
PGI VISUAL FORTRAN RELEASE NOTES

Version 2019

PGI Visual Fortran Release Notes Version 2019 | ii

TABLE OF CONTENTS

Chapter 1. PVF Release Overview..1
1.1. Product Overview... 1
1.2. Microsoft Build Tools... 2
1.3. Terms and Definitions..2

Chapter 2. What's New in PGI 2019... 3
2.1. What's New in 19.1...3
2.2. New and Modified Compiler Options.. 5
2.3. OpenACC..6

2.3.1. OpenACC Error Handling... 6
2.3.2. Performance Impact of Fortran 2003 Allocatables...9

2.4. CUDA Toolkit Versions..9
2.5. Compute Capability... 12
2.6. OpenMP..12
2.7. Runtime Library Routines.. 12

Chapter 3. Selecting an Alternate Compiler..13
3.1. For a Single Project...13
3.2. For All Projects.. 13

Chapter 4. Distribution and Deployment.. 15
4.1. Application Deployment and Redistributables.. 15

4.1.1. PGI Redistributables... 15
4.1.2. Microsoft Redistributables.. 15

Chapter 5. Troubleshooting Tips and Known Limitations.. 17
5.1. PVF IDE Limitations... 17
5.2. PVF Debugging Limitations.. 17
5.3. PGI Compiler Limitations.. 18
5.4. OpenACC Issues.. 18

Chapter 6. Contact Information... 19

PGI Visual Fortran Release Notes Version 2019 | 1

Chapter 1.
PVF RELEASE OVERVIEW

PGI command-level compilers for Windows will continue to be enhanced and
supported, but PGI Visual Fortran (PVF) is being deprecated. Existing PVF licensees
can continue to use it indefinitely, but no new licenses will be issued. PVF
technical support and new features will be discontinued at the end of the 2019
calendar year.

Important The PGI 2018 Release includes updated FlexNet license management
software to address a security vulnerability. Users of any previous PGI release must
update their FlexNet license daemons to enable PGI 18.1 and subsequent releases.
See Third-Party Software Security Updates in What's New in PGI 2018 and our FlexNet
Update FAQ for more information.

This chapter provides an overview of Release 2019 of PGI Visual Fortran®, a set of
Fortran compilers and development tools for Windows integrated with Microsoft®

Visual Studio.

1.1. Product Overview
PVF is integrated with Microsoft Visual Studio 2015. Throughout this document, "PGI
Visual Fortran" refers to PVF integrated with VS 2015. Similarly, "Microsoft Visual
Studio" refers to Visual Studio 2015. When it is necessary to distinguish further, the
document does so.

Single-user node-locked and multi-user network floating license options are available
for both products. When a node-locked license is used, one user at a time can use PVF
on the single system where it is installed. When a network floating license is used, a
system is selected as the server and it controls the licensing, and users from any of the
client machines connected to the license server can use PVF. Thus multiple users can
simultaneously use PVF, up to the maximum number of users allowed by the license.

PVF provides a complete Fortran development environment fully integrated with
Microsoft Visual Studio. It includes a custom Fortran Build Engine that automatically
derives build dependencies, Fortran extensions to the Visual Studio editor, a custom PGI

https://nvd.nist.gov/vuln/detail/CVE-2016-10395
http://www.pgroup.com/support/flex.htm
http://www.pgroup.com/support/flex.htm

PVF Release Overview

PGI Visual Fortran Release Notes Version 2019 | 2

Debug Engine integrated with the Visual Studio debugger, PGI Fortran compilers, and
PVF-specific property pages to control the configuration of all of these.

Release 2019 of PGI Visual Fortran includes the following components:

‣ PGFORTRAN OpenMP and auto-parallelizing Fortran 2003 compiler.
‣ PGF77 OpenMP and auto-parallelizing FORTRAN 77 compiler.
‣ PVF Visual Studio integration components.
‣ OpenACC and CUDA Fortran tools and libraries necessary to build executables for

Accelerator GPUs, when the user’s license supports these optional features.
‣ PVF documentation.

1.2. Microsoft Build Tools
PVF on all Windows systems includes Microsoft Open Tools. These files are required in
addition to the files Microsoft provides in the Windows SDK.

1.3. Terms and Definitions
This document contains a number of terms and definitions with which you may or may
not be familiar. If you encounter an unfamiliar term in these notes, please refer to the
PGI online glossary located at pgicompilers.com/definitions.

These two terms are used throughout the documentation to reflect groups of processors:
Intel 64

64-bit Intel x86-64 CPUs including Intel Core processors, Intel Xeon Nehalem, Sandy
Bridge, Ivy Bridge, Haswell, Broadwell and Skylake processors, and Intel Xeon Phi
Knights Landing.

AMD64
64-bit AMD™ x86-64 CPUs including Opteron and EPYC processors.

https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/definitions

PGI Visual Fortran Release Notes Version 2019 | 3

Chapter 2.
WHAT'S NEW IN PGI 2019

PGI command-level compilers for Windows will continue to be enhanced and
supported, but PGI Visual Fortran (PVF) is being deprecated. Existing PVF licensees
can continue to use it indefinitely, but no new licenses will be issued. PVF
technical support and new features will be discontinued at the end of the 2019
calendar year.

Welcome to Release 2019 of PGI Visual Fortran!

If you read only one thing about this PGI release, make it this chapter. It covers all the
new, changed, deprecated, or removed features in PGI products released this year. It is
written with you, the user, in mind.

Every PGI release contains user-requested fixes and updates. We keep a complete list of
these fixed Technical Problem Reports online for your reference.

2.1. What's New in 19.1

All Compilers

The LLVM backend has been upgraded from version 6.0 to 7.0 and is now the default
code generator for Linux x86-64 platforms. This is a significant change that is described
in more detail in the LLVM Code Generator section.

Upgraded FlexNet Publisher licensing to version 11.16.2 from 11.14.1.3 for x86-64. The
newer daemons are backwards-compatible with previous versions of the PGI compilers.
The reverse is not true. This release, and future releases, of the PGI compilers are not
compatible with the older daemons and require version 11.16.2 at a minimum.

PCAST (PGI Compiler-Assisted Software Testing) now supports C and Fortran
directives that are equivalent to the existing library API calls.

Added support for the following versions of Linux/x86-64:

‣ CentOS 7.6

https://www.pgroup.com/support/release_tprs.htm

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 4

‣ Fedora 29
‣ RHEL 7.6
‣ Ubuntu 18.10

Added support for Windows Server 2019 and macOS Mojave.

Fortran

Added support for the ERROR STOP statement.

Added run-time checks to enforce CONTIGUOUS behavior. These checks only occur in
code running on the CPU; in particular, they do not occur in code running on a GPU.

Improved Fortran reshape performance, and handling of derived type c-binding for C++
objects.

OpenACC and CUDA Fortran

Added initial support for use of NVIDIA GPU Tensor Cores in CUDA Fortran programs.

The C and C++ compilers now include support for formatted output using printf()
statements in OpenACC compute regions. Most common format specifiers for flag,
width, precision, size and type are supported. Using printf() in OpenACC regions
is useful for basic debugging and programmer-driven tracing during development and
tuning of OpenACC applications on both multicore CPUs and GPUs.

Added support for Turing architecture with compute capability version 7.5.

CUDA 9.2 is now the default target version if there is no GPU or CUDA driver found on
the system.

Removed support for legacy PGI Accelerator Directives. Attempting to compile code
with such directives will now give an error instead of a warning.

Renamed the [no]llvm sub-option to -Mcuda and -ta=tesla to [no]nvvm.

Various compiler improvements, including bug fixes related to subkernels when
compiling with -Mallocatable=03 (default allocation behavior since 18.7), and
improved scalar replacement optimizations.

Consolidated the accelerator runtime libraries by removing non-thread-safe versions
previously used for serial execution.

Performance

Improved performance of several intrinsic functions for AVX2 and newer processors:
sin, cos, log, log10, cexp, acos, ains, atan, tanh.

Improved performance of memory idiom functions: mset, mcopy, mzero.

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 5

Enhanced vectorizer to recognize more opportunities for SIMD code generation across
all CPU targets.

Known Issues and Limitations

Passing -M[no]llvm to MPI wrappers (mpicc, mpifort, etc.) is not supported. Doing so
will cause unresolved symbol errors and segmentation faults when compiling.

Using -V<version> with the PGI 2019 compilers to target PGI 2018 or earlier releases is
not supported. This is a known limitation that is the result of the switch to using LLVM
compilers as the default code generator for the PGI 2019 compilers.

Programs built with OpenMPI 3.1.3 that use only one MPI rank will hang if invoked
directly. You must now run the program with mpirun -np 1 ./executable or set the
environment variable OMPI_MCA_ess_singleton_isolated=1. This is a known and
intended behavior change in the 3.1.3 version of OpenMPI.

OpenMP profiling is not supported for Fortran applications that use both OpenACC and
OpenMP, and use critical sections, OpenMP lock API calls, or performs I/O. OpenACC
profiling of these applications is still possible by disabling OpenMP profiling with the
'--openmp-profiling off' option to pgprof.

Deprecations and Eliminations

CUDA 9.1 is no longer included as part of the PGI compilers installation package.

The PGI compilers installation packages no longer include pre-compiled versions of
MPICH or MVAPICH.

The pgf77 driver is deprecated. Use pgfortran to compile F77 Fortran.

2.2. New and Modified Compiler Options
Release 2019 supports new and updated command line options and keyword
suboptions.

Added the following options:

‣ -cpp is now an alias for -Mpreprocess.
‣ [dis]allows variadic macros.

Changed the following -Minline sub-options:

‣ Added totalsize:n to limit inlining to the total size of n.
‣ maxsize:n replaces size:n to prevent inlining of functions bigger than n. The

compilers silently convert the previous size:n to maxsize:n.
‣ Removed levels:n which limited inlining to n levels of functions. The compilers

silently ignore levels:n.

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 6

2.3. OpenACC
The following sections contain details about updates to PGI compiler support for
OpenACC.

2.3.1. OpenACC Error Handling
The OpenACC specification provides a mechanism to allow you to intercept errors
triggered during execution on a GPU and execute a specific routine in response before
the program exits. For example, if an MPI process fails while allocating memory on the
GPU, the application may want to call MPI_Abort to shut down all the other processes
before the program exits. This section explains how to take advantage of this feature.

To intercept errors the application must give a callback routine to the OpenACC
runtime. To provide the callback, the application calls acc_set_error_routine with
a pointer to the callback routine.

The interface is the following, where err_msg contains a description of the error:
typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

When the OpenACC runtime detects a runtime error, it will invoke the
callback_routine.

This feature is not the same as error recovery. If the callback routine returns to the
application, the behavior is decidedly undefined.

Let's look at this feature in more depth using an example.

Take the MPI program below and run it with two processes. Process 0 tries to allocate a
large array on the GPU, then sends a message to the second process to acknowledge the
success of the operation. Process 1 waits for the acknowledgment and terminates upon
receiving it.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

#pragma acc enter data create(a[0:N])

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 7

#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

 // do some more work

 MPI_Finalize();

 return 0;
}

We compile the program with:
$ mpicc -ta=tesla -o error_handling_mpi error_handling_mpi.c

If we run this program with two MPI processes, the output will look like the following:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
call to cuMemAlloc returned error 2: Out of memory

Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.

--
mpirun detected that one or more processes exited with non-zero status,
thus causing the job to be terminated.

Process 0 failed while allocating memory on the GPU and terminated unexpectedly with
an error. In this case mpirun was able to identify that one of the processes failed, so it
shut down the remaining process and terminated the application. A simple two-process
program like this is straightforward to debug. In a real world application though, with
hundreds or thousands of processes, having a process exit prematurely may cause
the application to hang indefinitely. Therefore it would be ideal to catch the failure of
a process, control the termination of the other processes, and provide a useful error
message.

We can use the OpenACC error handling feature to improve the previous program and
correctly terminate the application in case of failure of an MPI process.

In the following sample code, we have added an error handling callback routine
that will shut down the other processes if a process encounters an error while
executing on the GPU. Process 0 tries to allocate a large array into the GPU and,
if the operation is successful, process 0 will send an acknowledgment to process
1. Process 0 calls the OpenACC function acc_set_error_routine to set the

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 8

function handle_gpu_errors as an error handling callback routine. This routine
prints a message and calls MPI_Abort to shut down all the MPI processes. If
process 0 successfully allocates the array on the GPU, process 1 will receive the
acknowledgment. Otherwise, if process 0 fails, it will terminate itself and trigger the
call to handle_gpu_errors. Process 1 is then terminated by the code executed in the
callback routine.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

void handle_gpu_errors(char *err_msg) {
 printf("GPU Error: %s", err_msg);
 printf("Exiting...\n\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 exit(-1);
}

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

 acc_set_error_routine(&handle_gpu_errors);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 fflush(stdout);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

 // more work

 MPI_Finalize();

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 9

 return 0;
}

Again, we compile the program with:
$ mpicc -ta=tesla -o error_handling_mpi error_handling_mpi.c

We run the program with two MPI processes and obtain the output below:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
GPU Error: call to cuMemAlloc returned error 2: Out of memory
Exiting...

--
MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD
with errorcode 1.

This time the error on the GPU was intercepted by the application which managed
it with the error handling callback routine. In this case the routine printed some
information about the problem and called MPI_Abort to terminate the remaining
processes and avoid any unexpected behavior from the application.

2.3.2. Performance Impact of Fortran 2003 Allocatables
In the PGI 18.7 release, use of Fortran 2003 semantics for assignments to allocatables was
made the default. This change applies to host and device code alike. Previously, Fortran
1995 semantics were followed by default. The change to Fortran 2003 semantics may
affect performance in some cases where the kernels directive is used.

When the following Fortran allocatable array assignment is compiled using the Fortran
2003 specification, the compiler cannot generate parallel code for the array assignment;
lack of parallelism in this case may negatively impact performance.
 real, allocatable, dimension(:) :: a, b
 allocate(a(100), b(100))
 a = 3.14

 !$acc kernels
 a = b
 !$acc end kernels

The example code can be modified to use an array section assignment instead; the
compiler can parallelize the array section assignment and the lost performance is
regained.
 a(:) = b(:)

2.4. CUDA Toolkit Versions
The PGI compilers use NVIDIA's CUDA Toolkit when building programs for execution
on an NVIDIA GPU. Every PGI installation package puts the required CUDA Toolkit
components into a PGI installation directory called 2019/cuda.

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 10

An NVIDIA CUDA driver must be installed on a system with a GPU before you can run
a program compiled for the GPU on that system. PGI products do not contain CUDA
Drivers. You must download and install the appropriate CUDA Driver from NVIDIA.
The CUDA Driver version must be at least as new as the version of the CUDA Toolkit
with which you compiled your code.

The PGI tool pgaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

PGI 19.1 includes the following versions of the CUDA Toolkit:

‣ CUDA 9.2
‣ CUDA 10.0

You can let the compiler pick which version of the CUDA Toolkit to use or you can
instruct it to use a particular version. The rest of this section describes all of your
options.

If you do not specify a version of the CUDA Toolkit, the compiler uses the version of
the CUDA Driver installed on the system on which you are compiling to determine
which CUDA Toolkit to use. This auto-detect feature was introduced in the PGI 18.7
release; auto-detect is especially convenient when you are compiling and running your
application on the same system. In the absence of any other information, the compiler
will look for a CUDA Toolkit version in the PGI 2019/cuda directory that matches
the version of the CUDA Driver installed on the system. If a match is not found, the
compiler searches for the newest CUDA Toolkit version that is not newer than the
CUDA Driver version. If there is no CUDA Driver installed, the PGI 19.1 compilers fall
back to the default of CUDA 9.2.

If the only PGI compiler you have installed is PGI 19.1, then:

‣ If your CUDA Driver is 10.0, the compilers use CUDA Toolkit 10.0.
‣ If your CUDA Driver is 9.2, the compilers use CUDA Toolkit 9.2.
‣ If your CUDA Driver is 9.1, the compilers will issue an error that CUDA Toolkit 9.1

was not found; CUDA Toolkit 9.1 is not bundled with PGI 19.1
‣ If you do not have a CUDA driver installed on the compilation system, the

compilers use the default CUDA Toolkit version 9.2.
‣ If your CUDA Driver is newer than CUDA 10.0, the compilers will still use the

CUDA Toolkit 10.0. The compiler selects the newest CUDA Toolkit it finds that is
not newer than the CUDA Driver.

You can change the compiler's default selection for CUDA Toolkit version using one of
the following methods:

‣ Use a compiler option. Add the cudaX.Y sub-option to -Mcuda or -ta=tesla
where X.Y denotes the CUDA version. For example, to compile a C file with the
CUDA 9.2 Toolkit you would use:
pgcc -ta=tesla:cuda9.2

Using a compiler option changes the CUDA Toolkit version for one invocation of the
compiler.

‣ Use an rcfile variable. Add a line defining DEFCUDAVERSION to the siterc file in
the installation bin/ directory or to a file named .mypgirc in your home directory.

http://www.nvidia.com/cuda

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 11

For example, to specify the CUDA 9.2 Toolkit as the default, add the following line
to one of these files:
set DEFCUDAVERSION=9.2;

Using an rcfile variable changes the CUDA Toolkit version for all invocations of the
compilers reading the rcfile.

When you specify a CUDA Toolkit version, you can additionally instruct the compiler
to use a CUDA Toolkit installation different from the defaults bundled with the current
PGI compilers. While most users do not need to use any other CUDA Toolkit installation
than those provided with PGI, situations do arise where this capability is needed.
Developers working with pre-release CUDA software may occasionally need to test with
a CUDA Toolkit version not included in a PGI release. Conversely, some developers
might find a need to compile with a CUDA Toolkit older than the oldest CUDA Toolkit
installed with a PGI release. For these users, PGI compilers can interoperate with
components from a CUDA Toolkit installed outside of the PGI installation directories.

PGI tests extensively using the co-installed versions of the CUDA Toolkits and fully
supports their use. Use of CUDA Toolkit components not included with a PGI install is
done with your understanding that functionality differences may exist.

The ability to compile with a CUDA Toolkit other than the versions installed with the
PGI compilers is supported on all platforms; on the Windows platform, this feature is
supported for CUDA Toolkit versions 9.2 and newer.

To use a CUDA toolkit that is not installed with a PGI release, such as CUDA 8.0 with
PGI 19.1, there are three options:

‣ Use the rcfile variable DEFAULT_CUDA_HOME to override the base default
set DEFAULT_CUDA_HOME = /opt/cuda-8.0;

‣ Set the environment variable CUDA_HOME
export CUDA_HOME=/opt/cuda-8.0

‣ Use the compiler compilation line assignment CUDA_HOME=
pgfortran CUDA_HOME=/opt/cuda-8.0

The PGI compilers use the following order of precedence when determining which
version of the CUDA Toolkit to use.

 1. If you do not tell the compiler which CUDA Toolkit version to use, the compiler
picks the CUDA Toolkit from the PGI installation directory 2019/cuda that
matches the version of the CUDA Driver installed on your system. If the PGI
installation directory does not contain a direct match, the newest version in that
directory which is not newer than the CUDA driver version is used. If there is
no CUDA driver installed on your system, the compiler falls back on an internal
default; in PGI 18.10, this default is CUDA 9.1.

 2. The rcfile variable DEFAULT_CUDA_HOME will override the base default.
 3. The environment variable CUDA_HOME will override all of the above defaults.
 4. The environment variable PGI_CUDA_HOME overrides all of the above; it is available

for advanced users in case they need to override an already-defined CUDA_HOME.
 5. A user-specified cudaX.Y sub-option to -Mcuda and -ta=tesla will override all

of the above defaults and the CUDA Toolkit located in the PGI installation directory
2019/cuda will be used.

What's New in PGI 2019

PGI Visual Fortran Release Notes Version 2019 | 12

 6. The compiler compilation line assignment CUDA_HOME= will override all of the
above defaults (including the cudaX.Y sub-option).

2.5. Compute Capability
The compilers can generate code for NVIDIA GPU compute capabilities 3.0 through 7.5.
The compilers construct a default list of compute capabilities that matches the compute
capabilities supported by the GPUs found on the system used in compilation. If there are
no GPUs detected, the compilers select cc35, cc50, cc60, and cc70.

You can override the default by specifying one or more compute capabilities using either
command-line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of
compute capabilities to -ta=tesla: for OpenACC or -Mcuda= for CUDA Fortran.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-
separated list of compute capabilities in the siterc file located in your installation's bin
directory:
set DEFCOMPUTECAP=60 70;

Alternatively, if you don't have permissions to change the siterc file, you can add the
DEFCOMPUTECAP definition to a separate .mypgirc file (mypgi_rc on Windows) in
your home directory.

The generation of device code can be time consuming, so you may notice an increase in
compile time as the number of compute capabilities increases.

2.6. OpenMP

OpenMP 3.1

The PGI Fortran, C, and C++ compilers support OpenMP 3.1 on all platforms.

2.7. Runtime Library Routines
PGI 2019 supports runtime library routines associated with the PGI Accelerator
compilers. For more information, refer to Using an Accelerator in the PGI Compiler User's
Guide.

PGI Visual Fortran Release Notes Version 2019 | 13

Chapter 3.
SELECTING AN ALTERNATE COMPILER

Each release of PGI Visual Fortran contains two components—the newest release of PVF
and the newest release of the PGI compilers and tools that PVF targets.

When PVF is installed onto a system that contains a previous version of PVF, the
previous version of PVF is replaced. The previous version of the PGI compilers and
tools, however, remains installed side-by-side with the new version of the PGI compilers
and tools. By default, the new version of PVF will use the new version of the compilers
and tools. Previous versions of the compilers and tools may be uninstalled using Control
Panel | Add or Remove Programs.

There are two ways to use previous versions of the compilers:

‣ Use a different compiler release for a single project.
‣ Use a different compiler release for all projects.

The method to use depends on the situation.

3.1. For a Single Project
To use a different compiler release for a single project, you use the compiler flag -V<ver>
to target the compiler with version <ver>. This method is the recommended way to
target a different compiler release.

For example, -V13.8 causes the compiler driver to invoke the 13.8 version of the PGI
compilers if these are installed.

To use this option within a PVF project, add it to the Additional options section of the
Fortran | Command Line and Linker | Command Line property pages.

3.2. For All Projects
You can use a different compiler release for all projects.

The Tools | Options dialog within PVF contains entries that can be changed to
use a previous version of the PGI compilers. Under Projects and Solutions |

Selecting an Alternate Compiler

PGI Visual Fortran Release Notes Version 2019 | 14

PVF Directories, there are entries for Executable Directories, Include and Module
Directories, and Library Directories.

‣ For the x64 platform, each of these entries includes a line containing
$(PGIToolsDir). To change the compilers used for the x64 platform, change each
of the lines containing $(PGIToolsDir) to contain the path to the desired bin,
include, and lib directories.

Warning: The debug engine in PVF 2019 is not compatible with previous releases. If
you use Tools | Options to target a release prior to 2019, you cannot use PVF
to debug. Instead, use the -V method described earlier in this section to select an
alternate compiler.

PGI Visual Fortran Release Notes Version 2019 | 15

Chapter 4.
DISTRIBUTION AND DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want
to distribute it to users who need to run it on a variety of systems. This section addresses
how to effectively distribute applications built using PGI compilers and tools.

4.1. Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library
files must be distributed with such programs to enable them to execute on systems
where the PGI compilers are not installed. There are PGI redistributable files for Linux
and Windows. On Windows, PGI also supplies Microsoft redistributable files.

4.1.1. PGI Redistributables
PGI Visual Fortran includes redistributable directories which contain all of the PGI
dynamically linked libraries that can be re-distributed by PVF 2019 licensees under the
terms of the PGI End-User License Agreement (EULA). For reference, a copy of the PGI
EULA in PDF form is included in the release.

The following paths for the redistributable directories assume 'C:' is the system drive.

‣ On a 64-bit Windows system, the redistributable directory is:

C:\Program Files\PGI\win64\19.1\REDIST

The redistributable directories contain the PGI runtime library DLLs for all supported
targets. This enables users of the PGI compilers to create packages of executables and
PGI runtime libraries that execute successfully on almost any PGI-supported target
system, subject to the requirement that end-users of the executable have properly
initialized their environment to use the relevant version of the PGI DLLs.

4.1.2. Microsoft Redistributables
PGI Visual Fortran includes Microsoft Open Tools, the essential tools and libraries
required to compile, link, and execute programs on Windows. PVF 2019 installed for
Microsoft Visual Studio 2015 includes version 14.0 of the Microsoft Open Tools.

Distribution and Deployment

PGI Visual Fortran Release Notes Version 2019 | 16

The Microsoft Open Tools directory contains a subdirectory named REDIST. PGI 2019
licensees may redistribute the files contained in this directory in accordance with the
terms of the associated license agreements.

On Windows, runtime libraries built for debugging (e.g., msvcrtd and libcmtd)
are not included with PGI Visual Fortran. When a program is linked with -g for
debugging, the standard non-debug versions of both the PGI runtime libraries and the
Microsoft runtime libraries are always used. This limitation does not affect debugging
of application code.

PGI Visual Fortran Release Notes Version 2019 | 17

Chapter 5.
TROUBLESHOOTING TIPS AND KNOWN
LIMITATIONS

This section contains information about known limitations, documentation errors, and
corrections. Wherever possible, a work-around is provided.

For up-to-date information about the state of the current release, please see the PGI
frequently asked questions (FAQ) webpage.

5.1. PVF IDE Limitations
The issues in this section are related to IDE limitations.

‣ When moving a project from one drive to another, all .d files for the project should
be deleted and the whole project should be rebuilt. When moving a solution from
one system to another, also delete the solution's Visual Studio Solution User Options
file (.suo).

‣ The Resources property pages are limited. Use the Resources | Command Line
property page to pass arguments to the resource compiler. Resource compiler output
must be placed in the intermediate directory for build dependency checking to work
properly on resource files.

‣ Dragging and dropping files in the Solution Explorer that are currently open in the
Editor may result in a file becoming "orphaned." Close files before attempting to
drag-and-drop them.

5.2. PVF Debugging Limitations
The following limitations apply to PVF debugging:

‣ Debugging of unified binaries is not fully supported. The names of some
subprograms are modified in the creation of the unified binary, and the PVF debug
engine does not translate these names back to the names used in the application
source code.

https://www.pgroup.com/support/faq.htm

Troubleshooting Tips and Known Limitations

PGI Visual Fortran Release Notes Version 2019 | 18

‣ In some situations, using the Watch window may be unreliable for local variables.
Calling a function or subroutine from within the scope of the watched local variable
may cause missed events and/or false positive events. Local variables may be
watched reliably if program scope does not leave the scope of the watched variable.

‣ Rolling over Fortran arrays during a debug session is not supported when Visual
Studio is in Hex mode. This limitation also affects Watch and Quick Watch
windows.

Workaround: deselect Hex mode when rolling over arrays.

5.3. PGI Compiler Limitations
‣ Take extra care when using -Mprof with PVF runtime library DLLs. To build

an executable for profiling, use of the static libraries is recommended. The static
libraries are used by default in the absence of -Bdynamic.

‣ Using -Mpfi and -mp together is not supported. The -Mpfi flag disables -mp
at compile time, which can cause runtime errors in programs that depend on
interpretation of OpenMP directives or pragmas. Programs that do not depend on
OpenMP processing for correctness can still use profile feedback. Using the -Mpfo
flag does not disable OpenMP processing.

5.4. OpenACC Issues
This section includes known limitations in PGI's support for OpenACC directives. PGI
plans to support these features in a future release.

ACC routine directive limitations

‣ Fortran assumed-shape arguments are not yet supported.

Clause Support Limitations

‣ Not all clauses are supported after the device_type clause.

PGI Visual Fortran Release Notes Version 2019 | 19

Chapter 6.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2019 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	PVF Release Overview
	1.1. Product Overview
	1.2. Microsoft Build Tools
	1.3. Terms and Definitions

	What's New in PGI 2019
	2.1. What's New in 19.1
	2.2. New and Modified Compiler Options
	2.3. OpenACC
	2.3.1. OpenACC Error Handling
	2.3.2. Performance Impact of Fortran 2003 Allocatables

	2.4. CUDA Toolkit Versions
	2.5. Compute Capability
	2.6. OpenMP
	2.7. Runtime Library Routines

	Selecting an Alternate Compiler
	3.1. For a Single Project
	3.2. For All Projects

	Distribution and Deployment
	4.1. Application Deployment and Redistributables
	4.1.1. PGI Redistributables
	4.1.2. Microsoft Redistributables

	Troubleshooting Tips and Known Limitations
	5.1. PVF IDE Limitations
	5.2. PVF Debugging Limitations
	5.3. PGI Compiler Limitations
	5.4. OpenACC Issues

	Contact Information

