PGI® Server 2010
PGI® Workstation 2010
Release Notes

Release 2010

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI® Server 2010 PGI® Workstation 2010 Release Notes
Copyright © 2010 The Portland Group® and STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America
First Printing: Release 2010, version 10.0, November 2009
Second Printing: Release 2010, version 10.1, January 2010
Third Printing: Release 2010, version 10.2, February 2010
Fourth Printing: Release 2010, version 10.3, March 2010
Fifth Printing: Release 2010, version 10.4, April 2010

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

ID: 1095189

Contents

1. Release OVEIVIEWccccccoviiiiiiiiiiiice e 1
PGI Workstation and PGI SEIVETc.ccoiiiiiiiiiiiiieiit ettt 1
Licensing TerminolOZYccoviriiriiiiiiiiiiiie et 1
Workstation and Server COMPATISONcc.eeviriirieriiiiinieieee et 1

PLOAUCE OVEIVIEWeieviieiiiieeiiee ettt ettt ettt e et e e et e e e steeessbaeestbeeessbeeetseeenseeessaeeans 2
Terms and Defilitionsccoovviiiiiiiiiiiie ettt e 2
SUPPOTtEd PIAFOIISooveiiiiiiiiiiiiice e 3

2. New or Modified Compiler FEaturescccccooviiiinininininneeeeees 5
What's New in PGI REIASE 2010eovviiiiiiiiieiieeiieiie ettt see et e e eae et sbe et ersaesaeeenns 5

10.4 AQGILIONS ...evviviiiieiteeie ettt ettt e et et e et e e bt e sbe e b e eteesbeesbeeneesae s 5

10.3 AQGIEONS ...evvivieieeitcete ettt ettt ettt et e te et e bt e sbe e b e ereesaeesbeeneeaeas 6

2010 Additions Prior t0 10.3ccvoviiiiieiiiiieii ettt 6

GELHNG SEATLEA ..ottt ettt ettt 8
Using -fast, -fastsse, and Other Performance-Enhancing Optionscccccovverevvienienennenne. 8

New or Modified Compiler OPHONScc.eiiiiiiiriiiiiiiee e 9

C++ Compilation REGUITEMENLSccveivieriieiiiiiie it eite ettt ettt e seeebeeetbeebeesiaesbeesnne e 10
Fortran ENRANCEMENLScoiviiiiiiiiiiiieeie ettt ettt st beeenbe e e 11
Enhanced Fortran Interoperability With Gcccoviiiiiiniiiiii e 11

New or Modified FOrtran Statementsc.cocvverveiriierieiiieeniieereeriee e siee e eiee e 11

New or Modified Fortran Intrinsic FUNCHONScoviiiiiiiiiiieiieiicecie e 12

New Fortran Intrinsic MOAUIESc.cooviiiiiiiiiiiiieiie it 12

Additional Fortran ENRANCEMENLScccueeriiiriiiiriienieeiieiie et 15

New or Modified Runtime Library ROULNEScccocueriiiiiiiiniiieiieiciie et 15

New or Modified TOOIS SUPPOTLoovviiiieiiiiiieiit ettt 15
LIDIAry INEEITACEScvviviieieiiiiiie et 16

3. PGI Workstation 2000c.ccocoooviiiiiiiiiiieeeeeee e 17
PGI Workstation 2010 fOr LINUXcceeiiiiiiiiiiiiiieeiie ettt 17

Java Runtime Environment (JRE)ccccoviiiiiiiriiiiiiieie e 17

PGI Workstation 2010 for WinAOWScceoieiiiieiiiieiieiie et 17

PGI Workstation 2010 for MaC OS Xeoveiiiiiiiieiieeie sttt 17

B, PGI ACCCLETALOLoooeeeee e ettt ettt ettt ettt ettt e e erene e 19

COMPONEILS ..ottt e e e ettt e e e ettt e e e et sttt e e s e s s bbbt b et e e eessanssbbbbereeeeeeesnnnsbnnnes 19
AVALADIIEYveeiie e ettt 19
User-directed Accelerator Programming Line FIagcccooviiiiiiiiiiiiiiiiiciiccie e 19
Features Not Covered or Implementedccoovuiiiiiiiiiiiiiiieiie e 20
System REQUITCIMENLSceiiiiiiiiiiiiiiiiie et e et e e sttt e e e e st eeeeeesannaees 20
Supported Processors and GPUScc.ooiuieriiiiienieiiieiie ettt 20
Installation and LICENSINGeeviiiiiiriiiiiieiie ettt snees 20
Running an ACCElerator PrOZIAMcceiiiiiiiiiiiiiieciie ettt 20
PGI Accelerator Compilers Runtime Librariescoooovviiiiiiiiiniiiieic e 21
Environment VAriablescocooriiiiiiiiiiiiiieccest s 22
Applicable Command Line OPtONScc.eeviiiiiieiiiiiieiie ettt 22

PGI Unified Binary for ACCELEratorscovuiiiiieiiiiiiiieiii ettt 23
MuUltiple ProCeSSOT TATZELSveevieiiiiiiiieeiieeiteetie ettt ettt ettt et e st e et e e stneenbeesbeesnbeensee s 24
MULEPIE ACCEIEIALOTSeeivieiieiiit ettt et ettt ettt e et e rbeeneeas 25
Profiling Accelerator Kernelsccoovuioiiiiiiiiiiiii e 25
SUPPOITEA TNLLISICSvvevvevverreeriteete ettt ettt ettt ettt ettt sb e sbeeaeebeeraess e s esse e 26
5. Distribution and Deploymentccooviiriiiniinii e 27
Application Deployment and Redistributablesccccooiiiiriiiiiiiniici e 27
PGI RediStriDULADIESoovietieiiiiiieii e 27
Linux RediStribUtADIEScc.ooiiiiiiiiiiieiie e 28
Microsoft RediStributablescoooiiiiiiiiiiiii e 28

6. The PGI Windows CDKc..cc.coooviiiiiiieeeeeeeeeeee e 29
Build MPI Applications With MSMPIcccooiiiiiiiiiiiiieree e 29
Using MSMPI IDIALIEScvviiiiiiiieiieiit e 29
Generate MPI Profile DAAoooveeereeieiee oot 29
Debug MSMPI Applications with PGDBGccooiiiviiiiiniiiiiiiniicsecec e 30
Bash Shell EXAMPLEc.ooiiiiiiiiiiiiiiiiiceee e 30

DOS Shell EXAMPIEcc.eeiiiiiiiiiiiiiiie e 31

7. Troubleshooting Tips and Known Limitations ..., 33
GENETAL ISSUES ...ttt ettt ettt ettt ettt e e 33
Platform-SPECific ISSUESccuiiiieiiiiiiieiie ettt eeee e 34
7111 GO OSSP TSP TP TP P PTPPORPPOO 34
ADPLE MAC OS X oottt ettt ettt ettt e et ne e 34
WHIAOWS ..ottt ettt b et bttt ettt nbeene e 34
PGDBG-TElALEA ISSULSevvenriiiiiitieiiciieeit ettt e 35
PGPROF-TEIAEA TSSULSceviiriiieniiiiieiit ettt 35
CUDA Fortran TOOIKIt ISSUEScveieueierieiiiteiereetesiest ettt ettt ettt ene e eneeeenes 36
COTTECHOMS ..ottt ettt ettt ettt et s et et e et e ket es e et et es e et e ek et es e eb et enteneebe st eneene e 36

8. CONLACE INFOTMALION ..ot e e ea e eeer s 37

Chapter 1. Release Overview

Welcome to Release 2010 of PGI Workstation and PGI Server, a set of Fortran, C, and C++ compilers and
development tools for 32-bit and 64-bit x86-compatible processor-based workstations and servers running
versions of the Linux, Windows, and Mac OS operating systems.

These release notes apply to all workstation-class and server-class compiler products from The Portland
Group.

This document describes changes between previous releases and Release 2010 of the PGI compilers, as well as
late-breaking information not included in the current printing of the PGI User's Guide.

PGI Workstation and PGI Server

The PGI Workstation and PGI Server include exactly the same software. The difference in the two is the manner
in which the user gets a license to run the software.

Licensing Terminology

The PGI compilers and tools are license-managed. It is useful to have common terminology. These two terms
are often confused, so they are clarified here:

* License - a legal agreement between ST and PGI end-users, to which users assent upon installation of any
PGI product. The terms of the License are kept up-to-date in documents on pgroup.com and in the $PGI/
<platform>/<rel_number> directory of every PGI SW installation.

e License keys - ASCII text strings that enable use of the PGI software and are intended to enforce the terms
of the License. License keys are generated by each PGI end-user on pgroup.com using a unique hostid
and are typically stored in a file called 1icense. dat that is accessible to the systems for which the PGI
software is licensed at a given site.

Workstation and Server Comparison

e All workstation-class compilers and tools products from The Portland Group, such as PGI Fortran
Workstation, are subsets of the PGI Workstation Complete product. These workstation-class products
provide a node-locked single-user license, meaning one user at a time can compile on the one system on
which the PGI Workstation compilers and tools are installed. The product and license server are on the
same local machine.

Product Overview

PGI Server products are offered in configurations identical to the workstation-class products, but provide
network-floating multi-user licenses. This means that two or more users can use the PGI compilers and
tools concurrently on any compatible system networked to the system on which the PGI Server compilers
are installed. There can be multiple installations on machines connected to the server and the users can use
the product concurrently, provided they are issued a license key.

Product Overview

Release 2010 of PGI Workstation and PGI Server includes the following components:

PGFORTRAN native OpenMP and auto-parallelizing Fortran 90/95 compiler.
PGF77 native OpenMP and auto-parallelizing FORTRAN 77 compiler.

PGHPF data parallel High Performance Fortran compiler.

Note

PGHPF is supported only on Linux platforms.
PGCC native OpenMP and auto-parallelizing ANSI C99 and K&R C compiler.
PGC++ native OpenMP and auto-parallelizing ANSI C++ compiler.
PGPROF MPI, OpenMP, and multi-thread graphical profiler.
PGDBG MPI, OpenMP, and multi-thread graphical debugger.
MPICH MPI libraries, version 1.2.7, for both 32-bit and 64-bit development environments (Linux only).

Note

64-bit linux86-64 MPI messages are limited to <2GB size each.
Online documentation in PDF, HTML and man page formats.

A UNIX-like shell environment for Win32 and Win64 platforms.

Depending on the product configuration you purchased, you may not have licensed all of the above
components.

The MPI profiler and debugger included with PGI Workstation are limited to processes on a single node. PGI
Workstation can be installed on a single computer, and that computer can be used to develop, debug, and
profile MPI applications. The PGI CDK Cluster Development Kit supports general development on clusters.

Terms and Definitions

These release notes contain a number of terms and definitions with which you may or may not be familiar. If
you encounter a term in these notes with which you are not familiar, please refer to the online glossary at

www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

Chapter 1. Release Overview

e AMDG64 — a 64-bit processor from AMD designed to be binary compatible with 32-bit x86 processors,
and incorporating new features such as additional registers and 64-bit addressing support for improved
performance and greatly increased memory range. This term includes the AMD™ Athlon64™, AMD
OpteronTM, AMD TurionTM, AMD Barcelona, AMD Shanghai, and AMD Istanbul processors.

e Intel 64 — a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be
binary compatible with AMDG64 processors. This includes Intel Pentium 4, Intel Xeon, Intel Core 2, Intel
Penryn, and Intel Core i7 (Nehalem) processors.

Supported Platforms

There are six platforms supported by the PGI Workstation and PGI Server compilers and tools:

* 32-bit Linux - supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or
an x64 compatible processor.

® (4-bit/32-bit Linux — includes all features and capabilities of the 32-bit Linux version, and is also
supported on 64-bit Linux operating systems running an x64 compatible processor.

* 32-bit Windows — supported on 32-bit Windows operating systems running on either a 32-bit x86
compatible or an x64 compatible processor.

* (4-bit/32-bit Windows — includes all features and capabilities of the 32-bit Windows version, and is also
supported on 64-bit Windows operating systems running an x64 compatible processor.

* 32-bit Apple Mac OS X — supported on 64-bit Apple Mac operating systems running on either a 64-bit Intel-
based Mac system.

* 64-bit Apple Mac OS X — supported on 32-bit Apple Mac operating systems running on either a 32-bit or
64-bit Intel-based Mac system.

Chapter 2. New or Modified Compiler
Features

This chapter provides information about the new or modified compiler features of Release 2010 of the PGI
compilers and tools as compared to prior releases.

What's New in PGl Release 2010

10.4 Additions
 PGI Accelerator x64+GPU native Fortran 95/03 and €99 compilers, and PGI CUDA Fortran now
support CUDA 3.0 Toolkit and compute capability 2.0.

¢ To specify CUDA compute capability 2.0, use one of the following options:

In the Accelerator, use the option: -ta=nvidia:cc2o0.
In CUDA Fortran, use the option: -Mcuda=cc20.

e To specify the version of the CUDA toolkit that is targeted by compilers, use one of the following
options:

In the Accelerator:
For the CUDA toolkit 3.0, use the option -ta=nvidia:cuda3.0 or -ta=nvidia:3.O0.
For the CUDA toolkit 2.3, use the option -ta=nvidia:cuda2.3 oOr -ta=nvidia:2.3.

For CUDA Fortran:
For the CUDA toolkit 3.0, use the option -Mcuda=cuda3.0 or -Mcuda=3.0
For the CUDA toolkit 2.3, use the option -Mcuda=cuda2.3 or -Mcuda=2.3

Note

Compiling with the CUDA 3.0 toolkit generates binaries that may not work on machines with a
2.3 CUDA driver. For more information, refer to “CUDA Fortran Toolkit Issues,” on page 36.

What's New in PGl Release 2010

e A wait for kernel option, -ta=nvidia: [no]wait, is available when targeting NVIDIA Accelerator; the
user can specify whether to wait for the kernel to finish before continuing in the host program. The default
is to wait.

* Added support for fused multiply-add instructions in CUDA Fortran. The user can now control the
generation of fused multiply-add instructions in both the Accelerator and with CUDA Fortran. In addition
to the existing -ta=nvidia:nofma option already available for the Accelerator, PGI 10.4 supports the
equivalent option in CUDA Fortran: ~Mcuda=nofma.

* Added ability to use fast math library in CUDA Fortran. The user can now specify to use routines
from the fast math library. In addition to the existing -ta=nvidia: fastmath option available for the
Accelerator, PGI 10.4 supports the equivalent option in CUDA Fortran: ~-Mcuda=fastmath.

e Added support in CUDA Fortran for using allocatable device arrays in modules which contain global
subroutines, accessible from both the host code which uses the module, and the device code contained
within the module.

10.3 Additions

e Enhanced compute capabilities with CUDA in 10.3:

The default compute capabilities target both compute capability 1.0 and 1.3. Further, beginning with 10.3,
the user can specify multiple compute capabilities to be targeted.

For example, to target all four compute capabilities 1.0, 1.1, 1.2, and 1.3, use these options on the
command line:

-Mcuda=ccl1l0, -Mcuda=ccll, -Mcuda=ccl2, -Mcuda=ccl3
or
-Mcuda=ccl0,ccll,ccl2,ccl3
e Additional Fortran 2003 features in 10.3 include:
e Abstract interfaces

e [S_IOSTAT_END, IS_IOSTAT_EOR, and NEW_LINE intrinsics

e Object-oriented features including classes, type extensions (non-polymorphic), polymorphic entities,
typed allocation, inheritance association, as well as EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsics.

e New and modified statements, including: WAIT statement; blank, pad, and pos specifiers for the READ
statement; delim and pos specifiers for the WRITE statement; and pending and pos specifiers for the
INQUIRE statement

For more information on these features, refer to “Fortran Enhancements,” on page 11.

2010 Additions Prior to 10.3

¢ PGI Accelerator x64+GPU native Fortran 95/03 and €99 compilers support the full PGI Accelerator
programming model v1.0 standard for directive-based GPU programming and optimization as well as
several features from the v1.1 standard.

Chapter 2. New or Modified Compiler Features

Supported on Linux, MacOS, and Windows

Device-resident data using the UPDATE directive

COMPLEX and DOUBLE COMPLEX data, Fortran derived types, C structs
Automatic GPU-side loop unrolling

Support for Accelerator regions nested within OpenMP parallel regions

PGI CUDA Fortran extensions supported in the PGI 2010 Fortran 95/03 compiler enable explicit CUDA
GPU programming

Declare variables in CUDA GPU device, constant or shared memory

Dynamically allocate page-locked pinned host memory, CUDA device main memory, constant memory
and shared memory

Move data between host and GPU with Fortran assignment statements
Declare explicit CUDA grids/thread-blocks to launch GPU compute kernels
Support for CUDA Runtime API functions and features

Additional options for CUDA Fortran, such as -Mcuda=keepgpu, which keeps the generated GPU code
for CUDA Fortran.

Efficient host-side emulation for easy CUDA Fortran debugging

Fortran 2003 incremental features including: namelist I/O on internal files, IMPORT, pointer
reshaping, procedure pointers and statement, iso_c_binding intrinsic module, c¢_associated,
c_f_pointer, c_f_procpointer, enum, move_alloc(), iso_fortran_env module, optional kind to
intrinsics, allocatable scalars, volatile attribute and statement, pass and nopass attributes, bind(c), value,
command_argument_count, get_command, get_command_argument, get_environment_variable,
ieee_exceptions module, and ieee_arithmetic module.

PGC++/ PGCC (2010 C++) new features and enhancements include:

The latest EDG release 4.1, with enhanced GNU and Microsoft compatibility
extern inline support by default: Multiple copies of inline functions in an executable are now removed.
Extended internal tables for better support of large codes, including improved BOOST support.

C++ -mp thread safe exception handling.

Expanded Operating Systems Support including RHEL 5, Fedora 11, SLES 11, SuSE 11.1, Ubuntu 9,
Windows 7 and MacOS Snow Leopard

Compiler optimizations and enhancements including:

OpenMP support for up to 256 cores
AVX code generation

Partial redundancy elimination

Getting Started

 Executable size improvements

 PGI Visual Fortran enhancements including:
e Supports launching and debugging of MSMPI programs on Windows clusters from within Visual Studio
e Full support for the PGI Accelerator programming model

Support for PGI CUDA Fortran on NVIDIA CUDA-enabled GPUs

Includes the standalone PGPROF performance profiler with CCFF support.
e Easier access to products through an improved Start menu entry.
e Easier access to commands through additional Property page selections.

» Updated Documentation including the PGI Users Guide, PGI Tools Guide, and PGI Fortran Reference.

Getting Started

By default, the PGI 2010 compilers generate code that is optimized for the type of processor on which
compilation is performed, the compilation host. If you are unfamiliar with the PGI compilers and tools, a good
option to use by default is -fast or -fastsse.

Using -fast, -fastsse, and Other Performance-Enhancing Options

These aggregate options incorporate a generally optimal set of flags for targets that support SSE capability.
These options incorporate optimization options to enable use of vector streaming SIMD instructions for 64-bit
targets. They enable vectorization with SSE instructions, cache alignment, and flushz.

Note

The contents of the —-fast and -fastsse options are host-dependent.

-fast and -fastsse typically include these options:

-02 Specifies a code optimization level of 2.

-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop
during each iteration.

-Mnoframe Indicates to not generate code to set up a stack frame.
Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination

-Mpre Indicates partial redundancy elimination

~fast for 64-bit targets and -fastsse for both 32- and 64-bit targets also typically include:

-Mvect=sse Generates SSE instructions.
-Mscalarsse Generates scalar SSE code with xmm registers; implies -Mflushz.

-Mcache align Aligns long objects on cache-line boundaries
Note. On 32-bit systems, if one file is compiled with the -Mcache align option,
all files should be compiled with it. This is not true on 64-bit systems.

Chapter 2. New or Modified Compiler Features

-Mflushz Sets SSE to flush-to-zero mode.
-M[no] vect Controls automatic vector pipelining.
Note

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler,
even for FORTRAN 77 code, and the - fastsse option.

In addition to -fast and -fastsse, the -Mipa=fast option for inter-procedural analysis and
optimization can improve performance. You may also be able to obtain further performance improvements

by experimenting with the individual ~-Mpgf1ag options detailed in the PGI User’s Guide, such as -Mvect,
-Munroll, -Minline, -Mconcur, -Mpfi/-Mpfo and so on. However, increased speeds using these
options are typically application- and system-dependent. It is important to time your application carefully when
using these options to ensure no performance degradations occur.

New or Modified Compiler Options

Unknown options are treated as errors instead of warnings. This feature means it is a compiler error to pass
switches that are not known to the compiler; however, you can use the switch -noswitcherror to issue
warnings instead of errors for unknown switches.

The following compiler options have been added or modified in PGI 2010:

e —m32 indicates to use the 32-bit compiler for the default processor type.
» —me4 indicates to use the 64-bit compiler for the default processor type.

® —ta-nvidia(,nvidia_suboptions), host is a switch associated with the PGI Accelerator
compilers. -t a defines the target architecture.

In release 2010, the nvidia suboptions include:

analysis Perform loop analysis only; do not generate GPU code.

ccl0, ccll, ccl2, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0
ccl3, cc20 respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.
cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

time Link in a limited-profiling library.

C++ Compilation Requirements

[no]wait Wait for each kernel to finish before continuing in the host program.

® —Mautoinline has new suboptions:

levels:n Instructs the compiler to perform 7 levels of inlining. The default
number of levels is 10.

maxsize:n Instructs the compiler not to inline functions of size > n. The default
size is 100.

totalsize:n Instructs the compiler not to stop inlining when the size equals 7.
The default size is 800.

e New options -pre and -Mnopre exist to enable/disable partial redundancy elimination.

e New options -Meh frame and -Mnoeh_frame instruct the linker to keep eh_frame call frame sections
in the executable.

Note

The eh_frame option is available only on newer Linux systems that supply the system unwind
libraries.

e Anew option --gnu_version <nums exists that sets the GNU C++ compatibility version. (C++ only)

* Anew option - -microsoft version <num> exists that sets the Microsoft C++ compatibility version.
(C++ only)

* A new option -Mcuda tells the compiler to enable CUDA Fortran. In release 2010, -Mcuda has these
suboptions:

ccl0, ccll, ccl2, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0
ccl3, cc20 respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

emu Enable CUDA Fortran emulation mode.

fastmath Use routines from the fast math library.

keepbin Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu Keep the generated GPU code (.gpu) for CUDA Fortran.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

nofma Do not generate fused multiply-add instructions.

C++ Compilation Requirements

Note

We break object code compatibility in this release for C++.

10

Chapter 2. New or Modified Compiler Features

All C++ source files and libraries must be recompiled to link with 10.1 object files.

Fortran Enhancements

The following sections describe enhancements to Fortran related to interoperability with C, statements,
assignments, intrinsics, modules, array-related allocation, and I/0 operations.

Enhanced Fortran Interoperability with C

Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must have equivalent
declarations made in both C and Fortran. In this release, PGI has expanded Fortran interoperability with C by
adding these components:

 Enumerators - a set of integer constants. The kind of enumerator corresponds to the integer type that C

would choose for the same set of constants.

e c_f_pointer — a subroutine that assigns the C pointer target, cptr, to the Fortran pointer, fptr, and optionally
specifies its shape, shape. The syntax is:

c_f pointer (cptr, fptr [,shape])

e c_f_procpointer — a subroutine that associates the C pointer target, cptr, with the target of a C function
pointer. The syntax is:

c f procpointer (cptr, fptr)

e c_associated — a subroutine that determines the status of the C pointer target, cptrl, or determines if one
C_PTR, cptrl is associated with a target C_PTR, cptr2. The syntax is:

c_associated (cptrl[,cptr2])

For more information on these components, refer to Chapter 9, Interoperability with C of the PGI Fortran
Reference.

New or Modified Fortran Statements

The following Fortran statements are new. For complete descriptions, refer to chapter 3, Fortran Statements
of the Fortran Reference Guide.

WAIT
Performs a wait operation for specified pending asynchronous data transfer operations.

The following Fortran statements are enhanced in this release:
INQUIRE

New specifiers of PENDING and POS are now available.

READ
New specifiers of BLANK, PAD, and POS are now available.

WRITE
New specifiers of DELIM and POS are now available.

11

Fortran Enhancements

New or Modified Fortran Intrinsic Functions

An intrinsic is a function available in a given language whose implementation is handled specifically by the
compiler. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it and
optimize it for the situation. In this release, PGI implemented the following intrinsics. For detailed information
about these intrinsics, refer to the chapter 6, Intrinsics of the Fortran Reference Guide.

EXTENDS_TYPE_OF(A,B)
Determines whether the dynamic type of A is an extension type of the dynamic type of B. Returns either
true or false.

GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH, STATUS])
Returns the specified command line argument of the command that invoked the program.

GET_COMMAND ([COMMAND, LENGTH, STATUS])
Returns the entire command line that was used to invoke the program.

GET_ENVIRONMENT_VARIABLE (NAME [,VALUE, LENGTH, STATUS, TRIM_NAME])
Returns the value of the specified environment variable.

IS_IOSTAT_END (STAT)
Tests whether a variable has the value of the I/0 status: “end of file”; returns either true or false.

IS_IOSTAT_EOR(STAT)
Tests whether a variable has the value of the I/0 status: “end of record”; returns either true or false.

NEW_LINE(A)
Returns the newline character.

SAME_TYPE_AS(A,B)
Determines whether the dynamic type of A is the same as the dynamic type of B. Returns either true or
false.

New Fortran Intrinsic Modules

PGI 2010 now supports the Fortran intrinsic modules ieee arithmetic and ieee exceptions.

|IEEE_ARITHMETIC

The ieee arithmetic intrinsic module provides access to two derived types, named constants of these
types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module ieee exceptions, so all the
features of ieee _exceptions are included.

Note

For specific information on these types, functions, and subroutines, refer to the Fortran Reference
Guide.

Defined Elemental Operators

12

For two values of one of the derived types, this operator returns true if the values are the same; false,

otherwise.

o/=

For two values of one of the derived types, this operator returns true if the values are different; false,

otherwise.

Derived Types

Chapter 2. New or Modified Compiler Features

e jeee_class_type - Identifies a class of floating point values.

e jeee_round_type - Identifies a particular round mode.

The following table shows the values that each of these class types can take:

This derived type...

Takes these values...

ieee_class_type

ieee_signaling_nan
ieee_quiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_postive_zero
ieee_postive_denormal
ieee_postive_normal
ieee_postive_inf
ieee_other_value (Fortran 2003 only)

ieee_round_type

ieee_nearest
ieee_to_zero
ieee_up
ieee_down

Note

For specific information on these values refer to the Fortran Reference Guide

Inquiry Functions
e ieee_support_datatype([x])
e ieee_support_denormal ([x])
e ieee_support_divide([x])
e ieee_support_inf([x])

e ieee_support_nan([x])

e ieee_support_rounding (round_value[x])

e ieee_support_sqrt([x])

13

Fortran Enhancements

e ieee_support_standard ([x])

e ieee_support_underflow_control ([x]) Fortran 2003 only
Elemental Functions

e jeee_class(x)

* ieee_copy_sign(x,y)

* ieee_is_finite(x)

e jeee_is_nan(x)

e jeee_is_negative(x)

e jeee_is_normal(x)

e jeee_is_logh(x)

e ieee_next_after(x,y)

e jeee_rem(Xx,y)

e ieee_rint(x,y)

e jeee_scaln(x,i)

e ieee_unordered(x,y)

e jeee_value(x,class)

* ieee_support_datatype
Non-Elemental Subroutines

e jeee_get_rounding_mode(round_value)

e jeee_get_underflow_mode(gradual)

e jeee_set_rounding_mode(round_value)

e ieee_gst_underflow_mode(gradual)
Transformational Function

e ieee_selected_real_kind([p] [,r])

For more information on these intrinsic modules, and to the derived types, functions, and subroutines to which
they provide access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

|IEEE_EXCEPTIONS

The ieee exceptions intrinsic module provides access to two derived types, named constants of these
types, and a collection of generic procedures.

Derived Types

e jeee_flag type - Identifies a particular exception flag.

14

Chapter 2. New or Modified Compiler Features

e ieee_status_type - Saves the current floating-point status.
Inquiry Functions

e ieee_support_flag(flag [x])

e ieee_support_halting(flag)
Subroutines for Flags and Halting Modes

o ieee_get_flag(flag, flag_value)

e jeee_get_halting_mode(flag, halting)

o ieee_set_flag(flag, flag_value)

e jeee_set_halting_mode(flag, halting)
Subroutines for Floating-Point Status

e jeee_get_status(status_value)

o jeee_set_status(status_value)

For more information on this intrinsic module and the derived types, functions, and subroutines to which it
provides access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

Additional Fortran Enhancements

PGI 2010 partially implements Fortran 2003 Asynchronous Input/Qutput in PGF77 and PGFORTRAN
compilers.

e For external files opened with ASYNCHRONOUS="YES' in the OPEN statement, asynchronous 1/0 is allowed.
e Asynchronous I/0 operations are indicated by AsyNcHRONOUS="YES' in READ and WRITE statements.

e The compilers do not implement the ASYNCHRONOUS attribute or ASYNCHRONOUS statement.

New or Modified Runtime Library Routines

PGI 2010 supports new runtime library routines associated with the PGI Accelerator compilers. For more
information, refer to “PGI Accelerator Compilers Runtime Libraries,” on page 21.

New or Modified Tools Support

The PGI Tools Guide describes the tools in detail as well as explains the new features highlighted in this
section.

PGPROF graphical MPI/OpenMP/multi-thread performance analysis and tuning profiler has these
enhancements in this release:

* New data collection mechanism via pgcollect enables profiling without re-compiling or any special
software co-installation requirements for OProfile. You can use pgcollect in standalone mode for time-based
sampling using only PGI software — both on Linux and on Mac 0S X 10.5 (Leopard).

15

Library Interfaces

e Support for profiling of code in shared object files — on Linux.

Dynamic libraries are not yet supported on Mac OS X.

e Updated GUI for easier navigation with tabbed access to multiple source files and improved drill-down to
assembly code

* Support for profiling of binaries compiled by non-PGI compilers.

e Uniform cross-platform performance profiling without re-compiling or any special software privileges on
Linux, MacOS and Windows

* PGI Accelerator and CUDA Fortran GPU-side performance statistics

¢ Updated graphical user interface

Library Interfaces

PGI provides access to a number of libraries that export C interfaces by using Fortran modules. These libraries
and functions are described in Chapter 8 of the PGI User's Guide.

16

Chapter 3. PGl Workstation 2010

This chapter describes the updates and changes to PGI Workstation 2010 that are specific to Linux, Windows,
and Mac OS X, such as using the module load command on Linux.

PGI Workstation 2010 for Linux

Java Runtime Environment (JRE)

Although the PGI installation on Linux includes a 32-bit version of the Java Runtime Environment (JRE),
sufficient 32-bit X Windows support must be available on the system for the JRE and the PGI software that
depends on it to function properly. On some systems, notably recent releases of Fedora Core, these libraries
are not part of the standard installation.

The required X Windows support generally includes these libraries:

libXau libXdmcp libxch
libX11 libXext

PGl Workstation 2010 for Windows

PGI Workstation 2010 for Windows supports most of the features of the 32- and 64-bit versions for linux86
and linux86-64 environments.

PGI Workstation 2010 for Windows, during the point-and-click installation, now supports automatic license
generation from www.pgroup.com, and license server setup. In addition, an improved Start menu entry
allows easier access for launching command shells and PGI tools, as well as easier access to licensing and
documentation.

PGI Workstation 2010 for Mac OS X

PGI Workstation 2010 for Mac OS X supports most of the features of the 32- and 64-bit versions for linux86
and linux86-64 environments. Except where noted in these release notes or the user manuals, the PGI
compilers and tools on Mac OS X function identically to their Linux counterparts.

17

18

Chapter 4. PGl Accelerator

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations. This chapter describes the new PGI Accelerator
compilers, including the collection of compiler directives used to specify regions of code in Fortran and C
programs that can be offloaded from a host CPU to an attached accelerator.

Note

For more information and more details about the PGI Accelerator compilers, the programming model
and directives, refer to Chapter 7, Using an Accelerator and Chapter 18, PGI Accelerator Compilers
Reference, in the PGI User's Guide.

Components

The PGI Accelerator compiler technology includes the following components:
e PGFORTRAN auto-parallelizing accelerator-enabled Fortran 90/95 compiler
e PGCC auto-parallelizing accelerator-enabled ANSI C99 and K&R C compiler.
» NVIDIA CUDA Toolkit components

¢ A simple command-line tool to detect whether the system has an appropriate GPU or accelerator card.

No accelerator-enabled debugger or profiler is included with this release.

Availability

The PGI 2010 Fortran & C Accelerator compilers are available only on x86 processor-based workstations and
servers with an attached NVIDIA CUDA-enabled GPU or Tesla card. These compilers target all platforms that
PGI supports except 64-bit Mac OS X. For a list of supported GPUs, refer to the Accelerator Installation and
Supported Platforms list in the latest PGI Release Notes.

User-directed Accelerator Programming Line Flag

In user-directed accelerator programming the user specifies the regions of a host program to be targeted for
offloading to an accelerator device. The bulk of a user’s program, as well as regions containing constructs

19

Features Not Covered or Implemented

that are not supported on the targeted accelerator, are executed on the host. This chapter concentrates on
specification of loops and regions of code to be offloaded to an accelerator.

Features Not Covered or Implemented

Currently the PGI Accelerator compilers do not include features for automatic detection and offloading of
regions of code to an accelerator by a compiler or other tool. While future versions of the PGI compilers may
allow for automatic offloading, multiple accelerators of the same type, or multiple accelerators of different
types, these features are not currently supported.

System Requirements

To use the PGI Accelerator compiler features, you must install the NVIDIA CUDA component: NVIDIA Driver.

You may download this driver from the NVIDIA website at www.nvidia.com/cuda. These are not PGI products,
and are licensed and supported by NVIDIA.

Supported Processors and GPUs

This PGI Accelerator compiler release supports all AMD64 and Intel 64 host processors supported by Release
2010 or higher of the PGI compilers and tools. Further, you can use the -tp <target > flag as documented
in that release.

You can also use the -ta=nvidia flag to enable the accelerator directives and target the NVIDIA GPU. You
can then use the generated code on any system with CUDA installed that has a CUDA-enabled GeForce, Quadro,
or Tesla card.

For more information on these flags as they relate to accelerator technology, refer to the PGI User's Guide. For
a complete list of supported GPUs, refer to the NVIDIA website at:

www.nvidia.com/object/cuda_learn_products.html

Installation and Licensing

The PGI Accelerator compilers require a separate license key in addition to a normal PGI Workstation, Server,
or CDK license key. For specific information related to installation, refer to the PGI Workstation Installation
Guide.

Running an Accelerator Program

Running a program that has accelerator directives and was compiled and linked with the -ta=nvidia flag is
the same as running the program compiled without the -ta=nvidia flag.

e The program looks for and dynamically loads the CUDA libraries. If the libraries are not available, or if
they are in a different directory than they were when the program was compiled, you may need to append
the CUDA library directory to your LD_LIBRARY_PATH environment variable on Linux or to the PATH
environment variable on Windows.

e On Linux, if you have no server running on your NVIDIA GPU, when your program reaches its first
accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from a power-off condition.

20

Chapter 4. PGI Accelerator

You can avoid this delay by running the pgcudainit program in the background, which keeps the GPU
powered on.

e If you run an accelerated program on a system without a CUDA-enabled NVIDIA GPU, or without the CUDA
software installed in a directory where the runtime library can find it, the program fails at runtime with an
error message.

e If you set the environment variable AcC_NOTIFY to a nonzero integer value, the runtime library prints a

line to standard error every time it launches a kernel.

PGI Accelerator Compilers Runtime Libraries

PGI Accelerator Compilers provide user-callable functions and library routines that are available for use by
programmers to query the accelerator features and to control behavior of accelerator-enabled programs at
runtime. In Fortran, none of the PGI Accelerator compilers runtime library routines may be called from a
PURE or ELEMENTAL procedure.

To access accelerator libraries, you must link an accelerator program with the same -t a flag used when
compiling.

There are separate runtime library files for C and for Fortran.

* G Runtime Library Files - In C, prototypes for the runtime library routines are available in a header file
named accel . h. All the library routines are extern functions with “C” linkage. This file defines:
e The prototypes of all routines in this section.
* Any data types used in those prototypes, including an enumeration type to describe types of accelerators.

e Fortran Runtime Library Files - In Fortran, interface declarations are provided in a Fortran include file
named accel 1ib.h and in a Fortran module named accel 1ib. These files define:

* Interfaces for all routines in this section.
* Integer parameters to define integer kinds for arguments to those routines.

* Integer parameters to describe types of accelerators.

The integer parameter accel version has a value yyyymm, where yyyy and mm are the year and
month designations of the version of the Accelerator programming model supported. This value matches
the value of the preprocessor variable ACCEL.

The following list briefly describes the supported PGI Accelerator compilers runtime library routines that
PGI currently supports. For a complete description of these routines, refer to the PGI Accelerator Runtime
Routines section of the PGI User’s Guide.

 acc_get_device - returns the type of accelerator device being used.
e acc_get_num_devices - returns the number of accelerator devices of the given type attached to the host.

e acc_init - connects to and initializes the accelerator device and allocates control structures in the
accelerator library.

21

Running an Accelerator Program

e acc_set_device - tells the runtime which type of device to use when executing an accelerator compute
region.

e acc_set_device_num - tells the runtime which device of the given type to use among those that are
attached.

¢ acc_shutdown - tells the runtime to shutdown the connection to the given accelerator device, and free up
any runtime resources.

Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section defines the
user-setable environment variables used to control behavior of accelerator-enabled programs at execution.
These environment variables must comply with these rules:

¢ The names of the environment variables must be upper case.

e The values assigned environment variables are case insensitive and may have leading and trailing white
space.

e The behavior is implementation-defined if the values of the environment variables change after the program
has started, even if the program itself modifies the values.

The following list briefly describes the Accelerator environment variables that PGI supports. For more
information on these variables, refer to the PGI User’s Guide.

* ACC_DEVICE - controls which accelerator device to use when executing PGI Unified Binary for accelerators.
The value of this environment variable may be the string NVIDIA or HOST.

e ACC_DEVICE_NUM - controls the default device number to use when executing accelerator regions. The
value of this environment variable must be a nonnegative integer between zero and the number of devices
attached to the host.

e ACC_NOTIFY - when set to a non-negative integer, indicates to print a message for each kernel launched on
the device.

Applicable Command Line Options

22

There are command line options that apply specifically when working with accelerators.

* —tp - use this option to specify the target host processor architecture.

e _Minfo Or -Minfo=accel - use either format of this option to see messages about the success or failure
of the compiler in translating the accelerator region into GPU kernels.

* _ta=nvidia(,nvidia_suboptions),host - enables recognition of the !$ACC directives in Fortran,
and #pragma acc directives in C. [C, Fortran only]

It has these suboptions:

e nvidia - Select NVIDIA accelerator target.

This option has the following nvidia-suboptions:

Chapter 4. PGI Accelerator

analysis Perform loop analysis only; do not generate GPU code.

ccl0, ccll, ccl12, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0

ccl3, cc20 respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

time Link in a limited-profiling library.

[no]wait Wait for each kernel to finish before continuing in the host program.

* host - Select the host as the target, when used in combination with the nvidia option, this option
generates PGI Unified Binary Code.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds
the kernels in the Linux object file.

To access accelerator libraries, you must link an accelerator program with the same -ta flag used when
compiling the program.

PGI Unified Binary for Accelerators

PGI compilers support the PGI Unified Binary feature to generate executables with functions optimized
for different host processors, all packed into a single binary. This release extends the PGI Unified Binary
technology for accelerators. Specifically, you can generate a single binary that includes two versions of
functions:

e one version is optimized for the accelerator.

e one version runs on the host processor when the accelerator is not available or when you want to compare
host to accelerator execution.

To enable this feature, use the extended —ta flag: -ta=nvidia, host

This flag tells the compiler to generate two versions of functions that have valid accelerator regions.

* A compiled version that targets the accelerator.

* A compiled version that ignores the accelerator directives and targets the host processor.

If you use the -Minfo flag, you get messages similar to the following during compilation:

23

Multiple Processor Targets

sl:
12, PGI Unified Binary version for -tp=barcelona-64 -ta=host
18, Generated an alternate loop for the inner loop
Generated vector sse code for inner loop
Generated 1 prefetch instructions for this loop
sl:

12, PGI Unified Binary version for -tp=barcelona-64 -ta=nvidia
15, Generating copy(b(:,2:90))
Generating copyin(a(:,2:90))
16, Loop is parallelizable
18, Loop is parallelizable
Parallelization requires privatization of array t(2:90)
Accelerator kernel generated
16, !Sacc do parallel
18, !Sacc do parallel, vector(256) Using register for t

The PGI Unified Binary message shows that two versions of the subprogram s1 were generated:

¢ one for no accelerator (-ta=host)

¢ one for the NVIDIA GPU (-ta=nvidia)

At run time, the program tries to load the NVIDIA CUDA dynamic libraries and test for the presence of a GPU. If
the libraries are not available or no GPU is found, the program runs the host version.

You can also set an environment variable to tell the program to run on the NVIDIA GPU. To do this, set
ACC_DEVICE to the value NVIDIA or nvidia. Any other value of the environment variable causes the program to
use the host version.

The only supported —ta targets for this release are nvidia and host.

Multiple Processor Targets

24

You can use the -tp flag with multiple processor targets along with the -t a flag. You will see the following
behavior:

e If you specify one —tp value and one —ta value:

You see one version of each subprogram generated for that specific target processor and target accelerator.

e If you specify one -tp value and multiple -ta values:

The compiler generates two versions of subprograms that contain accelerator regions for the specified
target processor and each target accelerator.

e If you specify multiple -tp values and one -ta value:

If 2 or more —tp values are given, the compiler generates up to that many versions of each subprogram, for
each target processor, and each version also targets the selected accelerator.

e If you specify multiple -tp values and multiple -ta values:

With 'N' -t p values and two -t a values, the compiler generates up to N+1 versions of the subprogram.
It first generates up to N versions, for each -tp value, ignoring the accelerator regions, equivalent to -
ta=host. It then generates one additional version with the accelerator target.

Chapter 4. PGI Accelerator

Multiple Accelerators
You can use multiple NVIDIA GPUs in your application by writing a parallel MPI or OpenMP program.

MPI
In an MPI program where each MPI rank is actually running in parallel on the same node, you can use the
MPI rank value to select a different GPU to use with the acc_set device num procedure.

OpenMP
In an OpenMP program, you can use the omp get thread num function result to select a different
GPU to use for each thread.

In an OpenMP parallel region, you can include an accelerator region with loops such that each thread
computes a different subset of the iterations.

Profiling Accelerator Kernels

This release supports the command line option:

-ta=nvidia, time
This release supports the Target Accelerator property NVIDIA: Enable Profiling (-ta=nvidia,time).

The time suboption links in a timer library, which collects and prints out simple timing information about the
accelerator regions and generated kernels.

Example 4.1. Sample Accelerator Kernel Timing Data

Accelerator Kernel Timing data
bb04.£90
sl
15: region entered 1 times
time (us) : total=1490738
init=1489138 region=1600
kernels=155 data=1445
w/o init: total=1600 max=1600
min=1600 avg=1600
18: kernel launched 1 times
time (us) : total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

e For each accelerator region, the file name bbo4 . £90 and subroutine or function name s1 is printed, with
the line number of the accelerator region, which in the example is 15.

e The library counts how many times the region is entered (1 in the example) and the microseconds spent in
the region (in this example 1490738), which is split into initialization time (in this example 1489138) and
execution time (in this example 1600).

¢ The execution time is then divided into kernel execution time and data transfer time between the host and
GPU.

e For each kernel, the line number is given, (18 in the example), along with a count of kernel launches, and
the total, maximum, minimum, and average time spent in the kernel, all of which are 155 in this example.

25

Supported Intrinsics

Supported Intrinsics

PGI Accelerator compilers support Fortran and C intrinsics. For complete descriptions of these intrinsics, refer
to the "Supported Intrinsics" section of the Using an Accelerator chapter of the PGI User's Guide. PGI plans
to support additional intrinsics in future releases.

26

Chapter 5. Distribution and
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users
who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications
built using PGI compilers and tools. The application must be installed in such a way that it executes accurately
on a system other than the one on which it was built, and which may be configured differently.

Application Deployment and Redistributables

Programs built with PGI compilers may depend on run-time library files. These library files must be distributed
with such programs to enable them to execute on systems where the PGI compilers are not installed. There are
PGI redistributable files for all platforms. On Windows, PGI also supplies Microsoft redistributable files.

PGl Redistributables

The PGI 2010 release includes these directories:

$PG/linux86/10.1/REDIST
$PGL/linux86/10.1/REDIST-RLR
$PG/linux86-64/10.1/REDIST
$PGI/linux86-64/10.1/REDIST-RLR
$PGL/win32/10.1/REDIST
$PGL/win32/10.1/REDIST-RLR
$PGL/win64/10.1/REDIST
$PGL/win64/10.1/REDIST-RLR
$PGL/0sx86/10.1/REDIST-RLR

These directories contain all of the PGI Linux runtime library shared object files or Windows dynamically
linked libraries that can be re-distributed by PGI 2010 licensees under the terms of the PGI End-user License
Agreement (EULA). For reference, a text-form copy of the PGI EULA is included in the 2010 directory.

27

Application Deployment and Redistributables

Linux Redistributables

The Linux REDIST directories contain the PGI runtime library shared objects for all supported targets. This
enables users of the PGI compilers to create packages of executables and PGI runtime libraries that will
execute successfully on almost any PGI-supported target system, subject to these requirements:

¢ End-users of the executable have properly initialized their environment

e Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared objects.

Microsoft Redistributables

28

The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools directory contains
a subdirectory named "redist". PGI 2010 licensees may redistribute the files contained in this directory in
accordance with the terms of the PGI End-User License Agreement.

Microsoft supplies installation packages, vcredist x86.exe and veredist x64 .exe, containing these
runtime files. These files are available in the redist directory.

Chapter 6. The PGl Windows CDK

If you have a PGI Windows CDK (Cluster Development Kit) license, then your PGI software includes support

for working with Microsoft Compute Cluster Server and MSMPI. Specifically, this software includes support for
these things:

e Building MPI applications with MSMPI
e Using PGPROF to do MPI profiling of MSMPI applications
e Using PGDBG to do MPI debugging of MSMPI applications

This chapter provides information on these tasks.

Build MPI Applications with MSMPI

Note

For the options -Mprof=msmpi and -Mmpi=msmpi to work properly, the CCP_HOME environment
variable must be set. This variable is typically set when the Microsoft Compute Cluster SDK is installed.

Using MSMPI libraries

To build an application using the MSMPI libraries, use the option -Mmpi=msmpi. This option inserts options
into the compile and link lines to pick up the MSMPI headers and libraries.

Generate MPI Profile Data

To build an application that generates MPI profile data, use the-Mprof=msmpi option. This option performs
MPICH-style profiling for Microsoft MSMPI. For Microsoft Compute Cluster Server only, using this option
implies -Mmpi=msmpi.

The profile data generated by running an application built with the option -Mprof=msmpi contains
information about the number of sends and receives, as well as the number of bytes sent and received,
correlated with the source location associated with the sends and receives. You must use -Mprof=msmpi in
conjunction with either the option -Mprof=func or -Mprof=1ines.

When invoked using this type of profile data, PGPROF automatically displays MPI statistics.

29

Debug MSMPI Applications with PGDBG

Debug MSMPI Applications with PGDBG

To invoke the PGDBG debugger to debug an MSMPI application, use the pgdbg -mpi option:
$ pgdbg -mpil[:<path>] <mpiexec args> [-program args argl, ...argn]

The location of mpiexec should be part of your PATH environment variable. Otherwise, you should specify the
pathname for mpiexec, or another similar launcher, as <path> in -mpi[:<path>].

To start a distributed debugging session, you must use the job submit command on the command line, as
illustrated in the example that follows. You must also ensure that the debugger has access to the pgserv.exe
remote debug agent on all nodes of the cluster used for the debug session.

To make pgserv.exe available, copy it from the PGI installation directory, such as C:\Program Files\PGI
\win64\10.1\bin\ pgserv.exe, into a directory or directories such that the path to pgserv.exe is the same on all
nodes in the debug session. Then you can start the debug session as follows:

$ pgdbg -pgserv:<path to pgserv.exe> -mpi[:<job submit commands>]

If you use a command similar to the following one, it copies pgserv.exe to the current directory and also sets
the path to pgserv.exe to this copy.

Bash Shell Example

30

Suppose you wanted to debug the following job invoked in a bash shell:

PGIS$ "job.cmd" submit /numprocessors:4 /workdir:\\\\cce-head\\d\\srt /

stdout : sendrecv.out mpiexec sendrecv.exe
You use this command:

S pgdbg -pgserv "-mpi:c:\Program Files\Microsoft Compute Cluster Pack\Bin\job.cmd"
submit /numprocessors:4 /workdir:\\cce-head\d\srt
/stdout :sendrecv.out mpiexec sendrecv.exe

Important

For this command to execute properly, a copy of pgserv.exe must be located in \\cce-head\d
\srt.

Since the CCP installation updates the default PATH, the following command is equivalent to the previous one:

S pgdbg -pgserv -mpi:job.cmd submit /numprocessors:4 /workdir:\\cce-head\d\srt
/stdout :sendrecv.out mpiexec sendrecv.exe

Note

The use of quotes around the -mpi option varies, depending on the type of shell you are using. In the
example, or if you are using cmd, specify the option as “-mpi :...” including the quotes around the
option as well as around the optional job submit command. When invoking in a Cygwin bash shell,
you can specify the -mpi option as -mpi:"...", using the quotes around only the job submit
command.

Chapter 6. The PGl Windows CDK

DOS Shell Example

Suppose you wanted to debug the following job invoked in a DOS shell:

DOS> job submit /numprocessors:4 /workdir:\\cce-head\d\srt
/stdout :sendrecv.out mpiexec sendrecv.exe

You use this command:
$ pgdbg -pgserv "-mpi:c:\Program Files\Microsoft Compute Cluster Pack\Bin\job.cmd"

submit /numprocessors:4 /workdir:\\cce-head\d\srt
/stdout :sendrecv.out mpiexec sendrecv.exe

31

32

Chapter 7. Troubleshooting Tips and
Known Limitations

This chapter contains information about known limitations, documentation errors, and corrections that have
occurred to PGI Server and Workstation.

The frequently asked questions (FAQ) section of the pgroup.com web page provides more up-to-date
information about the state of the current release. The location is:

http://www.pgroup.com/support/index.htm

General Issues

Most issues in this section are related to specific uses of compiler options and suboptions.

e Object and module files created using PGI Workstation 2010 compilers are incompatible with object files
from PGI Workstation 5.x and prior releases.

e Object files compiled with —-Mipa using PGI Workstation 6.1 and prior releases must be recompiled with
PGI Workstation 2010.

* The -i8 option can make programs incompatible with the bundled ACML library. Visit developer.amd.com
to check for compatible libraries.

 The -is option can make programs incompatible with MPI and ACML; use of any INTEGER*S8 array size
argument can cause failures with these libraries.

e Using -Mipa=vestigial in combination with -Mipa=1ibopt Wwith PGCC, you may encounter
unresolved references at link time. This problem is due to the erroneous removal of functions by the
vestigial sub-option to -Mipa. You can work around this problem by listing specific sub-options to -Mipa,
not including vestigial.

e OpenMP programs compiled using -mp and run on multiple processors of a SuSE 9.0 system can run
very slowly. These same executables deliver the expected performance and speed-up on similar hardware
running SuSE 9.1 and above.

33

Platform-specific Issues

Platform-specific Issues

Linux

The following are known issues on Linux:

* If you experience poor performance in the PGDBG or PGPROF GUI, try upgrading the X library 1ibxcb to
the latest version. The version number varies depending on your distribution. You can obtain a patch from
your Linux distributor.

e Programs that incorporate object files compiled using -mcmodel=medium cannot be statically linked.
This is a limitation of the linux86-64 environment, not a limitation of the PGI compilers and tools.

Apple Mac OS X

The following are known issues on Apple Mac OS X:

Note

Tiger is no longer supported

e On Apple Mac OS platform, the PGI Workstation 2010 compilers do not support static linking of user
binaries. For compatibility with future Apple updates, the compilers support dynamic linking of user
binaries.

e Using -Mprof=func or -Mprof=1ines is not supported.

* To begin an OpenMPI debugging session with PGDBG on Mac OS X 10.5, use the following steps:

1. Invoke the debugger using the full pathname of the executable. For example, you might use a
command similar to this one:

pgdbg -mpi:mpirun -np 4 /home/userl/a.out
2. Seta breakpoint on main.
3. Continue to the breakpoint.

4. Begin your debugging session.

Windows

The following are known issues on Windows:

¢ On Windows, the version of vi included in Cygwin can have problems when the SHELL variable is defined to
something it does not expect. In this case, the following messages appear when vi is invoked:

E79: Cannot expand wildcards Hit ENTER or type command to continue

To workaround this problem, set SHELL to refer to a shell in the cygwin bin directory, e.g. /bin/bash.

 On Windows, runtime libraries built for debugging (e.g. msvcrtd and 1ibcmtd) are not included with
PGI Workstation. When a program is linked with -g, for debugging, the standard non-debug versions of

34

Chapter 7. Troubleshooting Tips and Known Limitations

both the PGI runtime libraries and the Microsoft runtime libraries are always used. This limitation does not
affect debugging of application code.

The following are known issues on Windows and PGDBG:

e In PGDBG on the Windows platform, use the forward slash ('/) character to delimit directory names in file
path names.

Note

This requirement does not apply to the PGDBG debug command or to target executable names on
the command line, although this convention will work with those commands.

e In PGDBG on the Windows platform, Windows times out stepi/nexti operations when single stepping over
blocked system calls. For more information on the workaround for this issue, refer to the online FAQs at
WWW.pgroup.com/support/tools.htm.

The following are known issues on Windows and PGPROF:

¢ Do not use -Mprof with PGI Workstation runtime library DLLs. To build an executable for profiling, use the
static libraries. When the compiler option -Bdynami c is not used, the static libraries are the default.

PGDBG-related Issues

The following are known issues on PGDBG:

* Before PGDBG can set a breakpoint in code contained in a shared library, . so or .d11, the shared library
must be loaded.

* Due to problems in PGDBG in shared library load recognition on Fedora Core 6 or RHEL5, breakpoints in
processes other than the process with rank 0 may be ignored when debugging MPICH-1 applications when
the loading of shared libraries to randomized addresses is enabled.

* Debugging of unified binaries, that is, programs built with the -tp=x64 option, is not fully supported.
The names of some subprograms are modified in the creation of the unified binary, and PGDBG does not
translate these names back to the names used in the application source code. For detailed information on
how to debug a unified binary, see www.pgroup.com/support/tools.htm.

PGPROF-related Issues

The following are known issues on PGDBG:

e Using -Mprof=func, -mcmodel=medium and -mp together on any of the PGI compilers can result in
segmentation faults by the generated executable. These options should not be used together.

e Programs compiled and linked for gprof-style performance profiling using -pg can result in segmentation
faults on system running version 2.6.4 Linux kernels.

e Times reported for multi-threaded sample-based profiles, that is, profiling invoked with -pg or -
Mprof=time options, are for the master thread only. PGI-style instrumentation profiling with -

35

CUDA Fortran Toolkit Issues

Mprof={lines | func} or hardware counter-based profiling using -Mprof=hwcts or pgcollect must
be used to obtain profile data on individual threads.

CUDA Fortran Toolkit Issues

Note

Compiling with the CUDA 3.0 toolkit, either by adding the-ta=nvidia:cuda3. o option to the
command line or by adding set CUDAVERSION=2.O0 to the siterc file, generates binaries that
may not work on machines with a 2.3 CUDA driver.

pgaccelinfo prints the driver version as the first line of output.

For a 2.3 driver; CUDA Driver Version 2030
For 2 3.0 driver; CUDA Driver Version 3000

Corrections

A number of problems have been corrected in the PGI 2010 release. Refer to www.pgroup.com/support/
release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in recent
releases of the PGI compilers and tools. This table contains a summary description of each problem as well as
the release in which it was fixed.

36

Chapter 8. Contact Information

You can contact The Portland Group at:

The Portland Group
STMicroelectronics, Inc.
Two Centerpointe Drive

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other
PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI
website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax +1-503-682-2637
Sales sales@pgroup.com
Support trs@pgroup.com
WWwW WWW.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone
support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at
www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the
documentation in the release directory doc/index.htm.

37

38

	PGI® Server 2010 space PGI® Workstation 2010 Release Notes
	Contents
	Chapter 1. Release Overview
	PGI Workstation and PGI Server
	Licensing Terminology
	Workstation and Server Comparison

	Product Overview
	Terms and Definitions
	Supported Platforms

	Chapter 2. New or Modified Compiler Features
	What's New in PGI Release 2010
	10.4 Additions
	10.3 Additions
	2010 Additions Prior to 10.3

	Getting Started
	Using -fast, -fastsse, and Other Performance-Enhancing Options

	New or Modified Compiler Options
	C++ Compilation Requirements
	Fortran Enhancements
	Enhanced Fortran Interoperability with C
	New or Modified Fortran Statements
	New or Modified Fortran Intrinsic Functions
	New Fortran Intrinsic Modules
	IEEE_ARITHMETIC
	IEEE_EXCEPTIONS

	Additional Fortran Enhancements

	New or Modified Runtime Library Routines
	New or Modified Tools Support
	Library Interfaces

	Chapter 3. PGI Workstation 2010
	PGI Workstation 2010 for Linux
	Java Runtime Environment (JRE)

	PGI Workstation 2010 for Windows
	PGI Workstation 2010 for Mac OS X

	Chapter 4. PGI Accelerator
	Components
	Availability
	User-directed Accelerator Programming Line Flag
	Features Not Covered or Implemented
	System Requirements
	Supported Processors and GPUs

	Installation and Licensing
	Running an Accelerator Program
	PGI Accelerator Compilers Runtime Libraries
	Environment Variables
	Applicable Command Line Options

	PGI Unified Binary for Accelerators
	Multiple Processor Targets
	Multiple Accelerators
	Profiling Accelerator Kernels
	Supported Intrinsics

	Chapter 5. Distribution and Deployment
	Application Deployment and Redistributables
	PGI Redistributables
	Linux Redistributables
	Microsoft Redistributables

	Chapter 6. The PGI Windows CDK
	Build MPI Applications with MSMPI
	Using MSMPI libraries
	Generate MPI Profile Data

	Debug MSMPI Applications with PGDBG
	Bash Shell Example
	DOS Shell Example

	Chapter 7. Troubleshooting Tips and Known Limitations
	General Issues
	Platform-specific Issues
	Linux
	Apple Mac OS X
	Windows

	PGDBG-related Issues
	PGPROF-related Issues
	CUDA Fortran Toolkit Issues
	Corrections

	Chapter 8. Contact Information

