 111 when the hit count is a multiple of 5.
break 111 hit *5

13.4.2. breaki

breaki
breaki routine [if (condition)] [do {commands}] [hit [>|*] <num>]
breaki addr [if (condition)] [do {commands}] [hit [>|*] <num>]

When no arguments are specified, the breaki command prints the current breakpoints.
Otherwise, this command sets a breakpoint at the indicated address addr or routine.

» If a routine is specified, the breakpoint is set at the first address of the routine. This
means that when the program stops at this type of breakpoint the prologue code
which sets up the stack frame will not yet have been executed. As a result, values of
stack arguments may not yet be correct.

» Integer constants are interpreted as addresses.

» To specify a line, use the lines command to convert the constant to a line number, or
use the break command.

» The if, do and hit arguments are interpreted in the same way as for the break
command.

Debugger User's Guide Version 2019 | 95

Command Reference

The following table provides examples of setting breakpoints using breaki.

This breaki command... Sets breakpoints...

breaki 0x£0400608 at address 0x£0400608.

breaki {line 37} at line 37 in the current file.

breaki "xyz.c"@37 at line 37 in the file xyz . c.

breaki main at the first executable address of routine main.

breaki {line} at the current line.

breaki {pc}

at the current address.

In the following example, when n is greater than 3, the following command stops and
prints the new value of n at address 0x6480:
breaki 0x6480 if (n>3) do {print "n=", n}

13.4.3. breaks

breaks

Display all the existing breakpoints.

13.4.4. catch

catch [sig:sig] [sig [, sig...]]

When no arguments are specified, the catch command prints the list of signals being
caught. With the sig:sig argument, this command catches the specified range of signals.
With a list of signals, catch the signals with the specified number(s). When signals are
caught, the debugger intercepts the signal and does not deliver it to the program. The
program runs as though the signal was never sent.

13.4.5. clear

clear [all | routine] line | {addr addr}]

Clear one or more breakpoints. Use the all argument to clear all breakpoints. Use the
routine argument to clear all breakpoints from the first statement in the specified routine.
Use the line number argument to clear all breakpoints from the specified line number

in the current source file. Use the addr argument to clear breakpoints from the specified
address addr.

When no arguments are specified, the clear command clears all breakpoints at the
current location.

13.4.6. delete

del[ete] [event—-number | 0 | all | event-number [, event-number...]]

Use the delete command without arguments to list all defined events by their event-
number.

Debugger User's Guide Version 2019 | 96

Command Reference

Use the delete command with arguments to delete events. Delete all events with all
or delete just the event with the specified event-number. Using delete 0, is the same as
using delete all.

13.4.7. disable

disab[le] [event-number | all]

When no arguments are specified, the disable command prints both enabled and
disabled events by event number.

With arguments, this command disables the event specified by event-number or all
events. Disabling an event definition suppresses actions associated with the event, but
leaves the event defined so that it can be used later. (See the enable command.)

13.4.8. do

do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an
expression, it defines a list of commands to be executed. Without the optional arguments
at or in, the commands are executed at each line in the program.

Use at with a line number to specify the commands to be executed each time that line
is reached. Use in with a routine to specify the commands to be executed at each line in
the routine. The optional if argument has the same meaning that it has with the watch
command. If a condition is specified, the do commands are executed only when the
condition is true.

13.4.9. doi

doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in routine [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining
an expression, doi defines a list of commands to be executed. If an address addr is
specified, then the commands are executed each time that the specified address is
reached. If a routine is specified, then the commands are executed at each instruction
in the routine. If neither an address nor a routine is specified, then the commands are
executed at each instruction in the program. The optional if argument has the same
meaning that it has in the do and watch commands. If a condition is specified, the doi
commands are executed only when the condition is true.

13.4.10. enable

enab[le] [event-number | all]

Without arguments, the enable command prints both enabled and disabled events by
event number.

With arguments, this command enables the event event-number or all events.

Debugger User's Guide Version 2019 | 97

Command Reference

13.4.11. hwatch

hwatch addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a
watchpoint for a particular address or variable. The event is triggered by hardware
when the byte at the given address is written. This command is only supported on
systems that provide the necessary hardware and software support.

Only one hardware watchpoint can be defined at a time.

When the optional if argument is specified, the event action is only triggered if the
expression is true. When the optional do argument is specified, then the commands are
executed when the event occurs.

13.4.12. hwatchboth

hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the
byte at the given address or variable is either read or written. As with hwatch, system
hardware and software support must exist for this command to be supported. The
optional if and do arguments have the same meaning as for the hwatch command.

13.4.13. hwatchread

hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte
at the given address or variable is read. As with hwatch, system hardware and software
support must exist for this command to be supported. The optional if and do arguments
have the same meaning as for the hwatch command.

13.4.14. ignore

ignore [sig:sig] [sig [, sig...]]

Without arguments, the ignore command prints the list of signals being ignored. With
the sig:sig argument, this command ignores the specified range of signals. With a list of
signals, the command ignores signals with the specified numbers.

When a particular signal number is ignored, signals with that number sent to the
program are not intercepted by the PGI debugger; rather, the signals are delivered to the
program.

For information on intercepting signals, refer to catch.

13.4.15. status

stat[us]

Display all the event definitions, including an event number by which each event can be
identified.

Debugger User's Guide Version 2019 | 98

Command Reference

13.4.16. stop

stop var

stop at line [if (condition)] [do {commands}]

stop in routine [if (condition)] [do {commands}]

stop if (condition)

Break when the value of the indicated variable var changes. Use the at argument and a
line to set a breakpoint at a line number. Use the in argument and a routine name to set a
breakpoint at the first statement of the specified routine. When the if argument is used,
the debugger stops when the condition is true.

13.4.17. stopi

stopi var

stopli at address [if (condition)][do {commands}]

stopi in routine [if (condition)][do {commands}]

stopi if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the
indicated address or routine. Use the at argument and an address to specify an address
at which to stop. Use the in argument and a routine name to specify the first address of
the specified routine at which to stop. When the if argument is used, the debugger stops
when the condition is true.

13.4.18. trace

trace var [if (condition)] [do {commands}]

trace routine [1f (condition)][do {commands}]

trace at line [1f (condition)] [do {commands}]

trace in routine [if (condition)] [do {commands}]
trace inclass class [if (condition)] [do {commands}]

Use var to activate tracing when the value of var changes. Use routine to activate tracing
when the subprogram routine is called. Use at to display the specified line each time it
is executed. Use in to display the current line while in the specified routine. Use inclass
to display the current line while in each member function of the specified class. If a
condition is specified, tracing is only enabled if the condition evaluates to true. The do
argument defines a list of commands to execute at each trace point.

Use the pgienv speed command to set the time in seconds between trace points. Use
the clear command to remove tracing for a line or routine.

13.4.19. tracei

tracei var [if (condition)] [do {commands}]

tracei at addr [if (condition)] [do {commands}]
tracel in routine [1f (condition)][do {commands}]
traceil inclass class [if (condition)] [do {commands}]

Activate tracing at the instruction level. Use var to activate tracing when the value of
var changes. Use at to display the instruction at addr each time it is executed. Use in to
display memory instructions while in the subprogram routine. Use inclass to display
memory instructions while in each member function of the specified class. If a condition
is specified, tracing is only enabled if the condition evaluates to true. The do argument
defines a list of commands to execute at each trace point.

Debugger User's Guide Version 2019 | 99

Command Reference

Use the pgienv speed command to set the time in seconds between trace points. Use
the clear command to remove tracing for a line or routine.

13.4.20. track

track expression [at line | in func] [if (condition)] [do {commands}]

Define a track event. This command is equivalent to watch except that execution
resumes after the new value of the expression is printed.

13.4.21. tracki

tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that
execution resumes after the new value of the expression is printed.

13.4.22. unbreak

unb[reak] line | routine| all

Remove a breakpoint from the specified line or routine, or remove all breakpoints.

13.4.23. unbreaki

unbreaki addr | routine | all

Remove a breakpoint from the specified address addr or routine, or remove all
breakpoints.

13.4.24. watch

wa[tch] expression

wa[tch] expression [if (condition)][do {commands}]

wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each

time the value of the expression changes, the program stops and the new value of the
expression is printed. If a line is specified, the expression is only evaluated at that line. If
a routine is specified, the expression is evaluated at each line in the routine. If no location
is specified, the expression is evaluated at each line in the program. If a condition is
specified, the expression is evaluated only when the condition is true. If commands are
specified using do, they are executed whenever the expression is evaluated and its value
changes.

The watched expression may contain local variables, although this is not recommended
unless a routine or address is specified to ensure that the variable is only evaluated
when it is in the current scope.

Using watchpoints indiscriminately can dramatically slow program execution.

Debugger User's Guide Version 2019 | 100

Command Reference

Using the at and in arguments speeds up execution by reducing the amount of single-
stepping and expression evaluation that must be performed to watch the expression. For
example:

watch 1 at 40

may not slow program execution noticeably, while

watch i

slows execution considerably.

13.4.25. watchi

watchi expression

watchi expression [if (condition)] [do {commands}]

watchi expression at addr [if (condition)] [do {commands}]
watchi expression in routine [if (condition)][do {commands}]

Define an assembly-level watch event. This command functions similarly to the watch
command with two exceptions: 1) the argument interprets integers as addresses rather
than line numbers and 2) the expression is evaluated at every instruction rather than at

every line.

This command is useful when line number information is limited, which may occur
when debug information is not available or assembly must be debugged. Using watchi
causes programs to execute more slowly than watch.

13.4.26. when

when do {commands} [if (condition)]
when at line do {commands} [1f (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program, or in
the specified routine. If an optional condition is specified, commands are executed only
when the condition evaluates to true.

13.4.27. wheni

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {commands} [1f (condition)]

Execute commands at each address in the program. If an address addr is specified, the
commands are executed each time the address is reached. If a routine is specified, the
commands are executed at each line in the routine. If an optional condition is specified,
commands are executed whenever the condition evaluates to true.

13.5. Program Locations

This section describes the debugger's program location commands.

13.5.1. arrive

arri[ve]

Debugger User's Guide Version 2019 | 101

Command Reference

Print location information for the current location.

13.5.2. cd

cd [dir]

Change the current directory to the SHOME directory or to the specified directory dir.

13.5.3. disasm

dis[asm] [count | lo:hi | routine | addr, count]
Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If
an integer count is given, disassemble count instructions starting at the current address.
If an address range (lo:hi) is given, disassemble the memory in the range. If a routine

is given, disassemble the entire routine. If the routine was compiled for debugging

and source code is available, the source code is interleaved with the disassembly. If an
address addr and a count are both given, disassemble count instructions starting at the
provided address.

13.5.4. edit

edit [filename | routine]
Use the editor specified by the environment variable $SEDITOR to edit a file.

If no argument is supplied, edit the current file starting at the current location. To edit a
specific file, provide the filename argument. To edit the file containing the subprogram
routine, specify the routine name.

This command is only supported in the CLL

13.5.5. file

file [filename]

Change the source file to the file filename and change the scope accordingly. With no
argument, print the current file.

13.5.6. lines

lines [routine]

Print the lines table for the specified routine. With no argument, prints the lines table for
the current routine.

13.5.7. list

lis[t] [count | line,num | lo:hi | routine[,num]]
Provide a source listing.

By default, 1ist displays ten lines of source centered at the current source line. If a count
is given, list the specified number of lines. If a line and count are both given, start the
listing of count lines at line. If a line range (lo:hi) is given, list the indicated source lines

Debugger User's Guide Version 2019 | 102

Command Reference

in the current source file. If a routine name is given, list the source code for the indicated
routine. If a number is specified with routine, list the first number lines of the source code
for the indicated routine.

list [dbx mode]

The 1ist command works somewhat differently when the debugger is in dbx mode.

lis[t] [line | first,last | routine | file]

By default, list displays ten lines of source centered at the current source line. If a line
is provided, the source at that line is displayed. If a range of line numbers is provided
(first,last), lines from the first specified line to the last specified line are displayed. If a
routine is provided, the display listing begins in that routine. If a file name is provided,
the display listing begins in that file. File names must be quoted.

13.5.8. pwd

pwd

Print the current working directory.

13.5.9. stackdump

stackd[ump] [count]

Print the call stack. This command displays a hex dump of the stack frame for each
active routine. This command is an assembly-level version of the stacktrace command. If
a count is specified, display a maximum of count stack frames.

13.5.10. stacktrace

stack|[trace] [count]

Print the call stack. Print the available information for each active routine, including the
routine name, source file, line number, and current address. This command also prints
the names and values of any arguments, when available. If a count is specified, display a
maximum of count stack frames. The stacktrace and where commands are equivalent.

13.5.11. where

wlhere] [count]

Print the call stack. Print the available information for each active routine, including the
routine name, source file, line number, and current address. This command also prints
the names and values of any arguments, when available. If a count is specified, display a
maximum of count stack frames. The where and stacktrace commands are equivalent.

13.5.12. /

/
/string/

Search forward for a string of characters in the current source file. With a specified
string, search for the next occurrence of string in the current source file.

Debugger User's Guide Version 2019 | 103

Command Reference

13.5.13.7

?string?

Search backward for a string of characters in the current source file. Without arguments,
search for the previous occurrence of string in the current source file.

13.6. Printing Variables and Expressions

This section describes the PGI debugger commands used for printing and setting
variables. The primary print commands are print and printf, described at the
beginning of this section. The rest of the commands for printing provide alternate
methods for printing.

13.6.1. print

plrint] expl [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result
of each line of command input. Values are printed in a format appropriate to their type.
For values of structure type, each field name and value is printed. Character pointers are
printed as a hex address followed by the character string.

Character string constants print out literally using a comma-separated list. For example:
pgdbg> print "The value of i is ", 1

Prints this:

"The value of i is", 37

The array sub-range operator (:) prints a range of an array. The following examples print
elements 0 through 9 of the array a:

C/ C"'[example 1:

pgdbg> print a[0:9]
af0:4]: 01 2 3 4
al5:9]: 56 7 8 9

FORTRAN example 1:

pgdbg> print a(0:9)

a(0:4): 01 2 3 4

a(5:9): 56 7 8 9

Notice that the output is formatted and annotated with index information. The debugger
formats array output into columns. For each row, the first column prints an index
expression which summarizes the elements printed in that row. Elements associated
with each index expression are then printed in order. This is especially useful when

printing slices of large multidimensional arrays.

The debugger also supports array expression strides. Below are examples for C/ C++ and
FORTRAN.

C/ C"™ example 2:
pgdbg> print a[0:9:2]

Debugger User's Guide Version 2019 | 104

Command Reference

al0:8]: 0 2 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0 2 4 6 8

The print statement may be used to display members of derived types in FORTRAN or
structures in C/ C™". Here are examples.

C/ C"™ example 3:

typedef struct tt {
int a[l10];

}TT;

TT d

= {0111213141516171819};
TT * p =

&d;

pgdbg> print d.a[0:9:2
d.a[0:8:2]: 0 2 4 6

pgdbg> print p->a[0:9:
p->a[0:7:2]: 0 2 4 6
p—->al[8]: 8

FORTRAN example 3:

type tt
integer, dimension(0:9) :: a
end type
type (tt) :: d
data d%a / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 /

]
8
2]

pgdbg> print d%a(0:9:2)
%a(0:8:2): 0 2 4 6 8

13.6.2. printf

printf "format string", expr, ...expr

Print expressions in the format indicated by the format string. This command behaves
like the C library function printf. For example:

pgdbg> printf "f[%d]=%G",1i,f[1i]

£[3]=3.14

The pgienv stringlen command sets the maximum number of characters that print
with a print command. For example, the char declaration below:

char *c="a whole bunch of chars over 1000 chars long....";

By default, the print ¢ command prints only the first 512 (default value of stringlen)
bytes. Printing of C strings is usually terminated by the terminating null character. This
limit is a safeguard against unterminated C strings.

13.6.3. ascii

asc[ii] exp [,...exp]

Evaluate and print exp as an ASCII character. Control characters are prefixed with the
'\ character; for example, 3 prints as ”*c. Otherwise, values that cannot be printed as
characters are printed as integer values prefixed by “\’. For example, 250 is printed as
\250.

Debugger User's Guide Version 2019 | 105

Command Reference

13.6.4. bin

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in base2.

13.6.5. dec

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

13.6.6. display

display [exp [,...exp]]

Without arguments, list the expressions for the debugger to automatically display at
breakpoints. With one or more arguments, print expression exp at every breakpoint. See
also the undisplay command.

13.6.7. hex

hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

13.6.8. oct

oct exp [,...exp]

Evaluate and print expressions as octal integers.

13.6.9. string

string] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command
prints a maximum of 70 characters.

13.6.10. undisplay

undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or
several arguments, remove the expression exp from the list of display expressions.

13.7. Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

13.7.1. assign

as[sign] var = exp

Debugger User's Guide Version 2019 | 106

Command Reference

Set variable var to the value of the expression exp. The variable can be any valid identifier
accessed properly for the current scope. For example, given a C variable declared ‘int
* 1’, you can use the following command to assign the value 9999 to it.

assign *i = 9999

13.7.2. call

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints
encountered during execution of the routine are ignored. Fortran functions and
subroutines can be called, but the argument values are passed according to C
conventions. The debugger may not always be able to access the return value of a
Fortran function if the return value is an array. In the example below, the debugger calls
the routine foo with four arguments:

pgdbg> call foo(l,2,3,4)

If a signal is caught during execution of the called routine, the debugger stops the
execution and asks if you want to cancel the call command. For example, suppose a
command is issued to call foo as shown above, and for some reason a signal is sent to
the process while it is executing the call to foo. In this case, the debugger prints the
following prompt:

PGDBG Message: Thread [0] was signalled while executing a function

reachable from the most recent PGDBG command line call to foo. Would you

like to cancel this command line call? Answering yes will revert the register
state of Thread [0] back to the state it had prior to the last call to foo
from the command line. Answering no will leave Thread [0] stopped in the call
to foo from the command line.

Please enter 'y' or 'n' >y

Command line call to foo cancelled

Answering yes to this question returns the register state of each thread back to the state
they had before invoking the call command. Answering no to this question leaves each
thread at the point they were at when the signal occurred.

Answering no to this question and continuing execution of the called routine may
produce unpredictable results.

13.7.3. declaration

decl[aration] name

Print the declaration for the symbol name based on its type according to the symbol
table. The symbol must be a variable, argument, enumeration constant, routine,
structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *cj;l}val;

the decl command provides the following output:
pgdbg> decl I

Debugger User's Guide Version 2019 | 107

Command Reference

int i

pgdbg> decl iar
int iar[10]

pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
int a;
char b[4];
struct abc *c;

}i

13.7.4. entry

entr[y] [routine]

Return the address of the first executable statement in the program or specified routine.
This is the first address after the routine's prologue code.

13.7.5. lval

lv[al] expr

Return the Ivalue of the expression expr. The lvalue of an expression is the value it would
have if it appeared on the left hand side of an assignment statement. Roughly speaking,
an lvalue is a location to which a value can be assigned. This may be an address, a stack
offset, or a register.

13.7.6. rval

rv([al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it
would have if it appeared on the right hand side of an assignment statement. The type of
the expression may be any scalar, pointer, structure, or function type.

13.7.7. set

set var=expression

Set variable var to the value of expression. The variable can be any valid identifier
accessed properly for the current scope. For example, given a C variable declared int *
i, the following command could be used to assign the value 9999 to it.

pgdbg> set *i = 9999

13.7.8. sizeof

siz[eof] name

Return the size, in bytes, of the variable type name. If name refers to a routine, sizeof
returns the size in bytes of the subprogram.

13.7.9. type

type expr

Debugger User's Guide Version 2019 | 108

Command Reference

Return the type of the expression expr. The expression may contain structure reference
operators (., and ->), dereference (*), and array index ([]) expressions. For example,
given the C declarations:

int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}lval;

the type command provides the following output:
pgdbg> type i

int
pgdbg> type iar
int [10]

pgdbg> type val
struct abc

pgdbg> type val.a
int

pagdbg> type val.abc->b[2]
char

pgdbg> whatis
whatis name

With no arguments, print the declaration for the current routine.

With the argument name, print the declaration for the symbol name.

13.8. Scope

The following commands deal with program scope. For a discussion of scope meaning
and conventions, refer to Scope Rules.

13.8.1. class

clas([s] [class]

Without arguments, class returns the current class. With a class argument, enter the
scope of class class.

13.8.2. classes

classse[s]

Print the C™" class names.

13.8.3. decls

decls [routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in the indicated scope. If no scope is
given, print the declarations for the current search scope.

13.8.4. down

down [number]

Enter the scope of the routine down one level or number levels on the call stack.

Debugger User's Guide Version 2019 | 109

Command Reference

13.8.5. enter

en[ter] [routine | "sourcefile" | global]

Set the search scope to be the indicated scope, which may be a routine, file or global. Using
enter with no argument is the same as using enter global.

13.8.6. files

files

Return the list of known source files used to create the executable file.

13.8.7. global

globfall]

Return a symbol representing global scope. This command is useful in combination with
the scope operator @ to specify symbols with global scope.

13.8.8. names

names [routine | "sourcefile" | global]

Print the names of all identifiers defined in the indicated scope. If no scope is specified,
use the search scope.

13.8.9. scope

sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each
time program execution stops. It may also be set using the enter command. The search
scope is always searched first for symbols.

13.8.10. up

up [number]

Enter the scope of the routine up one or number levels from the current routine on the
call stack.

13.8.11. whereis

whereis name

Print all declarations for name.

13.8.12. which

which name

Print the full scope qualification of symbol name.

Debugger User's Guide Version 2019 | 110

Command Reference

13.9. Register Access

System registers can be accessed by name. For details on referring to registers in the
debugger, refer to Register Symbols.

13.9.1. fp

fp

Return the current value of the frame pointer.

13.9.2. pc

rc

Return the current program address.

13.9.3. regs

regs
regs -info

regs -grp=grpl[,grp2...]
regs -fmt=fmtl [, fmt2...]
regs -mode=scalar|vector

Print the names and values of registers. By default, regs prints the General Purpose
registers. Use the ~grp option to specify one or more register groups, the -fmt option
to specify one or more display formats, and -mode to specify scalar or vector mode. Use
the ~info option to display the register groups on the current system and the display
formats available for each group. All optional arguments with the exception of ~info
can be used with the others.

13.9.4. retaddr

ret [addr]

Return the current return address.

13.9.5. sp

sp

Return the current value of the stack pointer.

13.10. Memory Access

The following commands display the contents of arbitrary memory locations. For each
of these commands, the addr argument may be a variable or identifier.

13.10.1. dump

du[mp] address[, count|, format-string]]

Debugger User's Guide Version 2019 | 111

Command Reference

This command dumps the contents of a region of memory. The output is formatted
according to a descriptor. Starting at the indicated address, values are fetched from
memory and displayed according to the format descriptor. This process is repeated count
times.

Interpretation of the format descriptor is similar to that used by printf. Format specifiers
are preceded by %.

The recognized format descriptors are for decimal, octal, hex, or unsigned:

%d, %D, %o, %0, %x, %X, %Su, SU

Default size is machine dependent. The size of the item read can be modified by either
inserting 'h' or '1' before the format character to indicate half word or long word. For
example, if your machine’s default size is 32-bit, then %hd represents a 16-bit quantity.
Alternatively, a 1, 2, or 4 after the format character can be used to specify the number of
bytes to read.

Fetch and print a character.
e

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g
format.

$f, %F, %e, %E, %g, %G
Fetch and print a null terminated string.

%s

Interpret the next object as a pointer to an item specified by the following format
characters. The pointed-to item is fetched and displayed.

%P

Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents
of the pointed-to address, which is printed using hexadecimal format.

IpPx

Fetch an instruction and disassemble it.
%1

Display address about to be dumped.

Sw, SW

Display nothing while advancing or decrementing the current address by n bytes.

%z<n>, %Z<n>, %z<-n>, $%$Z<-n>

Display nothing while advancing the current address as needed to align modulo #.

%a<n>, $A<n>

Display nothing while advancing the current address as needed to align modulo n.

13.10.2. mqdump

mg [dump]

Dump MPI message queue information for the current process. For more information on
mqdump, refer to MPI Message Queues.

Debugger User's Guide Version 2019 | 112

Command Reference

13.11. Conversions

The commands in this section are useful for converting between different kinds
of values. These commands accept a variety of arguments, and return a value of a
particular kind.

13.11.1. addr

ad[dr] [n | 1ine n | routine | var | arg |
Create an address conversion under these conditions:

If an integer is given, return an address with the same value.
If a line is given, return the address corresponding to the start of that line.
If a routine is given, return the first address of the routine.

If a variable or argument is given, return the address where that variable or
argument is stored.

vV v v Vv

For example,
breaki {line {addr 0x22f0}}

13.11.2. function

func[tion] [[addr...] | [line...]]

Return a routine symbol. If no argument is specified, return the current routine. If an
address is given, return the routine containing addr. An integer argument is interpreted
as an address. If a line is specified, return the routine containing that line.

13.11.3. line

lin[e] [n | routine | addr]

Create a source line conversion. If no argument is given, return the current source line.
If an integer n is given, return it as a line number. If a routine is given, return the first line
of the routine. If an address is given, return the line containing that address.

For example, the following command returns the line number of the specified address:
line {addr 0x22f0}

13.12. Target

The following commands are applicable to system architectures for which multiple
debugging environment targets are available. The commands in this section do not
apply to the x86-64 environments.

13.12.1. connect

con[nect]
con[nect] -t target [args]
con[nect] -d path [args]

Debugger User's Guide Version 2019 | 113

Command Reference

con[nect] -f file
con[nect] -f file name [args]

Without arguments, connect prints the current connection and the list of possible
connection targets. Use -t to connect to a specific target. Use -d to connect to a target
specified by path. Use -f to print a list of possible targets as contained in a file, or to
connect to a target selected by name from the list defined in file. Pass configuration
arguments to the target as appropriate.

13.12.2. disconnect

disc[onnect]

Close connection to the current target.

13.12.3. native

nati[ve] [command]

Without arguments native prints the list of available target commands. Given a
command argument, native sends command directly to the target.

13.13. Miscellaneous

The following commands provide shortcuts, mechanisms for querying, customizing and
managing the debugger environment, and access to operating system features.

13.13.1. alias

all[ias] [name [string]]
Create or print aliases.
» If no arguments are given, print all the currently defined aliases.

» If just a name is given, print the alias for that name.

» If both a name and string are given, make name an alias for string. Subsequently,
whenever name is encountered it is replaced by string.

Although string may be an arbitrary string, name must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x= ",x,"y= ",y,"z= ",z;
cont

Now whenever xyz is typed, the PGI debugger responds as though the following
command was typed:

print LB e ",X,"y: ",y,"Z: ",Z;
cont

13.13.2. directory

dir[ectory] [pathname]

Add the directory pathname to the search path for source files.

Debugger User's Guide Version 2019 | 114

Command Reference

If no argument is specified, the currently defined directories are printed. This command
assists in finding source code that may have been moved or is otherwise not found by
the PGI debugger's default search mechanisms.

For example, the following statement adds the directory morestuff to the list of
directories to be searched.

dir morestuff
Now, source files stored in morestuff are accessible to the debugger.

If the first character in pathname is ~, then $HOME replaces that character.

13.13.3. help

help [command]

If no argument is specified, print a brief summary of all the commands. If a command is
specified, print more detailed information about the use of that command.

13.13.4. history

history [num]

List the most recently executed commands. With the num argument, resize the history
list to hold num commands.

History allows several characters for command substitution:

1! [modifier] Execute the previous command.

! num [modifier] Execute command number num.

I-num [modifier] Execute the command that is num commands from the most current
command

Istring [modifier] Execute the most recent command starting with string.

1?string? [modifier] Execute the most recent command containing string.

~ Command substitution. For example, “01d” new”<modifier> is

equivalentto ! : s/o0ld/new/.

There are two possible history modifiers. To substitute the value new for the value old
use:

:s/old/new/

To print the command without executing it use:

ip

Use the pgienv history command to toggle whether or not the history record number is
displayed. The default value is on.

13.13.5. language

lang[uage]

Print the name of the language of the current file.

Debugger User's Guide Version 2019 | 115

Command Reference

13.13.6. log

log filename

Keep a log of all commands entered by the user and store it in the named file. This
command may be used in conjunction with the script command to record and replay
debug sessions.

13.13.7. noprint

nopl[rint] exp

Evaluate the expression but do not print the result.

13.13.8. pgienv

pgienv [command]

Define the debugger environment. With no arguments, display the debugger settings.

Table 15 pgienv Commands

Use this command...

To do this...

help pgienv

Provide help on pgienv

pgienv

Display the debugger settings

pgienv dbx on

Set the debugger to use dbx style commands

pgienv dbx off

Set the debugger to use PGl style commands

pgienv history on

Display the history record number with prompt

pgienv history off

Do not display the history number with prompt

pgienv exe none

Ignore executable’s symbolic debug information

pgienv exe symtab

Digest executable’s native symbol table (typeless)

pgienv exe demand

Digest executable’s symbolic debug information incrementally on
demand

pgienv exe force

Digest executable’s symbolic debug information when executable is
loaded

pgienv solibs none

Ignore symbolic debug information from shared libraries

pgienv solibs symtab

Digest native symbol table (typeless) from each shared library

pgienv solibs demand

Digest symbolic debug information from shared libraries
incrementally on demand

pgienv solibs force

Digest symbolic debug information from each shared library at load
time

pgienv mode serial

Single thread of execution (implicit use of p/t-sets)

pgienv mode thread

Debug multiple threads (condensed p/t-set syntax)

pgienv mode process

Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel

Debug multiple processes and multiple threads

Debugger User's Guide

Version 2019 | 116

Command Reference

Use this command...

To do this...

pgienv omp [on]off]

Enable/Disable the PGI debugger's OpenMP event handler. This
option is disabled by default. The OpenMP event handler, when
enabled, sets breakpoints at the beginning and end of each parallel
region. Breakpoints are also set at each thread synchronization
point. The handler coordinates threads across parallel constructs to
maintain source level debugging. This option, when enabled, may
significantly slow down program performance. Enabling this option is
recommended for localized debugging of a particular parallel region
only.

pgienv prompt <name>

Set the command-line prompt to <name>

pgienv promptlen <num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs>

Set the time in seconds <secs> between trace points

pgienv stringlen <num>

Set the maximum # of chars printed for ¢*char *s’

pgienv termwidth <num>

Set the character width of the display terminal.

pgienv logfile <name>

Close logfile (if any) and open new logfile <name>

pgienv threadstop sync

When one thread stops, the rest are halted in place

pgienv threadstop async

Threads stop independently (asynchronously)

pgienv procstop sync

When one process stops, the rest are halted in place

pgienv procstop async

Processes stop independently (asynchronously)

pgienv threadstopconfig auto

For each process, debugger sets thread stopping mode to 'sync’ in
serial regions, and ‘async’ in parallel regions

pgienv threadstopconfig user

Thread stopping mode is user defined and remains unchanged by the
debugger.

pgienv procstopconfig auto

Not currently used.

pgienv procstopconfig user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none

Prompt available immediately; do not wait for running threads

pgienv threadwait any

Prompt available when at least one thread stops

pgienv threadwait all

Prompt available only after all threads have stopped

pgienv procwait none

Prompt available immediately; do not wait for running processes

pgienv procwait any

Prompt available when at least a single process stops

pgienv procwait all

Prompt available only after all processes have stopped

pgienv threadwaitconfig auto

For each process, the debugger sets the thread wait mode to ‘all’ in
serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user

The thread wait mode is user-defined and remains unchanged by the
debugger.

pgienv mgslib default

Set MPI message queue debug library by inspecting executable.

pgienv mgslib <path>

Determine MPI message queue debug library to <path>.

pgienv verbose <bitmask>

Debugger User's Guide

Choose which debug status messages to report. Accepts an integer
valued bit mask of the following values:

Version 2019 | 117

Command Reference

Use this command... To do this...

» 0Ox0 - Disable all messages.

» Ox1 - Standard messaging (default). Report status information
on current process/thread only.

» 0x2 - Thread messaging. Report status information on all
threads of (current) processes.

» 0x4 - Process messaging. Report status information on all
processes.

» 0x8 - OpenMP messaging (default). Report OpenMP events.

» 0x10 - Parallel messaging (default). Report parallel events.

» 0x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information.

» Pass Ox0 to disable all messages.

13.13.9. repeat

repleat] [first, last]
repleat] [first:last:n]
repleat] [num]
repleat] [-num]

Repeat the execution of one or more previous history list commands. Use the num
argument to re-execute the last num commands. With the first and last arguments, re-
execute commands number first to last (optionally n times).

13.13.10. script

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as
commands. Use ~ before the filename in place of the environment variable $HOME.

13.13.11. setenv

setenv name | name value

Print the value of the environment variable name. With a specified value, set name to
value.

13.13.12. shell

shell [arg0, argl,... argn]

Fork a shell and give it the indicated arguments. The default shell type is sh or defined
by $SHELL. If no arguments are specified, an interactive shell is invoked, and executes
until a Ctrl+D is entered.

13.13.13. sleep

sle[ep] [time]

Pause for one second or time seconds.

Debugger User's Guide Version 2019 | 118

Command Reference

13.13.14. source

soul[rce] filename

Open the indicated file and execute the contents as though they were entered as
commands. Use ~ before the filename in place of the environment variable $HOME.

13.13.15. unalias

unal[ias] name

Remove the alias definition for name, if one exists.

13.13.16. use

use [dir]

Print the current list of directories or add dir to the list of directories to search. The
character ~ or environment variable SHOME can be used interchangeably.

Debugger User's Guide Version 2019 | 119

Chapter 14.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faqg.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

Debugger User's Guide Version 2019 | 120

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGlI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGl Visual Fortran, PGl Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2013-2019 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools ﬁVibiA®

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications

	Getting Started
	1.1. Definition of Terms
	1.2. Building Applications for Debug
	1.2.1. Debugging Optimized Code
	1.2.2. Building for Debug on Windows

	1.3. User Interfaces
	1.3.1. Command Line Interface (CLI)
	1.3.2. Graphical User Interface

	1.4. Co-installation Requirements
	1.4.1. Java Virtual Machine

	1.5. Start Debugging
	1.6. Program Load
	1.7. Initialization Files
	1.8. Program Architecture

	The Graphical User Interface
	2.1. Main Components
	2.2. Source Window
	2.2.1. Source and Assembly Displays
	2.2.2. Source Window Context Menu

	2.3. Main Toolbar
	2.3.1. Buttons
	2.3.2. Drop-Down Lists

	2.4. Program I/O Window
	2.5. Debug Information Tabs
	2.5.1. Command Tab
	2.5.2. Events Tab
	2.5.3. Groups Tab
	2.5.4. Connections Tab
	2.5.5. Call Stack Tab
	2.5.6. Locals Tab
	2.5.7. Memory Tab
	2.5.8. MPI Messages Tab
	2.5.9. Procs & Threads Tab
	2.5.10. Registers Tab
	2.5.11. Status Tab

	2.6. Menu Bar
	2.6.1. File Menu
	2.6.2. Edit Menu
	2.6.3. View Menu
	2.6.4. Connections Menu
	2.6.5. Debug Menu
	2.6.6. Help Menu

	Command Line Options
	3.1. Command-Line Options Syntax
	3.2. Command-Line Options
	3.3. Command-Line Options for MPI Debugging
	3.4. I/O Redirection

	Command Language
	4.1. Command Overview
	4.1.1. Command Syntax
	4.1.2. Command Modes

	4.2. Constants
	4.3. Symbols
	4.4. Scope Rules
	4.5. Register Symbols
	4.6. Source Code Locations
	4.7. Lexical Blocks
	4.8. Statements
	4.9. Events
	4.9.1. Event Commands
	4.9.2. Event Command Action

	4.10. Expressions
	4.11. Ctrl+C
	4.11.1. Command-Line Debugging
	4.11.2. GUI Debugging
	4.11.3. MPI Debugging

	Command Summary
	5.1. Notation Used in Command Sections
	5.2. Command Summary

	Assembly-Level Debugging
	6.1. Assembly-Level Debugging Overview
	6.1.1. Assembly-Level Debugging on Windows
	6.1.2. Assembly-Level Debugging with Fortran
	6.1.3. Assembly-Level Debugging with C++
	6.1.4. Assembly-Level Debugging Using the PGI Debugger GUI
	6.1.5. Assembly-Level Debugging Using the PGI Debugger CLI

	6.2. SSE Register Symbols

	Source-Level Debugging
	7.1. Debugging Fortran
	7.1.1. Fortran Types
	7.1.2. Arrays
	7.1.3. Operators
	7.1.4. Name of the Main Routine
	7.1.5. Common Blocks
	7.1.6. Internal Procedures
	7.1.7. Modules
	7.1.8. Module Procedures

	7.2. Debugging C++
	7.2.1. Calling C++ Instance Methods

	Platform-Specific Features
	8.1. Pathname Conventions
	8.2. Debugging with Core Files
	8.3. Signals
	8.3.1. Signals Used Internally by the Debugger
	8.3.2. Signals Used by Linux Libraries

	Parallel Debugging Overview
	9.1. Overview of Parallel Debugging Capability
	9.1.1. Graphical Presentation of Threads and Processes

	9.2. Basic Process and Thread Naming
	9.3. Thread and Process Grouping and Naming
	9.3.1. Debug Modes
	9.3.2. Threads-only Debugging
	9.3.3. Process-only Debugging
	9.3.4. Multilevel Debugging

	9.4. Process/Thread Sets
	9.4.1. Named p/t-sets
	9.4.2. p/t-set Notation
	9.4.3. Dynamic vs. Static p/t-sets
	9.4.4. Current vs. Prefix p/t-set
	9.4.5. p/t-set Commands
	9.4.6. Using Process/Thread Sets in the GUI
	9.4.6.1. Create a p/t-set
	9.4.6.2. Select a p/t-set
	9.4.6.3. Modify a p/t-set
	9.4.6.4. Remove a p/t-set

	9.4.7. p/t-set Usage

	9.5. Command Set
	9.5.1. Process Level Commands
	9.5.2. Thread Level Commands
	9.5.3. Global Commands

	9.6. Process and Thread Control
	9.7. Configurable Stop Mode
	9.8. Configurable Wait Mode
	9.9. Status Messages
	9.10. The Command Prompt
	9.11. Parallel Events
	9.12. Parallel Statements
	9.12.1. Parallel Compound/Block Statements
	9.12.2. Parallel If, Else Statements
	9.12.3. Parallel While Statements
	9.12.4. Return Statements

	Parallel Debugging with OpenMP
	10.1. OpenMP and Multi-thread Support
	10.2. Multi-thread and OpenMP Debugging
	10.3. Debugging OpenMP Private Data

	Parallel Debugging with MPI
	11.1. MPI and Multi-Process Support
	11.2. MPI on Linux
	11.3. MPI on macOS
	11.4. MPI on Windows
	11.5. Deprecated Support for MPICH1, MPICH2, MVAPICH1
	11.6. Building an MPI Application for Debugging
	11.7. The MPI Launch Program
	11.7.1. Launch Debugging Using the Connection Tab
	11.7.2. Launch Debugging From the Command Line
	11.7.3. MPICH
	11.7.4. MS-MPI
	11.7.5. MVAPICH2
	11.7.6. Open MPI
	11.7.7. SGI MPI

	11.8. Process Control
	11.9. Process Synchronization
	11.10. MPI Message Queues
	11.11. MPI Groups
	11.12. Use halt instead of Ctrl+C
	11.13. SSH and RSH
	11.14. Using the CLI
	11.14.1. Setting DISPLAY
	11.14.2. Using Continue

	Parallel Debugging of Hybrid Applications
	12.1. Multilevel Debug Mode
	12.2. Multilevel Debugging

	Command Reference
	13.1. Notation Used in Command Sections
	13.2. Process Control
	13.2.1. attach
	13.2.2. cont
	13.2.3. debug
	13.2.4. detach
	13.2.5. halt
	13.2.6. load
	13.2.7. next
	13.2.8. nexti
	13.2.9. proc
	13.2.10. procs
	13.2.11. quit
	13.2.12. rerun
	13.2.13. run
	13.2.14. setargs
	13.2.15. step
	13.2.16. stepi
	13.2.17. stepout
	13.2.18. sync
	13.2.19. synci
	13.2.20. thread
	13.2.21. threads
	13.2.22. wait

	13.3. Process-Thread Sets
	13.3.1. defset
	13.3.2. focus
	13.3.3. undefset
	13.3.4. viewset
	13.3.5. whichsets

	13.4. Events
	13.4.1. break
	13.4.2. breaki
	13.4.3. breaks
	13.4.4. catch
	13.4.5. clear
	13.4.6. delete
	13.4.7. disable
	13.4.8. do
	13.4.9. doi
	13.4.10. enable
	13.4.11. hwatch
	13.4.12. hwatchboth
	13.4.13. hwatchread
	13.4.14. ignore
	13.4.15. status
	13.4.16. stop
	13.4.17. stopi
	13.4.18. trace
	13.4.19. tracei
	13.4.20. track
	13.4.21. tracki
	13.4.22. unbreak
	13.4.23. unbreaki
	13.4.24. watch
	13.4.25. watchi
	13.4.26. when
	13.4.27. wheni

	13.5. Program Locations
	13.5.1. arrive
	13.5.2. cd
	13.5.3. disasm
	13.5.4. edit
	13.5.5. file
	13.5.6. lines
	13.5.7. list
	13.5.8. pwd
	13.5.9. stackdump
	13.5.10. stacktrace
	13.5.11. where
	13.5.12. /
	13.5.13. ?

	13.6. Printing Variables and Expressions
	13.6.1. print
	13.6.2. printf
	13.6.3. ascii
	13.6.4. bin
	13.6.5. dec
	13.6.6. display
	13.6.7. hex
	13.6.8. oct
	13.6.9. string
	13.6.10. undisplay

	13.7. Symbols and Expressions
	13.7.1. assign
	13.7.2. call
	13.7.3. declaration
	13.7.4. entry
	13.7.5. lval
	13.7.6. rval
	13.7.7. set
	13.7.8. sizeof
	13.7.9. type

	13.8. Scope
	13.8.1. class
	13.8.2. classes
	13.8.3. decls
	13.8.4. down
	13.8.5. enter
	13.8.6. files
	13.8.7. global
	13.8.8. names
	13.8.9. scope
	13.8.10. up
	13.8.11. whereis
	13.8.12. which

	13.9. Register Access
	13.9.1. fp
	13.9.2. pc
	13.9.3. regs
	13.9.4. retaddr
	13.9.5. sp

	13.10. Memory Access
	13.10.1. dump
	13.10.2. mqdump

	13.11. Conversions
	13.11.1. addr
	13.11.2. function
	13.11.3. line

	13.12. Target
	13.12.1. connect
	13.12.2. disconnect
	13.12.3. native

	13.13. Miscellaneous
	13.13.1. alias
	13.13.2. directory
	13.13.3. help
	13.13.4. history
	13.13.5. language
	13.13.6. log
	13.13.7. noprint
	13.13.8. pgienv
	13.13.9. repeat
	13.13.10. script
	13.13.11. setenv
	13.13.12. shell
	13.13.13. sleep
	13.13.14. source
	13.13.15. unalias
	13.13.16. use

	Contact Information

