

The Portland Group

 PGI® CDK
Cluster Development Kit

 Release Notes

 Release 2010

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no

warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.

The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran,

PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the

express written permission of STMicroelectronics and/or The Portland Group.

PGI CDK® Release Notes
Copyright © 2010 The Portland Group® and STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America

First Printing: Release 2010, version 10.0, November 2009

Second Printing: Release 2010, version 10.1, January 2010

Third Printing: Release 2010, version 10.2, February 2010

Fourth Printing: Release 2010, version 10.3, March 2010

Fifth Printing: Release 2010, version 10.4, April 2010

Sixth Printing: Release 2010, version 10.5, May 2010

Seventh Printing: Release 2010, version 10.6, June 2010

ID: 101591748

Technical support: trs@pgroup.com

Sales: sales@pgroup.com

Web: www.pgroup.com

iii

Contents
1. Release Overview ... 1

Product Overview .. 1

Terms and Definitions ... 2

Supported Platforms .. 3

2. New or Modified Compiler Features ... 5

What's New in CDK Release 2010 .. 5

10.6 Additions .. 5

10.5 Additions .. 6

10.4 Additions .. 7

10.3 Additions .. 8

2010 Additions Prior to 10.3 .. 9

Getting Started .. 10

Using -fast, -fastsse, and Other Performance-Enhancing Options ... 10

New or Modified Compiler Options ... 11

C++ Compilation Requirements .. 12

Fortran Enhancements ... 13

Enhanced Fortran Interoperability with C ... 13

New or Modified Fortran Statements .. 13

New or Modified Fortran Intrinsic Functions ... 14

New Fortran Intrinsic Modules .. 14

Fortran I/O Enhancements ... 17

New or Modified Tools Support .. 18

Library Interfaces .. 18

Environment Modules .. 18

3. PGI Accelerator ... 19

Components ... 19

Availability .. 19

User-directed Accelerator Programming ... 19

Features Not Covered or Implemented ... 20

System Requirements ... 20

iv

Supported Processors and GPUs .. 20

Installation and Licensing ... 20

Running an Accelerator Program .. 20

PGI Accelerator Compilers Runtime Libraries .. 20

Environment Variables ... 21

Applicable Command Line Options .. 22

PGI Unified Binary for Accelerators ... 23

Profiling Accelerator Kernels .. 24

Supported Intrinsics .. 24

4. Distribution and Deployment .. 25

Application Deployment and Redistributables .. 25

PGI Redistributables .. 25

Linux Redistributables .. 25

5. The PGI Windows CDK ... 27

Build MPI Applications with MSMPI ... 27

Using MSMPI libraries ... 27

Generate MPI Profile Data .. 27

Debug MSMPI Applications with PGDBG ... 28

Bash Shell Example ... 28

DOS Shell Example .. 29

6. Troubleshooting Tips and Known Limitations ... 31

General Issues .. 31

Platform-specific Issues ... 32

Linux ... 32

PGDBG-related Issues .. 32

PGPROF-related Issues ... 32

CUDA Fortran Toolkit Issues ... 32

Corrections .. 33

7. Contact Information .. 35

1

Chapter 1. Release Overview
Welcome to Release 2010 of PGI Cluster Development Kit, or PGI CDK, a set of Fortran, C, and C++

compilers and development tools for 32-bit and 64-bit x86-compatible processor-based workstations and

servers running versions of the Linux operating systems.

A cluster is a collection of compatible computers connected by a network. The PGI CDK Cluster Development

Kit supports parallel computation on clusters of 32-bit and 64-bit x86-compatible AMD and Intel processor-

based Linux workstations or servers interconnected by a TCP/IP-based network, such as Ethernet.

Support for cluster programming does not extend to clusters combining 64-bit processor-based systems with

32-bit processor-based systems, unless all are running 32-bit applications built for a common set of working

x86 instructions.

This document describes changes between Release 2010 and previous releases of the PGI CDK, as well as late-

breaking information not included in the current printing of the PGI User's Guide. There are two platforms

supported by the PGI CDK compilers and tools:

• 32-bit Linux - supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or an

x64 compatible processor.

• 64-bit/32-bit Linux - includes all features and capabilities of the 32-bit Linux version, and is also supported

on 64-bit Linux operating systems running an x64 compatible processor.

These versions are distinguished in these release notes where necessary.

Product Overview
Release 2010 of PGI CDK includes the following components:

• PGFORTRAN native OpenMP and auto-parallelizing Fortran 90/95 compiler.

• PGF77 native OpenMP and auto-parallelizing FORTRAN 77 compiler.

• PGHPF data parallel High Performance Fortran compiler.

• PGCC native OpenMP and auto-parallelizing ANSI C99 and K&R C compiler.

• PGC++ native OpenMP and auto-parallelizing ANSI C++ compiler.

Terms and Definitions

2

• PGPROF MPI, OpenMP, and multi-thread graphical profiler.

• PGDBG MPI, OpenMP, and multi-thread graphical debugger.

• MPICH MPI libraries, version 1.2.7, for both 32-bit and 64-bit development environments (Linux only).

Note
64-bit linux86-64 MPI messages are limited to <2GB size each.

• MPICH2 MPI libraries, version 1.0.5p3, for both 32-bit and 64-bit development environments.

• MVAPICH MPI libraries, version 1.1, for both 32-bit and 64-bit development environments

• ScaLAPACK linear algebra math library for distributed-memory systems, including BLACS version 1.1- the

Basic Linear Algebra Communication Subroutines) and ScaLAPACK version 1.7 for use with MPICH or

MPICH2 and the PGI compilers on Linux systems with a kernel revision of 2.4.20 or higher. This is provided

in both linux86 and linux86-64 versions for AMD64 or Intel 64 CPU-based installations.

Note
Note: linux86-64 versions are limited.

• FLEXnet license utilities.

The release contains the following documentation and tutorial materials:

• Online documentation in PDF, HTML and man page formats.

• Online HPF tutorials that provide insight into cluster programming considerations.

Note
Compilers and libraries can be installed on other platforms not in the user cluster, including another

cluster, as long as all platforms use a common floating license server.

Terms and Definitions
These release notes contain a number of terms and definitions with which you may or may not be familiar. If

you encounter a term in these notes with which you are not familiar, please refer to the online glossary at

www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

• AMD64 – a 64-bit processor from AMD designed to be binary compatible with 32-bit x86 processors,

and incorporating new features such as additional registers and 64-bit addressing support for improved

performance and greatly increased memory range. This term includes the AMDTM Athlon64TM, AMD

OpteronTM, AMD TurionTM, AMD Barcelona, AMD Shanghai, and AMD Istanbul processors.

• Intel 64 – a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be

binary compatible with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, Intel Core 2, Intel

Penryn, and Intel Core i7 (Nehalem) processors.

Chapter 1. Release Overview

3

Supported Platforms
There are six platforms supported by the PGI Workstation and PGI Server compilers and tools:

• 32-bit Linux - supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or

an x64 compatible processor.

• 64-bit/32-bit Linux – includes all features and capabilities of the 32-bit Linux version, and is also

supported on 64-bit Linux operating systems running an x64 compatible processor.

• 32-bit Windows – supported on 32-bit Windows operating systems running on either a 32-bit x86

compatible or an x64 compatible processor.

• 64-bit/32-bit Windows – includes all features and capabilities of the 32-bit Windows version, and is also

supported on 64-bit Windows operating systems running an x64 compatible processor.

• 32-bit Apple Mac OS X – supported on 64-bit Apple Mac operating systems running on either a 64-bit Intel-

based Mac system.

• 64-bit Apple Mac OS X – supported on 32-bit Apple Mac operating systems running on either a 32-bit or

64-bit Intel-based Mac system.

4

5

Chapter 2. New or Modified Compiler
Features

This chapter provides information about the new or modified compiler features of Release 2010 of the PGI

compilers and tools as compared to prior releases.

What's New in CDK Release 2010

10.6 Additions

• Additional Fortran 2003 features in 10.6 include:

• deferred type-bound procedures - procedures that are defined for the purpose of defining a base type for

a future extension.

• NON_OVERRIDABLE attribute - specifies that the type-bound procedure cannot be overridden during

type extension.

• PRIVATE statement for type-bound procedures - specifies the accessibility of the type-bound procedure.

The accessibility of components within the derived types is separate from the accessibility of the type-

bound procedures. By default, a type-bound procedure is public, unless a PRIVATE statement is in

the type’s procedure section or it is explicitly declared to be PRIVATE.

• PRIVATE and PUBLIC attributes - determine where the type-bound procedures can be referenced. The

default is public, which allows the procedures to be referenced anywhere in the program having that

type of variable. If the procedure is private, it can only be referenced from within the module in

which it is defined.

Mixed component accessibility allows some components of a type to be private while others are

public. The private attribute sets the default accessibility of the component, but can be overridden

or confirmed in the component definition.

• ASYNCHRONOUS statement and attribute - warn the compiler that incorrect results might occur

for optimizations involving movement of code across wait statements, or statements that cause wait

operations.

What's New in CDK Release 2010

6

• ABSTRACT and DEFERRED - are placeholders. When abstract is specified, the compiler warns if any

variable is declared of that type. When deferred is specified for a procedure, the compiler warns if the

procedure is not overridden.

• The IEEE standard intrinsic module ieee_features supports specification of essential IEEE features.

It provides access to one derived type and a collection of named constants of this type that affect the

manner in which code is compiled in the scoping units.

• Enhancements to I/O that include the following. For more details on these features, refer to “Fortran I/O

Enhancements,” on page 17.

• I/O Decimal specifier - Ability to use a comma instead of a decimal point in input and output. Support

for this feature is through the DECIMAL=scalar_char clause or through use of the dp and dc

descriptors.

• I/O Encoding specifier - Ability to specify input/output encoding using the encoding= specifier on

the OPEN or INQUIRE statements.

• Intrinsic functions max, min, maxloc, minloc, maxval, and minval now accept arguments of type

character.

• Statements allocate and deallocate now accept an errmsg= clause. The clause takes a scalar

default character string variable. This variable is assigned an explanatory message if an error condition

occurs.

• The allocate statement now accepts the source= clause. Instead of allocating a variable with an

explicitedly specified type and type parameter, it is now possible to take the type, type parameters, and

value from another variable or expression.

Specifying a polymorphic variable for the source= clause is not yet supported.

• PGI Accelerator x64+GPU native Fortran 95/03 and C99 compilers, and PGI CUDA Fortran
now support the following CUDA built-in functions: syncthreads_count, syncthreads_and,

syncthread_all, threadfence, threadfence_block, threadfence_system, ballot. In addition, the

CUDA device code now supports the functions popcnt(), poppar(), and leadz().

• PGPROF now supports Accelerator model and CUDA Fortran profiling.

10.5 Additions

• Additional Fortran 2003 features in 10.5 include:

• Type-bound procedures - procedures that are invoked through an object and the actual procedure

executed depends on the dynamic type of the object.

• PASS and NOPASS attributes - allow the procedure to specify to which argument, if any, the invoking

object is passed. For example, pass(x) passes it to dummy argument x, while nopass indicates not to

pass it at all.

• PGI Accelerator x64+GPU native Fortran 95/03 and C99 compilers, and PGI CUDA Fortran now

support the runtime library routine acc_get_device_num which returns the number of the device being

Chapter 2. New or Modified Compiler Features

7

used to execute an accelerator region. For a complete list of supported routines, refer to “PGI Accelerator

Compilers Runtime Libraries”.

• Accelerator Profiling: If you are profiling a program that uses the PGI Accelerator Model or PGI CUDA

Fortran, pgcollect automatically collects information about accelerator performance and includes that

information in the profile output for the program.

Note

Inclusion of the accelerator performance information in the program’s profile output occurs for

both time-based sampling and, on Linux, for event-based sampling.

On some Linux systems, initialization of the CUDA driver for accelerator hardware that is in a power-save

state can take a significant amount of time. You can avoid this delay in one of these ways:

• Run the pgcudainit program in the background, which keeps the GPU powered on and significantly

reduces initialization time for subsequent programs. For more information on this approach, refer to

Chapter 7 of the PGI User’s Guide.

• Use the pgcollect option -accinit to eliminate much of the initialization overhead and to provide a

more accurate profile.

pgcollect -time -accinit myaccelprog

10.4 Additions

• PGI Accelerator x64+GPU native Fortran 95/03 and C99 compilers, and PGI CUDA Fortran now

support CUDA 3.0 Toolkit and compute capability 2.0.

• To specify CUDA compute capability 2.0, use one of the following options:

In the Accelerator: -ta=nvidia:cc20

In CUDA Fortran: -Mcuda=cc20

• To specify the version of the CUDA toolkit that is targeted by compilers, use one of the following

options:

In the Accelerator:

In the Accelerator:

 For CUDA toolkit 3.0 -ta=nvidia:cuda3.0 or

-ta=nvidia:3.0

 For CUDA toolkit 2.3 -ta=nvidia:cuda2.3 or

-ta=nvidia:2.3

For CUDA Fortran:

 For CUDA toolkit 3.0 -Mcuda=cuda3.0 or

-Mcuda=3.0.

What's New in CDK Release 2010

8

 For CUDA toolkit 2.3 -Mcuda=cuda2.3 or

-Mcuda=2.3

Note
Compiling with the CUDA 3.0 toolkit generates binaries that may not work on machines with a

2.3 CUDA driver. For more information, refer to “CUDA Fortran Toolkit Issues,” on page 32.

• A wait for kernel option, –ta=nvidia:[no]wait, is available when targeting NVIDIA Accelerator; the

user can specify whether to wait for the kernel to finish before continuing in the host program. The default

is to wait.

• Added support for fused multiply-add instructions in CUDA Fortran. The user can now control the

generation of fused multiply-add instructions in both the Accelerator and with CUDA Fortran. In addition

to the existing –ta=nvidia:nofma option already available for the Accelerator, PGI 10.4 and higher

support the equivalent option in CUDA Fortran: –Mcuda=nofma.

• Added ability to use fast math library in CUDA Fortran. The user can now specify to use routines

from the fast math library. In addition to the existing –ta=nvidia:fastmath option available for the

Accelerator, PGI 10.4 and higher support the equivalent option in CUDA Fortran: –Mcuda=fastmath.

• Added support in CUDA Fortran for using allocatable device arrays in modules which contain global

subroutines, accessible from both the host code which uses the module, and the device code contained

within the module.

10.3 Additions

• Enhanced compute capabilities with CUDA in 10.3:

The default compute capabilities target both compute capability 1.0 and 1.3. Further, beginning with 10.3,

the user can specify multiple compute capabilities to be targeted.

For example, to target all four compute capabilities 1.0, 1.1, 1.2, and 1.3, use these options on the

command line:

-Mcuda=cc10, -Mcuda=cc11, -Mcuda=cc12, -Mcuda=cc13

or
-Mcuda=cc10,cc11,cc12,cc13

• Additional Fortran 2003 features in 10.3 include:

• Abstract interfaces

• IS_IOSTAT_END, IS_IOSTAT_EOR, and NEW_LINE intrinsics

• Object-oriented features including classes, type extensions (non-polymorphic), polymorphic entities,

typed allocation, inheritance association, as well as EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsics.

• New and modified statements, including: WAIT statement; blank, pad, and pos specifiers for the READ

statement; delim and pos specifiers for the WRITE statement; and pending and pos specifiers for the

INQUIRE statement

For more information on these features, refer to “Fortran Enhancements,” on page 13.

Chapter 2. New or Modified Compiler Features

9

2010 Additions Prior to 10.3

• PGI Accelerator x64+GPU native Fortran 95/03 and C99 compilers support the full PGI Accelerator

programming model v1.0 standard for directive-based GPU programming and optimization as well as

several features from the v1.1 standard.

• Supported on Linux, MacOS, and Windows

• Device-resident data using the UPDATE directive

• COMPLEX and DOUBLE COMPLEX data, Fortran derived types, C structs

• Automatic GPU-side loop unrolling

• Support for Accelerator regions nested within OpenMP parallel regions

• PGI CUDA Fortran extensions supported in the PGI 2010 Fortran 95/03 compiler enable explicit CUDA

GPU programming

• Declare variables in CUDA GPU device, constant or shared memory

• Dynamically allocate page-locked pinned host memory, CUDA device main memory, constant memory

and shared memory

• Move data between host and GPU with Fortran assignment statements

• Declare explicit CUDA grids/thread-blocks to launch GPU compute kernels

• Support for CUDA Runtime API functions and features

• Additional options for CUDA Fortran, such as -Mcuda=keepgpu, which keeps the generated GPU code

for CUDA Fortran.

• Efficient host-side emulation for easy CUDA Fortran debugging

• Fortran 2003 incremental features including: namelist I/O on internal files, IMPORT, pointer

reshaping, procedure pointers and statement, iso_c_binding intrinsic module, c_associated,

c_f_pointer, c_f_procpointer, enum, move_alloc(), iso_fortran_env module, optional kind to

intrinsics, allocatable scalars, volatile attribute and statement, pass and nopass attributes, bind(c), value,

command_argument_count, get_command, get_command_argument, get_environment_variable,

ieee_exceptions module, and ieee_arithmetic module.

• PGC++/ PGCC (2010 C++) new features and enhancements include:

• The latest EDG release 4.1, with enhanced GNU and Microsoft compatibility

• extern inline support by default: Multiple copies of inline functions in an executable are now removed.

• Extended internal tables for better support of large codes, including improved BOOST support.

• C++ -mp thread safe exception handling.

• Expanded Operating Systems Support including RHEL 5, Fedora 11, SLES 11, SuSE 11.1, Ubuntu 9,

Windows 7 and MacOS Snow Leopard

• Compiler optimizations and enhancements including:

Getting Started

10

• OpenMP support for up to 256 cores

• AVX code generation

• Partial redundancy elimination

• Executable size improvements

• Updated Documentation including the PGI Users Guide, PGI Tools Guide, and PGI Fortran Reference.

Getting Started
By default, the PGI 2010 compilers generate code that is optimized for the type of processor on which

compilation is performed, the compilation host. If you are unfamiliar with the PGI compilers and tools, a good

option to use by default is –fast or –fastsse.

Using -fast, -fastsse, and Other Performance-Enhancing Options

These aggregate options incorporate a generally optimal set of flags for targets that support SSE capability.

These options incorporate optimization options to enable use of vector streaming SIMD instructions for 64-bit

targets. They enable vectorization with SSE instructions, cache alignment, and flushz.

Note

The contents of the –fast and –fastsse options are host-dependent.

–fast and –fastsse typically include these options:

–O2 Specifies a code optimization level of 2.

–Munroll=c:1 Unrolls loops, executing multiple instances of the original loop

during each iteration.

–Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

–Mlre Indicates loop-carried redundancy elimination

–Mpre Indicates partial redundancy elimination

–fast for 64-bit targets and –fastsse for both 32- and 64-bit targets also typically include:

–Mvect=sse Generates SSE instructions.

–Mscalarsse Generates scalar SSE code with xmm registers; implies –Mflushz.

–Mcache_align Aligns long objects on cache-line boundaries

Note. On 32-bit systems, if one file is compiled with the –Mcache_align option,

all files should be compiled with it. This is not true on 64-bit systems.

–Mflushz Sets SSE to flush-to-zero mode.

–M[no]vect Controls automatic vector pipelining.

Chapter 2. New or Modified Compiler Features

11

Note

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler,

even for FORTRAN 77 code, and the –fastsse option.

In addition to –fast and –fastsse, the –Mipa=fast option for inter-procedural analysis and

optimization can improve performance. You may also be able to obtain further performance improvements

by experimenting with the individual –Mpgflag options detailed in the PGI User’s Guide, such as –Mvect,

–Munroll, –Minline, –Mconcur, –Mpfi/–Mpfo and so on. However, increased speeds using these

options are typically application- and system-dependent. It is important to time your application carefully when

using these options to ensure no performance degradations occur.

New or Modified Compiler Options
Unknown options are treated as errors instead of warnings. This feature means it is a compiler error to pass

switches that are not known to the compiler; however, you can use the switch –noswitcherror to issue

warnings instead of errors for unknown switches.

The following compiler options have been added or modified in PGI 2010:

• –m32 indicates to use the 32-bit compiler for the default processor type.

• –m64 indicates to use the 64-bit compiler for the default processor type.

• –ta=nvidia(,nvidia_suboptions),host is a switch associated with the PGI Accelerator

compilers. –ta defines the target architecture.

In release 2010, the nvidia_suboptions include:

analysis Perform loop analysis only; do not generate GPU code.

cc10, cc11, cc12,

cc13, cc20

Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0

respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.

Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

time Link in a limited-profiling library.

[no]wait Wait for each kernel to finish before continuing in the host program.

C++ Compilation Requirements

12

levels:n Instructs the compiler to perform n levels of inlining. The default

number of levels is 10.

maxsize:n Instructs the compiler not to inline functions of size > n. The default

size is 100.

totalsize:n Instructs the compiler not to stop inlining when the size equals n.

The default size is 800.

• New options –pre and –Mnopre exist to enable/disable partial redundancy elimination.

• New options –Meh_frame and –Mnoeh_frame instruct the linker to keep eh_frame call frame sections

in the executable.

Note

The eh_frame option is available only on newer Linux or Windows systems that supply the system

unwind libraries.

• A new option --gnu_version <num> exists that sets the GNU C++ compatibility version. (C++ only)

• A new option -Mcuda tells the compiler to enable CUDA Fortran. In release 2010, -Mcuda has these

suboptions:

cc10, cc11, cc12,

cc13, cc20

Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0

respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

emu Enable CUDA Fortran emulation mode.

fastmath Use routines from the fast math library.

keepbin Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu Keep the generated GPU code (.gpu) for CUDA Fortran.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.

Leaving this blank indicates no limit.

nofma Do not generate fused multiply-add instructions.

C++ Compilation Requirements

Note

We break object code compatibility in this release for C++.

All C++ source files and libraries must be recompiled to link with 10.1 object files.

Chapter 2. New or Modified Compiler Features

13

Fortran Enhancements
The following sections describe enhancements to Fortran related to interoperability with C, statements,

assignments, intrinsics, modules, array-related allocation, and I/O operations.

Enhanced Fortran Interoperability with C
Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must have equivalent

declarations made in both C and Fortran. In this release, PGI has expanded Fortran interoperability with C by

adding these components:

• Enumerators - a set of integer constants. The kind of enumerator corresponds to the integer type that C

would choose for the same set of constants.

• c_f_pointer – a subroutine that assigns the C pointer target, cptr, to the Fortran pointer, fptr, and optionally

specifies its shape, shape. The syntax is:

 c_f_pointer (cptr, fptr [,shape])

• c_f_procpointer – a subroutine that associates the C pointer target, cptr, with the target of a C function

pointer. The syntax is:

 c_f_procpointer (cptr, fptr)

• c_associated – a subroutine that determines the status of the C pointer target, cptr1, or determines if one

C_PTR, cptr1 is associated with a target C_PTR, cptr2. The syntax is:

 c_associated (cptr1[,cptr2])

For more information on these components, refer to Chapter 9, Interoperability with C of the PGI Fortran

Reference.

New or Modified Fortran Statements
The following Fortran statements are new. For complete descriptions, refer to chapter 3, Fortran Statements

of the PGI Fortran Reference.

ASYNCHRONOUS

Indicates to the compiler that incorrect results might occur for optimizations involving movement of code

across wait statements, or statements that cause wait operations.

WAIT

Performs a wait operation for specified pending asynchronous data transfer operations.

The following Fortran statements are enhanced in this release:

ALLOCATE

New specifiers of ERRMSG and SOURCE are now available.

INQUIRE

New specifiers of PENDING and POS are now available.

READ

New specifiers of ASYNCHRONOUS, BLANK, DECIMAL, PAD, and POS are now available.

Fortran Enhancements

14

WRITE

New specifiers of ASYNCHRONOUS, DECIMAL, DELIM and POS are now available.

New or Modified Fortran Intrinsic Functions
An intrinsic is a function available in a given language whose implementation is handled specifically by the

compiler. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it and

optimize it for the situation. In this release, PGI implemented the following intrinsics. For detailed information

about these intrinsics, refer to the chapter 6, Intrinsics of the PGI Fortran Reference.

EXTENDS_TYPE_OF(A,B)

Determines whether the dynamic type of A is an extension type of the dynamic type of B. Returns either

true or false.

GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])

Returns the specified command line argument of the command that invoked the program.

GET_COMMAND([COMMAND, LENGTH, STATUS])

Returns the entire command line that was used to invoke the program.

GET_ENVIRONMENT_VARIABLE (NAME [,VALUE, LENGTH, STATUS, TRIM_NAME])

Returns the value of the specified environment variable.

IS_IOSTAT_END(STAT)

Tests whether a variable has the value of the I/O status: “end of file”; returns either true or false.

IS_IOSTAT_EOR(STAT)

Tests whether a variable has the value of the I/O status: “end of record”; returns either true or false.

NEW_LINE(A)

Returns the newline character.

SAME_TYPE_AS(A,B)

Determines whether the dynamic type of A is the same as the dynamic type of B. Returns either true or

false.

New Fortran Intrinsic Modules
PGI 2010 now supports the Fortran intrinsic modules ieee_arithmetic, ieee_exceptions, and

ieee_features.

IEEE_ARITHMETIC

The ieee_arithmetic intrinsic module provides access to two derived types, named constants of these

types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module ieee_exceptions, so all the

features of ieee_exceptions are included.

Note
For specific information on these types, functions, and subroutines, refer to the PGI Fortran

Reference.

Chapter 2. New or Modified Compiler Features

15

Defined Elemental Operators

• ==

For two values of one of the derived types, this operator returns true if the values are the same; false,

otherwise.

• /=

For two values of one of the derived types, this operator returns true if the values are different; false,

otherwise.

Derived Types

• ieee_class_type - Identifies a class of floating point values.

• ieee_round_type - Identifies a particular round mode.

The following table shows the values that each of these class types can take:

This derived type... Takes these values...
ieee_class_type ieee_signaling_nan

ieee_quiet_nan

ieee_negative_inf

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_postive_zero

ieee_postive_denormal

ieee_postive_normal

ieee_postive_inf

ieee_other_value (Fortran 2003 only)

ieee_round_type ieee_nearest

ieee_to_zero

ieee_up

ieee_down

Note

For specific information on these values refer to the PGI Fortran Reference.

Inquiry Functions

ieee_support_datatype([x])

ieee_support_denormal([x])

ieee_support_divide([x])

ieee_support_inf([x])

ieee_support_nan([x])

ieee_support_rounding (round_value[,x])

ieee_support_sqrt([x])

ieee_support_standard ([x])

ieee_support_underflow_control ([x]) Fortran 2003 only

Fortran Enhancements

16

Elemental Functions

ieee_class(x)

ieee_copy_sign(x,y)

ieee_is_finite(x)

ieee_is_nan(x)

ieee_is_negative(x)

ieee_is_normal(x)

ieee_is_logb(x)

ieee_next_after(x,y)

ieee_rem(x,y)

ieee_rint(x,y)

ieee_scaln(x,i)

ieee_unordered(x,y)

ieee_value(x,class)

ieee_support_datatype

Non-Elemental Subroutines

ieee_get_rounding_mode(round_value)

ieee_get_underflow_mode(gradual)

ieee_set_rounding_mode(round_value)

ieee_gst_underflow_mode(gradual)

Transformational Function

ieee_selected_real_kind([p] [,r])

For more information on these intrinsic modules, and on the derived types, functions, and subroutines to

which they provide access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

IEEE_EXCEPTIONS

The ieee_exceptions intrinsic module specifies accessibility of overflow and divide-by-zero flags as well

as determines the level of support for other execptions. This module provides access to two derived types,

named constants of these types, and a collection of generic procedures.

Derived Types

ieee_flag_type - Identifies a particular exception flag.

ieee_status_type - Saves the current floating-point status.

Inquiry Functions

ieee_support_flag(flag [,x])

ieee_support_halting(flag)

Subroutines for Flags and Halting Modes

ieee_get_flag(flag, flag_value)

ieee_get_halting_mode(flag, halting)

ieee_set_flag(flag, flag_value)

ieee_set_halting_mode(flag, halting)

Subroutines for Floating-Point Status

ieee_get_status(status_value)

ieee_set_status(status_value)

Chapter 2. New or Modified Compiler Features

17

For more information on this intrinsic module and the derived types, functions, and subroutines to which it

provides access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

IEEE_FEATURES

The ieee_features intrinsic module supports specification of essential IEEE features. It provides access to

one derived type and a collection of named constants of this type.

Derived Type

ieee_features_type - Identifies a particular feature and may only take values that are

those of named constants defined in the module.

Named Constants

ieee_datatype

ieee_denormal

ieee_divide

ieee_halting

ieee_inexact_flag

ieee_inf

ieee_invalid_flag

ieee_nan

ieee_rounding

ieee_sqrt

ieee_underflow_flag

For more information on this intrinsic module and the derived types, functions, and subroutines to which it

provides access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

Fortran I/O Enhancements
PGI 2010 implements these enhancements related to Input and Output:

• Ability to use a comma instead of a decimal point in input and output. Support for this feature is through the

DECIMAL=scalar_char clause or through use of the dp and dc descriptors.

• The DECIMAL=scalar_char clause is available for OPEN, READ, and WRITE statements, where

scalar_char is a scalar character expression which takes the value 'point' or 'comma'. When the edit

mode is point, decimal points appear in both input and output. When the edit mode is comma, commas

rather than decimal points appear in both input and output.

For OPEN statements, this value specifies the default decimal edit mode for the unit. For READ/WRITE

statements, this decimal edit mode is the default mode only for the duration of that READ/WRITE

statement.

• The dc and dp descriptors, representing decimal comma and decimal point edit modes, respectively,

are valid in format processing, such as in a FORMAT statement. The specific edit mode takes effect

immediately when encountered in formatting, and stays in effect until either another descriptor is

encountered or until the end of the current I/O statement.

• Ability to specify input/output encoding using the encoding= specifier on the OPEN statement. Further, the

use of this specifier with the INQUIRE statement returns the encoding of the file:

UTF-8 specifies the file is connected for UTF-8 I/O or that the processor can detect this format in some way.

New or Modified Tools Support

18

UNKNOWN specifies the processor cannot detect the format.

A processor-dependent value indicates the file is in another known format, such as UTF-16LE.

New or Modified Tools Support
The PGI Tools Guide describes the tools in detail as well as explains the new features highlighted in this

section.

PGPROF graphical MPI/OpenMP/multi-thread performance analysis and tuning profiler has these

enhancements in this release:

• PGI Accelerator and CUDA Fortran GPU-side performance statistics

• New data collection mechanism via pgcollect enables profiling without re-compiling or any special

software co-installation requirements for OProfile. You can use pgcollect in standalone mode for time-based

sampling using only PGI software – both on Linux and on Mac OS X 10.5 (Leopard).

• Support for profiling of code in shared object files – on Linux.

Dynamic libraries are not yet supported on Mac OS X.

• Updated GUI for easier navigation with tabbed access to multiple source files and improved drill-down to

assembly code

• Support for profiling of binaries compiled by non-PGI compilers.

• Uniform cross-platform performance profiling without re-compiling or any special software privileges on

Linux, MacOS and Windows

• Updated graphical user interface

Library Interfaces
PGI provides access to a number of libraries that export C interfaces by using Fortran modules. These libraries

and functions are described in Chapter 8 of the PGI User's Guide.

Environment Modules
On Linux, if you use the Environment Modules package (e.g., the module load command), PGI 2010 includes

a script to set up the appropriate module files.

19

Chapter 3. PGI Accelerator
An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can offload data and

executable kernels to perform compute-intensive calculations. This chapter describes the new PGI Accelerator

compilers, including the collection of compiler directives used to specify regions of code in Fortran and C

programs that can be offloaded from a host CPU to an attached accelerator.

Note
For more information and more details about the PGI Accelerator compilers, the programming

model, directives, and how to run an accelerator program, refer to Chapter 7, Using an Accelerator

and Chapter 18, PGI Accelerator Compilers Reference, in the PGI User's Guide.

Components
The PGI Accelerator compiler technology includes the following components:

• PGFORTRAN auto-parallelizing accelerator-enabled Fortran 90/95 compiler

• NVIDIA CUDA Toolkit components

• A simple command-line tool to detect whether the system has an appropriate GPU or accelerator card.

No accelerator-enabled debugger is included with this release.

Availability
The PGI 2010 Fortran Accelerator compilers are available only on x86 processor-based workstations and

servers with an attached NVIDIA CUDA-enabled ahas a CUDA-enabled GeForce, Quadro, Tesla, or Fermi card.

These compilers target all platforms that PGI supports except 64-bit Mac OS X. For a list of supported GPUs,

refer to the Accelerator Installation and Supported Platforms list in the latest Installation Guide.

User-directed Accelerator Programming
In user-directed accelerator programming the user specifies the regions of a host program to be targeted for

offloading to an accelerator device. The bulk of a user’s program, as well as regions containing constructs

that are not supported on the targeted accelerator, are executed on the host. This chapter concentrates on

specification of loops and regions of code to be offloaded to an accelerator.

Features Not Covered or Implemented

20

Features Not Covered or Implemented
Currently the PGI Accelerator compilers do not include features for automatic detection and offloading of

regions of code to an accelerator by a compiler or other tool. While future versions of the PGI compilers may

allow for automatic offloading, multiple accelerators of the same type, or multiple accelerators of different

types, these features are not currently supported.

System Requirements
To use the PGI Accelerator compiler features, you must install the NVIDIA CUDA component: NVIDIA Driver.

You may download this driver from the NVIDIA website at www.nvidia.com/cuda. These are not PGI products,

and are licensed and supported by NVIDIA.

Supported Processors and GPUs
This PGI Accelerator compiler release supports all AMD64 and Intel 64 host processors supported by Release

2010 or higher of the PGI compilers and tools. Further, you can use the -tp <target> flag as documented

in that release.

You can also use the -ta=nvidia flag to enable the accelerator directives and target the NVIDIA GPU. You

can then use the generated code on any system with CUDA installed that has a CUDA-enabled GeForce, Quadro,

Tesla, or Fermi card.

For more information on these flags as they relate to accelerator technology, refer to the PGI User's Guide. For

a complete list of supported GPUs, refer to the NVIDIA website at:

www.nvidia.com/object/cuda_learn_products.html

Installation and Licensing
The PGI Accelerator compilers require a separate license key in addition to a normal CDK license key. For

specific information related to installation, refer to the CDK Installation Guide.

Running an Accelerator Program
Launch a program that has accelerator directives and that was compiled and linked with the -ta=nvidia

flag i the same way you would launch the program if it had been compiled without the -ta=nvidia flag. For

more specific information, refer to Chapter 7 in the PGI User's Guide.

PGI Accelerator Compilers Runtime Libraries
PGI Accelerator Compilers provide user-callable functions and library routines that are available for use by

programmers to query the accelerator features and to control behavior of accelerator-enabled programs at

runtime. In Fortran, none of the PGI Accelerator compilers runtime library routines may be called from a

PURE or ELEMENTAL procedure.

To access accelerator libraries, you must link an accelerator program with the same –ta flag used when

compiling.

Chapter 3. PGI Accelerator

21

There are runtime library files for C and for Fortran.

• C Runtime Library Files - In C, prototypes for the runtime library routines are available in a header file

named accel.h. All the library routines are extern functions with “C” linkage. This file defines:

• The prototypes of all routines in this section.

• Any data types used in those prototypes, including an enumeration type to describe types of accelerators.

• Fortran Runtime Library Files - In Fortran, interface declarations are provided in a Fortran include file

named accel_lib.h and in a Fortran module named accel_lib. These files define:

• Interfaces for all routines in this section.

• Integer parameters to define integer kinds for arguments to those routines.

• Integer parameters to describe types of accelerators.

The integer parameter accel_version has a value yyyymm, where yyyy and mm are the year and

month designations of the version of the Accelerator programming model supported. This value matches

the value of the preprocessor variable _ACCEL.

The following list briefly describes the PGI Accelerator compilers runtime library routines that PGI currently

supports. For a complete description of these routines, refer to the PGI Accelerator Runtime Routines section

of the PGI User’s Guide.

• acc_get_device - returns the type of accelerator device being used.

• acc_get_device_num - returns the number of the device being used to execute an accelerator region.

• acc_get_num_devices - returns the number of accelerator devices of the given type attached to the host.

• acc_init - connects to and initializes the accelerator device and allocates control structures in the

accelerator library.

• acc_set_device - tells the runtime which type of device to use when executing an accelerator compute

region.

• acc_set_device_num - tells the runtime which device of the given type to use among those that are

attached.

• acc_shutdown - tells the runtime to shutdown the connection to the given accelerator device, and free up

any runtime resources.

Environment Variables
PGI supports environment variables that modify the behavior of accelerator regions. This section defines the

user-setable environment variables used to control behavior of accelerator-enabled programs at execution.

These environment variables must comply with these rules:

• The names of the environment variables must be upper case.

• The values assigned environment variables are case insensitive and may have leading and trailing white

space.

Running an Accelerator Program

22

• The behavior is implementation-defined if the values of the environment variables change after the program

has started, even if the program itself modifies the values.

The following list briefly describes the Accelerator environment variables that PGI supports. For more

information on these variables, refer to the PGI User’s Guide.

• ACC_DEVICE - controls which accelerator device to use when executing PGI Unified Binary for accelerators.

The value of this environment variable may be the string NVIDIA or HOST.

• ACC_DEVICE_NUM - controls the default device number to use when executing accelerator regions. The

value of this environment variable must be a nonnegative integer between zero and the number of devices

attached to the host.

• ACC_NOTIFY - when set to a non-negative integer, indicates to print a message for each kernel launched on

the device.

Applicable Command Line Options

There are command line options that apply specifically when working with accelerators.

• –tp - use this option to specify the target host processor architecture.

• –Minfo or –Minfo=accel - use either format of this option to see messages about the success or failure

of the compiler in translating the accelerator region into GPU kernels.

• –ta=nvidia(,nvidia_suboptions),host - enables recognition of the !$ACC directives in Fortran,

and #pragma acc directives in C. [C, Fortran only]

It has these suboptions:

• nvidia - Select NVIDIA accelerator target.

This option has the following nvidia-suboptions:

analysis Perform loop analysis only; do not generate GPU code.

cc10, cc11, cc12,

cc13, cc20

Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0

respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.

Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

Chapter 3. PGI Accelerator

23

time Link in a limited-profiling library.

[no]wait Wait for each kernel to finish before continuing in the host program.

• host - Select the host as the target; when used in combination with the nvidia option, this option

generates PGI Unified Binary Code.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds

the kernels in the Linux object file.

To access accelerator libraries, you must link an accelerator program with the same –ta flag used when

compiling the program.

PGI Unified Binary for Accelerators
PGI compilers support the PGI Unified Binary feature to generate executables with functions optimized

for different host processors, all packed into a single binary. This release extends the PGI Unified Binary

technology for accelerators. Specifically, you can generate a single binary that includes two versions of

functions:

• one version is optimized for the accelerator.

• one version runs on the host processor when the accelerator is not available or when you want to compare

host to accelerator execution.

To enable this feature, use the extended –ta flag: -ta=nvidia,host

This flag tells the compiler to generate two versions of functions that have valid accelerator regions.

• A compiled version that targets the accelerator.

• A compiled version that ignores the accelerator directives and targets the host processor.

If you use the –Minfo flag, you get messages similar to the following during compilation:

s1:
 12, PGI Unified Binary version for -tp=barcelona-64 -ta=host
 18, Generated an alternate loop for the inner loop
 Generated vector sse code for inner loop
 Generated 1 prefetch instructions for this loop
s1:
 12, PGI Unified Binary version for -tp=barcelona-64 -ta=nvidia
 15, Generating copy(b(:,2:90))
 Generating copyin(a(:,2:90))
 16, Loop is parallelizable
 18, Loop is parallelizable
 Parallelization requires privatization of array t(2:90)
 Accelerator kernel generated
 16, !$acc do parallel
 18, !$acc do parallel, vector(256) Using register for t

The PGI Unified Binary message shows that two versions of the subprogram s1 were generated:

• one for no accelerator (–ta=host)

• one for the NVIDIA GPU (–ta=nvidia)

Profiling Accelerator Kernels

24

At run time, the program tries to load the NVIDIA CUDA dynamic libraries and test for the presence of a GPU. If

the libraries are not available or no GPU is found, the program runs the host version.

You can also set an environment variable to tell the program to run on the NVIDIA GPU. To do this, set

ACC_DEVICE to the value NVIDIA or nvidia. Any other value of the environment variable causes the program to

use the host version.

The only supported –ta targets for this release are nvidia and host.

Profiling Accelerator Kernels
This release supports the command line option:

-ta=nvidia,time

This release supports the Target Accelerator property NVIDIA: Enable Profiling (–ta=nvidia,time).

The time suboption links in a timer library, which collects and prints out simple timing information about the

accelerator regions and generated kernels. For a specific example of accelerator kernel timing data, refer to

Chapter 7 in the PGI User's Guide.

Supported Intrinsics
PGI Accelerator compilers support Fortran intrinsics. For complete descriptions of these intrinsics, refer to

the "Supported Intrinsics" section of the Using an Accelerator chapter of the PGI User's Guide. PGI plans to

support additional intrinsics in future releases.

25

Chapter 4. Distribution and
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users

who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications

built using PGI compilers and tools. The application must be installed in such a way that it executes accurately

on a system other than the one on which it was built, and which may be configured differently.

Application Deployment and Redistributables
Programs built with PGI compilers may depend on run-time library files. These library files must be distributed

with such programs to enable them to execute on systems where the PGI compilers are not installed. There are

PGI redistributable files for all platforms. On Windows, PGI also supplies Microsoft redistributable files.

PGI Redistributables
The PGI 2010 release includes these directories:

$PGI/linux86/10.1/REDIST

$PGI/linux86/10.1/REDIST-RLR

$PGI/linux86-64/10.1/REDIST

$PGI/linux86-64/10.1/REDIST-RLR

These directories contain all of the PGI Linux runtime library shared object files or Windows dynamically

linked libraries that can be re-distributed by PGI 2010 licensees under the terms of the PGI End-user License

Agreement (EULA). For reference, a text-form copy of the PGI EULA is included in the 2010 directory.

Linux Redistributables
The Linux REDIST directories contain the PGI runtime library shared objects for all supported targets. This

enables users of the PGI compilers to create packages of executables and PGI runtime libraries that will

execute successfully on almost any PGI-supported target system, subject to these requirements:

• End-users of the executable have properly initialized their environment

• Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared objects.

26

27

Chapter 5. The PGI Windows CDK
If you have a PGI Windows CDK (Cluster Development Kit) license, then your PGI software includes support

for working with Microsoft Compute Cluster Server and MSMPI. Specifically, this software includes support for

these things:

• Building MPI applications with MSMPI

• Using PGPROF to do MPI profiling of MSMPI applications

• Using PGDBG to do MPI debugging of MSMPI applications

This chapter provides information on these tasks.

Build MPI Applications with MSMPI

Note

For the options -Mprof=msmpi and -Mmpi=msmpi to work properly, the CCP_HOME environment

variable must be set. This variable is typically set when the Microsoft Compute Cluster SDK is installed.

Using MSMPI libraries
To build an application using the MSMPI libraries, use the option -Mmpi=msmpi. This option inserts options

into the compile and link lines to pick up the MSMPI headers and libraries.

Generate MPI Profile Data
To build an application that generates MPI profile data, use the-Mprof=msmpi option. This option performs

MPICH-style profiling for Microsoft MSMPI. For Microsoft Compute Cluster Server only, using this option

implies -Mmpi=msmpi.

The profile data generated by running an application built with the option -Mprof=msmpi contains

information about the number of sends and receives, as well as the number of bytes sent and received,

correlated with the source location associated with the sends and receives. You must use -Mprof=msmpi in

conjunction with either the option -Mprof=func or -Mprof=lines.

When invoked using this type of profile data, PGPROF automatically displays MPI statistics.

Debug MSMPI Applications with PGDBG

28

Debug MSMPI Applications with PGDBG
To invoke the PGDBG debugger to debug an MSMPI application, use the pgdbg -mpi option:

$ pgdbg -mpi[:<path>] <mpiexec_args> [-program_args arg1,...argn]

The location of mpiexec should be part of your PATH environment variable. Otherwise, you should specify the

pathname for mpiexec, or another similar launcher, as <path> in -mpi[:<path>].

To start a distributed debugging session, you must use the job submit command on the command line, as

illustrated in the example that follows. You must also ensure that the debugger has access to the pgserv.exe

remote debug agent on all nodes of the cluster used for the debug session.

To make pgserv.exe available, copy it from the PGI installation directory, such as C:\Program Files\PGI

\win64\10.1\bin\ pgserv.exe, into a directory or directories such that the path to pgserv.exe is the same on all

nodes in the debug session. Then you can start the debug session as follows:

$ pgdbg -pgserv:<path_to_pgserv.exe> -mpi[:<job submit command>]

If you use a command similar to the following one, it copies pgserv.exe to the current directory and also sets

the path to pgserv.exe to this copy.

Bash Shell Example

Suppose you wanted to debug the following job invoked in a bash shell:

PGI$ "job.cmd" submit /numprocessors:4 /workdir:\\\\cce-head\\d\\srt /

stdout:sendrecv.out mpiexec sendrecv.exe

You use this command:

$ pgdbg -pgserv "-mpi:c:\Program Files\Microsoft Compute Cluster Pack\Bin\job.cmd"
 submit /numprocessors:4 /workdir:\\cce-head\d\srt
 /stdout:sendrecv.out mpiexec sendrecv.exe

Important

For this command to execute properly, a copy of pgserv.exe must be located in \\cce-head\d

\srt.

Since the CCP installation updates the default PATH, the following command is equivalent to the previous one:

$ pgdbg -pgserv -mpi:job.cmd submit /numprocessors:4 /workdir:\\cce-head\d\srt
/stdout:sendrecv.out mpiexec sendrecv.exe

Note

The use of quotes around the -mpi option varies, depending on the type of shell you are using. In the

example, or if you are using cmd, specify the option as “-mpi:...” including the quotes around the

option as well as around the optional job submit command. When invoking in a Cygwin bash shell,

you can specify the -mpi option as -mpi:"...", using the quotes around only the job submit

command.

Chapter 5. The PGI Windows CDK

29

DOS Shell Example
Suppose you wanted to debug the following job invoked in a DOS shell:

DOS> job submit /numprocessors:4 /workdir:\\cce-head\d\srt
 /stdout:sendrecv.out mpiexec sendrecv.exe

You use this command:

$ pgdbg -pgserv "-mpi:c:\Program Files\Microsoft Compute Cluster Pack\Bin\job.cmd"
 submit /numprocessors:4 /workdir:\\cce-head\d\srt
 /stdout:sendrecv.out mpiexec sendrecv.exe

30

31

Chapter 6. Troubleshooting Tips and
Known Limitations

This chapter contains information about known limitations, documentation errors, and corrections that have

occurred to PGI Server and Workstation.

The frequently asked questions (FAQ) section of the pgroup.com web page provides more up-to-date

information about the state of the current release. The location is:

http://www.pgroup.com/support/index.htm

General Issues
Most issues in this section are related to specific uses of compiler options and suboptions.

• Object and module files created using PGI Workstation 2010 compilers are incompatible with object files

from PGI Workstation 5.x and prior releases.

• Object files compiled with –Mipa using PGI Workstation 6.1 and prior releases must be recompiled with

PGI Workstation 2010.

• The –i8 option can make programs incompatible with the bundled ACML library. Visit developer.amd.com

to check for compatible libraries.

• The –i8 option can make programs incompatible with MPI and ACML; use of any INTEGER*8 array size

argument can cause failures with these libraries.

• Using –Mipa=vestigial in combination with –Mipa=libopt with PGCC, you may encounter

unresolved references at link time. This problem is due to the erroneous removal of functions by the

vestigial sub-option to –Mipa. You can work around this problem by listing specific sub-options to –Mipa,

not including vestigial.

• OpenMP programs compiled using –mp and run on multiple processors of a SuSE 9.0 system can run

very slowly. These same executables deliver the expected performance and speed-up on similar hardware

running SuSE 9.1 and above.

Platform-specific Issues

32

Platform-specific Issues
Linux

The following are known issues on Linux:

• If you experience poor performance in the PGDBG or PGPROF GUI, try upgrading the X library libxcb to

the latest version. The version number varies depending on your distribution. You can obtain a patch from

your Linux distributor.

• Programs that incorporate object files compiled using -mcmodel=medium cannot be statically linked.

This is a limitation of the linux86-64 environment, not a limitation of the PGI compilers and tools.

PGDBG-related Issues
The following are known issues on PGDBG:

• Before PGDBG can set a breakpoint in code contained in a shared library, .so or .dll, the shared library

must be loaded.

• Due to problems in PGDBG in shared library load recognition on Fedora Core 6 or RHEL5, breakpoints in

processes other than the process with rank 0 may be ignored when debugging MPICH-1 applications when

the loading of shared libraries to randomized addresses is enabled.

• Debugging of unified binaries, that is, programs built with the -tp=x64 option, is not fully supported.

The names of some subprograms are modified in the creation of the unified binary, and PGDBG does not

translate these names back to the names used in the application source code. For detailed information on

how to debug a unified binary, see www.pgroup.com/support/tools.htm.

PGPROF-related Issues
The following are known issues on PGDBG:

• Using -Mprof=func, -mcmodel=medium and -mp together on any of the PGI compilers can result in

segmentation faults by the generated executable. These options should not be used together.

• Programs compiled and linked for gprof-style performance profiling using -pg can result in segmentation

faults on system running version 2.6.4 Linux kernels.

• Times reported for multi-threaded sample-based profiles, that is, profiling invoked with -pg or -

Mprof=time options, are for the master thread only. PGI-style instrumentation profiling with -

Mprof={lines | func} or hardware counter-based profiling using -Mprof=hwcts or pgcollect must

be used to obtain profile data on individual threads.

CUDA Fortran Toolkit Issues
Note
Compiling with the CUDA 3.0 toolkit, either by adding the-ta=nvidia:cuda3.0 option to the

command line or by adding set CUDAVERSION=2.0 to the siterc file, generates binaries that

may not work on machines with a 2.3 CUDA driver.

Chapter 6. Troubleshooting Tips and Known Limitations

33

pgaccelinfo prints the driver version as the first line of output.

For a 2.3 driver: CUDA Driver Version 2030

For a 3.0 driver: CUDA Driver Version 3000

Corrections
A number of problems have been corrected in the PGI 2010 release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in recent

releases of the PGI compilers and tools. This table contains a summary description of each problem as well as

the release in which it was fixed.

34

35

Chapter 7. Contact Information
You can contact The Portland Group at:

The Portland Group

STMicroelectronics, Inc.

Two Centerpointe Drive

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other

PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI

website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax

Sales

Support

WWW

+1-503-682-2637

sales@pgroup.com

trs@pgroup.com

www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone

support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at

www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm.

36

	PGI CDK® Release Notes
	Contents
	Chapter 1. Release Overview
	Product Overview
	Terms and Definitions
	Supported Platforms

	Chapter 2. New or Modified Compiler Features
	What's New in CDK Release 2010
	10.6 Additions
	10.5 Additions
	10.4 Additions
	10.3 Additions
	2010 Additions Prior to 10.3

	Getting Started
	Using -fast, -fastsse, and Other Performance-Enhancing Options

	New or Modified Compiler Options
	C++ Compilation Requirements
	Fortran Enhancements
	Enhanced Fortran Interoperability with C
	New or Modified Fortran Statements
	New or Modified Fortran Intrinsic Functions
	New Fortran Intrinsic Modules
	IEEE_ARITHMETIC
	IEEE_EXCEPTIONS
	IEEE_FEATURES

	Fortran I/O Enhancements

	New or Modified Tools Support
	Library Interfaces
	Environment Modules

	Chapter 3. PGI Accelerator
	Components
	Availability
	User-directed Accelerator Programming
	Features Not Covered or Implemented
	System Requirements
	Supported Processors and GPUs

	Installation and Licensing
	Running an Accelerator Program
	PGI Accelerator Compilers Runtime Libraries
	Environment Variables
	Applicable Command Line Options

	PGI Unified Binary for Accelerators
	Profiling Accelerator Kernels
	Supported Intrinsics

	Chapter 4. Distribution and Deployment
	Application Deployment and Redistributables
	PGI Redistributables
	Linux Redistributables

	Chapter 5. The PGI Windows CDK
	Build MPI Applications with MSMPI
	Using MSMPI libraries
	Generate MPI Profile Data

	Debug MSMPI Applications with PGDBG
	Bash Shell Example
	DOS Shell Example

	Chapter 6. Troubleshooting Tips and Known Limitations
	General Issues
	Platform-specific Issues
	Linux

	PGDBG-related Issues
	PGPROF-related Issues
	CUDA Fortran Toolkit Issues
	Corrections

	Chapter 7. Contact Information

