
RELEASE NOTES FOR X86 CPUS AND TESLA GPUS

Version 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | ii

TABLE OF CONTENTS

Chapter 1. What's New in PGI 2019... 1
1.1. What's New in 19.7...1
1.2. What's New in 19.5...3
1.3. What's New in 19.4...3
1.4. What's New in 19.3...3
1.5. What's New in 19.1...3
1.6. LLVM Code Generator.. 5

Chapter 2. Release Overview..8
2.1. Licensing..8

2.1.1. Licensing Terminology.. 8
2.1.2. Bundled License Key.. 9
2.1.3. Node-locked and Network Floating Licenses..9

2.2. Release Components... 9
2.3. Terms and Definitions.. 10
2.4. Supported Platforms.. 10
2.5. Supported Operating System Updates... 10

2.5.1. Linux... 10
2.5.2. Apple macOS..11
2.5.3. Microsoft Windows... 11

2.6. CUDA Toolkit Versions.. 11
2.7. Compute Capability... 14
2.8. Precompiled Open-Source Packages..14

Chapter 3. Distribution and Deployment.. 16
3.1. Application Deployment and Redistributables.. 16

3.1.1. PGI Redistributables... 16
3.1.2. Linux Redistributables...16

Chapter 4. Troubleshooting Tips and Known Limitations.. 17
4.1. Platform-specific Issues.. 17

4.1.1. Linux... 17
4.1.2. Apple macOS..17
4.1.3. Microsoft Windows... 17

4.2. Issues Related to Debugging...18
4.3. Profiler-related Issues.. 18
4.4. OpenACC Issues.. 19

Chapter 5. Contact Information... 20

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 1

Chapter 1.
WHAT'S NEW IN PGI 2019

Welcome to Release 2019 of the PGI compilers and tools!

If you read only one thing about this PGI release, make it this chapter. It covers all the
new, changed, deprecated, or removed features in PGI products released this year. It is
written with you, the user, in mind.

Every PGI release contains user-requested fixes and updates. We keep a complete list of
these fixed Technical Problem Reports online for your reference.

1.1. What's New in 19.7

OpenACC

The compiler will now issue an error message for OpenACC data, enter data, and
exit data constructs with no data clauses. Previously, these had no effect. These are
almost certainly programming errors, and the error message will help avoid such errors.

Tightened the conditions under which OpenACC kernels loops containing pointer
references can be parallelized. This change may prevent the compiler from parallelizing
a kernels loop it previously parallelized unsafely, which could result in a loss of
performance. If you are certain the loop can be parallelized safely, changing kernels to
parallel or adding the independent loop clause will instruct the compiler to override
the safety check and parallelize the loop.

Changed how the compilers treat aggregate members (struct and derived type members)
used in loop bounds or loop limits. Previously, the compiler would generally read the
aggregate member from host memory. In 19.7, the compiler follows the OpenACC spec
more carefully by reading the device memory value of the aggregate member, except for
values used in the limits of the outermost loop or loops collapsed with the outermost
loop. This means that the value in device memory of any aggregate members used in
loop limits must be up-to-date with the host memory values, or the generated code will
behave differently.

https://www.pgroup.com/support/release_tprs.htm

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 2

Improved support for OpenACC host_data use_device constructs. The compilers
now accept references to aggregate data types in the variable-list as defined in the
OpenACC specification.

Added support for capture of the *this pointer by value to the OpenACC C++
compiler.

The CUDA 10.1 version bundled with PGI has been upgraded to CUDA 10.1 update 1.
More information can be found in the CUDA 10.1 release notes.

CUDA Fortran

Added support to CUDA Fortran for the half precision floating point data type, real(2),
as a first class type. This type, represented as IEEE binary16, gives the programmer the
ability to declare and use half precision data for programming the Tensor Cores in select
NVIDIA GPUs using CUDA Fortran. Real(2) support is available in Fortran compilers
on Linux for x86 and OpenPOWER.

Improved performance of CUDA Fortran data transfers between host and device
memory using assignment statements, for array sections that can be mapped onto
cudaMemcpy2D.

Fortran

Added support for the Fortran 2008 g0 editor descriptor.

Improved generation of DWARF debug information for allocatable arrays within
modules.

Added support for allocations from multiple sources via the SOURCE argument (e.g.
ALLOCATE(a, b, SOURCE=c)).

Extended MAXLOC and MINLOC intrinsics to accept the optional BACK argument.

Implemented NORM2 intrinsic to calculate magnitude of a Euclidean vector.

Libraries

We have added two new optimized intrinsics: atan and atan2 to our intrinsic math
library for x86 processors. This includes both single and double precision as well as
scalar and vector versions.

Deprecations

The PGI Debugger (pgdbg) is now deprecated. It will be discontinued at the end of the
2019 calendar year. For Linux users, PGI compilers are interoperable with the Allinea
DDT and Rogue Wave TotalView debuggers including their support for OpenACC,
OpenMP and MPI debugging. On MacOS and Linux, the GNU debugger (gdb) can be
used for basic debugging of PGI-generated code.

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#title-u1-new-features

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 3

1.2. What's New in 19.5

All Compilers

The PGI 19.5 release contains all the new features found in PGI 19.4 and a few key
updates for important user-reported problems.

1.3. What's New in 19.4

All Compilers

Version 19.4 of the PGI Compilers & Tools is a Community Edition release. New, refined
and improved support for new features introduced in 2019 include: Tensor Core support
in CUDA Fortran, LLVM-based code generation, full C++17 language support, support
for printf() in OpenACC regions, support for CUDA 10.0 and 10.1, improved SIMD
vectorization, GNU interoperability through GCC 8.1, pre-compiled Open MPI 3.1.3
libraries, support for the latest operating systems, and more. Please refer to the TPR
list located at https://www.pgroup.com/support/release-tprs-2019.htm for a detailed
summary of bug fixes.

1.4. What's New in 19.3

OpenACC and CUDA Fortran

Added support for the CUDA Toolkit version 10.1. Read more about support for CUDA
Toolkits in CUDA Toolkit Versions.

1.5. What's New in 19.1

All Compilers

The LLVM backend has been upgraded from version 6.0 to 7.0 and is now the default
code generator for Linux x86-64 platforms. This is a significant change that is described
in more detail in the LLVM Code Generator section.

Upgraded FlexNet Publisher licensing to version 11.16.2 from 11.14.1.3 for x86-64. The
newer daemons are backwards-compatible with previous versions of the PGI compilers.
The reverse is not true. This release, and future releases, of the PGI compilers are not
compatible with the older daemons and require version 11.16.2 at a minimum.

https://www.pgroup.com/support/release-tprs-2019.htm
https://www.pgroup.com/support/release-tprs-2019.htm
https://www.pgroup.com/support/release-tprs-2019.htm

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 4

PCAST (PGI Compiler-Assisted Software Testing) now supports C and Fortran
directives that are equivalent to the existing library API calls.

Added support for the following versions of Linux/x86-64:

‣ CentOS 7.6
‣ Fedora 29
‣ RHEL 7.6
‣ Ubuntu 18.10

Added support for Windows Server 2019 and macOS Mojave.

C/C++

Updated support for SIMD intrinsic functions in the pgc++ compiler for Linux/x86-64
platforms. Support is comprehensive for SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2
intrinsics. Many of the AVX, AVX2 and AVX-512 intrinsics are now implemented as well.
We expect to add comprehensive support for the AVX intrinsics in a future release.

The pgc++ compiler now implements full support for the C+17 language standard.

Fortran

Added support for the ERROR STOP statement.

Added run-time checks to enforce CONTIGUOUS behavior. These checks only occur in
code running on the CPU; in particular, they do not occur in code running on a GPU.

Improved Fortran reshape performance, and handling of derived type c-binding for C++
objects.

OpenACC and CUDA Fortran

Added initial support for use of NVIDIA GPU Tensor Cores in CUDA Fortran programs.

The C and C++ compilers now include support for formatted output using printf()
statements in OpenACC compute regions. Most common format specifiers for flag,
width, precision, size and type are supported. Using printf() in OpenACC regions
is useful for basic debugging and programmer-driven tracing during development and
tuning of OpenACC applications on both multicore CPUs and GPUs.

Added support for Turing architecture with compute capability version 7.5.

CUDA 9.2 is now the default target version if there is no GPU or CUDA driver found on
the system.

Removed support for legacy PGI Accelerator Directives. Attempting to compile code
with such directives will now give an error instead of a warning.

Renamed the [no]llvm sub-option to -Mcuda and -ta=tesla to [no]nvvm.

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 5

Various compiler improvements, including bug fixes related to subkernels when
compiling with -Mallocatable=03 (default allocation behavior since 18.7), and
improved scalar replacement optimizations.

Consolidated the accelerator runtime libraries by removing non-thread-safe versions
previously used for serial execution.

Performance

Improved performance of several intrinsic functions for AVX2 and newer processors:
sin, cos, log, log10, cexp, acos, ains, atan, tanh.

Improved performance of memory idiom functions: mset, mcopy, mzero.

Enhanced vectorizer to recognize more opportunities for SIMD code generation across
all CPU targets.

Known Issues and Limitations

Passing -M[no]llvm to MPI wrappers (mpicc, mpifort, etc.) is not supported. Doing so
will cause unresolved symbol errors and segmentation faults when compiling.

Using -V<version> with the PGI 2019 compilers to target PGI 2018 or earlier releases is
not supported. This is a known limitation that is the result of the switch to using LLVM
compilers as the default code generator for the PGI 2019 compilers.

Programs built with OpenMPI 3.1.3 that use only one MPI rank will hang if invoked
directly. You must now run the program with mpirun -np 1 ./executable or set the
environment variable OMPI_MCA_ess_singleton_isolated=1. This is a known and
intended behavior change in the 3.1.3 version of OpenMPI.

OpenMP profiling is not supported for Fortran applications that use both OpenACC and
OpenMP, and use critical sections, OpenMP lock API calls, or performs I/O. OpenACC
profiling of these applications is still possible by disabling OpenMP profiling with the
'--openmp-profiling off' option to pgprof.

Deprecations and Eliminations

CUDA 9.1 is no longer included as part of the PGI compilers installation package.

The PGI compilers installation packages no longer include pre-compiled versions of
MPICH or MVAPICH.

The pgf77 driver is deprecated. Use pgfortran to compile F77 Fortran.

1.6. LLVM Code Generator
The PGI 2019 compilers for Linux/x86-64 platforms now use an LLVM-based code
generator and OpenMP runtime library by default. In general, the new compilers

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 6

deliver better performance than those in PGI 2018 and prior releases, which used a PGI-
proprietary code generator and OpenMP runtime. However, the PGI 2019 compilers
using LLVM are not link-compatible with PGI 2018 and prior releases, and they have
certain limitations as outlined below. The PGI-proprietary code generator and OpenMP
implementation can still be used optionally with the PGI 2019 compilers via a compile-
and link-time option or with appropriate path settings.

After installing PGI 2019, the following subdirectories will exist in your base installation
directory:

‣ linux86-64/
‣ linux86-64-llvm/
‣ linux86-64-nollvm/

linux86-64-llvm/ contains the default LLVM-based compilers. The 19.7/ and 2019/
subdirectories in linux86-64/ are symbolic links to their equivalents in linux86-64-
llvm/. If either of these directories have precedence in your path settings, then invoking
any of the PGI compilers will result in use of the LLVM backend code generator by
default.

linux86-64-nollvm/ contains the version of the compilers that use the PGI-
proprietary code generator and OpenMP runtime. You can control which code
generator is used, and in particular can override the default and revert to using the PGI-
proprietary code generator if needed. However, in general you cannot mix object files or
libraries compiled with the two different code generators in the same executable.

If you are using default PGI and environment path settings in which the location of the
LLVM-based compilers takes precedence, then invoking any of the PGI compiler drivers
with the -Mnollvm option will choose the version of the PGI 2019 compilers that use the
PGI-proprietary code generator in linux86-64-nollvm/19.7/bin. You must use this option
on all files and libraries in your program, and as both a compile- and link-time option.

The installation is designed so that if needed you can set up your environment and path
settings to point directly to the linux86-64-nollvm/19.7/bin directory, in which case all
invocations of the PGI compiler drivers will use the PGI-proprietary code generator. In
that case, using the -Mllvm option will toggle to use of the LLVM-based compilers and
again it must be used for both compilation and linking.

It is recommended that you initialize your environment and path settings to point to
linux86-64/19.7/bin and use the -M[no]llvm switch to toggle the desired backend.
The PGI-proprietary code generator will be deprecated in a future release of the PGI
compilers.
Environment Modules

If your environment is set up to use PGI's environment module files, the following
commands load the PGI compilers with the default code generator for a given release:

 module load pgi/<release_number>

The default code generator in PGI 19.7 and all future releases is the LLVM-based code
generator, so

What's New in PGI 2019

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 7

 module load pgi/19.7

will choose the LLVM-based code generator. The default code generator in PGI
2018 and all prior releases was the PGI-proprietary code generator, and LLVM was
available optionally in PGI 2018. So,

 module load pgi/18.10

will choose the PGI-proprietary code generator.

You can be explicit about the version and backend by executing a module load of
pgi-llvm or pgi-nollvm first, followed by a module load of the desired version.
For example:

 module load pgi-llvm
 module load pgi/18.10

will override the 18.10 default and initialize your environment to use the LLVM-
based code generator and OpenMP runtime and PGI 18.10 release. Similarly:

 module load pgi-nollvm
 module load pgi/19.7

will override the 19.7 default and initialize your environment to use the PGI-
proprietary code generator and OpenMP runtime and the PGI 19.7 release. You could
then toggle to using the default LLVM-based code generator with these commands:

 module purge
 module load pgi/19.7

or an appropriate sequence of module unload and module load commands.
Limitations

There are a few known limitations with the LLVM-based code generator, including:

‣ Only available for Linux/x86-64 platforms
‣ The PGI Unified Binary feature that allows targeting multiple types of CPU in

one binary executable is not supported; if you specify multiple targets to the -tp
compiler option you will get an error message and compilation will fail

‣ Interprocedural analysis and optimizations are not performed; the -Mipa
compiler option is processed by the compiler drivers without error, but is
effectively ignored

‣ Some source-code directives, e.g. DEC$, may have no effect

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 8

Chapter 2.
RELEASE OVERVIEW

This chapter provides an overview of Release 2019 of the PGI Accelerator™ compilers
and development tools for 64-bit x86-compatible processor-based workstations, servers,
and clusters running versions of the Linux, Apple macOS and Microsoft Windows
operating systems.

2.1. Licensing
All PGI products for a given platform include exactly the same PGI compilers and tools
software. The difference is in which features are enabled by the license keys.

PGI release 2019 version 19.1 and newer contains updated (v11.16.2) FlexNet Publisher
license management software.

The updated version of FlexNet Publisher includes various fixes and improved support
across all operating systems.

Important Users with PGI 2018 (18.x) or older need to update their license daemons
to support 19.1 or newer. The new license daemons are backward-compatible with
older PGI releases. For more information, see the FlexNet Update FAQ.

2.1.1. Licensing Terminology
The PGI compilers and tools are license-managed. Before discussing licensing, it is
useful to have common terminology.

‣ License – the right to use PGI compilers and tools as defined by the End-user
License Agreement (EULA), this is a legal agreement between NVIDIA and PGI
end-users. PGI Professional (for-fee, perpetual) licenses are identified by a Product
Identification Number (PIN - see below). You can find a copy of the EULA on
the PGI website , pgicompilers.com/LICENSE, and in the $PGI/<platform>/
<rel_number>/doc directory of every PGI software installation.

‣ License keys – ASCII text strings that enable use of the PGI software and are
intended to enforce the terms of the License. For PGI Professional, License keys are
generated by each PGI end-user on the PGI website using a unique hostid and are

https://www.flexerasoftware.com/producer/products/software-monetization/flexnet-licensing/
https://www.pgroup.com/support/flex.htm
https://www.pgroup.com/LICENSE

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 9

typically stored in a file called license.dat that is accessible to the systems for
which the PGI software is licensed.

‣ PIN – Product Identification Number, a unique 6-digit number associated with a
PGI Professional license. This PIN is included in your order confirmation. The PIN
can also be found in your license key file after VENDOR_STRING=.

‣ PIN tie code – A unique 16-digit number associated with each license (PIN) that
allows others to "tie" that license to their PGI user account, pgicompilers.com/
account for administrative purposes. PGI Professional licensees can use their PIN tie
code to share license administration capabilies with others in their orgaization.

2.1.2. Bundled License Key
Installation may place a temporary license key file named license.dat in the PGI
installation directory if no such file already exists.

If you use a separate license server, for example
LM_LICENSE_FILE=port@server.domain.com, that supports this version, it is
recommended that you remove or rename the license key file in the installation
directory.

2.1.3. Node-locked and Network Floating Licenses
‣ Node-locked single-user licenses allow one user at a time to compile solely on

the system on which both the PGI compilers and tools, and PGI license server are
installed.

‣ Network floating licenses allow one or more users to use the PGI compilers and
tools concurrently on any compatible client systems networked to a license server,
that is, the system on which the PGI network floating license key(s) are installed.
There can be multiple installations of the PGI compilers and tools on client systems
connected to the license server; and client systems can use the license concurrently
up to the maximum number of seats licensed for the license server.

2.2. Release Components
Release 2019 includes the following components:

‣ PGFORTRAN™ native OpenMP and OpenACC Fortran 2003 compiler.
‣ PGCC® native OpenMP and OpenACC ISO C11 and K&R C compiler.
‣ PGC++® native OpenMP and OpenACC ISO C++17 compiler.
‣ PGI Profiler® OpenACC, CUDA, OpenMP, and multi-thread graphical profiler.
‣ PGI Debugger® MPI, OpenMP, and multi-thread graphical debugger.
‣ Open MPI version 3.1.3 for 64-bit Linux including support for NVIDIA GPUDirect.

Note that 64-bit linux86-64 MPI messages are limited to < 2 GB size each. As
NVIDIA GPUDirect depends on InfiniBand support, Open MPI is also configured to
use InfiniBand hardware if it is available on the system. InfiniBand support requires
OFED 3.18 or later.

https://www.pgroup.com/account/index.php

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 10

‣ ScaLAPACK 2.0.2 linear algebra math library for distributed-memory systems for
use with Open MPI, MPICH or MVAPICH, and the PGI compilers on 64-bit Linux
and macOS for Intel 64 or AMD64 CPU-based installations.

‣ Microsoft HPC Pack 2012 MS-MPI Redistributable Pack (version 4.1) for 64-bit
development environments (Windows only).

‣ BLAS and LAPACK library based on the customized OpenBLAS project source.
‣ A UNIX-like shell environment for 64-bit Windows platforms.
‣ FlexNet license utilities.
‣ Documentation in man page format and online, pgicompilers.com/docs, in both

HTML and PDF formats.

2.3. Terms and Definitions
This document contains a number of terms and definitions with which you may or may
not be familiar. If you encounter an unfamiliar term in these notes, please refer to the
PGI online glossary located at pgicompilers.com/definitions.

These two terms are used throughout the documentation to reflect groups of processors:
Intel 64

64-bit Intel x86-64 CPUs including Intel Core processors, Intel Xeon Nehalem, Sandy
Bridge, Ivy Bridge, Haswell, Broadwell and Skylake processors, and Intel Xeon Phi
Knights Landing.

AMD64
64-bit AMD™ x86-64 CPUs including Opteron and EPYC processors.

2.4. Supported Platforms
There are three platforms supported by the PGI compilers and tools for x86-64
processor-based systems.

‣ 64-bit Linux – supported on 64-bit Linux operating systems running on a 64-bit x86
compatible processor.

‣ 64-bit macOS – supported on 64-bit Apple macOS operating systems running on a
64-bit Intel processor-based Macintosh computer.

‣ 64-bit Windows – supported on 64-bit Microsoft Windows operating systems
running on a 64-bit x86-compatible processor.

2.5. Supported Operating System Updates
This section describes updates and changes to PGI 2019 that are specific to Linux,
macOS, and Windows.

2.5.1. Linux
‣ CentOS 6.4 through 7.6

/resources/docs.htm
https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/definitions

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 11

‣ RHEL 6.4 through 7.6
‣ Fedora 14 through 29
‣ Ubuntu 14.04, 16.04, 17.10, 18.04, 18.10
‣ openSUSE Leap 42.2 through openSUSE Leap 15.0
‣ SLES 12 SP2 through SLES 15

2.5.2. Apple macOS
PGI 2019 for macOS supports most of the features of the version for Linux
environments. Except where noted in these release notes or the user manuals, the PGI
compilers and tools on macOS function identically to their Linux counterparts.

‣ The compilers, debugger, and profiler are supported on macOS versions 10.10.5
(Yosemite) through 10.14 (Mojave).

2.5.3. Microsoft Windows
PGI products for Windows support most of the features of the PGI products for Linux
environments. PGI products require that Visual Studio 2017, including the Windows 10
Software Development Kit (SDK), be installed prior to installing the compilers.

PGI 18.7 is the last release for Windows that includes bundled Microsoft toolchain
components. Subsequent releases require users to have the Microsoft toolchain
components pre-installed on their systems.

PGI 2019 requires the Windows 10 SDK, even on Windows 7 and 8.1.

These Windows operating systems are supported in PGI 2019:

‣ Windows Server 2008 R2
‣ Windows 7
‣ Windows 8.1
‣ Windows 10
‣ Windows Server 2012
‣ Windows Server 2016
‣ Windows Server 2019

2.6. CUDA Toolkit Versions
The PGI compilers use NVIDIA's CUDA Toolkit when building programs for execution
on an NVIDIA GPU. Every PGI installation package puts the required CUDA Toolkit
components into a PGI installation directory called 2019/cuda.

An NVIDIA CUDA driver must be installed on a system with a GPU before you can run
a program compiled for the GPU on that system. PGI products do not contain CUDA
Drivers. You must download and install the appropriate CUDA Driver from NVIDIA.

http://www.nvidia.com/cuda

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 12

The CUDA Driver version must be at least as new as the version of the CUDA Toolkit
with which you compiled your code.

The PGI tool pgaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

PGI 19.7 includes the following versions of the CUDA Toolkit:

‣ CUDA 9.2
‣ CUDA 10.0
‣ CUDA 10.1

You can let the compiler pick which version of the CUDA Toolkit to use or you can
instruct it to use a particular version. The rest of this section describes all of your
options.

If you do not specify a version of the CUDA Toolkit, the compiler uses the version of
the CUDA Driver installed on the system on which you are compiling to determine
which CUDA Toolkit to use. This auto-detect feature was introduced in the PGI 18.7
release; auto-detect is especially convenient when you are compiling and running your
application on the same system. In the absence of any other information, the compiler
will look for a CUDA Toolkit version in the PGI 2019/cuda directory that matches
the version of the CUDA Driver installed on the system. If a match is not found, the
compiler searches for the newest CUDA Toolkit version that is not newer than the
CUDA Driver version. If there is no CUDA Driver installed, the PGI 19.7 compilers fall
back to the default of CUDA 9.2.

If the only PGI compiler you have installed is PGI 19.7, then:

‣ If your CUDA Driver is 10.1, the compilers use CUDA Toolkit 10.1.
‣ If your CUDA Driver is 10.0, the compilers use CUDA Toolkit 10.0.
‣ If your CUDA Driver is 9.2, the compilers use CUDA Toolkit 9.2.
‣ If your CUDA Driver is 9.1, the compilers will issue an error that CUDA Toolkit 9.1

was not found; CUDA Toolkit 9.1 is not bundled with PGI 19.7
‣ If you do not have a CUDA driver installed on the compilation system, the

compilers use the default CUDA Toolkit version 9.2.
‣ If your CUDA Driver is newer than CUDA 10.1, the compilers will still use the

CUDA Toolkit 10.1. The compiler selects the newest CUDA Toolkit it finds that is
not newer than the CUDA Driver.

You can change the compiler's default selection for CUDA Toolkit version using one of
the following methods:

‣ Use a compiler option. Add the cudaX.Y sub-option to -Mcuda or -ta=tesla
where X.Y denotes the CUDA version. For example, to compile a C file with the
CUDA 9.2 Toolkit you would use:
pgcc -ta=tesla:cuda9.2

Using a compiler option changes the CUDA Toolkit version for one invocation of the
compiler.

‣ Use an rcfile variable. Add a line defining DEFCUDAVERSION to the siterc file in
the installation bin/ directory or to a file named .mypgirc in your home directory.

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 13

For example, to specify the CUDA 9.2 Toolkit as the default, add the following line
to one of these files:
set DEFCUDAVERSION=9.2;

Using an rcfile variable changes the CUDA Toolkit version for all invocations of the
compilers reading the rcfile.

When you specify a CUDA Toolkit version, you can additionally instruct the compiler
to use a CUDA Toolkit installation different from the defaults bundled with the current
PGI compilers. While most users do not need to use any other CUDA Toolkit installation
than those provided with PGI, situations do arise where this capability is needed.
Developers working with pre-release CUDA software may occasionally need to test with
a CUDA Toolkit version not included in a PGI release. Conversely, some developers
might find a need to compile with a CUDA Toolkit older than the oldest CUDA Toolkit
installed with a PGI release. For these users, PGI compilers can interoperate with
components from a CUDA Toolkit installed outside of the PGI installation directories.

PGI tests extensively using the co-installed versions of the CUDA Toolkits and fully
supports their use. Use of CUDA Toolkit components not included with a PGI install is
done with your understanding that functionality differences may exist.

The ability to compile with a CUDA Toolkit other than the versions installed with the
PGI compilers is supported on all platforms; on the Windows platform, this feature is
supported for CUDA Toolkit versions 9.2 and newer.

To use a CUDA toolkit that is not installed with a PGI release, such as CUDA 9.1 with
PGI 19.7, there are three options:

‣ Use the rcfile variable DEFAULT_CUDA_HOME to override the base default
set DEFAULT_CUDA_HOME = /opt/cuda-9.1;

‣ Set the environment variable CUDA_HOME
export CUDA_HOME=/opt/cuda-9.1

‣ Use the compiler compilation line assignment CUDA_HOME=
pgfortran CUDA_HOME=/opt/cuda-9.1

The PGI compilers use the following order of precedence when determining which
version of the CUDA Toolkit to use.

 1. If you do not tell the compiler which CUDA Toolkit version to use, the compiler
picks the CUDA Toolkit from the PGI installation directory 2019/cuda that
matches the version of the CUDA Driver installed on your system. If the PGI
installation directory does not contain a direct match, the newest version in that
directory which is not newer than the CUDA driver version is used. If there is
no CUDA driver installed on your system, the compiler falls back on an internal
default; in PGI 19.7, this default is CUDA 9.2.

 2. The rcfile variable DEFAULT_CUDA_HOME will override the base default.
 3. The environment variable CUDA_HOME will override all of the above defaults.
 4. The environment variable PGI_CUDA_HOME overrides all of the above; it is available

for advanced users in case they need to override an already-defined CUDA_HOME.
 5. A user-specified cudaX.Y sub-option to -Mcuda and -ta=tesla will override all

of the above defaults and the CUDA Toolkit located in the PGI installation directory
2019/cuda will be used.

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 14

 6. The compiler compilation line assignment CUDA_HOME= will override all of the
above defaults (including the cudaX.Y sub-option).

2.7. Compute Capability
The compilers can generate code for NVIDIA GPU compute capabilities 3.0 through 7.5.
The compilers construct a default list of compute capabilities that matches the compute
capabilities supported by the GPUs found on the system used in compilation. If there are
no GPUs detected, the compilers select cc35, cc50, cc60, and cc70.

You can override the default by specifying one or more compute capabilities using either
command-line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of
compute capabilities to -ta=tesla: for OpenACC or -Mcuda= for CUDA Fortran.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-
separated list of compute capabilities in the siterc file located in your installation's bin
directory:
set DEFCOMPUTECAP=60 70;

Alternatively, if you don't have permissions to change the siterc file, you can add the
DEFCOMPUTECAP definition to a separate .mypgirc file (mypgi_rc on Windows) in
your home directory.

The generation of device code can be time consuming, so you may notice an increase in
compile time as the number of compute capabilities increases.

2.8. Precompiled Open-Source Packages
Many open-source software packages have been ported for use with PGI compilers on
Linux x86-64.

The following PGI-compiled open-source software packages are included in the PGI
Linux x86-64 download package:

‣ OpenBLAS 0.3.3 – customized BLAS and LAPACK libraries based on the OpenBLAS
project source.

‣ Open MPI 3.1.3 – open-source MPI implementation.
‣ ScaLAPACK 2.0.2 – a library of high-performance linear algebra routines for parallel

distributed memory machines. ScaLAPACK uses Open MPI 3.1.3.

The following list of open-source software packages have been precompiled for
execution on Linux x86-64 targets using the PGI compilers and are available to
download from the PGI website at pgicompilers.com/downloads.

‣ ESMF 7.1.0r for Open MPI 3.1.3 – The Earth System Modeling Framework for
building climate, numerical weather prediction, data assimilation, and other Earth
science software applications.

‣ NetCDF 4.6.2 for C++11 – A set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-

https://www.pgroup.com/support/downloads.php

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 15

oriented scientific data, written in C. Included in this package are the following
components:

‣ NetCDF-C++ 4.3.0 – C++ interfaces to NetCDF libraries.
‣ NetCDF-Fortran 4.4.4 – Fortran interfaces to NetCDF libraries.
‣ Parallel NetCDF 1.11.0 – for Open MPI 3.1.3.
‣ HDF5 1.10.4 – data model, library, and file format for storing and managing

data.
‣ SZIP 2.1.1 – extended-Rice lossless compression algorithm.
‣ ZLIB 1.2.11 – file compression library.

‣ NetCDF 4.6.2 for C++98 – includes all the components listed in NetCDF for C++11
above.

In addition, these software packages have also been ported to PGI on Linux x86-64 but
due to licensing restrictions, they are not available in binary format directly from PGI.
You can find instructions for building them in the Porting & Tuning Guides section of
the PGI website at pgicompilers.com/tips.

‣ FFTW 2.1.5 – version 2 of the Fast Fourier Transform library, includes MPI bindings
built with Open MPI 3.1.3.

‣ FFTW 3.3.8 – version 3 of the Fast Fourier Transform library, includes MPI bindings
built with Open MPI 3.1.3.

For additional information about building these and other packages, please see the
Porting & Tuning Guides section of the PGI website at pgicompilers.com/tips.

https://www.pgroup.com/resources/tips.htm
https://www.pgroup.com/resources/tips.htm

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 16

Chapter 3.
DISTRIBUTION AND DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want
to distribute it to users who need to run it on a variety of systems. This section addresses
how to effectively distribute applications built using PGI compilers and tools.

3.1. Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library
files must be distributed with such programs to enable them to execute on systems
where the PGI compilers are not installed. There are PGI redistributable files for Linux.

3.1.1. PGI Redistributables
The PGI 2019 Release includes these directories:

$PGI/linux86-64/19.7/REDIST
$PGI/win64/19.7/REDIST

These directories contain all of the PGI Linux runtime library shared object files or
Windows dynamically linked libraries that can be re-distributed by PGI 2019 licensees
under the terms of the PGI End-User License Agreement (EULA). For reference, a text-
form copy of the PGI EULA is included in the 19.7 doc directory.

3.1.2. Linux Redistributables
The Linux REDIST directories contain the PGI runtime library shared objects for
all supported targets. This enables users of the PGI compilers to create packages of
executables and PGI runtime libraries that will execute successfully on almost any PGI-
supported target system, subject to these requirements:

‣ End-users of the executable have properly initialized their environment.
‣ Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared

objects.

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 17

Chapter 4.
TROUBLESHOOTING TIPS AND KNOWN
LIMITATIONS

This section contains information about known limitations, documentation errors, and
corrections. Wherever possible, a work-around is provided.

For up-to-date information about the state of the current release, please see the PGI
frequently asked questions (FAQ) webpage.

4.1. Platform-specific Issues

4.1.1. Linux
The following are known issues on Linux:

‣ Programs that incorporate object files compiled using -mcmodel=medium cannot be
statically linked. This is a limitation of the linux86-64 environment, not a limitation
of the PGI compilers and tools.

‣ Passing -M[no]llvm to MPI wrappers (mpicc, mpifort, etc.) is not supported. Doing
so will cause unresolved symbol errors and segmentation faults when compiling.

‣ Using -V<version> with the PGI 2019 compilers to target PGI 2018 or earlier
releases is not supported. This is a known limitation that is the result of the switch to
using LLVM compilers as the default code generator for the PGI 2019 compilers.

4.1.2. Apple macOS
The following are known issues on Apple macOS:

‣ The PGI 2019 compilers do not support static linking of binaries. For compatibility
with future Apple updates, the compilers only support dynamic linking of binaries.

4.1.3. Microsoft Windows
The following are known issues on Windows:

https://www.pgroup.com/support/faq.htm

Troubleshooting Tips and Known Limitations

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 18

‣ For the Cygwin emacs editor to function properly, you must set the environment
variable CYGWIN to the value "tty" before invoking the shell in which emacs will
run. However, this setting is incompatible with the PGBDG command line interface
(-text), so you are not able to use pgdbg -text in shells using this setting.

‣ On Windows, the version of vi included in Cygwin can have problems when the
SHELL variable is defined to something it does not expect. In this case, the following
messages appear when vi is invoked:
E79: Cannot expand wildcards Hit ENTER or type command to continue

To work around this problem, set SHELL to refer to a shell in the Cygwin bin
directory, e.g., /bin/bash.

‣ On Windows, runtime libraries built for debugging (e.g., msvcrtd and libcmtd)
are not included with PGI products. When a program is linked with -g, for
debugging, the standard non-debug versions of both the PGI runtime libraries
and the Microsoft runtime libraries are always used. This limitation does not affect
debugging of application code.

4.2. Issues Related to Debugging
The following are known issues in the PGI debugger:

‣ Debugging of PGI Unified Binaries, that is, programs built with more than one -tp
option, is not fully supported. The names of some subprograms are modified in
compilation and the debugger does not translate these names back to the names
used in the application source code.

‣ When debugging on the Windows platform, the Windows operating system times
out stepi/nexti operations when single stepping over blocked system calls.

4.3. Profiler-related Issues
Some specific issues related to the PGI Profiler:

‣ The Profiler relies on being able to directly call 'dlsym'. If this system call is
intercepted by the program being profiled or by some other library the profiler
may hang at startup. We have encountered this specific problem with some
implementations of MPI. We recommend you disable any features that may be
intercepting the 'dlsym' system call or disable CPU profiling with the --cpu-profiling
off option.

‣ To disable 'dlsym' interception when using IBM's spectrum MPI set the
environment variable: PAMI_DISABLE_CUDA_HOOK=1, omit the following
option: -gpu and add the options: -x PAMI_DISABLE_CUDA_HOOK and -
disable_gpu_hooks.

Troubleshooting Tips and Known Limitations

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 19

4.4. OpenACC Issues

ACC routine directive limitations

This section includes known limitations in PGI's support for OpenACC directives. PGI
plans to support these features in a future release.

‣ Fortran assumed-shape arguments are not yet supported.

Clause Support Limitations

‣ Not all clauses are supported after the device_type clause.

OpenACC Profiling limitations

Limitations of PGI's OpenACC library:

‣ The OpenACC Profiling interface is not available for applications linked with static
libraries, with "-Bstatic" or "-Bstatic_pgi".

Release Notes for x86 CPUs and Tesla GPUs Version 2019 | 20

Chapter 5.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2019 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	What's New in PGI 2019
	1.1. What's New in 19.7
	1.2. What's New in 19.5
	1.3. What's New in 19.4
	1.4. What's New in 19.3
	1.5. What's New in 19.1
	1.6. LLVM Code Generator

	Release Overview
	2.1. Licensing
	2.1.1. Licensing Terminology
	2.1.2. Bundled License Key
	2.1.3. Node-locked and Network Floating Licenses

	2.2. Release Components
	2.3. Terms and Definitions
	2.4. Supported Platforms
	2.5. Supported Operating System Updates
	2.5.1. Linux
	2.5.2. Apple macOS
	2.5.3. Microsoft Windows

	2.6. CUDA Toolkit Versions
	2.7. Compute Capability
	2.8. Precompiled Open-Source Packages

	Distribution and Deployment
	3.1. Application Deployment and Redistributables
	3.1.1. PGI Redistributables
	3.1.2. Linux Redistributables

	Troubleshooting Tips and Known Limitations
	4.1. Platform-specific Issues
	4.1.1. Linux
	4.1.2. Apple macOS
	4.1.3. Microsoft Windows

	4.2. Issues Related to Debugging
	4.3. Profiler-related Issues
	4.4. OpenACC Issues

	Contact Information

