
USER'S GUIDE FOR OPENPOWER CPUS

Version 2019

User's Guide for OpenPOWER CPUs Version 2019 | ii

TABLE OF CONTENTS

Preface... ix
Audience Description.. ix
Compatibility and Conformance to Standards.. ix
Organization... x
Hardware and Software Constraints.. xi
Conventions... xi
Terms.. xii
Related Publications... xiii

Chapter 1. Getting Started...1
1.1. Overview... 1
1.2. Creating an Example... 2
1.3. Invoking the Command-level PGI Compilers... 2

1.3.1. Command-line Syntax...2
1.3.2. Command-line Options... 3
1.3.3. Fortran Directives and C/C++ Pragmas.. 3

1.4. Filename Conventions..4
1.4.1. Input Files.. 4
1.4.2. Output Files.. 6

1.5. Fortran, C, and C++ Data Types..7
1.6. Parallel Programming Using the PGI Compilers.. 7

1.6.1. Run SMP Parallel Programs...8
1.7. Platform-specific considerations... 8

1.7.1. Using the PGI Compilers on Linux.. 8
1.8. Site-Specific Customization of the Compilers..9

1.8.1. Use siterc Files.. 9
1.8.2. Using User rc Files.. 9

1.9. Common Development Tasks.. 10
Chapter 2. Use Command-line Options.. 12

2.1. Command-line Option Overview.. 12
2.1.1. Command-line Options Syntax... 12
2.1.2. Command-line Suboptions.. 13
2.1.3. Command-line Conflicting Options.. 13

2.2. Help with Command-line Options.. 13
2.3. Getting Started with Performance... 14

2.3.1. Using -fast...14
2.3.2. Other Performance-Related Options.. 15

2.4. Frequently-used Options... 16
Chapter 3. Optimizing and Parallelizing... 18

3.1. Overview of Optimization..19
3.1.1. Local Optimization...19

User's Guide for OpenPOWER CPUs Version 2019 | iii

3.1.2. Global Optimization... 19
3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization........................... 19
3.1.4. Function Inlining... 20
3.1.5. Profile-Feedback Optimization (PFO)...20

3.2. Getting Started with Optimization... 20
3.2.1. -help..21
3.2.2. -Minfo.. 21
3.2.3. -Mneginfo.. 22
3.2.4. -dryrun... 22
3.2.5. -v..22
3.2.6. PGI Profiler..22

3.3. Common Compiler Feedback Format (CCFF)... 22
3.4. Local and Global Optimization..23

3.4.1. -Msafeptr.. 23
3.4.2. -O... 23

3.5. Loop Unrolling using -Munroll... 25
3.6. Vectorization using -Mvect...26

3.6.1. Vectorization Sub-options...27
3.6.2. Vectorization Example Using SIMD Instructions... 29

3.7. Auto-Parallelization using -Mconcur..31
3.7.1. Auto-Parallelization Sub-options...31
3.7.2. Loops That Fail to Parallelize... 33

3.8. Default Optimization Levels... 37
3.9. Local Optimization Using Directives and Pragmas... 37
3.10. Execution Timing and Instruction Counting..38
3.11. Portability of Multi-Threaded Programs on Linux...38

3.11.1. libnuma...39
Chapter 4. Using Function Inlining..40

4.1. Automatic function inlining in C/C++..40
4.2. Invoking Function Inlining..41
4.3. Using an Inline Library... 42
4.4. Creating an Inline Library... 42

4.4.1. Working with Inline Libraries.. 43
4.4.2. Dependencies... 44
4.4.3. Updating Inline Libraries – Makefiles... 44

4.5. Error Detection during Inlining..44
4.6. Examples.. 45
4.7. Restrictions on Inlining... 45

Chapter 5. Using OpenMP...47
5.1. OpenMP Overview... 47

5.1.1. OpenMP Shared-Memory Parallel Programming Model....................................... 48
5.1.2. Terminology... 49
5.1.3. OpenMP Example...50

User's Guide for OpenPOWER CPUs Version 2019 | iv

5.2. Task Overview..50
5.3. Fortran Parallelization Directives...51
5.4. C/C++ Parallelization Pragmas.. 52
5.5. Directive and Pragma Recognition..52
5.6. Directive and Pragma Summary Table... 52

5.6.1. Directive and Pragma Summary Table.. 53
5.7. Directive and Pragma Clauses...54
5.8. Runtime Library Routines.. 57
5.9. Environment Variables.. 63

Chapter 6. Using MPI...64
6.1. MPI Overview...64
6.2. Using Open MPI on Linux.. 64
6.3. Using MPI Compiler Wrappers... 65
6.4. Limitations..65
6.5. Testing and Benchmarking... 65

Chapter 7. Using an Accelerator.. 67
7.1. Overview.. 67

7.1.1. User-directed Accelerator Programming... 67
7.1.2. Features Not Covered or Implemented.. 68

7.2. Terminology...68
7.3. Execution Model... 70

7.3.1. Host Functions..70
7.3.2. Levels of Parallelism.. 70

7.4. Memory Model... 71
7.4.1. Separate Host and Accelerator Memory Considerations..................................... 71
7.4.2. Accelerator Memory... 71
7.4.3. Cache Management.. 71
7.4.4. CUDA Unified Memory...72

7.5. OpenACC Programming Model... 74
7.5.1. Enable Accelerator Directives... 74
7.5.2. Support.. 74
7.5.3. Extensions... 74

7.6. Supported Processors and GPUs.. 75
7.7. CUDA Toolkit Versions.. 75
7.8. Compute Capability... 77
7.9. Compiling an Accelerator Program... 78

7.9.1. -ta.. 78
7.9.2. -acc...80

7.10. Multicore Support.. 81
7.11. Running an Accelerator Program.. 81
7.12. OpenACC Error Handling..82
7.13. Environment Variables.. 85
7.14. Profiling Accelerator Kernels...86

User's Guide for OpenPOWER CPUs Version 2019 | v

7.15. OpenACC Runtime Libraries.. 87
7.15.1. Runtime Library Definitions...88
7.15.2. Runtime Library Routines... 88

7.16. Supported Intrinsics... 89
7.16.1. Supported Fortran Intrinsics Summary Table...90
7.16.2. Supported C Intrinsics Summary Table..91

Chapter 8. PCAST...93
8.1. Overview.. 93
8.2. PCAST with a "Golden" File..94
8.3. PCAST with OpenACC... 97
8.4. Limitations.. 101
8.5. Environment Variables.. 102

Chapter 9. Using Directives and Pragmas..104
9.1. PGI Proprietary Fortran Directives.. 104
9.2. PGI Proprietary C and C++ Pragmas.. 105
9.3. PGI Proprietary Optimization Directive and Pragma Summary................................. 105
9.4. Scope of Fortran Directives and Command-Line Options..107
9.5. Scope of C/C++ Pragmas and Command-Line Options... 108
9.6. Prefetch Directives and Pragmas..110

9.6.1. Prefetch Directive Syntax in Fortran..111
9.6.2. Prefetch Directive Format Requirements...111
9.6.3. Sample Usage of Prefetch Directive...111
9.6.4. Prefetch Pragma Syntax in C/C++... 111
9.6.5. Sample Usage of Prefetch Pragma...112

9.7. !$PRAGMA C...112
9.8. IGNORE_TKR Directive.. 112

9.8.1. IGNORE_TKR Directive Syntax.. 112
9.8.2. IGNORE_TKR Directive Format Requirements.. 113
9.8.3. Sample Usage of IGNORE_TKR Directive..113

Chapter 10. Creating and Using Libraries..114
10.1. Using builtin Math Functions in C/C++..114
10.2. Using System Library Routines... 115
10.3. Creating and Using Shared Object Files on Linux... 115

10.3.1. Procedure to create a use a shared object file..115
10.3.2. ldd Command.. 116

10.4. Using LIB3F.. 117
10.5. LAPACK, BLAS and FFTs..117
10.6. Linking with ScaLAPACK... 117
10.7. The C++ Standard Template Library...117

Chapter 11. Using Environment Variables... 118
11.1. Setting Environment Variables... 118

11.1.1. Setting Environment Variables on Linux...118
11.2. PGI-Related Environment Variables..119

User's Guide for OpenPOWER CPUs Version 2019 | vi

11.3. PGI Environment Variables..120
11.3.1. FORTRANOPT... 120
11.3.2. LD_LIBRARY_PATH... 120
11.3.3. MANPATH.. 121
11.3.4. NO_STOP_MESSAGE..121
11.3.5. PATH... 121
11.3.6. PGI... 121
11.3.7. PGI_CONTINUE... 122
11.3.8. PGI_OBJSUFFIX...122
11.3.9. PWD..122
11.3.10. STATIC_RANDOM_SEED...122
11.3.11. TMP...122
11.3.12. TMPDIR...122

11.4. Using Environment Modules on Linux... 123
Chapter 12. Distributing Files – Deployment..124

12.1. Deploying Applications on Linux... 124
12.1.1. Runtime Library Considerations...124
12.1.2. Linux Redistributable Files.. 125
12.1.3. Restrictions on Linux Portability..125
12.1.4. Licensing for Redistributable Files... 125

12.2. PGI Redistributables..125
Chapter 13. Inter-language Calling.. 126

13.1. Overview of Calling Conventions.. 126
13.2. Inter-language Calling Considerations...127
13.3. Functions and Subroutines.. 127
13.4. Upper and Lower Case Conventions, Underscores.. 128
13.5. Compatible Data Types.. 128

13.5.1. Fortran Named Common Blocks.. 129
13.6. Argument Passing and Return Values..130

13.6.1. Passing by Value (%VAL)..130
13.6.2. Character Return Values... 130

13.7. Array Indices.. 131
13.8. Examples... 131

13.8.1. Example – Fortran Calling C...131
13.8.2. Example – C Calling Fortran...132
13.8.3. Example – C++ Calling C... 133
13.8.4. Example – C Calling C ++.. 134
13.8.5. Example – Fortran Calling C++..134
13.8.6. Example – C++ Calling Fortran..135

Chapter 14. Contact Information.. 137

User's Guide for OpenPOWER CPUs Version 2019 | vii

LIST OF TABLES

Table 1 PGI Compilers and Commands ..xii

Table 2 Option Descriptions .. 6

Table 3 Examples of Usine siterc and User rc Files .. 9

Table 4 Typical -fast Options ... 15

Table 5 Additional -fast Options ... 15

Table 6 Commonly Used Command-Line Options ..16

Table 7 Typical -fast Options .. 21

Table 8 Example of Effect of Code Unrolling .. 26

Table 9 -Mvect Suboptions .. 28

Table 10 -Mconcur Suboptions .. 32

Table 11 Optimization and -O, -g and -M<opt> Options ... 37

Table 12 Directive and Pragma Summary Table ... 53

Table 13 Directive and Pragma Summary Table ... 54

Table 14 Runtime Library Routines Summary .. 58

Table 15 OpenMP-related Environment Variable Summary Table 63

Table 16 Pool Allocator Environment Variables ..73

Table 17 Supported Environment Variables ...85

Table 18 Accelerator Runtime Library Routines ... 88

Table 19 Supported Fortran Intrinsics ...90

Table 20 Supported C Intrinsic Double Functions ... 91

Table 21 Supported C Intrinsic Float Functions ... 92

Table 22 Supported Types for Tolerance Measurements ...94

Table 23 PGI_COMPARE Options ..102

Table 24 Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summary 106

User's Guide for OpenPOWER CPUs Version 2019 | viii

Table 25 IGNORE_TKR Example ... 113

Table 26 PGI-Related Environment Variable Summary .. 119

Table 27 Fortran and C/C++ Data Type Compatibility .. 128

Table 28 Fortran and C/C++ Representation of the COMPLEX Type129

User's Guide for OpenPOWER CPUs Version 2019 | ix

PREFACE

This guide is part of a set of manuals that describe how to use the PGI Fortran, C, and
C++ compilers and program development tools. These compilers and tools include the
PGFORTRAN, PGC++, PGCC compilers and the PGI profiler. They work in conjunction
with an OpenPOWER assembler and linker. You can use the PGI compilers and tools to
compile, debug, optimize, and profile serial and parallel applications for OpenPOWER
processor-based systems.

The PGI Compiler User’s Guide provides operating instructions for the PGI command-
level development environment. The PGI Compiler Reference Manual contains details
concerning the PGI compilers' interpretation of the Fortran language, implementation
of Fortran language extensions, and command-level compilation. Users are expected
to have previous experience with or knowledge of the Fortran programming language.
Neither guide teaches the Fortran programming language.

Audience Description
This manual is intended for scientists and engineers using the PGI compilers. To use
these compilers, you should be aware of the role of high-level languages, such as
Fortran, C, and C++, as well as assembly-language in the software development process;
and you should have some level of understanding of programming. You also need to be
familiar with the basic commands available on your system.

Compatibility and Conformance to Standards
Your system needs to be running a properly installed and configured version of this
PGI product. For information on installing PGI compilers and tools, refer to the Release
Notes and Installation Guide included with your software.

For further information, refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,

Geneva, 1991 (Fortran 90).
‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,

Geneva, 1997 (Fortran 95).

Preface

User's Guide for OpenPOWER CPUs Version 2019 | x

‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,
Geneva, 2004 (Fortran 2003).

‣ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran,
Geneva, 2010 (Fortran 2008).

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ The Fortran 2003 Handbook, Adams et al, Springer, 2009.
‣ OpenMP Application Program Interface, Version 3.1, July 2011, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation

(September, 1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard

Programming Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).
‣ American National Standard Programming Language C, ANSI X3.159-1989.
‣ ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva,

1999 (C99).
‣ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva,

2011 (C11).
‣ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++,

Geneva, 2011 (C++11).

Organization
Users typically begin by wanting to know how to use a product and often then find that
they need more information and facts about specific areas of the product. Knowing how
as well as why you might use certain options or perform certain tasks is key to using
the PGI compilers and tools effectively and efficiently. However, once you have this
knowledge and understanding, you very likely might find yourself wanting to know
much more about specific areas or specific topics.

This guide contains the essential information on how to use the compiler and is divided
into these sections:

Getting Started provides an introduction to the PGI compilers and describes their use
and overall features.

Use Command-line Options provides an overview of the command-line options as well
as task-related lists of options.

Optimizing and Parallelizing describes standard optimization techniques that, with little
effort, allow users to significantly improve the performance of programs.

Using Function Inlining describes how to use function inlining and shows how to create
an inline library.

Using OpenMP provides a description of the OpenMP Fortran parallelization directives
and of the OpenMP C and C++ parallelization pragmas, and shows examples of their
use.

http://www.openmp.org
http://www.openmp.org

Preface

User's Guide for OpenPOWER CPUs Version 2019 | xi

Using MPI describes how to use MPI with PGI products.

Using an Accelerator describes how to use the PGI Accelerator compilers.

Using Directives and Pragmas provides a description of each Fortran optimization
directive and C/C++ optimization pragma, and shows examples of their use.

Creating and Using Libraries discusses PGI support libraries, shared object files, and
environment variables that affect the behavior of the PGI compilers.

Using Environment Variables describes the environment variables that affect the
behavior of the PGI compilers.

Distributing Files – Deployment describes the deployment of your files once you have
built, debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language calls in a
Fortran program and Fortran language calls in a C program.

Hardware and Software Constraints
This guide describes versions of the PGI compilers that produce assembly code for
OpenPOWER processor-based systems. Details concerning environment-specific values
and defaults and system-specific features or limitations are presented in the release
notes delivered with the PGI compilers.

Conventions
This guide uses the following conventions:
italic

is used for emphasis.
Constant Width

is used for filenames, directories, arguments, options, examples, and for language
statements in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In
the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or
item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this
example, multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed
point size.

Preface

User's Guide for OpenPOWER CPUs Version 2019 | xii

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed
point size.

The PGI compilers and tools are supported on a wide variety of Linux, macOS and
Windows operating systems running on 64-bit x86-compatible processors, and on Linux
running on OpenPOWER processors. (Currently, the PGI debugger is supported on
x86-64/x64 only.) See the Compatibility and Installation section on the PGI website at
https://www.pgroup.com/products/index.htm?tab=compat for a comprehensive listing
of supported platforms.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
or 64-bit operating systems.

Terms
A number of terms related to systems, processors, compilers and tools are used
throughout this guide. For example:

accelerator FMA -mcmodel=small shared library

AVX host MPI SIMD

CUDA large arrays MPICH static linking

device license keys multicore

driver LLVM NUMA

DWARF -mcmodel=medium OpenPOWER

For a complete definition of these terms and other terms in this guide with which
you may be unfamiliar, please refer to the PGI online glossary at pgicompilers.com/
definitions.

The following table lists the PGI compilers and tools and their corresponding
commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command

PGFORTRAN ISO/ANSI Fortran 2003 pgfortran

PGCC ISO/ANSI C11 and K&R C pgcc

PGC++ ISO/ANSI C++17 with GNU
compatibility

pgc++

PGI Profiler Performance profiler pgprof

https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/products/index.htm?tab=compat
https://www.pgroup.com/support/definitions.htm

Preface

User's Guide for OpenPOWER CPUs Version 2019 | xiii

In general, the designation PGI Fortran is used to refer to the PGI Fortran 2003 compiler,
and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally
reference the pgfortran command, and most source code examples are written
in Fortran. Usage of PGC++ and PGCC is consistent with PGFORTRAN, though
there are command-line options and features of these compilers that do not apply to
PGFORTRAN, and vice versa.

Support for 32-bit development was deprecated in PGI 2016 and is no longer available
as of the PGI 2017 release. PGI 2017 is only available for 64-bit operating systems and
does not include the ability to compile 32-bit applications for execution on either 32-
bit or 64-bit operating systems.

Related Publications
The following documents contain additional information related to the OpenPOWER
architecture, and the compilers and tools available from The Portland Group.

‣ PGI Fortran Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/
pgi19fortref-openpower.pdf describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference
material related to use of the PGI Fortran compilers.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

‣ OpenPOWER ABI for Linux Supplement, Power Architecture 64-Bit ELF V2 ABI
Specification, http://openpowerfoundation.org/wp-content/uploads/2016/03/
ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf.

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ The C Programming Language by Kernighan and Ritchie (Prentice Hall).
‣ C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall,

1987).
‣ The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T

Bell Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf
http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf

Preface

User's Guide for OpenPOWER CPUs Version 2019 | xiv

User's Guide for OpenPOWER CPUs Version 2019 | 1

Chapter 1.
GETTING STARTED

This section describes how to use the PGI compilers.

1.1. Overview
The command used to invoke a compiler, such as the pgfortran command, is called
a compiler driver. The compiler driver controls the following phases of compilation:
preprocessing, compiling, assembling, and linking. Once a file is compiled and an
executable file is produced, you can execute, debug, or profile the program on your
system. Executables produced by the PGI compilers are unconstrained, meaning they
can be executed on any compatible OpenPOWER processor-based system, regardless of
whether the PGI compilers are installed on that system.

In general, using a PGI compiler involves three steps:

 1. Produce program source code in a file containing a .f extension or another
appropriate extension, as described in Input Files. This program may be one that
you have written or one that you are modifying.

 2. Compile the program using the appropriate compiler command.
 3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The PGI compilers allow many variations on these general program development steps.
These variations include the following:

‣ Stop the compilation after preprocessing, compiling or assembling to save and
examine intermediate results.

‣ Provide options to the driver that control compiler optimization or that specify
various features or limitations.

‣ Include as input intermediate files such as preprocessor output, compiler output, or
assembler output.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 2

1.2. Creating an Example
Let's look at a simple example of using the PGI compiler to create, compile, and execute
a program that prints:
hello

 1. Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello.f:
print *, "hello"
end

 2. Compile the program.
When you created your program, you called it hello.f. In this example, we compile
it from a shell command prompt using the default pgfortran driver option. Use the
following syntax:
$ pgfortran hello.f

By default, the executable output is placed in the file a.out. However, you can
specify an output file name by using the -o option.

To place the executable output in the file hello, use this command:
$ pgfortran -o hello hello.f

 3. Execute the program.
To execute the resulting hello program, simply type the filename at the command
prompt and press the Return or Enter key on your keyboard:

$ hello

Below is the expected output:
hello

1.3. Invoking the Command-level PGI Compilers
To translate and link a Fortran, C, or C++ program, the pgfortran, pgcc and pgc++
commands do the following:

 1. Preprocess the source text file.
 2. Check the syntax of the source text.
 3. Generate an assembly language file.
 4. Pass control to the subsequent assembly and linking steps.

1.3.1. Command-line Syntax
The compiler command-line syntax, using pgfortran as an example, is:
pgfortran [options] [path]filename [...]

Where:

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 3

options
is one or more command-line options, all of which are described in detail in Use
Command-line Options.

path
is the pathname to the directory containing the file named by filename. If you do not
specify the path for a filename, the compiler uses the current directory. You must
specify the path separately for each filename not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object
file, or library to be processed by the compilation system. You can specify more than
one [path]filename.

1.3.2. Command-line Options
The command-line options control various aspects of the compilation process. For a
complete alphabetical listing and a description of all the command-line options, refer to
Use Command-Line Options.

The following list provides important information about proper use of command-line
options.

‣ Command-line options and their arguments are case sensitive.
‣ The compiler drivers recognize characters preceded by a hyphen (-) as command-

line options. For example, the -Mlist option specifies that the compiler creates a
listing file.

The convention for the text of this manual is to show command-line options using
a dash instead of a hyphen; for example, you see -Mlist.

‣ The order of options and the filename is flexible. That is, you can place options
before and after the filename argument on the command line. However, the
placement of some options is significant, such as the -l option, in which the order of
the filenames determines the search order.

If two or more options contradict each other, the last one in the command line
takes precedence.

1.3.3. Fortran Directives and C/C++ Pragmas
You can insert Fortran directives and C/C++ pragmas in program source code to alter the
effects of certain command-line options and to control various aspects of the compilation
process for a specific routine or a specific program loop. For more information on
Fortran directives and C/C++ pragmas, refer to Using OpenMP and Using Directives and
Pragmas.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 4

1.4. Filename Conventions
The PGI compilers use the filenames that you specify on the command line to find and
to create input and output files. This section describes the input and output filename
conventions for the phases of the compilation process.

1.4.1. Input Files
You can specify assembly-language files, preprocessed source files, Fortran/C/C++
source files, object files, and libraries as inputs on the command line. The compiler
driver determines the type of each input file by examining the filename extensions.

For systems with a case-insensitive file system, use the -Mpreprocess option,
described in ‘Command-Line Options Reference’ section of the PGI Compiler
Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf, under the commands for Fortran preprocessing.

The drivers use the following conventions:
filename.f

indicates a Fortran source file.
filename.F

indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to
be preprocessed).

filename.F90
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor
directives (to be preprocessed).

filename.f90
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and
that can contain macros and preprocessor directives (to be preprocessed).

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be
preprocessed).

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 5

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.i
indicates a preprocessed C or C++ source file.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.cpp
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.s
indicates an assembly-language file.

filename.o
indicates an object file.

filename.a
indicates a library of object files.

filename.so
indicates a library of shared object files.

The driver passes files with .s extensions to the assembler and files with .o, .so, and
.a extensions to the linker. Input files with unrecognized extensions, or no extension,
are also passed to the linker.

Files with a .F (Capital F) or .FOR suffix are first preprocessed by the Fortran
compilers and the output is passed to the compilation phase. The Fortran preprocessor
functions like cpp for C programs, but is built in to the Fortran compilers rather than
implemented through an invocation of cpp. This design ensures consistency in the
preprocessing step regardless of the type or revision of operating system under which
you are compiling.

Any input files not needed for a particular phase of processing are not processed. For
example, if on the command line you specify an assembly-language file (filename.s)
and the -S option to stop before the assembly phase, the compiler takes no action on
the assembly language file. Processing stops after compilation and the assembler does
not run. In this scenario, the compilation must have been completed in a previous pass
which created the .s file. For a complete description of the -S option, refer to Output
Files.

In addition to specifying primary input files on the command line, code within other
files can be compiled as part of include files using the INCLUDE statement in a Fortran
source file or the preprocessor #include directive in Fortran source files that use a .F
extension or C and C++ source files.

When linking a program with a library, the linker extracts only those library components
that the program needs. The compiler drivers link in several libraries by default. For
more information about libraries, refer to Create and Use Libraries.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 6

1.4.2. Output Files
By default, an executable output file produced by one of the PGI compilers is placed
in the file a.out. As the Hello example shows, you can use the -o option to specify the
output file name.

If you use option -F (Fortran only), -P (C/C++ only), -S or -c, the compiler produces a file
containing the output of the last completed phase for each input file, as specified by the
option supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked
object file respectively. Similarly, the -E option does not produce a file, but displays
the preprocessed source file on the standard output. Using any of these options,
the -o option is valid only if you specify a single input file. If no errors occur during
processing, you can use the files created by these options as input to a future invocation
of any of the PGI compiler drivers.

The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also indicates the accepted input files.

Table 2 Option Descriptions

Option Stop After Input Output

-E preprocessing Source files preprocessed file to standard out

-F preprocessing Source files. This option is not
valid for pgcc or pgc++.

preprocessed file (.f)

-P preprocessing Source files. This option is not
valid for pgfortran.

preprocessed file (.i)

-S compilation Source files or preprocessed files assembly-language file (.s)

-c assembly Source files, or preprocessed
files, or assembly-language files

unlinked object file (.o)

none linking Source files, or preprocessed
files, assembly-language files,
object files, or libraries

executable file (a.out)

If you specify multiple input files or do not specify an object filename, the compiler uses
the input filenames to derive corresponding default output filenames of the following
form, where filename is the input filename without its extension:
filename.f

indicates a preprocessed file, if you compiled a Fortran file using the -F option.
filename.i

indicates a preprocessed file, if you compiled using the -P option.
filename.lst

indicates a listing file from the -Mlist option.
filename.o

indicates a object file from the -c option.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 7

filename.s
indicates an assembly-language file from the -S option.

Unless you specify otherwise, the destination directory for any output file is the
current working directory. If the file exists in the destination directory, the compiler
overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f proto1.F

This produces the output files proto.o and proto1.o, all of which are binary object
files. Prior to compilation, the file proto1.F is preprocessed because it has a .F
filename extension.

1.5. Fortran, C, and C++ Data Types
The PGI Fortran, C, and C++ compilers recognize scalar and aggregate data types. A
scalar data type holds a single value, such as the integer value 42 or the real value 112.6.
An aggregate data type consists of one or more scalar data type objects, such as an array
of integer values.

For information about the format and alignment of each data type in memory, and the
range of values each type can have on OpenPOWER processor-based systems, refer
to ‘Fortran, C, and C++ Data Types’ section of the PGI Compiler Reference Manual,
www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf.

For more information on OpenPOWER-specific data representation, refer to the
OpenPOWER ABI for Linux Supplement, Power Architecture 64-Bit ELF V2 ABI Specification
listed in the ‘Related Publications’ section in the Preface.

1.6. Parallel Programming Using the PGI Compilers
The PGI compilers support many styles of parallel programming:

‣ Automatic shared-memory parallel programs compiled using the -Mconcur option
to pgfortran, pgcc or pgc++. Parallel programs of this variety can be run on
shared-memory parallel (SMP) systems such as dual-core or multi-processor
workstations.

‣ OpenMP shared-memory parallel programs compiled using the -mp option to
pgfortran, pgcc or pgc++. Parallel programs of this variety can be run on
SMP systems. Carefully coded user-directed parallel programs using OpenMP
directives can often achieve significant speed-ups on dual-core workstations or large
numbers of processors on SMP server systems. Using OpenMP contains complete
descriptions of user-directed parallel programming.

‣ Distributed computing using an MPI message-passing library for communication
between distributed processes.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 8

‣ Accelerated computing using either a low-level model such as CUDA Fortran or a
high-level model such as the PGI Accelerator model or OpenACC to target a many-
core GPU or other attached accelerator.

The first two types of parallel programs are collectively referred to as SMP parallel
programs.

On a single silicon die, today's CPUs incorporate two or more complete processor cores
– functional units, registers, level 1 cache, level 2 cache, and so on. These CPUs are
known as multicore processors. For purposes of threads or OpenMP parallelism, these
cores function as two or more distinct processors. However, the processing cores are on
a single chip occupying a single socket on a system motherboard. For purposes of PGI
software licensing, a multicore processor is treated as a single CPU.

1.6.1. Run SMP Parallel Programs
When you execute an SMP parallel program, by default it uses only one processor. To
run on more than one processor, set the OMP_NUM_THREADS environment variable to
the desired number of processors. For information on how to set environment variables,
refer to Setting Environment Variables.

If you set OMP_NUM_THREADS to a number larger than the number of physical
processors, your program may execute very slowly.

1.7. Platform-specific considerations
The OpenPOWER Linux platform is supported by the PGI compilers and tools:

1.7.1. Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGI supports many of
these extensions, thus allowing the PGI C and C++ compilers to compile most programs
that the GNU compilers can compile. A few header files not interoperable with the
PGI compilers have been rewritten. These files are included in $PGI/linuxpower/
include and in $PGI/linuxpower/include --gcc*, such as float.h, machine/
_types.h, stddef.h, sys/cdefs.h and others. Also, PGI’s version of stdarg.h
supports changes in newer versions of Linux.

If you are using the PGI C or C++ compilers, please make sure that the supplied versions
of these include files are found before the system versions. This hierarchy happens by
default unless you explicitly add a -I option that references one of the system include
directories.

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 9

Running Parallel Programs on Linux

You may encounter difficulties running auto-parallel or OpenMP programs on
Linux systems when the per-thread stack size is set to the default (2MB). If you have
unexplained failures, please try setting the environment variable OMP_STACKSIZE to
a larger value, such as 8MB. For information on setting environment variables, refer to
Setting Environment Variables.

If your program is still failing, you may be encountering the hard 8 MB limit on main
process stack sizes in Linux. You can work around the problem by issuing the following
command:

In csh:
 % limit stacksize unlimited

In bash, sh, zsh, or ksh, use:
 $ ulimit -s unlimited

1.8. Site-Specific Customization of the Compilers
If you are using the PGI compilers and want all your users to have access to specific
libraries or other files, there are special files that allow you to customize the compilers
for your site.

1.8.1. Use siterc Files
The PGI compiler drivers utilize a file named siterc to enable site-specific
customization of the behavior of the PGI compilers. The siterc file is located in the
bin subdirectory of the PGI installation directory. Using siterc, you can control how
the compiler drivers invoke the various components in the compilation tool chain.

1.8.2. Using User rc Files
In addition to the siterc file, user rc files can reside in a given user's home directory, as
specified by the user's HOME environment variable. You can use these files to control
the respective PGI compilers. All of these files are optional.

On Linux, these files are named .mypgf90rc, .mypgccrc, and .mypgc++rc.

The following examples show how you can use these rc files to tailor a given installation
for a particular purpose.

Table 3 Examples of Usine siterc and User rc Files

To do this... Add the line shown to the indicated file(s)

Make available to all linuxpower

compilations the libraries found

in /opt/newlibs/64

set SITELIB=/opt/newlibs/64;

to /opt/pgi/linuxpower/19.5/bin/siterc

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 10

To do this... Add the line shown to the indicated file(s)

Add to all linuxpower

compilations a new library path:

/opt/local/fast

append SITELIB=/opt/local/fast;

to /opt/pgi/linuxpower/19.5/bin/siterc

With linuxpower compilations,

change -Mmpi to link in /opt/
mympi/64/libmpix.a

set MPILIBDIR=/opt/mympi/64;

set MPILIBNAME=mpix;

to /opt/pgi/linuxpower/19.5/bin/siterc

With linuxpower compilations,

always add -DIS64BIT
-DIBM

set SITEDEF=IS64BIT IBM;

to /opt/pgi/linuxpower/19.5/bin/siterc

Build an F90 or F95 executable

for linuxpower or linuxpower

that resolves PGI shared objects

in the relative directory ./
REDIST

set set RPATH=./REDIST;

to ~/.mypgfortranrc

Note.This only affects the behavior of PGFORTRAN for the given

user.

1.9. Common Development Tasks
Now that you have a brief introduction to the compiler, let's look at some common
development tasks that you might wish to perform.

‣ When you compile code you can specify a number of options on the command
line that define specific characteristics related to how the program is compiled and
linked, typically enhancing or overriding the default behavior of the compiler. For a
list of the most common command line options and information on all the command
line options, refer to Use Command-line Options.

‣ Code optimization and parallelization allows the compiler to organize your code
for efficient execution. While possibly increasing compilation time and making the
code more difficult to debug, these techniques typically produce code that runs
significantly faster than code that does not use them. For more information on
optimization and parallelization, refer to Optimizing and Parallelizing.

‣ Function inlining, a special type of optimization, replaces a call to a function or a
subroutine with the body of the function or subroutine. This process can speed up
execution by eliminating parameter passing and the function or subroutine call and
return overhead. In addition, function inlining allows the compiler to optimize the
function with the rest of the code. However, function inlining may also result in
much larger code size with no increase in execution speed. For more information on
function inlining, refer to Using Function Inlining.

‣ Directives and pragmas allow users to place hints in the source code to help the
compiler generate better assembly code. You typically use directives and pragmas

Getting Started

User's Guide for OpenPOWER CPUs Version 2019 | 11

to control the actions of the compiler in a particular portion of a program without
affecting the program as a whole. You place them in your source code where you
want them to take effect. A directive or pragma typically stays in effect from the
point where included until the end of the compilation unit or until another directive
or pragma changes its status. For more information on directives and pragmas, refer
to Using OpenMP and Using Directives and Pragmas.

‣ A library is a collection of functions or subprograms used to develop software.
Libraries contain "helper" code and data, which provide services to independent
programs, allowing code and data to be shared and changed in a modular fashion.
The functions and programs in a library are grouped for ease of use and linking.
When creating your programs, it is often useful to incorporate standard libraries or
proprietary ones. For more information on this topic, refer to Creating and Using
Libraries.

‣ Environment variables define a set of dynamic values that can affect the way
running processes behave on a computer. It is often useful to use these variables to
set and pass information that alters the default behavior of the PGI compilers and
the executables which they generate. For more information on these variables, refer
to Using Environment Variables.

‣ Deployment, though possibly an infrequent task, can present some unique issues
related to concerns of porting the code to other systems. Deployment, in this context,
involves distribution of a specific file or set of files that are already compiled and
configured. The distribution must occur in such a way that the application executes
accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you
might need to know to successfully deploy your code, refer to Distributing Files –
Deployment.

‣ An intrinsic is a function available in a given language whose implementation
is handled specially by the compiler. Intrinsics make using processor-specific
enhancements easier because they provide a C/C++ language interface to assembly
instructions. In doing so, the compiler manages details that the user would normally
have to be concerned with, such as register names, register allocations, and memory
locations of data.

User's Guide for OpenPOWER CPUs Version 2019 | 12

Chapter 2.
USE COMMAND-LINE OPTIONS

A command line option allows you to control specific behavior when a program is
compiled and linked. This section describes the syntax for properly using command-line
options and provides a brief overview of a few of the more common options.

For a complete list of command-line options, their descriptions and use, refer to the
‘Command-Line Options Reference’ section of the PGI Compiler Reference Manual,
www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf.

2.1. Command-line Option Overview
Before looking at all the command-line options, first become familiar with the syntax for
these options. There are a large number of options available to you, yet most users only
use a few of them. So, start simple and progress into using the more advanced options.

By default, the PGI compilers generate code that is optimized for the type of processor
on which compilation is performed, the compilation host. Before adding options to your
command-line, review Help with Command-line Options and Frequently-used Options.

2.1.1. Command-line Options Syntax
On a command-line, options need to be preceded by a hyphen (-). If the compiler
does not recognize an option, you get an unknown switch error. The error can be
downgraded to a warning by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical
bar (|) separates the choices.

Use Command-line Options

User's Guide for OpenPOWER CPUs Version 2019 | 13

...

Horizontal ellipses indicate that zero or more instances of the preceding item are
valid.

Some options do not allow a space between the option and its argument or within
an argument. When applicable, the syntax section of the option description in the
‘Command-Line Options Reference’ section of the PGI Compiler Reference Manual,
www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf contains this
information.

2.1.2. Command-line Suboptions
Some options accept several suboptions. You can specify these suboptions either by
using the full option statement multiple times or by using a comma-separated list for the
suboptions.

The following two command lines are equivalent:
pgfortran -Mvect=simd -Mvect=noaltcode

pgfortran -Mvect=simd,noaltcode

2.1.3. Command-line Conflicting Options
Some options have an opposite or negated counterpart. For example, both -Mvect and
-Mnovect are available. -Mvect enables vectorization and -Mnovect disables it. If you
used both of these commands on a command line, they would conflict.

Rule: When you use conflicting options on a command line, the last encountered
option takes precedence over any previous one.

The conflicting options rule is important for a number of reasons.

‣ Some options, such as -fast, include other options. Therefore, it is possible for you
to be unaware that you have conflicting options.

‣ You can use this rule to create makefiles that apply specific flags to a set of files, as
shown in the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the
flags defined for CCFLAGS but disables vectorization.
CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$(CCFLAGS) -Mnovect

2.2. Help with Command-line Options
If you are just getting started with the PGI compilers and tools, it is helpful to know
which options are available, when to use them, and which options most users find
effective.

Use Command-line Options

User's Guide for OpenPOWER CPUs Version 2019 | 14

Using -help

The -help option is useful because it provides information about all options supported
by a given compiler.

You can use -help in one of three ways:

‣ Use -help with no parameters to obtain a list of all the available options with a
brief one-line description of each.

‣ Add a parameter to -help to restrict the output to information about a specific
option. The syntax for this usage is:
-help <command line option>

Suppose you use the following command to restrict the output to information about
the -fast option:
$ pgfortran -help -fast

The output you see is similar to:
-fast Common optimizations; includes -O2 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the -help parameter to restrict the output to
information about the help command. The usage information for -help shows how
groups of options can be listed or examined according to function.
$ pgfortran -help -help
 -help[=groups|asm|debug|language|linker|opt|other|overall|phase|prepro|
 suffix|switch|target|variable]

‣ Add a parameter to -help to restrict the output to a specific set of options or to a
building process. The syntax for this usage is this:
-help=<subgroup>

For a complete description of subgroups, refer to the -help description in the
Command-line Options Reference section of the PGI Compiler Reference Manual,
www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf.

2.3. Getting Started with Performance
One of the top priorities of most users is performance and optimization. This section
provides a quick overview of a few of the command-line options that are useful in
improving performance.

2.3.1. Using -fast
PGI compilers implement a wide range of options that allow users a fine degree of
control on each optimization phase. When it comes to optimization of code, the quickest
way to start is to use the option -fast. These options create a generally optimal set of
flags. They incorporate optimization options to enable use of vector streaming SIMD

Use Command-line Options

User's Guide for OpenPOWER CPUs Version 2019 | 15

instructions. They enable vectorization with SIMD instructions, cache alignment, and
flush to zero mode.

The contents of the -fast option are host-dependent. Further, you should use these
options on both compile and link command lines.

The following table shows the typical -fast options.

Table 4 Typical -fast Options

Use this option... To do this...

-O2 Specifies a code optimization level of 2.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each
iteration.

-Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

-Mpre Indicates partial redundancy elimination

-fast typically includes the options shown in this table:

Table 5 Additional -fast Options

Use this option... To do this...

-Mvect=simd Generates packed SIMD instructions.

-Mcache_align Aligns long objects on cache-line boundaries.

-Mflushz Sets flush-to-zero mode.

-M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SIMD instructions, use the
PGFORTRAN compiler and the -fast option.

To see the specific behavior of -fast for your target, use the following command:

$ pgfortran -help -fast

2.3.2. Other Performance-Related Options
While -fast is designed to be the quickest route to best performance, it is limited to
routine boundaries. Depending on the nature and writing style of the source code,
the compiler often can perform further optimization by knowing the global context of
usage of a given routine. For instance, determining the possible value range of actual
parameters of a routine could enable a loop to be vectorized; similarly, determining
static occurrence of calls helps to decide which routine is beneficial to inline.

Use Command-line Options

User's Guide for OpenPOWER CPUs Version 2019 | 16

These types of global optimizations are under control of Interprocedural Analysis (IPA)
in PGI compilers. Option -Mipa enables Interprocedural Analysis. -Mipa=fast is the
recommended option to get best performances for global optimization. You can also add
the suboption inline to enable automatic global inlining across files. You might consider
using -Mipa=fast,inline. This option for interprocedural analysis and global optimization
can improve performance.

You may also obtain further performance improvements by experimenting with the
-M<pgflag> options described in the section ‘-M Options by Category’ section of the
PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf . These options include, but are not limited to, -Mvect, -Munroll,
-Minline, -Mconcur, -Mpfi and -Mpfo. However, performance improvements using these
options are typically application- and system-dependent. It is important to time your
application carefully when using these options to ensure no performance degradations
occur.

For more information on optimization, refer to Optimizing and Parallelizing. For specific
information about these options, refer to the ‘Optimization Controls’ section of the
PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf .

2.4. Frequently-used Options
In addition to overall performance, there are a number of other options that many users
find useful when getting started. The following table provides a brief summary of these
options.

For more information on these options, refer to the complete description of each option
available in the ‘Command-Line Options Reference’ section of the PGI Compiler
Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf.
Also, there are a number of suboptions available with each of the -M options listed.
For more information on those options, refer to the specific section on ‘M Options by
Category’.

Table 6 Commonly Used Command-Line Options

Use this option... To do this...

-fast This options creates a generally optimal set of flags for targets that
support SIMD capability. It incorporates optimization options to
enable use of vector streaming SIMD instructions (64-bit targets)
and enable vectorization with SIMD instructions, cache aligned and
flushz.

-g Instructs the compiler to include symbolic debugging information in
the object module; sets the optimization level to zero unless a -O
option is present on the command line.

--gopt Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when -g is not specified.

-help Provides information about available options.

Use Command-line Options

User's Guide for OpenPOWER CPUs Version 2019 | 17

Use this option... To do this...

-mcmodel=medium Enables medium=model core generation for 64-bit targets, which is
useful when the data space of the program exceeds 4GB.

-Mconcur Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple processors to execute loops
that it determines to be parallelizable; thus, loop iterations are split
to execute optimally in a multithreaded execution context.

-Minfo Instructs the compiler to produce information on standard error.

-Minline Enables function inlining.

-Mipa=fast,inline Enables interprocedural analysis and optimization. Also enables
automatic procedure inlining.

-Mpfi or -Mpfo Enable profile feedback driven optimizations

-Mkeepasm Keeps the generated assembly files.

-Munroll Invokes the loop unroller to unroll loops, executing multiple
instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no -O or
-g options are supplied.

-M[no]vect Enables/Disables the code vectorizer.

--[no_]exceptions Removes exception handling from user code. For C++, declares that
the functions in this file generate no C++ exceptions, allowing more
optimal code generation.

-o Names the output file.

-O <level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

-Wl, <option> Compiler driver passes the specified options to the linker.

User's Guide for OpenPOWER CPUs Version 2019 | 18

Chapter 3.
OPTIMIZING AND PARALLELIZING

Source code that is readable, maintainable, and produces correct results is not always
organized for efficient execution. Normally, the first step in the program development
process involves producing code that executes and produces the correct results. This first
step usually involves compiling without much worry about optimization. After code is
compiled and debugged, code optimization and parallelization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler
to generate optimized code. Optimization is not always performed since it increases
compilation time and may make debugging difficult. However, optimization produces
more efficient code that usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. You can use
a number of options to specify the optimization levels, including -O, -Mvect, -Mipa, and
-Mconcur. In addition, you can use several of the -M<pgflag> switches to control specific
types of optimization and parallelization.

This chapter describes these optimization options:

-fast -Minline -O -Munroll

-Mconcur -Mvect -Minfo -Mneginfo

-Msafeptr

-fast -Minline -O -Munroll

-Mconcur -Mpfi -Mvect -Minfo

-Mneginfo -Mpfo

This chapter also describes how to choose optimization options to use with the PGI
compilers. This overview is helpful if you are just getting started with one of the PGI
compilers, or wish to experiment with individual optimizations.

Complete specifications of each of these options is available in the Command-Line Options
Reference section of the PGI Compiler Reference Manual, www.pgroup.com/resources/
docs/19.5/pdf/pgi19ref-openpower.pdf .

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 19

3.1. Overview of Optimization
In general, optimization involves using transformations and replacements that generate
more efficient code. This is done by the compiler and involves replacements that are
independent of the particular target processor's architecture as well as replacements that
take advantage of the OpenPOWER architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization
Global Optimization
Loop Optimization
Optimization Through Function Inlining
Profile Feedback Optimization (PFO)

3.1.1. Local Optimization
A basic block is a sequence of statements in which the flow of control enters at the
beginning and leaves at the end without the possibility of branching, except at the end.
Local optimization is performed on a block-by-block basis within a program’s basic
blocks.

The PGI compilers perform many types of local optimization including: algebraic
identity removal, constant folding, common sub-expression elimination, redundant load
and store elimination, scheduling, strength reduction, and peephole optimizations.

3.1.2. Global Optimization
This optimization is performed on a subprogram/function over all its basic blocks. The
optimizer performs control-flow and data-flow analysis for an entire program unit. All
loops, including those formed by ad hoc branches such as IFs or GOTOs, are detected
and optimized.

Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable
elimination.

3.1.3. Loop Optimization: Unrolling, Vectorization and
Parallelization
The performance of certain classes of loops may be improved through vectorization
or unrolling options. Vectorization transforms loops to improve memory access
performance and make use of packed vector instructions which perform the same
operation on multiple data items concurrently. Unrolling replicates the body of loops to
reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with
multiple processors may also improve using the parallelization features of the PGI
compilers.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 20

3.1.4. Function Inlining
This optimization allows a call to a function to be replaced by a copy of the body of
that function. This optimization will sometimes speed up execution by eliminating
the function call and return overhead. Function inlining may also create opportunities
for other types of optimization. Function inlining is not always beneficial. When used
improperly it may increase code size and generate less efficient code.

3.1.5. Profile-Feedback Optimization (PFO)
Profile-feedback optimization (PFO) makes use of information from a trace file
produced by specially instrumented executables which capture and save information on
branch frequency, function and subroutine call frequency, semi-invariant values, loop
index ranges, and other input data dependent information that can only be collected
dynamically during execution of a program.

By definition, use of profile-feedback optimization is a two-phase process: compilation
and execution of a specially-instrumented executable, followed by a subsequent
compilation which reads a trace file generated during the first phase and uses the
information in that trace file to guide compiler optimizations.

3.2. Getting Started with Optimization
The first concern should be getting the program to execute and produce correct results.
To get the program running, start by compiling and linking without optimization. Add
-O0 to the compile line to select no optimization; or add -g to debug the program easily
and isolate any coding errors exposed during porting to OpenPOWER platform.

To get started quickly with optimization, a good set of options to use with any of the PGI
compilers is -fast . For example:
$ pgfortran -fast -Mipa=fast,inline prog.f

For all of the PGI Fortran, C, and C++ compilers, the -fast -Mipa=fast,inline options
generally produce code that is well-optimized without the possibility of significant
slowdowns due to pathological cases.

‣ The-fast option is an aggregate option that includes a number of individual PGI
compiler options; which PGI compiler options are included depends on the target
for which compilation is performed.

‣ The -Mipa=fast,inline option invokes interprocedural analysis (IPA), including
several IPA suboptions. The inline suboption enables automatic inlining with IPA. If
you do not wish to use automatic inlining, you can compile with -Mipa=fast and use
several IPA suboptions without inlining.

Aggregate options incorporate a generally optimal set of flags that enable use of SIMD
instructions .

The following table shows the typical -fast options.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 21

Table 7 Typical -fast Options

Use this option... To do this...

-O2 Specifies a code optimization level of 2 and -Mvect=SIMD.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each
iteration.

-Mlre Indicates loop-carried redundancy elimination.

-Mautoinline Enables automatic function inlining in C & C++.

By experimenting with individual compiler options on a file-by-file basis, further
significant performance gains can sometimes be realized. However, depending on the
coding style, individual optimizations can sometimes cause slowdowns, and must be
used carefully to ensure performance improvements.

There are other useful command line options related to optimization and parallelization,
such as -help, -Minfo, -Mneginfo, -dryrun, and -v.

3.2.1. -help
As described in Help with Command-Line Options, you can see a specification of any
command-line option by invoking any of the PGI compilers with -help in combination
with the option in question, without specifying any input files.

For example, you might want information on -O:
$ pgfortran -help -O

The resulting output is similar to this:
-O Set opt level. All -O1 optimizations plus traditional scheduling and
 global scalar optimizations performed

Or you can see the full functionality of -help itself, which can return information on
either an individual option or groups of options:
$ pgfortran -help -help

The resulting output is similar to this:
-help[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

3.2.2. -Minfo
You can use the -Minfo option to display compile-time optimization listings. When
this option is used, the PGI compilers issue informational messages to standard error
(stderr) as compilation proceeds. From these messages, you can determine which
loops are optimized using unrolling, vector instructions , vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You can also see
where and whether functions are inlined.

For more information on -Minfo, refer to ‘Optimization Controls’ section of the PGI
Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 22

3.2.3. -Mneginfo
You can use the -Mneginfo option to display informational messages to standard error
(stderr) that explain why certain optimizations are inhibited.

For more information on -Mneginfo, refer to ‘Optimization Controls’ section of the
PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf.

3.2.4. -dryrun
The -dryrun option can be useful as a diagnostic tool if you need to see the steps used
by the compiler driver to preprocess, compile, assemble and link in the presence of a
given set of command line inputs. When you specify the -dryrun option, these steps
are printed to standard error (stderr) but are not actually performed. For example, you
can use this option to inspect the default and user-specified libraries that are searched
during the link phase, and the order in which they are searched by the linker.

3.2.5. -v
The -v option is similar to -dryrun, except each compilation step is performed and not
simply printed.

3.2.6. PGI Profiler
The PGI profiler is a profiling tool that provides a way to visualize the performance
of the components of your program. Using tables and graphs, the profiler associates
execution time and resource utilization data with the source code and instructions of
your program. This association allows you to see where a program’s execution time is
spent. Through resource utilization data and compiler analysis information, the profiler
helps you to understand why certain parts of your program have high execution times.
This information may help you with selecting which optimization options to use with
your program.

The profiler also allows you to correlate the messages produced by -Minfo and
-Mneginfo, described above, to your program’s source code. This feature is known as
the Common Compiler Feedback Format (CCFF).

For more information on the profiler, refer to the Profiler User's Guide,
www.pgroup.com/resources/docs/19.5/pdf/pgi19profug.pdf.

3.3. Common Compiler Feedback Format (CCFF)
Using the Common Compiler Feedback Format (CCFF), PGI compilers save information
about how your program was optimized, or why a particular optimization was not
made, in the executable file. To append this information to the object file, use the
compiler option -Minfo=ccff.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 23

If you choose to use the PGI profiler to aid with your optimization, it can extract this
information and associate it with source code and other performance data, allowing you
to view all of this information simultaneously in one of the available profiler panels.

3.4. Local and Global Optimization
This section describes local and global optimization.

3.4.1. -Msafeptr
The -Msafeptr option can significantly improve performance of C/C++ programs in
which there is known to be no pointer aliasing. For obvious reasons, this command-line
option must be used carefully. There are a number of suboptions for -Msafeptr:

‣ -Msafeptr=all – All pointers are safe. Equivalent to the default setting:
-Msafeptr.

‣ -Msafeptr=arg – Function formal argument pointers are safe. Equivalent to
-Msafeptr=dummy.

‣ -Msafeptr=global – Global pointers are safe.
‣ -Msafeptr=local – Local pointers are safe. Equivalent to -Msafeptr=auto.
‣ -Msafeptr=static – Static local pointers are safe.

If your C/C++ program has pointer aliasing and you also want automating inlining,
then compiling with -Mipa=fast or -Mipa=fast,inline includes pointer aliasing
optimizations. IPA may be able to optimize some of the alias references in your program
and leave intact those that cannot be safely optimizied.

3.4.2. -O
Using the PGI compiler commands with the -O<level> option (the capital O is for
Optimize), you can specify any integer level from 0 to 4.

-O0

Level zero specifies no optimization. A basic block is generated for each language
statement. At this level, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. This level
is useful for the initial execution of a program. It is also useful for debugging, since
there is a direct correlation between the program text and the code generated. To enable
debugging, include -g on your compile line.

-O1

Level one specifies local optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 24

Local optimization is a good choice when the code is very irregular, such as code that
contains many short statements containing IF statements and does not contain loops
(DO or DO WHILE statements). Although this case rarely occurs, for certain types of
code, this optimization level may perform better than level-two (-O2).

-O

When no level is specified, level two global optimizations are performed, including
traditional scalar optimizations, induction recognition, and loop invariant motion. No
SIMD vectorization is enabled.

-O2

Level two specifies global optimization. This level performs all level-one local
optimization as well as level two global optimization described in -O. In addition, more
advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination are enabled.

-O3

Level three specifies aggressive global optimization. This level performs all level-
one and level-two optimizations and enables more aggressive hoisting and scalar
replacement optimizations that may or may not be profitable.

-O4

Level four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

Types of Optimizations

The PGI compilers perform many different types of local optimizations, including but
not limited to:

Algebraic identity removal
Constant folding
Common subexpression elimination
Local register optimization
Peephole optimizations
Redundant load and store elimination
Strength reductions

Level-two optimization (-O2 or -O) specifies global optimization. The -fast option
generally specifies global optimization; however, the -fast switch varies from release
to release, depending on a reasonable selection of switches for any one particular
release. The -O or -O2 level performs all level-one local optimizations as well as global
optimizations. Control flow analysis is applied and global registers are allocated for

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 25

all functions and subroutines. Loop regions are given special consideration. This
optimization level is a good choice when the program contains loops, the loops are
short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but
not limited to:

Branch to branch elimination
Constant propagation
Copy propagation
Dead store elimination
Global register allocation
Induction variable elimination
Invariant code motion

You can explicitly select the optimization level on the command line. For example,
the following command line specifies level-two optimization which results in global
optimization:
$ pgfortran -O2 prog.f

The default optimization level changes depending on which options you select on the
command line. For example, when you select the -g debugging option, the default
optimization level is set to level-zero (-O0). However, if you need to debug optimized
code, you can use the -gopt option to generate debug information without perturbing
optimization. For a description of the default levels, refer to Default Optimization
Levels.

The -fast option includes -O2 on all targets. If you want to override the default for
-fast with -O3 while maintaining all other elements of -fast, simply compile as
follows:
$ pgfortran -fast -O3 prog.f

3.5. Loop Unrolling using -Munroll
This optimization unrolls loops, which reduces branch overhead, and can improve
execution speed by creating better opportunities for instruction scheduling. A loop
with a constant count may be completely unrolled or partially unrolled. A loop with a
non-constant count may also be unrolled. A candidate loop must be an innermost loop
containing one to four blocks of code.

The following example shows the use of the -Munroll option:
$ pgfortran -Munroll prog.f

The -Munroll option is included as part of -fast on all targets. The loop unroller
expands the contents of a loop and reduces the number of times a loop is executed.
Branching overhead is reduced when a loop is unrolled two or more times, since each
iteration of the unrolled loop corresponds to two or more iterations of the original loop;

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 26

the number of branch instructions executed is proportionately reduced. When a loop is
unrolled completely, the loop’s branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is
completely unrolled or unrolled two or more times, opportunities for improved
scheduling may be presented. The code generator can take advantage of more
possibilities for instruction grouping or filling instruction delays found within the loop.

Examples Showing Effect of Unrolling

The following side-by-side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop;
it is not meant to imply that the programmer needs to manually change code. In
fact, manually unrolling your code can sometimes inhibit the compiler’s analysis and
optimization.

Table 8 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

 REAL*4 A(100), B(100), Z
 INTEGER I
 DO I=1, 100
 Z = Z + A(i) * B(i)
 END DO
 END

 REAL*4 A(100), B(100), Z
 INTEGER I
 DO I=1, 100, 2
 Z = Z + A(i) * B(i)
 Z = Z + A(i+1) * B(i+1)
 END DO
 END

Using the -Minfo option, the compiler informs you when a loop is being unrolled. For
example, a message similar to the following, indicating the line number, and the number
of times the code is unrolled, displays when a loop is unrolled:
dot:
 5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-options to -Munroll, or using -Mnounroll, you can
control whether and how loops are unrolled on a file-by-file basis. Using directives or
pragmas, you can precisely control whether and how a given loop is unrolled. For more
information on -Munroll, refer to Use Command-line Options.

3.6. Vectorization using -Mvect
The -Mvect option is included as part of -fast on all targets. If your program contains
computationally-intensive loops, the -Mvect option may be helpful. If in addition you
specify -Minfo, and your code contains loops that can be vectorized, the compiler reports
relevant information on the optimizations applied.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 27

When a PGI compiler command is invoked with the -Mvect option, the vectorizer scans
code searching for loops that are candidates for high-level transformations such as
loop distribution, loop interchange, cache tiling, and idiom recognition (replacement
of a recognizable code sequence, such as a reduction loop, with optimized code
sequences or function calls). When the vectorizer finds vectorization opportunities,
it internally rearranges or replaces sections of loops (the vectorizer changes the code
generated; your source code’s loops are not altered). In addition to performing these
loop transformations, the vectorizer produces extensive data dependence information
for use by other phases of compilation and detects opportunities to use vector or packed
vector instructions on OpenPOWER processors where these are supported.

The -Mvect option can speed up code which contains well-behaved countable loops
which operate on large floating point arrays in Fortran and their C/C++ counterparts.
However, it is possible that some codes will show a decrease in performance when
compiled with the -Mvect option due to the generation of conditionally executed code
segments, inability to determine data alignment, and other code generation factors. For
this reason, it is recommended that you check carefully whether particular program
units or loops show improved performance when compiled with this option enabled.

3.6.1. Vectorization Sub-options
The vectorizer performs high-level loop transformations on countable loops. A loop
is countable if the number of iterations is set only before loop execution and cannot
be modified during loop execution. Some of the vectorizer transformations can be
controlled by arguments to the -Mvect command line option. The following sections
describe the arguments that affect the operation of the vectorizer. In addition, some of
these vectorizer operations can be controlled from within code using directives and
pragmas. For details on the use of directives and pragmas, refer to Using Directives and
Pragmas.

The vectorizer performs the following operations:

‣ Loop interchange
‣ Loop splitting
‣ Loop fusion
‣ Memory-hierarchy (cache tiling) optimizations
‣ Generation of SIMD instructions on processors where these are supported
‣ Generation of prefetch instructions on processors where these are supported
‣ Loop iteration peeling to maximize vector alignment
‣ Alternate code generation

By default, -Mvect without any sub-options is equivalent to:
-Mvect=assoc,cachesize=c

where c is the actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer
options. These defaults may vary depending on the target system. The following table
lists and briefly describes some of the -Mvect suboptions.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 28

Table 9 -Mvect Suboptions

Use this option ... To instruct the vectorizer to do this ...

-Mvect=altcode Generate appropriate code for vectorized loops.

-Mvect=[no]assoc Perform[disable] associativity conversions that
can change the results of a computation due
to a round-off error. For example, a typical
optimization is to change one arithmetic
operation to another arithmetic operation
that is mathematically correct, but can be
computationally different and generate faster
code. This option is provided to enable or disable
this transformation, since a round-off error
for such associativity conversions may produce
unacceptable results.

-Mvect=cachesize:n Tiles nested loop operations, assuming a data
cache size of n bytes. By default, the vectorizer
attempts to tile nested loop operations, such as
matrix multiply, using multi-dimensional strip-
mining techniques to maximize re-use of items in
the data cache.

-Mvect=fuse Enable loop fusion.

-Mvect=gather Enable vectorization of indirect array references.

-Mvect=idiom Enable idiom recognition.

-Mvect=levels:<n> Set the maximum next level of loops to optimize.

-Mvect=nocond Disable vectorization of loops with conditions.

-Mvect=partial Enable partial loop vectorization via inner loop
distribution.

-Mvect=prefetch Automatically generate prefetch instructions when
vectorizable loops are encountered, even in cases
where SIMD instructions are not generated.

-Mvect=short Enable short vector operations.

-Mvect=simd Automatically generate packed SIMD, and
prefetch instructions when vectorizable loops are
encountered. SIMD instructions, first introduced
on Pentium III and AthlonXP processors, operate on
single-precision floating-point data.

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to -Mvect=simd.

-Mvect=tile Enable loop tiling.

-Mvect=uniform Perform consistent optimizations in both
vectorized and residual loops. Be aware that this
may affect the performance of the residual loop.

Inserting no in front of the option disables the option. For example, to disable the
generation of vector instructions on OpenPOWER, compile with -Mvect=nosimd.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 29

3.6.2. Vectorization Example Using SIMD Instructions
One of the most important vectorization options is -Mvect=simd. When you use this
option, the compiler automatically generates SIMD vector instructions, where possible,
when targeting processors on which these instructions are supported. This process can
improve performance by several factors compared with the equivalent scalar code. All of
the PGI Fortran, C and C++ compilers support this capability.

In the program in Vector operation using SIMD instructions, the vectorizer recognizes
the vector operation in subroutine 'loop' when either compiler switch -Mvect=simd or
-fast is used. This example shows the compilation, informational messages, and runtime
results using SIMD instructions on an IBM POWER9 system, along with issues that
affect SIMD performance.

Loops vectorized using SIMD instructions operate much more efficiently when
processing vectors that are aligned to a cache-line boundary. You can cause
unconstrained data objects of size 16 bytes or greater to be cache-aligned by compiling
with the -Mcache_align switch. An unconstrained data object is a data object that is not a
common block member and not a member of an aggregate data structure.

For stack-based local variables to be properly aligned, the main program or function
must be compiled with -Mcache_align.

The -Mcache_align switch has no effect on the alignment of Fortran allocatable or
automatic arrays. If you have arrays that are constrained, such as vectors that are
members of Fortran common blocks, you must specifically pad your data structures
to ensure proper cache alignment. You can use -Mcache_align for only the beginning
address of each common block to be cache-aligned.

The following examples show the results of compiling the sample code in Vector
operation using SIMD instructions both with and without the option -Mvect=simd .

Vector operation using SIMD instructions
program vector_op
 parameter (N = 9999)
 real*4 x(N), y(N), z(N), W(N)
 do i = 1, n
 y(i) = i
 z(i) = 2*i
 w(i) = 4*i
 enddo
 do j = 1, 200000
 call loop(x,y,z,w,1.0e0,N)
 enddo
 print *, x(1),x(771),x(3618),x(6498),x(9999)
end

subroutine loop(a,b,c,d,s,n)
 integer i, n
 real*4 a(n), b(n), c(n), d(n),s
 do i = 1, n
 a(i) = b(i) + c(i) - s * d(i)
 enddo
end

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 30

Assume the preceding program is compiled as follows, where -Mvect=nosimd disables
SIMD vectorization:
% pgfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector_op:
 4, Loop unrolled 16 times
 Generated 1 prefetches in scalar loop
 9, Loop not vectorized/parallelized: contains call
loop:
 18, Loop unrolled 8 times
 FMA (fused multiply-add) instruction(s) generated

The following output shows a sample result if the generated executable is run and timed
on an IBM POWER9 system:
$ /bin/time vadd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
2.31user 0.00system 0:02.57elapsed 89%CPU (0avgtext+0avgdata 6976maxresident)k
8192inputs+0outputs (4major+149minor)pagefaults 0swaps

Now, recompile with vectorization enabled, and you see results similar to these:
% pgfortran -fast -Minfo vadd.f -Mfree -o vadd
vector_op:
 4, Loop not vectorized: may not be beneficial
 Unrolled inner loop 8 times
 Residual loop unrolled 7 times (completely unrolled)
 Generated 1 prefetches in scalar loop
 9, Loop not vectorized/parallelized: contains call
loop:
 18, Generated 2 alternate versions of the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 Generated vector simd code for the loop
 Generated 3 prefetch instructions for the loop
 FMA (fused multiply-add) instruction(s) generated

Notice the informational messages for the loop at line 18. The first line of the message
indicates that two alternate versions of the loop were generated. The loop count and
alignments of the arrays determine which of these versions is executed. The next several
lines indicate the loop was vectorized and that prefetch instructions have been generated
for three loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:
$ /bin/time vadd-simd
 -1.000000 -771.0000 -3618.000 -6498.000
 -9999.000
0.62user 0.00system 0:00.65elapsed 95%CPU (0avgtext+0avgdata 6976maxresident)k
0inputs+0outputs (0major+151minor)pagefaults 0swaps

The SIMD result is 3.7 times faster than the equivalent non-SIMD version of the
program.

Speed-up realized by a given loop or program can vary widely based on a number of
factors:

‣ When the vectors of data are resident in the data cache, performance improvement
using SIMD instructions is most effective.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 31

‣ If data is aligned properly, performance will be better in general than when using
SIMD operations on unaligned data.

‣ If the compiler can guarantee that data is aligned properly, even more efficient
sequences of SIMD instructions can be generated.

‣ The efficiency of loops that operate on single-precision data can be higher. SIMD
instructions can operate on four single-precision elements concurrently, but only two
double-precision elements.

Compiling with -Mvect=simd can result in numerical differences from the executables
generated with less optimization. Certain vectorizable operations, for example dot
products, are sensitive to order of operations and the associative transformations
necessary to enable vectorization (or parallelization).

3.7. Auto-Parallelization using -Mconcur
With the -Mconcur option the compiler scans code searching for loops that are
candidates for auto-parallelization. -Mconcur must be used at both compile-time
and link-time. When the parallelizer finds opportunities for auto-parallelization, it
parallelizes loops and you are informed of the line or loop being parallelized if the
-Minfo option is present on the compile line. For a complete specification of -Mconcur,
refer to the ‘Optimization Controls’ section of the PGI Compiler Reference Manual,
www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-openpower.pdf.

A loop is considered parallelizable if it doesn't contain any cross-iteration data
dependencies. Cross-iteration dependencies from reductions and expandable scalars
are excluded from consideration, enabling more loops to be parallelizable. In general,
loops with calls are not parallelized due to unknown side effects. Also, loops with
low trip counts are not parallelized since the overhead in setting up and starting a
parallel loop will likely outweigh the potential benefits. In addition, the default is not
to parallelize innermost loops, since these often by definition are vectorizable and
it is seldom profitable to both vectorize and parallelize the same loop, especially on
multicore processors. Compiler switches and directives are available to let you override
most of these restrictions on auto-parallelization.

3.7.1. Auto-Parallelization Sub-options
The parallelizer performs various operations that can be controlled by arguments to
the -Mconcur command line option. The following sections describe these arguments
that affect the operation of the parallelizer. In addition, these parallelizer operations can
be controlled from within code using directives and pragmas. For details on the use of
directives and pragmas, refer to Using Directives and Pragmas.

By default, -Mconcur without any sub-options is equivalent to:
-Mconcur=dist:block

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 32

This enables parallelization of loops with blocked iteration allocation across the available
threads of execution. These defaults may vary depending on the target system. The
following table lists and briefly describes some of the -Mconcur suboptions.

Table 10 -Mconcur Suboptions

Use this option ... To instruct the parallelizer to do this...

-Mconcur=allcores Use all available cores. Specify this option at link
time.

-Mconcur=[no]altcode Generate [do not generate] alternate serial code
for parallelized loops. If altcode is specified
without arguments, the parallelizer determines
an appropriate cutoff length and generates serial
code to be executed whenever the loop count is
less than or equal to that length.

If altcode:n is specified, the serial altcode is
executed whenever the loop count is less than or
equal to n. Specifying noaltcode disables this
option and no alternate serial code is generated.

-Mconcur=[no]assoc Enable [disable] parallelization of loops with
associative reductions.

-Mconcur=bind Bind threads to cores. Specify this option at link
time.

-Mconcur=cncall Specifies that it is safe to parallelize loops that
contain subroutine or function calls. By default,
such loops are excluded from consideration for
auto-parallelization. Also, no minimum loop count
threshold must be satisfied before parallelization
occurs, and last values of scalars are assumed to
be safe.

-Mconcur=dist:{block|cyclic} Specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-
robin) fashion. Block distribution is the default.
If cyclic is specified, iterations are allocated to
processors cyclically. That is, processor 0 performs
iterations 0, 3, 6, etc.; processor 1 performs
iterations 1, 4, 7, etc.; and processor 2 performs
iterations 2, 5, 8, etc.

-Mconcur=innermost Enable parallelization of innermost loops.

-Mconcur=levels:<n> Parallelize loops nested at most n levels deep.

-Mconcur=[no]numa Use thread/processors affinity when
running on a NUMA architecture. Specifying
-Mconcur=nonuma disables this option.

The environment variable NCPUS is checked at runtime for a parallel program. If
NCPUS is set to 1, a parallel program runs serially, but will use the parallel routines
generated during compilation. If NCPUS is set to a value greater than 1, the specified
number of processors are used to execute the program. Setting NCPUS to a value
exceeding the number of physical processors can produce inefficient execution.
Executing a program on multiple processors in an environment where some of the

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 33

processors are being time-shared with another executing job can also result in inefficient
execution.

As with the vectorizer, the -Mconcur option can speed up code if it contains well-
behaved countable loops and/or computationally intensive nested loops that operate
on arrays. However, it is possible that some codes show a decrease in performance
on multi-processor systems when compiled with -Mconcur due to parallelization
overheads, memory bandwidth limitations in the target system, false-sharing of
cache lines, or other architectural or code-generation factors. For this reason, it is
recommended that you check carefully whether particular program units or loops show
improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should
refer to Using OpenMP. It is possible that insertion of explicit parallelization directives
or pragmas, and use of the compiler option -mp might enable the application to run in
parallel.

3.7.2. Loops That Fail to Parallelize
In spite of the sophisticated analysis and transformations performed by the compiler,
programmers may notice loops that are seemingly parallel, but are not parallelized. In
this subsection, we look at some examples of common situations where parallelization
does not occur.

Innermost Loops

As noted earlier in this section, the PGI compilers will not parallelize innermost loops by
default, because it is usually not profitable. However, you can override this default using
the -Mconcur=innermost command-line option.

Timing Loops

Often, loops occur in programs that are similar to timing loops. The outer loop in the
following example is one such loop.
do j = 1, 2
 do i = 1, n
1 a(i) = b(i) + c(i)
 enddo
enddo

The outer loop in the preceding example is not parallelized because the compiler detects
a cross-iteration dependence in the assignment to a(i). Suppose the outer loop were
parallelized. Then both processors would simultaneously attempt to make assignments
into a(1:n). Now in general the values computed by each processor for a(1:n) will
differ, so that simultaneous assignment into a(1:n) will produce values different from
sequential execution of the loops.

In this example, values computed for a(1:n) don’t depend on j, so that simultaneous
assignment by both processors does not yield incorrect results. However, it is beyond
the scope of the compilers’ dependence analysis to determine that values computed

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 34

in one iteration of a loop don’t differ from values computed in another iteration. So
the worst case is assumed, and different iterations of the outer loop are assumed to
compute different values for a(1:n). Is this assumption too pessimistic? If j doesn’t
occur anywhere within a loop, the loop exists only to cause some delay, most probably
to improve timing resolution. It is not usually valid to parallelize timing loops; to do so
would distort the timing information for the inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two
separate cases that present problems. In the first case, scalars appear to be expandable,
but appear in non-innermost loops, as in the following example.
do j = 1, n
 x = b(j)
 do i = 1, n
 a(i,j) = x + c(i,j)
 enddo
enddo

There are a number of technical problems to be resolved in order to recognize
expandable scalars in non-innermost loops. Until this generalization occurs, scalars
like x in the preceding code segment inhibit parallelization of loops in which they
are assigned. In the following example, scalar k is not expandable, and it is not an
accumulator for a reduction.
 k = 1
 do i = 1, n
 do j = 1, n
1 a(j,i) = b(k) * x
 enddo
 k = i
2 if (i .gt. n/2) k = n - (i - n/2)
 enddo

If the outer loop is parallelized, conflicting values are stored into k by the various
processors. The variable k cannot be made local to each processor because its value
must remain coherent among the processors. It is possible the loop could be parallelized
if all assignments to k are placed in critical sections. However, it is not clear where
critical sections should be introduced because in general the value for k could depend on
another scalar (or on k itself), and code to obtain the value of other scalars must reside in
the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k
from being recognized as an induction variable. If the conditional statement at label 2 is
removed, k would be an induction variable whose value varies linearly with j, and the
loop could be parallelized.

Scalar Last Values

During parallelization, scalars within loops often need to be privatized; that is, each
execution thread has its own independent copy of the scalar. Problems can arise if a

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 35

privatized scalar is accessed outside the loop. For example, consider the following loops
in C/C++ and Fortran:
/* C/C++ version */
for (i = 1; i<N; i++){
 if(x[i] > 5.0)
 t = x[i];
}
v = t;

f(v);

! Fortran version
do I = 1,N
 if (x(I) > 5.0) then
 t = x(I)
 endif
enddo
v = t

call f(v)

The value of t may not be computed on the last iteration of the loop. Normally, if a
scalar is assigned within a loop and used following the loop, the PGI compilers save
the last value of the scalar. However, if the loop is parallelized and the scalar is not
assigned on every iteration, it may be difficult, without resorting to costly critical
sections, to determine on what iteration t is last assigned. Analysis allows the compiler
to determine that a scalar is assigned on each iteration and hence that the loop is safe
to parallelize if the scalar is used later, as illustrated in the following C/C++ and Fortran
examples.

/* C/C++ version */
for (i=1;i<n;i++) {
 if (x[i]>0.0) {
 t=2.0;
 }
 else {
 t=3.0;
 y[i]=t;
 }
}
v=t;

! Fortran version
do I = 1,N
 if (x(I)>0.0) then
 t=2.0
 else
 t=3.0
 y(i)=t
 endif
enddo
v=t

Notice that t is assigned on every iteration of the loop. However, there are cases where
a scalar may be privatizable, but if it is used after the loop, it is unsafe to parallelize.
Examine the following loops in which each use of t within the loop is reached by a
definition from the same iteration.
/* C/C++ Version */
for (i=1;i<N;i++){
 if(x[i]>0.0){

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 36

 t=x[i];
 y[i]=t;
 }
}
v=t;

f(v);

! Fortran Version
do I = 1,N
 if (x(I)>0.0) then
 t=x(I)
 y(i)=t
 endif
enddo
v=t

call f(v)

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since
the compiler may not be able to detect on which iteration of the parallelized loop t is last
assigned. The compiler detects the previous cases. When a scalar is used after the loop
but is not defined on every iteration of the loop, parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop,
the programmer may use a directive or pragma to let the compiler know the loop is safe
to parallelize. The directive or pragma safe_lastval informs the compiler that, for
a given loop, all scalars are assigned in the last iteration of the loop; thus, it is safe to
parallelize the loop. We could add the following line to any of our previous examples.
!pgi$l safe_lastval ! Fortran Version

#pragma loop safe_lastval /* C/C++ Version */

The resulting code looks similar to this:
/* C/C++ Version */
#pragma loop safe_lastval
...
for (i=1;i<N;i++){
 if(x[i]>5.0) t=x[i];
}
 v = t;

! Fortran Version
!pgi$l safe_lastv
...
do I = 1,N
 if (x(I) > 5.0) then
 t = x(I)
 endif
enddo
v = t

In addition, a command-line option -Msafe_lastval provides this information for all
loops within the routines being compiled, which essentially provides global scope.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 37

3.8. Default Optimization Levels
The following table shows the interaction between the -O<level>, -g, and -M<opt>
options. In the table, level can be 0, 1, 2, 3 or 4, and <opt> can be vect, concur, unroll
or ipa. The default optimization level is dependent upon these command-line options.

Table 11 Optimization and -O, -g and -M<opt> Options

Optimize Option Debug Option -M<opt> Option Optimization Level

none none none 1

none none -M<opt> 2

none -g none 0

-O none or -g none 2

-O<level> none or -g none level

-O<level> <= 2 none or -g -M<opt> 2

Code that is not optimized yet compiled using the option -O0 can be significantly slower
than code generated at other optimization levels. The -M<opt> option, where <opt>
is vect, concur, unroll or ipa, sets the optimization level to 2 if no -O options
are supplied. The -fast option sets the optimization level to a target-dependent
optimization level if no -O options are supplied.

3.9. Local Optimization Using Directives and
Pragmas
Command-line options let you specify optimizations for an entire source file. Directives
supplied within a Fortran source file and pragmas supplied within a C or C++ source
file provide information to the compiler and alter the effects of certain command-line
options or the default behavior of the compiler. (Many directives have a corresponding
command-line option.)

While a command line option affects the entire source file that is being compiled,
directives and pragmas let you do the following:

‣ Apply, or disable, the effects of a particular command-line option to selected
subprograms or to selected loops in the source file (for example, an optimization).

‣ Globally override command-line options.
‣ Tune selected routines or loops based on your knowledge or on information

obtained through profiling.

Using Directives and Pragmas provides details on how to add directives and pragmas to
your source files.

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 38

3.10. Execution Timing and Instruction Counting
As this chapter describes, once you have a program that compiles, executes and gives
correct results, you may optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you
compare several optimization levels before arriving at the best solution. To compare
optimization levels, you need to measure the execution time for your program. There are
several approaches you can take for timing execution.

‣ You can use shell commands that provide execution time statistics.
‣ You can include function calls in your code that provide timing information.
‣ You can profile sections of code.

Timing functions available with the PGI compilers include these:

‣ 3F timing routines.
‣ The SECNDS pre-declared function in PGFORTRAN.
‣ The SYSTEM_CLOCK or CPU_CLOCK intrinsics in PGF95 or PGFORTRAN.

In general, when timing a program, you should try to eliminate or reduce the amount of
system level activities such as I/O, program loading, and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK
effectively within a Fortran program unit.

Using SYSTEM_CLOCK code fragment
integer :: nprocs, hz, clock0, clock1
 real :: time
call system_clock (count_rate=hz)
 call system_clock(count=clock0)
 < do work>
 call system_clock(count=clock1)
 t = (clock1 - clock0)
 time = real (t) / real(hz)

Or you can use the F90 cpu_time subroutine:
real :: t1, t2, time
call cpu_time(t1)
 < do work>
call cpu_time(t2)
time = t2 - t1

3.11. Portability of Multi-Threaded Programs on
Linux
PGI created the library libnuma to handle the variations between various
implementations of Linux.

Some older versions of Linux are lacking certain features that support multi-processor
and multicore systems; in particular, the system call 'sched_setaffinity' and the numa

Optimizing and Parallelizing

User's Guide for OpenPOWER CPUs Version 2019 | 39

library libnuma. The PGI runtime library uses these features to implement some
-Mconcur and -mp operations.

These variations led to the creation of the PGI library: libnuma, which is used on all 64-
bit Linux systems.

When a program is linked with the system libnuma library, the program depends on
that library to run. On systems without a libnuma library, the PGI version of libnuma
provides the required stubs so that the program links and executes properly. If the
program is linked with libnuma, the differences between systems is masked by the
different versions of libnuma.

When a program is deployed to the target system, the proper set of libraries, real or stub,
should be deployed with the program.

This facility requires that the program be dynamically linked with libnuma.

3.11.1. libnuma
Not all systems have libnuma. Typically, only numa systems have this library. PGI
supplies a stub version of libnuma which satisfies the calls from the PGI runtime to
libnuma. libnuma is a shared library that is linked dynamically at runtime.

The reason to have a numa library on all systems is to allow multi-threaded programs,
such as programs compiled with -Mconcur or -mp, to be compiled, linked, and
executed without regard to whether the host or target systems has a numa library. When
the numa library is not available, a multi-threaded program still runs because the calls to
the numa library are satisfied by the PGI stub library.

During installation, the installation procedure checks for the existence of a real libnuma
among the system libraries. If the real library is not found, the PGI stub version is
substituted.

User's Guide for OpenPOWER CPUs Version 2019 | 40

Chapter 4.
USING FUNCTION INLINING

Function inlining replaces a call to a function or a subroutine with the body of the
function or subroutine. This can speed up execution by eliminating parameter passing
and function/subroutine call and return overhead. It also allows the compiler to
optimize the function with the rest of the code. Note that using function inlining
indiscriminately can result in much larger code size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

‣ Automatic function inlining – In C/C++, you can inline static functions with the
inline keyword by using the -Mautoinline option, which is included with
-fast.

‣ Function inlining – You can inline functions which were extracted to the inline
libraries in C/Fortran/C++. There are two ways of enabling function inlining:
with and without the lib suboption. For the latter, you create inline libraries, for
example using the pgfortran compiler driver and the -o and -Mextract options.

There are important restrictions on inlining. Inlining only applies to certain types
of functions. Refer to Restrictions on Inlining for more details on function inlining
limitations.

This section describes how to use the following options related to function inlining:

-Mautoinline

-Mextract

-Minline

-Mnoinline

-Mrecursive

4.1. Automatic function inlining in C/C++
To enable automatic function inlining in C/C++ for static functions with the inline
keyword, use the -Mautoinline option (included in -fast). Use -Mnoautoinline
to disable it.

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 41

Several -Mautoinline suboptions let you determine the selection criteria. These
suboptions are:
maxsize:n

Automatically inline functions size n and less
totalsize:n

Limit automatic inlining to total size of n

4.2. Invoking Function Inlining
To invoke the function inliner, use the -Minline option. If you do not specify an
inline library, the compiler performs a special prepass on all source files named on the
compiler command line before it compiles any of them. This pass extracts functions that
meet the requirements for inlining and puts them in a temporary inline library for use
by the compilation pass.

Several -Minline suboptions let you determine the selection criteria for functions to be
inlined. These suboptions include:
except:func

Inlines all eligible functions except func, a function in the source text. You can use a
comma-separated list to specify multiple functions.

[name:]func
Inlines all functions in the source text whose name matches func. You can use a
comma-separated list to specify multiple functions.

[maxsize:]number
A numeric option is assumed to be a size. Functions of size number or less are
inlined. If both number and function are specified, then functions matching the
given name(s) or meeting the size requirements are inlined.

reshape
Fortran subprograms with array arguments are not inlined by default if the array
shape does not match the shape in the caller. Use this option to override the default.

smallsize:number
Always inline functions of size smaller than number regardless of other size limits.

totalsize:number
Stop inlining in a function when the function's total inlined size reaches the number
specified.

[lib:]file.ext
Instructs the inliner to inline the functions within the library file file.ext. If no
inline library is specified, functions are extracted from a temporary library created
during an extract prepass.

Tip Create the library file using the -Mextract option.

If you specify both a function name and a maxsize n, the compiler inlines functions that
match the function name or have n or fewer statements.

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 42

If a name is used without a keyword, then a name with a period is assumed to be
an inline library and a name without a period is assumed to be a function name. If a
number is used without a keyword, the number is assumed to be a size.

Inlining can be disabled with -Mnoinline.

In the following example, the compiler inlines functions with fewer than approximately
100 statements in the source file myprog.f and writes the executable code in the default
output file a.out.
 $ pgfortran -Minline=maxsize:100 myprog.f

For more information on the -Minline options, refer to ‘-M Options by Category’
section of the PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/
pdf/pgi19ref-openpower.pdf.

4.3. Using an Inline Library
If you specify one or more inline libraries on the command line with the -Minline
option, the compiler does not perform an initial extract pass. The compiler selects
functions to inline from the specified inline library. If you also specify a size or function
name, all functions in the inline library meeting the selection criteria are selected for
inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the -Minline option, the
compiler inlines every function in the inline library that matches a function in the source
text.

In the following example, the compiler inlines the function proc from the inline library
lib.il and writes the executable code in the default output file a.out.
 $ pgfortran -Minline=name:proc,lib:lib.il myprog.f

The following command line is equivalent to the preceding line, with the exception that
in the following example does not use the keywords name: and lib:. You typically use
keywords to avoid name conflicts when you use an inline library name that does not
contain a period. Otherwise, without the keywords, a period informs the compiler that
the file on the command line is an inline library.
$ pgfortran -Minline=proc,lib.il myprog.f

4.4. Creating an Inline Library
You can create or update an inline library using the -Mextract command-line option. If
you do not specify selection criteria with the -Mextract option, the compiler attempts
to extract all subprograms.

Several -Mextract options let you determine the selection criteria for creating or
updating an inline library. These selection criteria include:
func

Extracts the function func. you can use a comma-separated list to specify multiple
functions.

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 43

[name:]func
Extracts the functions whose name matches func, a function in the source text.

[size:]n
Limits the size of the extracted functions to functions with a statement count less than
or equal to n, the specified size.

The size n may not exactly equal the number of statements in a selected function;
the size parameter is merely a rough gauge.

[lib:]ext.lib
Stores the extracted information in the library directory ext.lib.

If no inline library is specified, functions are extracted to a temporary library created
during an extract prepass for use during the compilation stage.

When you use the -Mextract option, only the extract phase is performed; the compile
and link phases are not performed. The output of an extract pass is a library of functions
available for inlining. This output is placed in the inline library file specified on
the command line with the -o filename specification. If the library file exists, new
information is appended to it. If the file does not exist, it is created. You can use a
command similar to the following:
$ pgfortran -Mextract=lib:lib.il myfunc.f

You can use the -Minline option with the -Mextract option. In this case, the
extracted library of functions can have other functions inlined into the library. Using
both options enables you to obtain more than one level of inlining. In this situation, if
you do not specify a library with the -Minline option, the inline process consists of two
extract passes. The first pass is a hidden pass implied by the -Minline option, during
which the compiler extracts functions and places them into a temporary library. The
second pass uses the results of the first pass but puts its results into the library that you
specify with the -o option.

4.4.1. Working with Inline Libraries
An inline library is implemented as a directory with each inline function in the library
stored as a file using an encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents
for the inline library. This is a printable, ASCII file which you can examine to locate
information about the library contents, such as names and sizes of functions, the source
file from which they were extracted, the version number of the extractor which created
the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

‣ Inline libraries can be copied or renamed.
‣ Elements of libraries can be deleted or copied from one library to another.
‣ The ls or dir command can be used to determine the last-change date of a library

entry.

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 44

4.4.2. Dependencies
When a library is created or updated using one of the PGI compilers, the last-change
date of the library directory is updated. This allows a library to be listed as a dependence
in a makefile and ensures that the necessary compilations are performed when a library
is changed.

4.4.3. Updating Inline Libraries – Makefiles
If you use inline libraries you must be certain that they remain up-to-date with the
source files into which they are inlined. One way to assure inline libraries are updated is
to include them in a makefile.

The makefile fragment in the following example assumes the file utils.f contains a
number of small functions used in the files parser.f and alloc.f.

This portion of the makefile:

‣ Maintains the inline library utils.il.
‣ Updates the library whenever you change utils.f or one of the include files it

uses.
‣ Compiles parser.f and alloc.f whenever you update the library.

Sample Makefile
SRC = mydir
FC = pgfortran
FFLAGS = -O2
main.o: $(SRC)/main.f $(SRC)/global.h
 $(FC) $(FFLAGS) -c $(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -c $(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
 $(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
 $(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
$(FC) -o myprog main.o utils.o parser.o alloc.o

4.5. Error Detection during Inlining
You can specify the -Minfo=inline option to request inlining information from the
compiler when you invoke the inliner. For example:
$ pgfortran -Minline=mylib.il -Minfo=inline myext.f

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 45

4.6. Examples
Assume the program dhry consists of a single source file dhry.f. The following
command line builds an executable file for dhry in which proc7 is inlined wherever it is
called:
$ pgfortran dhry.f -Minline=proc7

The following command lines build an executable file for dhry in which proc7 plus any
functions of approximately 10 or fewer statements are inlined (one level only).

The specified functions are inlined only if they are previously placed in the inline
library, temp.il, during the extract phase.

$ pgfortran dhry.f -Mextract=lib:temp.il
$ pgfortran dhry.f -Minline=10,proc7,temp.il

Using the same source file dhry.f, the following example builds an executable for
dhry in which all functions of roughly ten or fewer statements are inlined. Two levels of
inlining are performed. This means that if function A calls function B, and B calls C, and
both B and C are inlinable, then the version of B which is inlined into A will have had C
inlined into it.
$ pgfortran dhry.f -Minline=maxsize:10

4.7. Restrictions on Inlining
The following Fortran subprograms cannot be extracted:

‣ Main or BLOCK DATA programs.
‣ Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or

EQUIVALENCE statements.
‣ Subprograms containing FORMAT statements.
‣ Subprograms containing multiple entries.

A Fortran subprogram is not inlined if any of the following applies:

‣ It is referenced in a statement function.
‣ A common block mismatch exists; in other words, the caller must contain all

common blocks specified in the callee, and elements of the common blocks must
agree in name, order, and type (except that the caller's common block can have
additional members appended to the end of the common block).

‣ An argument mismatch exists; in other words, the number and type (size) of actual
and formal parameters must be equal.

‣ A name clash exists, such as a call to subroutine xyz in the extracted subprogram
and a variable named xyz in the caller.

The following types of C and C++ functions cannot be inlined:

‣ Functions containing switch statements

Using Function Inlining

User's Guide for OpenPOWER CPUs Version 2019 | 46

‣ Functions which reference a static variable whose definition is nested within the
function

‣ Functions which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

‣ Static functions
‣ Functions which call a static function
‣ Functions which reference a static variable

User's Guide for OpenPOWER CPUs Version 2019 | 47

Chapter 5.
USING OPENMP

The PGFORTRAN Fortran compiler supports the OpenMP Fortran Application Program
Interface. The PGCC and PGC++ compilers support the OpenMP C/C++ Application
Program Interface.

OpenMP is a specification for a set of compiler directives, an applications programming
interface (API), and a set of environment variables that can be used to specify shared
memory parallelism in FORTRAN and C/C++ programs. OpenMP may be used to obtain
most of the parallel performance you can expect from your code, or it may serve as a
stepping stone to parallelizing an entire application with MPI.

This section provides information on OpenMP as it is supported by PGI compilers.
Currently, all PGI compilers support the version 3.1 OpenMP specification.

Use the -mp compiler switch to enable processing of the OpenMP pragmas listed in this
section. As of the PGI 2011 Release, the OpenMP runtime library is linked by default.
Note that GNU pthreads are not completely interoperable with OpenMP threads.

When using pgc++ on Linux, the GNU STL is thread-safe to the extent listed in the
GNU documentation as required by the C++11 standard. If an STL thread-safe issue is
suspected, the suspect code can be run sequentially inside of an OpenMP region using
#pragma omp critical sections.

This section describes how to use the following option supporting OpenMP: -mp

5.1. OpenMP Overview

OpenMP 3.1

The PGI Fortran, C, and C++ compilers support OpenMP 3.1 on all platforms.

OpenMP 4.5

The PGI Fortran, C, and C++ compilers compile most OpenMP 4.5 programs for
parallel execution across all the cores of a multicore CPU or server. target regions are

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 48

implemented with default support for the multicore host as the target, and parallel
and distribute loops are parallelized across all OpenMP threads.

Current limitations include:

‣ The simd construct can be used to provide tuning hints; the simd construct's
private, lastprivate, reduction, and collapse clauses are processed and
supported.

‣ The declare simd construct is ignored.
‣ The ordered construct's simd clause is ignored.
‣ The task construct's depend and priority clauses are not supported.
‣ The loop construct's linear, schedule, and ordered(n) clauses are not

supported.
‣ The declare reduction directive is not supported.

5.1.1. OpenMP Shared-Memory Parallel Programming
Model
The OpenMP shared-memory programming model is a collection of compiler directives
or pragmas, library routines, and environment variables that can be used to specify
shared-memory parallelism in Fortran and in C/C++ programs.
Fortran directives and C/C++ pragmas

Allow users to mark sections of code that can be executed in parallel when the code is
compiled using the -mp switch.

When this switch is not present, the compiler ignores these directives and pragmas.

Fixed-form Fortran OpenMP directives begin with !OMP, COMP, or *$OMP,
beginning in column 1. Free-form Fortran OpenMP pragmas begin with !$OMP.
OpenMP pragmas for C/C++ begin with #pragma omp. This format allows the user
to have a single source code file for use with or without the -mp switch, as these lines
are then merely viewed as comments when -mp is not present.

These directives and pragmas allow the user to create task, loop, and parallel section
work-sharing constructs and synchronization constructs. They also allow the user to
define how data is shared or copied between parallel threads of execution.

The data environment is controlled either by using clauses on the directives or
pragmas, or with additional directives or pragmas.

Runtime library routines
Are available to query the parallel runtime environment, for example to determine
how many threads are participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more
information, see the OpenMP website, http://www.openmp.org.

Macro substitution
C and C++ pragmas are subject to macro replacement after #pragma omp.

http://www.openmp.org

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 49

5.1.2. Terminology
For OpenMP 3.1 there are a number of terms for which it is useful to have common
definitions.
Thread

An execution entity with a stack and associated static memory, called threadprivate
memory.

‣ An OpenMP thread is a thread that is managed by the OpenMP runtime system.
‣ A thread-safe routine is a routine that performs the intended function even when

executed concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as
well as any implicit code introduced by the OpenMP implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is,
a region is encountered during the execution of another region. PGI supports both
lexically and non-lexically nested parallel regions.

Parallel region
In OpenMP 3.1 there is a distinction between a parallel region and an active parallel
region. A parallel region can be either inactive or active.

‣ An inactive parallel region is executed by a single thread.
‣ An active parallel region is a parallel region that is executed by a team consisting

of more than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and
OpenMP 3.1. In OpenMP 2.5, the definition was a parallel region whose IF
clause evaluates to true. To examine the significance of this change, look at
the following example:
 program test
 logical omp_in_parallel

!$omp parallel
 print *, omp_in_parallel()
!$omp end parallel

 stop
 end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP
2.5, this program yields T while in OpenMP 3.1, the program yields F. In
OpenMP 3.1, execution is not occurring by more than one thread. Therefore,
change in this definition may mean previous programs require modification.

Task
A specific instance of executable code and its data environment, generated when a
thread encounters a task construct or a parallel construct.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 50

5.1.3. OpenMP Example
Look at the following simple OpenMP example involving loops.

OpenMP Loop Example
 PROGRAM MAIN
 INTEGER I, N, OMP_GET_THREAD_NUM
 REAL*8 V(1000), GSUM, LSUM
 GSUM = 0.0D0
 N = 1000
 DO I = 1, N
 V(I) = DBLE(I)
 ENDDO

!$OMP PARALLEL PRIVATE(I,LSUM) SHARED(V,GSUM,N)
 LSUM = 0.0D0
!$OMP DO
 DO I = 1, N
 LSUM = LSUM + V(I)
 ENDDO
!$OMP END DO
!$OMP CRITICAL
 print *, "Thread ",OMP_GET_THREAD_NUM()," local sum: ",LSUM
 GSUM = GSUM + LSUM
!$OMP END CRITICAL
!$OMP END PARALLEL

 PRINT *, "Global Sum: ",GSUM
 STOP
 END

If you execute this example with the environment variable OMP_NUM_THREADS set to
4, then the output looks similar to this:
Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000
FORTRAN STOP

5.2. Task Overview
Every part of an OpenMP program is part of a task. A task, whose execution can be
performed immediately or delayed, has these characteristics:

‣ Code to execute
‣ A data environment – that is, it owns its data
‣ An assigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

‣ Packaging: Each encountering thread packages a new instance of a task – code and
data.

‣ Execution: Some thread in the team executes the task at some later time.

In the following sections, we use this terminology:

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 51

Task
The package of code and instructions for allocating data created when a thread
encounters a task construct. A task can be implicit or explicit.

‣ An explicit task is a task generated when a task construct is encountered during
execution.

‣ An implicit task is a task generated by the implicit parallel region or generated
when a parallel construct is encountered during execution.

Task construct
A task directive or pragma plus a structured block.

Task region
The dynamic sequence of instructions produced by the execution of a task by a
thread.

5.3. Fortran Parallelization Directives
Parallelization directives are comments in a program that are interpreted by the PGI
Fortran compilers when the option -mp is specified on the command line. The form of a
parallelization directive is:
sentinel directive_name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must
comply with these rules:

‣ Be one of these: !OMP, COMP, or *$OMP.
‣ Must start in column 1 (one) for free-form code.
‣ Must appear as a single word without embedded white space.
‣ The sentinel marking a DOACROSS directive is C$.

The directive_name can be any of the directives listed in Directive and Pragma Summary
Table. The valid clauses depend on the directive. Directive and Pragma Clauses provides
a list of clauses, the directives and pragmas to which they apply, and their functionality.

In addition to the sentinel rules, the directive must also comply with these rules:

‣ Standard Fortran syntax restrictions, such as line length, case insensitivity, and so
on, apply to the directive line.

‣ Initial directive lines must have a space or zero in column six.
‣ Continuation directive lines must have a character other than a space or a zero in

column six. Continuation lines for C$DOACROSS directives are specified using the
C$& sentinel.

‣ Directives which are presented in pairs must be used in pairs.

Clauses associated with directives have these characteristics:

‣ The order in which clauses appear in the parallelization directives is not significant.
‣ Commas separate clauses within the directives, but commas are not allowed

between the directive name and the first clause.
‣ Clauses on directives may be repeated as needed, subject to the restrictions listed in

the description of each clause.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 52

5.4. C/C++ Parallelization Pragmas
Parallelization pragmas are #pragma statements in a C or C++ program that are
interpreted by the PGI C and C++ compilers when the option -mp is specified on the
command line. The form of a parallelization pragma is:
#pragma omp pragma_name [clauses]

The format for pragmas include these rules:

‣ The pragmas follow the conventions of the C and C++ rules.
‣ Whitespace can appear before and after the #.
‣ Preprocessing tokens following the #pragma omp are subject to macro replacement.
‣ The order in which clauses appear in the parallelization pragmas is not significant.
‣ Spaces separate clauses within the pragmas.
‣ Clauses on pragmas may be repeated as needed subject to the restrictions listed in

the description of each clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be
a statement or compound statement (a sequence of statements beginning with { and
ending with }) that has a single entry and a single exit. No statement or compound
statement is a C/C++ structured block if there is a jump into or out of that statement.

5.5. Directive and Pragma Recognition
The compiler option -mp enables recognition of the parallelization directives and
pragmas.

The use of this option also implies:
-Miomutex

For directives, critical sections are generated around Fortran I/O statements.

For pragmas, calls to I/O library functions are system-dependent and are not necessarily
guaranteed to be thread-safe. I/O library calls within parallel regions should be
protected by critical regions to ensure they function correctly on all systems.

5.6. Directive and Pragma Summary Table
The following table provides a brief summary of the directives and pragmas that PGI
supports.

In the table, the values in uppercase letters are Fortran directives while the names in
lowercase letters are C/C++ pragmas.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 53

5.6.1. Directive and Pragma Summary Table

Table 12 Directive and Pragma Summary Table

Fortran Directive and C++
Pragma Description

ATOMIC [TYPE] ... END ATOMIC
and atomic

Semantically equivalent to enclosing a single statement in the
CRITCIAL...END CRITICAL directive or critical pragma.

TYPE may be empty or one of the following: UPDATE, READ, WRITE,
or CAPTURE. The END ATOMIC directive is only allowed when ending
ATOMIC CAPTURE regions.

Only certain statements are allowed.

BARRIER and barrier Synchronizes all threads at a specific point in a program so that all
threads complete work to that point before any thread continues.

CRITICAL ... END CRITICAL
and critical

Defines a subsection of code within a parallel region, a critical section,
which is executed one thread at a time.

DO...END DO and for Provides a mechanism for distribution of loop iterations across the
available threads in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it
applies, even though that loop is not contained within a parallel
region.

FLUSH and flush When this appears, all processor-visible data items, or, when a list is
present (FLUSH [list]), only those specified in the list, are written to
memory, thus ensuring that all the threads in a team have a consistent
view of certain objects in memory.

MASTER ... END MASTER and
master

Designates code that executes on the master thread and that is
skipped by the other threads.

ORDERED and ordered Defines a code block that is executed by only one thread at a time,
and in the order of the loop iterations; this makes the ordered code
block sequential, while allowing parallel execution of statements
outside the code block.

PARALLEL DO and parallel for Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL
and parallel

Supports a fork/join execution model in which a single thread executes
all statements until a parallel region is encountered.

PARALLEL SECTIONS and
parallel sections

Defines a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE directive
inside a PARALLEL construct.

SECTIONS ... END SECTIONS
and sections

Defines a non-iterative work-sharing construct within a parallel region.

SINGLE ... END SINGLE and
single

Designates code that executes on a single thread and that is skipped by
the other threads.

TASK and task Defines an explicit task.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 54

Fortran Directive and C++
Pragma Description

TASKYIELD and taskyield Specifies a scheduling point for a task where the currently executing
task may be yielded, and a different deferred task may be executed.

TASKWAIT and taskwait Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

THREADPRIVATE and
threadprivate

When a common block or variable that is initialized appears in this
directive or pragma, each thread’s copy is initialized once prior to its
first use.

WORKSHARE ... END
WORKSHARE

Provides a mechanism to effect parallel execution of non-iterative but
implicitly data parallel constructs.

5.7. Directive and Pragma Clauses
Some directives and pragmas accept clauses that further allow a user to control
the scope attributes of variables for the duration of the directive or pragma. Not all
clauses are allowed on all directives, so the clauses that are valid are included with the
description of the directive and pragma.

The following table provides a brief summary of the clauses associated with OPENMP
directives and pragmas that PGI supports.

For complete information on these clauses, refer to the OpenMP documentation
available on the World Wide Web.

Table 13 Directive and Pragma Summary Table

This clause...
Applies to this
directive

Applies to this
pragma Has this functionality

CAPTURE ATOMIC atomic Specifies that the atomic action
is reading and updating, or
writing and updating a value,
capturing the intermediate
state.

COLLAPSE (n) DO...END DO

PARALLEL DO

PARALLEL WORKSHARE

parallel for Specifies how many loops
are associated with the loop
construct.

COPYIN (list) PARALLEL

PARALLEL DO

PARALLEL SECTIONS

PARALLEL WORKSHARE

parallel

parallel for

Allows threads to access the
master thread's value, for
a threadprivate variable.
You assign the same value to
threadprivate variables for each
thread in the team executing
the parallel region. Then, for
each variable specified, the
value of the variable in the
master thread of the team is
copied to the threadprivate

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 55

This clause...
Applies to this
directive

Applies to this
pragma Has this functionality

copies at the beginning of the
parallel region.

COPYPRIVATE(list) SINGLE single Specifies that one or more
variables should be shared
among all threads. This clause
provides a mechanism to use a
private variable to broadcast
a value from one member of a
team to the other members.

DEFAULT PARALLEL

PARALLEL DO

PARALLEL SECTIONS

PARALLEL WORKSHARE

parallel

parallel for

Specifies the behavior of
unscoped variables in a parallel
region, such as the data-sharing
attributes of variables.

FINAL TASK task Specifies that all subtasks
of this task will be run
immediately.

FIRSTPRIVATE(list) DO

PARALLEL

PARALLEL DO

PARALLEL SECTIONS

PARALLEL WORKSHARE

SECTIONS

SINGLE

for

parallel

parallel for

sections

single

Specifies that each thread
should have its own instance
of a variable, and that each
variable in the list should be
initialized with the value of
the original variable, because
it exists before the parallel
construct.

IF() PARALLEL ... END
PARALLEL

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

PARALLEL WORKSHARE

parallel

parallel for

parallel sections

Specifies whether a loop should
be executed in parallel or in
serial.

LASTPRIVATE(list) DO

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

parallel

parallel for

parallel sections

sections

Specifies that the enclosing
context's version of the variable
is set equal to the private
version of whichever thread
executes the final iteration of a
loop construct or last section of
an OpenMP section.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 56

This clause...
Applies to this
directive

Applies to this
pragma Has this functionality

SECTIONS

MERGEABLE TASK task Specifies that this task will
run with the same data
environment, including OpenMP
internal control variables, as
when it is encountered.

NOWAIT DO ... END DO

SECTIONS

SINGLE

WORKSHARE ...

END WORKSHARE

for

sections

single

Eliminates the barrier implicit
at the end of a parallel region.

NUM_THREADS PARALLEL

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

PARALLEL WORKSHARE

parallel

parallel for

parallel sections

Sets the number of threads in a
thread team.

ORDERED DO...END DO

PARALLEL DO...

END PARALLEL DO

parallel for Specifies that this block within
the parallel DO or FOR region
needs to be execute serially in
the same order indicated by the
enclosing loop.

PRIVATE DO

PARALLEL

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

PARALLEL WORKSHARE

SECTIONS

SINGLE

for

parallel

parallel for

parallel sections

sections

single

Specifies that each thread
should have its own instance of
a variable.

READ ATOMIC atomic Specifies that the atomic action
is reading a value.

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 57

This clause...
Applies to this
directive

Applies to this
pragma Has this functionality

REDUCTION

({operator

| intrinsic }
:

list)

DO

PARALLEL

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

PARALLEL WORKSHARE

SECTIONS

for

parallel

parallel for

parallel sections

sections

Specifies that one or more
variables in list that are
private to each thread are
the subject of a reduction
operation at the end of the
parallel region.

SCHEDULE

(type[

,chunk])

DO ... END DO

PARALLEL DO...

END PARALLEL DO

for

parallel for

Applies to the looping directive,
allowing the user to specify
the chunking method for
parallelization. Work is assigned
to threads in different manners
depending on the scheduling
type or chunk size used.

SHARED PARALLEL

PARALLEL DO ...

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL SECTIONS

PARALLEL WORKSHARE

parallel

parallel for

parallel sections

Specifies that one or more
variables should be shared
among all threads. All threads
within a team access the
same storage area for shared
variables.

UNTIED TASK

TASKWAIT

task

taskwait

Specifies that any thread in
the team can resume the task
region after a suspension.

UPDATE ATOMIC atomic Specifies that the atomic action
is updating a value.

WRITE ATOMIC atomic Specifies that the atomic action
is writing a value.

5.8. Runtime Library Routines
User-callable functions are available to the programmer to query and alter the parallel
execution environment.

Any C/C++ program unit that invokes these functions should include the statement
#include <omp.h>. The omp.h header file contains definitions for each of the C/

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 58

C++ library routines and the required type definitions. For example, to use the
omp_get_num_threads function, use this syntax:
#include <omp.h>
int omp_get_num_threads(void);

Unlimited OpenMP thread counts are available in all PGI configurations. The number
of threads is unlicensed in the OpenMP runtime libraries – up to the hard limit of 256
threads. The OpenPOWER compiler relies on the llvm OpenMP runtime, which has a
maximum of 231 threads.

The following table summarizes the runtime library calls.

The Fortran call is shown first followed by the equivalent C/C++ call.

Table 14 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called.
When called from a serial region, this function returns 1. A nested parallel region is the same as
a single parallel region. By default, the value returned by this function is equal to the value of
the environment variable OMP_NUM_THREADS or to the value set by the last previous call to
omp_set_num_threads().

Fortran integer function omp_get_num_threads()

C/C++ int omp_get_num_threads(void);

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine or function can only be called from a serial region of code. If it is called from
within a parallel region, or from within a subroutine or function that is called from within a parallel
region, the results are undefined. Further, this subroutine or function has precedence over the
OMP_NUM_THREADS environment variable.

Fortran subroutine omp_set_num_threads(scalar_integer_exp)

C/C++ void omp_set_num_threads(int num_threads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

Fortran integer function omp_get_thread_num()

C/C++ int omp_get_thread_num(void);

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp_get_ancestor_thread_num(level)

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 59

Runtime Library Routines with Examples
 integer level

C/C++ int omp_get_ancestor_thread_num(int level);

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_active_level()

C/C++ int omp_get_active_level(void);

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_level()

C/C++ int omp_get_level(void);

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num_threads().

If omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

Fortran integer function omp_get_max_threads()

C/C++ int omp_get_max_threads(void);

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp_get_num_procs()

C/C++ int omp_get_num_procs(void);

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may not be the size of the stack of the current thread.

Fortran !omp_get_stack_size interface
 function omp_get_stack_size ()
 use omp_lib_kinds
 integer (kind=OMP_STACK_SIZE_KIND)
 :: omp_get_stack_size
 end function omp_get_stack_size
 end interface

C/C++ size_t omp_get_stack_size(void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 60

Runtime Library Routines with Examples

just prior to the first parallel region; therefore, only calls to omp_set_stack_size() that occur
prior to the first region have an effect.

Fortran subroutine omp_set_stack_size(integer(KIND=OMP_STACK_SIZE_KIND))

C/C++ void omp_set_stack_size(size_t stack_size);

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the
ancestor belongs.

Fortran integer function omp_get_team_size (level)
integer level

C/C++ int omp_get_team_size(int level);

omp_in_final

Returns whether or not the call is within a final task.

Returns .TRUE. for directives and non-zero for pragmas if called from within a final task region.

Fortran integer function omp_in_final()

C/C++ int omp_in_final(void);

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns .TRUE. for directives and non-zero for pragmas if called from within a parallel region and
.FALSE. for directives and zero for pragmas if called outside of a parallel region. When called
from within a parallel region that is serialized, for example in the presence of an IF clause evaluating
.FALSE. for directives and zero for pragmas, the function returns .FALSE. for directives and zero
for pragmas.

Fortran logical function omp_in_parallel()

C/C++ int omp_in_parallel(void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

Fortran subroutine omp_set_dynamic(scalar_logical_exp)

C/C++ void omp_set_dynamic(int dynamic_threads);

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

Fortran logical function omp_get_dynamic()

C/C++ void omp_get_dynamic(void);

omp_set_nested

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp_set_nested(nested)

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 61

Runtime Library Routines with Examples
logical nested

C/C++ void omp_set_nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

Fortran logical function omp_get_nested()

C/C++ int omp_get_nested(void);

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine omp_set_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier

C/C++ void omp_set_schedule(omp_sched_t kind, int chunk_size);

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp_get_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier

C/C++ void omp_get_schedule(omp_sched_t *kind, int *chunk_size);

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a
floating-point double value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp_get_wtime()

C/C++ double omp_get_wtime(void);

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran
directives and as a floating-point double value for C/C++ pragmas.

Fortran double precision function omp_get_wtick()

C/C++ double omp_get_wtick();

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to
make a call to this routine.

Fortran subroutine omp_init_lock(lock)
 include 'omp_lib_kinds.h'

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 62

Runtime Library Routines with Examples
 integer(kind=omp_lock_kind) lock

C/C++ void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp_destroy_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

C/C++ void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated
with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_set_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

C/C++ void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer_var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_unset_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

C/C++ void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns .TRUE. for directives and non-zero for pragmas if the thread gains ownership of
the lock; otherwise, it returns .FALSE. for directives and zero for pragmas.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp_test_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

C/C++ int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

Using OpenMP

User's Guide for OpenPOWER CPUs Version 2019 | 63

5.9. Environment Variables
You can use OpenMP environment variables to control the behavior of OpenMP
programs. These environment variables allow you to set and pass information that can
alter the behavior of directives and pragmas. The OpenPOWER compiler relies on the
llvm OpenMP runtime, which has different default values.

The following summary table is a quick reference for the OpenMP environment
variables that PGI uses.

Table 15 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Typically enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads.

OMP_MAX_ACTIVE_LEVELS 231 Specifies the maximum number of nested parallel
regions.

OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.

OMP_NUM_THREADS � of logical
CPUs

Specifies the number of threads to use during execution
of parallel regions at the corresponding nested level.
For example, OMP_NUM_THREADS=4,2 uses 4 threads at
the first nested parallel level, and 2 at the next nested
parallel level.

OMP_SCHEDULE STATIC with
chunk size of
0

Specifies the type of iteration scheduling and optionally
the chunk size to use for omp for and omp parallel for
loops that include the runtime schedule clause. The
supported schedule types, which can be specified in
upper- or lower-case are static, dynamic, guided, and
auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to
a core during execution. Allowable values are "true" and
"false".

OMP_STACKSIZE Overrides the default stack size for a newly created
thread.

OMP_THREAD_LIMIT 231 Specifies the absolute maximum number of threads that
can be used in a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether
they spin or sleep when idle. The values are ACTIVE and
PASSIVE.

User's Guide for OpenPOWER CPUs Version 2019 | 64

Chapter 6.
USING MPI

Message Passing Interface (MPI) is an industry-standard application programming
interface designed for rapid data exchange between processors in a cluster application.
MPI is computer software used in computer clusters that allows the processes of a
parallel application to communicate with one another.

PGI provides MPI support with PGI compilers and tools on Linux using Open MPI. Of
course, you may always build using an arbitrary version of MPI; to do this, use the -I, -
L, and -l option.

PGI products for Linux include Open MPI, PGI products for macOS includes MPICH,
and PGI products for Windows includes MS-MPI. This section describes how to use
the MPI capabilities of PGI compilers and how to configure PGI compilers so these
capabilities can be used with custom MPI installations.

6.1. MPI Overview
This section contains general information applicable to various MPI distributions. For
distribution-specific information, refer to the sections later in this section.

MPI is a set of function calls and libraries that are used to send messages between
multiple processes. These processes can be located on the same system or on a collection
of distributed servers. Unlike OpenMP, the distributed nature of MPI allows it to work in
almost any parallel environment.

6.2. Using Open MPI on Linux
PGI products for Linux ship with a PGI-built version of Open MPI that includes
everything required to compile, execute and debug MPI programs using Open MPI.

To build an application using Open MPI, use the Open MPI compiler wrappers: mpicc,
mpic++, mpif77, and mpif90. These wrappers automatically set up the compiler
commands with the correct include file search paths, library directories, and link
libraries.

Using MPI

User's Guide for OpenPOWER CPUs Version 2019 | 65

To build an application using Open MPI for debugging, add -g to the compiler wrapper
command line arguments.

6.3. Using MPI Compiler Wrappers
When you use MPI compiler wrappers to build with the -fpic or -mcmodel=medium
options, then you must specify -pgf90libs to link with the correct libraries. Here are a
few examples:

For a static link to the MPI libraries, use this command:
% mpifort hello.f

For a dynamic link to the MPI libraries, use this command:
% mpifort hello.f -pgf90libs

To compile with -fpic, which, by default, invokes dynamic linking, use this command:
% mpifort -fpic -pgf90libs hello.f

To compile with -mcmodel=medium, use this command:
% mpifort -mcmodel=medium -pgf90libs hello.f

6.4. Limitations
The Open Source Cluster utilities, in particular the MPICH and ScaLAPACK libraries,
are provided with support necessary to build and define their proper use. However, use
of these libraries on linuxpower systems is subject to the following limitations:

‣ MPI libraries are limited to Messages of length < 2GB, and integer arguments are
INTEGER*4 in FORTRAN, and int in C.

‣ Integer arguments for ScaLAPACK libraries are INTEGER*4 in FORTRAN, and int
in C.

‣ Arrays passed must be < 2GB in size.

6.5. Testing and Benchmarking
The Examples directory contains various benchmarks and tests. Copy this directory
into a local working directory by issuing the following command:
% cp -r $PGI/linuxpower/19.5/EXAMPLES/MPI .

NAS Parallel Benchmarks

The NPB2.3 subdirectory contains version 2.3 of the NAS Parallel Benchmarks in MPI.
Issue the following commands to run the BT benchmark on four nodes of your cluster:
% cd MPI/NPB2.3/BT
% make BT NPROCS=4 CLASS=W
% cd ../bin
% mpirun -np 4 bt.W.4

Using MPI

User's Guide for OpenPOWER CPUs Version 2019 | 66

There are several other NAS parallel benchmarks available in this directory. Similar
commands are used to build and run each of them. If you want to run a larger problem,
try building the Class A version of BT by substituting "A" for "W" in the previous
commands.

ScaLAPACK

The ScaLAPACK test times execution of the 3D PBLAS (parallel BLAS) on your cluster.
To run this test, execute the following commands:
% cd scalapack
% make
% mpirun -np 4 pdbla3tim

User's Guide for OpenPOWER CPUs Version 2019 | 67

Chapter 7.
USING AN ACCELERATOR

An accelerator is a special-purpose co-processor attached to a CPU and to which the
CPU can offload data and executable kernels to perform compute-intensive calculations.
This section describes a collection of compiler directives used to specify regions of
code in Fortran and C programs that can be offloaded from a host CPU to an attached
accelerator.

7.1. Overview
The programming model and directives described in this section allow programmers
to create high-level host+accelerator programs without the need to explicitly initialize
the accelerator, manage data or program transfers between the host and accelerator,
or initiate accelerator startup and shutdown. Rather, all of these details are implicit in
the programming model and are managed by the PGI Fortran , C, and C++ accelerator
compilers.

The method described provides a model for accelerator programming that is portable
across operating systems and various host CPUs and accelerators. The directives
allow a programmer to migrate applications incrementally to accelerator targets using
standards-compliant Fortran, C, or C++.

This programming model allows the programmer to augment information available to
the compilers, including specification of data local to an accelerator region, guidance on
mapping of loops onto an accelerator, and similar performance-related details.

7.1.1. User-directed Accelerator Programming
In user-directed accelerator programming the user specifies the regions of a host
program to be targeted for offloading to an accelerator device. The bulk of a user’s
program, as well as regions containing constructs that are not supported on the targeted
accelerator, are executed on the host. This section concentrates on specification of loops
and regions of code to be offloaded to an accelerator.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 68

7.1.2. Features Not Covered or Implemented
This section does not describe features or limitations of the host programming
environment as a whole. Further, it does not cover automatic detection and offloading
of regions of code to an accelerator by a compiler or other tool. While future versions
of the PGI compilers may allow for automatic offloading, this feature is not currently
supported.

7.2. Terminology
Clear and consistent terminology is important in describing any programming model.
This section provides definitions of the terms required for you to effectively use this
section and the associated programming model.
Accelerator

a special-purpose co-processor attached to a CPU and to which the CPU can offload
data and executable kernels to perform compute-intensive calculations.

Compute intensity
for a given loop, region, or program unit, the ratio of the number of arithmetic
operations performed on computed data divided by the number of memory transfers
required to move that data between two levels of a memory hierarchy.

Compute region
a structured block defined by an OpenACC compute construct. A compute construct
is a structured block containing loops which are compiled for the accelerator. A
compute region may require device memory to be allocated and data to be copied
from host to device upon region entry, and data to be copied from device to host
memory and device memory deallocated upon exit. The dynamic range of a compute
construct, including any code in procedures called from within the construct, is the
compute region. In this release, compute regions may not contain other compute
regions or data regions.

Construct
a structured block identified by the programmer or implicitly defined by the
language. Certain actions may occur when program execution reaches the start and
end of a construct, such as device memory allocation or data movement between the
host and device memory. Loops in a compute construct are targeted for execution on
the accelerator. The dynamic range of a construct including any code in procedures
called from within the construct, is called a region.

CUDA
stands for Compute Unified Device Architecture; NVIDIA's CUDA environment is a
C-like programming environment used to explicitly control and program an NVIDIA
GPU.

Data region
a region defined by an OpenACC data construct, or an implicit data region for
a function or subroutine containing OpenACC directives. Data regions typically
require device memory to be allocated and data to be copied from host to device
memory upon entry, and data to be copied from device to host memory and device

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 69

memory deallocated upon exit. Data regions may contain other data regions and
compute regions.

Device
a general reference to any type of accelerator.

Device memory
memory attached to an accelerator which is physically separate from the host
memory.

Directive
in C, a #pragma, or in Fortran, a specially formatted comment statement that is
interpreted by a compiler to augment information about or specify the behavior of the
program.

DMA
Direct Memory Access, a method to move data between physically separate
memories; this is typically performed by a DMA engine, separate from the host CPU,
that can access the host physical memory as well as an IO device or GPU physical
memory.

GPU
a Graphics Processing Unit; one type of accelerator device.

GPGPU
General Purpose computation on Graphics Processing Units.

Host
the main CPU that in this context has an attached accelerator device. The host CPU
controls the program regions and data loaded into and executed on the device.

Loop trip count
the number of times a particular loop executes.

OpenACC
a parallel programming standard describing a set of compiler directives which can be
applied to standard C, C++, and Fortran to specify regions of code for offloading from
a host CPU to an attached accelerator.

Private data
with respect to an iterative loop, data which is used only during a particular loop
iteration. With respect to a more general region of code, data which is used within the
region but is not initialized prior to the region and is re-initialized prior to any use
after the region.

Region
the dynamic range of a construct, including any procedures invoked from within the
construct.

Structured block
in C, an executable statement, possibly compound, with a single entry at the top and
a single exit at the bottom. In Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom.

Vector operation
a single operation or sequence of operations applied uniformly to each element of an
array.

Visible device copy
a copy of a variable, array, or subarray allocated in device memory, that is visible to
the program unit being compiled.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 70

7.3. Execution Model
The execution model targeted by the PGI compilers is host-directed execution with an
attached accelerator device, such as a GPU. The bulk of a user application executes on
the host. Compute intensive regions are offloaded to the accelerator device under control
of the host. The accelerator device executes kernels, which may be as simple as a tightly-
nested loop, or as complex as a subroutine, depending on the accelerator hardware.

7.3.1. Host Functions
Even in accelerator-targeted regions, the host must orchestrate the execution; it

‣ allocates memory on the accelerator device
‣ initiates data transfer
‣ sends the kernel code to the accelerator
‣ passes kernel arguments
‣ queues the kernel
‣ waits for completion
‣ transfers results back to the host
‣ deallocates memory

In most cases, the host can queue a sequence of kernels to be executed on the
device, one after the other.

7.3.2. Levels of Parallelism
Most current GPUs support two levels of parallelism:

‣ an outer doall (fully parallel) loop level
‣ an inner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be
strictly rectangular. The synchronous level may not be fully implemented with SIMD or
vector operations, so explicit synchronization is supported and required across this level.
No synchronization is supported between parallel threads across the doall level.

The execution model on the device side exposes these two levels of parallelism and
the programmer is required to understand the difference between, for example, a
fully parallel loop and a loop that is vectorizable but requires synchronization across
iterations. All fully parallel loops can be scheduled for either doall or synchronous parallel
execution, but by definition SIMD vector loops that require synchronization can only be
scheduled for synchronous parallel execution.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 71

7.4. Memory Model
The most significant difference between a host-only program and a host+accelerator
program is that the memory on the accelerator can be completely separate from host
memory, which is the case on most current GPUs. For example:

‣ The host cannot read or write accelerator memory by reference because it is not
mapped into the virtual memory space of the host.

‣ All data movement between host memory and accelerator memory must be
performed by the host through runtime library calls that explicitly move data
between the separate memories.

‣ It is not valid to assume the accelerator can read or write host memory, though this
may be supported by accelerators in the future.

7.4.1. Separate Host and Accelerator Memory
Considerations
The programmer must be aware of the potentially separate memories for many reasons,
including but not limited to:

‣ Memory bandwidth between host memory and accelerator memory determines the
compute intensity required to effectively accelerate a given region of code.

‣ Limited size of accelerator memory may prohibit offloading of regions of code that
operate on very large amounts of data.

7.4.2. Accelerator Memory
On the accelerator side, current GPUs implement a weak memory model. In particular,
they do not support memory coherence between threads unless those threads are
parallel only at the synchronous level and the memory operations are separated by
an explicit barrier. Otherwise, if one thread updates a memory location and another
reads the same location, or two threads store a value to the same location, the hardware
does not guarantee the results. While the results of running such a program might be
inconsistent, it is not accurate to say that the results are incorrect. By definition, such
programs are defined as being in error. While a compiler can detect some potential
errors of this nature, it is nonetheless possible to write an accelerator region that
produces inconsistent numerical results.

7.4.3. Cache Management
Some current GPUs have a software-managed cache, some have hardware-managed
caches, and most have hardware caches that can be used only in certain situations and
are limited to read-only data. In low-level programming models such as CUDA, it is up
to the programmer to manage these caches. However, in the OpenACC programming
model, the compiler manages these caches using hints from the programmer in the form
of directives.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 72

7.4.4. CUDA Unified Memory
PGI compilers have supported the use of CUDA Unified Memory since PGI 17.7. This
feature, described in detail in the OpenACC and CUDA Unified Memory, https://
www.pgroup.com/blogs/posts/openacc-unified-memory.htm PGInsider blog, is available
with the Linux/x86-64 and Linux/OpenPOWER compilers. It is supported on Linux/
x86-64 using both the default PGI code generator and the LLVM-based code generator.
To enable this feature, add the option -ta=tesla:managed to the compiler and linker
command lines.

In the presence of -ta=tesla:managed, all C/C++/Fortran explicit allocation
statements in a program unit are replaced by equivalent "managed" data allocation calls
that place the data in CUDA Unified Memory. Managed data share a single address for
CPU/GPU and data movement between CPU and GPU memories is implicitly handled
by the CUDA driver. Therefore, OpenACC data clauses and directives are not needed
for "managed" data. They are essentially ignored, and in fact can be omitted.

When a program allocates managed memory, it allocates host pinned memory as well
as device memory thus making allocate and free operations somewhat more expensive
and data transfers somewhat faster. A memory pool allocator is used to mitigate the
overhead of the allocate and free operations. The pool allocator is enabled by default for
-ta=tesla:managed or -ta=tesla:pinned.

Data movement of managed data is controlled by the NVIDIA CUDA GPU driver;
whenever data is accessed on the CPU or the GPU, it could trigger a data transfer if the
last time it was accessed was not on the same device. In some cases, page thrashing may
occur and impact performance. An introduction to CUDA Unified Memory is available
on Parallel Forall.

This feature has the following limitations:

‣ Use of managed memory applies only to dynamically-allocated data. Static data (C
static and extern variables, Fortran module, common block and save variables) and
function local data is still handled by the OpenACC runtime. Dynamically allocated
Fortran local variables and Fortran allocatable arrays are implicitly managed but
Fortran array pointers are not.

‣ Given an allocatable aggregate with a member that points to local, global or static
data, compiling with -ta=tesla:managed and attempting to access memory
through that pointer from the compute kernel will cause a failure at runtime.

‣ C++ virtual functions are not supported.
‣ The -ta=tesla:managed compiler option must be used to compile the files in

which variables are allocated, even if there is no OpenACC code in the file.

This feature has the following additional limitations when used with NVIDIA Kepler
GPUs:

https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm
https://www.pgroup.com/blogs/posts/openacc-unified-memory.htm
https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 73

‣ Data motion on Kepler GPUs is achieved through fast pinned asynchronous data
transfers; from the program's perspective, however, the transfers are synchronous.

‣ The PGI runtime enforces synchronous execution of kernels when
-ta=tesla:managed is used on a system with a Kepler GPU. This situation may
result in slower performance because of the extra synchronizations and decreased
overlap between CPU and GPU.

‣ The total amount of managed memory is limited to the amount of available device
memory on Kepler GPUs.

CUDA Unified Memory Pool Allocator

Dynamic memory allocations are made using cudaMallocManaged(), a routine which
has higher overhead than allocating non-unified memory using cudaMalloc(). The more
calls to cudaMallocManaged(), the more significant the impact on performance.

To mitigate the overhead of cudaMallocManaged() calls, both -ta=tesla:managed
and -ta=tesla:pinned use a CUDA Unified Memory pool allocator to minimize the
number of calls to cudaMallocManaged(). The pool allocator is enabled by default. It can
be disabled, or its behavior modified, using these environment variables:

Table 16 Pool Allocator Environment Variables

Environment Variable Use

PGI_ACC_POOL_ALLOC Disable the pool allocator. The pool allocator is enabled by default;

to disable it, set PGI_ACC_POOL_ALLOC to 0.

PGI_ACC_POOL_SIZE Set the size of the pool. The default size is 1GB but other sizes

(i.e., 2GB, 100MB, 500KB, etc.) can be used. The actual pool

size is set such that the size is the nearest, smaller number in

the Fibonacci series compared to the provided or default size. If

necessary, the pool allocator will add more pools but only up to the

PGI_ACC_POOL_THRESHOLD value.

PGI_ACC_POOL_ALLOC_MAXSIZE Set the maximum size for allocations. The default maximum size

for allocations is 500MB but another size (i.e., 100KB, 10MB, 250MB,

etc.) can be used as long as it is greater than or equal to 16B.

PGI_ACC_POOL_ALLOC_MINSIZE Set the minimum size for allocation blocks. The default size is 128B

but other sizes can be used. The size must be greater than or equal

to 16B.

PGI_ACC_POOL_THRESHOLD Set the percentage of total device memory that the pool allocator

can occupy. Values from 0 to 100 are accepted. The default value is

50, corresponding to 50% of device memory.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 74

7.5. OpenACC Programming Model
With the emergence of GPU and many-core architectures in high performance
computing, programmers want the ability to program using a familiar, high level
programming model that provides both high performance and portability to a wide
range of computing architectures. OpenACC emerged in 2011 as a programming
model that uses high-level compiler directives to expose parallelism in the code and
parallelizing compilers to build the code for a variety of parallel accelerators.

This chapter will not attempt to describe OpenACC itself. For that, please refer to the
OpenACC specification on the OpenACC www.openacc.org website. Here, we will
discuss differences between the OpenACC specification and its implementation by the
PGI compilers.

Other resources to help you with your parallel programming including video tutorials,
course materials, code samples, a best practices guide and more are available on the
OpenACC website.

7.5.1. Enable Accelerator Directives
PGI compilers enable accelerator directives with the -acc and -ta command line
options. For more information on this option as it relates to the Accelerator, refer to
Compiling an Accelerator Program.

_OPENACC macro

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year
and mm is the month designation of the version of the OpenACC directives supported
by the implementation. For example, the version for November, 2017 is 201711. All
OpenACC compilers define this macro when OpenACC directives are enabled.

7.5.2. Support
The PGI compilers implement OpenACC 2.6 as defined in The OpenACC Application
Programming Interface, Version 2.6, November 2017, http://www.openacc.org, with the
exception that the following features are not yet supported:

‣ nested parallelism
‣ declare link
‣ enforcement of the cache clause restriction that all references to listed variables

must lie within the region being cached

7.5.3. Extensions
The PGI Fortran compiler supports an extension to the collapse clause on the loop
construct. The OpenACC specification defines collapse:
collapse(n)

http://www.openacc.org
http://www.openacc.org

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 75

For Fortran, PGI supports the use of the identifier force within collapse:
collapse(force:n)

Using collapse(force:n) instructs the compiler to enforce collapsing parallel loops
that are not perfectly nested.

7.6. Supported Processors and GPUs
This PGI release supports OpenPOWER host processors.

Use the -acc flag to enable OpenACC directives and the -ta=tesla flag to target
NVIDIA GPUs. You can then use the generated code on any supported system with
CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla card.

For more information on these flags as they relate to accelerator technology, refer to
Compiling an Accelerator Program.

For a complete list of supported CUDA GPUs, refer to the NVIDIA website at: http://
www.nvidia.com/object/cuda_learn_products.html

7.7. CUDA Toolkit Versions
The PGI compilers use NVIDIA's CUDA Toolkit when building programs for execution
on an NVIDIA GPU. Every PGI installation package puts the required CUDA Toolkit
components into a PGI installation directory called 2019/cuda.

An NVIDIA CUDA driver must be installed on a system with a GPU before you can run
a program compiled for the GPU on that system. PGI products do not contain CUDA
Drivers. You must download and install the appropriate CUDA Driver from NVIDIA.
The CUDA Driver version must be at least as new as the version of the CUDA Toolkit
with which you compiled your code.

The PGI tool pgaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

PGI 19.5 includes the following versions of the CUDA Toolkit:

‣ CUDA 9.2
‣ CUDA 10.0
‣ CUDA 10.1

You can let the compiler pick which version of the CUDA Toolkit to use or you can
instruct it to use a particular version. The rest of this section describes all of your
options.

If you do not specify a version of the CUDA Toolkit, the compiler uses the version of
the CUDA Driver installed on the system on which you are compiling to determine
which CUDA Toolkit to use. This auto-detect feature was introduced in the PGI 18.7
release; auto-detect is especially convenient when you are compiling and running your
application on the same system. In the absence of any other information, the compiler
will look for a CUDA Toolkit version in the PGI 2019/cuda directory that matches

http://www.nvidia.com/object/cuda_learn_products.html
http://www.nvidia.com/object/cuda_learn_products.html
http://www.nvidia.com/cuda

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 76

the version of the CUDA Driver installed on the system. If a match is not found, the
compiler searches for the newest CUDA Toolkit version that is not newer than the
CUDA Driver version. If there is no CUDA Driver installed, the PGI 19.5 compilers fall
back to the default of CUDA 9.2.

If the only PGI compiler you have installed is PGI 19.5, then:

‣ If your CUDA Driver is 10.1, the compilers use CUDA Toolkit 10.1.
‣ If your CUDA Driver is 10.0, the compilers use CUDA Toolkit 10.0.
‣ If your CUDA Driver is 9.2, the compilers use CUDA Toolkit 9.2.
‣ If your CUDA Driver is 9.1, the compilers will issue an error that CUDA Toolkit 9.1

was not found; CUDA Toolkit 9.1 is not bundled with PGI 19.5
‣ If you do not have a CUDA driver installed on the compilation system, the

compilers use the default CUDA Toolkit version 9.2.
‣ If your CUDA Driver is newer than CUDA 10.1, the compilers will still use the

CUDA Toolkit 10.1. The compiler selects the newest CUDA Toolkit it finds that is
not newer than the CUDA Driver.

You can change the compiler's default selection for CUDA Toolkit version using one of
the following methods:

‣ Use a compiler option. Add the cudaX.Y sub-option to -Mcuda or -ta=tesla
where X.Y denotes the CUDA version. For example, to compile a C file with the
CUDA 9.2 Toolkit you would use:
pgcc -ta=tesla:cuda9.2

Using a compiler option changes the CUDA Toolkit version for one invocation of the
compiler.

‣ Use an rcfile variable. Add a line defining DEFCUDAVERSION to the siterc file in
the installation bin/ directory or to a file named .mypgirc in your home directory.
For example, to specify the CUDA 9.2 Toolkit as the default, add the following line
to one of these files:
set DEFCUDAVERSION=9.2;

Using an rcfile variable changes the CUDA Toolkit version for all invocations of the
compilers reading the rcfile.

When you specify a CUDA Toolkit version, you can additionally instruct the compiler
to use a CUDA Toolkit installation different from the defaults bundled with the current
PGI compilers. While most users do not need to use any other CUDA Toolkit installation
than those provided with PGI, situations do arise where this capability is needed.
Developers working with pre-release CUDA software may occasionally need to test with
a CUDA Toolkit version not included in a PGI release. Conversely, some developers
might find a need to compile with a CUDA Toolkit older than the oldest CUDA Toolkit
installed with a PGI release. For these users, PGI compilers can interoperate with
components from a CUDA Toolkit installed outside of the PGI installation directories.

PGI tests extensively using the co-installed versions of the CUDA Toolkits and fully
supports their use. Use of CUDA Toolkit components not included with a PGI install is
done with your understanding that functionality differences may exist.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 77

To use a CUDA toolkit that is not installed with a PGI release, such as CUDA 9.1 with
PGI 19.5, there are three options:

‣ Use the rcfile variable DEFAULT_CUDA_HOME to override the base default
set DEFAULT_CUDA_HOME = /opt/cuda-9.1;

‣ Set the environment variable CUDA_HOME
export CUDA_HOME=/opt/cuda-9.1

‣ Use the compiler compilation line assignment CUDA_HOME=
pgfortran CUDA_HOME=/opt/cuda-9.1

The PGI compilers use the following order of precedence when determining which
version of the CUDA Toolkit to use.

 1. If you do not tell the compiler which CUDA Toolkit version to use, the compiler
picks the CUDA Toolkit from the PGI installation directory 2019/cuda that
matches the version of the CUDA Driver installed on your system. If the PGI
installation directory does not contain a direct match, the newest version in that
directory which is not newer than the CUDA driver version is used. If there is
no CUDA driver installed on your system, the compiler falls back on an internal
default; in PGI 19.5, this default is CUDA 9.2.

 2. The rcfile variable DEFAULT_CUDA_HOME will override the base default.
 3. The environment variable CUDA_HOME will override all of the above defaults.
 4. The environment variable PGI_CUDA_HOME overrides all of the above; it is available

for advanced users in case they need to override an already-defined CUDA_HOME.
 5. A user-specified cudaX.Y sub-option to -Mcuda and -ta=tesla will override all

of the above defaults and the CUDA Toolkit located in the PGI installation directory
2019/cuda will be used.

 6. The compiler compilation line assignment CUDA_HOME= will override all of the
above defaults (including the cudaX.Y sub-option).

7.8. Compute Capability
The compilers can generate code for NVIDIA GPU compute capabilities 3.0 through 7.5.
The compilers construct a default list of compute capabilities that matches the compute
capabilities supported by the GPUs found on the system used in compilation. If there are
no GPUs detected, the compilers select cc35, cc60, and cc70.

You can override the default by specifying one or more compute capabilities using either
command-line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of
compute capabilities to -ta=tesla: for OpenACC or -Mcuda= for CUDA Fortran.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-
separated list of compute capabilities in the siterc file located in your installation's bin
directory:
set DEFCOMPUTECAP=60 70;

Alternatively, if you don't have permissions to change the siterc file, you can add the
DEFCOMPUTECAP definition to a separate .mypgirc file in your home directory.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 78

The generation of device code can be time consuming, so you may notice an increase in
compile time as the number of compute capabilities increases.

7.9. Compiling an Accelerator Program
Several compiler options are applicable specifically when working with accelerators.
These options include -ta, -acc, and -Minfo.

7.9.1. -ta
Enable OpenACC and specify the type of accelerator to which to target accelerator
regions.

-ta suboptions

There are three primary suboptions:
host

Compile OpenACC for serial execution on the host CPU; host has no suboptions.
multicore

Compile OpenACC for parallel execution on the host CPU; multicore has no
suboptions.

tesla
Compile OpenACC for parallel execution on a Tesla GPU; tesla supports
suboptions.

Multiple target accelerators can be specified. By default, the compiler generates code for
-ta=tesla,host.

-ta=tesla suboptions

The tesla sub-option to -ta can itself be given suboptions. The following secondary
suboptions are supported:
ccXY

Generate code for a device with compute capability X.Y. Multiple compute
capabilities can be specified, and one version will be generated for each. By default,
the compiler will detect the compute capability for each installed GPU. Use -help -ta
to see the valid compute capabilities for your installation.

ccall
Generate code for all compute capabilities supported by this platform and by the
selected or default CUDA Toolkit.

cudaX.Y
Use CUDA X.Y Toolkit compatibility, where installed

7.5, 8.0, 9.0, 9.1
Support for the X.Y suboption has been removed. Use the cudaX.Y suboption instead.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 79

[no]debug
Enable [disable] debug information generation in device code

deepcopy
Enable full deep copy of aggregate data structions in OpenACC; Fortran only

fastmath
Use routines from the fast math library

[no]flushz
Enable [disable] flush-to-zero mode for floating point computations on the GPU

[no]fma
Generate [do not generate] fused multiply-add instructions; default at -O3

keep
Keep the kernel files (.bin, .ptx, source)

[no]lineinfo
Enable [disable] GPU line information generation

[no]nvvm
Generate [do not generate] code using the NVVM-based back-end

loadcache:{L1|L2}
Choose what hardware level cache to use for global memory loads; options include
the default, L1, or L2

managed
Use CUDA Managed Memory

maxregcount:n
Specify the maximum number of registers to use on the GPU; leaving this blank
indicates no limit

pinned
Use CUDA Pinned Memory

[no]rdc
Generate [do not generate] relocatable device code.

safecache
Allow variable-sized array sections in cache directives; compiler assumes they fit into
CUDA shared memory

[no]unroll
Enable [disable] automatic inner loop unrolling; default at -O3

zeroinit
Initialize allocated device memory with zero

autocompare
Automatically compare CPU/GPU results: implies redundant

redundant
Redundant CPU/GPU execution

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 80

Usage

In the following example, tesla is the accelerator target architecture and the accelerator
generates code for compute capabilities 6.0 and 7.0.
$ pgfortran -ta=tesla:cc60,cc70

The compiler automatically invokes the necessary software tools to create the kernel
code and embeds the kernels in the object file.

To access accelerator libraries, you must link an accelerator program with the -ta flag.

DWARF Debugging Formats

PGI's debugging capability for Tesla uses the LLVM back-end. Use the compiler's
-g option to enable the generation of full dwarf information on both the host and
device; in the absence of other optimization flags, -g sets the optimization level to
zero. If a -O option raises the optimization level to one or higher, only GPU line
information is generated on the device even when -g is specified. To enforce full dwarf
generation for device code at optimization levels above zero, use the debug sub-option
to -ta=tesla. Conversely, to prevent the generation of dwarf information for device
code, use the nodebug sub-option to -ta=tesla. Both debug and nodebug can be
used independently of -g.

7.9.2. -acc
Enable OpenACC directives.

-acc suboptions

The following suboptions may be used:
[no]autopar

Enable [disable] loop autoparallelization within acc parallel. The default is to
autoparallelize, that is, to enable loop autoparallelization.

legacy
Suppress warnings about deprecated PGI accelerator directives.

[no]routineseq
Compile every routine for the devicee. The default behavior is to not treat every
routine as a seq directive.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

sync
Ignore async clauses

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator
directive.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 81

[no]wait
Wait for each device kernel to finish. Kernel launching is blocked by default unless
the async clause is used.

Usage

The following command-line requests that OpenACC directives be enabled and that an
error be issued for any non-OpenACC accelerator directive.
$ pgfortran -acc=verystrict -g prog.f

7.10. Multicore Support
PGI Accelerator OpenACC compilers support the option -ta=multicore, to set the
target accelerator for OpenACC programs to the host multicore CPU. This will compile
OpenACC compute regions for parallel execution across the cores of the host processor
or processors. The host multicore will be treated as a shared-memory accelerator, so the
data clauses (copy, copyin, copyout, create) will be ignored and no data copies will
be executed.

By default, -ta=multicore will generate code that will use all the available cores
of the processor. If the compute region specifies a value in the num_gangs clause, the
minimum of the num_gangs value and the number of available cores will be used.
At runtime, the number of cores can be limited by setting the environment variable
ACC_NUM_CORES to a constant integer value. The number of cores can also be set with
the void acc_set_num_cores(int numcores) runtime call. If an OpenACC compute
construct appears lexically within an OpenMP parallel construct, the OpenACC
compute region will generate sequential code. If an OpenACC compute region appears
dynamically within an OpenMP region or another OpenACC compute region, the
program may generate many more threads than there are cores, and may produce poor
performance.

The ACC_BIND environment variable is set by default with -ta=multicore;
ACC_BIND has similiar behavior to MP_BIND for OpenMP.

The -ta=multicore option differs from the -ta=host option in that -ta=host
generates sequential code for the OpenACC compute regions.

7.11. Running an Accelerator Program
Running a program that has accelerator directives and was compiled and linked with
the -ta flag is the same as running the program compiled without the -ta flag.

‣ When running programs on NVIDIA GPUs, the program looks for and dynamically
loads the CUDA libraries.

‣ On Linux, if you have no server running on your NVIDIA GPU, when your program
reaches its first accelerator region, there may be a 0.5 to 1.5 second pause to warm

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 82

up the GPU from a power-off audience. You can avoid this delay by running the
pgcudainit program in the background, which keeps the GPU powered on.

‣ If you compile a program for a particular accelerator type, then run the program
on a system without that accelerator, or on a system where the target libraries are
not in a directory where the runtime library can find them, the program may fail at
runtime with an error message.

‣ If you set the environment variable PGI_ACC_NOTIFY to a nonzero integer value,
the runtime library prints a line to standard error every time it launches a kernel on
the accelerator.

7.12. OpenACC Error Handling
The OpenACC specification provides a mechanism to allow you to intercept errors
triggered during execution on a GPU and execute a specific routine in response before
the program exits. For example, if an MPI process fails while allocating memory on the
GPU, the application may want to call MPI_Abort to shut down all the other processes
before the program exits. This section explains how to take advantage of this feature.

To intercept errors the application must give a callback routine to the OpenACC
runtime. To provide the callback, the application calls acc_set_error_routine with
a pointer to the callback routine.

The interface is the following, where err_msg contains a description of the error:
typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

When the OpenACC runtime detects a runtime error, it will invoke the
callback_routine.

This feature is not the same as error recovery. If the callback routine returns to the
application, the behavior is decidedly undefined.

Let's look at this feature in more depth using an example.

Take the MPI program below and run it with two processes. Process 0 tries to allocate a
large array on the GPU, then sends a message to the second process to acknowledge the
success of the operation. Process 1 waits for the acknowledgment and terminates upon
receiving it.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 83

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

 // do some more work

 MPI_Finalize();

 return 0;
}

We compile the program with:
$ mpicc -ta=tesla -o error_handling_mpi error_handling_mpi.c

If we run this program with two MPI processes, the output will look like the following:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
call to cuMemAlloc returned error 2: Out of memory

Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.

--
mpirun detected that one or more processes exited with non-zero status,
thus causing the job to be terminated.

Process 0 failed while allocating memory on the GPU and terminated unexpectedly with
an error. In this case mpirun was able to identify that one of the processes failed, so it
shut down the remaining process and terminated the application. A simple two-process
program like this is straightforward to debug. In a real world application though, with
hundreds or thousands of processes, having a process exit prematurely may cause
the application to hang indefinitely. Therefore it would be ideal to catch the failure of
a process, control the termination of the other processes, and provide a useful error
message.

We can use the OpenACC error handling feature to improve the previous program and
correctly terminate the application in case of failure of an MPI process.

In the following sample code, we have added an error handling callback routine
that will shut down the other processes if a process encounters an error while

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 84

executing on the GPU. Process 0 tries to allocate a large array into the GPU and,
if the operation is successful, process 0 will send an acknowledgment to process
1. Process 0 calls the OpenACC function acc_set_error_routine to set the
function handle_gpu_errors as an error handling callback routine. This routine
prints a message and calls MPI_Abort to shut down all the MPI processes. If
process 0 successfully allocates the array on the GPU, process 1 will receive the
acknowledgment. Otherwise, if process 0 fails, it will terminate itself and trigger the
call to handle_gpu_errors. Process 1 is then terminated by the code executed in the
callback routine.

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

#define N 2147483648

typedef void (*exitroutinetype)(char *err_msg);
extern void acc_set_error_routine(exitroutinetype callback_routine);

void handle_gpu_errors(char *err_msg) {
 printf("GPU Error: %s", err_msg);
 printf("Exiting...\n\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 exit(-1);
}

int main(int argc, char **argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int ack;
 if(rank == 0) {
 float *a = (float*) malloc(sizeof(float) * N);

 acc_set_error_routine(&handle_gpu_errors);

#pragma acc enter data create(a[0:N])
#pragma acc parallel loop independent
 for(int i = 0; i < N; i++) {
 a[i] = i *0.5;
 }
#pragma acc exit data copyout(a[0:N])
 printf("I am process %d, I have initialized a vector of size %ld bytes on
 the GPU. Sending acknowledgment to process 1.", rank, N);
 fflush(stdout);
 ack = 1;
 MPI_Send(&ack, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if(rank == 1) {
 MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("I am process %d, I have received the acknowledgment from process 0
 that data in the GPU has been initialized.\n", rank, N);
 fflush(stdout);
 }

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 85

 // more work

 MPI_Finalize();

 return 0;
}

Again, we compile the program with:
$ mpicc -ta=tesla -o error_handling_mpi error_handling_mpi.c

We run the program with two MPI processes and obtain the output below:

$ mpirun -n 2 ./error_handling_mpi
Out of memory allocating -8589934592 bytes of device memory
total/free CUDA memory: 11995578368/11919294464
Present table dump for device[1]:
NVIDIA Tesla GPU 0, compute capability 3.7, threadid=1
...empty...
GPU Error: call to cuMemAlloc returned error 2: Out of memory
Exiting...

--
MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD
with errorcode 1.

This time the error on the GPU was intercepted by the application which managed
it with the error handling callback routine. In this case the routine printed some
information about the problem and called MPI_Abort to terminate the remaining
processes and avoid any unexpected behavior from the application.

7.13. Environment Variables
This section summarizes the environment variables that PGI OpenACC supports. These
environment variables are user-setable environment variables that control behavior of
accelerator-enabled programs at execution. These environment variables must comply
with these rules:

‣ The names of the environment variables must be upper case.
‣ The values of environment variables are case insensitive and may have leading and

trailing white space.
‣ The behavior is implementation-defined if the values of the environment variables

change after the program has started, even if the program itself modifies the values.

The following table contains the environment variables that are currently supported and
provides a brief description of each.

Table 17 Supported Environment Variables

Use this environment
variable... To do this...

PGI_ACC_BUFFERSIZE For NVIDIA CUDA devices, this defines the size of the pinned buffer
used to transfer data between host and device.

PGI_ACC_CUDA_PROFSTOP Set to 1 (or any positive value) to tell the PGI runtime environment
to insert an 'atexit(cuProfilerStop)' call upon exit. This behavior

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 86

Use this environment
variable... To do this...

may be desired in the case where a profile is incomplete or where a
message is issued to call cudaProfilerStop().

PGI_ACC_DEBUG Set to 1 to instruct the PGI runtime to generate information about
device memory allocation, data movement, kernel launches, and
more. PGI_ACC_DEBUG is designed mostly for use in debugging
the runtime itself, but it may be helpful in understanding how
the program interacts with the device. Expect copious amounts of
output.

PGI_ACC_DEVICE_NUM

= = ACC_DEVICE_NUM

Sets the default device number to use. PGI_ACC_DEVICE_NUM
overrides ACC_DEVICE_NUM. Controls the default device number
to use when executing accelerator regions. The value of this
environment variable must be a nonnegative integer between zero
and the number of devices attached to the host.

PGI_ACC_DEVICE_TYPE

= = ACC_DEVICE_TYPE

Sets the default device type to use. PGI_ACC_DEVICE_TYPE overrides
ACC_DEVICE_TYPE. Controls which accelerator device to use when
executing accelerator regions, if the program has been compiled
to use more than one different type of device. The value of this
environment variable is implementation-defined, and currently may
be the string NVIDIA, TESLA, or HOST

PGI_ACC_GANGLIMIT For NVIDIA CUDA devices, this defines the maximum number of gangs
(CUDA thread blocks) that will be launched by a kernel.

PGI_ACC_NOTIFY Writes out a line for each kernel launch and/or data movement.
When set to an integer value, the value, is used as a bit mask
to print information about kernel launches (value 1), data
transfers (value 2), region entry/exit (value 4), wait operations
or synchronizations with the device (value 8), and device memory
allocates and deallocates (value 16).

PGI_ACC_PROFLIB Enables 3rd party tools interface using the new profiler dynamic
library interface.

PGI_ACC_SYNCHRONOUS Disables asynchronous launches and data movement.

PGI_ACC_TIME Enables a lightweight profiler to measure data movement and
accelerator kernel execution time and print a summary at the end of
program execution.

7.14. Profiling Accelerator Kernels

Support for Profiler/Trace Tool Interface

PGI compilers support the OpenACC Profiler/Trace Tools Interface. This is the interface
used by the PGI profiler to collect performance measurements of OpenACC programs.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 87

Using PGI_ACC_TIME

Setting the environment variable PGI_ACC_TIME to a nonzero value enables collection
and printing of simple timing information about the accelerator regions and generated
kernels.

Turn off all CUDA Profilers (NVIDIA's Visual Profiler, NVPROF, CUDA_PROFILE, etc)
when enabling PGI_ACC_TIME, they use the same library to gather performance data
and cannot be used concurently.

Accelerator Kernel Timing Data
bb04.f90
 s1
 15: region entered 1 times
 time(us): total=1490738
 init=1489138 region=1600
 kernels=155 data=1445
 w/o init: total=1600 max=1600
 min=1600 avg=1600
 18: kernel launched 1 times
 time(us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

‣ For each accelerator region, the file name bb04.f90 and subroutine or function
name s1 is printed, with the line number of the accelerator region, which in the
example is 15.

‣ The library counts how many times the region is entered (1 in the example) and
the microseconds spent in the region (in this example 1490738), which is split into
initialization time (in this example 1489138) and execution time (in this example
1600).

‣ The execution time is then divided into kernel execution time and data transfer time
between the host and GPU.

‣ For each kernel, the line number is given, (18 in the example), along with a count of
kernel launches, and the total, maximum, minimum, and average time spent in the
kernel, all of which are 155 in this example.

7.15. OpenACC Runtime Libraries
This section provides an overview of the user-callable functions and library routines that
are available for use by programmers to query the accelerator features and to control
behavior of accelerator-enabled programs at runtime.

In Fortran, none of the OpenACC runtime library routines may be called from a PURE
or ELEMENTAL procedure.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 88

7.15.1. Runtime Library Definitions
There are separate runtime library files for C and for Fortran.

C Runtime Library Files

In C, prototypes for the runtime library routines are available in a header file named
accel.h. All the library routines are extern functions with ‘C’ linkage. This file
defines:

‣ The prototypes of all routines in this section.
‣ Any data types used in those prototypes, including an enumeration type to describe

types of accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named
accel_lib.h and in a Fortran module named accel_lib. These files define:

‣ Interfaces for all routines in this section.
‣ Integer parameters to define integer kinds for arguments to those routines.
‣ Integer parameters to describe types of accelerators.

7.15.2. Runtime Library Routines
Table 18 lists and briefly describes the runtime library routines supported by PGI in
addition to the standard OpenACC runtine API routines.

Table 18 Accelerator Runtime Library Routines

This Runtime Library
Routine... Does this...

acc_allocs Returns the number of arrays allocated in data or compute regions.

acc_bytesalloc Returns the total bytes allocated by data or compute regions.

acc_bytesin Returns the total bytes copied in to the accelerator by data or compute
regions.

acc_bytesout Returns the total bytes copied out from the accelerator by data or compute
regions.

acc_copyins Returns the number of arrays copied in to the accelerator by data or
compute regions.

acc_copyouts Returns the number of arrays copied out from the accelerator by data or
compute regions.

acc_disable_time Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time Tells the runtime to start profiling accelerator regions and kernels, if it is
not already doing so.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 89

This Runtime Library
Routine... Does this...

acc_exec_time Returns the number of microseconds spent on the accelerator executing
kernels.

acc_frees Returns the number of arrays freed or deallocated in data or compute
regions.

acc_get_device Returns the type of accelerator device used to run the next accelerator
region, if one is selected.

acc_get_device_num Returns the number of the device being used to execute an accelerator
region.

acc_get_free_memory Returns the total available free memory on the attached accelerator
device.

acc_get_memory Returns the total memory on the attached accelerator device.

acc_get_num_devices Returns the number of accelerator devices of the given type attached to
the host.

acc_kernels Returns the number of accelerator kernels launched since the start of the
program.

acc_present_dump Summarizes all data present on the current device.

acc_present_dump_all Summarizes all data present on all devices.

acc_regions Returns the number of accelerator regions entered since the start of the
program.

acc_total_time Returns the number of microseconds spent in accelerator compute regions
and in moving data for accelerator data regions.

7.16. Supported Intrinsics
An intrinsic is a function available in a given language whose implementation is
handled specifically by the compiler. Typically, an intrinsic substitutes a sequence of
automatically-generated instructions for the original function call. Since the compiler has
an intimate knowledge of the intrinsic function, it can better integrate it and optimize it
for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide
a language interface to assembly instructions. In doing so, the compiler manages things
that the user would normally have to be concerned with, such as register names, register
allocations, and memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accelerator
supports.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 90

7.16.1. Supported Fortran Intrinsics Summary Table
Table 19 is an alphabetical summary of the supported Fortran intrinsics that the
accelerator supports. These functions are specific to Fortran 90/95 unless otherwise
specified.

For complete descriptions of these intrinsics, refer to ‘Fortran Intrinsics’ of the PGI
Fortran Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19fortref-
openpower.pdf.

In most cases PGI provides support for all the data types for which the intrinsic is valid.
When support is available for only certain data types, the middle column of the table
specifies which ones, using the following codes:

I for integer S for single precision real C for single precision complex

D for double precision real Z for double precision complex

Table 19 Supported Fortran Intrinsics

This intrinsic Returns this value ...

ABS I,S,D absolute value of the supplied argument.

ACOS arccosine of the specified value.

AINT truncation of the supplied value to a whole number.

ANINT nearest whole number to the supplied argument.

ASIN arcsine of the specified value.

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

COS S,D,C,Z cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE S,D conversion of the value to double precision real.

DPROD double precision real product.

EXP S,D,C,Z exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.

IEOR result of a bit-by-bit logical exclusive OR on the arguments.

INT I,S,D conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.

LOG S,D,C,Z natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 91

This intrinsic Returns this value ...

MOD I remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.

POW value of the first argument raised to the power of the second argument.

REAL I,S,D conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN S,D,C,Z value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT S,D,C,Z square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

7.16.2. Supported C Intrinsics Summary Table
This section contains two alphabetical summaries – one for double functions and a
second for float functions. These lists contain only those C intrinsics that the accelerator
supports.

Table 20 Supported C Intrinsic Double Functions

This intrinsic Returns this value ...

acos arccosine of the specified value.

asin arcsine of the specified value.

atan arctangent of the specified value.

atan2 arctangent of y/x, where y is the first argument, x the second.

cos cosine of the specified value.

cosh hyperbolic cosine of the specified value.

exp exponential value of the argument.

fabs absolute value of the argument.

fmax maximum value of the two supplied arguments

fmin minimum value of the two supplied arguments

log natural logarithm of the specified value.

log10 base-10 logarithm of the specified value.

pow value of the first argument raised to the power of the second argument.

sin value of the sine of the argument.

sinh hyperbolic sine of the argument.

sqrt square root of the argument.

Using an Accelerator

User's Guide for OpenPOWER CPUs Version 2019 | 92

This intrinsic Returns this value ...

tan tangent of the specified value.

tanh hyperbolic tangent of the specified value.

Table 21 Supported C Intrinsic Float Functions

This intrinsic Returns this value ...

acosf arccosine of the specified value.

asinf arcsine of the specified value.

atanf arctangent of the specified value.

atan2f arctangent of y/x, where y is the first argument, x the second.

cosf cosine of the specified value.

coshf hyperbolic cosine of the specified value.

expf exponential value of the floating-point argument.

fabsf absolute value of the floating-point argument.

logf natural logarithm of the specified value.

log10f base-10 logarithm of the specified value.

powf value of the first argument raised to the power of the second argument.

sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrtf square root of the argument.

tanf tangent of the specified value.

tanhf hyperbolic tangent of the specified value.

User's Guide for OpenPOWER CPUs Version 2019 | 93

Chapter 8.
PCAST

PGI Compiler Assisted Software Testing (PCAST) is a set of API calls and compiler
directives useful in testing program correctness. Numerical results produced by a
program can diverge when parts of the program are mapped onto a GPU, when new
or additional compiler options are used, or when changes are made to the program
itself. PCAST can help you determine where these divergences begin, and pinpoint the
changes that cause them. It is useful in other situations as well, including when using
new libraries, determining whether parallel execution is safe, or porting programs from
one ISA or type of processor to another.

8.1. Overview
PCAST Comparisons can be performed in two ways. The first saves the initial run's
data into a file through the pgi_compare call or directive. Add the calls or directives to
your application where you want intermediate results to be compared. Then, execute
the program to save the "golden" results where the values are known to be correct.
During subsequent runs of the program, the same pgi_compare calls or directives will
compare the computed intermediate results to the saved "golden" results and report the
differences.

The second approach works in conjunction with the PGI OpenACC implementation
to compare GPU computation against the same program running on a CPU. In this
case, all compute constructs are performed redundantly, both on the CPU and GPU.
GPU results are compared against the CPU results, and differences reported. This is
essentially like the first case where the CPU-calculated values are treated as the "golden"
results. GPU to CPU comparisons can be done implicitly at the end of data regions with
the autocompare flag or explicitly after kernels with the acc_compare call or directive.

With the autocompare flag, OpenACC regions will run redundantly on the CPU and
GPU. On an OpenACC region exit where data is to be downloaded from device to host,
PCAST will compare the values calculated on the CPU with those calculated in the GPU.
Comparisons done with autocompare or acc_compare are handled in memory and do
not write results to an intermediate file.

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 94

The following table outlines the supported data types that can be used with PCAST.
Short, integer, and long types are not supported with ABS, REL, ULP, or IEEE options;
only a bit-for-bit comparison is supported.

For floating-point types, PCAST can calculate absolute, relative, and unit-last-place
differences. Absolute differences measures only the absolute value of the difference
(subtraction) between two values, i.e. abs(A-B). Relative differences are calculated as a
ratio between the difference of values, A-B, and the previous value A; abs((A-B)/A). Unit-
least precision (Unit-last place) is a measure of the smallest distance between two values
A and B. With the ULP option set, PCAST will report if the calculated ULP between two
numbers is greater than some threshold.

Table 22 Supported Types for Tolerance Measurements

C/C++ Type Fortran Type ABS REL ULP IEEE

float real, real(4) Yes Yes Yes Yes

double double precision, real(8) Yes Yes Yes Yes

float _Complex complex, complex(4) Yes Yes Yes Yes

double _Complex complex(8) Yes Yes Yes Yes

(un)signed short integer(2) N/A N/A N/A N/A

(un)signed int integer, integer(4) N/A N/A N/A N/A

(un)signed long integer(8) N/A N/A N/A N/A

8.2. PCAST with a "Golden" File
The run-time call pgi_compare highlights differences between successive program
runs. It has two modes of operation, depending on the presence of a data file named
pgi_compare.dat by default. If the file does not exist, pgi_compare assumes this is the
first "golden" run. It will create the file and fill it with the computed data at each call to
pgi_compare. If the file exists, pgi_compare assumes it is a test run. It will read the file
and compare the computed data with the saved data from the file. The default behavior
is to consider the first 50 differences to be a reportable error, no matter how small.

By default, the pgi_compare.dat file is in the same directory as the executable. The
behavior of pgi_compare, and other comparison parameters, can be changed at runtime
with the PGI_COMPARE environment variable discussed in the Environment Variables
section.

The signature of pgi_compare for C/C++ and Fortran respectively is as follows:

 void pgi_compare(void*, char*, size_t, char*, char*, char*, int);

 subroutine pgi_compare(a, datatype, len, varname, filename, funcname, lineno)
 type(*), dimension(..) :: a
 character(*) :: datatype, varname, filename, funcname
 integer(8),value :: len
 integer(4),value :: lineno

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 95

The call takes seven arguments, all of which are described below:

 1. The address of the data to be saved or compared.
 2. A string containing the data type.
 3. The number of elements to compare.
 4. A string treated as the variable name.
 5. A string treated as the source file name.
 6. A string treated as the function name.
 7. An integer treated as a line number.

For example, the pgi_compare runtime call can be invoked like the following:

 pgi_compare(a, "float", N, "a", "pgi_compare03.c", "main", 1);

 call pgi_compare(a, 'real', n, 'a', 'pgi_compare1.f90', 'program', 9)

The caller should give meaningful names to the last four arguments. They can be
anything, since they only serve to annotate the report. It is imperative that the identifiers
are not modified between comparisons; comparisons must be called in the same order
for each program run. If, for example, you are calling pgi_compare inside a loop, it is
reasonable to set the last argument to be the loop index.

There also exists a directive form of the pgi_compare, which is functionally the same
as the runtime call. It can be used at any point in the program to compare the current
value of data to that recorded in the golden file, same as the runtime call. There are two
benefits to using the directive over the API call:

 1. The directive syntax is much simpler than the API syntax. Most of what the compare
call needs to output data to the user can be gleaned by the compiler at compile-time
(The type, variable name, file name, function name, and line number).

 #pragma pgi compare(a[0:n])

as opposed to:

 pgi_compare(a, "float", N, "a", "pgi_compare03.c", "main", 1);

 2. The directive is only enabled when the -Mpcast flag is set, so the source need not be
changed when testing is complete. Consider the following usage examples:

 #pragma pgi compare(a[0:N]) // C/C++
 !$pgi compare(a(1:N)) ! Fortran

The directive interface is given below in C/C++ style and Fortran. Note that for Fortran,
var-list is a variable name, a subarray specification, an array element, or a composite
variable member.

 #pragma pgi compare (var-list) // C/C++
 !$pgi compare (var-list) ! Fortran

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 96

Let's look at an exmaple of

 int main() {
 int size = 1000;
 int i, t;
 float *a1;
 float *a2;

 a1 = (float*)malloc(sizeof(float)*size);
 a2 = (float*)malloc(sizeof(float)*size);

 for (i = 0; i < size; i++) {
 a1[i] = 1.0f;
 a2[i] = 2.0f;
 }

 for (t = 0; t < 5; t++) {
 for(i = 0; i < size; i++) {
 a2[i] += a1[i];
 }
 pgi_compare(a2, "float", size, "main", 23);
 }
 return 0;
 }

Compile the example using these compiler options:

 > pgcc -fast -o a.out example.c

Compiling with redundant or autocompare options are not required to use
pgi_compare. Once again, running the compiled executable using the options below,
results in the following output:

 > PGI_COMPARE=summary,rel=1 ./out.o
 datafile pgi_compare.dat created with 5 blocks, 5000 elements, 20000 bytes
 > PGI_COMPARE=summary,rel=1 ./out.o
 datafile pgi_compare.dat compared with 5 blocks, 5000 elements, 20000 bytes
 no errors found
 relative tolerance = 0.100000, rel=1

Running the program for the first time, the data file "pgi_compare.dat" is created.
Subsequent runs compare calculated data against this file. Use the PGI_COMPARE
environment variable to set the name of the file, or force the program to create a new file
on the disk with PGI_COMPARE=create.

The same example above can be written with the pgi compare directive. Notice how
much more concise the directive is to the update host and pgi_compare calls.

 int main() {
 int size = 1000;
 int i, t;
 float *a1;
 float *a2;

 a1 = (float*)malloc(sizeof(float)*size);
 a2 = (float*)malloc(sizeof(float)*size);

 for (i = 0; i < size; i++) {

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 97

 a1[i] = 1.0f;
 a2[i] = 2.0f;
 }

 for (t = 0; t < 5; t++) {
 for(i = 0; i < size; i++) {
 a2[i] += a1[i];
 }
 #pragma pgi compare(a2[0:size])
 }
 return 0;
 }

With the directive, you will want to add "-Mpcast" to the compilation line to enable
the directive. Other than that, the output from this program is identical to the runtime
example above.

8.3. PCAST with OpenACC
PCAST can also be used with the PGI OpenACC implementation to compare GPU
computation against the same program running on a CPU. In this case, all compute
constructs are performed redundantly on both the CPU and GPU. The CPU results are
considered to be the "golden master" copy which GPU results are compared against.

There are two ways to perform comparisons with GPU-calculated results. The first
is with the explicit call or directive acc_compare. To use acc_compare, you must
compile with -ta=tesla:redundant to force the CPU and GPU to compute results
redundantly. Then, insert calls to acc_compare or put an acc compare directive at
points where you want to compare the GPU-computed values against those computed
by the CPU.

The second approach is to turn on autocompare mode by compiling with -
ta=tesla:autocompare. In autocompare mode, PCAST will automatically perform
a comparison at each point where data is moved from the device to the host. It does
not require the programmer to add any additional directives or runtime calls; it's a
convenient way to do all comparisons at the end of a data region. If there are multiple
compute kernels within a data region, and you're only interested in one specific kernel,
you should use the previously-mentioned acc_compare to target a specific kernel. Note
that autocompare mode implies -ta=tesla:redundant.

During redundant execution, the compiler will generate both CPU and GPU code
for each compute construct. At runtime, both the CPU and GPU versions will
execute redundantly, with the CPU code reading and modifying values in system
memory and the GPU reading and modifying values in device memory. Insert calls to
acc_compare() calls (or the equivalent acc compare directive) at points where you
want to compare the GPU-computed values against CPU-computed values. PCAST
treats the values generated by the CPU code as the "golden" values. It will compare those
results against GPU values. Unlike pgi_compare, acc_compare does not write to an
intermediary file; the comparisons are done in-memory.

acc_compare only has two arguments: a pointer to the data to be compared, hostptr,
and the number of elements to compare, count. The type can be inferred in the

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 98

OpenACC runtime, so it doesn't need to be specified. The C/C++ interface is given
below:

 void acc_compare(void *, size_t);

And in Fortran:

 subroutine acc_compare(a)
 subroutine acc_compare(a, len)
 type(*), dimension(*) :: a
 integer(8), value :: len

You can call acc_compare on any variable or array that is present in device memory.
You can also call acc_compare_all (no arguments) to compare all values that are
present in device memory against the correponding values in host memory.

 void acc_compare_all()

 subroutine acc_compare_all()

Directive forms of the acc_compare calls exist. They work the same as the API calls and
can be used in lieu of them. Similar to pgi compare directives, acc compare directives
are ignored when redundant or autocompare modes are not enabled on the compilation
line.

The acc compare directive takes one or more arguments, or the 'all' clause (which
corresponds to acc_compare_all(). The interfaces are given below in C/C++
and Fortran respectively. Argument "var-list" can be a variable name, a sub-array
specification, and array element, or a composite variable member.

 #pragma acc compare [(var-list) | all]

 $!acc compare [(var-list) | all]

For example:

 #pragma acc compare(a[0:N])
 #pragma acc compare all
 !$acc compare(a, b)
 !$acc compare(a(1:N))
 !$acc compare all

Consider the following OpenACC program that uses the acc_compare() API call and
an acc compare directive. This Fortran example uses real*4 and real*8 arrays.

 program main
 use openacc
 implicit none
 parameter N = 1000
 integer :: i
 real :: a(N)
 real*4 :: b(N)

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 99

 real(4) :: c(N)
 double precision :: d(N)
 real*8 :: e(N)
 real(8) :: f(N)

 d = 1.0d0
 e = 0.1d0

 !$acc data copyout(a, b, c, f) copyin(d, e)

 !$acc parallel loop
 do i = 1,N
 a(i) = 1.0
 b(i) = 2.0
 c(i) = 0.0
 enddo
 !$acc end parallel

 !$acc compare(a(1:N), b(1:N), c(1:N))

 !$acc parallel loop
 do i = 1,N
 f(i) = d(i) * e(i)
 enddo
 !$acc end parallel

 !$acc compare(f)

 !$acc parallel loop
 do i = 1,N
 a(i) = 1.0
 b(i) = 1.0
 c(i) = 1.0
 enddo
 !$acc end parallel

 call acc_compare(a, N)
 call acc_compare(b, N)
 call acc_compare(c, N)

 !$acc parallel loop
 do i = 1,N
 f(i) = 1.0D0
 enddo
 !$acc end parallel

 call acc_compare_all()

 !$acc parallel loop
 do i = 1,N
 a(i) = 3.14;
 b(i) = 3.14;
 c(i) = 3.14;
 f(i) = 3.14d0;
 enddo
 !$acc end parallel

 ! In redundant mode, no comparison is performed here. In
 ! autocompare mode, a comparison is made for a, b, c, and f (but
 ! not e and d), since they are copied out of the data region.

 !$acc end data

 call verify(N, a, b, c, f)
 end program

 subroutine verify(N, a, b, c, f)

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 100

 integer, intent(in) :: N
 real, intent(in) :: a(N)
 real*4, intent(in) :: b(N)
 real(4), intent(in) :: c(N)
 real(8), intent(in) :: f(N)
 integer :: i, errcnt

 errcnt = 0
 do i=1,N
 if(abs(a(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(b(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(c(i) - 3.14e0) .gt. 1.0e-06) then
 errcnt = errcnt + 1
 endif
 end do
 do i=1,N
 if(abs(f(i) - 3.14d0) .gt. 1.0d-06) then
 errcnt = errcnt + 1
 endif
 end do

 if(errcnt /= 0) then
 write (*, *) "FAILED"
 else
 write (*, *) "PASSED"
 endif
 end subroutine verify

The program can be compiled with the following command:

 > pgf90 -fast -ta=tesla:redundant -Minfo=accel example.F90
 main:
 16, Generating copyout(a(:),b(:))
 Generating copyin(e(:))
 Generating copyout(f(:),c(:))
 Generating copyin(d(:))
 18, Generating Tesla code
 19, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 26, Generating acc compare(c(:),b(:),a(:))
 28, Generating Tesla code
 29, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 34, Generating acc compare(f(:))
 36, Generating Tesla code
 37, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 48, Generating Tesla code
 49, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 56, Generating Tesla code
 57, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

Here, you can see where the acc compare directives are generated on lines 26 and 34.
The program can be run with the following command:

 > ./a.out
 PASSED

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 101

As you can see, no PCAST output is generated when the comparisons match. We can get
more information with the summary option:

 > PGI_COMPARE=summary ./a.out
 PASSED
 compared 13 blocks, 13000 elements, 68000 bytes
 no errors found
 absolute tolerance = 0.00000000000000000e+00, abs=0

There are 13 blocks compared. Let's count the blocks in the compare calls.

 !$acc compare(a(1:N), b(1:N), c(1:N))

Compares three blocks, one each for a, b, and c.

 !$acc compare(f)

Compares one block for f.

 call acc_compare(a, N)
 call acc_compare(b, N)
 call acc_compare(c, N)

Each call compares one block for their respective array.

 call acc_compare_all()

Compares one block for each array present on the device (a, b, c, d, e, and f) for a total of
6 blocks.

If the same example is compiled with autocompare, we'll see four additional
comparisons, since the four arrays that are copied out (with the copyout clause) are
compared at the end of the data region.

 > pgf90 -fast -ta=tesla:autocompare example.F90
 > PGI_COMPARE=summary ./a.out
 PASSED
 compared 17 blocks, 17000 elements, 88000 bytes
 no errors found
 absolute tolerance = 0.00000000000000000e+00, abs=0

8.4. Limitations
There are currently a few limitations with using PCAST that are worth keeping in mind.

‣ Comparisons are not thread-safe. If you are using PCAST with multiple threads,
ensure that only one thread is doing the comparisons. This is especially true if you
are using PCAST with MPI. If you use pgi_compare with MPI, you must make
sure that only one thread is writing to the comparison file. Or, use a script to set
PGI_COMPARE to encode the file name with the MPI rank.

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 102

‣ Comparisons must be done with like types; you cannot compare one type with
another. It is not possible to, for example, check for differing results after changing
from double precision to single. Comparisons are limited to those present in table
Table 22. Currently there is no support for structured or derived types.

‣ The -ta=tesla:managed option is incompatible with autocompre and
acc_compare. Both the CPU and GPU need to calculate result separately and to do
so they must have their own working memory spaces.

‣ If you do any data movement on the device, you must account for it on the host.
For example, if you are using CUDA-aware MPI or GPU-accelerated libraries that
modify device data, then you must also make the host aware of the changes. In
these cases it is helpful to use the host_data clause, which allows you to use device
addresses within host code.

8.5. Environment Variables
Behavior of PCAST/Autocompare is controlled through the PGI_COMPARE
variable. Options can be specified in a comma-separated list:
PGI_COMPARE=<opt1>,<opt2>,...

If no options are specified, the default is to perform comparisons with abs=0.
Comparison options are not mutually exclusive. PCAST can compare absolute
differences with some n=3 and relative differences with a different threshold, e.g. n=5;
PGI_COMPARE=abs=3,rel=5,....

You can specify either an absolute or relative location to be used with the datafile option.
The parent directory should be owned by the same user executing the comparisons and
the datafile should have the appropriate read/write permissions set.

Table 23 PGI_COMPARE Options

Option Description

Minimum
supported
version

abs=n Compare absolute difference; tolerate differences up to 10^(-n),
only applicable to floating point types. Default value is 0

18.7

 create1 Specifies that this is the run that will produce the reference file 18.7

compare1 Specifies that the current run will be compared with a reference
file

18.7

datafile="name"1 Name of the file that data will be saved to, or compared against.
If empty will use the default, 'pgi_compare.dat'

18.7

disable Calls to pgi_compare, acc_compare, acc_compare_all, and
directives (pgi compare, acc compare, and acc compare) all
immediately return from the runtime with no effect. Note that
this doesn't disable redundant execution; that will require a
recompile.

19.4

1 Only available for pgi_compare

PCAST

User's Guide for OpenPOWER CPUs Version 2019 | 103

Option Description

Minimum
supported
version

ieee Compare IEEE NaN checks (only implemented for floats and
doubles)

18.7

outputfile="name" Save comparison output to a specific file. Default behavior is to
output to stderr

18.7

patch Patch errors (outside tolerance) with correct values 18.10

patchall Patch all differences (inside and outside tolerance) with correct
values

18.10

rel=n Compare relative difference; tolerated differences up to 10^(-
n), only applicable to floating point types. Default value is 0.

18.7

report=n Report up to n (default of 50) passes/fails 18.7

reportall Report all passes and fails (overrides limit set in report=n) 18.10

reportpass Report passes; respects limit set with report=n 18.10

silent Suppress output - overrides all other output options, including
summary and verbose

18.10

stop Stop at first differences 18.7

summary Print summary of comparisons at end of run 18.7

ulp=n Compare Unit of Least Precision difference (only for floats and
doubles)

18.7

verbose Outputs more details of comparison (including patches) 18.10

verboseautocompare Outputs verbose reporting of what and where the host is
comparing (autocompare only)

18.10

User's Guide for OpenPOWER CPUs Version 2019 | 104

Chapter 9.
USING DIRECTIVES AND PRAGMAS

It is often useful to be able to alter the effects of certain command line options or default
behavior of the compiler. Fortran directives and C/C++ pragmas provide pragmatic
information that control the actions of the compiler in a particular portion of a program
without affecting the program as a whole. That is, while a command line option affects
the entire source file that is being compiled, directives and pragmas apply, or disable,
the effects of a command line option to selected subprograms or to selected loops in the
source file, for example, to optimize a specific area of code. Use directives and pragmas
to tune selected routines or loops.

9.1. PGI Proprietary Fortran Directives
PGI Fortran compilers support proprietary directives that may have any of the following
forms:
!pgi$g directive
!pgi$r directive
!pgi$l directive
!pgi$ directive

If the input is in fixed format, the comment character must begin in column 1 and
either * or C is allowed in place of !.

The scope indicator controls the scope of the directive. This indicator occurs after the $.
Some directives ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:
g

(global) indicates the directive applies to the end of the source file.
r

(routine) indicates the directive applies to the next subprogram.
l

(loop) indicates the directive applies to the next loop, but not to any loop contained
within the loop body. Loop-scoped directives are only applied to DO loops.

blank
indicates that the default scope for the directive is applied.

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 105

The body of the directive may immediately follow the scope indicator. Alternatively, any
number of blanks may precede the name of the directive. Any names in the body of the
directive, including the directive name, may not contain embedded blanks. Blanks may
surround any special characters, such as a comma or an equal sign.

The directive name, including the directive prefix, may contain upper or lower case
letters, and the case is not significant. Case is significant for any variable names that
appear in the body of the directive if the command line option -Mupcase is selected. For
compatibility with other vendors’ directives, the prefix cpgi$ may be substituted with
cdir$ or cvd$.

9.2. PGI Proprietary C and C++ Pragmas
Pragmas may be supplied in a C/C++ source file to provide information to the compiler.
Many pragmas have a corresponding command-line option. Pragmas may also toggle an
option, selectively enabling and disabling the option.

The general syntax of a pragma is:
#pragma [scope] pragma-body

The optional scope field is an indicator for the scope of the pragma; some pragmas
ignore the scope indicator.

The valid scopes are:
global

indicates the pragma applies to the entire source file.
routine

indicates the pragma applies to the next function.
loop

indicates the pragma applies to the next loop (but not to any loop contained within
the loop body). Loop-scoped pragmas are only applied to for and while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must
appear after the pragma keyword and between the scope indicator and the body of the
pragma. Whitespace may also surround any special characters, such as a comma or an
equal sign. Case is significant for the names of the pragmas and any variable names that
appear in the body of the pragma.

9.3. PGI Proprietary Optimization Directive and
Pragma Summary
The following table summarizes the supported Fortran directives and C/C++ pragmas.
The following terms are useful in understanding the table.

‣ Functionality is a brief summary of the way to use the directive or pragma. For a
complete description, refer to the ‘Directives and Pragmas Reference’ section of
the PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/
pgi19ref-openpower.pdf.

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 106

‣ Many of the directives and pragmas can be preceded by NO. The default entry
indicates the default for the directive or pragma. N/A appears if a default does not
apply.

‣ The scope entry indicates the allowed scope indicators for each directive or pragma,
with L for loop, R for routine, and G for global. The default scope is surrounded by
parentheses and N/A appears if the directive or pragma is not available in the given
language.

The "*" in the scope indicates this:
For routine-scoped directive

The scope includes the code following the directive or pragma until the end of
the routine.

For globally-scoped directive
The scope includes the code following the directive or pragma until the end of
the file rather than for the entire file.

The name of a directive or pragma may also be prefixed with -M.

For example, you can use the directive -Mbounds, which is equivalent to the
directive bounds and you can use -Mopt, which is equivalent to opt. For pragmas,
you can use the directive -Mnoassoc, which is equivalent to the pragma noassoc,
and -Mvintr, which is equivalent to vintr.

Table 24 Proprietary Optimization-Related Fortran Directive and C/C++
Pragma Summary

Directive or
pragma Functionality Default

Fortran
Scope

C/C++
Scope

altcode
(noaltcode)

Do/don’t generate alternate code for
vectorized and parallelized loops.

altcode (L)RG (L)RG

assoc (noassoc) Do/don’t perform associative
transformations.

assoc (L)RG (L)RG

bounds (nobounds) Do/don’t perform array bounds checking. nobounds (R)G* (R)G

cncall (nocncall) Loops are considered for parallelization,
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.

nocncall (L)RG (L)RG

concur (noconcur) Do/don’t enable auto-concurrentization
of loops.

concur (L)RG (L)RG

depchk
(nodepchk)

Do/don’t ignore potential data
dependencies.

depchk (L)RG (L)RG

eqvchk (noeqvchk) Do/don’t check EQUIVALENCE for data
dependencies.

eqvchk (L)RG N/A

fcon (nofcon) Do/don’t assume unsuffixed real
constants are single precision.

nofcon N/A (R)G

invarif (noinvarif) Do/don’t remove invariant if constructs
from loops.

invarif (L)RG (L)RG

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 107

Directive or
pragma Functionality Default

Fortran
Scope

C/C++
Scope

ivdep Ignore potential data dependencies. ivdep (L)RG N/A

lstval (nolstval) Do/don’t compute last values. lstval (L)RG (L)RG

prefetch Control how prefetch instructions are
emitted

opt Select optimization level. N/A (R)G (R)G

safe (nosafe) Do/don’t treat pointer arguments as
safe.

safe N/A (R)G

safe_lastval Parallelize when loop contains a scalar
used outside of loop.

not enabled (L) (L)

safeptr (nosafeptr) Do/don’t ignore potential data
dependencies to pointers.

nosafeptr N/A L(R)G

single (nosingle) Do/don’t convert float parameters to
double.

nosingle N/A (R)G*

tp Generate PGI Unified Binary code
optimized for specified targets.

N/A (R)G (R)G

unroll (nounroll) Do/don’t unroll loops. nounroll (L)RG (L)RG

vector (novector) Do/don't perform vectorizations. vector (L)RG* (L)RG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (L)RG (L)RG

9.4. Scope of Fortran Directives and Command-
Line Options
During compilation the effect of a directive may be to either turn an option on, or
turn an option off. Directives apply to the section of code following the directive,
corresponding to the specified scope, which may include the following loop, the
following routine, or the rest of the program. This section presents several examples that
show the effect of directives as well as their scope. Consider the following Fortran code:
 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

When compiled with -Mvect, both interior loops are interchanged with the outer loop.
$ pgfortran -Mvect dirvect1.f

Directives alter this behavior either globally or on a routine or loop by loop basis. To
assure that vectorization is not applied, use the novector directive with global scope.
!pgi$g novector

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 108

 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

In this version, the compiler disables vectorization for the entire source file. Another use
of the directive scoping mechanism turns an option on or off locally, either for a specific
procedure or for a specific loop:
 integer maxtime, time
 parameter (n = 1000, maxtime = 10)
 double precision a(n,n), b(n,n), c(n,n)
!pgi$l novector
 do time = 1, maxtime
 do i = 1, n
 do j = 1, n
 c(i,j) = a(i,j) + b(i,j)
 enddo
 enddo
 enddo
 end

Loop level scoping does not apply to nested loops. That is, the directive only applies to
the following loop. In this example, the directive turns off vector transformations for the
top-level loop. If the outer loop were a timing loop, this would be a practical use for a
loop-scoped directive.

9.5. Scope of C/C++ Pragmas and Command-Line
Options
During compilation a pragma either turns an option on or turns an option off. Pragmas
apply to the section of code corresponding to the specified scope – either the entire file,
the following loop, or the following or current routine. This section presents several
examples showing the effect of pragmas and the use of the pragma scope indicators.

In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for
determining the scope of the pragma. We cover these special scope rules at the end of
this section.

Consider the following program:
main() {
 float a[100][100], b[100][100], c[100][100];
 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 109

 c[i][j] = a[i][j] + b[i][j];
}

When this is compiled using the -Mvect command-line option, both interior loops
are interchanged with the outer loop. Pragmas alter this behavior either globally or
on a routine or loop by loop basis. To ensure that vectorization is not applied, use the
novector pragma with global scope.
main() {
#pragma global novector
 float a[100][100], b[100][100],c[100][100];
 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)
 c[i][j] = a[i][j] + b[i][j];
}

In this version, the compiler does not perform vectorization for the entire source file.
Another use of the pragma scoping mechanism turns an option on or off locally either
for a specific procedure or for a specific loop. The following example shows the use of a
loop-scoped pragma.
main() {
 float a[100][100], b[100][100],c[100][100];
 int time, maxtime, n, i, j;
 maxtime=10;
 n=100;
#pragma loop novector
 for (time=0; time<maxtime;time++)
 for (j=0; j<n;j++)
 for (i=0; i<n;i++)
 c[i][j] = a[i][j] + b[i][j];
}

Loop level scoping does not apply to nested loops. That is, the pragma only applies to
the following loop. In this example, the pragma turns off vector transformations for the
top-level loop. If the outer loop were a timing loop, this would be a practical use for a
loop-scoped pragma. The following example shows routine pragma scope:
#include "math.h"
func1() {
#pragma routine novector
 float a[100][100], b[100][100];
 float c[100][100], d[100][100];
 int i,j;
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

func2() {
 float a[200][200], b[200][200];
 float c[200][200], d[200][200];
 int i,j;
 for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 110

When this source is compiled using the -Mvect command-line option, func2 is
vectorized but func1 is not vectorized. In the following example, the global novector
pragma turns off vectorization for the entire file.
#include "math.h"
func1() {
#pragma global novector
 float a[100][100], b[100][100];
 float c[100][100], d[100][100];
 int i,j;
 for (i=0;i<100;i++)
 for (j=0;j<100;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}
func2() {
 float a[200][200], b[200][200];
 float c[200][200], d[200][200];
 int i,j;
 for (i=0;i<200;i++)
 for (j=0;j<200;j++)
 a[i][j] = a[i][j] + b[i][j] * c[i][j];
 c[i][j] = c[i][j] + b[i][j] * d[i][j];
}

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma
is placed within a routine, it applies to the routine from its point in the routine to the end
of the routine. The same rule applies for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and
which affect code immediately following the pragma:

‣ bounds and fcon – The bounds and fcon pragmas behave in a similar manner to
pragmas with loop scope. That is, they apply to the code following the pragma.

‣ opt and safe – When the opt or safe pragmas are placed within a routine, they apply
to the entire routine as if they had been placed at the beginning of the routine.

9.6. Prefetch Directives and Pragmas
Today’s processors are so fast that it is difficult to bring data into them quickly enough
to keep them busy. Prefetch instructions can increase the speed of an application
substantially by bringing data into cache so that it is available when the processor needs
it.

When vectorization is enabled using the -Mvect or -Mprefetch compiler options,
or an aggregate option such as -fast that incorporates -Mvect, the PGI compilers
selectively emit instructions to explicitly prefetch data into the data cache prior to first
use. You can control how these prefetch instructions are emitted by using prefetch
directives and pragmas.

For a list of processors that support prefetch instructions refer to the PGI Release Notes.

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 111

9.6.1. Prefetch Directive Syntax in Fortran
The syntax of a prefetch directive is as follows:
 !$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

9.6.2. Prefetch Directive Format Requirements

The sentinel for prefetch directives is !$mem, which is distinct from the !pgi$
sentinel used for optimization directives. Any prefetch directives that use the !pgi$
sentinel are ignored by the PGI compilers.

‣ The "c" must be in column 1 for fixed format.
‣ Either * or ! is allowed in place of c for fixed format.
‣ The scope indicators g, r and l used with the !pgi$ sentinel are not supported.
‣ The directive name, including the directive prefix, may contain upper or lower case

letters and is case insensitive (case is not significant).
‣ If the command line option -Mupcase is used, any variable names that appear in

the body of the directive are case sensitive.

9.6.3. Sample Usage of Prefetch Directive
Prefetch Directive Use

This example uses prefetch directives to prefetch data in a matrix multiplication inner
loop where a row of one source matrix has been gathered into a contiguous vector.
 real*8 a(m,n), b(n,p), c(m,p), arow(n)
...
 do j = 1, p
!$mem prefetch arow(1),b(1,j)
!$mem prefetch arow(5),b(5,j)
!$mem prefetch arow(9),b(9,j)
 do k = 1, n, 4
!$mem prefetch arow(k+12),b(k+12,j)
 c(i,j) = c(i,j) + arow(k) * b(k,j)
 c(i,j) = c(i,j) + arow(k+1) * b(k+1,j)
 c(i,j) = c(i,j) + arow(k+2) * b(k+2,j)
 c(i,j) = c(i,j) + arow(k+3) * b(k+3,j)
 enddo
 enddo

This pattern of prefetch directives the compiler emits prefetch instructions whereby
elements of arow and b are fetched into the data cache starting four iterations prior to
first use. By varying the prefetch distance in this way, it is sometimes possible to reduce
the effects of main memory latency and improve performance.

9.6.4. Prefetch Pragma Syntax in C/C++
The syntax of a prefetch pragma is as follows:
#pragma mem prefetch <var1>[,<var2>[,...]]

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 112

where <varn> is any valid variable, member, or array element reference.

9.6.5. Sample Usage of Prefetch Pragma
Prefetch Pragma in C

This example uses the prefetch pragma to prefetch data from the source vector x for
eight iterations beyond the current iteration.
 for (i=0; i<n; i++) {
 #pragma mem prefetch x[i+8]
 y[i] = y[i] + a*x[i];
}

9.7. !$PRAGMA C
When programs are compiled using one of the PGI Fortran compilers on Linux systems,
an underscore is appended to Fortran global names, including names of functions,
subroutines, and common blocks. This mechanism distinguishes Fortran name space
from C/C++ name space.

You can use !$PRAGMA C in the Fortran program to call a C/C++ function from Fortran.
The statement would look similar to this:
!$PRAGMA C(name[,name]...)

This statement directs the compiler to recognize the routine 'name' as a C function,
thus preventing the Fortran compiler from appending an underscore to the routine
name.

9.8. IGNORE_TKR Directive
This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/)
of the specified dummy arguments in an interface of a procedure. The compiler also
ignores the type, kind, and/or rank of the actual arguments when checking all the
specifics in a generic call for ambiguities.

9.8.1. IGNORE_TKR Directive Syntax
The syntax for the IGNORE_TKR directive is this:
!DIR$ IGNORE_TKR [[(<letter>) <dummy_arg>] ...]

<letter>
is one or any combination of the following:

T – type K – kind R – rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to
ignore the type, kind, and rank arguments.

Using Directives and Pragmas

User's Guide for OpenPOWER CPUs Version 2019 | 113

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If
not specified, TKR rules are ignored for all dummy arguments in the procedure that
contains the directive.

9.8.2. IGNORE_TKR Directive Format Requirements
The following rules apply to this directive:

‣ IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90
pointers, or assumed-shape arrays.

‣ IGNORE_TKR may appear in the body of an interface block or in the body of a
module procedure, and may specify dummy argument names only.

‣ IGNORE_TKR may appear before or after the declarations of the dummy arguments
it specifies.

‣ If dummy argument names are specified, IGNORE_TKR applies only to those
particular dummy arguments.

‣ If no dummy argument names are specified, IGNORE_TKR applies to all dummy
arguments except those that are allocatable objects, Fortran 90 pointers, or assumed-
shape arrays.

9.8.3. Sample Usage of IGNORE_TKR Directive
Consider this subroutine fragment:
subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 25 indicates which rules are ignored for which dummy arguments in the
preceding sample subroutine fragment:

Table 25 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank

B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

User's Guide for OpenPOWER CPUs Version 2019 | 114

Chapter 10.
CREATING AND USING LIBRARIES

A library is a collection of functions or subprograms that are grouped for reference and
ease of linking. This section discusses issues related to PGI-supplied compiler libraries.
Specifically, it addresses the use of C/C++ builtin functions in place of the corresponding
libc routines, creation of dynamically linked libraries, known as shared objects or shared
libraries, and math libraries.

This section does not duplicate material related to using libraries for inlining,
described in Creating an Inline Library or information related to runtime library
routines available to OpenMP programmers, described in Runtime Library Routines.

PGI provides libraries that export C interfaces by using Fortran modules.

This section has examples that include the following options related to creating and
using libraries.

-Bdynamic -def<file> -implib <file> -Mmakeimplib

-Bstatic -dynamiclib -l -o

-c -fpic -Mmakedll -shared

10.1. Using builtin Math Functions in C/C++
The name of the math header file is math.h. Include the math header file in all of your
source files that use a math library routine as in the following example, which calculates
the inverse cosine of 3.5.
#include <math.h>
#include<stdio.h>
#define PI 3.1415926535
void main()
{
 double x, y;
 x = PI/3.0;
 y = acos(0.5);
 printf(‘%f %f\n’,x,y);
}

Creating and Using Libraries

User's Guide for OpenPOWER CPUs Version 2019 | 115

Including math.h causes PGI C and C++ to use builtin functions, which are much more
efficient than library calls. In particular, if you include math.h, the following intrinsics
calls are processed using builtins:

abs acosf asinf atan atan2 atan2f

atanf cos cosf exp expf fabs

fabsf fmax fmaxf fmin fminf log

log10 log10f logf pow powf sin

sinf sqrt sqrtf tan tanf

10.2. Using System Library Routines
Release 19.5 of the PGI runtime libraries makes use of Linux system libraries to
implement, for example, OpenMP and Fortran I/O. The PGI runtime libraries make use
of several additional system library routines.

On 64-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_write pthread_mutex_init sleep

aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock

aio_suspend pthread_attr_init setrlimit

10.3. Creating and Using Shared Object Files on
Linux
All of the PGI Fortran, C, and C++ compilers support creation of shared object files.
Unlike statically-linked object and library files, shared object files link and resolve
references with an executable at runtime via a dynamic linker supplied with your
operating system. The PGI compilers must generate position independent code to
support creation of shared objects by the linker. However, this is not the default. You
must create object files with position independent code and shared object files that will
include them.

10.3.1. Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

 1. Create an object file with position independent code.
To do this, compile your code with the appropriate PGI compiler using the -fpic
option, or one of the equivalent options, such as -fPIC, -Kpic, and -KPIC, which
are supported for compatibility with other systems. For example, use the following
command to create an object file with position independent code using pgfortran:
% pgfortran -c -fpic tobeshared.f

 2. Produce a shared object file.

Creating and Using Libraries

User's Guide for OpenPOWER CPUs Version 2019 | 116

To do this, use the appropriate PGI compiler to invoke the linker supplied with your
system. It is customary to name such files using a .so filename extension. On Linux,
you do this by passing the -shared option to the linker:
% pgfortran -shared -o tobeshared.so tobeshared.o

Compilation and generation of the shared object can be performed in one step
using both the -fpic option and the appropriate option for generation of a
shared object file.

 3. Use a shared object file.

To do this, use the appropriate PGI compiler to compile and link the program which
will reference functions or subroutines in the shared object file, and list the shared
object on the link line, as shown here:
% pgfortran -o myprog myprog.f tobeshared.so

 4. Make the executable available.

You now have an executable myprog which does not include any code from functions
or subroutines in tobeshared.so, but which can be executed and dynamically
linked to that code. By default, when the program is linked to produce myprog, no
assumptions are made on the location of tobeshared.so. Therefore, for myprog to
execute correctly, you must initialize the environment variable LD_LIBRARY_PATH
to include the directory containing tobeshared.so. If LD_LIBRARY_PATH is
already initialized, it is important not to overwrite its contents. If you have placed
tobeshared.so in directory /home/myusername/bin, you can initialize
LD_LIBRARY_PATH to include that directory and preserve its existing contents, as
shown in the following:
% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":/home/myusername/bin

If you know that tobeshared.so always resides in a specific directory, you can
create the executable myprog in a form that assumes this directory by using the -R
link-time option. For example, you can link as follows:
% pgfortran -o myprog myprof.f tobeshared.so -R/home/myusername/bin

As with the -L option, there is no space between -R and the directory name. If
the -R option is used, it is not necessary to initialize LD_LIBRARY_PATH.

In the previous example, the dynamic linker always looks in /home/myusername/
bin to resolve references to tobeshared.so. By default, if the LD_LIBRARY_PATH
environment variable is not set, the linker only searches /usr/lib and /lib for
shared objects.

10.3.2. ldd Command
The ldd command is a useful tool when working with shared object files and
executables that reference them. When applied to an executable, as shown in the
following example, ldd lists all shared object files referenced in the executable along
with the pathname of the directory from which they will be extracted.
% ldd myprog

Creating and Using Libraries

User's Guide for OpenPOWER CPUs Version 2019 | 117

If the pathname is not hard-coded using the-R option, and if LD_LIBRARY_PATH is
not initialized, the pathname is listed as "not found". For more information on ldd, its
options and usage, see the online man page for ldd.

10.4. Using LIB3F
The PGI Fortran compilers include complete support for the de facto standard LIB3F
library routines. See the PGI Fortran Language Reference manual for a complete list of
available routines in the PGI implementation of LIB3F.

10.5. LAPACK, BLAS and FFTs
All PGI products now include a BLAS and LAPACK library based on the customized
OpenBLAS project source and built with PGI compilers. The LAPACK library is called
liblapack.a. The BLAS library is called libblas.a. These libraries are installed to
$PGI/linuxpower/19.5/lib.

To use these libraries, simply link them in using the -l option when linking your main
program:
% pgfortran myprog.f -llapack -lblas

10.6. Linking with ScaLAPACK
The ScaLAPACK libraries are automatically installed with each MPI library version
which accompanies a PGI installation. You can link with the ScaLAPACK libraries by
specifying -Mscalapack on any of the PGI compiler command lines. For example:
% mpif90 myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the -Mscalapack
switch is specified. If you wish to use a different BLAS library, and still use the
-Mscalapack switch, then you can list the set of libraries explicitly on your link line.
Alternately, you can copy your BLAS library into $PGI/linuxpower/19.5/lib/
libblas.a.

10.7. The C++ Standard Template Library
On Linux, the GNU-compatible pgc++ compiler uses the GNU g++ header files and
Standard Template Library (STL) directly. The versions used are dependent on the
version of the GNU compilers installed on your system, or specified when makelocalrc
was run during installation of the PGI compilers.

User's Guide for OpenPOWER CPUs Version 2019 | 118

Chapter 11.
USING ENVIRONMENT VARIABLES

Environment variables allow you to set and pass information that can alter the default
behavior of the PGI compilers and the executables which they generate. This section
includes explanations of the environment variables specific to PGI compilers. Other
environment variables are referenced and documented in other sections of this User’s
Guide, the accompanying PGI Compiler Reference Manual, www.pgroup.com/
resources/docs/19.5/pdf/pgi19ref-openpower.pdf and the Profiler User's Guide,
www.pgroup.com/resources/docs/19.5/pdf/pgi19profug.pdf.

‣ You use OpenMP environment variables to control the behavior of OpenMP
programs. For consistency related to the OpenMP environment, the details of
the OpenMP-related environment variables are included in OpenMP section:
Environment Variables.

‣ You can use environment variables to control the behavior of the PGI profiler. For a
description of environment variables that affect this tool, refer to the Profiler User's
Guide, www.pgroup.com/resources/docs/19.5/pdf/pgi19profug.pdf.

11.1. Setting Environment Variables
Before we look at the environment variables that you might use with the PGI compilers
and tools, let’s take a look at how to set environment variables. To illustrate how to set
these variables in various environments, let’s look at how a user might initialize the shell
environment prior to using the PGI compilers and tools.

11.1.1. Setting Environment Variables on Linux
Let’s assume that you want access to the PGI products when you log in. Let’s further
assume that you installed the PGI compilers in /opt/pgi and that the license file is
in /opt/pgi/license.dat. For access at startup, you can add the following lines to
your startup file.

In csh, use these commands:
 % setenv PGI /opt/pgi
 % setenv MANPATH "$MANPATH":$PGI/linuxpower/19.5/man
 % set path = ($PGI/linuxpower/19.5/bin/ $path)

Using Environment Variables

User's Guide for OpenPOWER CPUs Version 2019 | 119

In bash, sh, zsh, or ksh, use these commands:
 $ PGI=/opt/pgi; export PGI
 $ MANPATH=$MANPATH:$PGI/linuxpower/19.5/man; export MANPATH
 $ PATH=$PGI/linuxpower/19.5/bin:$PATH; export PATH

11.2. PGI-Related Environment Variables
For easy reference, the following table provides a quick listing of some OpenMP and
all PGI compiler-related environment variables. This section provides more detailed
descriptions of the environment variables specific to PGI compilers and the executables
they generate. For information specific to OpenMP environment variables, refer to
Table 15 and to the complete descriptions in ‘OpenMP Environment Variables’ in the
PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/pgi19ref-
openpower.pdf.

Table 26 PGI-Related Environment Variable Summary

Environment Variable Description

FORTRANOPT Allows the user to specify that the PGI Fortran compilers user VAX I/
O or other custom I/O conventions.

GMON_OUT_PREFIX Specifies the name of the output file for programs that are compiled
and linked with the -pg option.

LD_LIBRARY_PATH Specifies a colon-separated set of directories where libraries should
first be searched, prior to searching the standard set of directories.

MANPATH Sets the directories that are searched for manual pages associated
with the command that the user types.

MP_WARN Allows you to eliminate certain default warning messages.

NO_STOP_MESSAGE If used, the execution of a plain STOP statement does not produce
the message FORTRAN STOP.

OMP_DYNAMIC Currently has no effect. Enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads. The default is FALSE.

OMP_MAX_ACTIVE_LEVELS Specifies the maximum number of nested parallel regions.

OMP_NESTED Currently has no effect. Enables (TRUE) or disables (FALSE)
nested parallelism. The default is FALSE.

OMP_NUM_THREADS Specifies the number of threads to use during execution of parallel
regions. Default is 1.

OMP_SCHEDULE Specifies the type of iteration scheduling and, optionally, the chunk
size to use for omp for and omp parallel for loops that include the
runtime schedule clause. The default is STATIC with chunk size=1.

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY Sets the behavior of idle threads, defining whether they spin or
sleep when idle. The values are ACTIVE and PASSIVE. The
default is ACTIVE.

PATH Determines which locations are searched for commands the user
may type.

Using Environment Variables

User's Guide for OpenPOWER CPUs Version 2019 | 120

Environment Variable Description

PGI Specifies, at compile-time, the root directory where the PGI
compilers and tools are installed.

PWD Allows you to display the current directory.

STATIC_RANDOM_SEED Forces the seed returned by RANDOM_SEED to be constant.

TMP Sets the directory to use for temporary files created during
execution of the PGI compilers and tools; interchangeable with
TMPDIR.

TMPDIR Sets the directory to use for temporary files created during
execution of the PGI compilers and tools.

11.3. PGI Environment Variables
You use the environment variables listed in Table 26 to alter the default behavior of the
PGI compilers and the executables which they generate. This section provides more
detailed descriptions about the variables in this table that are not OpenMP environment
variables.

11.3.1. FORTRANOPT
FORTRANOPT allows the user to adjust the behavior of the PGI Fortran compilers.

‣ If FORTRANOPT exists and contains the value vaxio, the record length in the open
statement is in units of 4-byte words, and the $ edit descriptor only has an effect for
lines beginning with a space or a plus sign (+).

‣ If FORTRANOPT exists and contains the value format_relaxed, an I/O item
corresponding to a numerical edit descriptor (such as F, E, I, and so on) is not
required to be a type implied by the descriptor.

‣ If FORTRANOPT exists and contains the value no_minus_zero, an I/O item
corresponding to a numerical edit descriptor (such as F, E, I, and so on) equal to
negative zero will be output as if it were positive zero.

‣ If FORTRANOPT exists and contains the value crif, a sequential formatted or list-
directed record is allowed to be terminated with the character sequence \r\n
(carriage return, newline). This approach is useful when reading records from a file
produced on a Window’s system.

The following example causes the PGI Fortran compilers to use VAX I/O conventions:
% setenv FORTRANOPT vaxio

11.3.2. LD_LIBRARY_PATH
The LD_LIBRARY_PATH variable is a colon-separated set of directories specifying where
libraries should first be searched, prior to searching the standard set of directories. This
variable is useful when debugging a new library or using a nonstandard library for
special purposes.

Using Environment Variables

User's Guide for OpenPOWER CPUs Version 2019 | 121

The following csh example adds the current directory to your LD_LIBRARY_PATH
variable.
% setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"./"

11.3.3. MANPATH
The MANPATH variable sets the directories that are searched for manual pages associated
with the commands that the user types. When using PGI products, it is important that
you set your PATH to include the location of the PGI products and then set the MANPATH
variable to include the man pages associated with the products.

The following csh example targets the linuxpower version of the compilers and tool s
and allows the user access to the manual pages associated with them.
% set path = (/opt/pgi/linuxpower/19.5/bin $path
% setenv MANPATH "$MANPATH":/opt/pgi/linuxpower/19.5/man

11.3.4. NO_STOP_MESSAGE
If the NO_STOP_MESSAGE variable exists, the execution of a plain STOP statement does
not produce the message FORTRAN STOP. The default behavior of the PGI Fortran
compilers is to issue this message.

11.3.5. PATH
The PATH variable sets the directories that are searched for commands that the user
types. When using PGI products, it is important that you set your PATH to include the
location of the PGI products.

You can also use this variable to specify that you want to use only the linuxpower
version of the compilers and tools, or to target linuxpower as the default.

The following csh example targets linuxpower version of the compilers and tools.
% set path = (/opt/pgi/linuxpower/19.5/bin $path)

11.3.6. PGI
The PGI environment variable specifies the root directory where the PGI compilers and
tools are installed. This variable is recognized at compile-time. If it is not set, the default
value depends on your system as well as which compilers are installed:

‣ On Linux, the default value of this variable is /opt/pgi.

In most cases, if the PGI environment variable is not set, the PGI compilers and tools
dynamically determine the location of this root directory based on the instance of the
compiler or tool that was invoked. However, there are still some dependencies on the
PGI environment variable, and you can use it as a convenience when initializing your
environment for use of the PGI compilers and tools.

For example, assuming you use csh and want the 64-bit linuxpower versions of the PGI
compilers and tools to be the default, you would use this syntax:
 % setenv PGI /opt/pgi
 % setenv MANPATH "$MANPATH":$PGI/linuxpower/19.5/man
 % set path = ($PGI/linuxpower/19.5/bin $path)

Using Environment Variables

User's Guide for OpenPOWER CPUs Version 2019 | 122

11.3.7. PGI_CONTINUE
You set the PGI_CONTINUE variable to specify the actions to take before continuing
with execution. For example, if the PGI_CONTINUE environment variable is set and then
a program that is compiled with -Mchkfpstk is executed, the stack is automatically
cleaned up and execution then continues. If PGI_CONTINUE is set to verbose, the stack
is automatically cleaned up, a warning message is printed, and then execution continues.

There is a performance penalty associated with the stack cleanup.

11.3.8. PGI_OBJSUFFIX
You can set the PGI_OBJSUFFIX environment variable to generate object files that have
a specific suffix. For example, if you set PGI_OBJSUFFIX to .o, the object files have a
suffix of .o rather than .obj.

11.3.9. PWD
The PWD variable allows you to display the current directory.

11.3.10. STATIC_RANDOM_SEED
You can use STATIC_RANDOM_SEED to force the seed returned by the Fortran 90/95
RANDOM_SEED intrinsic to be constant. The first call to RANDOM_SEED without
arguments resets the random seed to a default value, then advances the seed by a
variable amount based on time. Subsequent calls to RANDOM_SEED without arguments
reset the random seed to the same initial value as the first call. Unless the time is
exactly the same, each time a program is run a different random number sequence is
generated. Setting the environment variable STATIC_RANDOM_SEED to YES forces the
seed returned by RANDOM_SEED to be constant, thereby generating the same sequence of
random numbers at each execution of the program.

11.3.11. TMP
You can use TMP to specify the directory to use for placement of any temporary files
created during execution of the PGI compilers and tools. This variable is interchangeable
with TMPDIR.

11.3.12. TMPDIR
You can use TMPDIR to specify the directory to use for placement of any temporary files
created during execution of the PGI compilers and tools.

Using Environment Variables

User's Guide for OpenPOWER CPUs Version 2019 | 123

11.4. Using Environment Modules on Linux
On Linux, if you use the Environment Modules package, that is, the module load
command, PGI includes a script to set up the appropriate module files.

Assuming your installation base directory is /opt/pgi, and your MODULEPATH
environment variable is /usr/local/Modules/modulefiles, execute this
command:

% /opt/pgi/linuxpower/19.5/etc/modulefiles/pgi.module.install \
 -all -install /usr/local/Modules/modulefiles

This command creates module files for all installed versions of the PGI compilers.
You must have write permission to the modulefiles directory to enable the module
commands:

% module load pgi64/19.5
% module load pgi/19.5

where "pgi/19.5" also uses the 64-bit compilers.

To see what versions are available, use this command:

% module avail pgi

The module load command sets or modifies the environment variables as indicated in
the following table.

This Environment Variable... Is set or modified by the module load command

CC Full path to pgcc

CPP Full path to pgprepro

CXX Path to pgc++

FC Full path to pgfortran

LD_LIBRARY_PATH Prepends the PGI library directory

MANPATH Prepends the PGI man page directory

PATH Prepends the PGI compiler and tools bin directory

PGI The base installation directory

PGI does not provide support for the Environment Modules package. For more
information about the package, go to: http://modules.sourceforge.net.

http://modules.sourceforge.net

User's Guide for OpenPOWER CPUs Version 2019 | 124

Chapter 12.
DISTRIBUTING FILES – DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want
to distribute it to users who need to run it on a variety of systems. This section addresses
how to effectively distribute applications built using PGI compilers and tools. The
application must be installed in such a way that it executes accurately on a system other
than the one on which it was built, and which may be configured differently.

12.1. Deploying Applications on Linux
To successfully deploy your application on Linux, some of the issues to consider include:

‣ Runtime Libraries
‣ 64-bit Linux Systems
‣ Redistribution of Files
‣ Licensing

12.1.1. Runtime Library Considerations
On Linux systems, the system runtime libraries can be linked to an application either
statically or dynamically. For example, for the C runtime library, libc, you can use
either the static version libc.a or the shared object version libc.so. If the application
is intended to run on Linux systems other than the one on which it was built, it is
generally safer to use the shared object version of the library. This approach ensures that
the application uses a version of the library that is compatible with the system on which
the application is running. Further, it works best when the application is linked on a
system that has an equivalent or earlier version of the system software than the system
on which the application will be run.

Building on a newer system and running the application on an older system may not
produce the desired output.

To use the shared object version of a library, the application must also link to shared
object versions of the PGI runtime libraries. To execute an application built in such a
way on a system on which PGI compilers are not installed, those shared objects must

Distributing Files – Deployment

User's Guide for OpenPOWER CPUs Version 2019 | 125

be available.To build using the shared object versions of the runtime libraries, use the
-Bdynamic option, as shown here:
$ pgf90 -Bdynamic myprog.f90

12.1.2. Linux Redistributable Files
The method for installing the shared object versions of the runtime libraries required for
applications built with PGI compilers and tools is manual distribution.

When the PGI compilers are installed, there are directories that have a name that begins
with REDIST; these directories contain the redistributed shared object libraries. These
may be redistributed by licensed PGI customers under the terms of the End-User License
Agreement.

12.1.3. Restrictions on Linux Portability
You cannot expect to be able to run an executable on any given Linux machine.
Portability depends on the system you build on as well as how much your program
uses system routines that may have changed from Linux release to Linux release.
For example, an area of significant change between some versions of Linux is in
libpthread.so and libnuma.so. PGI compilers use these dynamically linked
libraries for the options -Mconcur (auto-parallel), -mp (OpenMP), and -acc
-ta=multicore (OpenACC). Statically linking these libraries may not be possible, or
may result in failure at execution.

Typically, portability is supported for forward execution, meaning running a program
on the same or a later version of Linux. But not for backward compatibility, that is,
running on a prior release. For example, a user who compiles and links a program under
RHEL 7.2 should not expect the program to run without incident on a RHEL 5.2 system,
an earlier Linux version. It may run, but it is less likely. Developers might consider
building applications on earlier Linux versions for wider usage. Dynamic linking of
Linux and gcc system routines on the platform executing the program can also reduce
problems.

12.1.4. Licensing for Redistributable Files
The files in the REDIST directories may be redistributed under the terms of the End-User
License Agreement for the product in which they were included.

12.2. PGI Redistributables
PGI redistributable directories contain all of the PGI Linux runtime library shared object
files that can be re-distributed by PGI 19.5 licensees under the terms of the PGI End-
User License Agreement (EULA).

User's Guide for OpenPOWER CPUs Version 2019 | 126

Chapter 13.
INTER-LANGUAGE CALLING

This section describes inter-language calling conventions for C, C++, and Fortran
programs using the PGI compilers. Fortran 2003 ISO_C_Binding provides a mechanism
to support the interoperability with C. This includes the ISO_C_Binding intrinsic
module, binding labels, and the BIND attribute. In the absence of this mechanism, the
following sections describe how to call a Fortran function or subroutine from a C or C+
+ program and how to call a C or C++ function from a Fortran program. For information
on calling assembly language programs, refer to the ‘Runtime Environment’ section
of the PGI Compiler Reference Manual, www.pgroup.com/resources/docs/19.5/pdf/
pgi19ref-openpower.pdf.

This section provides examples that use the following options related to inter-language
calling. For more information on these options, refer to the ‘Command-Line Options
Reference’ section of the PGI Compiler Reference Manual, www.pgroup.com/resources/
docs/19.5/pdf/pgi19ref-openpower.pdf.

 -c -Mnomain -Miface -Mupcase

13.1. Overview of Calling Conventions
This section includes information on the following topics:

‣ Functions and subroutines in Fortran, C, and C++
‣ Naming and case conversion conventions
‣ Compatible data types
‣ Argument passing and special return values
‣ Arrays and indexes

The sections Inter-language Calling Considerations through Example – C++ Calling
Fortran describe how to perform inter-language calling.

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 127

13.2. Inter-language Calling Considerations
In general, when argument data types and function return values agree, you can call a
C or C++ function from Fortran as well as call a Fortran function from C or C++. When
data types for arguments do not agree, you may need to develop custom mechanisms
to handle them. For example, the Fortran COMPLEX type has a matching type in C99
but does not have a matching type in C89; however, it is still possible to provide inter-
language calls but there are no general calling conventions for such cases.

‣ If a C++ function contains objects with constructors and destructors, calling such
a function from either C or Fortran is not possible unless the initialization in
the main program is performed from a C++ program in which constructors and
destructors are properly initialized.

‣ In general, you can call a C or Fortran function from C++ without problems
as long as you use the extern "C" keyword to declare the function in the C++
program. This declaration prevents name mangling for the C function name.
If you want to call a C++ function from C or Fortran, you also have to use the
extern "C" keyword to declare the C++ function. This keeps the C++ compiler from
mangling the name of the function.

‣ You can use the __cplusplus macro to allow a program or header file to work for
both C and C++. For example, the following defines in the header file stdio.h
allow this file to work for both C and C++.
#ifndef _STDIO_H
#define _STDIO_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
.
. /* Functions and data types defined... */
.
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif

‣ C++ member functions cannot be declared extern, since their names will
always be mangled. Therefore, C++ member functions cannot be called from C or
Fortran.

13.3. Functions and Subroutines
Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value
convention:

‣ When a C or C++ function returns a value, call it from Fortran as a function.
‣ When a C or C++ function does not return a value, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type.
Table 27, Fortran and C/C++ Data Type Compatibility, lists compatible types. If the

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 128

call is to a Fortran subroutine or a Fortran CHARACTER function, call it from C/C++
as a function that returns void. The exception to this convention is when a Fortran
subroutine has alternate returns; call such a subroutine from C/C++ as a function
returning int whose value is the value of the integer expression specified in the
alternate RETURN statement.

13.4. Upper and Lower Case Conventions,
Underscores
By default, all Fortran symbol names are converted to lower case. C and C++ are case
sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the
Fortran compiler command with the option -Mupcase, in which case it will not convert
symbol names to lower-case.

When programs are compiled using one of the PGI Fortran compilers, an underscore
is appended to Fortran global names (names of functions, subroutines and common
blocks). This mechanism distinguishes Fortran name space from C/C++ name space. Use
these naming conventions:

‣ If you call a C/C++ function from Fortran, you should rename the C/C++ function by
appending an underscore or use C$PRAGMA C in the Fortran program. For more
information on C$PRAGMA C, refer to !$PRAGMA C.

‣ If you call a Fortran function from C/C++, you should append an underscore to the
Fortran function name in the calling program.

13.5. Compatible Data Types
Table 27 shows compatible data types between Fortran and C/C++. Table 28, Fortran
and C/C++ Representation of the COMPLEX Type shows how the Fortran COMPLEX type
may be represented in C/C++.

Tip If you can make your function/subroutine parameters as well as your return values
match types, you should be able to use inter-language calling.

Table 27 Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) C/C++ Type Size (bytes)

character x char x 1

character*n x char x[n] n

real x float x 4

real*4 x float x 4

real*8 x double x 8

double precision double x 8

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 129

Fortran Type (lower case) C/C++ Type Size (bytes)

integer x int x 4

integer*1 x signed char x 1

integer*2 x short x 2

integer*4 x int x 4

integer*8 x long long x 8

logical x int x 4

logical*1 x char x 1

logical*2 x short x 2

logical*4 int x 4

logical*8 long x 8

Table 28 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x float complex x; 8

complex*8 x float complex x; 8

double complex x double complex x; 16

complex *16 x double complex x; 16

For C/C++, the complex type implies C99 or later.

13.5.1. Fortran Named Common Blocks
A named Fortran common block can be represented in C/C++ by a structure whose
members correspond to the members of the common block. The name of the structure in
C/C++ must have the added underscore. For example, here is a Fortran common block:
INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:
extern struct {
 int i;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

This same Fortran Common Block is represented in C++ with the following equivalent:
extern "C" struct {

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 130

 int i;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

Tip For global or external data sharing, extern "C" is not required.

13.6. Argument Passing and Return Values
In Fortran, arguments are passed by reference, that is, the address of the argument is
passed, rather than the argument itself. In C/C++, arguments are passed by value, except
for strings and arrays, which are passed by reference. Due to the flexibility provided
in C/C++, you can work around these differences. Solving the parameter passing
differences generally involves intelligent use of the & and * operators in argument
passing when C/C++ calls Fortran and in argument declarations when Fortran calls C/C+
+.

For strings declared in Fortran as type CHARACTER, an argument representing the length
of the string is also passed to a calling function.

The compiler places the length argument(s) at the end of the parameter list, following
the other formal arguments.

The length argument is passed by value, not by reference.

13.6.1. Passing by Value (%VAL)
When passing parameters from a Fortran subprogram to a C/C++ function, it is possible
to pass by value using the %VAL function. If you enclose a Fortran parameter with
%VAL(), the parameter is passed by value. For example, the following call passes the
integer i and the logical bvar by value.
integer*1 i
logical*1 bvar
call cvalue (%VAL(i), %VAL(bvar))

13.6.2. Character Return Values
Functions and Subroutines describes the general rules for return values for C/C++
and Fortran inter-language calling. There is a special return value to consider. When a
Fortran function returns a character, two arguments need to be added at the beginning
of the C/C++ calling function’s argument list:

‣ The address of the return character or characters
‣ The length of the return character

The following example illustrates the extra parameters, tmp and 10, supplied by the
caller:

Character Return Parameters
! Fortran function returns a character

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 131

CHARACTER*(*) FUNCTION CHF(C1,I)
 CHARACTER*(*) C1
 INTEGER I
END

/* C declaration of Fortran function */
extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

If the Fortran function is declared to return a character value of constant length, for
example CHARACTER*4 FUNCTION CHF(), the second extra parameter representing
the length must still be supplied, but is not used.

The value of the character function is not automatically NULL-terminated.

13.7. Array Indices
C/C++ arrays and Fortran arrays use different default initial array index values. By
default, arrays in C/C++ start at 0 and arrqays in Fortran start at 1. If you adjust your
array comparisons so that a Fortran second element is compared to a C/C++ first
element, and adjust similarly for other elements, you should not have problems working
with this difference. If this is not satisfactory, you can declare your Fortran arrays to start
at zero.

Another difference between Fortran and C/C++ arrays is the storage method used.
Fortran uses column-major order and C/C++ uses row-major order. For one-dimensional
arrays, this poses no problems. For two-dimensional arrays, where there are an equal
number of rows and columns, row and column indexes can simply be reversed. For
arrays other than single dimensional arrays, and square two-dimensional arrays, inter-
language function mixing is not recommended.

13.8. Examples
This section contains examples that illustrate inter-language calling.

13.8.1. Example – Fortran Calling C

There are other solutions to calling C from Fortran than the one presented in this
section. For example, you can use the iso_c_binding intrinsic module which PGI
does support. For more information on this module and for examples of how to use it,
search the web using the keyword iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program
shown in Fortran Main Program f2c_main.f. Notice that each argument is defined as a

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 132

pointer, since Fortran passes by reference. Also notice that the C function name uses all
lower-case and a trailing "_".

Fortran Main Program f2c_main.f
logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external f2c_func

 call f2c_func(bool1, letter1, numint1, numint2, numfloat1, numdoub1, numshor1)

 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
 + bool1, letter1, numint1, numint2, numfloat1,numdoub1, numshor1

 end

C function f2c_func_
#define TRUE 0xff
#define FALSE 0
void f2c_func_(bool1, letter1, numint1, numint2, numfloat1,\
 numdoub1, numshor1, len_letter1)
 char *bool1, *letter1;
 int *numint1, *numint2;
 float *numfloat1;
 double *numdoub1;
 short *numshor1;
 int len_letter1;
{
 *bool1 = TRUE; *letter1 = 'v';
 *numint1 = 11; *numint2 = -44;
 *numfloat1 = 39.6 ;
 *numdoub1 = 39.2;
 *numshor1 = 981;
}

Compile and execute the program f2c_main.f with the call to f2c_func_ using the
following command lines:
$ pgcc -c f2c_func.c
$ pgfortran f2c_func.o f2c_main.f

Executing the a.out file should produce the following output:
T v 11 -44 39.6 39.2 981

13.8.2. Example – C Calling Fortran
The example C Main Program c2f_main.c shows a C main program that calls the Fortran
subroutine shown in Fortran Subroutine c2f_sub.f.

‣ Each call uses the & operator to pass by reference.
‣ The call to the Fortran subroutine uses all lower-case and a trailing "_".

C Main Program c2f_main.c
void main () {
 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 133

 short numshor1;
 extern void c2f_func_();
 c2f_sub_(&bool1,&letter1,&numint1,&numint2,&numfloat1,&numdoub1,&numshor1, 1);
 printf(" %s %c %d %d %3.1f %.0f %d\n",
 bool1?"TRUE":"FALSE", letter1, numint1, numint2,
 numfloat1, numdoub1, numshor1);
}

Fortran Subroutine c2f_sub.f
subroutine c2f_func (bool1, letter1, numint1, numint2,
+ numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1
 integer*2 numshor1

 bool1 = .true.
 letter1 = "v"
 numint1 = 11
 numint2 = -44
 numdoub1 = 902
 numfloat1 = 39.6
 numshor1 = 299
 return
end

To compile this Fortran subroutine and C program, use the following commands:
$ pgcc -c c2f_main.c
$ pgfortran -Mnomain c2f_main.o c2_sub.f

Executing the resulting a.out file should produce the following output:
TRUE v 11 -44 39.6 902 299

13.8.3. Example – C++ Calling C
C++ Main Program cp2c_main.C Calling a C Function shows a C++ main program that
calls the C function shown in Simple C Function c2cp_func.c.

C++ Main Program cp2c_main.C Calling a C Function
extern "C" void cp2c_func(int n, int m, int *p);
#include <iostream>
main()
{
 int a,b,c;
 a=8;
 b=2;
 c=0;
 cout << "main: a = "<<a<<" b = "<<b<<"ptr c = "<<hex<<&c<< endl;
 cp2c_func(a,b,&c);
 cout << "main: res = "<<c<<endl;
 }

Simple C Function c2cp_func.c
void cp2c_func(num1, num2, res)
int num1, num2, *res;
{
 printf("func: a = %d b = %d ptr c = %x\n",num1,num2,res);
 *res=num1/num2;
 printf("func: res = %d\n",*res);
}

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 134

To compile this C function and C++ main program, use the following commands:
$ pgcc -c cp2c_func.c
$ pgc++ cp2c_main.C cp2c_func.o

Executing the resulting a.out file should produce the following output:
main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

13.8.4. Example – C Calling C ++
The example in C Main Program c2cp_main.c Calling a C++ Function shows a C main
program that calls the C++ function shown in Simple C++ Function c2cp_func.C with
Extern C.

C Main Program c2cp_main.c Calling a C++ Function
extern void c2cp_func(int a, int b, int *c);
#include <stdio.h>
main() {
 int a,b,c;
 a=8; b=2;
 printf("main: a = %d b = %d ptr c = %x\n",a,b,&c);
 c2cp_func(a,b,&c);
 printf("main: res = %d\n",c);
 }

Simple C++ Function c2cp_func.C with Extern C
#include <iostream>
extern "C" void c2cp_func(int num1,int num2,int *res)
{
 cout << "func: a = "<<num1<<" b = "<<num2<<"ptr c ="<<res<<endl;
 *res=num1/num2;
 cout << "func: res = "<<res<<endl;
}

To compile this C function and C++ main program, use the following commands:
$ pgcc -c c2cp_main.c
$ pgc++ c2cp_main.o c2cp_func.C

Executing the resulting a.out file should produce the following output:
main: a = 8 b = 2 ptr c = 0xbffffb94
func: a = 8 b = 2 ptr c = bffffb94
func: res = 4
main: res = 4

You cannot use the extern "C" form of declaration for an object’s member functions.

13.8.5. Example – Fortran Calling C++
The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++
function calls the C++ function shown in C++ function f2cp_func.C .

Notice:

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 135

‣ Each argument is defined as a pointer in the C++ function, since Fortran passes by
reference.

‣ The C++ function name uses all lower-case and a trailing "_":

Fortran Main Program f2cp_main.f calling a C++ function
 logical*1 bool1
 character letter1
 integer*4 numint1, numint2
 real numfloat1
 double precision numdoub1
 integer*2 numshor1
 external f2cpfunc
 call f2cp_func (bool1, letter1, numint1,
 + numint2, numfloat1, numdoub1, numshor1)
 write(*, "(L2, A2, I5, I5, F6.1, F6.1, I5)")
 + bool1, letter1, numint1, numint2, numfloat1,
 + numdoub1, numshor1
 end

C++ function f2cp_func.C
#define TRUE 0xff
#define FALSE 0
extern "C"
{
extern void f2cp_func_ (
 char *bool1, *letter1,
 int *numint1, *numint2,
 float *numfloat1,
 double *numdoub1,
 short *numshort1,
 int len_letter1)
{
 *bool1 = TRUE; *letter1 = 'v';
 *numint1 = 11; *numint2 = -44;
 *numfloat1 = 39.6; *numdoub1 = 39.2; *numshort1 = 981;
}
}

Assuming the Fortran program is in a file fmain.f, and the C++ function is in a file
cpfunc.C, create an executable, using the following command lines:
$ pgc++ -c f2cp_func.C
$ pgfortran f2cp_func.o f2cp_main.f -pgc++libs

Executing the a.out file should produce the following output:
T v 11 -44 39.6 39.2 981

13.8.6. Example – C++ Calling Fortran
Fortran Subroutine cp2f_func.f shows a Fortran subroutine called by the C++ main
program shown in C++ main program cp2f_main.C. Notice that each call uses the &
operator to pass by reference. Also notice that the call to the Fortran subroutine uses all
lower-case and a trailing "_":

C++ main program cp2f_main.C
#include <iostream>
extern "C" { extern void cp2f_func_(char *,char *,int *,int *,
 float *,double *,short *); }
main ()
{

Inter-language Calling

User's Guide for OpenPOWER CPUs Version 2019 | 136

 char bool1, letter1;
 int numint1, numint2;
 float numfloat1;
 double numdoub1;
 short numshor1;

 cp2f_func(&bool1,&letter1,&numint1,&numint2,&numfloat1, &numdoub1,&numshor1);
 cout << " bool1 = ";
 bool1?cout << "TRUE ":cout << "FALSE "; cout <<endl;
 cout << " letter1 = " << letter1 <<endl;
 cout << " numint1 = " << numint1 <<endl;
 cout << " numint2 = " << numint2 <<endl;
 cout << " numfloat1 = " << numfloat1 <<endl;
 cout << " numdoub1 = " << numdoub1 <<endl;
 cout << " numshor1 = " << numshor1 <<endl;
}

Fortran Subroutine cp2f_func.f
 subroutine cp2f_func (bool1, letter1, numint1,
 + numint2, numfloat1, numdoub1, numshor1)
 logical*1 bool1
 character letter1
 integer numint1, numint2
 double precision numdoub1
 real numfloat1
 integer*2 numshor1
 bool1 = .true. ; letter1 = "v"
 numint1 = 11 ; numint2 = -44
 numdoub1 = 902 ; numfloat1 = 39.6 ; numshor1 = 299
 return
 end

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgfortran -c cp2f_func.f
$ pgc++ cp2f_func.o cp2f_main.C -pgf90libs

Executing this C++ main should produce the following output:
bool1 = TRUE letter1 = v numint1 = 11 numint2 = -44 numfloat1 = 39.6 numdoub1 = 902
numshor1 = 299
..

You must explicitly link in the PGFORTRAN runtime support libraries when linking
pgfortran-compiled program units into C or C++ main programs.

User's Guide for OpenPOWER CPUs Version 2019 | 137

Chapter 14.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2019 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Getting Started
	1.1. Overview
	1.2. Creating an Example
	1.3. Invoking the Command-level PGI Compilers
	1.3.1. Command-line Syntax
	1.3.2. Command-line Options
	1.3.3. Fortran Directives and C/C++ Pragmas

	1.4. Filename Conventions
	1.4.1. Input Files
	1.4.2. Output Files

	1.5. Fortran, C, and C++ Data Types
	1.6. Parallel Programming Using the PGI Compilers
	1.6.1. Run SMP Parallel Programs

	1.7. Platform-specific considerations
	1.7.1. Using the PGI Compilers on Linux

	1.8. Site-Specific Customization of the Compilers
	1.8.1. Use siterc Files
	1.8.2. Using User rc Files

	1.9. Common Development Tasks

	Use Command-line Options
	2.1. Command-line Option Overview
	2.1.1. Command-line Options Syntax
	2.1.2. Command-line Suboptions
	2.1.3. Command-line Conflicting Options

	2.2. Help with Command-line Options
	2.3. Getting Started with Performance
	2.3.1. Using -fast
	2.3.2. Other Performance-Related Options

	2.4. Frequently-used Options

	Optimizing and Parallelizing
	3.1. Overview of Optimization
	3.1.1. Local Optimization
	3.1.2. Global Optimization
	3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization
	3.1.4. Function Inlining
	3.1.5. Profile-Feedback Optimization (PFO)

	3.2. Getting Started with Optimization
	3.2.1. -help
	3.2.2. -Minfo
	3.2.3. -Mneginfo
	3.2.4. -dryrun
	3.2.5. -v
	3.2.6. PGI Profiler

	3.3. Common Compiler Feedback Format (CCFF)
	3.4. Local and Global Optimization
	3.4.1. -Msafeptr
	3.4.2. -O

	3.5. Loop Unrolling using -Munroll
	3.6. Vectorization using -Mvect
	3.6.1. Vectorization Sub-options
	3.6.2. Vectorization Example Using SIMD Instructions

	3.7. Auto-Parallelization using -Mconcur
	3.7.1. Auto-Parallelization Sub-options
	3.7.2. Loops That Fail to Parallelize

	3.8. Default Optimization Levels
	3.9. Local Optimization Using Directives and Pragmas
	3.10. Execution Timing and Instruction Counting
	3.11. Portability of Multi-Threaded Programs on Linux
	3.11.1. libnuma

	Using Function Inlining
	4.1. Automatic function inlining in C/C++
	4.2. Invoking Function Inlining
	4.3. Using an Inline Library
	4.4. Creating an Inline Library
	4.4.1. Working with Inline Libraries
	4.4.2. Dependencies
	4.4.3. Updating Inline Libraries – Makefiles

	4.5. Error Detection during Inlining
	4.6. Examples
	4.7. Restrictions on Inlining

	Using OpenMP
	5.1. OpenMP Overview
	5.1.1. OpenMP Shared-Memory Parallel Programming Model
	5.1.2. Terminology
	5.1.3. OpenMP Example

	5.2. Task Overview
	5.3. Fortran Parallelization Directives
	5.4. C/C++ Parallelization Pragmas
	5.5. Directive and Pragma Recognition
	5.6. Directive and Pragma Summary Table
	5.6.1. Directive and Pragma Summary Table

	5.7. Directive and Pragma Clauses
	5.8. Runtime Library Routines
	5.9. Environment Variables

	Using MPI
	6.1. MPI Overview
	6.2. Using Open MPI on Linux
	6.3. Using MPI Compiler Wrappers
	6.4. Limitations
	6.5. Testing and Benchmarking

	Using an Accelerator
	7.1. Overview
	7.1.1. User-directed Accelerator Programming
	7.1.2. Features Not Covered or Implemented

	7.2. Terminology
	7.3. Execution Model
	7.3.1. Host Functions
	7.3.2. Levels of Parallelism

	7.4. Memory Model
	7.4.1. Separate Host and Accelerator Memory Considerations
	7.4.2. Accelerator Memory
	7.4.3. Cache Management
	7.4.4. CUDA Unified Memory

	7.5. OpenACC Programming Model
	7.5.1. Enable Accelerator Directives
	7.5.2. Support
	7.5.3. Extensions

	7.6. Supported Processors and GPUs
	7.7. CUDA Toolkit Versions
	7.8. Compute Capability
	7.9. Compiling an Accelerator Program
	7.9.1. -ta
	7.9.2. -acc

	7.10. Multicore Support
	7.11. Running an Accelerator Program
	7.12. OpenACC Error Handling
	7.13. Environment Variables
	7.14. Profiling Accelerator Kernels
	7.15. OpenACC Runtime Libraries
	7.15.1. Runtime Library Definitions
	7.15.2. Runtime Library Routines

	7.16. Supported Intrinsics
	7.16.1. Supported Fortran Intrinsics Summary Table
	7.16.2. Supported C Intrinsics Summary Table

	PCAST
	8.1. Overview
	8.2. PCAST with a "Golden" File
	8.3. PCAST with OpenACC
	8.4. Limitations
	8.5. Environment Variables

	Using Directives and Pragmas
	9.1. PGI Proprietary Fortran Directives
	9.2. PGI Proprietary C and C++ Pragmas
	9.3. PGI Proprietary Optimization Directive and Pragma Summary
	9.4. Scope of Fortran Directives and Command-Line Options
	9.5. Scope of C/C++ Pragmas and Command-Line Options
	9.6. Prefetch Directives and Pragmas
	9.6.1. Prefetch Directive Syntax in Fortran
	9.6.2. Prefetch Directive Format Requirements
	9.6.3. Sample Usage of Prefetch Directive
	9.6.4. Prefetch Pragma Syntax in C/C++
	9.6.5. Sample Usage of Prefetch Pragma

	9.7. !$PRAGMA C
	9.8. IGNORE_TKR Directive
	9.8.1. IGNORE_TKR Directive Syntax
	9.8.2. IGNORE_TKR Directive Format Requirements
	9.8.3. Sample Usage of IGNORE_TKR Directive

	Creating and Using Libraries
	10.1. Using builtin Math Functions in C/C++
	10.2. Using System Library Routines
	10.3. Creating and Using Shared Object Files on Linux
	10.3.1. Procedure to create a use a shared object file
	10.3.2. ldd Command

	10.4. Using LIB3F
	10.5. LAPACK, BLAS and FFTs
	10.6. Linking with ScaLAPACK
	10.7. The C++ Standard Template Library

	Using Environment Variables
	11.1. Setting Environment Variables
	11.1.1. Setting Environment Variables on Linux

	11.2. PGI-Related Environment Variables
	11.3. PGI Environment Variables
	11.3.1. FORTRANOPT
	11.3.2. LD_LIBRARY_PATH
	11.3.3. MANPATH
	11.3.4. NO_STOP_MESSAGE
	11.3.5. PATH
	11.3.6. PGI
	11.3.7. PGI_CONTINUE
	11.3.8. PGI_OBJSUFFIX
	11.3.9. PWD
	11.3.10. STATIC_RANDOM_SEED
	11.3.11. TMP
	11.3.12. TMPDIR

	11.4. Using Environment Modules on Linux

	Distributing Files – Deployment
	12.1. Deploying Applications on Linux
	12.1.1. Runtime Library Considerations
	12.1.2. Linux Redistributable Files
	12.1.3. Restrictions on Linux Portability
	12.1.4. Licensing for Redistributable Files

	12.2. PGI Redistributables

	Inter-language Calling
	13.1. Overview of Calling Conventions
	13.2. Inter-language Calling Considerations
	13.3. Functions and Subroutines
	13.4. Upper and Lower Case Conventions, Underscores
	13.5. Compatible Data Types
	13.5.1. Fortran Named Common Blocks

	13.6. Argument Passing and Return Values
	13.6.1. Passing by Value (%VAL)
	13.6.2. Character Return Values

	13.7. Array Indices
	13.8. Examples
	13.8.1. Example – Fortran Calling C
	13.8.2. Example – C Calling Fortran
	13.8.3. Example – C++ Calling C
	13.8.4. Example – C Calling C ++
	13.8.5. Example – Fortran Calling C++
	13.8.6. Example – C++ Calling Fortran

	Contact Information

