
FORTRAN REFERENCE GUIDE

Version 2019

Fortran Reference Guide Version 2019 | ii

TABLE OF CONTENTS

Preface.. xv
Audience Description... xv
Compatibility and Conformance to Standards.. xv
Organization... xvi
Hardware and Software Constraints.. xvii
Conventions... xvii
Related Publications.. xviii

Chapter 1. Language Overview... 1
1.1. Elements of a Fortran Program Unit.. 1

1.1.1. Fortran Statements... 1
1.1.2. Free and Fixed Source... 2
1.1.3. Statement Ordering... 2

1.2. The Fortran Character Set.. 3
1.3. Free Form Formatting... 4
1.4. Fixed Formatting..5

1.4.1. Column Formatting..5
1.4.2. Fixed Format Label Field.. 5
1.4.3. Fixed Format Continuation Field... 5
1.4.4. Fixed Format Statement Field.. 6
1.4.5. Fixed Format Debug Statements..6
1.4.6. Tab Formatting...6
1.4.7. Fixed Input File Format Summary.. 6

1.5. Include Fortran Source Files.. 7
1.6. Components of Fortran Statements... 7

1.6.1. Symbolic Names... 8
1.7. Expressions...8

1.7.1. Forming Expressions...8
1.7.2. Expression Precedence Rules.. 9
1.7.3. Arithmetic Expressions... 9
1.7.4. Relational Expressions...11
1.7.5. Logical Expressions.. 12
1.7.6. Character Expressions... 12
1.7.7. Character Concatenation... 12

1.8. Symbolic Name Scope.. 13
1.9. Assignment Statements...13

1.9.1. Arithmetic Assignment.. 13
1.9.2. Logical Assignment...14
1.9.3. Character Assignment... 14

1.10. Listing Controls...15
1.11. OpenMP Directives... 15

Fortran Reference Guide Version 2019 | iii

Chapter 2. Fortran Data Types.. 16
2.1. Intrinsic Data Types... 16

2.1.1. Kind Parameter... 16
2.1.2. Number of Bytes Specification.. 17

2.2. Constants... 19
2.2.1. Integer Constants.. 19
2.2.2. Binary, Octal and Hexadecimal Constants... 20
2.2.3. Real Constants..20
2.2.4. Double Precision Constants...20
2.2.5. Complex Constants.. 21
2.2.6. Double Complex Constants... 21
2.2.7. Logical Constants.. 21
2.2.8. Character Constants... 22
2.2.9. Parameter Constants.. 22

2.3. Structure Constructors... 22
2.4. Derived Types.. 24
2.5. Deferred Type Parameters... 25

2.5.1. Typed Allocation... 25
2.6. Arrays..25

2.6.1. Array Declaration Element... 26
2.6.2. Deferred Shape Arrays.. 26
2.6.3. Subscripts..27
2.6.4. Character Substring..27
2.6.5. Array Constructor Syntax... 27

2.7. Fortran Pointers and Targets.. 28
2.8. Fortran Binary, Octal and Hexadecimal Constants...28

2.8.1. Octal and Hexadecimal Constants - Alternate Forms.. 29
2.9. Hollerith Constants..30
2.10. Structures... 31

2.10.1. Records... 32
2.10.2. UNION and MAP Declarations... 33
2.10.3. Data Initialization.. 34

2.11. Pointer Variables... 35
2.11.1. Restrictions.. 35
2.11.2. Pointer Assignment... 36

Chapter 3. Fortran Statements.. 37
3.1. Statement Format Overview.. 37

3.1.1. Definition of Statement-related Terms...37
3.1.2. Origin of Statement... 38
3.1.3. List-related Notation.. 38

3.2. Fortran Statement Summary Table... 38
3.3. ACCEPT..43
3.4. ARRAY..44

Fortran Reference Guide Version 2019 | iv

3.5. BYTE... 45
3.6. DECODE..46
3.7. DOUBLE COMPLEX... 47
3.8. DOUBLE PRECISION.. 48
3.9. ENCODE... 49
3.10. END MAP...50
3.11. END STRUCTURE..50
3.12. END UNION.. 50
3.13. INCLUDE... 51
3.14. MAP...52
3.15. POINTER (Cray)...53
3.16. PROTECTED..55
3.17. RECORD.. 55
3.18. REDIMENSION..56
3.19. RETURN.. 57
3.20. STRUCTURE..58
3.21. UNION.. 59
3.22. VOLATILE...61
3.23. WAIT..62

Chapter 4. Fortran Arrays.. 64
4.1. Array Types... 64

4.1.1. Explicit Shape Arrays..65
4.1.2. Assumed Shape Arrays.. 65
4.1.3. Deferred Shape Arrays.. 65
4.1.4. Assumed Size Arrays...65

4.2. Array Specification.. 65
4.2.1. Explicit Shape Arrays..65
4.2.2. Assumed Shape Arrays.. 66
4.2.3. Deferred Shape Arrays.. 66
4.2.4. Assumed Size Arrays...66

4.3. Array Subscripts and Access... 66
4.3.1. Array Sections and Subscript Triplets...67
4.3.2. Array Sections and Vector Subscripts...67

4.4. Array Constructors.. 68
Chapter 5. Input and Output...69

5.1. File Access Methods...69
5.1.1. Standard Preconnected Units.. 70

5.2. Opening and Closing Files... 70
5.2.1. Direct Access Files...70
5.2.2. Closing a File... 71

5.3. Data Transfer Statements..73
5.4. Unformatted Data Transfer.. 73
5.5. Formatted Data Transfer...74

Fortran Reference Guide Version 2019 | v

5.5.1. Implied DO List Input Output List...74
5.5.2. Format Specifications... 75

5.5.2.1. A Format Control – Character Data..76
5.5.2.2. B Format Control – Binary Data.. 77
5.5.2.3. D Format Control – Real Double Precision Data with Exponent........................77
5.5.2.4. d Format Control – Decimal specifier... 77
5.5.2.5. E Format Control – Real Single Precision Data with Exponent.........................78
5.5.2.6. EN Format Control... 78
5.5.2.7. ES Format Control.. 78
5.5.2.8. F Format Control - Real Single Precision Data...78
5.5.2.9. G Format Control...79
5.5.2.10. I Format Control – Integer Data.. 79
5.5.2.11. L Format Control – Logical Data..79
5.5.2.12. Quote Format Control.. 79
5.5.2.13. BN Format Control – Blank Control...80
5.5.2.14. H Format Control – Hollerith Control.. 80
5.5.2.15. O Format Control Octal Values... 80
5.5.2.16. P Format Specifier – Scale Control...81
5.5.2.17. Q Format Control - Quantity.. 81
5.5.2.18. r Format Control - Rounding.. 81
5.5.2.19. S Format Control – Sign Control.. 82
5.5.2.20. r Format Control - No minus zero..82
5.5.2.21. T, TL and X Format Controls – Spaces and Tab Controls.............................. 83
5.5.2.22. Z Format Control Hexadecimal Values...83
5.5.2.23. Slash Format Control / – End of Record...84
5.5.2.24. The : Format Specifier – Format Termination.. 84
5.5.2.25. $ Format Control..84

5.5.3. Variable Format Expressions... 84
5.6. Non-advancing Input and Output... 85
5.7. List-directed formatting..85

5.7.1. List-directed input... 85
5.7.2. List-directed output... 86
5.7.3. Commas in External Field.. 87
5.7.4. Character Encoding Format.. 87

5.8. Namelist Groups... 88
5.8.1. Namelist Input..88
5.8.2. Namelist Output..88

5.9. Recursive Input/Output.. 89
5.10. Input and Output of IEEE Infinities and NaNs... 89

5.10.1. Output Format.. 89
5.10.2. Input Format.. 89

Chapter 6. Fortran Intrinsics... 91
6.1. Intrinsics Support..91

Fortran Reference Guide Version 2019 | vi

6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines................................. 92
6.1.2. Elemental Character and Logical Functions... 93
6.1.3. Fortran 90/95 Vector/Matrix Functions.. 94
6.1.4. Fortran 90/95 Array Reduction Functions..94
6.1.5. Fortran 90/95 String Construction Functions..96
6.1.6. Fortran 90/95 Array Construction/Manipulation Functions..................................96
6.1.7. Fortran 90/95 General Inquiry Functions.. 97
6.1.8. Fortran 90/95 Numeric Inquiry Functions..97
6.1.9. Fortran 90/95 Array Inquiry Functions... 98
6.1.10. Fortran 90/95 Subroutines.. 98
6.1.11. Fortran 90/95 Transfer Functions..98
6.1.12. Arithmetic Functions...99
6.1.13. Fortran 2003 and 2008 Functions.. 102
6.1.14. Miscellaneous Functions..103

6.2. ACOSD..103
6.3. AND...104
6.4. ASIND...104
6.5. ASSOCIATED... 105
6.6. ATAN2D...105
6.7. ATAND.. 106
6.8. COMPL..106
6.9. CONJG..106
6.10. COSD.. 107
6.11. DIM.. 107
6.12. ININT..108
6.13. INT8... 108
6.14. IZEXT..108
6.15. JINT... 109
6.16. JNINT... 109
6.17. KNINT... 110
6.18. LEADZ...110
6.19. LSHIFT.. 111
6.20. OR... 111
6.21. RSHIFT.. 112
6.22. SHIFT..112
6.23. SIND... 112
6.24. TAND.. 113
6.25. XOR... 113
6.26. ZEXT.. 114
6.27. Intrinsic Modules..114

6.27.1. Module IEEE_ARITHMETIC.. 114
6.27.2. IEEE_ARITHMETIC Derived Types..115
6.27.3. IEEE_ARITHMETIC Inquiry Functions..116

Fortran Reference Guide Version 2019 | vii

6.27.4. IEEE_ARITHMETIC Elemental Functions.. 117
6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines..118
6.27.6. IEEE_ARITHMETIC Transformational Function... 119

6.28. Module IEEE_EXCEPTIONS... 119
6.28.1. IEEE_EXCEPTIONS Derived Types..119
6.28.2. IEEE_EXCEPTIONS Inquiry Functions..120
6.28.3. IEEE_EXCEPTIONS Subroutines Functions.. 120

6.29. IEEE_FEATURES.. 121
6.29.1. IEEE_FEATURES Derived Type..122
6.29.2. IEEE_FEATURES Named Constants.. 122

6.30. Module iso_c_binding.. 122
6.31. Module iso_fortran_env..123

Chapter 7. Object Oriented Programming... 124
7.1. Inheritance.. 124
7.2. Polymorphic Entities...126

7.2.1. Unlimited Polymorphic Entities.. 126
7.2.2. Typed Allocation for Polymorphic Variables..127
7.2.3. Sourced Allocation for Polymorphic Variables... 127
7.2.4. Procedure Polymorphism.. 127
7.2.5. Procedure Polymorphism with Type-Bound Procedures.....................................129
7.2.6. Inheritance and Type-Bound Procedures..132
7.2.7. Procedure Overriding.. 133
7.2.8. Functions as Type-Bound Procedures..135

7.3. Information Hiding...135
7.3.1. Type Overloading... 137

7.4. Data Polymorphism.. 138
7.4.1. Pointer Polymorphic Variables..138
7.4.2. Allocatable Polymorphic Variables... 139
7.4.3. Sourced Allocation..140
7.4.4. Unlimited Polymorphic Objects.. 141
7.4.5. Abstract Types and Deferred Bindings.. 146

7.5. IEEE Modules..149
7.6. Intrinsic Functions... 149

Chapter 8. OpenMP Directives for Fortran.. 150
8.1. OpenMP Overview..150

8.1.1. OpenMP Shared-Memory Parallel Programming Model...................................... 150
8.1.2. Terminology..151
8.1.3. OpenMP Example... 152

8.2. Task Overview.. 153
8.3. Tasks..153

8.3.1. Task Characteristics and Activities.. 153
8.3.2. Task Scheduling Points...154
8.3.3. Task Construct...154

Fortran Reference Guide Version 2019 | viii

8.4. Parallelization Directives... 156
8.5. Directive Recognition..156
8.6. Directive Clauses...157

8.6.1. COLLAPSE (n)..159
8.6.2. COPYIN (list)...160
8.6.3. COPYPRIVATE(list)...160
8.6.4. DEFAULT.. 160
8.6.5. FIRSTPRIVATE(list)...161
8.6.6. IF().. 161
8.6.7. LASTPRIVATE(list)... 161
8.6.8. NOWAIT... 161
8.6.9. NUM_THREADS...161
8.6.10. ORDERED..162
8.6.11. PRIVATE..162
8.6.12. REDUCTION... 162
8.6.13. SCHEDULE...163
8.6.14. SHARED..164
8.6.15. UNTIED.. 164

8.7. Directive Summary Table... 164
8.7.1. ATOMIC..165
8.7.2. BARRIER.. 166
8.7.3. CRITICAL ... END CRITICAL..166
8.7.4. C\$DOACROSS..167
8.7.5. DO...END DO.. 168
8.7.6. FLUSH...170
8.7.7. MASTER ... END MASTER.. 170
8.7.8. ORDERED... 171
8.7.9. PARALLEL ... END PARALLEL.. 172
8.7.10. PARALLEL DO...173
8.7.11. PARALLEL SECTIONS...174
8.7.12. PARALLEL WORKSHARE... 175
8.7.13. SECTIONS ... END SECTIONS...176
8.7.14. SINGLE ... END SINGLE... 177
8.7.15. TASK... 177
8.7.16. TASKWAIT... 179
8.7.17. THREADPRIVATE.. 180
8.7.18. WORKSHARE ... END WORKSHARE.. 180

8.8. Runtime Library Routines...181
8.9. OpenMP Environment Variables..185

8.9.1. OMP_DYNAMIC... 186
8.9.2. OMP_MAX_ACTIVE_LEVELS...186
8.9.3. OMP_NESTED...186
8.9.4. OMP_NUM_THREADS.. 186

Fortran Reference Guide Version 2019 | ix

8.9.5. OMP_PROC_BIND.. 187
8.9.6. OMP_SCHEDULE... 187
8.9.7. OMP_STACKSIZE... 187
8.9.8. OMP_THREAD_LIMIT.. 188
8.9.9. OMP_WAIT_POLICY..188

Chapter 9. 3F Functions and VAX Subroutines... 189
9.1. 3F Routines... 189

9.1.1. abort.. 190
9.1.2. access...190
9.1.3. alarm..190
9.1.4. Bessel functions...191
9.1.5. chdir.. 192
9.1.6. chmod.. 192
9.1.7. ctime..192
9.1.8. date... 192
9.1.9. error functions.. 193
9.1.10. etime, dtime...193
9.1.11. exit.. 193
9.1.12. fdate...194
9.1.13. fgetc...194
9.1.14. flush... 194
9.1.15. fork.. 194
9.1.16. fputc...195
9.1.17. free.. 195
9.1.18. fseek...195
9.1.19. ftell.. 196
9.1.20. gerror..196
9.1.21. getarg... 196
9.1.22. iargc... 197
9.1.23. getc..197
9.1.24. getcwd.. 197
9.1.25. getenv...197
9.1.26. getgid... 198
9.1.27. getlog..198
9.1.28. getpid... 198
9.1.29. getuid... 198
9.1.30. gmtime..199
9.1.31. hostnm.. 199
9.1.32. idate...199
9.1.33. ierrno..199
9.1.34. ioinit...200
9.1.35. isatty.. 200
9.1.36. itime...200

Fortran Reference Guide Version 2019 | x

9.1.37. kill... 200
9.1.38. link...201
9.1.39. lnblnk..201
9.1.40. loc... 201
9.1.41. ltime...202
9.1.42. malloc... 202
9.1.43. mclock.. 202
9.1.44. mvbits... 202
9.1.45. outstr..203
9.1.46. perror... 203
9.1.47. putc..203
9.1.48. putenv...203
9.1.49. qsort...204
9.1.50. rand, irand, srand...204
9.1.51. random, irandm, drandm.. 205
9.1.52. range.. 205
9.1.53. rename.. 206
9.1.54. rindex... 206
9.1.55. secnds, dsecnds... 206
9.1.56. setvbuf.. 207
9.1.57. setvbuf3f..208
9.1.58. signal.. 208
9.1.59. sleep...209
9.1.60. stat, lstat, fstat, fstat64.. 209
9.1.61. stime.. 210
9.1.62. symlnk...210
9.1.63. system...210
9.1.64. time... 210
9.1.65. times.. 211
9.1.66. ttynam.. 211
9.1.67. unlink..211
9.1.68. wait..212

9.2. VAX System Subroutines.. 212
9.2.1. Built-In Functions...212
9.2.2. VAX/VMS System Subroutines... 212

Chapter 10. Interoperability with C...216
10.1. Enumerators... 216
10.2. Interoperability with C Pointer Types...216

10.2.1. c_f_pointer... 217
10.2.2. c_f_procpointer..218
10.2.3. c_associated..219

10.3. Interoperability of Derived Types..220
Chapter 11. Known Limitations.. 222

Fortran Reference Guide Version 2019 | xi

11.1. Process Threading Limitations..222
Chapter 12. Contact Information.. 223

Fortran Reference Guide Version 2019 | xii

LIST OF FIGURES

Figure 1 Order of Statements ..2

Fortran Reference Guide Version 2019 | xiii

LIST OF TABLES

Table 1 Fortran Characters ... 3

Table 2 C Language Character Escape Sequences .. 3

Table 3 Fixed Format Record Positions and Fields ... 5

Table 4 Fortran Operator Precedence .. 9

Table 5 Arithmetic Operators ...10

Table 6 Arithmetic Operator Precedence ...10

Table 7 Relational Operators ... 11

Table 8 Logical Expression Operators ... 12

Table 9 Fortran Intrinsic Data Types .. 16

Table 10 Data Types Kind Parameters ...17

Table 11 Data Type Extensions ... 17

Table 12 Data Type Ranks ... 18

Table 13 Examples of Real Constants ... 20

Table 14 Examples of Double Precision Constants .. 21

Table 15 Statement Summary Table ... 38

Table 16 OPEN Specifiers ..71

Table 17 Format Character Controls for a Printer .. 76

Table 18 Format Character Controls for Rounding Printer ...82

Table 19 Format Character Controls for Rounding Printer ...82

Table 20 List Directed Input Values ... 85

Table 21 Default List Directed Output Formatting ..86

Table 22 IEEE_ARITHMETIC Derived Types ...115

Table 23 IEEE_ARITHMETIC Inquiry Functions ...116

Table 24 IEEE_ARITHMETIC Elemental Functions ...117

Fortran Reference Guide Version 2019 | xiv

Table 25 IEEE_ARITHMETIC Non-Elemental Subroutines ...118

Table 26 IEEE_EXCEPTIONS Derived Types .. 119

Table 27 IEEE_EXCEPTIONS Inquiry Functions .. 120

Table 28 IEEE_EXCEPTIONS Elemental Subroutines .. 120

Table 29 IEEE_EXCEPTIONS Elemental Subroutines .. 121

Table 30 IEEE_FEATURES Named Constants ... 122

Table 31 iso_fortran_env Named Constants ...123

Table 32 Fortran 2003 Functions and Procedures ..149

Table 33 Directive Clauses Summary Table ... 157

Table 34 Initialization of REDUCTION Variables .. 163

Table 35 Directive Summary Table ... 164

Table 36 Runtime Library Routines Summary ...181

Table 37 OpenMP-related Environment Variable Summary Table185

Fortran Reference Guide Version 2019 | xv

PREFACE

This manual describes the PGI implementation of the FORTRAN 77, Fortran 90/95,
and Fortran 2003 languages. Collectively, the PGI compilers that implement these
languages are referred to as the PGI Fortran compilers. This manual is part of a set of
documents describing the Fortran language and the compilation tools available from
PGI. It presents the Fortran language statements, intrinsics, and extension directives.

Two Compilers represent the PGI Fortran compiler products. Fortran 77 (pgf77) is one of
them. pgf90, pgf95, and pgfortran are the same compiler that has evolved from Fortran
90 to Fortran 2003 standards. The older names are supported so that makefiles that were
written using pgf90/pgf95, will still work. All three names refer to the same one compiler
that supports the Fortran 2003 language standard.

The PGI Fortran compilation system includes a compilation driver, multiple Fortran
compilers, associated runtime support and mathematical libraries, and associated
software development tools for debugging and profiling the performance of Fortran
programs. Depending on the target system, PGI’s Fortran software development tools
may also include an assembler or a linker. You can use these tools to create, debug,
optimize and profile your Fortran programs. Related Publications lists other manuals in
the PGI documentation set.

Audience Description
This manual is intended for people who are porting or writing Fortran programs using
the PGI Fortran compilers. To use Fortran you should be aware of the role of Fortran
and of source-level programs in the software development process and you should have
some knowledge of a particular system or workstation cluster. To use the PGI Fortran
compilers, you need to be familiar with the Fortran language FORTRAN77, Fortran
90/95, or F2003 as well as the basic commands available on your host system.

Compatibility and Conformance to Standards
The PGI Fortran compilers, PGF77 and PGFORTAN, run on a variety of x86-64 and
OpenPOWER processor-based host systems. The PGF77 compiler, supported on x86-64
only, accepts an enhanced version of FORTRAN 77 that conforms to the ANSI standard
for FORTRAN 77 and includes various extensions from VAX/VMS Fortran, IBM/VS

Preface

Fortran Reference Guide Version 2019 | xvi

Fortran, and MIL-STD-1753. The PGFORTRAN compiler accepts a similarly enhanced
version of the ANSI standard for Fortran 90/95/2003.

For further information on the Fortran language, you can also refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,

Geneva, 1991 (Fortran 90).
‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,

Geneva, 1997 (Fortran 95).
‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,

Geneva, 2004 (Fortran 2003).
‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,

Cambridge, Mass, 1997.
‣ Fortran 2003 Handbook, The Complete Syntax, Features and Procedures, Adams et al,

Springer; 1st Edition. 2008.
‣ OpenMP Application Program Interface, Version 3.1, July 2011, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard

Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization
This guide is divided into the following sections and appendices:

Language Overview, provides an introduction to the Fortran language.

Fortran Data Types, describes the data types supported by PGI Fortran compilers and
provides examples using various data types. It also contains information on memory
allocation and alignment issue.

Fortran Statements, briefly describes each Fortran statement that the PGI Fortran
compilers accept. Longer descriptions are available for PGI extensions.

Fortran Arrays, describes special characteristics of arrays in Fortran 90/95.

Input and Output, describes the input, output, and format statements that allow
programs to transfer data to or from files.

Fortran Intrinsics, lists the Fortran intrinsics and subroutines supported by the PGI
Fortran compilers.

Object Oriented Programming, provides a high-level overview of procedures,
functions, and attributes from Fortran 2003 that facilitate an object-oriented approach to
programming.

OpenMP Directives for Fortran, lists the language extensions that the PGI Fortran
compilers support.

http://www.openmp.org
http://www.openmp.org

Preface

Fortran Reference Guide Version 2019 | xvii

Functions and VAX Subroutines, describes the functions and subroutines in the Fortran
runtime library and discusses the VAX/VMS system subroutines and the built-in
functions supported by the PGI Fortran compilers.

Interoperability with C, describes the pointer types and enumerators available for
Fortran interoperability with C.

Hardware and Software Constraints
The PGI compilers operate on a variety of host systems and produce object code for a
variety of target systems. Details concerning environment-specific values and defaults
and host-specific features or limitations are presented in the PGI Compiler User's Guide,
www.pgroup.com/resources/docs/19.1/pdf/pgi19ug-x86.pdf, the man pages for each
compiler in a given installation, and in the release notes and installation instructions
included with all PGI compilers and tools software products.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at

https://www.pgroup.com/products/index.htm?tab=compat

Preface

Fortran Reference Guide Version 2019 | xviii

https://www.pgroup.com/products/index.htm?tab=compat for a comprehensive listing
of supported platforms.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

Related Publications
The following documents contain additional information related to compilers and tools
available from PGI.

‣ The PGI Compiler User's Guide, www.pgroup.com/resources/docs/19.1/pdf/
pgi19ug-x86.pdf describes the general features and usage guidelines for all PGI
compilers, and describes in detail various available compiler options in a user's
guide format.

‣ Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the
statements, data types, input/output format specifiers, and additional reference
material that defines ANSI/ISO Fortran 95.

‣ Fortran 2003 Handbook, from Springer, provides the complete syntax, features and
procedures for Fortran 2003.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc, (available from Prentice Hall, Inc.)

‣ American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
‣ Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

https://www.pgroup.com/products/index.htm?tab=compat

Fortran Reference Guide Version 2019 | 1

Chapter 1.
LANGUAGE OVERVIEW

This section describes the basic elements of the Fortran language, the format of Fortran
statements, and the types of expressions and assignments accepted by the PGI Fortran
compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly
language code, binary object code or binary executables in conjunction with the
assembler, linker and libraries on the target system. The input language must be
extended FORTRAN 77 as specified in this reference manual. The PGFORTRAN
compiler functions similarly for Fortran 90/95/2003.

This section is not an introduction to the overall capabilities of Fortran. Rather, it is an
overview of the syntax requirements of programs used with the PGI Fortran compilers.
The Fortran 2003 Handbook, provides the complete syntax, features and procedures for
Fortran 2003.

1.1. Elements of a Fortran Program Unit
A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK
DATA, or PROGRAM program units.

Fortran source code consists of a sequence of program units which are to be compiled.
Every program unit consists of statements and optionally comments beginning with a
program unit statement, either a SUBROUTINE, FUNCTION, or PROGRAM statement,
and finishing with an END statement (BLOCK DATA and MODULE program units are
also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM
statement.

1.1.1. Fortran Statements
Statements are either executable statements or nonexecutable specification statements.
Each statement consists of a single line or source record, possibly followed by one or
more continuation lines. Multiple statements may appear on a single line if they are

Language Overview

Fortran Reference Guide Version 2019 | 2

separated by a semicolon (;). Comments may appear on any line following a comment
character (!).

1.1.2. Free and Fixed Source
Fortran permits two types of source formatting, fixed source form and free source form.

‣ Fixed source form uses the traditional Fortran approach where specific column
positions are reserved for labels, continuation characters, and statements and blank
characters are ignored. The PGF77 compiler supports only fixed source form. The
PGF77 compiler also supports a less restrictive variety of fixed source form called
tab source form.

‣ Use the compiler option -Mfixed.
‣ Use the suffix .f

‣ Free source form introduced with Fortran 90 places few restrictions on source
formatting; the context of an element, as well as the position of blanks, or
tabs, separate logical tokens. You can select free source form as an option to
PGFORTRAN in one of these ways:

‣ Use the compiler option -Mfreeform.
‣ Use either the suffix .f90, the suffix .f95, or the suffix .f03.

1.1.3. Statement Ordering
Fortran statements and constructs must conform to ordering requirements imposed by
the language definition. Figure 1 illustrates these requirements. Vertical lines separate
statements and constructs that can be interspersed. Horizontal lines separate statements
that must not be interspersed.

These rules are less strict than those in the ANSI standard. The differences are as
follows:

‣ DATA statements can be freely interspersed with PARAMETER statements and
other specification statements.

‣ NAMELIST statements are supported and have the same order requirements as
FORMAT and ENTRY statements.

‣ The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1 Order of Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements

USE Statements

IMPORT Statements

IMPLICIT NONE Statements

IMPLICIT Statements

Comments

and

INCLUDE

Statements
NAMELIST,

FORMAT,

and ENTRY
Data Statements

Other
Specifications

PARAMETER

Language Overview

Fortran Reference Guide Version 2019 | 3

Statement Function DefinitionStatements

EXECUTABLE Statements

CONTAINS Statement

Internal Subprograms or Module

END Statement

1.2. The Fortran Character Set
Table 1, Fortran Characters, hows the set of Fortran characters. Character variables and
constants can use any ASCII character. The value of the command-line option -Mupcase
determines if the compiler distinguishes between case (upper and lower) in identifiers.
By default, without the -Mupcase option selected, the compiler does not distinguish
between upper and lower case characters in identifiers (upper and lower case are always
significant in character constants).

Table 1 Fortran Characters

Character Description Character Description

, Comma A-Z, a-z Alphabetic

: Colon <space> Space character

; Semicolon = Equals

_ Underscore character + Plus

< Less than - Minus

> Greater than * Asterisk

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket

. Decimal point] Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation character

Table 2, C Language Character Escape Sequences, shows C language character escape
sequences that the PGI Fortran compilers recognize in character string constants when
-Mbackslash is on the command line. These values depend on the command-line
option -Mbackslash.

Table 2 C Language Character Escape Sequences

Character Description

\v vertical tab

Language Overview

Fortran Reference Guide Version 2019 | 4

Character Description

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

\0 null

\' apostrophe (does not terminate a string)

\" double quotes (does not terminate a string)

\\ \

\x x, where x is any other character

\ddd character with the given octal representation.

1.3. Free Form Formatting
Using free form formatting, columns are not significant for the elements of a Fortran
line, and a blank or series of blanks or tabs and the context of a token specify the token
type. The following rules apply to free form formatting:

‣ Up to 132 characters are valid per line, and the compiler option -Mextend does not
apply.

‣ A single Fortran line may contain multiple statements, with the ; (semicolon)
separating multiple statements on a single line.

‣ Free format labels are valid at the start of a line.

‣ The label must be separated from the remaining statements on the line by at
least one blank or a <TAB>.

‣ Labels consist of a numeric field drawn from digits 0 to 9.
‣ The label cannot be more than 5 characters.

‣ Either a blank line, or the ! character following a Fortran line indicates a comment.
The Fortran text does not contain any of the characters after the !.

‣ The & character at the end of a line means the following line represents a
continuation line.

‣ If a continuation line starts with the & character, then the characters following
the & are the start of the continuation line.

‣ If the continuation line does not start with a &, then all characters on the line are
part of the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates
multiple statements on a single line. Free format labels are valid at the start of a line, as
long as the label is separated from the remaining statements on the line by at least one

Language Overview

Fortran Reference Guide Version 2019 | 5

blank or a <TAB>. Labels consist of a numeric field drawn from digits 0 to 9. The label
cannot be more than 5 characters.

1.4. Fixed Formatting
This section describes the two types of fixed formatting that PGI Fortran compilers
support: column formatting and tab formatting.

1.4.1. Column Formatting
When using column formatting a Fortran record consists of a sequence of up to 72 or 132
ASCII characters, the last being <CR>. Table 3 shows the fixed layout.

For column formatting of 132 characters, you must specify -Mextend.

Table 3 Fixed Format Record Positions and Fields

Position Field

1-5 Label field

6 Continuation field

7-72 or 7-132 Statement field

Characters on a line beyond position 72, or position 132 if -Mextend is specified,
are ignored. In addition, any characters following an exclamation (!) character are
considered comments and are thus disregarded during compilation.

1.4.2. Fixed Format Label Field
The label field holds up to five characters. Further, each label must be unique in its
program unit.

‣ The characters C , D, *, or ! in the first character position of a label field indicate a
comment line.

‣ When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is
a label.

‣ A line with no label, and with five space characters or a <TAB> in the label field, is
an unlabeled statement.

‣ Continuation lines must not be labeled.
‣ A program to only jump to labels that are on executable statements.

1.4.3. Fixed Format Continuation Field
The sixth character position, or the position after the tab, is the continuation field. This
field is ignored in comment lines. It is invalid if the label field is not five spaces. A value

Language Overview

Fortran Reference Guide Version 2019 | 6

of 0, <space> or <TAB> indicates the first line of a statement. Any other value indicates a
subsequent, continuation line to the preceding statement.

1.4.4. Fixed Format Statement Field
The statement field consists of valid identifiers and symbols, possibly separated by
<space> or <TAB> and terminated by <CR>.

Within the statement field, tabs, spaces, comments and any characters found beyond the
72nd character, or position 132 if -Mextend is specified, are ignored. As stated earlier,
any characters following an exclamation (!) character are considered comments.

1.4.5. Fixed Format Debug Statements
The letter D in column 1 using fixed formatting designates the statement on the
specified line is a debugging statement. The compiler treats the debugging statement
as a comment, ignoring it, unless the command line option -Mdlines is set during
compilation. If -Mdlines is set, the compiler acts as if the line starting with D were a
Fortran statement and compiles the line according to the standard rules.

1.4.6. Tab Formatting
The PGI Fortran compilers support an alternate form of fixed source from called
tab source form. A tab formatted source file is made up of a label field, an optional
continuation indicator and a statement field. The label field is terminated by a tab
character. The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a non-zero
digit. The statement field starts after a continuation indicator, when one is present.
Again, any characters found beyond the 72nd character, or position 132 if -Mextend is
specified, are ignored.

1.4.7. Fixed Input File Format Summary
For fixed input file format, the following is true:

‣ Tab-Format lines are supported.

‣ A tab in columns 1-6 ends the statement label field and begins an optional
continuation indicator field.

‣ If a non-zero digit follows the tab character, the continuation field exists and
indicates a continuation field.

‣ If anything other than a non-zero digit follows the tab character, the statement
body begins with that character and extends to the end of the source statement.

This does not override Fortran's free source form handling since no valid
Fortran statement can begin with a non-zero digit.

‣ The tab character is ignored if it occurs in a line except in Hollerith or character
constants.

‣ Input lines may be of varying lengths.

Language Overview

Fortran Reference Guide Version 2019 | 7

‣ If there are fewer than 72 characters, the line is padded with blanks.
‣ Characters after the 72nd are ignored unless the -Mextend option is used on

the command line.

The -Mextend option extends the statement field to position 132.

When the -Mextend option is used, the input line is padded with blanks if it is
fewer than 132 characters; characters after the 132nd are ignored.

‣ Blank lines are allowed at the end of a program unit.
‣ The number of continuation lines allowed is extended to 1000 lines.

1.5. Include Fortran Source Files
The sequence of consecutive compilation of source statements may be interrupted so
that an extra source file can be included. To do this, use the INCLUDE statement which
takes the form:
INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double
quotes are acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of
that source the file is closed and compilation continues with the statement following the
INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the
same COMMON block data mappings are used in several program units. For example
the following statement includes the file MYFILE.DEF.
INCLUDE "MYFILE.DEF"

Nested includes are allowed, up to a PGI Fortran defined limit of 20.

Recursive includes are not allowed. That is, if a file includes a file, that file may not also
include the same file.

1.6. Components of Fortran Statements
Fortran program units are made up of statements which consist of expressions and
elements. An expression can be broken down to simpler expressions and eventually to
its elements combined with operators. Hence the basic building block of a statement is
an element.

An element takes one of the following forms:

‣ A constant represents a fixed value.
‣ A variable represents a value which may change during program execution.

Language Overview

Fortran Reference Guide Version 2019 | 8

‣ An array is a group of values that can be referred to as a whole, as a section, or
separately. The separate values are known as the elements of the array. The array has
a symbolic name.

‣ A function reference or subroutine reference is the name of a function or subroutine
followed by an argument list. The reference causes the code specified at function/
subroutine definition to be executed and if a function, the result is substituted for
the function reference.

1.6.1. Symbolic Names
Symbolic names identify different entities in Fortran source code. A symbolic name
is a string of letters and digits, which must start with a letter and be terminated by a
character not in the symbolic names set (for example a <space> or a <TAB> character).
Underscore (_) characters may appear within symbolic names. Only the first 63
characters identify the symbolic name.

Here several examples of symbolic names:
NUM
CRA9
numericabcdefghijklmnopqrstuvwxyz

The last example is identified by its first 63 characters and is equivalent to:
numericabcdefghijklmnopqrstuvwx

Some examples of invalid symbolic name include:
8Q Invalid because it begins with a number

FIVE.4 Invalid because it contains a period, an invalid
 character for a symbolic name.

1.7. Expressions
Each data item, such as a variable or a constant, represents a particular value at any
point during program execution. These elements may be combined together to form
expressions, using binary or unary operators, so that the expression itself yields a value.
A Fortran expression may be any of the following:

‣ A scalar expression
‣ An array expression
‣ A constant expression

‣ A specification expression
‣ An initialization expression
‣ Mixed array and scalar expressions

1.7.1. Forming Expressions
Expressions fall into one of four classes: arithmetic, relational, logical or character, each
class described later in this section.

An expression is formed like this:

expr binary-operator expr or unary-operator expr

where expr is formed as an expression or as an element.

Language Overview

Fortran Reference Guide Version 2019 | 9

For example, these are simple expressions whose components are elements. The first
expression involves a binary operator and the other two are unary operators.

A+B -C +D

1.7.2. Expression Precedence Rules
Arithmetic, relational and logical expressions may be identified to the compiler by the
use of parentheses, as described in Table 6. When no guidance is given to the compiler it
imposes a set of precedence rules to identify each expression uniquely. Table 4 shows the
operator precedence rules for expressions.

Table 4 Fortran Operator Precedence

Operator Evaluated

Unary defined Highest

** N/A

* or / N/A

Unary + or − N/A

Binary + or − N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same precedence

Relational operators <, <=, >, >= Same precedence

Relational operators .EQ., .NE., .LT. Same precedence

.NOT. N/A

.AND. N/A

.OR. N/A

.NEQV. and .EQV. N/A

Binary defined Lowest

For example, the following two expressions are equivalent. If we set A to 16, B to 4, and
C to 2, both expressions equal 8.
A/B*C such as 16 / 4 * 2

(A/B)*C such as (16 /4) * 2

Another example of equivalent expressions are these:
 A*B+B**C .EQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

((((A*B)+(B**C)) .EQ. (X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

1.7.3. Arithmetic Expressions
Arithmetic expressions are formed from arithmetic elements and arithmetic operators.

Language Overview

Fortran Reference Guide Version 2019 | 10

Arithmetic Elements

An arithmetic element may be:

‣ an arithmetic expression

‣ a variable

‣ a constant

‣ an array element

‣ a function reference

‣ a field of a structure

A value should be associated with a variable or array element before it is used in an
expression.

Arithmetic Operators

The arithmetic operators specify a computation to be performed on the elements. The
result is a numeric result. Table 5 shows the arithmetic operators.

Table 5 Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

Arithmetic Operator Precedence

Arithmetic expressions are evaluated in an order determined by a precedence associated
with each operator. Table 6 shows the precedence of each arithmetic operator.

Table 6 Arithmetic Operator Precedence

Operator Precedence

** First

* and / Second

+ and - Third

This following example is resolved into the arithmetic expressions (A) + (B * C) rather
than (A + B) * (C).
 A + B * C

Language Overview

Fortran Reference Guide Version 2019 | 11

Normal ranked precedence may be overcome using parentheses which force the item(s)
enclosed to be evaluated first. For example, in the following expression the computer
firsts adds A and B, and then multiplies that sum by C.
 (A + B) * C

Arithmetic Expression Types

The type of an arithmetic expression depends on the type of elements in the expression:
INTEGER

if it contains only integer elements.
REAL

if it contains only real and integer elements.
DOUBLE PRECISION

if it contains only double precision, real and integer elements.
COMPLEX

if any element is complex. Any element which needs conversion to complex will be
converted by taking the real part from the original value and setting the imaginary
part to zero.

DOUBLE COMPLEX
if any element is double complex.

The Data Type Ranks table provides more information about these expressions.

1.7.4. Relational Expressions
A relational expression is composed of two arithmetic expressions separated by a
relational operator. The value of the expression is true or false (.TRUE. or .FALSE.)
depending on the value of the expressions and the nature of the operator. Table 7 shows
the relational operators.

Table 7 Relational Operators

Operator Relationship

< Less than

<= Less than or equal to

== Equal to

/= Not equal to

> Greater than

>= Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values.
The relationship is then evaluated to obtain the true or false result. Thus the relational
expression:
 TIME + MEAN .LT. LAST

Language Overview

Fortran Reference Guide Version 2019 | 12

means if the sum of TIME and MEAN is less than the value of LAST, then the result is
true, otherwise it is false.

1.7.5. Logical Expressions
A logical expression is composed of two relational or logical expressions separated
by a logical operator. Each logical expression yields the value true or false (.TRUE. or
.FALSE.). Table 8 shows the logical operators.

Table 8 Logical Expression Operators

Operator Relationship

.AND. True if both expressions are true.

.OR. True if either expression or both is true.

.NOT. This is a unary operator; it is true if the expression is false, otherwise it is false.

.NEQV. False if both expressions have the same logical value

.XOR. Same as .NEQV.

.EQV. True if both expressions have the same logical value

In the following example, TEST will be .TRUE. if A is greater than B or I is not equal to J
+17.
 TEST = A .GT. B .OR. I .NE. J+17

1.7.6. Character Expressions
An expression of type CHARACTER can consist of one or more printable characters.
Its length is the number of characters in the string. Each character is numbered
consecutively from left to right beginning with 1. For example:
'ab_&'
'A@HJi2'
'var[1,12]'

1.7.7. Character Concatenation
A character expression can be formed by concatenating two (or more) valid character
expressions using the concatenation operator //. The following table shows several
examples of concatenation.

Expression Value

'ABC'//'YZ' "ABCYZ"

'JOHN '//'SMITH' "JOHN SMITH"

'J '//'JAMES '//'JOY' "J JAMES JOY"

Language Overview

Fortran Reference Guide Version 2019 | 13

1.8. Symbolic Name Scope
Fortran 90/95/2003 scoping is expanded from the traditional FORTRAN 77 capabilities
which provide a scoping mechanism using subroutines, main programs, and
COMMONs. Fortran 90/95/2003 adds the MODULE statement. Modules provide an
expanded alternative to the use of both COMMONs and INCLUDE statements. Modules
allow data and functions to be packaged and defined as a unit, incorporating data
hiding and using a scope that is determined with the USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONs are global to those
modules that reference them. They must refer to unique objects, not only during
compilation, but also in the link stage.

The scope of names other than these is local to the module in which they occur, and
any reference to the name in a different module will imply a new local declaration. This
includes the arithmetic function statement.

1.9. Assignment Statements
A Fortran assignment statement can be any of the following:

‣ An intrinsic assignment statement
‣ A statement label assignment
‣ An array assignment
‣ A masked array assignment
‣ A pointer assignment
‣ A defined assignment

1.9.1. Arithmetic Assignment
The arithmetic assignment statement has the following form:
object = arithmetic-expression

where object is one of the following:

‣ Variable
‣ Function name (within a function body)
‣ Subroutine argument
‣ Array element
‣ Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type
if necessary.

In the case of:
complex = real expression

Language Overview

Fortran Reference Guide Version 2019 | 14

the implication is that the real part of the complex number becomes the result of the
expression and the imaginary part becomes zero. The same applies if the expression is
double precision, except that the expression will be coerced to real.

The following are examples of arithmetic assignment statements.
A=(P+Q)*(T/V)
B=R**T**2

1.9.2. Logical Assignment
The logical assignment statement has the following form:
object = logical-expression

where object is one of the following:

‣ Variable
‣ Function name (only within the body of the function)
‣ Subroutine argument
‣ Array element
‣ A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value .TRUE. if P+Q is greater than R;
otherwise FLAG has the logical value .FALSE.
FLAG=(P+Q) .GT. R

1.9.3. Character Assignment
The form of a character assignment is:
object = character expression

where object must be of type character, and is one of the following:

‣ Variable
‣ Function name (only within the body of the function)
‣ Subroutine argument
‣ Array element
‣ Character substring
‣ A field of a structure

In addition, these rules apply:

‣ None of the character positions being defined in object can be referenced in the
character expression.

‣ Only such characters as are necessary for the assignment to object need to be defined
in the character expression.

‣ The character expression and object can have different lengths.

‣ When object is longer than the character expression, trailing blanks are added to
the object.

Language Overview

Fortran Reference Guide Version 2019 | 15

‣ If object is shorter than the character expression the right-hand characters of the
character expression are truncated as necessary.

In the following example, all the variables and arrays are assumed to be of type
character.
FILE = 'BOOKS'
PLOT(3:8) = 'PLANTS'
TEXT(I,K+1)(2:B-1) = TITLE//X

1.10. Listing Controls
The PGI Fortran compilers recognize three compiler directives that affect the program
listing process:
%LIST

Turns on the listing process beginning at the following source code line.
%NOLIST

Turns off the listing process (including the %NOLIST line itself).
%EJECT

Causes a new listing page to be started.

These directives have an effect only when the -Mlist option is used. All of the
directives must begin in column one.

1.11. OpenMP Directives
OpenMP directives in a Fortran program provide information that allows the PGF77 and
PGFORTRAN compilers to generate executable programs that use multiple threads and
processors on a shared-memory parallel (SMP) computer system. An OpenMP directive
may have any of the following forms:
!$OMP directive
C$OMP directive
*$OMP directive

For a complete list and specifications of OpenMP directives supported by the PGF77 and
PGFORTRAN compilers, along with descriptions of the related OpenMP runtime library
routines, refer to OpenMP.

Fortran Reference Guide Version 2019 | 16

Chapter 2.
FORTRAN DATA TYPES

Every Fortran element and expression has a data type. The data type of an element
may be implicit in its definition or explicitly attached to the element in a declaration
statement. This section describes the Fortran data types and constants that are supported
by the PGI Fortran compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types.
Types provided by the language are intrinsic types. Types specified by the programmer
and built from the intrinsic data types are called derived types.

2.1. Intrinsic Data Types
Fortran provides six different intrinsic data types, listed in Table 9 and Table 11 show
variations and different KIND of intrinsic data types supported by the PGI Fortran
compilers.

Table 9 Fortran Intrinsic Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number, taking up two
numeric storage units and whose precision is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. Fortran provides two
precisions for COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

2.1.1. Kind Parameter
The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND
parameter follows a data type specifier and specifies size or type of the supported data
type. A KIND specification overrides the length attribute that the statement implies and

Fortran Data Types

Fortran Reference Guide Version 2019 | 17

assigns a specific length to the item, regardless of the compiler's command-line options.
A KIND is defined for a data type by a PARAMETER statement, using sizes supported
on the particular system.

The following are some examples using a KIND specification:
INTEGER (SHORT) :: L
REAL (HIGH) B
REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define
kinds:
INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Table 10 Data Types Kind Parameters

Type Kind Size

INTEGER SHORT 1 byte

INTEGER LONG 4 bytes

REAL HIGH 8 bytes

2.1.2. Number of Bytes Specification
The PGI Fortran compilers support a length specifier for some data types. The data
type can be followed by a data type length specifier of the form *s, where s is one of the
supported lengths for the data type. Such a specification overrides the length attribute
that the statement implies and assigns a specific length to the specified item, regardless
of the compiler options. For example, REAL*8 is equivalent to DOUBLE PRECISION.
Table 11 shows the lengths of data types, their meanings, and their sizes.

Table 11 Data Type Extensions

Type Meaning Size

LOGICAL*1 Small LOGICAL 1 byte

LOGICAL*2 Short LOGICAL 2 bytes

LOGICAL*4 LOGICAL 4 bytes

LOGICAL*8 LOGICAL 8 bytes

BYTE Small INTEGER 1 byte

INTEGER*1 Same as BYTE 1 byte

INTEGER*2 Short INTEGER 2 bytes

INTEGER*4 INTEGER 4 bytes

INTEGER*8 INTEGER 8 bytes

REAL*4 REAL 4 bytes

Fortran Data Types

Fortran Reference Guide Version 2019 | 18

Type Meaning Size

REAL*8 DOUBLE PRECISION 8 bytes

COMPLEX*8

COMPLEX (Kind=4)

COMPLEX 8 bytes

COMPLEX*16

COMPLEX (Kind=8)

DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to INTEGER*1.

Assigning a value too big for the data type to which it is assigned is an undefined
operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER
type word has a specifier. In the following example, the function size specification C*8
overrides the CHARACTER*4 specification.
CHARACTER*4 FUNCTION C*8 (VAR1)

Logical data items can be used with any operation where a similar sized integer data
item is permissible and vice versa. The logical data item is treated as an integer or
the integer data item is treated as a logical of the same size and no type conversion is
performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array
subscripts, in computed GOTOs, in array bounds and in alternate returns. The floating
point data item is converted to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its
data. The type of an expression is determined by the rank of its elements. Table 12 shows
the ranks of the various data types, from lowest to highest.

A variable of logical type may appear in an arithmetic context, and the logical type is
then treated as an integer of the same size.

Table 12 Data Type Ranks

Data Type Rank

LOGICAL 1 (lowest)

LOGICAL*8 2

INTEGER*2 3

INTEGER*4 4

INTEGER*8 5

REAL*4 6

REAL*8 (Double precision) 7

COMPLEX*8 (Complex) 8

Fortran Data Types

Fortran Reference Guide Version 2019 | 19

Data Type Rank

COMPLEX*16 (Double complex) 9 (highest)

The data type of a value produced by an operation on two arithmetic elements of
different data types is the data type of the highest-ranked element in the operation.
The exception to this rule is that an operation involving a COMPLEX*8 element and a
REAL*8 element produces a COMPLEX*16 result. In this operation, the COMPLEX*8
element is converted to a COMPLEX*16 element, which consists of two REAL*8
elements, before the operation is performed.

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the
hardware supports LOGICAL*8 and if the expression is LOGICAL*8, the result may be
LOGICAL*8.

2.2. Constants
A constant is an unchanging value that can be determined at compile time. It takes a
form corresponding to one of the data types. The PGI Fortran compilers support decimal
(INTEGER and REAL), unsigned binary, octal, hexadecimal, character and Hollerith
constants.

The use of character constants in a numeric context, for example, in the right-hand side
of an arithmetic assignment statement, is supported. These constants assume a data type
that conforms to the context in which they appear.

2.2.1. Integer Constants
The form of a decimal integer constant is:
[s]d1d2...dn [_ kind-parameter]

where s is an optional sign and di is a digit in the range 0 to 9. The optional
_kind@parameter is a Fortran 90/95/2003 feature supported by PGFORTRAN, and
specifies a supported kind. The value of an integer constant must be within the range for
the specified kind.

The value of an integer constant must be within the range -2147483648 (-231) to
2147483647 (231 - 1) inclusive. Integer constants assume a data type of INTEGER*4 and
have a 32-bit storage requirement.

The -i8 compilation option causes all data of type INTEGER to be promoted to an
8 byte INTEGER. The -i8 option does not override an explicit data type extension
size specifier, such as INTEGER*4. The range, data type and storage requirement
change if the -i8 flag is specified, although this flag is not supported on all x86 targets.
With the -i8 flag, the range for integer constants is -263 to (263 - 1)), and in this case
the value of an integer constant must be within the range -9223372036854775808 to
9223372036854775807. If the constant does not fit in an INTEGER*4 range, the data type
is INTEGER*8 and the storage requirement is 64 bits.

Here are several examples of integer constants:
+2

Fortran Data Types

Fortran Reference Guide Version 2019 | 20

-36
437
-36_SHORT
369_I2

2.2.2. Binary, Octal and Hexadecimal Constants
The PGI compilers and Fortran 90/95/2003 support various types of constants in addition
to decimal constants. Fortran allows unsigned binary, octal, or hexadecimal constants
in DATA statements. PGI compilers support these constants in DATA statements,
and additionally, support some of these constants outside of DATA statements. For
more information on support of these constants, refer to Fortran Binary, Octal, and
Hexadecimal Constants.

2.2.3. Real Constants
Real constants have two forms, scaled and unscaled. An unscaled real constant consists
of a signed or unsigned decimal number (a number with a decimal point). A scaled real
constant takes the same form as an unscaled constant, but is followed by an exponent
scaling factor of the form:
E+digits [_ kind-parameter]
Edigit [_ kind-parameter]
E-digits [_ kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled
constant. The first two forms above are equivalent, that is, a scaling factor without a sign
is assumed to be positive. Table 13 shows several real constants.

Table 13 Examples of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant

-.003_LOW signed unscaled constant with kind LOW

-1.0 signed unscaled single precision constant

6.1E2_LOW is equivalent to 610.0 with kind LOW

+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH

6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

2.2.4. Double Precision Constants
A double precision constant has the same form as a scaled REAL constant except that the
E is replaced by D and the kind parameter is not permitted. For example:
D+digits

Fortran Data Types

Fortran Reference Guide Version 2019 | 21

Ddigit
D-digits

Table 14 shows several double precision constants.

Table 14 Examples of Double Precision Constants

Constant Value

6.1D2 is equivalent to 610.0

+2.3D3 is equivalent to 2300.0

-3.5D-1 is equivalent to -0.35

+4D4 is equivalent to 40000

2.2.5. Complex Constants
A complex constant is held as two real or integer constants separated by a comma and
surrounded by parentheses. The first real number is the real part and the second real
number is the imaginary part. Together these values represent a complex number.
Integer values supplied as parameters for a COMPLEX constant are converted to REAL
numbers. Here are several examples:
(18,-4)
(3.5,-3.5)
(6.1E2,+2.3E3)

2.2.6. Double Complex Constants
A complex constant is held as two double constants separated by a comma and
surrounded by parentheses. The first double is the real part and the second double is the
imaginary part. Together these values represent a complex number. Here is an example:
(6.1D2,+2.3D3)

2.2.7. Logical Constants
A logical constant is one of:
.TRUE. [_ kind-parameter]
.FALSE.[_ kind-parameter]

The logical constants .TRUE. and .FALSE. are by default defined to be the four-byte
values -1 and 0 respectively. A logical expression is defined to be .TRUE. if its least
significant bit is 1 and .FALSE. otherwise,

The option -Munixlogical defines a logical expression to be TRUE if its value is non-zero,
and FALSE otherwise; also, the internal value of .TRUE. is set to one. This option is not
available on all target systems.

Here are several examples:
.TRUE.
.FALSE.
.TRUE._BIT

Fortran Data Types

Fortran Reference Guide Version 2019 | 22

The abbreviations .T. and .F. can be used in place of .TRUE. and .FALSE. in data
initialization statements and in NAMELIST input.

2.2.8. Character Constants
A string in the Cor C++ languages is defined by a starting location in memory. The end
of the string is the character prior to the first occurence of a C NULL character, and the
length of the string can be derived from the location of the C NULL character. Fortran
does not have a string data type. Character constants are sequences of characters and are
defined by the starting location in memory, and a length.

Character constants may be delimited using either an apostrophe (') or a double quote
("). The apostrophe or double quote acts as a delimiter and is not part of the character
constant. Use double quotes or two apostrophes together to include an apostrophe as
part of an expression. If a character constant begins with one variety of quote mark, the
other may be embedded within it without using the repeated quote or backslash escape.
Within character constants, blanks are significant. For further information on the use of
the backslash character, refer to -Mbackslash information in the User’s Guide.

A character constant is one of:
[kind-parameter_] "[characters]"
[kind-parameter_] '[characters]'

Here are several examples of character constants.
'abc'
'abc '
'ab''c'
"Test Word"
GREEK_"µ"

A zero length character constant is written as '' or "".

If a character constant is used in a numeric context, for example as the expression on the
right side of an arithmetic assignment statement, it is treated as a Hollerith constant. The
rules for typing and sizing character constants used in a numeric context are described
in Hollerith Constants.

2.2.9. Parameter Constants
The PARAMETER statement permits named constants to be defined. For more details
on defining constants, refer to the description of the PARAMETER statement in Fortran
Statements.

2.3. Structure Constructors
A structure constructor looks like a function call. It is a mechanism whose purpose is
to specify a value of a derived type or of a type alias that describes a derived type. The
constructor specifies a sequence of values for the components of the type.

‣ If a component is of derived type, an embedded structure constructor is required to
specify the value of that component.

Fortran Data Types

Fortran Reference Guide Version 2019 | 23

‣ If a component is an array, an embedded array constructor is required to specify the
values for that component.

Syntax

A structure constructor is the name of the type followed by a sequence of component
values in parentheses. The format for a structure_constructor is one of the following:
type_name (expr_list)

type_alias_name (expr_list)

Structure Constructor Enhancements

In Fortran 2003, there are three significant enhancements to structure constructors that
make structure constructors more like built-in generic functions that can be overridden
when necessary.

‣ Component names can be used as keywords, the same way that dummy argument
names can be used as argument keywords

‣ Values can be omitted for components that have default initialization.
‣ Type names can be the same as generic function names; references are resolved by

choosing a suitable function (if the syntax matches the function's argument list) and
treating as a structure constructor only if no function matches the actual arguments

Structure Constructor Rules

The following rules apply to structure constructors:

‣ A structure constructor must not appear before that type is defined.
‣ There must be a value in the expression list for each component unless that

component has default initialization.
‣ The expressions must agree in number and order with the components of the

derived type. Values may be converted to agree in type, kind, length, and, in some
cases, rank, with the components.

‣ The structure constructor for a private type or a public type with private
components is not available outside the module in which the type is defined.

‣ If the values in a structure constructor are constants, you can use the structure
constructor to specify a named constant.

‣ If a component is an explicit-shape array, such as a nonpointer array or a
nonallocatable array, the array constructor for it in the expression list must be the
same shape as the component.

‣ If a component is a pointer, the value for it in the expression list must evaluate to an
allowable target for the pointer. A constant is not an allowable target.

‣ A constant expression cannot be constructed for a type with a pointer component
because a constant is not an allowable target in a pointer assignment statement.

Fortran Data Types

Fortran Reference Guide Version 2019 | 24

‣ If a component has the ALLOCATABLE attribute, its value in the expression list
must have the same rank if it is an array or must be scalar if it is scalar. The value
must be one of the following:

‣ A call to the NULL() intrinsic command without any arguments. The allocatable
component receives a ‘not currently allocated’ status.

‣ A variable that has the ALLOCATABLE attribute. The allocatable component
receives the variable's allocation status and, if allocated, shape and value.

‣ An expression. The allocatable component receives the ‘currently allocated’
status and the same value and shape of the expression.

2.4. Derived Types
Unlike the intrinsic types that are defined by the language, you must define derived
types. A derived type is a type made up of components whose type is either intrinsic or
another derived type. These types have the same functionality as the intrinsic types; for
example, variables of these types can be declared, passed as procedure arguments, and
returned as function results.

A derived-type definition specifies a name for the type; this name is used to declare
objects of the type. A derived-type definition also specifies components of the type, of
which there must be at least one. A component can be either an intrinsic or derived type.

The TYPE and END TYPE keywords define a derived type. The definition of a variable
of the new type is called a TYPE statement.

Syntax

For derived type definition:
derived_type_stmt
 [data_component_part]
end_type_stmt

For a derived type statement:
TYPE [[, type_attr_spec_list] ::] type_name

Example

The following derived type declaration defines the type PERSON and the array
CUSTOMER of type PERSON:
! Declare a structure to define a person derived type
TYPE PERSON
 INTEGER ID
 LOGICAL LIVING
 CHARACTER(LEN=20) FIRST, LAST, MIDDLE
 INTEGER AGE
END TYPE PERSON
TYPE (PERSON) CUSTOMER(10)

Fortran Data Types

Fortran Reference Guide Version 2019 | 25

A derived type statement consists of the statements between the TYPE and END TYPE
statements. In the previous example, the derived-type statement for PERSON consists of
all the statements between TYPE PERSON and END TYPE PERSON.

Notice in this example that CUSTOMER is a variable of type PERSON. Use of
parentheses in the TYPE statement indicate a reference to the derived type PERSON
rather than declaration of a derived type.

The % character accesses the components of a derived type. For example, to assign the
value 12345 as the ID of the first customer, you might use the following statement:
CUSTOMER(1)%ID = 12345

2.5. Deferred Type Parameters
A deferred type parameter is a type parameter that has no defined value until it is given
one. In Fortran 2003, deferred type parameters are available both for CHARACTER
length and for parameterized derived types.

A variable with a deferred type parameter must have the ALLOCATABLE or POINTER
attribute. The value of a deferred type parameter depends on this attribute:

‣ For an allocatable variable, the value of a deferred type parameter is determined by
allocation - either by a typed allocation, or by an intrinsic assignment with automatic
reallocation.

‣ For a pointer, the value of a deferred type parameter is the value of the type
parameter of its target.

2.5.1. Typed Allocation
A length type parameter that is deferred has no defined value until it is given one by the
ALLOCATE statement or by pointer assignment. There are a couple rules that apply with
typed allocation and deferred type parameters:

‣ If the length parameters of an item being allocated is assumed, it must be specified
as an asterisk (*) in the type-spec of the ALLOCATE statement.

‣ Since there can only be one type-spec in an ALLOCATE statement, it must be
suitable for all the items being allocated. For example, if any of the allocatable items
is a dummy argument, then they must all be dummy arguments.

2.6. Arrays
Arrays in Fortran are not data types, but are data objects of intrinsic or derived type
with special characteristics. A dimension statement provides a data type with one or
more dimensions. There are several differences between Fortran 2003 and traditional
FORTRAN 77 arrays.

Fortran 2003 supports all FORTRAN 77 array semantics.

Fortran Data Types

Fortran Reference Guide Version 2019 | 26

An array is a group of consecutive, contiguous storage locations associated with a
symbolic name which is the array name. Each individual element of storage, called the
array element, is referenced by the array name modified by a list of subscripts. Arrays
are declared with type declaration statements, DIMENSION statements and COMMON
statements; they are not defined by implicit reference. These declarations will introduce
an array name and establish the number of dimensions and the bounds and size of each
dimension. If a symbol, modified by a list of subscripts is not defined as an array, then it
will be assumed to be a FUNCTION reference with an argument list.

Fortran 2003 arrays are ‘objects’ and operations and expressions involving arrays
may apply to every element of the array in an unspecified order. For example, in the
following code, where A and B are arrays of the same shape (conformable arrays),
the following expression adds six to every element of B and assigns the results to the
corresponding elements of A:
 A = B + 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions,
and sections of arrays may be used and passed as well. Arrays of derived type are also
valid. In addition, allocatable arrays may be created with deferred shapes (number of
dimensions is specified at declaration, but the actual bounds and size of each dimension
are determined when the array is allocated while the program is running).

2.6.1. Array Declaration Element
An array declaration has the following form:
name([lb:]ub[,[lb:]ub]...)

where name is the symbolic name of the array, lb is the specification of the lower bound
of the dimension and ub is the specification of the upper bound. The upper bound,
ub must be greater than or equal to the lower bound lb. The values lb and ub may
be negative. The bound lb is taken to be 1 if it is not specified. The difference (ub-lb
+1) specifies the number of elements in that dimension. The number of lb,ub pairs
specifies the rank of the array. Assuming the array is of a data type that requires N bytes
per element, the total amount of storage of the array is:
N*(ub-lb+1)*(ub-lb+1)*...

The dimension specifiers of an array subroutine argument may themselves be
subroutine arguments or members of COMMON.

2.6.2. Deferred Shape Arrays
Deferred-shape arrays are those arrays whose shape can be changed by an executable
statement. Deferred-shape arrays are declared with a rank, but with no bounds
information. They assume their shape when either an ALLOCATE statement or a
REDIMENSION statement is encountered.

For example, the following statement declares a deferred shape REAL array A of rank
two:
REAL A(:, :)

Fortran Data Types

Fortran Reference Guide Version 2019 | 27

2.6.3. Subscripts
A subscript is used to specify an array element for access. An array name qualified by a
subscript list has the following form:
name(sub[,sub]...)

where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the
lower and upper bounds. Arrays are stored as a linear sequence of values in memory
and are held such that the first element is in the first store location and the last element
is in the last store location. In a multi-dimensional array the first subscript varies more
rapidly than the second, the second more rapidly than the third, and so on (column
major order).

2.6.4. Character Substring
A character substring is a contiguous portion of a character variable and is of type
character. A character substring can be referenced, assigned values and named. It can
take either of the following forms:
character_variable_name(x1:x2)
character_array_name(subscripts)(x1:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the
right-hand one. These are known as substring expressions. In substring expressions
x1 must be both greater than or equal to 1 and less than x2 and x2 must be less than or
equal to the length of the character variable or array element.

For example, the following expression indicates the characters in positions 2 to 4 of
character variable J.
J(2:4)

This next expression indicates characters in positions 1 to 4 of array element K(3,5).
K(3,5)(1:4)

A substring expression can be any valid integer expression and may contain array
elements or function references.

2.6.5. Array Constructor Syntax
In Fortran 2003, array constructors may be bracketed with [] instead of (/ /). In addition,
array constructors may contain a type specification that explicitedly specifies the type
and type parameters of the array. These constructors begin with a type specification
followed by a double colon (::), as illustrated in the examples later in this section. The
general format for this type specification is this:
(/ type-spec :: ac-value-list /)

If the type-spec is absent in the array specification, Fortran 95 rules apply; and
all items must have the same type and type parameters.

The type-spec syntax is useful for a number of reasons, such as these:

Fortran Data Types

Fortran Reference Guide Version 2019 | 28

‣ It simplifies zero-sized constructors.
‣ It provides assignment conversions that eliminate the need for users to pad all

characters in an array to the same length.
‣ It makes some constructors easiers, such as allowing users to specify either real or

integer values in a complex array.

Examples
[character(len=12) : : ‘crimson’, ‘cream’, ‘purple’, ‘gold’]

[complex(kind(0d0) ;; 1, (0,1), 3.3333d0]

[matrix(kind=kind(0,0), n=5, m=7) :] !zero-sized array

[Logical ::] ! Zero-sized logical array

[Double Precision :: 17.5, 0, 0.1d0] ! Conversions

2.7. Fortran Pointers and Targets
Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and
a rank; they do not actually represent a value, however, but represent a value's address.
Fortran 2003 has a specific assignment operator, =>, for use in pointer assignments.

2.8. Fortran Binary, Octal and Hexadecimal
Constants
The PGI Fortran compilers support two representations for binary, octal, and
hexadecimal numbers: the standard Fortran 2003 representation and the PGI extension
representation. In addition, PGI supports an alternate representation, described in the
next section.

Fortran supports binary, octal and hexadecimal constants in DATA statements.

Binary Constants

The form of a binary constant is:
B'b1b2...bn'
B"b1b2...bn"

where bi is either 0 or 1., such as B’01001001’

Octal Constants

The form of an octal constant is:
O'c1c2...cn'
O"c1c2...cn"

where ci is in the range 0 through 7. such as O’043672’

Fortran Data Types

Fortran Reference Guide Version 2019 | 29

Hexadecimal Constants

The form of a hexadecimal constant is:
Z'a1a2...an'
Z"a1a2...an"

where ai is in the range 0 through 9 or a letter in the range A through F or a through f
(case mixing is allowed), such as Z’8473Abc58’ or "BF40289cd"X .

2.8.1. Octal and Hexadecimal Constants - Alternate
Forms
The PGFORTRAN compiler supports additional extensions. This is an alternate form for
octal constants, outside of DATA statements. The form for an octal constant is:
'c1c2...cn'O

where ci is a digit in the range 0 to 7.

The form of a hexadecimal constant is:
'a1a2...an'X
"a1a2...an"X

where ai is a digit in the range 0 to 9 or a letter in the range A to F or a to f (case mixing
is allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are
padded on the left with zeroes if needed and assume data types based on how they are
used.

The following are the rules for converting these data types:

‣ A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and
type-conversion are never performed. All binary operations are performed on 32-
bit or 64-bit quantities. This implies that the rules to follow are only concerned with
mixing 32-bit and 64-bit data.

‣ When a constant is used with an arithmetic binary operator (including the
assignment operator) and the other operand is typed, the constant assumes the type
and size of the other operand.

‣ When a constant is used in a relational expression such as .EQ., its size is chosen
from the operand having the largest size. This implies that 64-bit comparisons are
possible.

‣ When a constant is used as an argument to the generic AND, OR, EQV, NEQV,
SHIFT, or COMPL function, a 32-bit operation is performed if no argument is more
than 32 bits in size; otherwise, a 64-bit operation is performed. The size of the result
corresponds to the chosen operation.

‣ When a constant is used as an actual argument in any other context, no data type is
assumed; however, a length of four bytes is always used. If necessary, truncation on
the left occurs.

‣ When a specific 32-bit or 64-bit data type is required, that type is assumed for the
constant. Array subscripting is an example.

Fortran Data Types

Fortran Reference Guide Version 2019 | 30

‣ When a constant is used in a context other than those mentioned above, an
INTEGER*4 data type is assumed. Logical expressions and binary arithmetic
operations with other untyped constants are examples.

‣ When the required data type for a constant implies that the length needed is more
than the number of digits specified, the leftmost digits have a value of zero. When
the required data type for a constant implies that the length needed is less than
the number of digits specified, the constant is truncated on the left. Truncation of
nonzero digits is allowed.

In the following example, the constant I (of type INTEGER*4) and the constant J (of type
INTEGER*2) are assigned hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) has the hex value x4000012345678954 after its second assignment:
I = '1234'X ! Leftmost Pad with zero
J = '1234567'X ! Truncate Leftmost 3 hex digits
D = dble('40000123456789ab'X)
D = NEQV(D,'ff'X) ! 64-bit Exclusive Or

2.9. Hollerith Constants
The form of a Hollerith constant is:
nHc1c2...cn

where n specifies the positive number of characters in the constant and cannot exceed
2000 characters.

A Hollerith constant is stored as a byte string with four characters per 32-bit word.
Hollerith constants are untyped arrays of INTEGER*4. The last word of the array is
padded on the right with blanks if necessary. Hollerith constants cannot assume a
character data type and cannot be used where a character value is expected.

The data type of a Hollerith constant used in a numeric expression is determined by the
following rules:

‣ Sign-extension is never performed.
‣ The byte size of the Hollerith constant is determined by its context and is not strictly

limited to 32 or 64 bits like hexadecimal and octal constants.
‣ When the constant is used with a binary operator (including the assignment

operator), the data type of the constant assumes the data type of the other operand.
‣ When a specific data type is required, that type is assumed for the constant. When

an integer or logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a
float is required, REAL*4 is assumed (array subscripting is an example of the use of
a required data type).

‣ When a constant is used as an argument to certain generic functions (AND, OR,
EQV, NEQV, SHIFT, and COMPL), a 32-bit operation is performed if no argument is
larger than 32 bits; otherwise, a 64-bit operation is performed. The size of the result
corresponds to the chosen operation.

‣ When a constant is used as an actual argument, no data type is assumed and the
argument is passed as an INTEGER*4 array. Character constants are passed by
descriptor only.

Fortran Data Types

Fortran Reference Guide Version 2019 | 31

‣ When a constant is used in any other context, a 32-bit INTEGER*4 array type is
assumed.

When the length of the Hollerith constant is less than the length implied by the data
type, spaces are appended to the constant on the right. When the length of the constant
is greater than the length implied by the data type, the constant is truncated on the right.

2.10. Structures
A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type
having the following form:
STRUCTURE [/structure_name/][field_namelist]
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END STRUCTURE

Where:
structure_name

is unique and is used both to identify the structure and to allow its use in subsequent
RECORD statements.

field_namelist
is a list of fields having the structure of the associated structure declaration. A
field_namelist is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations,
union declarations or unnamed field declarations.

The following rules apply:

‣ Field names within the same declaration nesting level must be unique.
‣ An inner structure declaration can include field names used in an outer structure

declaration without conflict.
‣ Records use periods to separate fields, so it is not legal to use relational operators

(for example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical
expressions (.AND., .NOT., .OR.) as field names in structure declarations.

‣ Fields within structures conform to machine-dependent alignment requirements,
that is, fields in a structure are aligned as required by hardware.

‣ A structure's storage requirements are machine-dependent.
‣ Alignment of fields provides a C-like "struct" building capability and allows

convenient inter-language communications.
‣ Because explicit padding of records is not necessary, the compiler recognizes the

%FILL intrinsic, but performs no action in response to it.
‣ Data initialization can occur for the individual fields.

Fortran Data Types

Fortran Reference Guide Version 2019 | 32

2.10.1. Records
A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item
having the following form:
RECORD /structure_name/record_namelist
 [,/structure_name/record_namelist]
 ...
 [,/structure_name/record_namelist]

where:
structure_name

is the name of a previously declared structure.
record_namelist

is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD
statement. You define the field values in a record either by defining them in the structure
declaration or by assigning them with executable code.

You can access individual fields in a record by combining the parent record name, a
period (.), and the field name (for example, recordname.fieldname). For records, a scalar
reference means a reference to a name that resolves to a single typed data item (for
example, INTEGER), while an aggregate reference means a reference that resolves to a
structured data item.

Scalar field references may appear wherever normal variable or array elements
may appear with the exception of COMMON, SAVE, NAMELIST, DATA and
EQUIVALENCE statements. Aggregate references may only appear in aggregate
assignment statements, unformatted I/O statements, and as parameters to subprograms.

The following example shows RECORD and STRUCTURE usage.
STRUCTURE /person/
! Declare a structure defining a person
! Person has id, names, age, and may or not be living
 INTEGER id
 LOGICAL living
 CHARACTER*5 first, last, middle
 INTEGER age
END STRUCTURE

 ! Define population to be an array where each element is of
 ! type person. Also define a variable, me, of type person.
RECORD /person/ population(2), me
 ...
me.age = 34 ! Assign values for the variable me
me.living = .TRUE. ! to some of the fields.
me.first = 'Steve'
me.id = 542124822
 ...
population(1).last = 'Jones' ! Assign the "last" field of
 ! element 1 of array population.
population(2) = me ! Assign all values of record
 ! "me" to the record population(2)
...

Fortran Data Types

Fortran Reference Guide Version 2019 | 33

2.10.2. UNION and MAP Declarations
A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement
declaration defining a data area that can be shared intermittently during program
execution by one or more fields or groups of fields. It declares groups of fields that share
a common location within a structure.

Declaring and Defining Fields

Each group of fields within a UNION declaration is declared by a MAP declaration, with
one or more fields per MAP declaration.

You use union declarations when you want to use the same area of memory to
alternately contain two or more groups of fields. Whenever one of the fields declared by
a union declaration is referenced in a program, that field and any other fields in its map
declaration become defined. Then, when a field in one of the other map declarations in
the union declaration is referenced, the fields in that map declaration become defined,
superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END
UNION statement. Enclosed within these statements are one or more map declarations,
initiated and terminated by MAP and END MAP statements, respectively. Each unique
field or group of fields is defined by a separate map declaration.

Format

The format of a UNION statement is illustrated in the following example:
UNION
 map_declaration
 [map_declaration]
 ...
 [map_declaration]
END UNION

The format of the map_declaration is as follows:
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

where field_declaration is a structure declaration or RECORD statement contained within
a union declaration, a union declaration contained within a union declaration, or the
declaration of a typed data field within a union.

With respect to UNION and MAP statements, the following is true:

‣ Data can be initialized in field declaration statements in union declarations.

It is illegal to initialize multiple map declarations in a single union.

‣ Field alignment within multiple map declarations is performed as previously
defined in structure declarations.

Fortran Data Types

Fortran Reference Guide Version 2019 | 34

‣ The size of the shared area for a union declaration is the size of the largest map
defined for that union.

‣ The size of a map is the sum of the sizes of the field(s) declared within it plus the
space reserved for alignment purposes.

Manipulating data using union declarations is similar to what happens using
EQUIVALENCE statements. However, union declarations are probably more similar
to union declarations for the language C. The main difference is that the C language
requires one to associate a name with each "map" (union). Fortran field names must be
unique within the same declaration nesting level of maps.

The following example shows RECORD, STRUCTURE, MAP and UNION usage. The
size of each element of the recarr array would be the size of typetag (4 bytes) plus the
size of the largest MAP, in this case, the employee map (24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map.
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary ! Salary
 CHARACTER*8 empdate ! Employment date
 END MAP

 MAP ! Structure for a customer
 INTEGER*4 acct_cust ! 4-digit account
 REAL*4 credit_amt ! credit amount
 CHARACTER*8 due_date ! due date
 END MAP

 MAP ! Structure for a supplier
 INTEGER*4 acct_supp ! supply account
 REAL*4 debit_amt ! debit amount
 BYTE num_items ! number of items
 BYTE items(12) ! items supplied
 END MAP

 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

2.10.3. Data Initialization
Data initialization is allowed within data type declaration statements. This is an
extension to the Fortran language. Data is initialized by placing values bounded by
slashes immediately following the symbolic name (variable or array) to be initialized.
Initialization of fields within structure declarations is allowed, but initialization of
unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both
data type declarations and in DATA statements. Truncation and padding occur for
constants that differ in size from the declared data item (as specified in the discussion of
constants).

Fortran Data Types

Fortran Reference Guide Version 2019 | 35

2.11. Pointer Variables
The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the
Fortran 90/95 POINTER specification statement or attribute, declares a scalar variable to
be a pointer variable of data type INTEGER, and another variable to be its pointer-based
variable.

The syntax of the POINTER statement is:
POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression
may be adjustable, where the rules for adjustable dummy arrays regarding any
variables which appear in the dimension declarators apply.

p1 and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be
an array. The pointer is an integer variable containing the address of a pointer-based
variable. The storage located by the pointer variable is defined by the pointer-based
variable (for example, array, data type, etc.). A reference to a pointer-based variable
appears in Fortran statements like a normal variable reference (for example, a local
variable, a COMMON block variable, or a dummy variable). When the based variable
is referenced, the address to which it refers is always taken from its associated pointer
(that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is
defined.

The pointer is defined in one of the following ways:

‣ By assigning the value of the LOC function.
‣ By assigning a value defined in terms of another pointer variable.
‣ By dynamically allocating a memory area for the based variable. If a pointer-based

variable is dynamically allocated, it may also be freed.

The following code illustrates the use of pointers:
REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))
P = LOC(IC)
I = 0 ! IC gets 0
P = LOC(XC)
Q = P + 20 ! same as LOC(XC(6))
X(1) = 0 ! XC(6) gets 0
ALLOCATE (X) ! Q locates an allocated memory area

2.11.1. Restrictions
The following restrictions apply to the POINTER statement:

Fortran Data Types

Fortran Reference Guide Version 2019 | 36

‣ No storage is allocated when a pointer-based variable is declared.
‣ If a pointer-based variable is referenced, its pointer variable is assumed to be

defined.
‣ A pointer-based variable may not appear in the argument list of a SUBROUTINE

or FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA,
NAMELIST, or SAVE statements.

‣ A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram.

If a pointer-based variable is an adjustable array, it is assumed that the variables
in the dimension declarators are defined with an integer value at the time the
SUBROUTINE or FUNCTION is called.

For a variable which appears in a pointer-based variable's adjustable declarator,
modifying its value during the execution of the SUBROUTINE or FUNCTION does
not modify the bounds of the dimensions of the pointer-based array.

‣ A pointer-based variable is assumed not to overlap with another pointer-based
variable.

2.11.2. Pointer Assignment
Fortran 2003 extends pointer assignment for arrays allowing lower bounds and possibly
upper bounds to be specified.

Syntax:
p(0:,0:) => a

The lower bounds may be any scalar integer expressions when upper bounds are
specified. Further, remapping of the elements of a target array is permitted, as shown in
this example:
p(1:m,1:2*m) => a(1:2*m)

Description

The following is true for pointer assignments involving arrays:

‣ The bounds may be any scalar integer expressions.
‣ The assignment is in array-element order and the target array must be large enough.
‣ When remapping occurs, the target must be rank-one; otherwise, the ranks of the

pointer and target must be the same.
a => b(1:10:2)

‣ Length type parameters of the pointer may be deferred, that is, declared with a
colon.

‣ Pointer assignment gives these the values of the corresponding parameters of the
target.

‣ All other type parameters of the pointer must have the same values as the
corresponding type parameters of the target.

Fortran Reference Guide Version 2019 | 37

Chapter 3.
FORTRAN STATEMENTS

This section describes each of the Fortran statements supported by the PGI Fortran
compilers. Each description includes a brief summary of the statement, a syntax
description, a complete description and an example. The statements are listed in
alphabetical order. The first section lists terms that are used throughout the section.

3.1. Statement Format Overview
This section lists terms that are used throughout the section and provides information
on how to interpret the information in the statement descriptions. This section only
provides detailed descriptions for statements that are extensions of the standard
Fortran language definitions. For details on the standard statements, refer to the Fortran
language specifications readily available on the internet. The Origin column in the
tables in this section provides the Fortran language origin of the statement; for example
F95 indicates the statement is from Fortran 95.

3.1.1. Definition of Statement-related Terms
character scalar memory reference

is a character variable, a character array element, or a character member of a structure
or derived type.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a structure or
derived type.

logical scalar memory reference
is a logical variable, a logical array element, or a logical member of a structure or
derived type.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better
replacement in Fortran 95.

Fortran Statements

Fortran Reference Guide Version 2019 | 38

3.1.2. Origin of Statement
At the top of each reference page is a brief description of the statement followed by
a header that indicates the origin of the statement. The following list describes the
meaning of the origin header.
F77

FORTRAN 77 statements that are essentially unchanged from the original FORTRAN
77 standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

F90/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95
from its original FORTRAN 77 definition and is supported by the PGF95 compiler.

F2003
The statement is new for Fortran 2003.

CMF
The statement is Connection Machine Fortran, a SIMD language that strongly
influenced High Performance Fortran.

3.1.3. List-related Notation
Several statements allow lists of a specific type of data. For example, the
ALLOCATABLE statement allows a list in which each element of a deferred-array-spec.
The notation used in statements is this:

‣ Within the statement, the notation is foo-list, such as deferred-array-spec-
list.

‣ When the list elements have a specific format that is defined, the reference is just to
that element, such as deferred-array-spec.

As in Fortran, the list is a set of comma-separated values.

3.2. Fortran Statement Summary Table
This section contains an alphabetical listing with a brief one-line description of the
Fortran statements that PGI supports.Later in this section there is more detailed
description of the statements that are extensions to the standard Fortran definitions.

Table 15 Statement Summary Table

Statement Origin Description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank but deferred shape is available
for a future ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-
based variable that appears in the statements; declares storage for
deferred-shape arrays.

Fortran Statements

Fortran Reference Guide Version 2019 | 39

Statement Origin Description

ARRAY CMF Defines the number of dimensions in an array that may be defined, and
the number of elements and bounds in each dimension. [Not in PVF]

ASSIGN F77 [Obsolescent]. Assigns a statement label to a variable.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an
expression for the duration of a block.

ASYNCHRONOUS F77 Warns the compiler that incorrect results might occur for optimizations
involving movement of code across wait statements or statements that
cause wait operations.

BACKSPACE F77 Positions the file connected to the specified unit to before the
preceding record.

BLOCK DATA F77 Introduces a number of non-executable statements that initialize data
values in COMMON tables

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name
of a variable to a 1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name
of a variable to a character data type, overriding the implied data
typing.

CLOSE F77 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-
sequential; can be either a static or dynamic form.

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name
of a variable to a complex data type, overriding implied data typing.

CONTAINS F90 Precedes a subprogram, a function or subroutine and indicates the
presence of the subroutine or function definition inside a main
program, external subprogram, or module subprogram.

F2003 In F2003 a contains statement can also appear in a derived type
right before any type bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next
iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

DEALLOCATE F77 Causes the memory allocated for each pointer-based variable or
allocatable array that appears in the statement to be deallocated
(freed); also deallocates storage for deferred-shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and
translates that data from character form to internal form, according to
format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of
elements in each dimension.

DO (Iterative) F90 Introduces an iterative loop and specifies the loop control index and
parameters.

Fortran Statements

Fortran Reference Guide Version 2019 | 40

Statement Origin Description

DO WHILE F77 Introduces a logical do loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name
of a variable to a double complex data type, overriding implied data
typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name
of a variable to a double precision data type, overriding implied data
typing.

ELSE F77 Begins an ELSE block of an IF block and encloses a series of statements
that are conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series and encloses statements
that are conditionally executed.

ELSE WHERE F90 The portion of the WHERE ELSE WHERE construct that permits
conditional masked assignments to the elements of an array or to a
scalar, zero-dimensional array.

ENCODE F77 ext Transfers data between variables or arrays in internal storage and
translates that data from internal to character form, according to
format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an Associate block.

END DO F77 Terminates a DO or DO WHILE loop.

END FILE F77 Writes an endfile record to the files.

END IF F77 Terminates an IF ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same
start address.

EXIT F90 Interrupts a DO construct execution and continues with the next
statement after the loop.

EXTERNAL F77 Identifies a symbolic name as an external or dummy procedure which
can then be used as an actual argument.

FINAL F2003 Specifies a Final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign
values to the elements of an array.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION F77 Introduces a program unit; all the statements that follow apply to the
function itself.

GENERIC F2003 Specifies a generic type bound procedure inside a derived type.

Fortran Statements

Fortran Reference Guide Version 2019 | 41

Statement Origin Description

GOTO (Assigned) F77 [Obsolescent]. Transfers control so that the statement identified by the
statement label is executed next.

GOTO (Computed) F77 Transfers control to one of a list of labels according to the value of an
expression.

GOTO
(Unconditional)

F77 Unconditionally transfers control to the statement with the label label,
which must be declared within the code of the program unit containing
the GOTO statement and must be unique within that program unit.

IF (Arithmetic) F77 [Obsolescent]. Transfers control to one of three labeled statements,
depending on the value of the arithmetic expression.

IF (Block) F77 Consists of a series of statements that are conditionally executed.

IF (Logical) F77 Executes or does not execute a statement based on the value of a
logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial
letter, overriding implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

INQUIRE F77 Inquires about the current properties of a particular file or the current
connections of a particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name
of a variable to an integer data type, overriding implied data types.

INTENT F90 Specifies intended use of a dummy argument, but may not be used in a
main program's specification statement.

INTERFACE F90 Makes an implicit procedure an explicit procedure where the dummy
parameters and procedure type are known to the calling module; Also
overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be
used as an actual argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name
of a variable to a logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields within a UNION
statement.

MODULE F90 Specifies the entry point for a Fortran 90/95 module program unit. A
module defines a host environment of scope of the module, and may
contain subprograms that are in the same scoping unit.

NAMELIST F90 Allows the definition of namelist groups for namelist-directed I/O.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a
unit, creates a file that is preconnected, or changes certain specifiers
of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that may be omitted or that are optional.

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

Fortran Statements

Fortran Reference Guide Version 2019 | 42

Statement Origin Description

PAUSE F77 [Obsolescent]. Stops the program's execution.

POINTER F90 Provides a means for declaring pointers.

POINTER (Cray) F77 ext Declares a scalar variable to be a pointer variable (of type INTEGER),
and another variable to be its pointer-based variable.

PRINT F77 Transfers data to the standard output device from the items specified
in the output list and format specification.

PRIVATE F90 Specifies entities defined in a module are not accessible outside of the
module. Private can also appear inside a derived type to disallow
access to its data components outside the defining module.

F2003 In F2003, a Private statement may appear after the type’s
contains statement to disallow access to type bound procedures
outside the defining module.

PROCEDURE F2003 Specifies a type bound procedure, procedure pointer, module
procedure, dummy procedure, intrinsic procedure, or an external
procedure.

PROGRAM F77 Specifies the entry point for the linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the
module in which it was declared.

PUBLIC F90 Specifies entities defined in a module are accessible outside of the
module.

PURE F95 Indicates that a function or subroutine has no side effects.

READ F90 Transfers data from the standard input device to the items specified in
the input and format specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name
of a variable to a data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine may call itself recursively.

REDIMENSION F77 ext Dynamically defines the bounds of a deferred-shape array.

RETURN F77 Causes a return to the statement following a CALL when used in a
subroutine, and returns to the relevant arithmetic expression when
used in a function.

REWIND F77 Positions the file at its beginning. The statement has no effect if the
file is already positioned at the start or if the file is connected but does
not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END
statement in a subroutine or function has been executed.

SELECT CASE F90 Begins a CASE construct.

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the
dynamic type of a polymorphic entity and to gain access to dynamic
parts. The alternative code is selected using the type is statement
for a specific dynamic type, or the class is statement for a
specific type and all its type extensions. Use the optional class
default statement to specify all other dynamic types that don’t
match a specified type is or class is statement. Like the

Fortran Statements

Fortran Reference Guide Version 2019 | 43

Statement Origin Description

CASE construct, the code consists of a number of blocks and at most
one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage
associated with the derived type. This statement specifies storage for
use with COMMON and EQUIVALENCE statements.

STOP F77 Stops the program's execution and precludes any further execution of
the program.

STRUCTURE F77 Vax
ext

A VAX extension to FORTRAN 77 that defines an aggregate data type.

SUBROUTINE F77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type may be the object of a pointer variable
(e.g., pointed to by a pointer variable). Types that do not have the
TARGET attribute cannot be the target of a pointer variable.

THEN F77 Part of a block IF statement, surrounds a series of statements that are
conditionally executed.

TYPE F90 Begins a derived type data specification or declares variables of a
specified user-defined type.

F2003 Use the optional EXTENDS statement with TYPE to indicate a type
extension in F2003.

UNION F77 Vax
ext

A multi-statement declaration defining a data area that can be shared
intermittently during program execution by one or more fields or
groups of fields.

USE F90 Gives a program unit access to the public entities or to the named
entities in the specified module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks
that it identifies.

wait F2003 Performs a wait operation for specified pending asynchronous data
transfer operations.

WHERE F90 Permits masked assignments to the elements of an array or to a scalar,
zero dimensional array.

WRITE F90 Transfers data to the standard output device from the items specified
in the output list and format specification.

3.3. ACCEPT
The ACCEPT statement has the same syntax as the PRINT statement and causes
formatted input to be read on standard input. ACCEPT is identical to the READ
statement with a unit specifier of asterisk (*).

F77 extension

Syntax
ACCEPT f [,iolist]
ACCEPT namelist

Fortran Statements

Fortran Reference Guide Version 2019 | 44

f
format-specifier, a * indicates list directed input.

iolist
is a list of variables to be input.

namelist
is the name of a namelist specified with the NAMELIST statement.

Examples
ACCEPT *, IA, ZA
 ACCEPT 99, I, J, K
 ACCEPT SUM
99 FORMAT(I2, I4, I3)

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. In the
following example, sum is treated as a format descriptor. The code in the first column is
roughly equivalent to that in the second column.

real sum
sum = 4h()
accept sum

character*4 ch
ch = '()'
accept ch

See Also

READ, PRINT

3.4. ARRAY
The ARRAY attribute defines the number of dimensions in an array that may be defined
and the number of elements and bounds in each dimension. [Not in PVF]

CMF

Syntax
ARRAY [::] array-name (array-spec) [, array-name (array-spec)] ...

array-name
is the symbolic name of an array.

array-spec
is a valid array specification, either explicit-shape, assumed-shape, deferred-shape, or
assumed size (refer to Fortran Arrays, for details on array specifications).

Fortran Statements

Fortran Reference Guide Version 2019 | 45

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an
argument as an array, and in this case the declarator can use expressions formed from
integer variables and constants to establish the dimensions (adjustable arrays).

These integer variables must be either arguments or declared in COMMON; they
cannot be local. Further, in this case, the function of ARRAY statement is merely
to supply a mapping of the argument to the subroutine code, and not to allocate
storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the
array name in the same way as variable names, unless overridden by an IMPLICIT or
type declaration statement. Arrays may appear in type declaration and COMMON
statements but the array name can appear in only one array declaration.

Example
REAL, ARRAY(3:10):: ARRAY_ONE
INTEGER, ARRAY(3,-2:2):: ARRAY_TWO

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3
and the upper bound of 10.

ARRAY_TWO as a matrix of two dimensions having fifteen elements. The first
dimension has three elements and the second has five with bounds from -2 to 2.

See Also

ALLOCATE, DEALLOCATE

3.5. BYTE
The BYTE statement establishes the data type of a variable by explicitly attaching the
name of a variable to a 1-byte integer. This overrides data typing implied by the initial
letter of a symbolic name.

F77 extension

Syntax
BYTE name [/clist/], ...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Fortran Statements

Fortran Reference Guide Version 2019 | 46

Description

Byte statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. BYTE declaration statements must not be labeled.

Example
BYTE TB3, SEC, STORE (5,5)

3.6. DECODE
The DECODE statement transfers data between variables or arrays in internal storage
and translates that data from character form to internal form, according to format
specifiers. Similar results can be accomplished using internal files with formatted
sequential READ statements.

F77 extension

Syntax
DECODE (c, f, b [,IOSTAT= ios] [,ERR= errs]) [list]

c
is an integer expression specifying the number of bytes involved in translation.

f
is the format-specifier.

b
is a scalar or array reference for the buffer area containing formatted data
(characters).

ios
is an integer scalar memory reference which is the input/output status specifier: if this
is specified ios becomes defined with zero if no error condition exists or a positive
integer when there is an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement
in the same program unit. If an error condition occurs execution continues with the
statement specified by errs.

list
is a list of input items.

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. In the
following example, sum is treated as a format descriptor:
real sum
sum = 4h()

Fortran Statements

Fortran Reference Guide Version 2019 | 47

accept sum

The preceding code segment is roughly equivalent to this:
character*4 ch
ch = '()'
accept ch

See Also

READ, PRINT,

3.7. DOUBLE COMPLEX
The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly
attaching the name of a variable to a double complex data type. This overrides the data
typing implied by the initial letter of a symbolic name.

F77 extension

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity
based form, and the PGI extended form. This section describes both syntax forms.
DOUBLE COMPLEX [, attribute-list ::] entity-list

attribute-list
is the list of attributes for the double complex variable.

entity-list
is the list of defined entities.

Syntax Extension
DOUBLE COMPLEX name [/clist/] [,name] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same
way as the DIMENSION statement. Type declaration statements must not be labeled.
Note: The data type of a symbol may be explicitly declared only once. It is established
by type declaration statement, IMPLICIT statement or by predefined typing rules.
Explicit declaration of a type overrides any implicit declaration. An IMPLICIT statement
overrides predefined typing rules.

Fortran Statements

Fortran Reference Guide Version 2019 | 48

The default size of a DOUBLE COMPLEX variable is 16 bytes. With the -r8 option, the
default size of a DOUBLE COMPLEX variable is also 16 bytes.

Examples
DOUBLE COMPLEX CURRENT, NEXT

See Also

COMPLEX

3.8. DOUBLE PRECISION
The DOUBLE PRECISION statement establishes the data type of a variable by explicitly
attaching the name of a variable to a double precision data type. This overrides the data
typing implied by the initial letter of a symbolic name.

F90

Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity
based form, and the PGI extended form. This section describes both syntax forms.
DOUBLE PRECISION [, attribute-list ::] entity-list

attribute-list
is the list of attributes for the double precision variable.

entity-list
is the list of defined entities.

Syntax Extension
DOUBLE PRECISION name [/clist/] [,name] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same
way as the DIMENSION statement. Type declaration statements must not be labeled.
Note: The data type of a symbol may be explicitly declared only once. It is established
by type declaration statement, IMPLICIT statement or by predefined typing rules.
Explicit declaration of a type overrides any implicit declaration. An IMPLICIT statement
overrides predefined typing rules.

Fortran Statements

Fortran Reference Guide Version 2019 | 49

The default size of a DOUBLE PRECISION variable is 8 bytes, with or without the -r8
option.

Example
DOUBLE PRECISION PLONG

3.9. ENCODE
The ENCODE statement transfers data between variables or arrays in internal storage
and translates that data from internal to character form, according to format specifiers.
Similar results can be accomplished using internal files with formatted sequential
WRITE statements.

F77 extension

Syntax
ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs])[list]

c
is an integer expression specifying the number of bytes involved in translation.

f
is the format-specifier.

b
is a scalar or array reference for the buffer area receiving formatted data (characters).

ios
is an integer scalar memory reference which is the input/output status specifier: if this
is included, ios becomes defined with zero if no error condition exists or a positive
integer when there is an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement
in the same program. If an error condition occurs execution continues with the
statement specified by errs.

list
a list of output items.

Non-character Format-specifier

If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. For
example, below sum is treated as a format descriptor:
real sum
sum = 4h()
accept sum

Fortran Statements

Fortran Reference Guide Version 2019 | 50

and is roughly equivalent to
character*4 ch
ch = '()'
accept ch

See Also

READ, PRINT

3.10. END MAP
The END MAP statement terminates a MAP declaration.

F77 extension

Syntax
END MAP

Description

For more information, refer to the MAP statement.

Example
MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
END MAP

3.11. END STRUCTURE
The END STRUCTURE statement terminates a STRUCTURE declaration.

F77 extension

Syntax
END STRUCTURE

Description

For more information, refer to the STRUCTURE statement.

3.12. END UNION
The END UNION statement terminates a UNION declaration.

Fortran Statements

Fortran Reference Guide Version 2019 | 51

F77 extension

Syntax
END UNION

Description

For more information, refer to the UNION statement.

3.13. INCLUDE
The INCLUDE statement directs the compiler to start reading from another file.

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text
libraries or the module_name pathname qualifier that exists in the VAX/VMS version of
the INCLUDE statement.

F77 extension

Syntax
INCLUDE 'filename [/[NO]LIST]'
INCLUDE "filename [/[NO]LIST]"

The following rules apply to the INCLUDE statement:

‣ The INCLUDE statement may be nested to a depth of 20 and can appear anywhere
within a program unit as long as Fortran's statement-ordering restrictions are not
violated.

‣ You can use the qualifiers /LIST and /NOLIST to control whether the include file is
expanded in the listing file (if generated).

There is no support for VAX/VMS text libraries or the module_name pathname
qualifier that exists in the VAX/VMS version of the INCLUDE statement.

‣ Either single or double quotes may be used.
‣ If the final component of the file pathname is /LIST or /NOLIST, the compiler

assumes it is a qualifier, unless an additional qualifier is supplied.
‣ The filename and the /LIST or /NOLIST qualifier may be separated by blanks.

The compiler searches for the include file in the following directories:

‣ Each –I directory specified on the command-line.
‣ The directory containing the file that contains the INCLUDE statement (the current

working directory.)
‣ The standard include area.

Fortran Statements

Fortran Reference Guide Version 2019 | 52

Example
INCLUDE '/mypath/list /list'

This line includes a file named /mypath/list and expands it in the listing file, if a listing
file is used.

3.14. MAP
A union declaration is initiated by a UNION statement and terminated by an END
UNION statement. Enclosed within these statements are one or more map declarations,
initiated and terminated by MAP and END MAP statements, respectively. Each unique
field or group of fields is defined by a separate map declaration. For more information
on field alignment, refer to Structures.

F77 extension

Syntax
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

field_declaration
is a structure declaration or RECORD statement contained within a union declaration,
a union declaration contained within a union declaration, or the declaration of a
typed data field within a union.

Description

Data can be initialized in field declaration statements in union declarations. However, it
is illegal to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined
for that union. The size of a map is the sum of the sizes of the field(s) declared within it
plus the space reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE
statements. However, union declarations are probably more similar to union
declarations for the language C. The main difference is that the language C requires one
to associate a name with each map (union). Fortran field names must be unique within
the same declaration nesting level of maps.

Fortran Statements

Fortran Reference Guide Version 2019 | 53

Example

The following is an example of RECORD, STRUCTURE and UNION usage. The size of
each element of the recarr array would be the size of typetag (4 bytes) plus the size of the
largest MAP (the employee map at 24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items
 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.15. POINTER (Cray)
The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable
to be a pointer variable (of type INTEGER), and another variable to be its pointer-based
variable.

F77 extension

Syntax
POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression
may be adjustable, where the rules for adjustable dummy arrays regarding any
variables which appear in the dimension declarators apply.

p1 and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be
an array. The pointer is an integer variable containing the address of a pointer-based
variable. The storage located by the pointer variable is defined by the pointer-based
variable (for example, array, data type, etc.). A reference to a pointer-based variable
appears in Fortran statements like a normal variable reference (for example, a local

Fortran Statements

Fortran Reference Guide Version 2019 | 54

variable, a COMMON block variable, or a dummy variable). When the based variable
is referenced, the address to which it refers is always taken from its associated pointer
(that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is
defined. The pointer is defined in one of the following ways:

‣ By assigning the value of the LOC function.
‣ By assigning a value defined in terms of another pointer variable.
‣ By dynamically allocating a memory area for the based variable. If a pointer-based

variable is dynamically allocated, it may also be freed.

Example
REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))
P = LOC(IC)
I = 0 ! IC gets 0
P = LOC(XC)
Q = P + 20 ! same as LOC(XC(6))
X(1) = 0 ! XC(6) gets 0
ALLOCATE (X) ! Q locates a dynamically
 ! allocated memory area

Restrictions

The following restrictions apply to the POINTER statement:

‣ No storage is allocated when a pointer-based variable is declared.
‣ If a pointer-based variable is referenced, its pointer variable is assumed to be

defined.
‣ A pointer-based variable may not appear in the argument list of a SUBROUTINE

or FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA,
NAMELIST, or SAVE statements.

‣ A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram. If a pointer-based variable is an adjustable array, it is assumed that
the variables in the dimension declarator(s) are defined with an integer value at
the time the SUBROUTINE or FUNCTION is called. For a variable which appears
in a pointer-based variable's adjustable declarator, modifying its value during the
execution of the SUBROUTINE or FUNCTION does not modify the bounds of the
dimensions of the pointer-based array.

‣ A pointer-based variable is assumed not to overlap with another pointer-based
variable.

Fortran Statements

Fortran Reference Guide Version 2019 | 55

3.16. PROTECTED
The PROTECTED statement protects a module variable against modification from
outside the module in which it was declared.

F2003

Syntax
PROTECTED [::], name [, name]

Description

Variables with the PROTECTED attribute may only be modified within the defining
module. Outside of that module they are not allowed to appear in any variable
definition context, that is, on the left-hand-side of an assignment statement.

This statement allows the values of variables of a module to be generally available
without relinquishing control over their modification.

Examples

In the following module, the cm_2_inch and in_2_cm variables are protected so that
they cannot be changed outside the CONVERT_FORMULA module. The PROTECTED
attribute allows users of this module to read the measurements in either centimeters or
inches, but the variables can only be changed via the provided subroutines which ensure
that both values agree.
MODULE COVERT_FORMULA
 REAL,PROTECTED :: in_2_cm = 2.54, cm_2_in = 0.39
 CONTAINS
 SUBROUTINE set_metric(new_value_cm)
 ...
 END SUBROUTINE
 SUBROUTINE set_english(new_value_in)
 ...
 END SUBROUTINE
END MODULE

3.17. RECORD
The RECORD statement, a VAX Fortran extension, defines a user-defined aggregate data
item.

F77 extension

Syntax
RECORD /structure_name/record_namelist [,/structure_name/record_namelist]
 ...

Fortran Statements

Fortran Reference Guide Version 2019 | 56

 [,/structure_name/record_namelist]
END RECORD

structure_name
is the name of a previously declared structure.

record_namelist
is a list of one or more variable or array names separated by commas.

Description

You create memory storage for a record by specifying a structure name in the RECORD
statement. You define the field values in a record either by defining them in the structure
declaration or by assigning them with executable code.

You can access individual fields in a record by combining the parent record name, a
period (.), and the field name (for example, recordname.fieldname). For records, a scalar
reference means a reference to a name that resolves to a single typed data item (for
example, INTEGER), while an aggregate reference means a reference that resolves to a
structured data item.

Scalar field references may appear wherever normal variable or array elements
may appear with the exception of the COMMON, SAVE, NAMELIST, DATA and
EQUIVALENCE statements. Aggregate references may only appear in aggregate
assignment statements, unformatted I/O statements, and as parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example
STRUCTURE /PERSON/ ! Declare a structure defining a person
 INTEGER ID
 LOGICAL LIVING
 CHARACTER*5 FIRST, LAST, MIDDLE
 INTEGER AGE
END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /PERSON/ POPULATION(2), ME
...
ME.AGE = 34 ! Assign values for the variable me
ME.LIVING = .TRUE. ! to some of the fields.
ME.FIRST = 'Steve'
ME.ID = 542124822
...
POPULATION(1).LAST = 'Jones' ! Assign the "LAST" field of
 ! element 1 of array population.
POPULATION(2) = ME ! Assign all the values of record
 ! "ME" to the record population(2)

3.18. REDIMENSION
The REDIMENSION statement, a PGF77 extension to FORTRAN 77, dynamically
defines the bounds of a deferred-shape array. After a REDIMENSION statement,

Fortran Statements

Fortran Reference Guide Version 2019 | 57

the bounds of the array become those supplied in the statement, until another such
statement is encountered.

F77 extension

Syntax
REDIMENSION name ([lb:]ub[,[lb:]ub]...) [,name([lb:]ub[,[lb:]ub]...)]...

Where:
name

is the symbolic name of an array.
[lb:]ub

is a dimension declarator specifying the bounds for a dimension (the lower bound
lb and the upper bound ub). lb and ub must be integers with ub greater than lb. The
lower bound lb is optional; if it is not specified, it is assumed to be 1. The number of
dimension declarations must be the same as the number of dimensions in the array.

Example
REAL A(:, :)
POINTER (P, A)
P = malloc(12 * 10 * 4)
REDIMENSION A(12, 10)
A(3, 4) = 33.

3.19. RETURN
The RETURN statement causes a return to the statement following a CALL when
used in a subroutine, and returns to the relevant arithmetic expression when used in a
function.

F77

Syntax
RETURN

Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran
90/95. Use the CASE statement where possible in new or updated code. The alternate
RETURN statement takes the following form:
RETURN expression

expression
expression is converted to integer if necessary (expression may be of type integer or
real). If the value of expression is greater than or equal to 1 and less than or equal to
the number of asterisks in the SUBROUTINE or subroutine ENTRY statement then

Fortran Statements

Fortran Reference Guide Version 2019 | 58

the value of expression identifies the nth asterisk in the actual argument list and
control is returned to that statement.

Example
 SUBROUTINE FIX (A,B,*,*,C)
40 IF (T) 50, 60, 70
50 RETURN
60 RETURN 1
70 RETURN 2
 END
 PROGRAM FIXIT
 CALL FIX(X, Y, *100, *200, S)
 WRITE(*,5) X, S ! Arrive here if (T) < 0
 STOP
100 WRITE(*, 10) X, Y ! Arrive here if (T) = 0
 STOP
200 WRITE(*,20) Y, S ! Arrive here if (T) > 0

3.20. STRUCTURE
The STRUCTURE statement, a VAX extension to FORTRAN 77, defines an aggregate
data type.

F77 VAX extension

Syntax
STRUCTURE [/structure_name/][field_namelist]
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END STRUCTURE

structure_name
is unique and is used both to identify the structure and to allow its use in subsequent
RECORD statements.

field_namelist
is a list of fields having the structure of the associated structure declaration. A
field_namelist is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations,
union declarations or unnamed field declarations.

Description

Fields within structures conform to machine-dependent alignment requirements.
Alignment of fields also provides a C-like "struct" building capability and allows
convenient inter-language communications. Note that aligning of structure fields is not
supported by VAX/VMS Fortran.

Fortran Statements

Fortran Reference Guide Version 2019 | 59

Field names within the same declaration nesting level must be unique, but an inner
structure declaration can include field names used in an outer structure declaration
without conflict. Also, because records use periods to separate fields, it is not legal to use
relational operators (for example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or
logical expressions (.AND., .NOT., .OR.) as field names in structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage
requirements are therefore machine-dependent. Note that VAX/VMS Fortran does no
padding. Because explicit padding of records is not necessary, the compiler recognizes
the %FILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

The UNION and MAP statements are supported.

The following is an example of record and structure usage.
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items
 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.21. UNION
A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement
declaration defining a data area that can be shared intermittently during program
execution by one or more fields or groups of fields. It declares groups of fields that share
a common location within a structure. Each group of fields within a union declaration is
declared by a map declaration, with one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to
alternately contain two or more groups of fields. Whenever one of the fields declared by
a union declaration is referenced in a program, that field and any other fields in its map
declaration become defined. Then, when a field in one of the other map declarations in
the union declaration is referenced, the fields in that map declaration become defined,
superseding the fields that were previously defined.

Fortran Statements

Fortran Reference Guide Version 2019 | 60

A union declaration is initiated by a UNION statement and terminated by an END
UNION statement. Enclosed within these statements are one or more map declarations,
initiated and terminated by MAP and END MAP statements, respectively. Each unique
field or group of fields is defined by a separate map declaration. The format of a UNION
statement is as follows:

F77 extension

Syntax
UNION
 map_declaration
 [map_declaration]
 ...
 [map_declaration]
END UNION

The format of the map_declaration is as follows:
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

field_declaration
where field declaration is a structure declaration or RECORD statement contained
within a union declaration, a union declaration contained within a union declaration,
or the declaration of a typed data field within a union.

Description

Data can be initialized in field declaration statements in union declarations. Note,
however, it is illegal to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined
for that union. The size of a map is the sum of the sizes of the field(s) declared within it
plus the space reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE
statements. However, union declarations are probably more similar to union
declarations for the language C. The main difference is that the language C requires one
to associate a name with each map (union). Fortran field names must be unique within
the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The size of
each element of the recarr array would be the size of typetag (4 bytes) plus the size of the
largest MAP (the employee map at 24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map.
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number

Fortran Statements

Fortran Reference Guide Version 2019 | 61

 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items
 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.22. VOLATILE
The VOLATILE statement inhibits all optimizations on the variables, arrays and
common blocks that it identifies. The VOLATILE attribute, added in Fortran 2003, is
used in a type declaration statement.

F77 extension (statement)

F2003 (attribute)

Syntax

Volatile Attribute
datatype, volatile :: var_name
OR
datatype :: var_name
volatile :: var_name
var_name

Volatile Statement
VOLATILE nitem [, nitem ...]

nitem
is the name of a variable, an array, or a common block enclosed in slashes.

Description

Being volatile indicates to the compiler that, at any time, the variable might change
or be examined from outside the Fortran program. The impact on the programmer is
that anytime a volatile variable is referenced, the value must be loaded from memory.
Furthermore, any assignment to the volatile variable must be written to memory.

Fortran Statements

Fortran Reference Guide Version 2019 | 62

If nitem names a common block, all members of the block are volatile. The volatile
attribute of a variable is inherited by any direct or indirect equivalences, as shown in the
example.

Volatile Attribute Example

The following example declares both the integer variable xyz and the real variable abc
to be volatile.
integer, volatile :: xyz
real :: abc
volatile :: abc

Volatile Statement Example
COMMON /COM/ C1, C2
VOLATILE /COM/, DIR ! /COM/ and DIR are volatile
EQUIVALENCE (DIR, X) ! X is volatile
EQUIVALENCE (X, Y) ! Y is volatile

3.23. WAIT
Performs a wait operation for specified pending asynchronous data transfer operations.

F2003

Syntax
WAIT (wait_specs_list)

wait_specs_list can include any of the following specifiers:
UNIT =] file-unit-number

A file-unit-number must be specified. If the optional characters UNIT= are omitted,
the file-unit-number is the first item in the wait-spec-list.

END = label
label must be the statement label of a branch target statement that appears in the
same scoping unit as the WAIT statement.

END= specifier has no effect if the pending data transfer operation is not a READ.
EOR = label

label must be the statement label of a branch target statement that appears in the
same scoping unit as the WAIT statement.

EOR= specifier has no effect if the pending data transfer operation is not a
nonadvancing READ.

ERR = label
label must be the statement label of a branch target statement that appears in the
same scoping unit as the WAIT statement.

Fortran Statements

Fortran Reference Guide Version 2019 | 63

ID = scalar_in_var
scalar_in_var is the identifier of a pending data transfer operation for the
specified unit.

‣ If the ID= specifier appears, a wait operation for the specified data transfer
operation is performed.

‣ If the ID= specifier is omitted, wait operations for all pending data transfers for
the specified unit are performed.

IOMSG = iomsg-var
iomsg-var is an I/O message variable.

IOSTAT =scalar-int-var
scalar_in_var is the identifier of a pending data transfer operation for the
specified unit.

For more information on IOSTAT, ERR=, EOR=, END=, and IOMSG=, refer to the READ
and WRITE statements.

Description

This statement performs a wait operation for specified pending asynchronous data
transfer operations.

The CLOSE, INQUIRE, and file positioning statements may also perform wait
operations.

Execution of a WAIT statement specifying a unit that does not exist, has no file
connected to it, or that was not opened for asynchronous input/output is permitted,
provided that the WAIT statement has no ID= specifier. This type of WAIT statement
does not cause an error or end-of-file condition to occur.

No specifier shall appear more than once in a given wait-spec-list.

Examples
INTEGER SCORE(30)
CHARACTER GRADE(30)
WHERE (SCORE > 60)
 GRADE = 'P'
ELSE WHERE
 GRADE = 'F'
END WHERE

Fortran Reference Guide Version 2019 | 64

Chapter 4.
FORTRAN ARRAYS

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, arrays
may be very different from arrays in older versions of Fortran. Arrays can have values
assigned as a whole without specifying operations on individual array elements, and
array sections can be accessed. Also, allocatable arrays that are created dynamically
are available as part of the Fortran 90/95 standard. This section describes some of the
features of Fortran 90/95 arrays.

The following example illustrates valid array operations.
REAL(10,10) A,B,C
A = 12 !Assign 12 to all elements of A
B = 3 !Assign 3 to all elements of B
C = A + B !Add each element of A to each of B

4.1. Array Types
Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays,
deferred-shape arrays and assumed-size arrays. Both explicit-shape arrays and deferred
shape arrays are valid in a main program. Assumed shape arrays and assumed size
arrays are only valid for arrays used as dummy arguments. Deferred shape arrays,
where the storage for the array is allocated during execution, must be declared with
either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’s
dimension is the number of elements in the dimension. The array rank is the number of
dimensions in the array, up to a maximum of seven. The shape is the vector representing
the extents for all dimensions. The size is the product of the extents. For some types of
arrays, all of these properties are determined when the array is declared. For other types
of arrays, some of these properties are determined when the array is allocated or when
a procedure using the array is entered. For arrays that are dummy arguments, there are
several special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated
until an allocate statement is executed when the program is running. Allocatable arrays
provide Fortran 90/95 programs with dynamic storage. Allocatable arrays are declared

Fortran Arrays

Fortran Reference Guide Version 2019 | 65

with a rank specified with the ":" character rather than with explicit extents, and they are
given the ALLOCATABLE attribute.

4.1.1. Explicit Shape Arrays
Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each
dimension is declared with an explicit value. There are two special cases of explicit
arrays. In a procedure, an explicit array whose bounds are passed in from the calling
program is called an automatic-array. The second special case, also found in a procedure,
is that of an adjustable-array which is a dummy array where the bounds are passed from
the calling program.

4.1.2. Assumed Shape Arrays
An assumed shape array is a dummy array whose bounds are determined from the
actual array. Intrinsics called from the called program can determine sizes of the extents
in the called program’s dummy array.

4.1.3. Deferred Shape Arrays
A deferred shape array is an array that is declared, but not with an explicit shape.
Upon declaration, the array's type, its kind, and its rank (number of dimensions) are
determined. Deferred shape arrays are of two varieties, allocatable arrays and array
pointers.

4.1.4. Assumed Size Arrays
An assumed size array is a dummy array whose size is determined from the
corresponding array in the calling program. The array’s rank and extents may not be
declared the same as the original array, but its total size (number of elements) is the
same as the actual array. This form of array should not need to be used in new Fortran
programs.

4.2. Array Specification
Arrays may be specified in either of two types of data type specification statements,
attribute-oriented specifications or entity-oriented specifications. Arrays may also
optionally have data assigned to them when they are declared. This section covers the
basic form of entity-based declarations for the various types of arrays. Note that all the
details of array passing for procedures are not covered here; refer to The Fortran 95
Handbook for complete details on the use of arrays as dummy arguments.

4.2.1. Explicit Shape Arrays
Explicit shape arrays are defined with a specified rank, each dimension must have an
upper bound specified, and a lower bound may be specified. Each bound is explicitly
defined with a specification of the form:
[lower-bound:] upper-bound

Fortran Arrays

Fortran Reference Guide Version 2019 | 66

An array has a maximum of seven dimensions. The following are valid explicit array
declarations:
INTEGER NUM1(1,2,3) ! Three dimensions
INTEGER NUM2(-12:6,100:1000) ! Two dimensions with lower & upper bounds
INTEGER NUM3(0,12,12,12) ! Array of size 0
INTEGER NUM3(M:N,P:Q,L,99) ! Array with 4 dimensions

4.2.2. Assumed Shape Arrays
An assumed shape array is always a dummy argument. An assumed shape array has a
specification of the form:
[lower-bound] :

The number of colons (:) determines the array’s rank. An assumed shape array cannot be
an ALLOCATABLE or POINTER array.

4.2.3. Deferred Shape Arrays
An deferred shape array is an array pointer or an allocatable array. A deferred shape
array has a specification that determines the array's rank and has the following form for
each dimension:

For example:
INTEGER, POINTER :: NUM1(:,:,:,:)
INTEGER, ALLOCATABLE :: NUM2(:)

4.2.4. Assumed Size Arrays
An assumed size array is a dummy argument with an assumed size. The array’s rank
and bounds are specified with a declaration that has the following form:
[explicit-shape-spec-list ,][lower-bound:]*

For example:
SUBROUTINE YSUM1(M,B,C)
INTEGER M
REAL, DIMENSION(M,4,5,*) :: B,C

4.3. Array Subscripts and Access
There are a variety of ways to access an array in whole or in part. Arrays can be
accessed, used, and assigned to as whole arrays, as elements, or as sections. Array
elements are the basic access method.

In the following example, the value of 5 is assigned to element 3,1 of NUMB.
INTEGER, DIMENSION(3,11) :: NUMB
NUMB(3,1) = 5

The following statement assigns the value 5 to all elements of NUMB.

The array NUMB may also be accessed as an entire array:
NUMB=5

Fortran Arrays

Fortran Reference Guide Version 2019 | 67

4.3.1. Array Sections and Subscript Triplets
Another possibility for accessing array elements is the array section. An array section is
an array accessed by a subscript that represents a subset of the entire array's elements
and is not an array element. An array section resulting from applying a subscript list
may have a different rank than the original array. An array section's subscript list
consists of subscripts, subscript triplets, and/or vector subscripts.

The following example uses a subscript triplet and a subscript, assigning the value 6 to
all elements of NUMB with the second dimension of value 3 (NUMB(1,3), NUMB(2,3),
NUMB(3,3)).
NUMB(:,3)=6

The following array section uses the array subscript triplet and a subscript to access
three elements of the original array. This array section could also be assigned to a rank
one array with three elements, as shown here:
INTEGER(3,11) NUMB
INTEGER(3) NUMC
NUMB(:,3) = 6
NUMC = NUMB(:,3)

In this example, NUMC is rank 1 and NUMB is rank 2. This assignment, using the
subscript 3, illustrates how NUMC, and the array section of NUMB, has a shape that is
of a different rank than the original array.

The general form for an array's dimension with a vector subscript triplet is:
[subscript] : [subscript] [:stride]

The first subscript is the lower bound for the array section, the second is the upper
bound and the third is the stride. The stride is by default one. If all values except the :
are omitted, then all the values for the specified dimensions are included in the array
section.

In the following example, using the NUMB previously defined, the statement has a
stride of 2, and assigns the value 7 to the elements NUMB(1,3) and NUMB(3,3).
NUMB(1:3:2,3) = 7

4.3.2. Array Sections and Vector Subscripts
Vector-valued subscripts specify an array section by supplying a set of values defined
in a one dimensional array (vector) for a dimension or several dimensions of an array
section.

In the following example, the array section uses the vectors I and J to assign the value 7
to each of the elements: NUMB(2,1), NUMB(2,2), NUMB(3,1), and NUMB(3,2).
INTEGER J(2), I(2)
INTEGER NUMB(3,6)
I = (/1,2/)
J = (/2,3/)
NUMB(J,I) = 7

Fortran Arrays

Fortran Reference Guide Version 2019 | 68

4.4. Array Constructors
An array constructor can be used to assign values to an array. Array constructors
form one-dimensional vectors to supply values to a one-dimensional array, or one
dimensional vectors and the RESHAPE function to supply values to arrays with more
than one dimension.

Array constructors can use a form of implied DO similar to that in a DATA statement.
For example:
INTEGER DIMENSION(4) :: K = (/1,2,7,11/)
INTEGER DIMENSION(20) :: J = (/(I,I=1,40,2)/)

Fortran Reference Guide Version 2019 | 69

Chapter 5.
INPUT AND OUTPUT

Input, output, and format statements provide the means for transferring data to or
from files. Data is transferred as records to or from files. A record is a sequence of data
which may be values or characters and a file is a sequence of such records. A file may
be internal, that is, held in memory, or external such as those held on disk. To access an
external file a formal connection must be made between a unit, for example a disk file,
and the required file. An external unit must be identified either by a positive integer
expression, the value of which indicates a unit, or by an asterisk (*) which identifies a
standard input or output device.

This section describes the types of input and output available and provides examples
of input, output and format statements. There are four types of input/output used to
transfer data to or from files: unformatted, formatted, list directed, and namelist.

‣ unformatted data is transferred between the item(s) in the input/output list (iolist)
and the current record in the file. Exactly one record may be read or written.

‣ formatted data is edited to conform to a format specification, and the edited data is
transferred between the item or items in the iolist, and the file. One or more records
may be read or written. Non-advancing formatted data transfers are a variety of
formatted I/O where a portion of a data record is transferred with each input/output
statement.

‣ list directed input/output is an abbreviated form of formatted input/output that
does not use a format specification. Depending on the type of the data item or data
items in the iolist, data is transferred to or from the file, using a default, and not
necessarily accurate format specification.

‣ namelist input/output is a special type of formatted data transfer; data is transferred
between a named group (namelist group) of data items and one or more records in a
file.

5.1. File Access Methods
You can access files using one of two methods, sequential access, or direct access
(random access). The access method is determined by the specifiers supplied when
the file is opened using the OPEN statement. Sequential access files are accessed one
after the other, and are written in the same manner. Direct access files are accessed by

Input and Output

Fortran Reference Guide Version 2019 | 70

specifying a record number for input, and by writing to the currently specified record on
output.

Files may contain one of two types of records, fixed length records or variable length
records. To specify the size of the fixed length records in a file, use the RECL specifier
with the OPEN statement. RECL sets the record length in bytes.

The units depend on the value of the FORTRANOPT environment variable. If the value
is vaxio, then the record length is in units of 32-bit words. If FORTRANOPT is not
defined, or its value is something other than vaxio, then the record length is always in
units of bytes.

RECL can only be used when access is direct.

A record in a variable length formatted file is terminated with \n. A record in a variable
length unformatted file is preceded and followed by a word indicating the length of the
record.

5.1.1. Standard Preconnected Units
Certain input and output units are predefined, depending on the value of compiler
options. The PGI Fortran compilers -Mdefaultunit option tells the compiler to treat
"*" as a synonym for standard input for reading and standard output for writing. When
the option is -Mnodefaultunit, the compiler treats "*" as a synonym for unit 5 on
input and unit 6 on output.

5.2. Opening and Closing Files
The OPEN statement establishes a connection to a file. OPEN allows you to do any of the
following

‣ Connect an existing file to a unit.
‣ Create and connect a file to a unit.
‣ Create a file that is preconnected.
‣ Establish the access method and record format for a connection.

OPEN has the form:
OPEN (list)

where list contains a unit specifier of the form:
[UNIT=] u

where u, an integer, is the external unit specifier.

In addition list may contain one of each of the specifiers shown in Table 16.

5.2.1. Direct Access Files
If a file is connected for direct access using OPEN with ACCESS='DIRECT', the record
length must be specified using RECL=. Further, one of each of the other specifiers may
also be used.

Input and Output

Fortran Reference Guide Version 2019 | 71

Any file opened for direct access must be via fixed length records.

In the following example:

‣ A new file, book.dat, is created and connected to unit 12 for direct formatted
input/output with a record length of 98 characters.

‣ Blank values are ignored in numeric values.
‣ If an error condition exists when the OPEN statement is executed, the variable E1

is assigned some positive value, and then execution continues with the statement
labeled 20.

‣ If no error condition pertains, E1 is assigned the value 0 and execution continues
with the statement following the OPEN statement.

OPEN(12,IOSTAT=E1,ERR=20,FILE='book.dat',BLANK='NULL',
+ACCESS='DIRECT',RECL=98,FORM='FORMATTED',STATUS='NEW')

5.2.2. Closing a File
Close a unit by specifying the CLOSE statement from within any program unit. If the
unit specified does not exist or has no file connected to it, the CLOSE statement has no
effect.

Provided the file is still in existence, it may be reconnected to the same or a different
unit after the execution of a CLOSE statement. An implicit CLOSE is executed when a
program stops.

The CLOSE statement terminates the connection of the specified file to a unit.
CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs]
[,STATUS= sta] [,DISPOSE= sta] [,DISP= sta])

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in
the following table. In addition, CLOSE allows the DISPOSE or DISP specifier which can
take a status value sta which is a character string, where case is insignificant, specifying
the file status (the same keywords are used for the DISP and DISPOSE status). Status
can be KEEP or DELETE. KEEP cannot be specified for a file whose dispose status is
SCRATCH. When KEEP is specified (for a file that exists) the file continues to exist after
the CLOSE statement, conversely DELETE deletes the file after the CLOSE statement.
The default value is KEEP unless the file status is SCRATCH.

Table 16 OPEN Specifiers

Specifier Description

ACCESS=acc Where acc is a character string specifying the access method for file
connection as DIRECT (random access) or SEQUENTIAL. The default is
SEQUENTIAL.

ACTION=act Where act is a character string specifying the allowed actions for the
file and is one of READ, WRITE, or READWRITE.

ASYNCHRONOUS=async Where async is a character expression specifying whether to allow
asynchronous data transfer on this file connection. One of ‘YES’ or ‘NO’
is allowed.

BLANK=blnk Where blnk is a character string which takes the value NULL or ZERO:
NULL causes all blank characters in numeric formatted input fields to

Input and Output

Fortran Reference Guide Version 2019 | 72

Specifier Description

be ignored with the exception of an all-blank field which has a value of
zero. ZERO causes all blanks other than leading blanks to be treated as
zeros. The default is NULL. This specifier must only be used when a file
is connected for formatted input/output.

CONVERT=char_expr Where char_expr is a character string that allows byte-swapping I/
O to be performed on specific logical units, and is one of following:
BIG_ENDIAN, LITTLE_ENDIAN, or NATIVE.

Previously, byte-swappingI/O was only enabled by the command-
line option, -byteswapio, and was applied to all unformatted
I/O operations which appeared in the files compiled using -
byteswapio.

Thevalue 'BIG_ENDIAN' is specifies to convert big-endian format data
files produced by most RISC workstations and high-end servers to the
little-endian format used on Intel Architecture systems on-the-fly
during file reads/writes. This value assumes that the record layouts of
unformatted sequential access and direct access files are the same on
the systems.

For the values 'LITTLE_ENDIAN'and 'NATIVE", byte-swapping is not
performed during file reads/writes since the little-endian format is used
on Intel Architecture.

DECIMAL= scalar_char Specify the default decimal edit mode for the unit. When the edit mode
is point, decimal points appear in both input and output. The options
are COMMA, where commas rather than decimal points appear in both
input and output, and POINT, where decimal points appear in both input
and output.

DELIM=del Specify the delimiter for character constants written by a list-directed
or namelist-formatted statement. The options are APOSTROPHE, QUOTE,
and NONE.

ENCODING= specifier An encoding specifier which indicates the desired encoding of the file,
such as one of the following: UTF-8 specifies the file is connected for
UTF-8 I/O or that the can detect this format in some way. A processor-
dependent value indicates the file is in another known format, such as
UTF-16LE.

ERR=errs An error specifier which takes the form of a statement label of an
executable statement in the same program. If an error condition occurs,
execution continues with the statement specified by errs.2

FILE=fin Where fin is a character string defining the file name to be connected to
the specified unit.

FORM=fm Where fm is a character string specifying whether the file is being
connected for FORMATTED, UNFORMATTED, or BINARY output. The
default is FORMATTED. For an unformatted file whose form is BINARY,
the file is viewed as a byte-stream file, such as a file created by fwrite()
calls in a C program; the data in the file is not organized into records.

IOSTAT=ios Input/output status specifier where ios is an integer scalar memory
reference. If this is included in list, ios becomes defined with 0 if no
error exists or a positive integer when there is an error condition.

If IOSTAT and ERR are not present, the program terminates if an error
occurs.

Input and Output

Fortran Reference Guide Version 2019 | 73

Specifier Description

PAD=padding Specifies whether or not to use blank padding for input items. The
padding values are YES and NO. The value NO requires that the input
record and the input list format specification match.

POSITION=pos Specifies the position of an opened file. ASIS indicates the file position
remains unchanged. REWIND indicates the file is to be rewound, and
APPEND indicates the file is to positioned just before an end-of-file
record, or at its terminal point.

RECL=rl Where rl is an integer which defines the record length in a file
connected for direct access and is the number of characters when
formatted input/output is specified. This specifier must only be given
when a file is connected for direct access.

Round=specifier Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS,
PLUS, PROCESSOR_DEFINED, or UNDEFINED.

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD,
SCRATCH, REPLACE or UNKNOWN. When OLD or NEW is specified a file
specifier must be given. SCRATCH must not be used with a named file.
The default is UNKNOWN.

SIGN=specifier Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS,
PLUS, PROCESSOR_DEFINED, or UNDEFINED.

A unit may be the subject of a CLOSE statement from within any module. If the unit
specified does not exist or has no file connected to it, the use of the CLOSE statement
has no effect. Provided the file is still in existence it may be reconnected to the same or a
different unit after the execution of a CLOSE statement. Note that an implicit CLOSE is
executed when a program stops.

In the following example the file on UNIT 6 is closed and deleted.
CLOSE(UNIT=6,STATUS='DELETE')

5.3. Data Transfer Statements
Once a unit is connected, either using a preconnection, or by executing an OPEN
statement, data transfer statements may be used. The available data transfer statements
include: READ, WRITE, and PRINT. The general form for these data transfer statements
is shown in Chapter 3 Fortran Statements; refer to that section for details on the READ,
WRITE and PRINT statements and their valid I/O control specifiers.

5.4. Unformatted Data Transfer
Unformatted data transfer allows data to be transferred between the current record and
the items specified in an input/output list. Use OPEN to open a file for unformatted
output:
OPEN (2, FILE='new.dat', FORM='UNFORMATTED')

The unit specified must be an external unit.

Input and Output

Fortran Reference Guide Version 2019 | 74

After data is transferred, the file is positioned after the last record read or written, if
there is no error condition or end-of-file condition set.

Unformatted data transfer cannot be carried out if the file is connected for
formatted input/output.

The following example shows an unformatted input statement:
READ (2, ERR=50) A, B

‣ On output to a file connected for direct access, the output list must not specify more
values than can fit into a record. If the values specified do not fill the record the rest
of the record is undefined.

‣ On input, the file must be positioned so that the record read is either an unformatted
record or an endfile record.

‣ The number of values required by the input list in the input statement must be less
than or equal to the number of values in the record being read. The type of each
value in the record must agree with that of the corresponding entity in the input list.
However one complex value may correspond to two real list entities or vice versa. If
the input list item is of type CHARACTER, its length must be the same as that of the
character value

‣ In the event of an error condition, the position of the file is indeterminate.

5.5. Formatted Data Transfer
During formatted data transfer, data is edited to conform to a format specification,
and the edited data is transferred between the items specified in the input or output
statement’s iolist and the file; the current record is read or written and, possibly, so are
additional records. On input, the file must be positioned so that the record read is either
a formatted record or an endfile record. Formatted data transfer is prohibited if the file is
connected for unformatted input/output.

For variable length record formatted input, each newline character is interpreted as a
record separator. On output, the I/O system writes a newline at the end of each record. If
a program writes a newline itself, the single record containing the newline will appear as
two records when read or backspaced over. The maximum allowed length of a record in
a variable length record formatted file is 2000 characters.

5.5.1. Implied DO List Input Output List
An implied DO list takes the form
(iolist,do-var=var1,var2,var3)

where the items in iolist are either items permissible in an input/output list or another
implied DO list. The value do-var is an INTEGER, REAL or DOUBLE PRECISION
variable and var1, var2 and var3 are arithmetic expressions of type INTEGER, REAL
or DOUBLE PRECISION. Generally, do-var, var1, var2 and var3 are of type INTEGER.
Should iolist occur in an input statement, the do-var cannot be used as an item in iolist.
If var3 and the preceding comma are omitted, the increment takes the value 1. The list

Input and Output

Fortran Reference Guide Version 2019 | 75

items are specified once for each iteration of the DO loop with the DO-variable being
substituted as appropriate.

In the following example OXO, C(7), C(8) and C(9) are each set to 0.0. TEMP, D(1) and
D(2) are set to 10.0.
REAL C(6),D(6)
DATA OXO,(C(I),I=7,9),TEMP,(D(J),J=1,2)/4*0.0,3*10.0/

The following two statements have the same effect.
READ *,A,B,(R(I),I=1,4),S

READ *,A,B,R(1),R(2),R(3),R(4),S

5.5.2. Format Specifications
Format requirements may be given either in an explicit FORMAT statement or
alternatively, as fields within an input/output statement (as values in character variables,
arrays or other character expressions within the input/output statement).

When a format identifier in a formatted input/output statement is a character array
name or other character expression, the leftmost characters must be defined with
character data that constitute a format specification when the statement is executed. A
character format specification is enclosed in parentheses. Blanks may precede the left
parenthesis. Character data may follow the right-hand parenthesis and has no effect on
the format specification. When a character array name is used as a format identifier, the
length of the format specification can exceed the length of the first element of the array;
a character array format specification is considered to be an ordered concatenation of
all the array elements. When a character array element is used as a format identifier the
length must not exceed that of the element used.

The FORMAT statement has the form:
FORMAT (list-of-format-requirements)

The list of format requirements can be any of the following, separated by commas:

‣ Repeatable editor commands which may or may not be preceded by an integer
constant which defines the number of repeats.

‣ Non-repeatable editor commands.
‣ A format specification list enclosed in parentheses, optionally preceded by an

integer constant which defines the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next
item in the input/output list used. If an input/output list contains at least one item, there
must be at least one repeatable edit code in the format specification. An empty format
specification FORMAT() can only be used if no list items are specified. In such a case,
one input record is skipped or an output record containing no characters is written.
Unless the edit code or the format list is preceded by a repeat specification, a format
specification is interpreted from left to right. When a repeat specification is used, the
appropriate item is repeated the required number of times.

Each repeatable edit code has a corresponding item in the iolist; however when a list
item is of type complex two edit codes of F, E, D or G are required. The edit codes P, X,

Input and Output

Fortran Reference Guide Version 2019 | 76

T, TL, TR, S, SP, SS, H, BN, BZ, /, : and apostrophe act directly on the record and have no
corresponding item in the input/output list.

The file is positioned after the last character read or written when the edit codes I, F, E,
D, G, L, A, H or apostrophe are processed. If the specified unit is a printer then the first
character of the record is used to control the vertical spacing as shown in the following
table:

Table 17 Format Character Controls for a Printer

Character Vertical Spacing

Blank One line

0 Two lines

1 To first line on next page

+ No advance

5.5.2.1. A Format Control – Character Data
The A specifier transfers characters. The A specifier has the form:
Aw

When the optional width field, w, is not specified, the width is determined by the size of
the data item.

On output, if l is the length of the character item and w is the field width, then the
following rules apply:

‣ If w > l, output with w-l blanks before the character.
‣ If w < l, output leftmost w characters.

On input, if l is the length of the character I/O item and w is the field width, then the
following rules apply:

‣ If w > l, rightmost l characters from the input filed.
‣ If w < l, leftmost w characters from the input filed and followed by l − w blanks.

You can also use the A format specifier to process data types other than CHARACTER.
For types other than CHARACTER, the number of characters supplied for input/
output equals the size in bytes of the data allocated to the data type. For example, an
INTEGER*4 value is represented with 4 characters and a LOGICAL*2 is represented
with 2 characters.

The following shows a simple example that reads two CHARACTER arrays from the file
data.src:
 CHARACTER STR1*8, STR2*12
 OPEN(2, FILE='data.src')
 READ(2, 10) STR1, STR2
10 FORMAT (A8, A12)

Input and Output

Fortran Reference Guide Version 2019 | 77

5.5.2.2. B Format Control – Binary Data
The B field descriptor transfers binary values and can be used with any integer data
type. The edit descriptor has the form:
Bw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) binary characters only
(0 or 1). An all blank field is treated as a value of zero. If the value of the external field
exceeds the range of the corresponding list element, an error occurs.

On output, the B field descriptor transfers the binary values of the corresponding I/O list
element, right-justified, to an external field that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the

left if necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.3. D Format Control – Real Double Precision Data with
Exponent
The D specifier transfers real values for double precision data with a representation for
an exponent. The form of the D specifier is:
Dw.d

where w is the field width and d the number of digits in the fractional part.

For input, the same conditions apply as for the F specifier described later in this section.

For output, the scale factor k controls the decimal normalization. The scale factor k is the
current scale factor specified by the most recent P format control.

‣ If one hasn't been specified, the default is zero (0).
‣ If -d < k <= 0, the output file contains leading zeros and d-|k| significant digits after

the decimal point.
‣ If 0 < k < d+2, there are exactly |k| significant digits to the left of the decimal point

and d-k+1 significant digits to the right of the decimal point.
‣ Other values of k are not allowed.

For example:
 DOUBLE PRECISION VAL1 VAL1 = 141.8835 WRITE(*, 20) VAL1 20 FORMAT (D10.4)

produces the following:
0.1418D+03

5.5.2.4. d Format Control – Decimal specifier
The dc and dp descriptors, representing decimal comma and decimal point edit modes,
respectively, are valid in format processing, such as in a FORMAT statement.

Input and Output

Fortran Reference Guide Version 2019 | 78

The specific edit mode takes effect immediately when encountered in formatting, and
stays in effect until either another descriptor is encountered or until the end of the
statement.

5.5.2.5. E Format Control – Real Single Precision Data with Exponent
The E specifier transfers real values for single precision data with an exponent. The E
format specifier has two basic forms:
Ew.d
Ew.dEe

where w is the field width, d the number of digits in the fractional part and e the
number of digits to be printed in the exponent part.

For input the same conditions apply as for F editing.

For output the scale factor controls the decimal normalization as in the D specifier.

5.5.2.6. EN Format Control
The EN specifier transfers real values using engineering notation.
ENw.d
ENw.dEe

where w is the field width, d the number of digits in the fractional part and e the
number of digits to be printed in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3
and the absolute value of the significand is 1000 > |significand | 1. This format is the
same as the E format descriptor, except for restrictions on the size of the exponent and
the significand.

5.5.2.7. ES Format Control
The ES specifier transfers real values in scientific notation. The ES format specifier has
two basic forms:
ESw.d
ESw.dEe

where w is the field width, d the number of digits in the fractional part and e the
number of digits to be printed in the exponent part.

For output, the scale factor controls the decimal normalization as in the D specifier.

On output, the number is presented in scientific notation, where the absolute value of
the significand is 10> | significand | 1.

5.5.2.8. F Format Control - Real Single Precision Data
The F specifier transfers real values. The form of the F specifier is:
Fw.d

where w is the field width and d is the number of digits in the fractional part.

On input, if the field does not contain a decimal digit or an exponent, right-hand d
digits, with leading zeros, are interpreted as being the fractional part.

Input and Output

Fortran Reference Guide Version 2019 | 79

On output, a leading zero is only produced to the left of the decimal point if the value is
less than one.

5.5.2.9. G Format Control
The G format specifier provides generalized editing of real data. The G format has two
basic forms:
Gw.d
Gw.dEe

The specifier transfers real values; it acts like the F format control on input and
depending on the value’s magnitude, like E or F on output. The magnitude of the data
determines the output format. For details on the actual format used, based on the
magnitude, refer to the ANSI FORTRAN Standard (Section 13.5.9.2.3 G Editing).

5.5.2.10. I Format Control – Integer Data
The I format specifier transfers integer values. The I format specifier has two basic forms:
Iw
Iw.m

where w is the field width and m is the minimum filed width on output, including
leading zeros. If present, m must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only.
An all blank field is treated as a value of zero. If the value of the external field exceeds
the range of the corresponding list element, an error occurs.

On output, the I format descriptor transfers the decimal values of the corresponding I/O
list element, right-justified, to an external field that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the

left if necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.11. L Format Control – Logical Data
The L format control transfers logical data of field width w:
Lw

On input, the list item will become defined with a logical value; the field consists
of optional blanks, followed by an optional decimal point followed by T or F. The
values .TRUE. or .FALSE. may also appear in the input field.

The output field consists of w-1 blanks followed by T or F as appropriate.

5.5.2.12. Quote Format Control
Quote editing prints a character constant. The format specifier writes the characters
enclosed between the quotes and cannot be used on input. The field width is that of

Input and Output

Fortran Reference Guide Version 2019 | 80

the characters contained within quotes (you can also use apostrophes to enclose the
character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).

For example:
 WRITE (*, 101)
101 FORMAT ('Print an apostrophe '' and end.')

Produces:
Print an apostrophe ' and end.

Similarly, you can use quotes, for example:
 WRITE (*, 102)
102 FORMAT ("Print a line with a "" and end.")

Produces:
Print a line with a " and end.

5.5.2.13. BN Format Control – Blank Control
The BN and BZ formats control blank spacing. BN causes all embedded blanks except
leading blanks in numeric input to be ignored, which has the effect of right-justifying
the remainder of the field. Note that a field of all blanks has the value zero. Only input
statements and I, F, E, D and G editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros.
Only input statements and I, F, E, D and G editing are affected.

5.5.2.14. H Format Control – Hollerith Control
The H format control writes the n characters following the H in the format specification
and cannot be used on input.

The basic form of this format specification is:
nHc1cn...

where n is the number of characters to print and c1 through cn are the characters to
print.

5.5.2.15. O Format Control Octal Values
The O and Z field descriptors transfer octal or hexadecimal values and can be used with
an integer data type. They have the form:
Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal
characters only. An all blank field is treated as a value of zero. If the value of the external
field exceeds the range of the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values,
respectively, of the corresponding I/O list element, right-justified, to an external field
that is w characters long.

Input and Output

Fortran Reference Guide Version 2019 | 81

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the

left if necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.16. P Format Specifier – Scale Control
The P format specifier is the scale factor format.
kP

This specifier is applied as follows.

‣ With F, E, D and G editing on input and F editing on output, the external number
equals the internal number multiplied by 10**k .

‣ If there is an exponent in the field on input, editing with F, E, D and G the scale
factor has no effect.

‣ On output with E and D editing, the basic real constant part of the number is
multiplied by 10**k and the exponent reduced by k.

‣ On output with G editing, the effect of the scale factor is suspended unless the size
of the datum to be edited is outside the range permitted for F editing.

‣ On output if E editing is required, the scale factor has the same effect as with E
output editing.

The following example uses a scale factor.
 DIMENSION A(6)
 DO 10 I = 1,6 10
 A(I) = 25.
 TYPE 100,A 100
 FORMAT(' ',F8.2,2PF8.2,F8.2)

This example produces this output:
25.00 2500.00 2500.00 2500.00 2500.00 2500.00

The effect of the scale factor continues until another scale factor is used.

5.5.2.17. Q Format Control - Quantity
The Q edit descriptor calculates the number of characters remaining in the input record
and stores that value in the next I/O list item. On output, the Q descriptor skips the next
I/O item.

5.5.2.18. r Format Control - Rounding
The rounding edit descriptors are valid in format processing, such as in a READ
or WRITE statement. The specific rounding mode takes effect immediately when
encountered, and stays in effect until either another descriptor is encountered or until
the end of the READ and WRITE statement. The following table lists the edit descriptors
associated with rounding.

Input and Output

Fortran Reference Guide Version 2019 | 82

Table 18 Format Character Controls for Rounding Printer

This descriptor Indicates this type of rounding

rc round compatible

rd round down

rn round nearest

rp round as processor_defined

ru round up

rz round zero

Both nearest and compatible refer to closest representable value. If these are
equidistant, then the rounding is processor-dependent for nearest and the value away
from zero for compatible.

5.5.2.19. S Format Control – Sign Control
The S format specifier restores the default processing for writing a plus; the default is SS
processing.

SP forces the processor to write a plus in any position where an optional plus is found in
numeric output fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plus is
found in numeric output fields, this only affects output statements.

5.5.2.20. r Format Control - No minus zero
The rounding edit descriptors are valid in format processing, such as in a READ
or WRITE statement. The specific rounding mode takes effect immediately when
encountered, and stays in effect until either another descriptor is encountered or until
the end of the READ and WRITE statement. The following table lists the edit descriptors
associated with rounding.

Table 19 Format Character Controls for Rounding Printer

This descriptor Indicates this type of rounding

rc round compatible

rd round down

rn round nearest

rp round as processor_defined

ru round up

rz round zero

Both nearest and compatible refer to closest representable value. If these are
equidistant, then the rounding is processor-dependent for nearest and the value away
from zero for compatible.

Input and Output

Fortran Reference Guide Version 2019 | 83

5.5.2.21. T, TL and X Format Controls – Spaces and Tab Controls
The T specifier controls which portion of a record in an iolist value is read from or
written to a file. The general form, which specifies that the nth value is to be written to
or from a record, is as follows:
Tn

The TL form specifies the relative position to the left of the data to be read or written,
and specifies that the nth character to the left of the current position is to be written to
or from the record. If the current position is less than or equal to n, the transmission will
begin at position one of the record.
TLn

The TR form specifies the relative position to the right of the data to be read or written,
and specifies that the nth character to the right of the current position is to be written to
or from the record.
TRn

The X control specifies a number of characters to skip forward, and that the next
character to be written to or from is n characters forward from the current position.
nX

The following example uses the X format specifier:
 NPAGE = 19
 WRITE (6, 90) NPAGE
90 FORMAT('1PAGE NUMBER ,I2, 16X, 'SALES REPORT, Cont.')

produces:
PAGE NUMBER 19 SALES REPORT, Cont.

The following example shows use of the T format specifier:
 PRINT 25
25 FORMAT (T41,'COLUMN 2',T21,'COLUMN 1')

produces:
 COLUMN 1 COLUMN 2

5.5.2.22. Z Format Control Hexadecimal Values
The O and Z field descriptors transfer octal or hexadecimal values and can be used with
any integer data type. They have the form:
Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal
characters only. An all-blank field is treated as a value of zero. If the value of the external
field exceeds the range of the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values,
respectively, of the corresponding I/O list element, right-justified, to an external field
that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.

Input and Output

Fortran Reference Guide Version 2019 | 84

‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the

left if necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.23. Slash Format Control / – End of Record
The slash (/) control indicates the end of data transfer on the current record.

On input from a file connected for sequential access, the rest of the current record is
skipped and the file positioned at the start of the next record.

On output a new record is created which becomes the last and current record.

‣ For an internal file connected for direct access, the record is filled with blank
characters.

‣ For a direct access file, the record number is increased by one and the file is
positioned at the start of the record.

Multiple slashes are permitted, thus multiple records are skipped.

5.5.2.24. The : Format Specifier – Format Termination
The (:) control terminates format control if there are no more items in the input/output
list. It has no effect if there are any items left in the list.

5.5.2.25. $ Format Control
The $ field descriptor allows the programmer to control carriage control conventions
on output. It is ignored on input. For example, on terminal output, it can be used for
prompting.

The form of the $ field descriptor is:
$

5.5.3. Variable Format Expressions
Variable format expressions, <expr>, are supported in pgf77 extension only. They
provide a means for substituting runtime expressions for the field width, other
parameters for the field and edit descriptors in a FORMAT statement (except for the H
field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they
are encountered in the scan of a format. If the value of a variable used in the expression
changes during the execution of the I/O statement, the new value is used the next time
the format item containing the expression is processed.

Input and Output

Fortran Reference Guide Version 2019 | 85

5.6. Non-advancing Input and Output
Non-advancing input/output is character-oriented and applies to sequential access
formatted external files. The file position is after the last character read or written and
not automatically advanced to the next record.

For non-advancing input/output, use the ADVANCE='NO' specifier. Two other specifiers
apply to non-advancing IO: EOR applies when end of record is detected and SIZE
returns the number of characters read.

5.7. List-directed formatting
List-directed formatting is an abbreviated form of input/output that does not require
the use of a format specification. The type of the data determines how a value is read/
written. On output, it is not always accurate enough for certain ranges of values. The
characters in a list-directed record constitute a sequence of values which cannot contain
embedded blanks except those permitted within a character string.

To use list-directed input/output formatting, specify a * for the list of format
requirements, as illustrated in the following example that uses list-directed output:
READ(1, *) VAL1, VAL2

5.7.1. List-directed input
The form of the value being input must be acceptable for the type of item in the iolist.
Blanks must not be used as zeros nor be embedded in constants except in a character
constant or within a type complex form contained in parentheses.

Table 20 List Directed Input Values

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no fractional part unless a
decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses as shown: (real
part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A character constant can be
continued on as many records as required. Blanks, slashes and commas can be
used.

A null value has no effect on the definition status of the corresponding iolist item. A null
value cannot represent just one part of a complex constant but may represent the entire
complex constant. A slash encountered as a value separator stops the execution of that

Input and Output

Fortran Reference Guide Version 2019 | 86

input statement after the assignment of the previous value. If there are further items in
the list, they are treated as if they are null values.

Commas may be used to separate the input values. If there are consecutive commas, or if
the first non-blank character of a record is a comma, the input value is a null value. Input
values may also be repeated.

In the following example of list-directed formatting, assume that A and K are defined as
follows and all other variables are undefined.
A= -1.5
K= 125

Suppose that you have an input file the contains the following record, where the /
terminates the input and consecutive commas indicate a null:
10,-14,25.2,-76,313,,29/

Further suppose that you use the following statement to read in the list from the input
file:
READ * I, J, X, Y, Z, A, C, K

The variables are assigned the following values by the list-directed input/output
mechanism:

I=10 J=-14 X=25.2 Y=-76.0

Z=313.0 A=-1.5 C=29 K=125

In the example the value for A does not change because the input record is null.Input
is terminated with the / so no input is read for K, so the program assumes null and K
retains its previous value.

5.7.2. List-directed output
List directed input/output is an abbreviated form of formatted input/output that does
not require the use of a format specification. Depending on the type of the data item or
data items in the iolist, data is transferred to or from the file, using a default, and not
necessarily accurate format specification. The data type of each item appearing in the
iolist is formatted according to the rules in the following table:

Table 21 Default List Directed Output Formatting

Data Type Default Formatting

BYTE I5

INTEGER*2 I7

INTEGER*4 I12

INTEGER*8 I24

LOGICAL*1 I5 (L2)

Note that this format is applied when the option -Munixlogical is
selected when compiling.

LOGICAL*2 L2

Input and Output

Fortran Reference Guide Version 2019 | 87

Data Type Default Formatting

LOGICAL*4 L2

LOGICAL*8 L2

REAL*4 G15.7e2

REAL*8 G25.16e3

COMPLEX*8 (G15.7e2, G15.7e2)

COMPLEX*16 (G25.16e3, G25.16e3)

CHAR *n An

The length of a record is less than 80 characters; if the output of an item would cause the
length to exceed 80 characters, a new record is created.

The following rules and guidelines apply when using list-directed output:

‣ New records may begin as necessary.
‣ Logical output constants are T for true and F for false.
‣ Complex constants are contained within parentheses with the real and imaginary

parts separated by a comma.
‣ Character constants are not delimited by apostrophes and have each internal

apostrophe (if any are present) represented externally by one apostrophe.
‣ Each output record begins with a blank character to provide carriage control when

the record is printed.
‣ A typeless value output with list-directed I/O is output in hexadecimal form by

default. There is no other octal or hexadecimal capability with list-directed I/O.

5.7.3. Commas in External Field
Use of the comma in an external field eliminates the need to "count spaces" to have data
match format edit descriptors. The use of a comma to terminate an input field and thus
avoid padding the field is fully supported.

5.7.4. Character Encoding Format
Users can specify input/output encoding using the encoding= specifier on the
OPEN statement. Further, the use of this specifier with the INQUIRE statement returns
the encoding of the file:

UTF-8 specifies the file is connected for UTF-8 I/O or that the processor can detect
this format in some way.
UNKNOWN specifies the processor cannot detect the format.
A processor-dependent value indicates the file is in another known format, such as
UTF-16LE.

Input and Output

Fortran Reference Guide Version 2019 | 88

5.8. Namelist Groups
The NAMELIST statement allows for the definition of namelist groups. A namelist
group allows for a special type of formatted input/output, where data is transferred
between a named group of data items defined in a NAMELIST statement and one or
more records in a file.

The general form of a namelist statement is:
 NAMELIST /group-name/ namelist [[,] /group-name/ namelist]...

where:
group-name

is the name of the namelist group.
namelist

is the list of variables in the namelist group.

5.8.1. Namelist Input
Namelist input is accomplished using a READ statement by specifying a namelist group
as the input item. The following statement shows the format:
 READ ([unit=] u, [NML=] namelist-group [,control-information])

One or more records are processed which define the input for items in the namelist
group.

The records are logically viewed as follows:
$group-name item=value [,item=value].... $ [END]

The following rules describe these input records:

‣ The start or end delimiter ($) may be an ampersand (&).
‣ The start delimiter must begin in column 2 of a record.
‣ The group-name begins immediately after the start delimiter.
‣ The spaces or tabs may not appear within the group-name, within any item, or

within any constants.
‣ The value may be constants as are allowed for list directed input, or they may be a

list of constants separated by commas (,). A list of items is used to assign consecutive
values to consecutive elements of an array.

‣ Spaces or tabs may precede the item, the = and the constants.
‣ Array items may be subscripted.
‣ Character items may have substrings.

5.8.2. Namelist Output
Namelist output is accomplished using a READ statement by specifying a namelist
group as the output item. The following statement shows the format:
WRITE ([unit=] u, [NML=] namelist-group [,control-information])

Input and Output

Fortran Reference Guide Version 2019 | 89

The records output are logically viewed as follows:
$group-name
item = value
$ [END]

The following rules describe these output records:

‣ One record is output per value.
‣ Multiple values are separated by a comma (,).
‣ Values are formatted according to the rules of the list-directed write. Exception:

character items are delimited by an apostrophe (').
‣ An apostrophe (') or a quote (") in the value is represented by two consecutive

apostrophes or quotes.

5.9. Recursive Input/Output
Recursive Input/Output allows you to execute an input/output statement while another
input/output statement is being execution. This capability is available under these
conditions:

‣ External files, such as a child data transfer statement invoking derived type input/
output

‣ Internal files, such as input/output to/from an internal file where that statement does
not modify any internal file other than its own.

5.10. Input and Output of IEEE Infinities and NaNs
In Fortran 2003, input and output of IEEE infinities and NaNs is specified.

All edit descriptors for reals treat these values in the same way; only the field width is
required.

5.10.1. Output Format
Output for infinities and NaNs is right-justified within the output field. For list-directed
output the output field is the minimum size to hold the result. The format is this:

For minus infinity
-Infinity
-Inf

For plus infinity

Infinity
Inf
+Infinity
+Inf

For a Nan NaN, optionally followed by non-blank characters in parentheses.

5.10.2. Input Format
Input for infinities and NaNs is similar to the output except that case is not significant.

Input and Output

Fortran Reference Guide Version 2019 | 90

The format is this:

For minus infinity
-Infinity
-Inf

For plus infinity

Infinity
Inf
+Infinity
+Inf

For a Nan
NaN, optionally followed by non-blank characters in parentheses.

When no non-blank character is present, the NaN is a quiet NaN.

Fortran Reference Guide Version 2019 | 91

Chapter 6.
FORTRAN INTRINSICS

An intrinsic is a function available in a given language whose implementation is
handled specifically by the compiler. Typically, an intrinsic substitutes a sequence of
automatically-generated instructions for the original function call. Since the compiler has
an intimate knowledge of the intrinsic function, it can better integrate it and optimize it
for the situation.

This section lists the FORTRAN 77 and Fortran 90/95 intrinsics and subroutines and
Fortran 2003 intrinsic modules. The Fortran processor, rather than the user or a third
party, provides the intrinsic functions and intrinsic modules.

For details on the standard intrinsics, refer to the Fortran language specifications readily
available on the internet. The Origin column in the tables in this section provides the
Fortran language origin of the statement; for example, F95 indicates the statement is
from Fortran 95.

6.1. Intrinsics Support
The tables in this section contain the FORTRAN 77, Fortran 90/95 and Fortran 2003
intrinsics that are supported. At the top of each reference page is a brief description
of the statement followed by a header that indicates the origin of the statement. The
following list describes the meaning of the origin abbreviations.
F77

FORTRAN 77 intrinsics that are essentially unchanged from the original FORTRAN
77 standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

F90/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran
95 from its original FORTRAN 77 definition and is supported by the PGF95 and
PGFORTRAN compilers.

F2003
The statement is new for Fortran 2003.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 92

The functions in the following table are specific to Fortran 90/95 unless otherwise
specified.

6.1.1. Fortran 90/95 Bit Manipulation Functions and
Subroutines
Generic
Name Purpose

Num.
Args Argument Type

Result
Type

AND Performs a logical AND on
corresponding bits of the
arguments.

2 ANY type except CHAR or
COMPLEX

BIT_SIZE Return the number of bits
(the precision) of the integer
argument.

1 INTEGER INTEGER

BTEST Tests the binary value of a bit in
a specified position of an integer
argument.

2 INTEGER, INTEGER LOGICAL

IAND Perform a bit-by-bit logical AND
on the arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IBCLR Clears one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER

IBITS Extracts a sequence of bits. 3 INTEGER, INTEGER >=0,

INTEGER >=0

INTEGER

IBSET Sets one bit to one. 2 INTEGER, INTEGER >=0 INTEGER

IEOR Perform a bit-by-bit logical
exclusive OR on the arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IOR Perform a bit-by-bit logical OR
on the arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER

ISHFTC Perform a circular shift of the
rightmost bits.

2 or 3 INTEGER, INTEGER

INTEGER, INTEGER, INTEGER

INTEGER

LSHIFT Perform a logical shift to the
left.

2 INTEGER, INTEGER INTEGER

MVBITS Copies bit sequence 5 INTEGER(IN), INTEGER(IN),
INTEGER(IN), INTEGER(INOUT),
INTEGER(IN)

none

NOT Perform a bit-by-bit logical
complement on the argument.

2 INTEGER INTEGER

OR Performs a logical OR on each bit
of the arguments.

2 ANY type except CHAR or
COMPLEX

POPCNT
(F2008)

Return the number of one bits. 1 INTEGER or bits INTEGER

POPPAR
(F2008)

Return the bitwise parity. 1 INTEGER or bits INTEGER

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 93

Generic
Name Purpose

Num.
Args Argument Type

Result
Type

RSHIFT Perform a logical shift to the
right.

2 INTEGER, INTEGER INTEGER

SHIFT Perform a logical shift. 2 Any type except CHAR or
COMPLEX, INTEGER

XOR Performs a logical exclusive OR
on each bit of the arguments.

2 INTEGER, INTEGER INTEGER

ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER

6.1.2. Elemental Character and Logical Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

ACHAR Return character in specified
ASCII collating position.

1 INTEGER CHARACTER

ADJUSTL Left adjust string 1 CHARACTER CHARACTER

ADJUSTR Right adjust string 1 CHARACTER CHARACTER

CHAR (f77) Return character with
specified ASCII value.

1 LOGICAL*1

INTEGER

CHARACTER

CHARACTER

IACHAR Return position of character
in ASCII collating sequence.

1 CHARACTER INTEGER

ICHAR Return position of character
in the character set’s
collating sequence.

1 CHARACTER INTEGER

INDEX Return starting position of
substring within first string.

2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER,
LOGICAL

INTEGER

INTEGER

LEN Returns the length of string 1 CHARACTER INTEGER

LEN_TRIM Returns the length of the
supplied string minus the
number of trailing blanks.

1 CHARACTER INTEGER

LGE Test the supplied strings to
determine if the first string
is lexically greater than or
equal to the second.

2 CHARACTER, CHARACTER LOGICAL

LGT Test the supplied strings to
determine if the first string
is lexically greater than the
second.

2 CHARACTER, CHARACTER LOGICAL

LLE Test the supplied strings to
determine if the first string
is lexically less than or equal
to the second.

2 CHARACTER, CHARACTER LOGICAL

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 94

Generic
Name Purpose

Num.
Args Argument Type Result Type

LLT Test the supplied strings to
determine if the first string
is lexically less than the
second.

2 CHARACTER, CHARACTER LOGICAL

LOGICAL Logical conversion 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

SCAN Scan string for characters in
set

2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER,
LOGICAL

INTEGER

INTEGER

VERIFY Determine if string contains
all characters in set

2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER,
LOGICAL

INTEGER

6.1.3. Fortran 90/95 Vector/Matrix Functions

Generic Name Purpose
Num.
Args Argument Type Result Type

DOT_PRODUCT Perform dot product on two
vectors

2 NONCHAR*K, NONCHAR*K NONCHAR*K

MATMUL Perform matrix multiply on
two matrices

2 NONCHAR*K, NONCHAR*K NONCHAR*K

6.1.4. Fortran 90/95 Array Reduction Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

1 LOGICAL LOGICALALL Determine if all array values
are true

2 LOGICAL, INTEGER LOGICAL

1 LOGICAL LOGICALANY Determine if any array value
is true

2 LOGICAL, INTEGER LOGICAL

1 LOGICAL INTEGERCOUNT Count true values in array

2 LOGICAL, INTEGER INTEGER

MAXLOC Determine position of array
element with maximum
value

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 95

Generic
Name Purpose

Num.
Args Argument Type Result Type

MAXVAL Determine maximum value
of array elements

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINLOC Determine position of array
element with minimum value

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

MINVAL Determine minimum value of
array elements

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

PRODUCT Calculate the product of the
elements of an array

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

SUM Calculate the sum of the
elements of an array

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 96

6.1.5. Fortran 90/95 String Construction Functions
Generic
Name Purpose Num. Args Argument Type Result Type

REPEAT Concatenate copies of
a string

2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing blanks
from a string

1 CHARACTER CHARACTER

6.1.6. Fortran 90/95 Array Construction/Manipulation
Functions
Generic
Name Purpose

Num.
Args Argument Type

Result
Type

CSHIFT Perform circular shift on array 2

3

ARRAY, INTEGER

ARRAY, INTEGER, INTEGER

ARRAY

ARRAY

EOSHIFT Perform end-off shift on array 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, any

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, any, INTEGER

ARRAY

ARRAY

ARRAY

ARRAY

MERGE Merge two arguments based
on logical mask

3 any, any, LOGICAL

The second argument must be
of the same type as the first
argument.

any

PACK Pack array into rank-one array 2

3

ARRAY, LOGICAL

ARRAY, LOGICAL, VECTOR

ARRAY

RESHAPE Change the shape of an array 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, ARRAY

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, ARRAY, INTEGER

ARRAY

SPREAD Replicates an array by adding
a dimension

3 any, INTEGER, INTEGER ARRAY

TRANSPOSE Transpose an array of rank
two

1 ARRAY ARRAY

UNPACK Unpack a rank-one array
into an array of multiple
dimensions

3 VECTOR, LOGICAL, ARRAY ARRAY

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 97

6.1.7. Fortran 90/95 General Inquiry Functions
Generic
Name Purpose

Number of
Args Argument Type

Result
Type

ASSOCIATED Determine association
status

12 POINTER, POINTER,...,
POINTER, TARGET

LOGICAL
LOGICAL

KIND Determine argument’s kind 1 any intrinsic type INTEGER

PRESENT Determine presence of
optional argument

1 any LOGICAL

6.1.8. Fortran 90/95 Numeric Inquiry Functions

Generic Name Purpose
Number
of Args Argument Type

Result
Type

DIGITS Determine number
of significant digits

1

1

INTEGER

REAL

INTEGER

EPSILON Smallest
representable
number

1 REAL REAL

HUGE Largest
representable
number

1

1

INTEGER

REAL

INTEGER

REAL

MAXEXPONENT Value of maximum
exponent

1 REAL INTEGER

MINEXPONENT Value of minimum
exponent

1 REAL INTEGER

PRECISION Decimal precision 1

1

REAL

COMPLEX

INTEGER

INTEGER

RADIX Base of model 1

1

INTEGER

REAL

INTEGER

INTEGER

RANGE Decimal exponent
range

1

1

1

INTEGER

REAL

COMPLEX

INTEGER

INTEGER

INTEGER

SELECTED_INT_KIND Kind type titlemeter
in range

1 INTEGER INTEGER

SELECTED_REAL_KIND Kind type titlemeter
in range

1

2

INTEGER

INTEGER, INTEGER

INTEGER

INTEGER

TINY Smallest
representable
positive number

1 REAL REAL

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 98

6.1.9. Fortran 90/95 Array Inquiry Functions

Generic Name Purpose
Number of
Args Argument Type

Result
Type

ALLOCATED Determine if array is
allocated

1 ARRAY LOGICAL

LBOUND Determine lower bounds 1

2

ARRAY

ARRAY, INTEGER

INTEGER

SHAPE Determine shape 1 any INTEGER

SIZE Determine number of
elements

1

2

ARRAY

ARRAY, INTEGER

INTEGER

UBOUND Determine upper bounds 1

2

ARRAY

ARRAY, INTEGER

INTEGER

6.1.10. Fortran 90/95 Subroutines

Generic Name Purpose
Number of
Args Argument Type

CPU_TIME Returns processor
time

1 REAL (OUT)

DATE_AND_TIME Returns date and
time

4 (optional) DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)

ZONE (CHARACTER, OUT)

VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-
random numbers

1 REAL (OUT)

RANDOM_SEED Set or query pseudo-
random number
generator

0

1

1

1

SIZE (INTEGER, OUT)

PUT (INTEGER ARRAY, IN)

GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK Query real time clock 3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL, OUT)

COUNT_MAX (INTEGER, OUT)

6.1.11. Fortran 90/95 Transfer Functions
Generic
Name Purpose

Number
of Args Argument Type Result Type

TRANSFER Change type
but maintain bit
representation

2

3

any, any

any, any, INTEGER

any*

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 99

*Must be of the same type as the second argument

6.1.12. Arithmetic Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

ABS Return absolute value of the
supplied argument.

1 INTEGER

REAL

COMPLEX

INTEGER

REAL

COMPLEX

ACOS Return the arccosine (in
radians) of the specified
value

1 REAL REAL

ACOSD Return the arccosine (in
degrees) of the specified
value

1 REAL REAL

AIMAG Return the value of the
imaginary part of a complex
number.

1 COMPLEX REAL

AINT Truncate the supplied value
to a whole number.

2 REAL, INTEGER REAL

AND Performs a logical AND on
corresponding bits of the
arguments.

2 ANY type except CHAR or
COMPLEX

ANINT Return the nearest whole
number to the supplied
argument.

2 REAL, INTEGER REAL

ASIN Return the arcsine (in
radians) of the specified
value

1 REAL REAL

ASIND Return the arcsine (in
degrees) of the specified
value

1 REAL REAL

ATAN Return the arctangent (in
radians) of the specified
value

1 REAL REAL

ATAN2 Return the arctangent (in
radians) of the specified pair
of values.

2 REAL, REAL REAL

ATAN2D Return the arctangent (in
degrees) of the specified pair
of values

1 REAL, REAL REAL

ATAND Return the arctangent (in
degrees) of the specified
value

1 REAL REAL

CEILING Return the least integer
greater than or equal to the
supplied real argument.

2 REAL, KIND INTEGER

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 100

Generic
Name Purpose

Num.
Args Argument Type Result Type

CMPLX Convert the supplied
argument or arguments to
complex type.

2

3

INTEGER, REAL, or COMPLEX;

INTEGER, REAL, or COMPLEX;

INTEGER, REAL, or COMPLEX;

INTEGER or REAL

KIND

COMPLEX

COMPL Performs a logical
complement on the
argument.

1 ANY, except CHAR or COMPLEX

COS Return the cosine (in radians)
of the specified value

1 REAL

COMPLEX

REAL

COSD Return the cosine (in
degrees) of the specified
value

1 REAL

COMPLEX

REAL

COSH Return the hyperbolic cosine
of the specified value

1 REAL REAL

DBLE Convert to double precision
real.

INTEGER, REAL, or COMPLEX REAL

DCMPLX Convert the supplied
argument or arguments to
double complex type.

1

2

INTEGER, REAL, or COMPLEX

INTEGER, REAL

DOUBLE
COMPLEX

DPROD Double precision real
product.

2 REAL, REAL REAL

(double

precision)

EQV Performs a logical exclusive
NOR on the arguments.

2 ANY except CHAR or COMPLEX

EXP Exponential function. 1 REAL

COMPLEX

REAL

COMPLEX

EXPONENT Return the exponent part of
a real number.

1 REAL INTEGER

FLOOR Return the greatest integer
less than or equal to the
supplied real argument.

1

2

REAL

REAL, KIND

REAL

KIND

FRACTION Return the fractional part of
a real number.

1 REAL INTEGER

IINT Converts a value to a short
integer type.

1 INTEGER, REAL, or COMPLEX INTEGER

ININT Returns the nearest short
integer to the real argument.

1 REAL INTEGER

INT Converts a value to integer
type.

1

2

INTEGER, REAL, or COMPLEX

INTEGER, REAL, or COMPLEX;

KIND

INTEGER

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 101

Generic
Name Purpose

Num.
Args Argument Type Result Type

INT8 Converts a real value to a
long integer type.

1 REAL INTEGER

IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER

JINT Converts a value to an
integer type.

1 INTEGER, REAL, or COMPLEX INTEGER

JNINT Returns the nearest integer
to the real argument.

1 REAL INTEGER

KNINT Returns the nearest integer
to the real argument.

1 REAL INTEGER (long)

LOG Returns the natural
logarithm.

1 REAL or COMPLEX REAL

LOG10 Returns the common
logarithm.

1 REAL REAL

MAX Return the maximum value of
the supplied arguments.

2 or
more

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MIN Return the minimum value of
the supplied arguments.

2 or
more

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MOD Find the remainder. 2 or
more

INTEGER or REAL,

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MODULO Return the modulo value of
the arguments.

2 or
more

INTEGER or REAL,

INTEGER or REAL

(all of same kind)

Same as
Argument Type

NEAREST Returns the nearest different
machine representable
number in a given direction.

2 REAL, non-zero REAL REAL

NEQV Performs a logical exclusive
OR on the arguments.

2 ANY except CHAR or COMPLEX

NINT Converts a value to integer
type.

1

2

REAL

REAL, KIND

INTEGER

REAL Convert the argument to
real.

1

2

IINTEGER, REAL, or COMPLEX

INTEGER, REAL, or COMPLEX;

KIND

REAL

RRSPACING Return the reciprocal of the
relative spacing of model
numbers near the argument
value.

1 REAL REAL

SET_EXPONENTReturns the model number
whose fractional part is
the fractional part of the
model representation of the

2 REAL, INTEGER REAL

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 102

Generic
Name Purpose

Num.
Args Argument Type Result Type

first argument and whose
exponent part is the second
argument.

SIGN Return the absolute value of
A times the sign of B.

2 INTEGER or REAL,

INTEGER or REAL

(of same kind)

Same as
Argument

SIN Return the sine (in radians)
of the specified value

1 REAL

COMPLEX

REAL

SIND Return the sine (in degrees)
of the specified value

1 REAL

COMPLEX

REAL

SINH Return the hyperbolic sine of
the specified value

1 REAL REAL

SPACING Return the relative spacing
of model numbers near the
argument value.

1 REAL REAL

SQRT Return the square root of the
argument.

1 REAL

COMPLEX

REAL

COMPLEX

TAN Return the tangent (in
radians) of the specified
value

1 REAL REAL

TAND Return the tangent (in
degrees) of the specified
value

1 REAL REAL

TANH Return the hyperbolic
tangent of the specified
value

1 REAL REAL

6.1.13. Fortran 2003 and 2008 Functions

Generic Name Purpose
Num.
Args Argument Type Result Type

COMMAND_
ARGUMENT_COUNT

Returns a scalar of type
default integer that is
equal to the number of
arguments passed on the
command line when the
containing program was
invoked. If there were
no command arguments
passed, the result is 0.

0 INTEGER

EXTENDS_TYPE_OF Determines whether the
dynamic type of A is an
extension type of the
dynamic type of B.

2 Objects of extensible
type

LOGICAL
SCALAR

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 103

Generic Name Purpose
Num.
Args Argument Type Result Type

GET_COMMAND_
ARGUMENT

Returns the specified
command line argument
of the command that
invoked the program.

1 to 4 INTEGER

plus optionally:

CHAR, INTEGER, INTEGER

A command
argument

GET_COMMAND Returns the entire
command line that
was used to invoke the
program.

0 to 3 CHAR, INTEGER, INTEGER A command
line

GET_ENVIRONMENT
_VARIABLE

Returns the value of the
specified environment
variable.

1 to 5 CHAR, CHAR, INTEGER,
INTEGER, LOGICAL

IS_IOSTAT_END Test whether a variable
has the value of the I/O
status: ‘end of file’.

1 INTEGER LOGICAL

IS_IOSTAT_EOR Test whether a variable
has the value of the I/O
status: ‘end of record’.

1 INTEGER LOGICAL

LEADZ (F2008) Counts the number of
leading zero bits.

1 INTEGER or bits INTEGER

MOVE_ALLOC Moves an allocation from
one allocatable object to
another.

2 Any type and rank none

NEW_LINE Return the newline
character.

1 CHARACTER CHARACTER

SAME_TYPE_AS Determines whether the
dynamic type of A is the
same as the dynamic type
of B.

2 Objects of extensible
type

LOGICAL
SCALAR

SCALE Return the value X * bi
where b is the base of the
number system in use for
X.

2 REAL, INTEGER REAL

6.1.14. Miscellaneous Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

LOC Return address of argument 1 NUMERIC INTEGER

NULL Assign disassociated status 0

1
POINTER

POINTER

POINTER

6.2. ACOSD
Return the arccosine (in degrees) of the specified value.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 104

F77

Synopsis
ACOSD(X)

Arguments

The argument X must be a real value.

Return Value

The real value representing the arccosine in degrees.

6.3. AND
Performs a logical AND on corresponding bits of the arguments.

F77 extension

Synopsis
AND(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

6.4. ASIND
Return the arcsine (in degrees) of the specified value.

F77

Synopsis
ASIND(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in degrees.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 105

6.5. ASSOCIATED
Determines the association status of the supplied argument or determines if the supplied
pointer is associated with the supplied target.

F90

Synopsis
ASSOCIATED(POINTER [,TARGET])

Arguments

The POINTER argument is a pointer of any type. The optional argument TARGET is a
pointer or a target. If it is a pointer it must not be undefined.

Return Value

If TARGET is not supplied the function returns logical true if POINTER is associated
with a target and false otherwise.

If TARGET is present and is a target, then the function returns true if POINTER is
associated with TARGET and false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and
TARGET are associated with the same target and false otherwise.

6.6. ATAN2D
Return the arctangent (in degrees) of the specified value.

F77

Synopsis
ATAN2D(Y, X)

Arguments

The arguments X and Y must be of type real.

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. The
result is the principal value of the nonzero complex number (X,Y).

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 106

6.7. ATAND
Return the arctangent (in degrees) of the specified value.

F77

Synopsis
ATAND(X)

Argument

The argument X must be of type real.

Return Value

The real value representing the arctangent in degrees.

6.8. COMPL
Performs a logical complement on the argument.

F77 extension

Synopsis
COMPL(M)

Arguments

The argument M may be of any type except for character and complex.

Return Value

The return value is typeless.

6.9. CONJG
Return the conjugate of the supplied complex number.

F77

Synopsis
CONJG(Z)

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 107

Argument

The argument Z is a complex number.

Return Value

A value of the same type and kind as the argument.

6.10. COSD
Return the cosine (in degrees) of the specified value.

F77

Synopsis
COSD(X)

Argument

The argument X must be of type real or complex.

Return Value

A real value of the same kind as the argument. The return value for a real argument is in
degrees, or if complex, the real part is a value in degrees.

6.11. DIM
Returns the difference X-Y if the value is positive, otherwise it returns 0.

F77

Synopsis
DIM(X, Y)

Arguments

X must be of type integer or real. Y must be of the same type and kind as X.

Return Value

The result is the same type and kind as X with the value X-Y if X>Y, otherwise zero.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 108

6.12. ININT
Returns the nearest short integer to the real argument.

F77 extension

Synopsis
ININT(A)

Arguments

The argument A must be a real.

Return Value

A short integer with value (A + .5 * SIGN(A)).

6.13. INT8
Converts a real value to a long integer type.

F77 extension

Synopsis
INT8(A)

Arguments

The argument A is of type real.

Return Value

The long integer value of the supplied argument.

6.14. IZEXT
Zero-extend the argument.

F77 extension

Synopsis
IZEXT(A)

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 109

Arguments

The argument A is of type logical or integer.

Return Value

A zero-extended short integer of the argument.

6.15. JINT
Converts a value to an integer type.

F77 extension

Synopsis
JINT(A)

Arguments

The argument A is of type integer, real, or complex.

Return Value

The integer value of the supplied argument.

‣ For a real number, if the absolute value of the real is less than 1, the return value is 0.
‣ If the absolute value is greater than 1, the result is the largest integer that does not

exceed the real value.
‣ If argument is a complex number, the return value is the result of applying the real

conversion to the real part of the complex number.

6.16. JNINT
Returns the nearest integer to the real argument.

F77 extension

Synopsis
JNINT(A)

Arguments

The argument A must be a real.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 110

Return Value

An integer with value (A + .5 * SIGN(A)).

6.17. KNINT
Returns the nearest integer to the real argument.

F77 extension

Synopsis
KNINT(A)

Arguments

The argument A must be a real.

Return Value

A long integer with value (A + .5 * SIGN(A)).

6.18. LEADZ
Counts the number of leading zero bits.

F2003

Synopsis
LEADZ(I)

Arguments

I is of type integer or bits.

Return Value

The result is one of the following:

‣ If all of the bits of I are zero: BIT SIZE (I).
‣ If at least one of the bits of I is not zero: BIT SIZE (I) - 1 - k.

k is the position of the leftmost 1 bit in I.

Description

LEADZ is an elemental function that returns the number of leading zero bits.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 111

Examples

The following example returns the value 2.
LEADZ (B’001101000’)

The following example returns the value 31 if BIT SIZE (1) has the value 32.
LEADZ (1)

6.19. LSHIFT
Perform a logical shift to the left.

F77 extension

Synopsis
LSHIFT(I, SHIFT)

Arguments

I and SHIFT are integer values.

Return Value

A value of the same type and kind as the argument I. It is the value of the argument I
logically shifted left by SHIFT bits.

6.20. OR
Performs a logical OR on each bit of the arguments.

F77 extension

Synopsis
OR(M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

The return value is typeless.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 112

6.21. RSHIFT
Perform a logical shift to the right.

F77 extension

Synopsis
RSHIFT(I, SHIFT)

Arguments

I and SHIFT are integer values.

Return Value

A value of the same type and kind as the argument I. It is the value of the argument I
logically shifted right by SHIFT bits.

6.22. SHIFT
Perform a logical shift.

F77 extension

Synopsis
RSHIFT(I, SHIFT)

Arguments

The argument I may be of any type except character or complex. The argument SHIFT is
of type integer.

Return Value

The return value is typeless. If SHIFT is positive, the result is I logically shifted left by
SHIFT bits. If SHIFT is negative, the result is I logically shifted right by SHIFT bits.

6.23. SIND
Return the value in degrees of the sine of the argument.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 113

F77

Synopsis
SIND(X)

Argument

The argument X must be of type real or complex.

Return Value

A value that has the same type as X and is expressed in degrees.

6.24. TAND
Return the tangent of the specified value.

F77

Synopsis
TAND(X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

6.25. XOR
Performs a logical exclusive OR on each bit of the arguments.

F77 extension

Synopsis
XOR(M, N)

Arguments

The arguments M and N must be of integer type.

Return Value

An integer.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 114

6.26. ZEXT
Zero-extend the argument.

F77 extension

Synopsis
ZEXT(A)

Arguments

The argument A is of type logical or integer.

Return Value

An integer.

6.27. Intrinsic Modules
Like an intrinsic function, the Fortran processor provides the intrinsic module. It is
possible for a program to use an intrinsic module and a user-defined module of the same
name, though they cannot both be referenced from the same scope.

‣ To use a user-defined module rather than an intrinsic module, specify the keyword
non-intrinsic in the USE statement:
USE, non-intrinsic :: iso_fortran_env

‣ To use an intrinsic module rather than a user-defined one, specify the keyword
intrinsic in the USE statement:
USE, intrinsic :: iso_fortran_env

If both a user-defined and intrinsic module of the same name are available and
locatable by the compiler, a USE statement without either of the keywords previously
described accesses the user-defined module. If the compiler cannot locate the user-
defined module, it accessed the intrinsic module and does not issue a warning.

6.27.1. Module IEEE_ARITHMETIC
The ieee_arithmetic intrinsic module provides access to two derived types, named
constants of these types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module
ieee_exceptions, so all the features of ieee_exceptions are included. For
information of this module, refer to Module IEEE_EXCEPTIONS.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 115

6.27.2. IEEE_ARITHMETIC Derived Types
The ieee_arithmetic intrinsic module provides access to these two derived types:
ieee_class_type and ieee_round_type.
ieee_class_type

Identifies a class of floating point values.
ieee_round_type

Identifies a particular round mode.

For both of these types, the following are true:

‣ The components are private.
‣ The only operations defined are == and /=.
‣ The return value is of type default logical.

If the operator is ==, for two values of one of the derived types, this operator returns
true if the values are the same; false, otherwise.

If the operator is /=, for two values of one of the derived types, this operator returns
true if the values are different; false, otherwise.

‣ Intrinsic assignment is available.

Table 22 provides a quick overview of the values that each derived type can take.

Table 22 IEEE_ARITHMETIC Derived Types

This derived type... Must have one of these values...

ieee_class_type ieee_signaling_nan

ieee_quiet_nan

ieee_negative_inf

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_positive_inf

ieee_other_value (Fortran 2003 only)

ieee_round_type ieee_nearest -

ieee_to_zero

ieee_up

ieee_down

ieee_other (for modes other than IEEE ones)

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 116

6.27.3. IEEE_ARITHMETIC Inquiry Functions
The ieee_arithmetic intrinsic module supports a number of inquiry functions. Table
23 provides a list and brief description of what it means if the inquiry function returns
.true. In all cases, if the condition for returning .true. is not met, the function
returns .false..

Table 23 IEEE_ARITHMETIC Inquiry Functions

Returns .true. if ...

This inquiry function... When optional arg. x is absent
When optional arg. x is
present

ieee_support_datatype([x]) The processor supports IEEE
arithmetic for all reals

The processor supports IEEE
arithmetic for all reals of the same
kind type parameter as the real
argument x.

ieee_support_denormal([x]) The processor supports IEEE
denomalized numbers for all reals

The processor supports IEEE
denomalized numbers for reals of
the same kind type parameter as
the real argument x.

ieee_support_divide([x]) The processor supports divide with
the accuracy specified by IEEE
standard for all reals

The processor supports divide with
the accuracy specified by IEEE
standard for reals of the same
kind type parameter as the real
argument x.

ieee_support_inf([x]) The processor supports the IEEE
infinity facility for all reals

The processor supports the IEEE
infinity facility for reals of the
same kind type parameter as the
real argument x.

ieee_support_nan([x]) The processor supports the IEEE
Not-A-Number facility for all reals

The processor supports the IEEE
Not-A-Number facility for reals of
the same kind type parameter as
the real argument x.

ieee_support_rounding
(round_value[,x])

For a round_value of
ieee_round_type, the processor
supports the rounding mode
numbers for all reals

For a round_value of
ieee_round_type, the processor
supports the rounding mode
numbers for reals of the same
kind type parameter as the real
argument x.

ieee_support_sqrt([x]) The processor implements the IEEE
square root for all reals

The processor implements the IEEE
square root for reals of the same
kind type parameter as the real
argument x.

ieee_support_standard([x]) The processor supports all IEEE
facilities for all reals

The processor supports all IEEE
facilities for reals of the same
kind type parameter as the real
argument x.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 117

Returns .true. if ...

This inquiry function... When optional arg. x is absent
When optional arg. x is
present

ieee_support_underflow_
control ([x])

(Fortran 2003 only) The processor
supports control of the underflow
mode for all reals

(Fortran 2003 only) The processor
supports control of the underflow
mode for reals of the same
kind type parameter as the real
argument x.

6.27.4. IEEE_ARITHMETIC Elemental Functions
The ieee_arithmetic intrinsic module supports a number of elemental functions.
Table 24 provides a list and brief description of the return value. In all cases involving
a return value of true or false, if the condition for returning .true. is not met, the
subroutine returns .false..

Table 24 IEEE_ARITHMETIC Elemental Functions

This elemental
function... Does this...

ieee_class(x) Returns the IEEE class of the real argument x.

ieee_copy_sign(x,y) Returns a real with the same type parameter as the real argument x,
holding the value of x with the sign of y.

ieee_is_finite(x) Returns .true. if ieee_class(x) has one of these values:

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_is_nan(x) Returns .true. if the value of x is an IEEE NaN.

ieee_is_negative(x) Returns .true. if ieee_class(x) as one of these values:

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_negative_inf

ieee_is_normal(x) Returns .true. if ieee_class(x) has one of these values:

ieee_negative_normal

ieee_negative_zero

ieee_positive_zero

ieee_positive_normal

ieee_is_logb(x) Returns a real with the same type parameter as the argument x.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 118

This elemental
function... Does this...

If x is neither zero, infinity, nor NaN, the value of the result is the unbiased

exponent of x: exponent(x)-1.

If x is 0 and ieee_support_inf(x) is true, the result is -infinity.

If x is 0 and ieee_support_inf(x) is not true, the result is -
huge(x).

ieee_next_after(x,y) Returns a real with the same type parameter as the argument x.

If x ==y, the result is x.

Otherwise, the result is the neighbor of x in the direction of y.

ieee_rem(x,y) Returns a real with the same type parameter of whichever argument has the
greater precision.

ieee_rint(x,y) Returns a real with the same type parameter as x, and whose value is that
of x rounded to an integer value according to the current rounding mode.

ieee_scalb(x,i) Returns a real with the same type parameter as x, and whose value is 2ix.

If 2ix is too large, ieee_overflow signals.

If 2ix is too small, ieee_underflow signals.

ieee_unordered(x,y) Returns .true. if x or y or both are a NaN.

ieee_value(x,class) Returns a real with the same type parameter as x and a value specified by
class.

6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines
The ieee_arithmetic intrinsic module supports a number of elemental functions.
Table 25 provides a list and brief description of what it means if the inquiry function
returns .true. In all cases, if the condition for returning .true. is not met, the function
returns .false.

In these subroutines, the argument round_value is a scalar of type
ieee_round_type and the argument gradual is a scalar of type default logical.

Table 25 IEEE_ARITHMETIC Non-Elemental Subroutines

This non-elemental subroutine... Does this...

ieee_get_rounding_mode(round_value) Returns the floating-point rounding mode.

If one of the IEEE modes is in operation, the value is one
of these:

ieee_nearest
ieee_to_zero
ieee_up
ieee_down

Otherwise, the value is ieee_positive_normal

ieee_get_underflow_mode(gradual) Returns .true. if gradual underflow is in effect-point
rounding mode.Otherwise, it returns .false.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 119

This non-elemental subroutine... Does this...

ieee_set_rounding_mode(round_value) Specifies the rounding mode to be set.

ieee_set_underflow_mode(gradual) Sets gradual underflow in effect if the value is .true. ;
otherwise, gradual underflow ceases to be in effect.

6.27.6. IEEE_ARITHMETIC Transformational Function
The ieee_arithmetic intrinsic module supports ieee_selected_real_kind([p]
[,r]) a transformational function that is permitted in an initialization expression.

This result of this function is the kind value of a real x for which
ieee_support_datatype(x) is true.

6.28. Module IEEE_EXCEPTIONS
The ieee_exceptions intrinsic module provides support for overflow and divide-
by-zero flags in the scoping unit for all available kinds of reals and complex data. It also
determines the level of support for other exceptions.

This module contains two derived types, named constants of these types, and a
collection of generic procedures.

6.28.1. IEEE_EXCEPTIONS Derived Types
‣ ieee_flag_type - Identifies a particular exception flag.
‣ ieee_status_type - Saves the current floating-point status.

For both of these types, the following are true:

‣ The components are private.
‣ No operations are defined for these types.
‣ Only intrinsic assignment is available.

Table 26 provides a quick overview of the values that each derived type can take.

Table 26 IEEE_EXCEPTIONS Derived Types

This derived type... Must have one of these values...

ieee_flag_type For named constants:

ieee_overflow

ieee_underflow

ieee_divide_by_zero

ieee_inexact

ieee_invalid

ieee_status_type Includes the values of all supported flags as well as current rounding
mode.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 120

6.28.2. IEEE_EXCEPTIONS Inquiry Functions
The ieee_exceptions intrinsic module supports two inquiry functions, both of which
are pure:

‣ ieee_support_flag(flag [,x])
‣ ieee_support_halting(flag)

For both functions, the argument flag must be of type type(ieee_flag_type).

Table 27 provides a list and brief description of what it means if the inquiry function
returns .true.I n all cases, if the condition for returning .true. is not met, the function
returns .false..

Table 27 IEEE_EXCEPTIONS Inquiry Functions

This inquiry function... Returns .true. if ...

ieee_support_flag(flag [,x]) The processor supports the exception flag for all reals. If the
optional argument x is present, then it returns .true. if the
processor supports the exception flag for all reals of the same kind
type parameter as the real argument x.

ieee_support_halting(flag) The processor supports the ability to change the mode by call
ieee_set_halting(flag).

6.28.3. IEEE_EXCEPTIONS Subroutines Functions
The ieee_exceptions intrinsic module supports elemental and non-elemental
subroutines.

In all these subroutines:

‣ flag is of type type(ieee_flag_type)
‣ halting is of type default logical
‣ flag_value is of type default logical
‣ status_value if is type type(ieee_status_type).

Elemental Subroutines

Table 28 provides a list and brief description of what it means if the inquiry function
returns .true. In all cases, if the condition for returning .true. is not met, the function
returns .false..

Table 28 IEEE_EXCEPTIONS Elemental Subroutines

This elemental
subroutine... Does this...

ieee_get_flag(flag, flag_value) If the value of flag is ieee_invalid, ieee_overflow,

ieee_divide_by_zero, ieee_underflow, or

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 121

This elemental
subroutine... Does this...

ieee_inexact and the corresponding exception flag is signaling,

flag_value is true.

ieee_get_halting_mode(flag,

halting)

The value flag must have one of the values: ieee_invalid,

ieee_overflow, ieee_divide_by_zero,

ieee_underflow, or ieee_inexact. If the exception

specified causes halting, halting is true.

Non-Elemental Subroutines

The ieee_exceptions intrinsic module supports non-elemental subroutines for flags
and halting mode as well as for floating-point status.

Table 29 provides a list and brief description of these subroutines.

Table 29 IEEE_EXCEPTIONS Elemental Subroutines

This non-elemental
subroutine... Does this...

ieee_set_flag(flag, flag_value) If the value returned by ieee_support_halting is true,

each flag specified is set to be signalling if the corresponding

flag_value is true and is set to be quiet if it is false.

ieee_set_halting_mode(flag,

halting)

Each exception specified by flag causes halting if the

corresponding value of halting is true. If value is false, it does

not cause halting.

ieee_get_status(status_value) Returns the floating-point status, including all the exception flags,

the rounding mode, and the halting mode.

ieee_set_status(status_value) Resets the floating-point status, including all the exception flags, the

rounding mode, and the halting mode to the previous invocation of

ieee_get_status.

6.29. IEEE_FEATURES
The ieee_features intrinsic module supports specification of essential IEEE features.
It provides access to one derived type and a collection of named constants of this type,
each of which corresponds to an IEEE feature. The named constants affect the manner in
which code is compiled in the scoping units.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 122

6.29.1. IEEE_FEATURES Derived Type
The ieee_features intrinsic module provides access to the derived type:
ieee_features_type. This type identifies a particular feature. It may only take values
that are those of named constants defined in the module.

While permitted, there is no purpose in declaring data of type ieee_features_type.
The components of this type are private, no operation is defined for it, and only intrinsic
assignment is available for it.

6.29.2. IEEE_FEATURES Named Constants
Table 30 lists a complete set of named constants available for the ieee_features
intrinsic module and provides the effect of their accessibility:

Table 30 IEEE_FEATURES Named Constants

This named constant... Requires the scoping unit to support ...

ieee_datatype ieee_ARITHMETIC for at least one kind of real.

ieee_denormal Denormalized numbers for at least one kind of real.

ieee_divide IEEE divide for at least one kind of real.

ieee_halting Control of halting for each flag supported.

ieee_inexact_flag Inexact exception for at least one kind of real.

ieee_inf Infinity and -infinity for at least one kind of real.

ieee_invalid_flag Invalid exception for at least one kind of real.

ieee_nan NaNs for at least one kind of real.

ieee_rounding Control of the rounding mode for all four rounding modes on at least
one kind of real.

ieee_sqrt IEEE square root for at least one kind of real.

ieee_underflow_flag Underflow exception for at least one kind of real.

Some features may slow execution on some processorts. Therefore, if
ieee_exceptions is accessed but ieee_features is not, the processor can
support a selected subset of the features.

6.30. Module iso_c_binding
The iso_c_binding intrinsic module provides access to named constants of type
default integer that represent kind type parameters of data representations compatible
with C types.

‣ A positive value indicates that the Fortran type and kind type parameter
interoperate with the corresponding C type.

Fortran Intrinsics

Fortran Reference Guide Version 2019 | 123

‣ A negative value indicates a lack of support.

6.31. Module iso_fortran_env
The iso_fortran_env intrinsic module provides information about the Fortran
environment through named constants. The following table provides the constants and
a brief description of the information provided. Each named constant is a default integer
scalar.

Table 31 iso_fortran_env Named Constants

This Named Constant... Provides this Fortran environment information...

character_storage_size The size, in bits, of a character storage unit

error_unit The unit number for a preconnected output unit suitable for reporting
errors.

file_storage_size The size, in bits, of a file storage unit.

input_unit The unit number for the preconnected external unit used for input.

iostat_end The value returned by IOSTAT= that indicates an end-of-file condition
occurs during execution of a READ statement.

iostat_eor The value returned by IOSTAT= that indicates an end-of-record
condition occurs during execution of a READ statement.

numeric_storage_size The size, in bits, of a numeric storage unit.

output_unit The unit number for the preconnected external unit used for output.

These special unit numbers may be negative, though they are never -1, since -1 is
reserved for another purpose.

The error-unit may be the same as output-unit.

Fortran Reference Guide Version 2019 | 124

Chapter 7.
OBJECT ORIENTED PROGRAMMING

Object-oriented programming, OOP, describes an approach to programming where
a program is viewed as a collection of interacting, but mostly independent software
components. These software components, known as objects, are typically implemented
as an entity that encapsulates both data and procedures. Object-oriented programming
focuses on the data structures; that is, focus is on the objects on which the program
operates rather than the procedures. In languages designed to be object-oriented, there
are classes, containing both data and modules, that operate on that data. In Fortran,
modules may contain data, but there is no notion of separate instances of a module.
However, in Fortran 2003, there are type extensions and type-bound procedures that
support an object-oriented approach. To have ‘class-like’ behavior, you can combine
a module, which contains the methods that operate on the ‘class’, with a derived type
containing the data.

PGI Fortran compilers contain procedures, functions, and attributes from Fortran 2003
that facilitate an object-oriented approach to programming. Some of the object-oriented
features include classes, type extensions, polymorphic entities, typed allocation, sourced
allocation, inheritance association, as well as object-oriented intrinsics. This section
provides a high-level overview of these features.

Tip

For specific information on how to use these extensions and for examples, refer to
one of the many reports and texts available, such as these:

‣ Object-Oriented Programming in Fortran 2003, PGI Insider, February 2011
‣ The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures by

Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith,
B.T

‣ Fortran 95/2003 explained by Metcalf,m., Reid, J., and Cohen, M.

7.1. Inheritance
Inheritance allows code reusability through an implied inheritance link in which leaf
objects, known as children, reuse components from their parent and ancestor objects.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 125

For example, the following code shows how a square type inherits components from
rectangle which inherits components from shape.

Inheritance of Shape Components
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, EXTENDS (rectangle) :: square
end type square

The programmer indicates the inheritance relationship with the EXTENDS keyword
followed by the name of the parent type in parentheses. A type that EXTENDS another
type is known as a type extension (e.g., rectangle is a type extension of shape, square
is a type extension of rectangle and shape). A type without any EXTENDS keyword is
known as a base type (e.g., shape is a base type).

A type extension inherits all of the components of its parent (and ancestor) types. A
type extension can also define additional components as well. For example, rectangle
has a length and width component in addition to the color, filled, x, and y components
that were inherited from shape. The square type, on the other hand, inherits all of the
components from rectangle and shape, but does not define any components specific
to square objects. The following example shows how to access the color component of
square:
type(square) :: sq ! declare sq as a square object
 sq%color ! access color component for sq
 sq%rectangle%color ! access color component for sq
 sq%reactangle%shape%color ! access color component for sq

There are three different ways for accessing the color component for sq. A type extension
includes an implicit component with the same name and type as its parent type. This
approach is handy when the programmer wants to operate on components specific to
a parent type. It also helps illustrate an important relationship between the child and
parent types.

We often say the child and parent types have a "is a" relationship. In the shape example,
"a square is a rectangle", "a rectangle is a shape", "a square is a shape", and "a shape is
a base type". This relationship also applies to the type itself: "a shape is a shape", "a
rectangle is a rectangle", and "a square is a square".

The "is a" relationship does not imply the converse. A rectangle is a shape, but a shape
is not a rectangle since there are components found in rectangle that are not found in
shape. Furthermore, a rectangle is not a square because square has a component not
found in rectangle; the implicit rectangle parent component.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 126

7.2. Polymorphic Entities
Polymorphism permits code reusability in the Object-Oriented Programming paradigm
because the programmer can write procedures and data structures that can operate on a
variety of data types and values. The programmer does not have to reinvent the wheel
for every data type a procedure or a data structure will encounter.

The "is a" relationship might help you visualize how polymorphic variables interact with
type extensions. A polymorphic variable is a variable whose data types may vary at run
time. Polymorphic entities must be a pointer or allocatable variable or a dummy data
object.

There are two basic types of polymorphism:
procedure polymorphism

Procedure polymorphism deals with procedures that can operate on a variety of data
types and values.

data polymorphism
Data polymorphism deals with program variables that can store and operate on
a variety of data types and values. You see later that the dynamic type of these
variables changes when we assign a target to a polymorphic pointer variable or when
we use typed or sourced allocation with a polymorphic allocatable variable.

To declare a polymorphic variable, use the class keyword.

Polymorphic Variables

In this example, the sh object can be a pointer to a shape or any of its type extensions.
So, it can be a pointer to a shape, a rectangle, a square, or any future type extension of
shape. As long as the type of the pointer target "is a" shape, sh can point to it.
class(shape), pointer :: sh

This second example shows how to declare a pointer p that may point to any object
whose type is in the class of types or extensions of the type type(point)
type point
 real :: x,y
end type point
class(point), pointer :: p

7.2.1. Unlimited Polymorphic Entities
Unlimited polymorphic entities allow the user to have a pointer that may refer to
objects of any type, including non-extensible or intrinsic types. You can use unlimited
polymorphic objects to create heterogeneous data structures, such as a list object that
links together a variety of data types. Further, you can use abstract types to dictate
requirements for type extensions and how they interact with polymorphic variables.

Unlimited polymorphic entities can only be used as an actual argument, as the
pointer or target in a pointer assignment, or as the selector in a SELECT TYPE
statement.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 127

To declare an unlimited polymorphic variable, use the * as the class specifier. The
following example shows how to declare up as an unlimited polymorphic pointer and
associate it with a real target.
class(*), pointer :: up
 real, target :: x,
 :
 up => x

7.2.2. Typed Allocation for Polymorphic Variables
The ALLOCATE statement allows the user to specify the type of polymorphic variables.
It allocates storage for each allocatable array, pointer object, or pointer-based variable
that appears in the statements; declares storage for deferred-shape arrays.

7.2.3. Sourced Allocation for Polymorphic Variables
Sourced allocation defines the type, type parameters, and value of a variable by using
the type, type parameters and value of another variable or expression. This type of
allocation produces a ‘clone’ of the source expression. To do this, use the ALLOCATE
statement, specifying the source of the values through the source= clause of that
statement.

7.2.4. Procedure Polymorphism
Procedure polymorphism occurs when a procedure, such as a function or a subroutine,
can take a variety of data types as arguments. In F2003, this procedure is one that has
one or more dummy arguments declared with the CLASS keyword.

In the following example, the setColor subroutine takes two arguments, sh
and color. The sh dummy argument is polymorphic, based on the usage of
class(shape).
subroutine setColor(sh, color)
 class(shape) :: sh
 integer :: color
 sh%color = color
 end subroutine setColor

The setColor subroutine takes two arguments, sh and color. The sh dummy argument
is polymorphic, based on the usage of class(shape).

The subroutine can operate on objects that satisfy the "is a" shape relationship. So,
setColor can be called with a shape, rectangle, square, or any future type extension
of shape. However, by default, only those components found in the declared type of
an object are accessible. For example, shape is the declared type of sh. Therefore, you
can only access the shape components, by default, for sh in setColor (i.e., sh%color, sh
%filled, sh%x, sh%y).

If a programmer needs to access the components of the dynamic type of an object,
the F2003 SELECT TYPE construct is useful. The following example illustrates how a
SELECT TYPE construct can access the components of a dynamic type of an object.

SELECT TYPE construct
subroutine initialize(sh, color, filled, x, y, length, width)

Object Oriented Programming

Fortran Reference Guide Version 2019 | 128

! initialize shape objects
class(shape) :: sh
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 integer, optional :: length
 integer, optional :: width

 sh%color = color
 sh%filled = filled
 sh%x = x
 sh%y = y

select type (sh)
type is (shape)
 ! no further initialization required
class is (rectangle)
 ! rectangle or square specific initializations
 if (present(length)) then
 sh%length = length
 else
 sh%length = 0
 endif
 if (present(width)) then
 sh%width = width
 else
 sh%width = 0
 endif
class default
 ! give error for unexpected/unsupported type
 stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize

The preceding example illustrates an initialization procedure for our shape example.
It takes one shape argument, sh, and a set of initial values for the components of sh.
Two optional arguments, length and width, are specified when we want to initialize a
rectangle or a square object.

SELECT TYPE Construct Type Checks

The SELECT TYPE construct allows us to perform a type check on an object. There are
two styles of type checks that we can perform.

‣ The first type check is called "type is". This type test is satisfied if the dynamic type
of the object is the same as the type specified in parentheses following the "type is"
keyword.

‣ The second type check is called "class is". This type test is satisfied if the dynamic
type of the object is the same or an extension of the specified type in parentheses
following the "class is" keyword.

In the example, if the type of sh is rectangle or square, then it initializes the length
and width fields. If the dynamic type of sh is not a shape, rectangle, or square, then it
executes the "class default" branch. This branch may also get executed if the shape type
is extended without updating the initialize subroutine.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 129

With the addition of a "class default" branch, the type is (shape) branch is needed,
even though it does not perform any additional assignments. Otherwise, this example
would incorrectly print an error message when sh is of type shape.

7.2.5. Procedure Polymorphism with Type-Bound
Procedures
Derived types in F2003 are considered objects because they encapsulate data as well as
procedures. Procedures encapsulated in a derived type are called type-bound procedures.
The following example illustrates how to add a type-bound procedure to shape:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape

F2003 added a contains keyword to its derived types to separate a type's data
definitions from its procedures. Anything that appears after the contains keyword in a
derived type must be a type-bound procedure declaration.

Syntax of type-bound procedure declaration:
PROCEDURE [(interface-name)] [[,binding-attr-list]::] binding-name[
=> procedure-name]

At the minimum, a type-bound procedure is declared with the PROCEDURE keyword
followed with a binding-name.

The binding-name is the name of the type-bound procedure.

The first option is interface-name.

The binding-attr-list option is a list of binding-attributes.

‣ PASS and NOPASS attributes allow the procedure to specify to which argument,
if any, the invoking object is passed. For example, pass(x) passes it to dummy
argument x, while nopass indicates not to pass it at all.

‣ NON_OVERRIDABLE attribute specifies that the type-bound procedure cannot be
overridden during type extension.

‣ PRIVATE and PUBLIC attributes determine where the type-bound procedures can
be referenced. The default is public, which allows the procedures to be referenced
anywhere in the program having that type of variable. If the procedure is private,
it can only be referenced from within the module in which it is defined.

‣ DEFERRED are type bound procedures that are declared in an abstract type, as
described in Abstract Types and Deferred Bindings, and must be defined in all of its
non-abstract type extensions.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 130

The procedure-name option is the name of the underlying procedure that implements
the type-bound procedure. This option is required if the name of the underlying
procedure differs from the binding-name. The procedure-name can be either a module
procedure or an external procedure with an explicit interface.

In the example SELECT TYPE construct, the binding-name is initialize. Because
procedure-name was not specified, an implicit procedure-name, initialize, is
also declared. Another way to write that example is procedure :: initialize =>
initialize.

Type-Bound Procedure using Module Procedure

The following example is a type-bound procedure that uses a module procedure.
module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, extends(shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, extends(rectangle) :: square
end type square
contains
subroutine initialize(sh, color, filled, x, y, length, width)
! initialize shape objects
class(shape) :: sh
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length
integer, optional :: width

sh%color = color
sh%filled = filled
sh%x = x
sh%y = y
select type (sh)
type is (shape)
 ! no further initialization required
class is (rectangle)
 ! rectangle or square specific initializations
 if (present(length)) then
 sh%length = length
 else
 sh%length = 0
 endif
 if (present(width)) then
 sh%width = width
 else
 sh%width = 0
 endif
class default
 ! give error for unexpected/unsupported type
 stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize

Object Oriented Programming

Fortran Reference Guide Version 2019 | 131

end module

Type-Bound Procedure using an External Procedure

The following example is a type-bound procedure that uses an external procedure with
an explicit interface:
module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, extends(shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, extends(rectangle) :: square
end type square
interface
 subroutine initialize(sh, color, filled, x, y, length, width)
 import shape
 class(shape) :: sh
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 integer, optional :: length
 integer, optional :: width
 end subroutine
end interface
end module

Using the preceding examples, we can invoke the type-bound procedure in the
following manner:
use shape_mod
type(shape) :: shp ! declare an instance of shape
call shp%initialize(1, .true., 10, 20) ! initialize shape

The syntax for invoking a type-bound procedure is very similar to accessing a data
component in a derived type. The name of the component is preceded by the variable
name separated by a percent (%) sign. In this case, the name of the component is
initialize and the name of the variable is shp. To access the initialize type-
bound procedure, type shp%initialize. Using the preceding invocation calls the
initialize subroutine and passes in 1 for color, .true. for filled, 10 for x, and 20
for y.

But what about the first dummy argument, sh, in initialize? This dummy argument is
known as the passed-object dummy argument. By default, the passed-object dummy is the
first dummy argument in the type-bound procedure. It receives the object that invoked
the type-bound procedure. In our example, sh is the passed-object dummy and the
invoking object is shp. Therefore, the shp object gets assigned to sh when initialize
is invoked.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 132

The passed-object dummy argument must be declared CLASS and of the same type as
the derived type that defined the type-bound procedure. For example, a type bound
procedure declared in shape must have a passed-object dummy argument declared
"class(shape)".

You can also specify a different passed-object dummy argument using the PASS
binding-attribute. For example, suppose that the sh dummy in our initialize subroutine
did not appear as the first argument. Then you must specify a PASS attribute, as
illustrated in the following code:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure, pass(sh) :: initialize
end type shape

If you do not want to specify a passed-object dummy argument, you can do so using the
NOPASS binding-attribute:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure, nopass :: initialize
end type shape

When you specify NOPASS, you invoke the type-bound procedure the same way. The
only difference is that the invoking object is not automatically assigned to a passed-
object dummy in the type-bound procedure. For example, if you were to specify
NOPASS in the initialize type-bound procedure, then you would invoke it this way:
type(shape) :: shp ! declare an instance of shape
call shp%initialize(shp, 1, .true., 10, 20) ! initialize shape

You explicitly specify shp for the first argument of initialize because it was declared
NOPASS.

7.2.6. Inheritance and Type-Bound Procedures
A child type inherits or reuses components from their parent or ancestor types. When
dealing with F2003 derived types, this inheritance applies to both data and procedures.
In the following example, rectangle and square both inherit the initialize type-
bound procedure from shape.
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width

Object Oriented Programming

Fortran Reference Guide Version 2019 | 133

end type rectangle
type, EXTENDS (rectangle) :: square
end type square

Using the example above, we can invoke initialize with a shape, rectangle, or square
object:
type(shape) :: shp ! declare an instance of shape
type(rectangle) :: rect ! declare an instance of rectangle
type(square) :: sq ! declare an instance of square
call shp%initialize(1, .true., 10, 20) ! initialize shape
call rect%initialize(2, .false., 100, 200, 50, 25) ! initialize rectangle
call sq%initialize(3, .false., 400, 500, 30, 20) ! initialize rectangle

7.2.7. Procedure Overriding
Most OOP languages allow a child object to override a procedure inherited from
its parent object. This is known as procedure overriding. In F2003, you can specify
a type-bound procedure in a child type that has the same binding-name as a type-
bound procedure in the parent type. When the child overrides a particular type-bound
procedure, the version defined in its derived type is invoked instead of the version
defined in the parent. In the following example, rectangle defines an initialize
type-bound procedure that overrides shape's initialize type-bound procedure.

module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize => initShape
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
 contains
 procedure :: initialize => initRectangle
end type rectangle
type, EXTENDS (rectangle) :: square
end type square
contains
subroutine initShape(this, color, filled, x, y, length, width)
! initialize shape objects
class(shape) :: this
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length ! ignored for shape
integer, optional :: width ! ignored for shape
this%color = color
this%filled = filled
this%x = x
this%y = y
end subroutine

subroutine initRectangle(this, color, filled, x, y, length, width)
! initialize rectangle objects
class(rectangle) :: this
integer :: color
logical :: filled
integer :: x
integer :: y

Object Oriented Programming

Fortran Reference Guide Version 2019 | 134

integer, optional :: length
integer, optional :: width
this%color = color
this%filled = filled
this%x = x
this%y = y
if (present(length)) then
 this%length = length
else
 this%length = 0
endif
if (present(width)) then
 this%width = width
else
 this%width = 0
endif
end subroutine
end module

The preceding example illustrates code that defines a type-bound procedure called
initialize for both shape and rectangle. The only difference is that shape's version
of initialize invokes a procedure called initShape while rectangle's version invokes
a procedure called initRectangle. The passed-object dummy in initShape is
declared "class(shape)" and the passed-object dummy in initRectangle is declared
"class(rectangle)".

A type-bound procedure's passed-object dummy must match the type of the derived type
that defined it. Other than differing passed-object dummy arguments, the interface for the
child's overriding type-bound procedure is identical with the interface for the parent's
type-bound procedure. Both type-bound procedures are invoked in the same manner:
type(shape) :: shp ! declare an instance of shape
type(rectangle) :: rect ! declare an instance of rectangle
type(square) :: sq ! declare an instance of square
call shp%initialize(1, .true., 10, 20) ! calls initShape
call rect%initialize(2, .false., 100, 200, 11, 22) ! calls initRectangle
call sq%initialize(3, .false., 400, 500) ! calls initRectangle

sq is declared square but its initialize type-bound procedure invokes initRectangle
because sq inherits the rectangle version of initialize.

Although a type may override a type-bound procedure, it is still possible to invoke the
version defined by a parent type. Each type extension contains an implicit parent object
of the same name and type as the parent. You can use this implicit parent object to access
components specific to a parent, say, a parent's version of a type-bound procedure, as
illustrated here:
call rect%shape%initialize(2, .false., 100, 200) ! calls initShape
call sq%rectangle%shape%initialize(3, .false., 400, 500) ! calls initShape

If you do not want a child to override a parent's type-bound procedure, you can use the
NON_OVERRIDABLE binding-attribute to prevent any type extensions from overriding
a particular type-bound procedure:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure, non_overridable :: initialize
end type shape

Object Oriented Programming

Fortran Reference Guide Version 2019 | 135

7.2.8. Functions as Type-Bound Procedures
In the preceding examples, subroutines implement type-bound procedures. You can
also implement type-bound procedures with functions. The following example uses a
function that queries the status of the filled component in shape.
module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: isFilled
end type shape
contains
 logical function isFilled(this)
 class(shape) :: this
 isFilled = this%filled
 end function
end module

You can invoke the preceding function in the following manner:
use shape_mod
type(shape) :: shp ! declare an instance of shape
logical filled
call shp%initialize(1, .true., 10, 20)
filled = shp%isFilled()

7.3. Information Hiding
In Procedure Overriding, you saw how a child type can override a parent's type-bound
procedure. This process allows a user to invoke a type-bound procedure without any
knowledge of the implementation details of that procedure. This is another important
feature of Object Oriented Programming know as information hiding.

Information hiding allows the programmer to view an object and its procedures as a
"black box". That is, the programmer can use (or reuse) an object without any knowledge
of the implementation details of the object.

Inquiry functions, like the isFilled function, shown in Functions as Type-Bound
Procedures, are common with information hiding. The motivation for inquiry functions,
rather than direct access to the underlying data, is that the object's implementer
can change the underlying data without affecting the programs that use the object.
Otherwise, each program that uses the object would need to be updated whenever the
underlying data of the object changes.

To enable information hiding, F2003 provides a PRIVATE keyword and binding-
attribute. To enable information hiding, F2003 also provides a PUBLIC keyword and
binding-attribute. By default, all derived type components are declared PUBLIC. The
PRIVATE keyword can be placed on derived type data and type-bound procedure
components and on module data and procedures. The following sample illustrates use
of PUBLIC and PRIVATE:

Object Oriented Programming

Fortran Reference Guide Version 2019 | 136

Code Using Private and Public
module shape_mod
private ! hide the type-bound procedure implementation procedures
public :: shape, constructor ! allow access to shape & constructor procedure
type shape
 private ! hide the underlying details
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 private ! hide the type bound procedures by default
 procedure :: initShape ! private type-bound procedure
 procedure, public :: isFilled ! allow access to isFilled type-bound
 procedure
 procedure, public :: print ! allow access to print type-bound procedure
end type shape
contains
logical function isFilled(this)
class(shape) :: this

isFilled = this%filled

end function

function constructor(color, filled, x, y)
type(shape) :: constructor
integer :: color
logical :: filled
integer :: x
integer :: y
 call constructor%initShape(color, filled, x, y)
end function
subroutine initShape(this, color, filled, x, y)
! initialize shape objects
class(shape) :: this
integer :: color
logical :: filled
integer :: x
integer :: y

this%color = color
this%filled = filled
this%x = x
this%y = y
end subroutine

subroutine print(this)
class(shape) :: this
print *, this%color, this%filled, this%x, this%y

end subroutine
end module

The preceding example uses information hiding in the host module as well as in the
shape type. The private statement, located at the top of the module, enables information
hiding on all module data and procedures. The isFilled module procedure, which
is not to be confused with the isFilled type-bound procedure, is hidden as a result
of the private statement at the top of the module. The public :: constructor
allows the user to invoke the constructor module procedure. There is also a private
statement on the data components of shape. Now, the only way a user can query the

Object Oriented Programming

Fortran Reference Guide Version 2019 | 137

filled component is through the isFilled type-bound procedure, which is declared
public.

Notice the private statement after the contains in type shape. The private that appears
after type shape only affects the data components of shape. If you want your type-bound
procedures to also be private, then a private statement must also be added after the
contains keyword. Otherwise, type-bound procedures are public by default.

In Code Using Private and Public, the initShape type-bound procedure is declared
private. Therefore, only procedures local to the host module can invoke a private type-
bound procedure. The constructor module procedure invokes the initShape type-
bound procedure. You may invoke this example in this way:
program shape_prg
use shape_mod
type(shape) :: sh
logical filled
sh = constructor(5, .true., 100, 200)
call sh%print()
end

Here is a sample compile and sample run of the preceding program. In this example, the
shape_mod module is saved in a file called shape.f03 and the main program is called
main.f03:
% pgfortran -V ; pgfortran shape.f03 main.f03 -o shapeTest
pgfortran 17.1-0 64-bit target on x86-64 Linux -tp haswell
PGI Compilers and Tools
Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
shape.f03:
main.f03:
% shapeTest
 5 T 100 200

7.3.1. Type Overloading
The example Code Using Private and Public creates an instance of shape by invoking a
function called constructor. This function hides the details for constructing a shape
object, including the underlying type-bound procedure that performs the initialization.
However, you may have noticed that the word constructor could very well be defined
somewhere else in the host program. If that is the case, the program cannot use our
module without renaming one of the constructor functions. Since OOP encourages
information hiding and code reusability, it would make more sense to come up with
a name that probably is not being defined in the host program. That name is the type
name of the object we are constructing.

F2003 allows the programmer to overload a name of a derived type with a generic
interface. The generic interface acts as a wrapper for our constructor function. The idea
is that the user would then construct a shape in the following manner:
program shape_prg
use shape_mod
type(shape) :: sh
logical filled
! invoke constructor through shape generic interface
sh = shape(5, .true., 100, 200)
call sh%print()
end

Object Oriented Programming

Fortran Reference Guide Version 2019 | 138

Here is the modified version of Code Using Private and Public that uses type
overloading:
module shape_mod
private ! hide the type-bound procedure implementation procedures
public :: shape ! allow access to shape
type shape
 private ! hide the underlying details
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 private ! hide the type bound procedures by default
 procedure :: initShape ! private type-bound procedure
 procedure, public :: isFilled ! allow access to isFilled type-bound procedure
end type shape
interface shape
procedure constructor ! add constructor to shape generic interface
end interface
contains
 :
 :
end module

The constructor function is now declared private and is invoked through the shape
public generic interface.

7.4. Data Polymorphism
As described in Polymorphic Entities, the class keyword allows F2003 programmers to
create a polymorphic variable, that is, a variable whose data type is dynamic at runtime.
Recall that the polymorphic variable must be a pointer variable, allocatable variable, or a
dummy argument.

7.4.1. Pointer Polymorphic Variables
The following example illustrates pointer polymorphic variables.
subroutine init(sh)
class(shape) :: sh ! polymorphic dummy argument
class(shape), pointer :: p ! polymorphic pointer variable
class(shape), allocatable:: als ! polymorphic allocatable variable
end subroutine

In the preceding example, the sh, p, and als polymorphic variables can each hold
values of type shape or any type extension of shape.

‣ The sh dummy argument receives its type and value from the actual argument to
sh of subroutine init(). In the same manner that polymorphic dummy arguments
form the basis to procedure polymorphism, polymorphic pointer and allocatable
variables form the basis to data polymorphism.

‣ The polymorphic pointer variable p can point to an object of type shape or any of
its extensions. For example, the select type construct in the following example
helps illustrate the fact that the polymorphic pointer, p, can take on several types.
In this case, p can point to a shape, rectangle, or square object. The dynamic type of

Object Oriented Programming

Fortran Reference Guide Version 2019 | 139

pointer p is not known until the pointer assignment, p => sh in this example, is
executed.
subroutine init(sh)
class(shape),target :: sh
class(shape), pointer :: p
select type (sh)
type is (shape)
 p => sh
 : ! shape specific code here
type is (rectangle)
 p => sh
 : ! rectangle specific code here
type is (square)
 p => sh
 : ! square specific code here
class default
 p => null()
end select
:
end subroutine

7.4.2. Allocatable Polymorphic Variables
The following example illustrates pointer polymorphic variables.

An allocatable polymorphic variable receives its type and optionally its value at the
point of its allocation. By default, the dynamic type of a polymorphic allocatable variable
is the same as its declared type after executing an allocate statement.

The following example allocates the polymorphic variable als. This variable receives
dynamic type shape after the ALLOCATE statement is executed.
class(shape), allocatable :: als
allocate(als)

Obviously there is not much use for polymorphic allocatable variables if you can only
specify the declared type in an allocate statement. Therefore, F2003 provides typed
allocation to allow the programmer to specify a type other than the declared type in an
allocate statement.

In the following allocate statement, notice that following the type is a :: and then the
variable name.
class(shape), allocatable :: als
allocate(rectangle::als)

In this example, rectangle is the dynamic type of variable als. However, the declared
type of als is still shape.

The type specification must be the same or a type extension of the declared type of the
allocatable variable. The following example illustrates how to allocate a polymorphic
variable with the same type of another object:
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
select type (sh)
type is (shape)
 allocate(shape::als)
type is (rectangle)
 allocate(rectangle::als)
type is (square)

Object Oriented Programming

Fortran Reference Guide Version 2019 | 140

 allocate(square::als)
end select
:
end subroutine

You can expand the preceding example to create a "copy" of an object, as shown here:
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
select type (sh)
type is (shape)
 allocate(shape::als)
 select type(als)
 type is (shape)
 als = sh ! copy sh
 end select
type is (rectangle)
 allocate(rectangle::als)
 select type (als)
 type is (rectangle)
 als = sh ! copy sh
 end select
type is (square)
 allocate(square::als)
 select type (als)
 type is (square)
 als = sh ! copy sh
 end select
end select
:
end subroutine

The programmer can only access the components of the declared type by default.
Therefore, in the preceding example, you can only access the shape components for
object als by default. To access the components of the dynamic type of object als
requires you to use a nested select type for object als.

The previous example illustrates one application of data polymorphism: making a
copy or a clone of an object. Unfortunately, this approach does not scale well if shape
has several type extensions. Further, whenever a type extension to shape is added, the
programmer must update the init() subroutine to include the new type extension. An
alternative to this is sourced allocation.

7.4.3. Sourced Allocation
Sourced allocation allows you to make an extra copy, or clone, of an object. In the
following example, the ALLOCATE statement allocates als with the same dynamic type
as sh and with the same value(s) of sh. The source= argument specifies the object that
you wish to clone.

The declared type of the source= must be the same or a type extension of the allocate
argument (e.g., als).
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
allocate(als, source=sh) ! als becomes a clone of sh
:
end subroutine

Object Oriented Programming

Fortran Reference Guide Version 2019 | 141

7.4.4. Unlimited Polymorphic Objects
Data polymorphism using derived types and their type extensions satisfies most
applications. However, sometimes you may want to write a procedure or a data
structure that can operate on any type, including any intrinsic or derived type. As
described in the section on procedure polymorphism, F2003 provides unlimited
polymorphic objects.

Here are some examples of unlimited polymorphic objects:
subroutine init(sh)
class(*) :: sh ! unlimited polymorphic dummy argument
class(*), pointer :: p ! unlimited polymorphic pointer variable
class(*), allocatable:: als ! unlimited polymorphic allocatable variable
end subroutine

You use the class(*) keyword to specify an unlimited polymorphic object declaration.
The operations for unlimited polymorphic objects are similar to those in the preceding
section for "limited" polymorphic objects. However, unlike "limited" polymorphic
objects, their "unlimited" counterparts can take any F2003 type.

The following example illustrates unlimited polymorphic objects that can be used with
procedure polymorphism:
subroutine init(sh)
class(*) :: sh
select type(sh)
type is (shape)
 : ! shape specific code
type is (integer)
 : ! integer specific code
type is (real)
 : ! real specific code
type is (complex)
 : ! complex specific code
end select
end subroutine

Similarly, you can assign any pointer or target to an unlimited polymorphic pointer,
regardless of type.

The following example shows sh assigned to pointer p. Then a select type construct
is used to query the dynamic type of pointer p.
subroutine init(sh)
class(*),target :: sh
class(*), pointer :: p
p => sh
select type(p)
class is (shape)
 : ! shape specific code
type is (integer)
 : ! integer specific code
type is (real)
 : ! real specific code
type is (complex)
 : ! complex specific code
end select
end subroutine

You can also use unlimited polymorphic objects with typed allocation. In fact, a type (or
source=) argument must be specified with the ALLOCATE statement since there is no

Object Oriented Programming

Fortran Reference Guide Version 2019 | 142

default type for class(*). However, unlike their "limited" counterparts, as illustrated
in the following example, you can specify any F2003 type, intrinsic or derived.
subroutine init(sh)
class(*) :: sh
class(*), allocatable :: als
select type(sh)
type is (shape)
 allocate(shape::als)
type is (integer)
 allocate(integer::als)
type is (real)
 allocate(real::als)
type is (complex)
 allocate(complex::als)
end select
:
end subroutine

Sourced allocation can also operate on unlimited polymorphic objects:
subroutine init(sh)
class(*) :: sh
class(*), allocatable :: als
allocate(als, source=sh) ! als becomes a clone of sh
:
end subroutine

If the source= argument is an unlimited polymorphic object (i.e., declared class(*)), the
allocate argument, in this example als, must also be an unlimited polymorphic object.

When the ALLOCATE argument is declared class(*), the declared type in the
source= argument can be any type including class(*), any derived type, or any
intrinsic type.

The following code demonstrates sourced allocation with an unlimited polymorphic
allocatable argument and an intrinsic typed source= argument.
class(*), allocatable :: als
integer i
i = 1234
allocate(als, source=i)

Data Polymorphic Linked List

One of the advantages to unlimited polymorphic objects is that you can create
data structures that operate on all data types, both intrinsic and derived in F2003.
Traditionally, data stored in a linked list all have the same data type. However, with
unlimited polymorphic objects, we can easily create a list that contains a variety of data
types and values.

This example creates data structures that can be used to create a heterogeneous list of
objects.

 1. Start by creating a derived type that will represent each link in our linked list.
type link
 class(*), pointer :: value => null()
 type(link), pointer :: next => null()
end type link

This basic link derived type contains an unlimited polymorphic pointer that points
to the value of the link followed by a pointer to the next link in the list.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 143

 2. Place this derived type into its own module, add a constructor, and add some type-
bound procedures to access the value(s).

Recall that information hiding allows others to use an object without understanding
its implementation details.
module link_mod
 private ! information hiding
 public :: link
 type link
 private ! information hiding
 class(*), pointer :: value => null()
 type(link), pointer :: next => null()
 contains
 procedure :: getValue ! get value in this link
 procedure :: nextLink ! get the link after this link
 procedure :: setNextLink ! set the link after this link
 end type link

 interface link
 procedure constructor
 end interface

contains
 function nextLink(this)
 class(link) :: this
 class(link), pointer :: nextLink
 nextLink => this%next
 end function nextLink
 subroutine setNextLink(this,next)
 class(link) :: this
 class(link), pointer :: next
 this%next => next
 end subroutine setNextLink
 function getValue(this)
 class(link) :: this
 class(*), pointer :: getValue
 getValue => this%value
 end function getValue
 function constructor(value, next)
 class(link),pointer :: constructor
 class(*) :: value
 class(link), pointer :: next
 allocate(constructor)
 constructor%next => next
 allocate(constructor%value, source=value)
 end function constructor
end module link_mod

This code uses the PRIVATE keyword. Therefore the user of the object must use the
getValue() function to access the values of each link in our list, the nextLink()
procedure to access the next link in the list, and setNextLink() to add a link after
a link. The getValue() function returns a pointer to a class(*), meaning it can
return an object of any type.

We employ type overloading for the constructor function. Recall that type
overloading allows you to create a generic interface with the same name as a derived
type. Therefore you can create a constructor function and hide it behind the name of
the type.

 3. Construct a link in the following manner:
class(link),pointer :: linkList

Object Oriented Programming

Fortran Reference Guide Version 2019 | 144

integer v
linkList => link(v, linkList%next)

Although you could easily create a linked list with just the preceding link object,
the real power of Object Oriented Programming lies in its ability to create flexible
and reusable components. However, the user must understand how the list is
constructed with the link object; in this example, the link constructor assigns its
result to the linkList pointer.

 4. To take advantage of OOP, create another object called list that acts as the
"Application Program Interface" or API to the linked list data structure.
type list
 class(link),pointer :: firstLink => null() ! first link in list
 class(link),pointer :: lastLink => null() ! last link in list
 contains
 procedure :: addInteger ! add integer to list
 procedure :: addChar ! add character to list
 procedure :: addReal ! add real to list
 procedure :: addValue ! add class(*) to list
 generic :: add => addInteger, addChar, addReal, addValue
end type list

The list derived type has two data components, firstlink, which points to the first
link in its list and lastLink which points to the last link in the list. The lastLink
pointer allows the user to easily add values to the end of the list.

There are four type-bound procedures called addInteger(), addChar(),
addReal(), and addValue(). You use the first three procedures to add an integer,
a character, and a real to the linked list respectively. The addValue() procedure
adds class(*) values to the list and is the main add routine. The addInteger(),
addChar(), and addReal() procedures are actually just wrappers to the addValue()
procedure.

The addInteger() procedure takes an integer value and allocates a class(*) with that
value using sourced allocation.
subroutine addInteger(this, value)
 class(list) :: this
 integer value
 class(*), allocatable :: v
 allocate(v,source=value)
 call this%addValue(v)
 end subroutine addInteger

The only difference between addInteger(), addChar(), and addReal() is the data
type dummy argument, value.

The value from the procedure is passed to the addValue() procedure:
subroutine addValue(this, value)
 class(list) :: this
 class(*), value
 class(link), pointer :: newLink
 if (.not. associated(this%firstLink)) then
 this%firstLink => link(value, this%firstLink)
 this%lastLink => this%firstLink
 else
 newLink => link(value, this%lastLink%nextLink())
 call this%lastLink%setNextLink(newLink)

Object Oriented Programming

Fortran Reference Guide Version 2019 | 145

 this%lastLink => newLink
 end if
 end subroutine addValue

The addValue() procedure takes two arguments; a list and a class(*). If the list's
firstlink is not associated (i.e., points to null()), then add the value to the start of
the list by assigning it to the list's firstlink pointer. Otherwise, add it after the list's
lastlink pointer.

Returning to the list type definition, notice the following statement:
generic :: add => addInteger, addChar, addReal, addValue

This statement uses an F2003 feature known as a generic-type bound procedure. These
procedures act very much like generic interfaces, except they are specified in the
derived-type and only type-bound procedures are permitted in the generic-set. You
define a type-bound procedure to be generic by defining a generic statement within the
type-bound procedure part. The statement is of the form:
generic [[, access-spec] ::] generic-spec => tbp-name-list

where tbp-name-list is a list of the specific type-bound procedures to be included in the
generic set. You can use these statements for named generics as well as for operators and
assignments.

In the preceding example, you can invoke the add type-bound procedure and either the
addInteger(), addChar(), addReal(), or addValue() implementations get called.
The compiler determines which procedure to invoke based on the data type of the actual
arguments. If you pass an integer to the value argument of add(), addInteger() is
invoked, a character value invokes addChar(), a real value invokes addReal(), and a
class(*) value invokes addValue()

Here is a simple program that adds values to a list and prints out the values. You can
download the complete list_mod and link_mod modules, which encapsulate the list
and link objects respectively.
program main
 use list_mod
 implicit none
 integer i
 type(list) :: my_list

 do i=1, 10
 call my_list%add(i)
 enddo
 call my_list%add(1.23)
 call my_list%add('A')
 call my_list%add('B')
 call my_list%add('C')
 call my_list%printvalues()
end program main

% pgfortran -c list.f90
% pgfortran -c link.f90
% pgfortran -V main.f90 list.o link.o
...
% a.out
 1
 2

http://www.pgroup.com/lit/samples/list.f90
http://www.pgroup.com/lit/samples/link.f90

Object Oriented Programming

Fortran Reference Guide Version 2019 | 146

 3
 4
 5
 6
 7
 8
 9
 10
 1.230000
 A
 B
 C

7.4.5. Abstract Types and Deferred Bindings
The example, Data Polymorphic Linked List, contained a list derived type that acted
as the API for a linked list. Rather than employ one implementation for the list derived
type, you could choose to define some of the components and type-bound procedures
for a list object and require the user to define the rest. One way to do this is through an
abstract type.

An abstract type is a derived type that cannot be instantiated. Instead, it is extended and
further defined by another type. The type extension can also be declared abstract, but
ultimately it must be extended by a non-abstract type if it ever is to be instantiated in a
program.

The following example illustrates a list type declared abstract:
module abstract_list_mod
:
type, abstract :: list
 private
 class(link),pointer :: firstLink => null() ! first link in list
 class(link),pointer :: lastLink => null() ! last link in list
 class(link),pointer :: currLink => null() ! list iterator
 contains
 procedure, non_overridable :: addValue ! add value to list
 procedure, non_overridable :: firstValue ! get first value in list
 procedure, non_overridable :: reset ! reset list iterator
 procedure, non_overridable :: next ! iterate to next value in list
 procedure, non_overridable :: currentValue! get current value in list
 procedure, non_overridable :: moreValues ! more values to iterate?
 generic :: add => addValue
 procedure(printValues), deferred :: printList ! print contents of list
 end type list
 abstract interface
 subroutine printValues(this)
 import list
 class(list) :: this
 end subroutine
 end interface
 :
 end module abstract_list_mod

The abstract list type in the preceding code uses the link type from Data Polymorphic
Linked List as its underlying data structure. This example has three data components,
firstLink, lastLink, and currLink.

‣ The firstLink component points to the first link in the list.
‣ The lastLink component points to the last link in the list.

Object Oriented Programming

Fortran Reference Guide Version 2019 | 147

‣ The currLink component points to the "current" link that we are processing in the
list. In other words, currLink acts as a list iterator that allows us to traverse the list
using inquiry functions. Without a list iterator, the user of this list type would need
to understand the underlying link data structure. Instead, the code takes advantage
of information hiding by providing a list iterator.

Our list type is declared abstract. Therefore, the following declaration and allocate
statements are invalid for list:
type(list) :: my_list ! invalid because list is abstract
allocate(list::x) ! invalid because list is abstract

On the other hand, you can use the abstract type in a class declaration since its dynamic
type can be a non-abstract type extension. In the following example, the usage of list is
valid because nothing is declared or allocated with type list. Instead, each variable is
some type extension of list.
subroutine list_stuff(my_list)
class(list) :: my_list
class(list), pointer :: p
class(list), allocatable :: a
select type (my_list)
type is (list)
:
end select
end subroutine

The preceding list type definition has the deferred binding added to the printValues
type-bound procedure. Deferred bindings allow the author of the abstract type to dictate
what procedures must be implemented by the user of the abstract type and what may or
may not be overridden. You can add the deferred binding to type-bound procedures that
are not defined in the abstract type, but these must be defined in all of its non-abstract
type extensions. F2003 also requires that a deferred binding have an interface (or an
abstract interface) associated with it.

You use the following syntax for deferred bindings:

procedure (interface-name), deferred :: procedure-name

Because deferred bindings have an interface associated with them, there is no =>
followed by an implementation-name allowed in the syntax. For example, procedure,
deferred :: foo => bar is not allowed.

The following module includes an integerList which extends the abstract type,
list, previously defined.
module integer_list_mod
:
 type, extends(list) :: integerList
 contains
 procedure :: addInteger
 procedure :: printList => printIntegerList
 generic :: add => addInteger
 end type integerList
:
end module integer_list_mod

In this example, printList() is defined as required by the deferred binding in list.
You can use the following implementation for the printList() type-bound procedure:
 subroutine printIntegerList(this)
 class(integerList) :: this

Object Oriented Programming

Fortran Reference Guide Version 2019 | 148

 class(*), pointer :: curr
 call this%reset() ! reset list iterator
 do while(this%moreValues()) ! loop while there are values to print
 curr => this%currentValue() ! get current value
 select type(curr)
 type is (integer)
 print *, curr ! print the integer
 end select
 call this%nextValue() ! increment the list iterator
 end do
 call this%reset() ! reset list iterator
 end subroutine printIntegerList

printIntegerList() prints the integers in the list. The list reset() procedure verifies
that the list iterator is at the beginning of the list. Then the subroutine loops through the
list, calling the list's moreValues() function to determine if our list iterator has reached
the end of the list. The list's currentValue() function gets the value to which the list
iterator is pointing. A select type accesses the integer value and prints it. Finally, the list's
nextValue() procedure increments the list iterator to access the next value.

The following sample program uses the abstract list and integerList types. The
sample program adds the integers one through ten to the list and then calls the
integerList's printList() procedure. Next, the program traverses the list, places the
integers into an array, and then prints out the array. You can download the complete
abstract_list_mod and integer_list_mod modules from the PGI website.

program main
 use integer_list_mod
 implicit none
 integer i
 type(integerList) :: my_list
 integer values(10)
 do i=1, 10
 call my_list%add(i)
 enddo
 call my_list%printList()
 print *
 call my_list%reset()
 i = 1
 do while(my_list%moreValues())
 values(i) = my_list%current()
 call my_list%next()
 i = i + 1
 end do
 print *, values
end program main

Here is a sample compile and run of the preceding program:
% pgfortran -c link.f90
% pgfortran -c abstract_list.f90
% pgfortran -c integerList.f90
% pgfortran -V main.f90 link.o abstract_list.o integerList.o
pgfortran 17.1-0 64-bit target on x86-64 Linux -tp haswell
PGI Compilers and Tools
Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.

% a.out
 1
 2
 3
 4
 5
 6

Object Oriented Programming

Fortran Reference Guide Version 2019 | 149

 7
 8
 9
 10
 1 2 3 4 5
6 7 8 9 10

7.5. IEEE Modules
PGI 2019 supports the Fortran IEEE standard intrinsic modules ieee_arithmetic,
ieee_exceptions, and ieee_features.

‣ ieee_arithmetic affects the manner in which code is compiled in the scoping
units.

‣ ieee_exceptions specifies accessibility of overflow and divide-by-zero flags as
well as determines the level of support for other exceptions.

‣ ieee_features supports specification of essential IEEE features. It provides access
to one derived type and a collection of named constants of this type that affect the
manner in which code is compiled in the scoping units.

For details on each of these modules, refer to Intrinsic Modules.

7.6. Intrinsic Functions
The following table lists the Fortran 2003 intrinsic functions available to facilitate an
object-oriented approach to programming. A more complete description of each of these
intrinsics is available in Fortran Intrinsics.

Table 32 Fortran 2003 Functions and Procedures

Generic Name Purpose
Num.
Args Argument Type Result Type

EXTENDS_TYPE_OF Determines whether the
dynamic type of A is an
extension type of the
dynamic type of B.

2 Objects of extensible
type

LOGICAL
SCALAR

MOVE_ALLOC Moves an allocation from
one allocatable object to
another.

2 Any - of same type and
rank

none

SAME_TYPE_AS Determines whether the
dynamic type of A is the
same as the dynamic type
of B.

2 Objects of extensible
type

LOGICAL
SCALAR

Fortran Reference Guide Version 2019 | 150

Chapter 8.
OPENMP DIRECTIVES FOR FORTRAN

The PGF77 and PGFORTRAN compilers support the OpenMP Fortran Application
Program Interface. The OpenMP shared-memory parallel programming model is
defined by a collection of compiler directives, library routines, and environment
variables that can be used to specify shared-memory parallelism in Fortran programs.

The directives include a parallel region construct for writing coarse grain SPMD
programs, work-sharing constructs which specify that DO loop iterations should be
split among the available threads of execution, and synchronization constructs. The data
environment is controlled using clauses on the directives or with additional directives.
Runtime library routines are provided to query the parallel runtime environment,
for example to determine how many threads are participating in execution of a
parallel region. Finally, environment variables are provided to control the execution
behavior of parallel programs. For more information, see the OpenMP website, http://
www.openmp.org.

For an introduction to how to execute programs that use multiple processors along with
some pointers to example code, refer to ‘Parallel Programming Using PGI Compilers’
in the PGI Compiler User's Guide, www.pgroup.com/resources/docs/19.1/pdf/pgi19ug-
x86.pdf.

8.1. OpenMP Overview
Let’s look at the OpenMP shared-memory parallel programming model and some
common OpenMP terminology.

8.1.1. OpenMP Shared-Memory Parallel Programming
Model
The OpenMP shared-memory programming model is a collection of compiler directives,
library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran, C and C++ programs.

http://www.openmp.org
http://www.openmp.org

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 151

Fortran directives
Allow users to place hints in the source code to help the compiler generate more
efficient code. You typically use directives to control the actions of the compiler in a
particular portion of a program without affecting the program as a whole. You place
them in your source code where you want them to take effect; and they usually stay
in effect from the point where included until the end of the compilation unit or until
another directive or C/C++ pragma changes its status.

Fortran directives and C/C++ pragmas include a parallel region construct for
writing coarse grain SPMD programs, work-sharing constructs which specify that
DO loop iterations should be split among the available threads of execution, and
synchronization constructs.

The data environment is controlled either by using clauses on the directives or
with additional directives.

Runtime library routines
Are available to query the parallel runtime environment, for example to determine
how many threads are participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more
information, see the OpenMP website at http://www.openmp.org.

8.1.2. Terminology
For OpenMP 3.0 there are a number of terms for which it is useful to have common
definitions.
Thread

An execution entity with a stack and associated static memory, called threadprivate
memory.

‣ An OpenMP thread is a thread that is managed by the OpenMP runtime system.
‣ A thread-safe routine is a routine that performs the intended function even when

executed concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as
well as any implicit code introduced by the OpenMP implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, a
region is encountered during the execution of another region. PGI currently does not
support nested parallel regions.

Parallel region
In OpenMP 3.0 there is a distinction between a parallel region and an active parallel
region. A parallel region can be either inactive or active.

‣ An inactive parallel region is executed by a single thread.

http://www.openmp.org
http://www.openmp.org

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 152

‣ An active parallel region is a parallel region that is executed by a team consisting
of more than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and
OpenMP 3.0. In OpenMP 2.5, the definition was a parallel region whose IF
clause evaluates to true. To examine the significance of this change, look at
the following example:
 program test
 logical omp_in_parallel

!$omp parallel
 print *, omp_in_parallel()
!$omp end parallel

 stop
 end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP
2.5, this program yields T while in OpenMP 3.0, the program yields F. In
OpenMP 3.0, execution is not occurring by more than one thread. Therefore,
change in this definition may mean previous programs require modification.

Task
A specific instance of executable code and its data environment, generated when a
thread encounters a task construct or a parallel construct.

8.1.3. OpenMP Example
Look at the following simple OpenMP example involving loops.

OpenMP Loop Example
 PROGRAM MAIN
 INTEGER I, N, OMP_GET_THREAD_NUM
 REAL*8 V(1000), GSUM, LSUM

 GSUM = 0.0D0
 N = 1000

 DO I = 1, N
 V(I) = DBLE(I)
 ENDDO

!$OMP PARALLEL PRIVATE(I,LSUM) SHARED(V,GSUM,N)
 LSUM = 0.0D0
!$OMP DO
 DO I = 1, N
 LSUM = LSUM + V(I)
 ENDDO
!$OMP END DO
!$OMP CRITICAL
 print *, "Thread ",OMP_GET_THREAD_NUM()," local sum: ",LSUM
 GSUM = GSUM + LSUM
!$OMP END CRITICAL
!$OMP END PARALLEL

 PRINT *, "Global Sum: ",GSUM

 STOP
 END

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 153

If you execute this example with the environment variable OMP_NUM_THREADS set to
4, then the output looks similar to this:
Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000
FORTRAN STOP

8.2. Task Overview
Every part of an OpenMP program is part of a task. A task, whose execution can be
performed immediately or delayed.

In the following sections, we use this terminology:
Task

The package of code and instructions for allocating data created when a thread
encounters a task construct. A task can be implicit or explicit.

‣ An explicit task is a task generated when a task construct is encountered during
execution.

‣ An implicit task is a task generated by the implicit parallel region or generated
when a parallel construct is encountered during execution.

Task construct
A task directive plus a structured block

Task region
The dynamic sequence of instructions produced by the execution of a task by a
thread.

8.3. Tasks
Every part of an OpenMP program is part of a task. Task Overview provides a general
overview of tasks and general terminology associated with tasks. This section provides
more detailed information about tasks, including tasks scheduling points and the task
construct.

8.3.1. Task Characteristics and Activities
A task, whose execution can be performed immediately or delayed, has these
characteristics:

‣ Code to execute
‣ A data environment - that is, it owns its data
‣ An assigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

‣ Packaging: Each encountering thread packages a new instance of a task - code and
data.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 154

‣ Execution: Some thread in the team executes the task at some later time.

8.3.2. Task Scheduling Points
PGI currently supports four task scheduling points: at the beginning of a task, at the end
of a task, a taskwait, and at a barrier.
Beginning of a task.

At the beginning of a task, the task can be executed immediately or registered for
later execution. A programmer-specified "if" clause that is FALSE forces immediate
execution of the task. The implementation can also force immediate execution;
for example, a task within a task is never registered for later execution, it executes
immediately.

End of a task
At the end of a task, the behavior of the scheduling point depends on how the task
was executed. If the task was immediately executed, execution continues to the next
statement. If it was previously registered and is being executed "out of sequence",
control returns to where the task was executed - a taskwait.

Taskwait
A taskwait executes all registered tasks at the time it is called. In addition to executing
all tasks registered by the calling thread, it also executes tasks previously registered
by other threads. Let’s take a quick look at this process.

Suppose thread 0 called taskwait and is executing tasks and that thread 1 is
registering tasks. Depending on the timing between thread 0 and thread 1, thread 0
may execute none of the tasks, all of the tasks, or some of tasks.

Taskwait waits only for immediate children tasks, not for descendant tasks. You
can achieve waiting on descendants but ensuring that each child also waits on its
children.

Barrier
A barrier can be explicit or implicit. An example of an implicit barrier is the end of a
parallel region.

The barrier effectively contains taskwaits. All threads must arrive at the barrier for
the barrier to complete. This rule guarantees that all tasks have been executed at the
completion of the barrier.

8.3.3. Task Construct
A task construct is a task directive plus a structured block, with the following syntax:
#pragma omp task [clause[[,]clause] ...]
 structured-block

where clause can be one of the following:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 155

Consider the following simple example of a program using tasks. This example
illustrates the difference between registering tasks and executing tasks, a concept that is
fundamental to understanding tasks.

This program contains a parallel region that contains a single region. The single region
contains a loop that registers 10 tasks. Before reading the explanation that follows the
example, consider what happens if you use four threads with this example.

OpenMP Task Fortran Example
 PROGRAM MAIN
 INTEGER I
 INTEGER omp_get_thread_num
!$OMP PARALLEL PRIVATE(I)
!$OMP SINGLE
 DO I = 1, 10
 CALL SLEEP(MOD(I,2))
 PRINT *,"TASK ",I," REGISTERED BY THREAD ",omp_get_thread_num()
!$OMP TASK FIRSTPRIVATE(I)
 CALL SLEEP(MOD(I,5))
 PRINT *,"TASK ",I," EXECUTED BY THREAD ",omp_get_thread_num()
!$OMP END TASK
 ENDDO
!$OMP END SINGLE
!$OMP END PARALLEL
 END

If you run this program with four threads, 0 through 3, one thread is in the single region
registering tasks. The other three threads are in the implied barrier at the end of the
single region executing tasks. Further, when the thread executing the single region
completes registering the tasks, it joins the other threads and executes tasks.

The program includes calls to sleep to slow the program and allow all threads to
participate.

The output for the Fortran example is similar to the following. In this output, thread 1
was registering tasks while the other three threads - 0,2, and 3 - were executing tasks
When all 10 tasks were registered, thread 1 began executing tasks as well.
TASK 1 REGISTERED BY THREAD 1
TASK 2 REGISTERED BY THREAD 1
TASK 1 EXECUTED BY THREAD 0
TASK 3 REGISTERED BY THREAD 1
TASK 4 REGISTERED BY THREAD 1
TASK 2 EXECUTED BY THREAD 3
TASK 5 REGISTERED BY THREAD 1
TASK 6 REGISTERED BY THREAD 1
TASK 6 EXECUTED BY THREAD 3
TASK 5 EXECUTED BY THREAD 3
TASK 7 REGISTERED BY THREAD 1
TASK 8 REGISTERED BY THREAD 1
TASK 3 EXECUTED BY THREAD 0
TASK 9 REGISTERED BY THREAD 1
TASK 10 REGISTERED BY THREAD 1
TASK 10 EXECUTED BY THREAD 1
TASK 4 EXECUTED BY THREAD 2
TASK 7 EXECUTED BY THREAD 0
TASK 8 EXECUTED BY THREAD 3
TASK 9 EXECUTED BY THREAD 1

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 156

8.4. Parallelization Directives
Parallelization directives are comments in a program that are interpreted by the PGI
Fortran compilers when the option -mp is specified on the command line. The form of a
parallelization directive is:
sentinel directive_name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must
comply with these rules:

‣ Be one of these: !OMP, COMP, or *$OMP.
‣ Must start in column 1 (one).
‣ Must appear as a single word without embedded white space.
‣ The sentinel marking a DOACROSS directive is C$.

In addition to the sentinel rules, the directive must also comply with these rules:

‣ Standard Fortran syntax restrictions, such as line length, case insensitivity, and so
on, apply to the directive line.

‣ Initial directive lines must have a space or zero in column six.
‣ Continuation directive lines must have a character other than a space or a zero in

column six. Continuation lines for C$DOACROSS directives are specified using the
C$& sentinel.

‣ Directives which are presented in pairs must be used in pairs.

Valid clauses depend on the directive. Clauses associated with directives have these
characteristics:

‣ The order in which clauses appear in the parallelization directives is not significant.
‣ Commas separate clauses within the directives, but commas are not allowed

between the directive name and the first clause.
‣ Clauses on directives may be repeated as needed, subject to the restrictions listed in

the description of each clause.

8.5. Directive Recognition
The compiler option -mp enables recognition of the parallelization directives. The use of
this option also implies:
-Mreentrant

Local variables are placed on the stack and optimizations, such as -Mnoframe, that
may result in non-reentrant code are disabled.

-Miomutex
Critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the
examples given with each section, the routines omp_get_num_threads() and
omp_get_thread_num() are used; refer to Runtime Library Routines for more

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 157

information. These routines return the number of threads currently in the team
executing the parallel region and the thread number within the team, respectively.

8.6. Directive Clauses
Some directives accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all
directives, so the clauses that are valid are included with the description of the directive.
Typically, if no data scope clause is specified for variables, the default scope is share

The following table provides a brief summary of the clauses associated with OpenMP
directives that PGI supports. Following the table is more detailed information about
these clauses. For complete information on OpenMP and use of these clauses, refer to the
User’s Guide and to the OpenMP documentation available on the WorldWide Web.

Table 33 Directive Clauses Summary Table

Clause Applies to Description

COLLAPSE (n) DO...END DO
PARALLEL DO ...
END PARALLEL DO
PARALLEL WORKSHARE

Specifies how many loops are associated with
the loop construct.

COPYIN (list) PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE

Allows threads to access the master thread's
value, for a threadprivate variable. You assign
the same value to threadprivate variables
for each thread in the team executing the
parallel region. Then, for each variable
specified, the value of the variable in the
master thread of the team is copied to the
threadprivate copies at the beginning of the
parallel region.

COPYPRIVATE(list) END SINGLE Specifies that one or more variables should
be shared among all threads. This clause
provides a mechanism to use a private
variable to broadcast a value from one
member of a team to the other members.

DEFAULT PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE

Specifies the behavior of unscoped variables
in a parallel region, such as the data-sharing
attributes of variables.

COPYPRIVATE(list) DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...

Specifies that each thread should have its
own instance of a variable, and that each
variable in the list should be initialized with
the value of the original variable, because it
exists before the parallel construct.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 158

Clause Applies to Description

END PARALLEL
SECTIONS
PARALLEL WORKSHARE
SECTIONS
SINGLE

IF() PARALLEL ... END
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE

Specifies whether a loop should be executed
in parallel or in serial.

LASTPRIVATE(list) DO
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
SECTIONS

Specifies that the enclosing context's version
of the variable is set equal to the private
version of whichever thread executes the
final iteration of a for-loop construct.

NOWAIT DO ... END DO
SECTIONS
SINGLE
WORKSHARE ...
END WORKSHARE

Overrides the barrier implicit in a directive.

NUM_THREADS PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE

Sets the number of threads in a thread team.

ORDERED DO...END DO
PARALLEL DO ...
END PARALLEL DO

Required on a parallel FOR statement if an
ordered directive is used in the loop.

PRIVATE DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE
SECTIONS

Specifies that each thread should have its
own instance of a variable.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 159

Clause Applies to Description

SINGLE

REDUCTION({operator |
intrinsic } : list)

DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE
SECTIONS

Specifies that one or more variables that are
private to each thread are the subject of a
reduction operation at the end of the parallel
region.

SCHEDULE(type [,chunk]) DO ... END DO
PARALLEL DO...
END PARALLEL DO

Applies to the FOR directive, allowing the
user to specify the chunking method for
parallelization. Work is assigned to threads
in different manners depending on the
scheduling type or chunk size used.

SHARED PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL WORKSHARE

Specifies that one or more variables should be
shared among all threads. All threads within a
team access the same storage area for shared
variables

UNTIED TASK
TASKWAIT

Specifies that any thread in the team can
resume the task region after a suspension.

8.6.1. COLLAPSE (n)
The COLLAPSE(n) clause specifies how many loops are associated with the loop
construct.

The parameter of the collapse clause must be a constant positive integer expression. If no
COLLAPSE clause is present, the only loop that is associated with the loop construct is
the one that immediately follows the construct.

If more than one loop is associated with the loop construct, then the iterations of all
associated loops are collapsed into one larger iteration space, which is then divided
according to the schedule clause. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the collapsed iteration space.

If the loop directive contains a COLLAPSE clause then there may be more than one
associated loop.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 160

8.6.2. COPYIN (list)
The COPYIN(list) clause allows threads to access the master thread's value, for a
threadprivate variable. You assign the same value to threadprivate variables for each
thread in the team executing the parallel region; that is, for each variable specified, the
value of the variable in the master thread of the team is copied to the threadprivate
copies at the beginning of the parallel region.

The COPYIN clause applies only to THREADPRIVATE common blocks. If you specify a
COPYIN clause, here are a few tips:

‣ You cannot specify the same entity name more than once in the list.
‣ You cannot specify the same entity name in separate COPYIN clauses of the same

directive.
‣ You cannot specify both a common block name and any variable within that same

named common block in the list.
‣ You cannot specify both a common block name and any variable within that same

named common block in separate COPYIN clauses of the same directive.

8.6.3. COPYPRIVATE(list)
The COPYPRIVATE(list) clause specifies that one or more variables should be shared
among all threads. This clause provides a mechanism to use a private variable to
broadcast a value from one member of a team to the other members.

You use a COPYPRIVATE(list) clause on an END SINGLE directive to cause the
variables in the list to be copied from the private copies in the single thread that executes
the SINGLE region to the other copies in all other threads of the team at the end of the
SINGLE region.

The COPYPRIVATE clause must not appear on the same END SINGLE directive as a
NOWAIT clause.

The compiler evaluates a COPYPRIVATE clause before any threads have passed the
implied BARRIER directive at the end of that construct.

8.6.4. DEFAULT
The DEFAULT clause specifies the behavior of unscoped variables in a parallel region,
such as the data-sharing attributes of variables. The DEFAULT clause lets you specify
the default attribute for variables in the lexical extent of the parallel region. Individual
clauses specifying PRIVATE, SHARED, and so on, override the declared DEFAULT.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 161

Specifying DEFAULT(NONE) declares that there is no implicit default. With this
declaration, each variable in the parallel region must be explicitly listed with an attribute
of PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION.

8.6.5. FIRSTPRIVATE(list)
The FIRSTPRIVATE(list) clause specifies that each thread should have its own instance
of a variable, and that each variable in the list should be initialized with the value of the
original variable, because it exists before the parallel construct.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same
semantics as PRIVATE variables; however, these variables are initialized from the
original object that exists prior to entering the parallel region.

If a directive construct contains a FIRSTPRIVATE argument to a Message Passing
Interface (MPI) routine performing non-blocking communication, the MPI
communication must complete before the end of the construct.

8.6.6. IF()
The IF() clause specifies whether a loop should be executed in parallel or in serial.

In the presence of an IF clause, the parallel region is executed in parallel only if the
corresponding scalar_logical_expression evaluates to .TRUE.. Otherwise, the
code within the region is executed by a single processor, regardless of the value of the
environment variable OMP_NUM_THREADS.

8.6.7. LASTPRIVATE(list)
The LASTPRIVATE(list) clause specifies that the enclosing context's version of the
variable is set equal to the private version of whichever thread executes the final iteration
(for-loop construct).

8.6.8. NOWAIT
The NOWAIT clause overrides the barrier implicit in a directive. When you specify
NOWAIT, it removes the implicit barrier synchronization at the end of a for or sections
construct.

8.6.9. NUM_THREADS
The NUM_THREADS clause sets the number of threads in a thread team. The
num_threads clause allows a user to request a specific number of threads for a parallel
construct. If the num_threads clause is present, then

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 162

8.6.10. ORDERED
The ORDERED clause specifies that a loop is executed in the order of the loop iterations.
This clause is required on a parallel FOR statement when an ordered directive is used in
the loop.

You use this clause in conjunction with a DO or SECTIONS construct to impose a serial
order on the execution of a section of code. If ORDERED constructs are contained in
the dynamic extent of the DO construct, the ordered clause must be present on the DO
directive.

8.6.11. PRIVATE
The PRIVATE clause specifies that each thread should have its own instance of a
variable. Therefore, variables specified in a PRIVATE list are private to each thread in a
team. In effect, the compiler creates a separate copy of each of these variables for each
thread in the team. When an assignment to a private variable occurs, each thread assigns
to its local copy of the variable. When operations involving a private variable occur, each
thread performs the operations using its local copy of the variable.

Tips about private variables:

‣ Variables declared private in a parallel region are undefined upon entry to the
parallel region. If the first use of a private variable within the parallel region is
in a right-hand-side expression, the results of the expression will be undefined,
indicating the probability of a coding error.

‣ Variables declared private in a parallel region are undefined when serial execution
resumes at the end of the parallel region.

8.6.12. REDUCTION
The REDUCTION clause specifies that one or more variables that are private to each
thread are the subject of a reduction operation at the end of the parallel region. updates
named variables declared on the clause within the directive construct.

Intermediate values of REDUCTION variables are not used within the parallel construct,
other than in the updates themselves.Variables that appear in the list of a REDUCTION
clause must be SHARED. A private copy of each variable in list is created for each
thread as if the PRIVATE clause had been specified. Each private copy is initialized
according to the operator as specified in the following table:

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 163

Table 34 Initialization of REDUCTION Variables

Operator /
Intrinsic Initialization

Operator /
Intrinsic Initialization

+ 0 .NEQV. .FALSE.

* 1 MAX Smallest representable number

- 0 MIN Largest representable number

.AND. .TRUE. IAND All bits on

.OR. .FALSE. IOR 0

.EQV. .TRUE. IEOR 0

At the end of the parallel region, a reduction is performed on the instances of variables
appearing in list using operator or intrinsic as specified in the REDUCTION clause.
The initial value of each REDUCTION variable is included in the reduction operation.
If the {operator | intrinsic}: portion of the REDUCTION clause is omitted, the
default reduction operator is "+" (addition).

8.6.13. SCHEDULE
The SCHEDULE clause specifies how iterations of the DO loop are divided up between
processors. Given a SCHEDULE (type [, chunk]) clause, the type can be STATIC,
DYNAMIC, GUIDED, or RUNTIME, defined in the following list.

‣ When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in
contiguous blocks of size chunk. The blocks of iterations are statically assigned to
threads in a round-robin fashion in order of the thread ID numbers. The chunk
must be a scalar integer expression. If chunk is not specified, a default chunk size is
chosen equal to:
(number_of_iterations + omp_num_threads() - 1) / omp_num_threads()

‣ When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in
contiguous blocks of size chunk. As each thread finishes a piece of the iteration
space, it dynamically obtains the next set of iterations. The chunk must be a scalar
integer expression. If no chunk is specified, a default chunk size is chosen equal to 1.

‣ When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an
exponentially decreasing manner with each dispatched piece of the iteration space.
Chunk specifies the minimum number of iterations to dispatch each time, except
when there are less than chunk iterations remaining to be processed, at which point
all remaining iterations are assigned. If no chunk is specified, a default chunk size is
chosen equal to 1.

‣ When SCHEDULE (RUNTIME) is specified, the decision regarding iteration
scheduling is deferred until runtime. The schedule type and chunk size can

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 164

be chosen at runtime by setting the OMP_SCHEDULE environment variable.
If this environment variable is not set, the resulting schedule is equivalent to
SCHEDULE(STATIC).

8.6.14. SHARED
The SHARED clause specifies variables that must be available to all threads. If you
specify a variable as SHARED, you are stating that all threads can safely share a single
copy of the variable. When one or more variables are shared among all threads, all
threads access the same storage area for the shared variables.

8.6.15. UNTIED
The UNTIED clause specifies that any thread in the team can resume the task region
after a suspension.

The thread number may change at any time during the execution of an untied task.
Therefore, the value returned by omp_get_thread_num is generally not useful
during execution of such a task region.

8.7. Directive Summary Table
Table 35 provides a brief summary of the directives and pragmas that PGI supports.

Table 35 Directive Summary Table

Directive Description

ATOMIC [TYPE} ... END ATOMIC Semantically equivalent to enclosing a single statement in the
CRITCIAL...END CRITICAL directive.

TYPE may be empty or one of the following: UPDATE, READ, WRITE,
or CAPTURE. The END ATOMIC directive is only allowed when ending
ATOMIC CAPTURE regions.

Only certain statements are allowed.

BARRIER Synchronizes all threads at a specific point in a program so that all
threads complete work to that point before any thread continues.

CRITICAL ... END CRITICAL Defines a subsection of code within a parallel region, a critical
section, which is executed one thread at a time.

DO...END DO Provides a mechanism for distribution of loop iterations across the
available threads in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it
applies, even though that loop is not contained within a parallel
region.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 165

Directive Description

FLUSH When this appears, all processor-visible data items, or, when a list
is present (FLUSH [list]), only those specified in the list, are written
to memory, thus ensuring that all the threads in a team have a
consistent view of certain objects in memory.

MASTER ... END MASTER Designates code that executes on the master thread and that is
skipped by the other threads.

ORDERED Defines a code block that is executed by only one thread at a time,
and in the order of the loop iterations; this makes the ordered code
block sequential, while allowing parallel execution of statements
outside the code block.

PARALLEL DO Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL Supports a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered.

PARALLEL SECTIONS Defines a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE directive
inside a PARALLEL construct.

SECTIONS ... END SECTIONS Defines a non-iterative work-sharing construct within a parallel
region.

SINGLE ... END SINGLE Designates code that executes on a single thread and that is skipped
by the other threads.

TASK Defines an explicit task.

TASKYIELD Specifies a scheduling point for a task where the currently executing
task may be yielded, and a different deferred task may be executed.

TASKWAIT Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

THREADPRIVATE When a common block or variable that is initialized appears in this
directive, each thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE Provides a mechanism to effect parallel execution of non-iterative
but implicitly data parallel constructs.

8.7.1. ATOMIC
The OpenMP ATOMIC directive is semantically equivalent to a single statement in a
CRITICAL...END CRITICAL directive.

Syntax
!$OMP ATOMIC

Usage

The ATOMIC directive is semantically equivalent to enclosing the following single
statement in a CRITICAL / END CRITICAL directive pair.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 166

The statements must be one of the following forms:

 x = x operator expr

 x = expr operator x

 x = intrinsic (x, expr)

 x = intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not
reference x, intrinsic is one of MAX, MIN, IAND, IOR, or IEOR, and operator is
one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..

8.7.2. BARRIER
The OpenMP BARRIER directive defines a point in a program where each thread waits
for all other threads to arrive before continuing with program execution.

Syntax
!$OMP BARRIER

Usage

There may be occasions in a parallel region when it is necessary that all threads
complete work to that point before any thread is allowed to continue. The BARRIER
directive synchronizes all threads at such a point in a program. Multiple barrier points
are allowed within a parallel region. The BARRIER directive must either be executed by
all threads executing the parallel region or by none of them.

8.7.3. CRITICAL ... END CRITICAL
The CRITICAL...END CRITICAL directive requires a thread to wait until no other thread
is executing within a critical section.

Syntax
!$OMP CRITICAL [(name)]
 < Fortran code executed in body of critical section >
!$OMP END CRITICAL [(name)]

Usage

Within a parallel region, there may exist subregions of code that will not execute
properly when executed by multiple threads simultaneously. This issue is often due to a
shared variable that is written and then read again.

The CRITICAL... END CRITICAL directive pair defines a subsection of code within a
parallel region, referred to as a critical section, which is executed one thread at a time.

The first thread to arrive at a critical section is the first to execute the code within the
section. The second thread to arrive does not begin execution of statements in the critical
section until the first thread exits the critical section. Likewise, each of the remaining
threads wait its turn to execute the statements in the critical section.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 167

You can use the optional name argument to identify the critical region. Names that
identify critical regions have external linkage and are in a name space separate from the
name spaces used by labels, tags, members, and ordinary identifiers. If a name argument
appears on a CRITICAL directive, the same name must appear on the END CRITICAL
directive.

Critical sections cannot be nested, and any such specifications are ignored. Branching
into or out of a critical section is illegal.

Example of Critical...End Critical directive

 PROGRAM CRITICAL_USE
 REAL A(100,100),MX, LMX
 INTEGER I, J MX = -1.0
 LMX = -1.0
 CALL RANDOM_SEED()
 CALL RANDOM_NUMBER(A)
!$OMP PARALLEL PRIVATE(I), FIRSTPRIVATE(LMX)
!$OMP DO
 DO J=1,100
 DO I=1,100
 LMX = MAX(A(I,J),LMX)
 ENDDO ENDDO
!$OMP CRITICAL
 MX = MAX(MX,LMX)
!$OMP END CRITICAL
!$OMP END PARALLEL
 PRINT *,"MAX VALUE OF A IS ", MX
 END

This program could also be implemented without the critical region by declaring MX as
a reduction variable and performing the MAX calculation in the loop using MX directly
rather than using LMX. Refer to PARALLEL...END PARALLEL and DO...END DO for
more information on how to use the REDUCTION clause on a parallel DO loop.

8.7.4. C\$DOACROSS
The C$DOACROSS directive, while not part of the OpenMP standard, is supported for
compatibility with programs parallelized using legacy SGI-style directives.

Syntax
C$DOACROSS [Clauses]
 < Fortran DO loop to be executed in parallel >

Clauses

{PRIVATE | LOCAL} (list)

{SHARED | SHARE} (list)

MP_SCHEDTYPE={SIMPLE | INTERLEAVE}

CHUNK=<integer_expression>

IF (logical_expression)

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 168

Usage

The C$DOACROSS directive has the effect of a combined parallel region and parallel
DO loop applied to the loop immediately following the directive. It is very similar to the
OpenMP PARALLEL DO directive, but provides for backward compatibility with codes
parallelized for SGI systems prior to the OpenMP standardization effort.

The C$DOACROSS directive must not appear within a parallel region. It is a shorthand
notation that tells the compiler to parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

Important While The C$DOACROSS syntax may be more convenient, if multiple
successive DO loops are to be parallelized, it is more efficient to define a single
enclosing parallel region and parallelize each loop using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as
a private variable in a parallel region or DO. A variable declared SHARED or SHARE
to a C$DOACROSS loop is shared among the threads, meaning that only 1 copy of the
variable exists to be used and/or modified by all of the threads. This is equivalent to the
default status of a variable that is not listed as PRIVATE in a parallel region or DO. This
same default status is used in C$DOACROSS loops as well.

For more information on clauses, refer to Directive Clauses.

8.7.5. DO...END DO
The OpenMP DO...END DO directive supports parallel execution and the distribution of
loop iterations across available threads in a parallel region.

Syntax:
 !$OMP DO [Clauses]
 < Fortran DO loop to be executed in parallel>
 !$OMP END DO [NOWAIT]

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

Usage:

The real purpose of supporting parallel execution is the distribution of work across the
available threads. The DO... END DO directive pair provides a convenient mechanism
for the distribution of loop iterations across the available threads in a parallel region.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 169

While you can explicitly manage work distribution with constructs such as the following
one, these constructs are not in the form of directives.

Examples:
 IF (omp_get_thread_num() .EQ. 0)
 THEN
 ...
 ELSE IF (omp_get_thread_num() .EQ. 1)
 THEN
 ...
 ENDIF

Tips

Remember these items about clauses in the DO...END DO directives:

‣ Variables declared in a PRIVATE list are treated as private to each thread
participating in parallel execution of the loop, meaning that a separate copy of the
variable exists with each thread.

‣ Variables declared in a FIRSTPRIVATE list are PRIVATE, and are initialized from the
original object existing before the construct.

‣ Variables declared in a LASTPRIVATE list are PRIVATE, and the thread that
executes the sequentially last iteration updates the version of the object that existed
before the construct.

‣ The REDUCTION clause for the directive is described in REDUCTION.
‣ The SCHEDULE clause specifies how iterations of the DO loop are divided up

between threads. For more information on this clause, refer to SCHEDULE.
‣ If ORDERED code blocks are contained in the dynamic extent of the DO directive,

the ORDERED clause must be present. For more information on ORDERED code
blocks, refer to ORDERED.

‣ The DO... END DO directive pair directs the compiler to distribute the iterative DO
loop immediately following the !$OMP DO directive across the threads available
to the program. The DO loop is executed in parallel by the team that was started
by an enclosing parallel region. If the !$OMP END DO directive is not specified,
the !$OMP DO is assumed to end with the enclosed DO loop. DO... END DO
directive pairs may not be nested. Branching into or out of a !$OMP DO loop is not
supported.

‣ By default, there is an implicit barrier after the end of the parallel loop; the first
thread to complete its portion of the work waits until the other threads have finished
their portion of work. If NOWAIT is specified, the threads will not synchronize at
the end of the parallel loop.

In addition to the preceding items, remember these items about !$OMP DO loops :

‣ The DO loop index variable is always private.
‣ !$OMP DO loops must be executed by all threads participating in the parallel region

or none at all.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 170

‣ The END DO directive is optional, but if it is present it must appear immediately
after the end of the enclosed DO loop.

‣ Values of the loop control expressions and the chunk expressions must be the same
for all threads executing the loop.

Example:
PROGRAM DO_USE
 REAL A(1000), B(1000)
 DO I=1,1000
 B(I) = FLOAT(I)
 ENDDO
!$OMP PARALLEL
!$OMP DO
 DO I=1,1000
 A(I) = SQRT(B(I));
 ENDDO
 ...
!$OMP END PARALLEL
 ...
END

8.7.6. FLUSH
The OpenMP FLUSH directive ensures that processor-visible data item are written back
to memory at the point at which the directive appears.

Syntax
!$OMP FLUSH [(list)]

Usage

The OpenMP FLUSH directive ensures that all processor-visible data items, or only
those specified in list, when it is present, are written back to memory at the point at
which the directive appears.

8.7.7. MASTER ... END MASTER
The MASTER...END MASTER directive allows the user to designate code that must
execute on a master thread and that is skipped by other threads in the team of threads.

Syntax
!$OMP MASTER
 < Fortran code executed in body of MASTER section >
!$OMP END MASTER

Usage

A master thread is a single thread of control that begins an OpenMP program and which
is present for the duration of the program. In a parallel region of code, there may be a
sub-region of code that should execute only on the master thread. Instead of ending the
parallel region before this subregion and then starting it up again after this subregion,

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 171

the MASTER... END MASTER directive pair allows the user to conveniently designate
code that executes on the master thread and is skipped by the other threads.

‣ There is no implied barrier on entry to or exit from a master section of code.
‣ Nested master sections are ignored.
‣ Branching into or out of a master section is not supported.

Examples

Example of Fortran MASTER...END MASTER directive
PROGRAM MASTER_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A=-1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP MASTER
 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!$OMP END MASTER
!$OMP END PARALLEL
 PRINT *, "A(0)=", A(0), " A(1)=", A(1)
END

8.7.8. ORDERED
The OpenMP ORDERED directive allows the user to identify a portion of code within
an ordered code block that must be executed in the original, sequential order, while
allowing parallel execution of statements outside the code block.

Syntax
!$OMP ORDERED
 < Fortran code block executed by processor >
!$OMP END ORDERED

Usage

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL
DO directive that includes the ORDERED clause. The structured code block between
the ORDERED / END ORDERED directives is executed by only one thread at a time,
and in the order of the loop iterations. This sequentializes the ordered code block
while allowing parallel execution of statements outside the code block. The following
additional restrictions apply to the ORDERED directive:

‣ The ordered code block must be a structured block.
‣ It is illegal to branch into or out of the block.
‣ A given iteration of a loop with a DO directive cannot execute the same ORDERED

directive more than once, and cannot execute more than one ORDERED directive.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 172

8.7.9. PARALLEL ... END PARALLEL
The OpenMP PARALLEL...END PARALLEL directive supports a fork/join execution
model in which a single thread executes all statements until a parallel region is
encountered.

Syntax
!$OMP PARALLEL [Clauses]
 < Fortran code executed in body of parallel region >
!$OMP END PARALLEL

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

Usage

This directive pair declares a region of parallel execution. It directs the compiler to create
an executable in which the statements within the structured block, such as between
PARALLEL and PARALLEL END for directives, are executed by multiple lightweight
threads. The code that lies within this structured block is called a parallel region.

The OpenMP parallelization directives support a fork/join execution model in which
a single thread executes all statements until a parallel region is encountered. At the
entrance to the parallel region, a system-dependent number of symmetric parallel
threads begin executing all statements in the parallel region redundantly. These threads
share work by means of work-sharing constructs such as parallel DO loops or FOR
loops.

‣ The number of threads in the team is controlled by the OMP_NUM_THREADS
environment variable. If OMP_NUM_THREADS is not defined, the program executes
parallel regions using only one processor.

‣ Branching into or out of a parallel region is not supported.
‣ All other shared-memory parallelization directives must occur within the scope

of a parallel region. Nested PARALLEL... END PARALLEL directive pairs are not
supported and are ignored.

‣ There is an implicit barrier at the end of the parallel region, which, in the directive,
is denoted by the END PARALLEL directive. When all threads have completed

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 173

execution of the parallel region, a single thread resumes execution of the statements
that follow.

By default, there is no work distribution in a parallel region. Each active thread
executes the entire region redundantly until it encounters a directive that specifies
work distribution. For work distribution, refer to the DO...END DO, PARALLEL DO, or C
$DOACROSS directives.

Example

Example of Fortran PARALLEL...END PARALLEL directive
PROGRAM WHICH_PROCESSOR_AM_I
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A(0) = -1
 A(1) = -1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP END PARALLEL
 PRINT *, "A(0)=",A(0)," A(1)=",A(1)
END

Clause Usage

COPYIN: The COPYIN clause applies only to THREADPRIVATE common blocks. In the
presence of the COPYIN clause, data from the master thread’s copy of the common block
is copied to the THREADPRIVATE copies upon entry to the parallel region.

IF: In the presence of an IF clause, the parallel region is executed in parallel only if the
corresponding scalar_logical_expression evaluates to .TRUE.. Otherwise, the
code within the region is executed by a single processor, regardless of the value of the
environment variable OMP_NUM_THREADS.

NUM_THREADS: If the NUM_THREADS clause is present, the corresponding
expression, scalar_integer_expression, must evaluate to a positive integer value.
This value sets the maximum number of threads used during execution of the parallel
region. A NUM_THREADS clause overrides either a previous call to the library routine
omp_set_num_threads() or the setting of the OMP_NUM_THREADS environment
variable.

8.7.10. PARALLEL DO
The OpenMP PARALLEL DO directive is a shortcut for a PARALLEL region that
contains a single DO directive.

The OpenMP PARALLEL DO or DO directive must be immediately followed by a DO
statement (as defined by R818 of the ANSI Fortran standard). If you place another

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 174

statement or an OpenMP directive between the PARALLEL DO or DO directive and the
DO statement, the compiler issues a syntax error.

Syntax
!$OMP PARALLEL DO [CLAUSES]
 < Fortran DO loop to be executed in parallel >
[!$OMP END PARALLEL DO]

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

Usage

The semantics of the PARALLEL DO directive are identical to those of a parallel region
containing only a single parallel DO loop and directive. The available clauses are the
same as those defined in PARALLEL...END PARALLEL and DO...END DO.

The END PARALLEL DO directive is optional.

8.7.11. PARALLEL SECTIONS
The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair define tasks to be
executed in parallel; that is, they define a non-iterative work-sharing construct without
the need to define an enclosing parallel region.

Syntax
!$OMP PARALLEL SECTIONS [CLAUSES]
[!$OMP SECTION]
 < Fortran code block executed by processor i >
[!$OMP SECTION]
 < Fortran code block executed by processor j >
 ...
!$OMP END SECTIONS [NOWAIT]

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

REDUCTION({operator | intrinsic} : list)

COPYIN (list)

IF(scalar_logical_expression)

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 175

FIRSTPRIVATE(list)

LASTPRIVATE(list)

NUM_THREADS(scalar_integer_expression)

Usage

The PARALLEL SECTIONS / END SECTIONS directive pair define a non-iterative
work-sharing construct without the need to define an enclosing parallel region. Each
section is executed by a single processor. If there are more processors than sections,
some processors will have no work and will jump to the implied barrier at the end of the
construct. If there are more sections than processors, one or more processors will execute
more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing
PARALLEL SECTIONS / END SECTIONS directives. In addition, the code within the
PARALLEL SECTIONS / END SECTIONS directives must be a structured block, and the
code in each SECTION must be a structured block.

Semantics are identical to a parallel region containing only an omp sections
pragma and the associated structured block. The available clauses are as defined in
PARALLEL...END PARALLEL and DO...END DO.

8.7.12. PARALLEL WORKSHARE
The OpenMP PARALLEL WORKSHARE directive provides a short form method of
including a WORKSHARE directive inside a PARALLEL construct.

Syntax
!$OMP PARALLEL WORKSHARE [CLAUSES]
< Fortran structured block to be executed in parallel >
[!$OMP END PARALLEL WORKSHARE]

!$OMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[!$OMP END PARALLEL DO]

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 176

Usage

The OpenMP PARALLEL WORKSHARE directive provides a short form method of
including a WORKSHARE directive inside a PARALLEL construct. The semantics of the
PARALLEL WORKSHARE directive are identical to those of a parallel region containing
a single WORKSHARE construct.

The END PARALLEL WORKSHARE directive is optional, and NOWAIT may not be
specified on an END PARALLEL WORKSHARE directive. The available clauses are as
defined in PARALLEL...END PARALLEL.

8.7.13. SECTIONS ... END SECTIONS
The OpenMP SECTIONS / END SECTIONS directive pair define a non-iterative work-
sharing construct within a parallel region in which each section is executed by a single
processor.

Syntax
!$OMP SECTIONS [Clauses]
[!$OMP SECTION]
 < Fortran code block executed by processor i >
[!$OMP SECTION]
 < Fortran code block executed by processor j >
 ...
!$OMP END SECTIONS [NOWAIT]

Clauses

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

Usage

The SECTIONS / END SECTIONS directive pair defines a non-iterative work-sharing
construct within a parallel region. Each section is executed by a single processor. If there
are more processors than sections, some processors have no work and thus jump to the
implied barrier at the end of the construct. If there are more sections than processors,
one or more processors must execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing
SECTIONS / END SECTIONS directives. In addition, the code within the SECTIONS /
END SECTIONS directives must be a structured block.

The available clauses are as defined in PARALLEL...END PARALLEL and DO...END
DO.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 177

8.7.14. SINGLE ... END SINGLE
The SINGLE...END SINGLE directive designates code that executes on a single thread
and that is skipped by the other threads.

Syntax
!$OMP SINGLE [Clauses]
 < Fortran code executed in body of SINGLE processor section >
!$OMP END SINGLE [NOWAIT]

Clauses

PRIVATE(list)
FIRSTPRIVATE(list)
COPYPRIVATE(list)

Usage

In a parallel region of code, there may be a sub-region of code that only executes
correctly on a single thread. Instead of ending the parallel region before this subregion
and then starting it up again after this subregion, the SINGLE...END SINGLE directive
pair or the omp single pragma lets you conveniently designate code that executes on a
single thread and is skipped by the other threads.

The following restrictions apply to the SINGLE...END SINGLE directive:

‣ There is an implied barrier on exit from a SINGLE...END SINGLE section of code
unless the optional NOWAIT clause is specified.

‣ Nested single process sections are ignored.
‣ Branching into or out of a single process section is not supported.

Examples
PROGRAM SINGLE_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num()
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP SINGLE
 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!$OMP END SINGLE
!$OMP END PARALLEL
 PRINT *, "A(0)=",A(0), " A(1)=", A(1)
END

8.7.15. TASK
The OpenMP TASK directive defines an explicit task.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 178

Syntax
!$OMP TASK [Clauses]
 < Fortran code executed as task >
!$OMP END TASK

Clauses

IF(scalar_logical_expression)

UNTIED

DEFAULT(private | firstprivate | shared |

none)

PRIVATE(list)

FIRSTPRIVATE(list)

SHARED(list)

Usage

The TASK / END TASK directive pair defines an explicit task.

When a thread encounters a task construct, a task is generated from the code for the
associated structured block. The data environment of the task is created according to
the data-sharing attribute clauses on the task construct and any defaults that apply. The
encountering thread may immediately execute the task, or delay its execution. If the task
execution is delayed, then any thread in the team may be assigned the task. Completion
of the task can be guaranteed using task synchronization constructs.

A task construct may be nested inside an outer task, but the task region of the inner task
is not a part of the task region of the outer task.

When an if clause is present on a task construct and the if clause expression evaluates to
false, the encountering thread must suspend the current task region and begin execution
of the generated task immediately, and the suspended task region may not be resumed
until the generated task is completed. The task still behaves as a distinct task region with
respect to data environment, lock ownership, and synchronization constructs.

Use of a variable in an if clause expression of a task construct causes an implicit
reference to the variable in all enclosing constructs.

A thread that encounters a task scheduling point within the task region may temporarily
suspend the task region. By default, a task is tied and its suspended task region can only
be resumed by the thread that started its execution. If the untied clause is present on a
task construct, any thread in the team can resume the task region after a suspension.

The task construct includes a task scheduling point in the task region of its generating
task, immediately following the generation of the explicit task. Each explicit task region

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 179

includes a task scheduling point at its point of completion. An implementation may add
task scheduling points anywhere in untied task regions.

When storage is shared by an explicit task region, it is the programmer's
responsibility to ensure, by adding proper synchronization, that the storage does not
reach the end of its lifetime before the explicit task region completes its execution.

Restrictions

The following restrictions apply to the TASK directive:

‣ A program that branches into or out of a task region is non-conforming.
‣ A program must not depend on any ordering of the evaluations of the clauses of the

task directive, or on any side effects of the evaluations of the clauses.
‣ At most one if clause can appear on the directive.
‣ Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit

has unspecified behavior.

8.7.16. TASKWAIT
The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks
generated since the beginning of the current task.

Syntax
!$OMP TASKWAIT

Clauses

IF(scalar_logical_expression)

UNTIED

DEFAULT(private | firstprivate | shared |

none)

PRIVATE(list)

FIRSTPRIVATE(list)

SHARED(list)

Usage

The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks
generated since the beginning of the current task.

Restrictions

The following restrictions apply to the TASKWAIT directive:

‣ The TASKWAIT directive and the omp taskwait pragma may be placed only at a
point where a base language statement is allowed.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 180

‣ The taskwait directive may not be used in place of the statement following an if,
while,do, switch, or label.

8.7.17. THREADPRIVATE
The OpenMP THREADPRIVATE directive identifies a Fortran common block as being
private to each thread.

Syntax
!$OMP THREADPRIVATE (list)

Usage

The list for this directive is a comma-separated list of named variables to be made
private to each thread or named common blocks to be made private to each thread but
global within the thread.

On entry to a parallel region, data in a THREADPRIVATE common block or variable
is undefined unless COPYIN is specified on the PARALLEL directive. When a
common block or variable that is initialized using DATA statements appears in a
THREADPRIVATE directive, each thread’s copy is initialized once prior to its first use.

Restrictions

The following restrictions apply to the THREADPRIVATE directive:

‣ The THREADPRIVATE directive must appear after every declaration of a thread
private common block.

‣ Only named common blocks can be made thread private.
‣ Common block names must appear between slashes, such as /

common_block_name/.
‣ This directive must appear in the declarations section of a program unit after the

declaration of any common blocks or variables listed.
‣ It is illegal for a THREADPRIVATE common block or its constituent variables to

appear in any clause other than a COPYIN clause.
‣ A variable can appear in a THREADRIVATE directive only in the scope in which

it is declared. It must not be an element of a common block or be declared in an
EQUIVALENCE statement.

‣ A variable that appears in a THREADPRIVATE directive and is not declared in the
scope of a module must have the SAVE attribute.

8.7.18. WORKSHARE ... END WORKSHARE
The OpenMP WORKSHARE ... END WORKSHARE directive pair provides a
mechanism to effect parallel execution of non-iterative but implicitly data parallel
constructs.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 181

Syntax
!$OMP WORKSHARE
 < Fortran structured block to be executed in parallel >
!$OMP END WORKSHARE [NOWAIT]

Usage

The Fortran structured block enclosed by the WORKSHARE ... END WORKSHARE
directive pair can consist only of the following types of statements and constructs:

‣ Array assignments
‣ Scalar assignments
‣ FORALL statements or constructs
‣ WHERE statements or constructs
‣ OpenMP ATOMIC, CRITICAL or PARALLEL constructs

The work implied by these statements and constructs is split up between the threads
executing the WORKSHARE construct in a way that is guaranteed to maintain standard
Fortran semantics. The goal of the WORKSHARE construct is to effect parallel execution
of non-iterative but implicitly data parallel array assignments, FORALL, and WHERE
statements and constructs intrinsic to the Fortran language beginning with Fortran 90.
The Fortran structured block contained within a WORKSHARE construct must not
contain any user-defined function calls unless the function is ELEMENTAL.

8.8. Runtime Library Routines
User-callable functions are available to the programmer to query and alter the parallel
execution environment.

Unlimited OpenMP thread counts are available in all PGI configurations. The number
of threads is unlicensed in the OpenMP runtime libraries – up to the hard limit of 256
threads. The OpenPOWER compiler relies on the llvm OpenMP runtime, which has a
maximum of 231 threads.

The following table summarizes the runtime library calls.

Table 36 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called.
When called from a serial region, this function returns 1. A nested parallel region is the same as
a single parallel region. By default, the value returned by this function is equal to the value of
the environment variable OMP_NUM_THREADS or to the value set by the last previous call to
omp_set_num_threads().

Fortran integer function omp_get_num_threads()

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 182

Runtime Library Routines with Examples

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine can only be called from a serial region of code. If it is called from within a parallel
region, or from within a subroutine that is called from within a parallel region, the results are
undefined. Further, this subroutine has precedence over the OMP_NUM_THREADS environment
variable.

Fortran subroutine omp_set_num_threads(scalar_integer_exp)

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

Fortran integer function omp_get_thread_num()

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp_get_ancestor_thread_num(level)
 integer level

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_active_level()

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_level()

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num_threads().

If omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

Fortran integer function omp_get_max_threads()

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp_get_num_procs()

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may not be the size of the stack of the current thread.

Fortran !omp_get_stack_size interface
 function omp_get_stack_size ()
 use omp_lib_kinds
 integer (kind=OMP_STACK_SIZE_KIND)

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 183

Runtime Library Routines with Examples
 :: omp_get_stack_size
 end function omp_get_stack_size
 end interface

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created
just prior to the first parallel region; therefore, only calls to omp_set_stack_size() that occur
prior to the first region have an effect.

Fortran subroutine omp_set_stack_size(integer(KIND=OMP_STACK_SIZE_KIND))

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the
ancestor belongs.

Fortran integer function omp_get_team_size (level)
integer level

omp_in_final

Returns whether or not the call is within a final task.

Returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel
region. When called from within a parallel region that is serialized, for example in the presence of an IF
clause evaluating .FALSE., the function returns .FALSE..

Fortran integer function omp_in_final()

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel
region. When called from within a parallel region that is serialized, for example in the presence of an IF
clause evaluating .FALSE., the function returns .FALSE..

Fortran logical function omp_in_parallel()

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine omp_set_dynamic(scalar_logical_exp)

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

This function is recognized, but currently always returns .FALSE. for directives and zero for
pragmas.

This function is recognized, but currently always returns .FALSE..

Fortran logical function omp_get_dynamic()

omp_set_nested

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 184

Runtime Library Routines with Examples

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp_set_nested(nested)
logical nested

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

Fortran logical function omp_get_nested()

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine omp_set_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp_get_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp_get_wtime()

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

Fortran double precision function omp_get_wtick()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to
make a call to this routine.

Fortran subroutine omp_init_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp_destroy_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_set_lock

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 185

Runtime Library Routines with Examples

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated
with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_set_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer_var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_unset_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns .TRUE. if the thread gains ownership of the lock; otherwise, it returns
.FALSE..

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp_test_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

8.9. OpenMP Environment Variables
OpenMP environment variables allow you to control the behavior of OpenMP
programs. These environment variables allow you to set and pass information that can
alter the behavior of directives.

The following table provides a brief summary of these variables. After the table this
section contains more information about each of them. For complete information and
more details related to these environment variables, refer to the OpenMP documentation
available on the WorldWide Web.

Table 37 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect.

Typically enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads.

OMP_MAX_ACTIVE_LEVELS 1 Specifies the maximum number of nested parallel
regions.

OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution
of parallel regions at the corresponding nested level.

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 186

Environment Variable Default Description

For example, OMP_NUM_THREADS=4,2 uses 4 threads at
the first nested parallel level, and 2 at the next nested
parallel level.

OMP_SCHEDULE STATIC with
chunk size of
1

Specifies the type of iteration scheduling and optionally
the chunk size to use for omp for and omp parallel for
loops that include the runtime schedule clause. The
supported schedule types, which can be specified in
upper- or lower-case are static, dynamic, guided, and
auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to
a core during execution. Allowable values are "true" and
"false".

OMP_STACKSIZE Overrides the default stack size for a newly created
thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that
can be used in a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether
they spin or sleep when idle. The values are ACTIVE and
PASSIVE.

8.9.1. OMP_DYNAMIC
OMP_DYNAMIC currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) the dynamic adjustment of the number of threads.

8.9.2. OMP_MAX_ACTIVE_LEVELS
OMP_MAX_ACTIVE_LEVELS specifies the maximum number of nested parallel regions.

8.9.3. OMP_NESTED
OMP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) nested parallelism.

8.9.4. OMP_NUM_THREADS
OMP_NUM_THREADS specifies the number of threads to use during execution of parallel
regions. The default value for this variable is 1. For historical reasons, the environment
variable NCPUS is supported with the same functionality. In the event that both
OMP_NUM_THREADS and NCPUS are defined, the value of OMP_NUM_THREADS takes
precedence.

OMP_NUM_THREADS defines the threads that are used to execute the program,
regardless of the number of physical processors available in the system. As a result,
you can run programs using more threads than physical processors and they execute

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 187

correctly. However, performance of programs executed in this manner can be
unpredictable, and oftentimes will be inefficient.

8.9.5. OMP_PROC_BIND
OMP_PROC_BIND specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

8.9.6. OMP_SCHEDULE
OMP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL
DO loop directives that include the SCHEDULE(RUNTIME) clause, described in
SCHEDULE. The default value for this variable is STATIC.

If the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a
static schedule. For a static schedule, the default is as defined in DO...END DO.

Examples of the use of OMP_SCHEDULE are as follows:
% setenv OMP_SCHEDULE "STATIC, 5"
% setenv OMP_SCHEDULE "GUIDED, 8"
% setenv OMP_SCHEDULE "DYNAMIC"

8.9.7. OMP_STACKSIZE
OMP_STACKSIZE is an OpenMP 3.0 feature that controls the size of the stack for newly-
created threads. This variable overrides the default stack size for a newly created thread.
The value is a decimal integer followed by an optional letter B, K, M, or G, to specify
bytes, kilobytes, megabytes, and gigabytes, respectively. If no letter is used, the default is
kilobytes. There is no space between the value and the letter; for example, one megabyte
is specified 1M. The following example specifies a stack size of 8 megabytes.
% setenv OMP_STACKSIZE 8M

The API functions related to OMP_STACKSIZE are omp_set_stack_size and
omp_get_stack_size.

The environment variable OMP_STACKSIZE is read on program start-up. If the program
changes its own environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKZ, which increases the size of
the stacks used by threads executing in parallel regions. Once a thread is created, its
stack size cannot be changed.

In the PGI implementation, threads are created prior to the first parallel region and
persist for the life of the program. The stack size of the main thread (thread 0) is set at
program start-up and is not affected by OMP_STACKSIZE.

For more information on controlling the program stack size in Linux, refer to‘Running
Parallel Programs on Linux’ in Chapter 2 of the PGI Compiler User's Guide,
www.pgroup.com/resources/docs/19.1/pdf/pgi19ug-x86.pdf. For more information

OpenMP Directives for Fortran

Fortran Reference Guide Version 2019 | 188

on MPSTKZ, refer to the PGI Compiler User's Guide, www.pgroup.com/resources/
docs/19.1/pdf/pgi19ug-x86.pdf.

8.9.8. OMP_THREAD_LIMIT
You can use the OMP_THREAD_LIMIT environment variable to specify the absolute
maximum number of threads that can be used in a parallel program. Attempts to
dynamically set the number of processes or threads to a higher value, for example using
set_omp_num_threads(), cause the number of processes or threads to be set at the value
of OMP_THREAD_LIMIT rather than the value specified in the function call.

8.9.9. OMP_WAIT_POLICY
OMP_WAIT_POLICY sets the behavior of idle threads - specifically, whether they spin
or sleep when idle. The values are ACTIVE and PASSIVE, with ACTIVE the default.
The behavior defined by OMP_WAIT_POLICY is also shared by threads created by auto-
parallelization.

‣ Threads are considered idle when waiting at a barrier, when waiting to enter a
critical region, or when unemployed between parallel regions.

‣ Threads waiting for critical sections always busy wait (ACTIVE).
‣ Barriers always busy wait (ACTIVE), with calls to sched_yield determined by

the environment variable MP_SPIN, that specifies the number of times it checks the
semaphore before calling sched_yield() (on Linux or macOS) or _sleep()(on
Windows).

‣ Unemployed threads during a serial region can either busy wait using the
barrier (ACTIVE) or politely wait using a mutex (PASSIVE). This choice is set by
OMP_WAIT_POLICY, so the default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a
busy loop waiting to restart in a parallel region. This mechanism allows for very quick
entry into parallel regions, a condition which is good for programs that enter and leave
parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex in the operating system and consume
no CPU time until being restarted. Passive idle is best when a program has long periods
of serial activity or when the program runs on a multi-user machine or otherwise shares
CPU resources.

Fortran Reference Guide Version 2019 | 189

Chapter 9.
3F FUNCTIONS AND VAX SUBROUTINES

The PGI Fortran compilers support FORTRAN 77 3F functions and VAX/VMS system
subroutines and built-in functions.

9.1. 3F Routines
This section describes the functions and subroutines in the Fortran runtime library
which are known as 3F routines on many systems. These routines provide an interface
from Fortran programs to the system in the same manner as the C library does for C
programs. These functions and subroutines are automatically loaded from PGI's Fortran
runtime library if referenced by a Fortran program.

The implementation of many of the routines uses functions which reside in the C library.
If a C library does not contain the necessary functions, undefined symbol errors will
occur at link-time. For example, if PGI’s C library is the C library available on the system,
the following 3F routines exist in the Fortran runtime library, but use of these routines
will result in errors at link-time:

besj0 besj1 besjn besy0 besy1 besyn

dbesj0 dbesj1 dbesjn dbesy0 dbesy1 dbesyn

derf derfc erf erfc getlog hostnm

lstat putenv symlnk ttynam

The routines mclock and times depend on the existence of the C function times().

The routines dtime and etime are only available in a SYSVR4 environment. These
routines are not available in all environments simply because there is no standard
mechanism to resolve the resolution of the value returned by the times() function.

There are several 3F routines, such as fputc and fgetc, that perform I/O on a logical unit.
These routines bypass normal Fortran I/O. If normal Fortran I/O is also performed on a
logical unit which appears in any of these routines, the results are unpredictable.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 190

9.1.1. abort
Terminate abruptly and write memory image to core file.

Synopsis
subroutine abort()

Description

The abort function cleans up the I/O buffers and then aborts, producing a core file in
the current directory.

9.1.2. access
Determine access mode or existence of a file.

Synopsis
integer function access(fil, mode)
character*(*) fil
character*(*) mode

Description

The access function tests the file, whose name is fil, for accessibility or existence as
determined by mode.

The mode argument may include, in any order and in any combination, one or more of:
r

test for read permission
w

test for write permission
x

test for execute permission
(blank)

test for existence

An error code is returned if either the mode argument is illegal or if the file cannot
be accessed in all of the specified modes. Zero is returned if the specified access is
successful.

9.1.3. alarm
Execute a subroutine after a specified time.

Synopsis
integer function alarm(time, proc)
integer time

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 191

external proc

Description

This routine establishes subroutine proc to be called after time seconds. If time is 0, the
alarm is turned off and no routine will be called. The return value of alarm is the time
remaining on the last alarm.

9.1.4. Bessel functions
These functions calculate Bessel functions of the first and second kinds for real and
double precision arguments and integer orders.

besj0
besj1
besjn
besy0
besy1
besyn
dbesj0
dbesj1
dbesjn
dbesy0
dbesy1
dbesyn

Synopsis
real function besj0(x)
real x
real function besj1(x)
real x

real function besjn(n, x)
integer n
real x
real function besy0(x)
real x
real function besy1(x)
real x
real function besyn(n, x)
integer n
real x
double precision function dbesj0(x)
double precision x
double precision function dbesj1(x)
double precision x
double precision function dbesjn(n, x)
integer n
double precision x
double precision function dbesy0(x)
double precision x
double precision function dbesy1(x)
double precision x
double precision function dbesyn(n, x)

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 192

integer n
double precision x

9.1.5. chdir
Change default directory.

Synopsis
integer function chdir(path)
character*(*) path

Description

Change the default directory for creating and locating files to path. Zero is returned if
successful; otherwise, an error code is returned.

9.1.6. chmod
Change mode of a file.

Synopsis
integer function chmod(nam, mode)
character*(*) nam
integer mode

Description

Change the file system mode of file nam. If successful, a value of 0 is returned; otherwise,
an error code is returned.

9.1.7. ctime
Return the system time.

Synopsis
character*(*) function ctime(stime)
integer*8 stime

Description

ctime converts a system time in stime to its ASCII form and returns the converted form.
Neither newline nor NULL is included.

9.1.8. date
Return the date.

Synopsis
character*(*) function date(buf)

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 193

Description

Returns the ASCII representation of the current date. The format returned is dd-mmm-
yy.

9.1.9. error functions
The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x)
and 1.0-derf(x), respectively.

Synopsis
real function erf(x)
real x
real function erfc(x)
real x
double precision function derf(x)
double precision x
double precision function derfc(x)
double precision x

9.1.10. etime, dtime
Get the elapsed time.

Synopsis
real function etime(tarray)
real function dtime(tarray)
real tarray(2)

Description

etime returns the total processor runtime in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first
time it is called, it returns the processor time since the start of execution.

Both functions place values in the argument tarray: user time in the first element and
system time in the second element. The return value is the sum of these two times.

9.1.11. exit
Terminate program with status.

Synopsis
subroutine exit(s)
integer s

Description

exit flushes and closes all of the program's files, and returns the value of s to the parent
process.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 194

9.1.12. fdate
Return date and time in ASCII form.

Synopsis
character*(*) function fdate()

Description

fdate returns the current date and time as a character string. Neither newline nor NULL
will be included.

9.1.13. fgetc
Get character from a logical unit.

Synopsis
integer function fgetc(lu, ch)
integer lu
character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit lu, bypassing
normal Fortran I/O statements. If successful, the return value is zero; -1 indicates that an
end-of-file was detected. Any other value is an error code.

9.1.14. flush
Flush a logical unit.

Synopsis
subroutine flush(lu)
integer lu

Description

flush flushes the contents of the buffer associated with logical unit lu.

9.1.15. fork
Fork a process.

Synopsis
integer function fork()

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 195

Description

fork creates a copy of the calling process. The value returned to the parent process will
be the process id of the copy. The value returned to the child process (the copy) will be
zero. If the returned value is negative, an error occurred and the value is the negation of
the system error code.

9.1.16. fputc
Write a character to a logical unit.

Synopsis
integer function fputc(lu, ch)
integer lu
character*(*) ch

Description

A character ch is written to the file connected to logical unit lu bypassing normal Fortran
I/O. If successful, a value of zero is returned; otherwise, an error code is returned.

9.1.17. free
Free memory.

Synopsis
subroutine free(p)
int p

Description

Free a pointer to a block of memory located by malloc; the value of the argument, p, is
the pointer to the block of memory.

9.1.18. fseek
Position file at offset.

Synopsis
integer function fseek(lu, offset, from)
integer lu
integer offset
integer from

Description

fseek repositions a file connected to logical unit lu. offset is an offset in bytes relative to
the position specified by from :

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 196

0
beginning of the file

1
current position

2
end of the file

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

9.1.19. ftell
Determine file position.

Synopsis
integer function ftell(lu)
integer lu

Description

ftell returns the current position of the file connected to the logical unit lu. The value
returned is an offset, in units of bytes, from the beginning of the file. If the value
returned is negative, it is the negation of the system error code.

9.1.20. gerror
Return system error message.

Synopsis
character*(*) function gerror()

Description

Return the system error message of the last detected system error.

9.1.21. getarg
Get the nth command line argument.

Synopsis
subroutine getarg(n, arg)
integer n
character*(*) arg

Description

Return the nth command line argument in arg, where the 0th argument is the command
name.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 197

9.1.22. iargc
The iargc subroutine returns the number of command line arguments following the
program name.
integer function iargc()

9.1.23. getc
Get character from unit 5.

Synopsis
integer function getc(ch)
character*(*) ch

Description

Returns the next character in ch from the file connected to the logical unit 5, bypassing
normal Fortran I/O statements. If successful, the return value is zero; -1 indicates that an
end-of-file was detected. Any other value is an error code.

9.1.24. getcwd
Get pathname of current working directory.

Synopsis
integer function getcwd(dir)
character*(*) dir

Description

The pathname of the current working directory is returned in dir. If successful, the
return value is zero; otherwise, an error code is returned.

9.1.25. getenv
Get value of environment variable.

Synopsis
subroutine getenv(en, ev)
character*(*) en
character*(*) ev

Description

getenv checks for the existence of the environment variable en. If it does not exist or if its
value is not present, ev is filled with blanks. Otherwise, the string value of en is returned
in ev.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 198

9.1.26. getgid
Get group id.

Synopsis
integer function getgid()

Description

Return the group id of the user of the process.

9.1.27. getlog
Get user's login name.

Synopsis
character*(*) function getlog()

Description

getlog returns the user's login name or blanks if the process is running detached from a
terminal.

9.1.28. getpid
Get process id.

Synopsis
integer function getpid()

Description

Return the process id of the current process.

9.1.29. getuid
Get user id.

Synopsis
integer function getuid()

Description

Return the user id of the user of the process.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 199

9.1.30. gmtime
Return system time.

Synopsis
subroutine gmtime(stime, tarray)
integer stime
integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for GMT and return in tarray.

9.1.31. hostnm
Get name of current host.

Synopsis
integer function hostnm(nm)
character*(*) nm

Description

hostnm returns the name of the current host in nm. If successful, a value of zero is
returned; otherwise an error occurred.

9.1.32. idate
Return the date.

Synopsis
subroutine idate(im, id, iy)
integer im, id, iy

Description

Returns the current date in the variables im, id, and iy, which indicate the month, day,
and year, respectively. The month is in the range 1-12; only the last 2 digits of the year
are returned.

9.1.33. ierrno
Get error number.

Synopsis
integer function ierrno()

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 200

Description

Return the number of the last detected system error.

9.1.34. ioinit
Initialize I/O

Synopsis
subroutine ioinit(cctl, bzro, apnd, prefix, vrbose)
integer cctl
integer bzro
integer apnd
character*(*) prefix
integer vrbose

Description

Currently, no action is performed.

9.1.35. isatty
Is logical unit a tty.

Synopsis
logical function isatty(lu)
integer lu

Description

Returns .TRUE. if logical unit lu is connected to a terminal; otherwise, .FALSE. is
returned.

9.1.36. itime
Return time in numerical form.

Synopsis
subroutine itime(iarray)
integer iarray(3)

Description

Return current time in the array iarray. The order is hour, minute, and second.

9.1.37. kill
Send signal to a process.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 201

Synopsis
integer function kill(pid, sig)
integer pid
integer sig

Description

Send signal number sig to the process whose process id is pid. If successful, the value
zero is returned; otherwise, an error code is returned.

9.1.38. link
Make link

Synopsis
integer function link(n1, n2)
character*(*) n1
character*(*) n2

Description

Create a link n2 to an existing file n1. If successful, zero is returned; otherwise, an error
code is returned.

9.1.39. lnblnk
Return index of last non-blank.

Synopsis
integer function lnblnk(a1)
character*(*) a1

Description

Return the index of the last non-blank character in string a1.

9.1.40. loc
Address of an object.

Synopsis
integer function loc(a)
integer a

Description

Return the value which is the address of a.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 202

9.1.41. ltime
Return system time.

Synopsis
 subroutine ltime(stime, tarray)
integer stime
integer tarray(9)

Description

Dissect the UNIX time, stime , into month, day, etc., for the local time zone and return in
tarray.

9.1.42. malloc
Allocate memory.

Synopsis
integer function malloc(n)
integer n

Description

Allocate a block of n bytes of memory and return the pointer to the block of memory.

9.1.43. mclock
Get elapsed time.

Synopsis
integer function mclock()

Description

mclock returns the sum of the user's cpu time and the user and system times of all child
processes. The return value is in units of clock ticks per second.

9.1.44. mvbits
Move bits.

Synopsis
subroutine mvbits(src, pos, len, dest, posd)
integer src
integer pos
integer len
integer dest
integer posd

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 203

Description

len bits are moved beginning at position pos of argument src to position posd of
argument dest.

9.1.45. outstr
Print a character string.

Synopsis
integer function outstr(ch)
character*(*) ch

Description

Output the character string to logical unit 6 bypassing normal Fortran I/O. If successful,
a value of zero is returned; otherwise, an error occurred.

9.1.46. perror
Print error message.

Synopsis
subroutine perror(str)
character*(*) str

Description

Write the message indicated by str to logical unit 0 and the message for the last detected
system error.

9.1.47. putc
Write a character to logical unit 6.

Synopsis
integer function putc(ch)
character*(*) ch

Description

A character ch is written to the file connected to logical unit 6 bypassing normal Fortran
I/O. If successful, a value of zero is returned; otherwise, an error code is returned.

9.1.48. putenv
Change or add environment variable.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 204

Synopsis
integer function putenv(str)
character*(*) str

Description

str contains a character string of the form name=value. This function makes the value of
the environment variable name equal to value. If successful, zero is returned.

9.1.49. qsort
Quick sort.

Synopsis
subroutine qsort(array, len, isize, compar)
dimension array(*)
integer len
integer isize
external compar
integer compar

Description

qsort sorts the elements of the one dimensional array, array. len is the number of
elements in the array and isize is the size of an element. compar is the name of an integer
function that determines the sorting order. This function is called with 2 arguments (arg1
and arg2) which are elements of array. The function returns:
negative

if arg1 is considered to precede arg2
zero

if arg1 is equivalent to arg2
positive

if arg1 is considered to follow arg2

9.1.50. rand, irand, srand
Random number generator.

Synopsis
double precision function rand()
integer function irand()
subroutine srand(iseed)
integer iseed

Description

The functions rand and irand generate successive pseudo-random integers or double
precision numbers. srand uses its argument, iseed, to re-initialize the seed for successive
invocations of rand and irand.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 205

irand
returns a positive integer in the range 0 through 2147483647.

rand
returns a value in the range 0 through 1.0.

9.1.51. random, irandm, drandm
Return the next random number value.

Synopsis
real function random(flag)
integer flag
integer function irandm(flag)
integer flag
double precision function drandm(flag)
integer flag

Description

If the argument, flag, is nonzero, the random number generator is restarted before the
next random number is generated.

Integer values range from 0 through 2147483647.

Floating point values range from 0.0 through 1.0.

9.1.52. range
Range functions.

Synopsis
real function flmin()
real function flmax()
real function ffrac()
double precision function dflmin()
double precision function dflmax()
double precision function dffrac()
integer function inmax()

Description

The following range functions return a value from a range of values.
flmin

minimum single precision value
flmax

maximum single precision value
ffrac

smallest positive single precision value
dflmin

minimum double precision value

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 206

dflmax
maximum double precision value

dffrac
smallest positive double precision value

inmax
maximum integer

9.1.53. rename
Rename a file.

Synopsis
integer function rename(from, to)
character*(*) from
character*(*) to

Description

Renames the existing file from where the new name is, the from value, to what you
want it to be, the to value.. If the rename is successful, zero is returned; otherwise, the
return value is an error code.

9.1.54. rindex
Return index of substring.

Synopsis
integer function rindex(a1, a2)
character*(*) a1
character*(*) a2

Description

Return the index of the last occurrence of string a2 in string a1.

9.1.55. secnds, dsecnds
Return elapsed time.

Synopsis
real function secnds(x)
real x
double precision function dsecnds(x)
double precision x

Description

Returns the elapsed time, in seconds, since midnight, minus the value of x.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 207

9.1.56. setvbuf
Change I/O buffering behavior.

Synopsis
integer function setvbuf(lu, typ, size, buf)
integer lu
integer typ
integer size
character* (*) buf

Description

Fortran I/O supports 3 types of buffering:

‣ Fully buffered: on output, data is written once the buffer is full. On input, the buffer
is filled when an input operation is requested and the buffer is empty.

‣ Line buffered: on output, data is written when a newline character is inserted in the
buffer or when the buffer is full. On input, if an input operation is encountered and
the buffer is empty, the buffer is filled until a newline character is encountered.

‣ Unbuffered: No buffer is used. Each I/O operation is completed as soon as possible.
In this case, the typ and size arguments are ignored.

Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is
unbuffered. Disk files are fully buffered. These defaults generally give the expected
behavior. You can use setvbuf3f to change a unit's buffering type and size of the buffer.

The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any I/O is done on the
unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies
line buffering, and 2 specifies unbuffered. The size parameter specifies the size of the
buffer. Note, the underlying stdio implementation may silently restrict your choice of
buffer size.

The buf parameter is the address of the new buffer.

The buffer specified by the buf and size parameters must remain available to the
Fortran runtime until after the logical unit is closed.

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running
program that periodically writes a small amount of data to a log file. If the log file is line

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 208

buffered, you could check the log file for progress. If the log file is fully buffered (the
default), the data may not be written to disk until the program terminates.

9.1.57. setvbuf3f
Change I/O buffering behavior.

Synopsis
integer function setvbuf3f(lu, typ, size)
integer lu
integer typ
integer size

Description

Fortran I/O supports 3 types of buffering., described in detail in the description of
setvbuf. Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr)
is unbuffered. Disk files are fully buffered. These defaults generally give the expected
behavior. You can use setvbuf3f to change a unit's buffering type and size of the buffer.

The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any I/O is done on the
unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies
line buffering, and 2 specifies unbuffered. The size parameter specifies the size of the
buffer.

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running
program that periodically writes a small amount of data to a log file. If the log file is line
buffered, you could check the log file for progress. If the log file is fully buffered (the
default), the data may not be written to disk until the program terminates.

9.1.58. signal
Signal facility.

Synopsis
integer function signal(signum, proc, flag)
integer signum
external proc
integer flag

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 209

Description

signal allows the calling process to choose how the receipt of a specific signal is
handled; signum is the signal and proc is the choice. If flag is negative, proc is a Fortran
subprogram and is established as the signal handler for the signal. Otherwise, proc is
ignored and the value of flag is passed to the system as the signal action definition. In
particular, this is how previously saved signal actions can be restored. There are two
special cases of flag: 0 means use the default action and 1 means ignore this signal.

The return value is the previous action. If this is a value greater than one, then it is
the address of a routine that was to have been called. The return value can be used in
subsequent calls to signal to restore a previous action. A negative return value indicates
a system error.

9.1.59. sleep
Suspend execution for a period of time.

Synopsis
subroutine sleep(itime)
integer itime

Description

Suspends the process for t seconds.

9.1.60. stat, lstat, fstat, fstat64
Get file status.

Synopsis
integer function stat(nm, statb)
character*(*) nm
integer statb(*)

integer function lstat(nm, statb)
character*(*) nm
integer statb(*)

integer function fstat(lu, statb)
integer lu
integer statb(*)

integer function fstat64(lu, statb)
integer lu
integer*8 statb(*)

Description

Return the file status of the file in the array statb. If successful, zero is returned;
otherwise, the value of -1 is returned. stat obtains information about the file whose
name is nm; if the file is a symbolic link, information is obtained about the file the link

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 210

references. lstat is similar to stat except lstat returns information about the link. fstat
obtains information about the file which is connected to logical unit lu.

9.1.61. stime
Set time.

Synopsis
integer function stime(tp)
integer tp

Description

Set the system time and date. tp is the value of the time measured in seconds from
00:00:00 GMT January 1, 1970.

9.1.62. symlnk
Make symbolic link.

Synopsis
integer function symlnk(n1, n2)
character*(*) n1
character*(*) n2

Description

Create a symbolic link n2 to an existing file n1. If successful, zero is returned; otherwise,
an error code is returned.

9.1.63. system
Issue a shell command.

Synopsis
integer function system(str)
character*(*) str

Description

system causes the string, str, to be given to the shell as input. The current process waits
until the shell has completed and returns the exit status of the shell.

9.1.64. time
Return system time.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 211

Synopsis
integer *8 function time()

Description

Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

9.1.65. times
Get process and child process time

Synopsis
integer function times(buff)
integer buff(*)

Description

Returns the time-accounting information for the current process and for any terminated
child processes of the current process in the array buff. If successful, zero is returned;
otherwise, the negation of the error code is returned.

9.1.66. ttynam
Get name of a terminal

Synopsis
character*(*) ttynam(lu)
integer lu

Description

Returns a blank padded path name of the terminal device connected to the logical unit
lu. The lu is not connected to a terminal, blanks are returned.

9.1.67. unlink
Remove a file.

Synopsis
integer function unlink(fil)
character*(*) fil

Description

Removes the file specified by the pathname fil. If successful, zero is returned; otherwise,
an error code is returned.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 212

9.1.68. wait
Wait for process to terminate.

Synopsis
integer function wait(st)
integer st

Description

wait causes its caller to be suspended until a signal is received or one of its child
processes terminates. If any child has terminated since the last wait, return is immediate.
If there are no child processes, return is immediate with an error code.

If the return value is positive, it is the process id of the child and st is its termination
status. If the return value is negative, it is the negation of an error code.

9.2. VAX System Subroutines
The PGI FORTRAN77 compiler, pgf77, supports a variety of built-in functions amd
VAX/VMS system subroutines.

9.2.1. Built-In Functions
The built-in functions perform inter-language utilities for argument passing and location
calculations. The following built-in functions are available:

%LOC(arg)

Compute the address of the argument arg.

%REF(a)

Pass the argument a by reference.

%VAL(a)

Pass the argument as a 32-bit immediate value (64-bit if a is double precision.) A value of
64-bits is also possible if supported for integer and logical values.

9.2.2. VAX/VMS System Subroutines
The PGI FORTRAN77 compiler, pgf77, supports a variety of built-in functions and VAX/
VMS system subroutines.

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 213

DATE

The DATE subroutine returns a nine-byte string containing the ASCII representation of
the current date. It has the form:
CALL DATE(buf)

where buf is a nine-byte variable, array, array element, or character substring. The date is
returned as a nine-byte ASCII character string of the form:
dd-mmm-yy

Where:
dd

is the two-digit day of the month
mmm

is the three-character abbreviation of the month
yy

is the last two digits of the year

EXIT

The EXIT subroutine causes program termination, closes all open files, and returns
control to the operating system. It has the form:
CALL EXIT[(exit_status)]

Where:
exit_status

is an optional integer argument used to specify the image exit value.

GETARG

The GETARG subroutine returns the Nth command line argument in character variable
ARG. For N equal to zero, the name of the program is returned.
SUBROUTINE GETARG(N, ARG)
INTEGER*4 N
CHARACTER*(*) ARG

IARGC

The IARGC subroutine returns the number of command line arguments following the
program name.
INTEGER*4 FUNCTION IARGC()

IDATE

The IDATE subroutine returns three integer values representing the current month, day,
and year. It has the form:
CALL IDATE(IMONTH, IDAY, IYEAR)

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 214

If the current date were October 9, 2004, the values of the integer variables upon return
would be:
IMONTH = 10
IDAY = 9
IYEAR = 04

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to a
field in a second storage location (destination). MVBITS transfers a3 bits from positions
a2 through (a2 + a3 - 1) of the source, src, to positions a5 through (a5 + a3 - 1) of the
destination, dest. Other bits of the destination location remain unchanged. The values
of (a2 + a3) and (a5 + a3) must be less than or equal to 32 (less than or equal to 64 if the
source or destination is INTEGER*8). It has the form:
CALL MVBITS(src, a2, a3, dest, a5)

Where:
src

is an integer variable or array element that represents the source location.
a2

is an integer expression that identifies the first position in the field transferred from
src.

a3
is an integer expression that identifies the length of the field transferred from src.

dest
is an integer variable or array element that represents the destination location.

a5
is an integer expression that identifies the starting position within a4, for the bits
being transferred.

RAN

The RAN subroutine returns the next number from a sequence of pseudo-random
numbers of uniform distribution over the range 0 to 1. The result is a floating point
number that is uniformly distributed in the range between 0.0 and 1.0 exclusive. It has
the form:
y = RAN(i)

where y is set equal to the value associated by the function with the seed argument i.
The argument i must be an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function
stores a value in the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different
values on separate runs in order to obtain different random numbers. The seed is

3F Functions and VAX Subroutines

Fortran Reference Guide Version 2019 | 215

updated automatically, and RAN uses the following algorithm to update the seed passed
as the parameter:
SEED = 6969 * SEED + 1 ! MOD
2**32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating
point and returned as the result.

If the command-line option to treat all REAL declarations as DOUBLE PRECISION
declarations is in effect, RAN returns a DOUBLE PRECISION value.

SECNDS

The SECNDS subroutine provides system time of day, or elapsed time, as a floating
point value in seconds. It has the form:
y = SECNDS(x)

where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since
midnight, minus the user supplied value of the (REAL or DOUBLE PRECISION) x.
Elapsed time computations can be performed with the following sequence of calls.
X = SECNDS(0.0)
...
... ! Code to be timed
...
DELTA = SECNDS(X)

The accuracy of this call is the same as the resolution of the system clock.

TIME

The TIME subroutine returns the current system time as an ASCII string. It has the form:
CALL TIME(buf)

where buf is an eight-byte variable, array, array element, or character substring. The
TIME call returns the time as an eight-byte ASCII character string of the form:
hh:mm:ss

For example:
16:45:23

Note that a 24-hour clock is used.

Fortran Reference Guide Version 2019 | 216

Chapter 10.
INTEROPERABILITY WITH C

Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must
have equivalent declarations made in both C and Fortran. This section describes the
pointer types and enumerators available for interoperability.

10.1. Enumerators
Fortran 2003 has enumerators to provide interoperability with C. An enumerator is a
set of integer constants. The kind of enumerator corresponds to the integer type that C
would choose for the same set of constants.

You can specify the value of an enumerator when it is declared. If the value is not
specified, then it is one of two values:

‣ If the enumerator is the first one, the value is zero.
‣ If the enumerator is not the first one, the value is one greater than the previous

enumerator.

Enumerator Example

In the following example, green has a value of 4, purple a value of 8, and gold a value of
9.
enum, bind(c)
 enumerator :: green = 4, purple = 8
 enumerator gold
end enum

10.2. Interoperability with C Pointer Types
C pointers are addresses. The derived type c_ptr is interoperable with C pointer types.
The named constant c_null_ptr corresponds to the null value in C.

Interoperability with C

Fortran Reference Guide Version 2019 | 217

10.2.1. c_f_pointer
A subroutine that assigns the C pointer target to the Fortran pointer, and specifies its
shape.

F2003

Syntax
c_f_pointer (cptr, fptr [,shape])

Type

subroutine

Description

c_f_pointer assigns the target, cptr, to the Fortran pointer, fptr, and specifies its
shape.

‣ cptr is a scalar of the type C_PTR with INTENT(IN). Its value is one of the
following:

‣ the C address of an interoperable data entity

If cptr is the C address of a Fortran variable, the Fortran variable must have
the target attribute.

‣ the result of a reference to c_loc with a non-interoperable argument.
‣ fptr is is a procedure pointer with INTENT(OUT).

‣ If cptr is the C address of an interoperable data entity, then fptr must be a
data pointer of the type and type parameters of the entity. It becomes pointer
associated with the target of cptr.

‣ If cptr was returned by a call of c_loc with a non-interoperable argument
x, then fptr must be a nonpolymorphic scalar pointer of the type and type
parameters of x.

x, or its target if it is a pointer, must not have been deallocated or become
undefined due to execution of a return or end statement.

fptr is associated with x or its target.

‣ shape is an optional argument that is a rank-one array of type INTEGER with
INTENT(IN). shape is present if and only if fptr is an array. The size must be
equal to the rank of fptr; each lower bound is assumed to be 1.

Interoperability with C

Fortran Reference Guide Version 2019 | 218

Example
program main
 use iso_c_binding
 implicit none
 interface
 subroutine my_routine(p) bind(c,name='myC_func')
 import :: c_ptr
 type(c_ptr), intent(out) :: p
 end subroutine
 end interface
 type(c_ptr) :: cptr
 real,pointer :: a(:)
 call my_routine(cptr)
 call c_f_pointer(cptr, a, [12])
end program main

10.2.2. c_f_procpointer
A subroutine that associates a procedure pointer with the target of a C function pointer.

F2003

Syntax
c_f_procpointer (cptr, fptr)

Type

subroutine

Description

c_f_procpointer associates a procedure pointer with the target of a C function pointer.

‣ cptr is a scalar of the type C_PTR with INTENT(IN). Its value is the C address of
the procedure that is interoperable.

Its value is one of the following:

‣ the C address of an interoperable procedure
‣ the result of a reference to c_loc with a non-interoperable argument. In this

case, there is no intent that any use of it be made within C except to pass it back
to Fortran, where C_F_POINTER is available to reconstruct the Fortran pointer.

‣ fptr is is a procedure pointer with INTENT(OUT).

The interface for ftpr shall be interoperable with the prototype that describes the
target of cptr.

fptr becomes pointer associated with the target of cptr.

‣ If cptr is the C address of an interoperable procedure, then the interface for
fptr shall be interoperable with the prototype that describes the target of cptr.
fptr must be a data pointer of the type and type parameters of the entity. It
becomes pointer associated with the target of cptr.

Interoperability with C

Fortran Reference Guide Version 2019 | 219

‣ If cptr was returned by a call of c_loc with a non-interoperable argument
x, then fptr must be a nonpolymorphic scalar pointer of the type and type
parameters of x.

x or its target if it is a pointer, must not have been deallocated or become
undefined due to execution of a return or end statement.

fptr is associated with x or its target.

Example
program main
 use iso_c_binding
 implicit none
 interface
 subroutine my_routine(p) bind(c,name='myC_func')
 import :: c_ptr
 type(c_ptr), intent(out) :: p
 end subroutine
 end interface
 type(c_ptr) :: cptr
 real,pointer :: a(:)
 call my_routine(cptr)
 call c_f_pointer(cptr, a, [12])
end program main

10.2.3. c_associated
A subroutine that determines the status of a C_PTR, or determines if one C_PTR is
associated with a target C_PTR.

F2003

Syntax
c_associated (cptr1[, cptr2])

Type

subroutine

Description

c_associated determines the status of a C_PTR,cptr1, or determines if cptr1 is
associated with a target cptr2.

‣ cptr1 is a scalar of the type C_PTR.
‣ cptr2 is an optional scalar or the same type as cptr1.

Return Value

A logical value:

Interoperability with C

Fortran Reference Guide Version 2019 | 220

‣ .false. if either cptr1 is a C NULL pointer or if cptr1 and cptr2 point to different
addresses.

‣ .true. if cptr1 is a not a C NULL pointer or if cptr1 and cptr2 point to the same
address.

Example
program main
 use iso_c_binding
 subroutine test_association(h,k)
 only: c_associated, c_loc, c_ptr
 real, pointer :: h
 type(c_ptr) :: k
 if(c_associated(k, c_loc(h))) &
 stop 'h and k do not point to same target'
 end subroutine test_association

10.3. Interoperability of Derived Types
For a derived type to be interoperable, the following must be true:

‣ It must have the bind attribute.
type, bind(c) :: atype
 :
end type atype

‣ It cannot be a sequence type.
‣ It cannot have type pmeters.
‣ It cannot have the extends attribute.
‣ It cannot have any type-bound procedures.
‣ Each component must comply with these rules:

‣ Must have interoperable type and type pmeters.
‣ Must not be a pointer.
‣ Must not be allocatable.

Under the preceding conditions the type can interoperate with a C struct type that has
the same number of components, with components corresponding by their position
in the definitions. Further, each Fortran component must be interoperable with its
corresponding C component. The name of the type and names of the components is not
significant for interoperability.

There is no Fortran type that is interoperable with these C types:

‣ a C union type,
‣ a C struct type that contains a bit field
‣ a C struct type that contains a flexible array member.

Derived Type Interoperability

This type... Is interoperable with this type

typedef struct {
 int a,b;
 float t;

use iso_c_binding
type, bind(c) :: my_fort_type
 integer(c_int) :: i,j

Interoperability with C

Fortran Reference Guide Version 2019 | 221

This type... Is interoperable with this type

} my_c_type real(c_float) :: s
end type my_fort_type

Fortran Reference Guide Version 2019 | 222

Chapter 11.
KNOWN LIMITATIONS

This section includes the known limitations to the Fortran compiler. There are no plans
to remove these limitations.

11.1. Process Threading Limitations
‣ Fortran input/output is not thread-safe when used with pthread library calls.

You are responsible for establishing critical regions where input and output are
performed. Fortran input/output is thread-safe when used with OpenMP and
OpenACC.

Fortran Reference Guide Version 2019 | 223

Chapter 12.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2019 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	Language Overview
	1.1. Elements of a Fortran Program Unit
	1.1.1. Fortran Statements
	1.1.2. Free and Fixed Source
	1.1.3. Statement Ordering

	1.2. The Fortran Character Set
	1.3. Free Form Formatting
	1.4. Fixed Formatting
	1.4.1. Column Formatting
	1.4.2. Fixed Format Label Field
	1.4.3. Fixed Format Continuation Field
	1.4.4. Fixed Format Statement Field
	1.4.5. Fixed Format Debug Statements
	1.4.6. Tab Formatting
	1.4.7. Fixed Input File Format Summary

	1.5. Include Fortran Source Files
	1.6. Components of Fortran Statements
	1.6.1. Symbolic Names

	1.7. Expressions
	1.7.1. Forming Expressions
	1.7.2. Expression Precedence Rules
	1.7.3. Arithmetic Expressions
	1.7.4. Relational Expressions
	1.7.5. Logical Expressions
	1.7.6. Character Expressions
	1.7.7. Character Concatenation

	1.8. Symbolic Name Scope
	1.9. Assignment Statements
	1.9.1. Arithmetic Assignment
	1.9.2. Logical Assignment
	1.9.3. Character Assignment

	1.10. Listing Controls
	1.11. OpenMP Directives

	Fortran Data Types
	2.1. Intrinsic Data Types
	2.1.1. Kind Parameter
	2.1.2. Number of Bytes Specification

	2.2. Constants
	2.2.1. Integer Constants
	2.2.2. Binary, Octal and Hexadecimal Constants
	2.2.3. Real Constants
	2.2.4. Double Precision Constants
	2.2.5. Complex Constants
	2.2.6. Double Complex Constants
	2.2.7. Logical Constants
	2.2.8. Character Constants
	2.2.9. Parameter Constants

	2.3. Structure Constructors
	2.4. Derived Types
	2.5. Deferred Type Parameters
	2.5.1. Typed Allocation

	2.6. Arrays
	2.6.1. Array Declaration Element
	2.6.2. Deferred Shape Arrays
	2.6.3. Subscripts
	2.6.4. Character Substring
	2.6.5. Array Constructor Syntax

	2.7. Fortran Pointers and Targets
	2.8. Fortran Binary, Octal and Hexadecimal Constants
	2.8.1. Octal and Hexadecimal Constants - Alternate Forms

	2.9. Hollerith Constants
	2.10. Structures
	2.10.1. Records
	2.10.2. UNION and MAP Declarations
	2.10.3. Data Initialization

	2.11. Pointer Variables
	2.11.1. Restrictions
	2.11.2. Pointer Assignment

	Fortran Statements
	3.1. Statement Format Overview
	3.1.1. Definition of Statement-related Terms
	3.1.2. Origin of Statement
	3.1.3. List-related Notation

	3.2. Fortran Statement Summary Table
	3.3. ACCEPT
	3.4. ARRAY
	3.5. BYTE
	3.6. DECODE
	3.7. DOUBLE COMPLEX
	3.8. DOUBLE PRECISION
	3.9. ENCODE
	3.10. END MAP
	3.11. END STRUCTURE
	3.12. END UNION
	3.13. INCLUDE
	3.14. MAP
	3.15. POINTER (Cray)
	3.16. PROTECTED
	3.17. RECORD
	3.18. REDIMENSION
	3.19. RETURN
	3.20. STRUCTURE
	3.21. UNION
	3.22. VOLATILE
	3.23. WAIT

	Fortran Arrays
	4.1. Array Types
	4.1.1. Explicit Shape Arrays
	4.1.2. Assumed Shape Arrays
	4.1.3. Deferred Shape Arrays
	4.1.4. Assumed Size Arrays

	4.2. Array Specification
	4.2.1. Explicit Shape Arrays
	4.2.2. Assumed Shape Arrays
	4.2.3. Deferred Shape Arrays
	4.2.4. Assumed Size Arrays

	4.3. Array Subscripts and Access
	4.3.1. Array Sections and Subscript Triplets
	4.3.2. Array Sections and Vector Subscripts

	4.4. Array Constructors

	Input and Output
	5.1. File Access Methods
	5.1.1. Standard Preconnected Units

	5.2. Opening and Closing Files
	5.2.1. Direct Access Files
	5.2.2. Closing a File

	5.3. Data Transfer Statements
	5.4. Unformatted Data Transfer
	5.5. Formatted Data Transfer
	5.5.1. Implied DO List Input Output List
	5.5.2. Format Specifications
	5.5.2.1. A Format Control – Character Data
	5.5.2.2. B Format Control – Binary Data
	5.5.2.3. D Format Control – Real Double Precision Data with Exponent
	5.5.2.4. d Format Control – Decimal specifier
	5.5.2.5. E Format Control – Real Single Precision Data with Exponent
	5.5.2.6. EN Format Control
	5.5.2.7. ES Format Control
	5.5.2.8. F Format Control - Real Single Precision Data
	5.5.2.9. G Format Control
	5.5.2.10. I Format Control – Integer Data
	5.5.2.11. L Format Control – Logical Data
	5.5.2.12. Quote Format Control
	5.5.2.13. BN Format Control – Blank Control
	5.5.2.14. H Format Control – Hollerith Control
	5.5.2.15. O Format Control Octal Values
	5.5.2.16. P Format Specifier – Scale Control
	5.5.2.17. Q Format Control - Quantity
	5.5.2.18. r Format Control - Rounding
	5.5.2.19. S Format Control – Sign Control
	5.5.2.20. r Format Control - No minus zero
	5.5.2.21. T, TL and X Format Controls – Spaces and Tab Controls
	5.5.2.22. Z Format Control Hexadecimal Values
	5.5.2.23. Slash Format Control / – End of Record
	5.5.2.24. The : Format Specifier – Format Termination
	5.5.2.25. $ Format Control

	5.5.3. Variable Format Expressions

	5.6. Non-advancing Input and Output
	5.7. List-directed formatting
	5.7.1. List-directed input
	5.7.2. List-directed output
	5.7.3. Commas in External Field
	5.7.4. Character Encoding Format

	5.8. Namelist Groups
	5.8.1. Namelist Input
	5.8.2. Namelist Output

	5.9. Recursive Input/Output
	5.10. Input and Output of IEEE Infinities and NaNs
	5.10.1. Output Format
	5.10.2. Input Format

	Fortran Intrinsics
	6.1. Intrinsics Support
	6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines
	6.1.2. Elemental Character and Logical Functions
	6.1.3. Fortran 90/95 Vector/Matrix Functions
	6.1.4. Fortran 90/95 Array Reduction Functions
	6.1.5. Fortran 90/95 String Construction Functions
	6.1.6. Fortran 90/95 Array Construction/Manipulation Functions
	6.1.7. Fortran 90/95 General Inquiry Functions
	6.1.8. Fortran 90/95 Numeric Inquiry Functions
	6.1.9. Fortran 90/95 Array Inquiry Functions
	6.1.10. Fortran 90/95 Subroutines
	6.1.11. Fortran 90/95 Transfer Functions
	6.1.12. Arithmetic Functions
	6.1.13. Fortran 2003 and 2008 Functions
	6.1.14. Miscellaneous Functions

	6.2. ACOSD
	6.3. AND
	6.4. ASIND
	6.5. ASSOCIATED
	6.6. ATAN2D
	6.7. ATAND
	6.8. COMPL
	6.9. CONJG
	6.10. COSD
	6.11. DIM
	6.12. ININT
	6.13. INT8
	6.14. IZEXT
	6.15. JINT
	6.16. JNINT
	6.17. KNINT
	6.18. LEADZ
	6.19. LSHIFT
	6.20. OR
	6.21. RSHIFT
	6.22. SHIFT
	6.23. SIND
	6.24. TAND
	6.25. XOR
	6.26. ZEXT
	6.27. Intrinsic Modules
	6.27.1. Module IEEE_ARITHMETIC
	6.27.2. IEEE_ARITHMETIC Derived Types
	6.27.3. IEEE_ARITHMETIC Inquiry Functions
	6.27.4. IEEE_ARITHMETIC Elemental Functions
	6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines
	6.27.6. IEEE_ARITHMETIC Transformational Function

	6.28. Module IEEE_EXCEPTIONS
	6.28.1. IEEE_EXCEPTIONS Derived Types
	6.28.2. IEEE_EXCEPTIONS Inquiry Functions
	6.28.3. IEEE_EXCEPTIONS Subroutines Functions

	6.29. IEEE_FEATURES
	6.29.1. IEEE_FEATURES Derived Type
	6.29.2. IEEE_FEATURES Named Constants

	6.30. Module iso_c_binding
	6.31. Module iso_fortran_env

	Object Oriented Programming
	7.1. Inheritance
	7.2. Polymorphic Entities
	7.2.1. Unlimited Polymorphic Entities
	7.2.2. Typed Allocation for Polymorphic Variables
	7.2.3. Sourced Allocation for Polymorphic Variables
	7.2.4. Procedure Polymorphism
	7.2.5. Procedure Polymorphism with Type-Bound Procedures
	7.2.6. Inheritance and Type-Bound Procedures
	7.2.7. Procedure Overriding
	7.2.8. Functions as Type-Bound Procedures

	7.3. Information Hiding
	7.3.1. Type Overloading

	7.4. Data Polymorphism
	7.4.1. Pointer Polymorphic Variables
	7.4.2. Allocatable Polymorphic Variables
	7.4.3. Sourced Allocation
	7.4.4. Unlimited Polymorphic Objects
	7.4.5. Abstract Types and Deferred Bindings

	7.5. IEEE Modules
	7.6. Intrinsic Functions

	OpenMP Directives for Fortran
	8.1. OpenMP Overview
	8.1.1. OpenMP Shared-Memory Parallel Programming Model
	8.1.2. Terminology
	8.1.3. OpenMP Example

	8.2. Task Overview
	8.3. Tasks
	8.3.1. Task Characteristics and Activities
	8.3.2. Task Scheduling Points
	8.3.3. Task Construct

	8.4. Parallelization Directives
	8.5. Directive Recognition
	8.6. Directive Clauses
	8.6.1. COLLAPSE (n)
	8.6.2. COPYIN (list)
	8.6.3. COPYPRIVATE(list)
	8.6.4. DEFAULT
	8.6.5. FIRSTPRIVATE(list)
	8.6.6. IF()
	8.6.7. LASTPRIVATE(list)
	8.6.8. NOWAIT
	8.6.9. NUM_THREADS
	8.6.10. ORDERED
	8.6.11. PRIVATE
	8.6.12. REDUCTION
	8.6.13. SCHEDULE
	8.6.14. SHARED
	8.6.15. UNTIED

	8.7. Directive Summary Table
	8.7.1. ATOMIC
	8.7.2. BARRIER
	8.7.3. CRITICAL ... END CRITICAL
	8.7.4. C\$DOACROSS
	8.7.5. DO...END DO
	8.7.6. FLUSH
	8.7.7. MASTER ... END MASTER
	8.7.8. ORDERED
	8.7.9. PARALLEL ... END PARALLEL
	8.7.10. PARALLEL DO
	8.7.11. PARALLEL SECTIONS
	8.7.12. PARALLEL WORKSHARE
	8.7.13. SECTIONS ... END SECTIONS
	8.7.14. SINGLE ... END SINGLE
	8.7.15. TASK
	8.7.16. TASKWAIT
	8.7.17. THREADPRIVATE
	8.7.18. WORKSHARE ... END WORKSHARE

	8.8. Runtime Library Routines
	8.9. OpenMP Environment Variables
	8.9.1. OMP_DYNAMIC
	8.9.2. OMP_MAX_ACTIVE_LEVELS
	8.9.3. OMP_NESTED
	8.9.4. OMP_NUM_THREADS
	8.9.5. OMP_PROC_BIND
	8.9.6. OMP_SCHEDULE
	8.9.7. OMP_STACKSIZE
	8.9.8. OMP_THREAD_LIMIT
	8.9.9. OMP_WAIT_POLICY

	3F Functions and VAX Subroutines
	9.1. 3F Routines
	9.1.1. abort
	9.1.2. access
	9.1.3. alarm
	9.1.4. Bessel functions
	9.1.5. chdir
	9.1.6. chmod
	9.1.7. ctime
	9.1.8. date
	9.1.9. error functions
	9.1.10. etime, dtime
	9.1.11. exit
	9.1.12. fdate
	9.1.13. fgetc
	9.1.14. flush
	9.1.15. fork
	9.1.16. fputc
	9.1.17. free
	9.1.18. fseek
	9.1.19. ftell
	9.1.20. gerror
	9.1.21. getarg
	9.1.22. iargc
	9.1.23. getc
	9.1.24. getcwd
	9.1.25. getenv
	9.1.26. getgid
	9.1.27. getlog
	9.1.28. getpid
	9.1.29. getuid
	9.1.30. gmtime
	9.1.31. hostnm
	9.1.32. idate
	9.1.33. ierrno
	9.1.34. ioinit
	9.1.35. isatty
	9.1.36. itime
	9.1.37. kill
	9.1.38. link
	9.1.39. lnblnk
	9.1.40. loc
	9.1.41. ltime
	9.1.42. malloc
	9.1.43. mclock
	9.1.44. mvbits
	9.1.45. outstr
	9.1.46. perror
	9.1.47. putc
	9.1.48. putenv
	9.1.49. qsort
	9.1.50. rand, irand, srand
	9.1.51. random, irandm, drandm
	9.1.52. range
	9.1.53. rename
	9.1.54. rindex
	9.1.55. secnds, dsecnds
	9.1.56. setvbuf
	9.1.57. setvbuf3f
	9.1.58. signal
	9.1.59. sleep
	9.1.60. stat, lstat, fstat, fstat64
	9.1.61. stime
	9.1.62. symlnk
	9.1.63. system
	9.1.64. time
	9.1.65. times
	9.1.66. ttynam
	9.1.67. unlink
	9.1.68. wait

	9.2. VAX System Subroutines
	9.2.1. Built-In Functions
	9.2.2. VAX/VMS System Subroutines

	Interoperability with C
	10.1. Enumerators
	10.2. Interoperability with C Pointer Types
	10.2.1. c_f_pointer
	10.2.2. c_f_procpointer
	10.2.3. c_associated

	10.3. Interoperability of Derived Types

	Known Limitations
	11.1. Process Threading Limitations

	Contact Information

