
RELEASE NOTES FOR X86 CPUS AND TESLA GPUS

Version 2020

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | ii

TABLE OF CONTENTS

Chapter 1. What's New in PGI 2020... 1
1.1. What's New in 20.4...1
1.2. What's New in 20.1...2

Chapter 2. Release Overview..5
2.1. Licensing..5

2.1.1. Licensing Terminology.. 5
2.1.2. Bundled License Key.. 6
2.1.3. Node-locked and Network Floating Licenses..6

2.2. Release Components... 6
2.3. Terms and Definitions..7
2.4. Supported Platforms... 7
2.5. Supported Operating System Updates...7

2.5.1. Linux...7
2.5.2. Microsoft Windows.. 8

2.6. OpenMP... 8
2.7. CUDA Toolkit Versions..9
2.8. Compute Capability... 12
2.9. Precompiled Open-Source Packages..12

Chapter 3. Distribution and Deployment.. 14
3.1. Application Deployment and Redistributables.. 14

3.1.1. PGI Redistributables... 14
3.1.2. Linux Redistributables...14

Chapter 4. Troubleshooting Tips and Known Limitations.. 15
4.1. Platform-specific Issues.. 15

4.1.1. Linux... 15
4.1.2. Microsoft Windows... 15

4.2. Profiler-related Issues.. 16
4.3. OpenACC Issues.. 16

Chapter 5. Contact Information... 17

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 1

Chapter 1.
WHAT'S NEW IN PGI 2020

Welcome to Release 2020 of the PGI compilers and tools!

If you read only one thing about this PGI release, make it this chapter. It covers all the
new, changed, deprecated, or removed features in PGI products released this year. It is
written with you, the user, in mind.

Every PGI release contains user-requested fixes and updates. We keep a complete list of
these fixed Technical Problem Reports online for your reference.

1.1. What's New in 20.4

All Compilers

Added support for interoperability with GNU-compiled OpenMP objects. Our
optimized heterogeneous OpenMP runtime now includes a GNU OpenMP interface
layer which provides compatibility when mixing PGI-compiled and GNU-compiled
OpenMP objects. For more information, refer to OpenMP.

Changed the compile and link time option -nomp such that its use now prevents the
addition of the OpenMP runtime library (nvomp) to the link line.

C/C++

Added DWARF metadata for inlined function calls.

Fortran

Improvement performance in TRANSFER intrinsic for large contiguous data transfers.

Added DWARF metadata for inlined function and subroutine calls.

https://www.pgroup.com/support/release_tprs.htm

What's New in PGI 2020

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 2

OpenACC and CUDA Fortran

Changed the default CUDA Toolkit version selected by the compiler from CUDA 10.0
to 10.1. The default CUDA Toolkit version is used when the compiler cannot find a GPU
or CUDA driver on the system where it is compiling and no CUDA Toolkit version has
been specified on the compilation line. For more information about selecting CUDA
Toolkit versions see CUDA Toolkit Versions.

Updated the implementation of the OpenACC API rouintes acc_copyin and
acc_create to adhere to the OpenACC 2.0 specification to use present_or_
semantics.

1.2. What's New in 20.1

All Compilers

LLVM 9.0 integrated — Upgraded Linux/x86-64 compilers to use LLVM 9.0 as the
default code generator. LLVM 8.0 and the legacy PGI code generator are still available
via compile and link-time command-line options.

cuTENSOR support — Added support for the new cuTENSOR library, including
automatic mapping of Fortran transformational intrinsics operating on device data to
cuTENSOR calls. See below for details.

New Heterogeneous OpenMP Runtime — Replaced the OpenMP runtime with a new
optimized heterogeneous OpenMP runtime. In 20.1 this new runtime is used by default
for multicore CPU targeting, and in future releases it will be used for integrated CPU
and GPU OpenMP targeting. The new runtime is fully KMPC-compatible, but is not yet
GOMP compatible, so mixing of PGI-compiled and GNU-compiled OpenMP objects is
not supported and will result in a runtime error message.

AMD Rome CPUs support — The 20.1 release of the PGI Fortran, C and C++ compilers
is fully supported on AMD Rome CPUs. The compilers auto-detect Rome as the default
target CPU when installed and used on Rome systems.

Added support for the following versions of Linux/x86-64:

‣ CentOS 7.7, 8.0, and 8.1
‣ Fedora 30
‣ openSUSE Leap 15.1
‣ RHEL 7.7, 8.0, and 8.1
‣ SLES 15 SP1
‣ Ubuntu 19.04

C/C++

Upgraded the PGI C compiler pgcc significantly, including substantial support for C11.

What's New in PGI 2020

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 3

Fortran

Improved debugging metadata for PURE, RECURSIVE, and ELEMENTAL procedures.

Improved implementation of the OpenMP API to follow the OpenMP specification.
Fortran developers should import the OpenMP API by using the omp_lib module rather
than by defining its types (i.e, omp_lock_t) or declaring its functions directly in the
application code. Failure to do so (or failure to do so correctly) may cause an application
built with the NVIDIA OpenMP runtime to function incorrectly.

OpenACC and CUDA Fortran

Added Fortran interfaces to the NVIDIA cuTENSOR library which is bundled in
the PGI packages. Added support for a new cutensorEx Fortran module that maps
Fortran intrinsic functions RESHAPE(), TRANSPOSE(), SPREAD() and MATMUL()
operating on device data to the appropriate cuTENSOR functionality. This new feature
is usable in both CUDA Fortran and OpenACC, and enables use of V100 tensor cores
for operations on real(2) data. See the Fortran CUDA Library Interfaces document for
more information.

Added support for the CUDA Toolkit version 10.2. See CUDA Toolkit Versions for
instructions on selecting alternate CUDA Toolkit versions using CUDA_HOME. CUDA
10.0 is now the default toolkit version if there is no GPU or CUDA driver found on the
system. If you are relying on this default, you must specify a version of CUDA Toolkit
version 10.0 using CUDA_HOME because the CUDA 10.0 toolchain and libraries are not
bundled in this release.

Added support for calling the built-in CUDA math functions sinpi, sinpif, cospi, cospif,
sincospi, and sincospif from device code.

Improved support for attributes(host,device) functions in CUDA Fortran, which
enables compiling a program unit for both host and device execution.

Implemented support for on_device in CUDA Fortran, which enables dynamic
checking for current execution on a GPU device.

Changed copy behavior for OpenACC reductions to adhere to the OpenACC
specification. The compilers will now follow the defined behavior for copy and not
copy the reduction variable to the device if it is already present. To enable the compiler's
previous behavior, use an update device/host if_present directive.

Reorganized the accelerator runtime libraries. Removed the libaccapi, libaccg,
libaccg2, libaccn, and libaccnc libraries. Replaced these libraries with three new
libraries organized by functionality. The compiler drivers link in the new libraries based
on flags used when linking:

‣ The compiler adds libaccdevice with –acc –ta=tesla.
‣ The compiler adds libacccuda with –acc –ta=tesla –Mcuda.

What's New in PGI 2020

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 4

‣ The compiler adds libacchost with –ta=multicore or –ta=host as long as –
ta=tesla is not present.

Dropped support for __CUDA_API_VERSION. Use CUDA_VERSION instead.

Updated the profiling interface to conform to the OpenACC 3.0 specification.

Deprecations and Eliminations

CUDA 9.2 and 10.0 are no longer included as part of the PGI compilers installation
package. CUDA 10.0 is still supported via CUDA_HOME. Support for CUDA 9.2 has been
removed.

Official support for the nonvvm sub-option -ta=tesla and -Mcuda ended with the PGI
19.10 release. Although the compilers will not reject this sub-option, we recommend
moving to the default method for generating device code by removing nonvvm from
compilation.

The pgf77 driver is no longer provided. Use pgfortran to compile F77 Fortran.

The PGI Debugger pgdbg has been discontinued. The last release of pgdbg was PGI
19.10. For Linux users, PGI compilers are interoperable with the Allinea DDT and Rogue
Wave TotalView debuggers including their support for OpenACC, OpenMP, and MPI
debugging. On Linux, the GNU debugger gdb can be used for basic debugging of PGI-
generated code.

PGI Visual Fortran (PVF) has been discontinued. The final PVF release was 19.10.
Existing PVF licensees can continue to use it indefinitely, but no new licenses will be
issued. PGI command-level compilers for Windows will continue to be enhanced and
supported.

Dropped support for the macOS platform. The last release of PGI products with support
for Apple's macOS was PGI 19.10.

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 5

Chapter 2.
RELEASE OVERVIEW

This chapter provides an overview of Release 2020 of the PGI Accelerator™ compilers
and development tools for 64-bit x86-compatible processor-based workstations, servers,
and clusters running versions of the Linux and Microsoft Windows operating systems.

2.1. Licensing
All PGI products for a given platform include exactly the same PGI compilers and tools
software. The difference is in which features are enabled by the license keys.

PGI release 2019 version 19.1 and newer contains updated (v11.16.2) FlexNet Publisher
license management software.

The updated version of FlexNet Publisher includes various fixes and improved support
across all operating systems.

Important Users with PGI 2018 (18.x) or older need to update their license daemons
to support 19.1 or newer. The new license daemons are backward-compatible with
older PGI releases. For more information, see the FlexNet Update FAQ.

2.1.1. Licensing Terminology
The PGI compilers and tools are license-managed. Before discussing licensing, it is
useful to have common terminology.

‣ License – the right to use PGI compilers and tools as defined by the End-user
License Agreement (EULA), this is a legal agreement between NVIDIA and PGI
end-users. PGI Professional (for-fee, perpetual) licenses are identified by a Product
Identification Number (PIN - see below). You can find a copy of the EULA on
the PGI website , pgicompilers.com/LICENSE, and in the $PGI/<platform>/
<rel_number>/doc directory of every PGI software installation.

‣ License keys – ASCII text strings that enable use of the PGI software and are
intended to enforce the terms of the License. For PGI Professional, License keys are
generated by each PGI end-user on the PGI website using a unique hostid and are

https://www.flexerasoftware.com/producer/products/software-monetization/flexnet-licensing/
https://www.pgroup.com/support/flex.htm
https://www.pgroup.com/LICENSE

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 6

typically stored in a file called license.dat that is accessible to the systems for
which the PGI software is licensed.

‣ PIN – Product Identification Number, a unique 6-digit number associated with a
PGI Professional license. This PIN is included in your order confirmation. The PIN
can also be found in your license key file after VENDOR_STRING=.

‣ PIN tie code – A unique 16-digit number associated with each license (PIN) that
allows others to "tie" that license to their PGI user account, pgicompilers.com/
account for administrative purposes. PGI Professional licensees can use their PIN tie
code to share license administration capabilies with others in their orgaization.

2.1.2. Bundled License Key
Installation may place a temporary license key file named license.dat in the PGI
installation directory if no such file already exists.

If you use a separate license server, for example
LM_LICENSE_FILE=port@server.domain.com, that supports this version, it is
recommended that you remove or rename the license key file in the installation
directory.

2.1.3. Node-locked and Network Floating Licenses
‣ Node-locked single-user licenses allow one user at a time to compile solely on

the system on which both the PGI compilers and tools, and PGI license server are
installed.

‣ Network floating licenses allow one or more users to use the PGI compilers and
tools concurrently on any compatible client systems networked to a license server,
that is, the system on which the PGI network floating license key(s) are installed.
There can be multiple installations of the PGI compilers and tools on client systems
connected to the license server; and client systems can use the license concurrently
up to the maximum number of seats licensed for the license server.

2.2. Release Components
Release 2020 includes the following components:

‣ PGFORTRAN™ native CUDA Fortran, OpenMP, and OpenACC Fortran 2003
compiler.

‣ PGCC® native OpenMP and OpenACC ISO C11 and K&R C compiler.
‣ PGC++® native OpenMP and OpenACC ISO C++17 compiler.
‣ PGI Profiler® OpenACC, CUDA, OpenMP, and multi-thread graphical profiler.
‣ Open MPI version 3.1.3 for 64-bit Linux including support for NVIDIA GPUDirect.

Note that 64-bit linux86-64 MPI messages are limited to < 2 GB size each. As
NVIDIA GPUDirect depends on InfiniBand support, Open MPI is also configured to
use InfiniBand hardware if it is available on the system. InfiniBand support requires
OFED 3.18 or later.

https://www.pgroup.com/account/index.php

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 7

‣ ScaLAPACK 2.0.2 linear algebra math library for distributed-memory systems for
use with Open MPI, MPICH or MVAPICH, and the PGI compilers on 64-bit Linux
for Intel 64 or AMD64 CPU-based installations.

‣ Microsoft HPC Pack 2012 MS-MPI Redistributable Pack (version 4.1) for 64-bit
development environments (Windows only).

‣ BLAS and LAPACK library based on the customized OpenBLAS project source.
‣ A UNIX-like shell environment for 64-bit Windows platforms.
‣ FlexNet license utilities.
‣ Documentation in man page format and online, pgicompilers.com/docs, in both

HTML and PDF formats.

2.3. Terms and Definitions
This document contains a number of terms and definitions with which you may or may
not be familiar. If you encounter an unfamiliar term in these notes, please refer to the
PGI online glossary located at pgicompilers.com/definitions.

These two terms are used throughout the documentation to reflect groups of processors:
Intel 64

64-bit Intel x86-64 CPUs including Intel Core processors, Intel Xeon Nehalem, Sandy
Bridge, Ivy Bridge, Haswell, Broadwell and Skylake processors, and Intel Xeon Phi
Knights Landing.

AMD64
64-bit AMD™ x86-64 CPUs including Opteron and EPYC processors.

2.4. Supported Platforms
There are two platforms supported by the PGI compilers and tools for x86-64 processor-
based systems.

‣ 64-bit Linux – supported on 64-bit Linux operating systems running on a 64-bit x86
compatible processor.

‣ 64-bit Windows – supported on 64-bit Microsoft Windows operating systems
running on a 64-bit x86-compatible processor.

2.5. Supported Operating System Updates
This section describes updates and changes to PGI 2020 that are specific to Linux and
Windows.

2.5.1. Linux
‣ CentOS 6.4 through 8.1
‣ Fedora 28 through 30
‣ openSUSE Leap 42.3 through 15.1

/resources/docs.htm
https://www.pgroup.com/support/definitions.htm
https://www.pgroup.com/definitions

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 8

‣ RHEL 6.4 through 8.1
‣ SLES 12 SP3 through SLES 15 SP1
‣ Ubuntu 14.04, 16.04, 18.04, 18.10, 19.04

2.5.2. Microsoft Windows
PGI products for Windows support most of the features of the PGI products for Linux
environments. PGI products require that Visual Studio 2017, including the Windows 10
Software Development Kit (SDK), be installed prior to installing the compilers.

PGI 18.7 is the last release for Windows that includes bundled Microsoft toolchain
components. Subsequent releases require users to have the Microsoft toolchain
components pre-installed on their systems.

PGI 2020 requires the Windows 10 SDK, even on Windows 7 and 8.1.

These Windows operating systems are supported in PGI 2020:

‣ Windows Server 2008 R2
‣ Windows 7
‣ Windows 8.1
‣ Windows 10
‣ Windows Server 2012
‣ Windows Server 2016
‣ Windows Server 2019

2.6. OpenMP

OpenMP 3.1

The PGI Fortran, C, and C++ compilers support OpenMP 3.1 on all platforms.

The NVIDIA OpenMP runtime implements nested parallelism such that the inner
parallel region or regions are run with one thread.

OpenMP 4.5

The PGI Fortran, C, and C++ compilers compile most OpenMP 4.5 programs for
parallel execution across all the cores of a multicore CPU or server. target regions are
implemented with default support for the multicore host as the target, and parallel
and distribute loops are parallelized across all OpenMP threads. This feature is
supported on Linux/x86 platforms with the LLVM code generator only.

Current limitations include:

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 9

‣ The simd construct can be used to provide tuning hints; the simd construct's
private, lastprivate, reduction, and collapse clauses are processed and
supported.

‣ The declare simd construct is ignored.
‣ The ordered construct's simd clause is ignored.
‣ The task construct's depend and priority clauses are not supported.
‣ The loop construct's linear, schedule, and ordered(n) clauses are not

supported.
‣ The declare reduction directive is not supported.
‣ The reduction clause does not accept pointer or reference types.

Compatibility between NVIDIA and GNU OpenMP Runtimes

NVIDIA's OpenMP runtime implements a subset of OpenMP functionality; this
OpenMP runtime functionality is provided in a library called libnvomp. The GNU
OpenMP runtime also implements a subset of OpenMP functionality OpenMP
applications and libraries compiled with the GNU compilers link in a library called
libgomp.

If GNU and PGI compilers are used to compile different modules of an application that
each uses the OpenMP API, both the GNU and the NVIDIA OpenMP runtimes will
be required for the application to operate. But because these two runtimes implement
intersecting subsets of the OpenMP specification and do not share their state, loading
both OpenMP runtimes is not advised. NVIDIA's OpenMP runtime includes an interface
layer containing the GNU OpenMP API (GOMP). When a PGI-compiled OpenMP
application linked against a GNU-compiled OpenMP library is loaded, the GOMP
runtime calls in the library are resolved by the GOMP interfaces contained in the
NVIDIA OpenMP runtime library; the GOMP library is not itself loaded.

Most of the features in the GNU OpenMP runtime as of GCC 9.2.0 are supported in
our GOMP interface layer. OpenMP 5.0 features are not supported yet and a few other
features such as doacross loops are not supported in our interface layer. GNU-compiled
apps making use of these features will likely terminate at some point if run with
libnvomp loaded instead of libgomp. Certain other features such as nested parallelism
may be implemented differently in the two libraries.

2.7. CUDA Toolkit Versions
The PGI compilers use NVIDIA's CUDA Toolkit when building programs for execution
on an NVIDIA GPU. Every PGI installation package puts the required CUDA Toolkit
components into a PGI installation directory called 2020/cuda.

An NVIDIA CUDA driver must be installed on a system with a GPU before you can run
a program compiled for the GPU on that system. PGI products do not contain CUDA
Drivers. You must download and install the appropriate CUDA Driver from NVIDIA.

http://www.nvidia.com/cuda

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 10

The CUDA Driver version must be at least as new as the version of the CUDA Toolkit
with which you compiled your code.

The PGI tool pgaccelinfo prints the driver version as its first line of output. You can
use it to find out which version of the CUDA Driver is installed on your system.

PGI 20.4 includes the following versions of the CUDA Toolkit:

‣ CUDA 10.1
‣ CUDA 10.2

You can let the compiler pick which version of the CUDA Toolkit to use or you can
instruct it to use a particular version. The rest of this section describes all of your
options.

If you do not specify a version of the CUDA Toolkit, the compiler uses the version of
the CUDA Driver installed on the system on which you are compiling to determine
which CUDA Toolkit to use. This auto-detect feature was introduced in the PGI 18.7
release; auto-detect is especially convenient when you are compiling and running your
application on the same system. In the absence of any other information, the compiler
will look for a CUDA Toolkit version in the PGI 2020/cuda directory that matches
the version of the CUDA Driver installed on the system. If a match is not found, the
compiler searches for the newest CUDA Toolkit version that is not newer than the
CUDA Driver version. If there is no CUDA Driver installed, the PGI 20.4 compilers fall
back to the default of CUDA 10.1.

If the only PGI compiler you have installed is PGI 20.4, then:

‣ If your CUDA Driver is 10.2, the compilers use CUDA Toolkit 10.2.
‣ If your CUDA Driver is 10.1, the compilers use CUDA Toolkit 10.1.
‣ If your CUDA Driver is 10.0, the compilers will issue an error that CUDA Toolkit

10.0 was not found; CUDA Toolkit 10.0 is not bundled with PGI 20.4.
‣ If you do not have a CUDA driver installed on the compilation system, the

compilers use the default CUDA Toolkit version 10.1.
‣ If your CUDA Driver is newer than CUDA 10.2, the compilers will still use the

CUDA Toolkit 10.2. The compiler selects the newest CUDA Toolkit it finds that is
not newer than the CUDA Driver.

You can change the compiler's default selection for CUDA Toolkit version using one of
the following methods:

‣ Use a compiler option. Add the cudaX.Y sub-option to -Mcuda or -ta=tesla
where X.Y denotes the CUDA version. For example, to compile a C file with the
CUDA 10.2 Toolkit you would use:
pgcc -ta=tesla:cuda10.2

Using a compiler option changes the CUDA Toolkit version for one invocation of the
compiler.

‣ Use an rcfile variable. Add a line defining DEFCUDAVERSION to the siterc file in
the installation bin/ directory or to a file named .mypgirc in your home directory.
For example, to specify the CUDA 10.2 Toolkit as the default, add the following line
to one of these files:
set DEFCUDAVERSION=10.2;

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 11

Using an rcfile variable changes the CUDA Toolkit version for all invocations of the
compilers reading the rcfile.

When you specify a CUDA Toolkit version, you can additionally instruct the compiler
to use a CUDA Toolkit installation different from the defaults bundled with the current
PGI compilers. While most users do not need to use any other CUDA Toolkit installation
than those provided with PGI, situations do arise where this capability is needed.
Developers working with pre-release CUDA software may occasionally need to test with
a CUDA Toolkit version not included in a PGI release. Conversely, some developers
might find a need to compile with a CUDA Toolkit older than the oldest CUDA Toolkit
installed with a PGI release. For these users, PGI compilers can interoperate with
components from a CUDA Toolkit installed outside of the PGI installation directories.

PGI tests extensively using the co-installed versions of the CUDA Toolkits and fully
supports their use. Use of CUDA Toolkit components not included with a PGI install is
done with your understanding that functionality differences may exist.

The ability to compile with a CUDA Toolkit other than the versions installed with the
PGI compilers is supported on all platforms; on the Windows platform, this feature is
supported for CUDA Toolkit versions 9.2 and newer.

To use a CUDA toolkit that is not installed with a PGI release, such as CUDA 10.0 with
PGI 20.4, there are three options:

‣ Use the rcfile variable DEFAULT_CUDA_HOME to override the base default
set DEFAULT_CUDA_HOME = /opt/cuda-10.0;

‣ Set the environment variable CUDA_HOME
export CUDA_HOME=/opt/cuda-10.0

‣ Use the compiler compilation line assignment CUDA_HOME=
pgfortran CUDA_HOME=/opt/cuda-10.0

The PGI compilers use the following order of precedence when determining which
version of the CUDA Toolkit to use.

 1. If you do not tell the compiler which CUDA Toolkit version to use, the compiler
picks the CUDA Toolkit from the PGI installation directory 2020/cuda that
matches the version of the CUDA Driver installed on your system. If the PGI
installation directory does not contain a direct match, the newest version in that
directory which is not newer than the CUDA driver version is used. If there is
no CUDA driver installed on your system, the compiler falls back on an internal
default; in PGI 20.4, this default is CUDA 10.1.

 2. The rcfile variable DEFAULT_CUDA_HOME will override the base default.
 3. The environment variable CUDA_HOME will override all of the above defaults.
 4. The environment variable PGI_CUDA_HOME overrides all of the above; it is available

for advanced users in case they need to override an already-defined CUDA_HOME.
 5. A user-specified cudaX.Y sub-option to -Mcuda and -ta=tesla will override all

of the above defaults and the CUDA Toolkit located in the PGI installation directory
2020/cuda will be used.

 6. The compiler compilation line assignment CUDA_HOME= will override all of the
above defaults (including the cudaX.Y sub-option).

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 12

2.8. Compute Capability
The compilers can generate code for NVIDIA GPU compute capabilities 3.0 through 7.5.
The compilers construct a default list of compute capabilities that matches the compute
capabilities supported by the GPUs found on the system used in compilation. If there are
no GPUs detected, the compilers select cc35, cc50, cc60, and cc70.

You can override the default by specifying one or more compute capabilities using either
command-line options or an rcfile.

To change the default with a command-line option, provide a comma-separated list of
compute capabilities to -ta=tesla: for OpenACC or -Mcuda= for CUDA Fortran.

To change the default with an rcfile, set the DEFCOMPUTECAP value to a blank-
separated list of compute capabilities in the siterc file located in your installation's bin
directory:
set DEFCOMPUTECAP=60 70;

Alternatively, if you don't have permissions to change the siterc file, you can add the
DEFCOMPUTECAP definition to a separate .mypgirc file (mypgi_rc on Windows) in
your home directory.

The generation of device code can be time consuming, so you may notice an increase in
compile time as the number of compute capabilities increases.

2.9. Precompiled Open-Source Packages
Many open-source software packages have been ported for use with PGI compilers on
Linux x86-64.

The following PGI-compiled open-source software packages are included in the PGI
Linux x86-64 download package:

‣ OpenBLAS 0.3.3 – customized BLAS and LAPACK libraries based on the OpenBLAS
project source.

‣ Open MPI 3.1.3 – open-source MPI implementation.
‣ ScaLAPACK 2.0.2 – a library of high-performance linear algebra routines for parallel

distributed memory machines. ScaLAPACK uses Open MPI 3.1.3.

The following list of open-source software packages have been precompiled for
execution on Linux x86-64 targets using the PGI compilers and are available to
download from the PGI website at pgicompilers.com/downloads.

‣ ESMF 7.1.0r for Open MPI 3.1.3 – The Earth System Modeling Framework for
building climate, numerical weather prediction, data assimilation, and other Earth
science software applications.

‣ NetCDF 4.6.2 for C++11 – A set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data, written in C. Included in this package are the following
components:

https://www.pgroup.com/support/downloads.php

Release Overview

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 13

‣ NetCDF-C++ 4.3.0 – C++ interfaces to NetCDF libraries.
‣ NetCDF-Fortran 4.4.4 – Fortran interfaces to NetCDF libraries.
‣ Parallel NetCDF 1.11.0 – for Open MPI 3.1.3.
‣ HDF5 1.10.4 – data model, library, and file format for storing and managing

data.
‣ SZIP 2.1.1 – extended-Rice lossless compression algorithm.
‣ ZLIB 1.2.11 – file compression library.

‣ NetCDF 4.6.2 for C++98 – includes all the components listed in NetCDF for C++11
above.

In addition, these software packages have also been ported to PGI on Linux x86-64 but
due to licensing restrictions, they are not available in binary format directly from PGI.
You can find instructions for building them in the Porting & Tuning Guides section of
the PGI website at pgicompilers.com/tips.

‣ FFTW 2.1.5 – version 2 of the Fast Fourier Transform library, includes MPI bindings
built with Open MPI 3.1.3.

‣ FFTW 3.3.8 – version 3 of the Fast Fourier Transform library, includes MPI bindings
built with Open MPI 3.1.3.

For additional information about building these and other packages, please see the
Porting & Tuning Guides section of the PGI website at pgicompilers.com/tips.

https://www.pgroup.com/resources/tips.htm
https://www.pgroup.com/resources/tips.htm

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 14

Chapter 3.
DISTRIBUTION AND DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want
to distribute it to users who need to run it on a variety of systems. This section addresses
how to effectively distribute applications built using PGI compilers and tools.

3.1. Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library
files must be distributed with such programs to enable them to execute on systems
where the PGI compilers are not installed. There are PGI redistributable files for Linux.

3.1.1. PGI Redistributables
The PGI 2020 Release includes these directories:

$PGI/linux86-64/20.4/REDIST
$PGI/win64/20.4/REDIST

These directories contain all of the PGI Linux runtime library shared object files or
Windows dynamically linked libraries that can be re-distributed by PGI 2020 licensees
under the terms of the PGI End-User License Agreement (EULA). For reference, a text-
form copy of the PGI EULA is included in the 20.4 doc directory.

3.1.2. Linux Redistributables
The Linux REDIST directories contain the PGI runtime library shared objects for
all supported targets. This enables users of the PGI compilers to create packages of
executables and PGI runtime libraries that will execute successfully on almost any PGI-
supported target system, subject to these requirements:

‣ End-users of the executable have properly initialized their environment.
‣ Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared

objects.

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 15

Chapter 4.
TROUBLESHOOTING TIPS AND KNOWN
LIMITATIONS

This section contains information about known limitations, documentation errors, and
corrections. Wherever possible, a work-around is provided.

For up-to-date information about the state of the current release, please see the PGI
frequently asked questions (FAQ) webpage.

4.1. Platform-specific Issues

4.1.1. Linux
The following are known issues on Linux:

‣ Programs that incorporate object files compiled using -mcmodel=medium cannot be
statically linked. This is a limitation of the linux86-64 environment, not a limitation
of the PGI compilers and tools.

‣ Passing -M[no]llvm to MPI wrappers (mpicc, mpifort, etc.) is not supported. Doing
so will cause unresolved symbol errors and segmentation faults when compiling.

‣ Using -V<version> with the PGI 2019 or PGI 2020 compilers to target PGI 2018
or earlier releases is not supported. This is a known limitation that is the result of
the switch to using LLVM compilers as the default code generator for the PGI 2019
compilers.

4.1.2. Microsoft Windows
The following are known issues on Windows:

‣ For the Cygwin emacs editor to function properly, you must set the environment
variable CYGWIN to the value "tty" before invoking the shell in which emacs will run.

‣ On Windows, the version of vi included in Cygwin can have problems when the
SHELL variable is defined to something it does not expect. In this case, the following
messages appear when vi is invoked:

https://www.pgroup.com/support/faq.htm

Troubleshooting Tips and Known Limitations

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 16

E79: Cannot expand wildcards Hit ENTER or type command to continue

To work around this problem, set SHELL to refer to a shell in the Cygwin bin
directory, e.g., /bin/bash.

‣ On Windows, runtime libraries built for debugging (e.g., msvcrtd and libcmtd)
are not included with PGI products. When a program is linked with -g, for
debugging, the standard non-debug versions of both the PGI runtime libraries
and the Microsoft runtime libraries are always used. This limitation does not affect
debugging of application code.

4.2. Profiler-related Issues
Some specific issues related to the PGI Profiler:

‣ The Profiler relies on being able to directly call 'dlsym'. If this system call is
intercepted by the program being profiled or by some other library the profiler
may hang at startup. We have encountered this specific problem with some
implementations of MPI. We recommend you disable any features that may be
intercepting the 'dlsym' system call or disable CPU profiling with the --cpu-profiling
off option.

‣ To disable 'dlsym' interception when using IBM's spectrum MPI set the
environment variable: PAMI_DISABLE_CUDA_HOOK=1, omit the following
option: -gpu and add the options: -x PAMI_DISABLE_CUDA_HOOK and -
disable_gpu_hooks.

4.3. OpenACC Issues

ACC routine directive limitations

This section includes known limitations in PGI's support for OpenACC directives. PGI
plans to support these features in a future release.

‣ Fortran assumed-shape arguments are not yet supported.

Clause Support Limitations

‣ Not all clauses are supported after the device_type clause.

OpenACC Profiling limitations

Limitations of PGI's OpenACC library:

‣ The OpenACC Profiling interface is not available for applications linked with static
libraries, with "-Bstatic" or "-Bstatic_pgi".

Release Notes for x86 CPUs and Tesla GPUs Version 2020 | 17

Chapter 5.
CONTACT INFORMATION

You can contact NVIDIA's PGI compilers and tools team at:

9030 NE Walker Road, Suite 100
Hillsboro, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: https://www.pgroup.com or pgicompilers.com

The PGI User Forum, pgicompilers.com/userforum is monitored by members of
the PGI engineering and support teams as well as other PGI customers. The forums
contain answers to many commonly asked questions. Log in to the PGI website,
pgicompilers.com/login to access the forums.

Many questions and problems can be resolved by following instructions and the
information available in the PGI frequently asked questions (FAQ), pgicompilers.com/
faq.

Submit support requests using the PGI Technical Support Request form,
pgicompilers.com/support-request.

mailto:sales@pgroup.com
https://www.pgroup.com
https://www.pgroup.com
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/userforum/index.php
https://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Cluster Development Kit, PGC++, PGCC, PGDBG, PGF77,
PGF90, PGF95, PGFORTRAN, PGHPF, PGI, PGI Accelerator, PGI CDK, PGI Server,
PGI Unified Binary, PGI Visual Fortran, PGI Workstation, PGPROF, PGROUP, PVF,
and The Portland Group are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2013–2020 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools

	Table of Contents
	What's New in PGI 2020
	1.1. What's New in 20.4
	1.2. What's New in 20.1

	Release Overview
	2.1. Licensing
	2.1.1. Licensing Terminology
	2.1.2. Bundled License Key
	2.1.3. Node-locked and Network Floating Licenses

	2.2. Release Components
	2.3. Terms and Definitions
	2.4. Supported Platforms
	2.5. Supported Operating System Updates
	2.5.1. Linux
	2.5.2. Microsoft Windows

	2.6. OpenMP
	2.7. CUDA Toolkit Versions
	2.8. Compute Capability
	2.9. Precompiled Open-Source Packages

	Distribution and Deployment
	3.1. Application Deployment and Redistributables
	3.1.1. PGI Redistributables
	3.1.2. Linux Redistributables

	Troubleshooting Tips and Known Limitations
	4.1. Platform-specific Issues
	4.1.1. Linux
	4.1.2. Microsoft Windows

	4.2. Profiler-related Issues
	4.3. OpenACC Issues

	Contact Information

