
PGI Visual Fortran®

Release Notes 2010

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
Lake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI Visual Fortran®

Copyright © 2010 The Portland Group® and STMicroelectronics, Inc.-
All rights reserved.

Printed in the United States of America

First Printing: Release 2010, version 10.0, November 2009
Second Printing: Release 2010, version 10.1, January 2010
Third Printing: Release 2010, version 10.2, February 2010
Fourth Printing: Release 2010, version 10.3, March 2010

Fifth Printing: Release 2010, version 10.4, April 2010

ID: 10951736

Technical support: trs@pgroup.com
Sales: sales@pgroup.com

Web: www.pgroup.com

iii

Contents
1. PVF® Release Overview .. 1

Product Overview .. 1
Terms and Definitions ... 2

2. Compiler Features ... 3
What's New in PVF Release 2010 .. 3

10.4 Additions .. 3
10.3 Additions .. 4
Prior to 10.3 .. 4

Compiler Optimizations and Features ... 5
New or Modified Compiler Options ... 6
Fortran Enhancements ... 7

Enhanced Fortran Interoperability with C ... 7
New or Modified Fortran Statements .. 8
New or Modified Fortran Intrinsic Functions ... 8
New Fortran Intrinsic Modules ... 9
Additional Fortran Enhancements .. 11

New or Modified Runtime Library Routines ... 12
New or Modified Tools Support .. 12
MPI Support ... 12

3. Alternate Compiler Release Selection ... 13
For a Single Project ... 13
For All Projects ... 13

4. PGI Accelerator ... 15
Components ... 15
Availability .. 15
User-directed Accelerator Programming Line Flag .. 15
Features Not Covered or Implemented ... 16
System Requirements ... 16

Supported Processors and GPUs .. 16

iv

Installation and Licensing ... 16
Running an Accelerator Program .. 16

PGI Accelerator Compilers Runtime Libraries .. 17
Environment Variables ... 18
Applicable Command Line Options .. 18

Applicable PVF Property Pages .. 18
PGI Unified Binary for Accelerators ... 19
Multiple Accelerators ... 20
Profiling Accelerator Kernels .. 20
Supported Intrinsics .. 21

5. Distribution and Deployment .. 23
Application Deployment and Redistributables .. 23

PGI Redistributables .. 23
Microsoft Redistributables .. 24

6. Troubleshooting Tips and Known Limitations ... 25
Use MPI in PVF Limitations .. 25
PVF IDE Limitations ... 25
PVF Debugging Limitations .. 26
PGI Compiler Limitations ... 26
CUDA Fortran Toolkit Issues ... 27
Corrections .. 27

7. Contact Information .. 29

1

Chapter 1. PVF® Release Overview
Welcome to Release 2010 of PGI Visual Fortran®, a set of Fortran compilers and development tools for 32-
bit and 64-bit x86-compatible processor-based workstations and servers running versions of the Windows
operating system.

This document describes the new features of the PVF IDE interface, differences in the PVF 2010 compilers
and tools from previous releases, and late-breaking information not included in the standard product
documentation.

PGI Visual Fortran (PVF®) is licensed using FLEXnet, the flexible license management system from Flexera
Software*. Instructions for obtaining a permanent license are included in your order confirmation. More
information on licensing is in the PVF Installation Guide for this release.

Product Overview
There are two products in the PVF product family. Each product is integrated with a particular version of
Microsoft Visual Studio:

• PGI Visual Fortran 2005

This product is integrated with Microsoft Visual Studio 2005 (VS 2005).

• PGI Visual Fortran 2008

This product is integrated with Microsoft Visual Studio 2008 (VS 2008).

Throughout this document, "PGI Visual Fortran" and “PVF” refer to both PVF products collectively. Similarly,
"Microsoft Visual Studio" refers to both VS 2005 and VS 2008. When it is necessary to distinguish between the
products, the document uses the full product name.

Single-user node-locked and multi-user network floating license options are available for both products. When
a node-locked license is used, one user at a time can use PVF on the single system where it is installed. When a
network floating license is used, a system is selected as the server and it controls the licensing, and users from
any of the client machines connected to the server can use PVF. Thus multiple users can simultaneously use
PVF, up to the maximum number of users allowed by the license.

PVF provides a complete Fortran development environment fully integrated with Microsoft Visual Studio 2008
or 2005. It includes a custom Fortran Build Engine that automatically derives build dependencies, a Fortran-

Terms and Definitions

2

aware editor, a custom PGI Debug Engine integrated with the Visual Studio debugger, PGI Fortran compilers,
and PVF-specific property pages to control the configuration of all of these.

Release 2010 of PGI Visual Fortran includes the following components:

• PGFortran OpenMP and auto-parallelizing Fortran 90/95 compiler

• PGF77 OpenMP and auto-parallelizing FORTRAN 77 compiler

• PVF Visual Studio integration components

• AMD Core Math Library 4.3-0 (ACML)

• PVF documentation fully integrated with Visual Studio help

PGI Visual Fortran 2008 also includes:

• Microsoft Visual Studio 2008 Shell SP1 (Integrated Development Environment - IDE)

A version of PVF 2008 is also available without the Visual Studio Shell. Use this package if you already have
Visual Studio 2008 installed on your system.

Terms and Definitions
These release notes contain a number of terms and definitions with which you may or may not be familiar. If
you encounter a term in these notes with which you are not familiar, please refer to the online glossary at

www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

• AMD64 – a 64-bit processor from AMD designed to be binary compatible with 32-bit x86 processors,
and incorporating new features such as additional registers and 64-bit addressing support for improved
performance and greatly increased memory range. This term includes the AMDTM Athlon64TM, AMD
OpteronTM, AMD TurionTM, AMD Barcelona, AMD Shanghai, and AMD Istanbul processors.

• Intel 64 – a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be
binary compatible with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, Intel Core 2, Intel
Penryn, and Intel Core i7 (Nehalem) processors.

3

Chapter 2. Compiler Features
This chapter contains the new or modified features of this release of PGI Visual Fortran as compared to prior
releases.

What's New in PVF Release 2010

10.4 Additions

• Full support for the PGI Accelerator programming model in PGI Visual Fortran

• Complete support for PGI CUDA Fortran on NVIDIA CUDA-enabled GPUs.

• Support for CUDA 3.0 Toolkit in the PGI Accelerator x64+GPU native Fortran 95/03 compilers and in
PGI CUDA Fortran. To specify the version of the CUDA toolkit that is targeted by compilers, use one of the
following properties:

• Set Fortran | Language | Enable CUDA Fortran to Yes and then use CUDA Fortran Toolkit to specify the
version.

• Set Fortran | Target Accelerator | Target NVIDIA Accelerator to Yes and then use NVIDIA: CUDA Toolkit to
specify the version.

Note

Compiling with the CUDA 3.0 toolkit generates binaries that may not work on machines with a 2.3
CUDA driver. For more information, refer to “CUDA Fortran Toolkit Issues,” on page 27.

• Support for compute capability 2.0 in the PGI Accelerator x64+GPU native Fortran 95/03 compilers
and in PGI CUDA Fortran. To specify CUDA compute capability 2.0, use one of the following properties:

• Set Fortran | Language | CUDA Fortran Compute Capability to Manual and the CC 2.0 property to Yes.

• Set Fortran | Target Accelerator | Target NVIDIA Accelerator to Yes, NVIDIA Compute Capability to
Manual, and NVIDIA: CC 2.0 property to Yes.

By default, the compiler targets these three compute capabilities: 1.0, 1.3, and 2.0.

What's New in PVF Release 2010

4

Important

The user can now choose whether to manually or automatically determine the compute capabilities
for both CUDA Fortran and Target Accelerator NVIDIA.

• The new NVIDIA: Synchronous Kernel Launch property, available from the Fortran | Target Accelerator
property page when Fortran | Target Accelerator | Target NVIDIA Accelerator is set to Yes, specifies to wait
for each kernel to finish before continuing in the host program.

• The new Fortran | Language | CUDA Fortran Use Fused Multiply-Adds property allows the user to
control the generation of fused multiply-add instructions with CUDA Fortran.

• The new Fortran | Language | CUDA Fortran Use Fast Math Library property allows the user to specify to
use routines from the fast math library.

• Added support in CUDA Fortran for using allocatable device arrays in modules which contain global
subroutines, accessible from both the host code which uses the module, and the device code contained
within the module.

10.3 Additions

• Enhanced compute capabilities with CUDA:

The default compute capabilities in 10.3 target both compute capability 1.0 and 1.3. Further, the user can
specify multiple compute capabilities to be targeted. For example, to target all the compute capabilities 1.0,
1.1, 1.2, and 1.3: from the Fortran | Language property page, first set the CUDA Fortran Compute Capability
to Yes, and then set each of the properties CUDA Fortran CC1.0, CUDA Fortran CC1.1, CUDA Fortran CC1.2,
and CUDA Fortran CC1.3 to Yes.

• Additional Fortran 2003 features in 10.3 include:

• Abstract interfaces

• IS_IOSTAT_END, IS_IOSTAT_EOR, and NEW_LINE intrinsics

• Object-oriented features including classes, type extensions (non-polymorphic), polymorphic entities,
typed allocation, inheritance association, as well as EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsics.

• New and modified statements, including: WAIT statement; blank, pad, and pos specifiers for the READ
statement; delim and pos specifiers for the WRITE statement; and pending and pos specifiers for the
INQUIRE statement

For more information on these features, refer to “Fortran Enhancements,” on page 7.

Prior to 10.3
New features in PVF 2010 prior to 10.3 are:

• Includes the standalone PGPROF performance profiler with CCFF support.

• PGI Accelerator x64+GPU native Fortran 95/03 compilers now support the full PGI Accelerator
programming model v1.0 standard for directive-based GPU programming and optimization.

Chapter 2. Compiler Features

5

• Device-resident data using the UPDATE directive

• COMPLEX and DOUBLE COMPLEX data, Fortran derived types

• Automatic GPU-side loop unrolling

• Support for Accelerator regions nested within OpenMP parallel regions

• PGI CUDA Fortran extensions supported in the PGI 2010 Fortran 95/03 compiler enable explicit CUDA
GPU programming

• Declare variables in CUDA GPU device, constant or shared memory

• Dynamically allocate page-locked pinned host memory, CUDA device main memory, constant memory
and shared memory

• Move data between host and GPU with Fortran assignment statements

• Declare explicit CUDA grids/thread-blocks to launch GPU compute kernels

• Support for CUDA Runtime API functions and features

• Efficient host-side emulation for easy CUDA Fortran debugging

• Fortran 2003 incremental features including: namelist I/O on internal files, IMPORT, pointer
reshaping, procedure pointers and statement, iso_c_binding intrinsic module, c_associated,
c_f_pointer, c_f_procpointer, enum, move_alloc(), iso_fortran_env module, optional kind to
intrinsics, allocatable scalars, volatile attribute and statement, pass and nopass attributes, bind(c), value,
command_argument_count, get_command, get_command_argument, get_environment_variable,
ieee_exceptions module, and ieee_arithmetic module.

For more information on these features, refer to “Fortran Enhancements,” on page 7.

• Expanded Operating Systems Support including Windows 7.

• Compiler optimizations and enhancements including:

• OpenMP support for up to 256 cores

• AVX code generation

• Executable size improvements

Compiler Optimizations and Features

• Computation and reporting of compute intensity of loops in all languages

• Packed SSE code generation for unrolled loops

• SSE vectorization of generalized reduction loops

• Improved scalar prefetching, spill tuning and live range splitting

• Improved static estimation of block execution frequencies

• Auto-generation of DWARF for improved tools interoperability

New or Modified Compiler Options

6

• Enhanced Fortran 95 DWARF generation

New or Modified Compiler Options
Unknown options are treated as errors instead of warnings. This feature means it is a compiler error to pass
switches that are not known to the compiler; however, you can use the switch –noswitcherror to issue
warnings instead of errors for unknown switches.

The following compiler options have been added or modified in PGI 2010:

• –m32 indicates to use the 32-bit compiler for the default processor type.

• –m64 indicates to use the 64-bit compiler for the default processor type.

• –ta=nvidia(,nvidia_suboptions),host is a switch associated with the PGI Accelerator
compilers. –ta defines the target architecture.

In release 2010, the nvidia_suboptions include:

analysis Perform loop analysis only; do not generate GPU code.

cc10, cc11, cc12,
cc13, cc20

Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0
respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

time Link in a limited-profiling library.

[no]wait Wait for each kernel to finish before continuing in the host program.

• –Mautoinline has new suboptions:

levels:n Instructs the compiler to perform n levels of inlining. The default
number of levels is 10.

maxsize:n Instructs the compiler not to inline functions of size > n. The default
size is 100.

totalsize:n Instructs the compiler not to stop inlining when the size equals n.
The default size is 800.

• New options –pre and –Mnopre exist to enable/disable partial redundancy elimination.

Chapter 2. Compiler Features

7

• A new option -Mcuda tells the compiler to enable CUDA Fortran. In release 2010, -Mcuda has these
suboptions:

cc10, cc11, cc12,
cc13, cc20

Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0
respectively.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

emu Enable CUDA Fortran emulation mode.

fastmath Use routines from the fast math library.

keepbin Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu Keep the generated GPU code (.gpu) for CUDA Fortran.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

nofma Do not generate fused multiply-add instructions.

Fortran Enhancements
The following sections describe enhancements to Fortran related to interoperability with C, statements,
assignments, intrinsics, modules, array-related allocation, and I/O operations.

Enhanced Fortran Interoperability with C

Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must have equivalent
declarations made in both C and Fortran. In this release, PGI has expanded Fortran interoperability with C by
adding these components:

• Enumerators - a set of integer constants. The kind of enumerator corresponds to the integer type that C
would choose for the same set of constants.

• c_f_pointer – a subroutine that assigns the C pointer target, cptr, to the Fortran pointer, fptr, and optionally
specifies its shape, shape. The syntax is:

 c_f_pointer (cptr, fptr [,shape])

• c_f_procpointer – a subroutine that associates the C pointer target, cptr, with the target of a C function
pointer. The syntax is:

 c_f_procpointer (cptr, fptr)

• c_associated – a subroutine that determines the status of the C pointer target, cptr1, or determines if one
C_PTR, cptr1 is associated with a target C_PTR, cptr2. The syntax is:

 c_associated (cptr1[,cptr2])

For more information on these components, refer to the Interoperability with C chapter of the PVF Fortran

Reference.

Fortran Enhancements

8

New or Modified Fortran Statements

The following Fortran statements are new. For complete descriptions, refer to chapter 3, Fortran Statements

of the Fortran Reference Guide.

WAIT
Performs a wait operation for specified pending asynchronous data transfer operations.

The following Fortran statements are enhanced in this release:

INQUIRE
New specifiers of PENDING and POS are now available.

READ
New specifiers of BLANK, PAD, and POS are now available.

WRITE
New specifiers of DELIM and POS are now available.

New or Modified Fortran Intrinsic Functions

An intrinsic is a function available in a given language whose implementation is handled specifically by the
compiler. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it and
optimize it for the situation. In this release, PGI implemented the following intrinsics. For detailed information
about these intrinsics, refer to the Intrinsics chapter of the Fortran Reference Guide.

EXTENDS_TYPE_OF(A,B)
Determines whether the dynamic type of A is an extension type of the dynamic type of B. Returns either
true or false.

GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])
Returns the specified command line argument of the command that invoked the program.

GET_COMMAND([COMMAND, LENGTH, STATUS])
Returns the entire command line that was used to invoke the program.

GET_ENVIRONMENT_VARIABLE (NAME [,VALUE, LENGTH, STATUS, TRIM_NAME])
Returns the value of the specified environment variable.

IS_IOSTAT_END(STAT)
Tests whether a variable has the value of the I/O status: “end of file”; returns either true or false.

IS_IOSTAT_EOR(STAT)
Tests whether a variable has the value of the I/O status: “end of record”; returns either true or false.

NEW_LINE(A)
Returns the newline character.

SAME_TYPE_AS(A,B)
Determines whether the dynamic type of A is the same as the dynamic type of B. Returns either true or
false.

Chapter 2. Compiler Features

9

New Fortran Intrinsic Modules

PGI 2010 now supports the Fortran intrinsic modules ieee_arithmetic and ieee_exceptions. The
following sections provide more detail about these modules.

Note

For specific information on these intrinsic modules and more details related to the types, functions,
and subroutines to which they provide access, refer to the PVF Fortran Reference.

IEEE_ARITHMETIC

The ieee_arithmetic intrinsic module provides access to two derived types, named constants of these
types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module ieee_exceptions, so all the
features of ieee_exceptions are included.

Defined Elemental Operators

• ==

For two values of one of the derived types, this operator returns true if the values are the same; false,
otherwise.

• /=

For two values of one of the derived types, this operator returns true if the values are different; false,
otherwise.

Derived Types

• ieee_class_type - Identifies a class of floating point values.

• ieee_round_type - Identifies a particular round mode.

The following table shows the values that each of these class types can take:

This derived type... Takes these values...
ieee_class_type ieee_signaling_nan

ieee_quiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_postive_zero
ieee_postive_denormal
ieee_postive_normal
ieee_postive_inf
ieee_other_value (Fortran 2003 only)

Fortran Enhancements

10

This derived type... Takes these values...
ieee_round_type ieee_nearest

ieee_to_zero
ieee_up
ieee_down

Inquiry Functions

• ieee_support_datatype([x])

• ieee_support_denormal([x])

• ieee_support_divide([x])

• ieee_support_inf([x])

• ieee_support_nan([x])

• ieee_support_rounding (round_value[,x])

• ieee_support_sqrt([x])

• ieee_support_standard ([x])

• ieee_support_underflow_control ([x]) Fortran 2003 only

Elemental Functions

• ieee_class(x)

• ieee_copy_sign(x,y)

• ieee_is_finite(x)

• ieee_is_nan(x)

• ieee_is_negative(x)

• ieee_is_normal(x)

• ieee_is_logb(x)

• ieee_next_after(x,y)

• ieee_rem(x,y)

• ieee_rint(x,y)

• ieee_scaln(x,i)

• ieee_unordered(x,y)

• ieee_value(x,class)

• ieee_support_datatype

Non-Elemental Subroutines

• ieee_get_rounding_mode(round_value)

Chapter 2. Compiler Features

11

• ieee_get_underflow_mode(gradual)

• ieee_set_rounding_mode(round_value)

• ieee_gst_underflow_mode(gradual)

Transformational Function

• ieee_selected_real_kind([p] [,r])

For more information on these intrinsic modules, and to the derived types, functions, and subroutines to which
they provide access, refer to the Intrinsics Modules section of the PVF Fortran Reference.

IEEE_EXCEPTIONS

The ieee_exceptions intrinsic module provides access to two derived types, named constants of these
types, and a collection of generic procedures.

Derived Types

• ieee_flag_type - Identifies a particular exception flag.

• ieee_status_type - Saves the current floating-point status.

Inquiry Functions

• ieee_support_flag(flag [,x])

• ieee_support_halting(flag)

Subroutines for Flags and Halting Modes

• ieee_get_flag(flag, flag_value)

• ieee_get_halting_mode(flag, halting)

• ieee_set_flag(flag, flag_value)

• ieee_set_halting_mode(flag, halting)

Subroutines for Floating-Point Status

• ieee_get_status(status_value)

• ieee_set_status(status_value)

For more information on this intrinsic module and the derived types, functions, and subroutines to which it
provides access, refer to the Intrinsics Modules section of the PGI Fortran Reference.

Additional Fortran Enhancements
PGI 2010 partially implements Fortran 2003 Asynchronous Input/Output in PGF77 and PGFORTRAN
compilers.

• For external files opened with ASYNCHRONOUS='YES' in the OPEN statement, asynchronous I/O is allowed.

• Asynchronous I/O operations are indicated by ASYNCHRONOUS='YES' in READ and WRITE statements.

New or Modified Runtime Library Routines

12

• The compilers do not implement the ASYNCHRONOUS attribute or ASYNCHRONOUS statement.

New or Modified Runtime Library Routines
PGI 2010 supports new runtime library routines associated with the PGI Accelerator compilers. For more
information, refer to “PGI Accelerator Compilers Runtime Libraries,” on page 17.

New or Modified Tools Support
The PGI Tools Guide describes the tools in detail as well as explains the new features highlighted in this
section.

PGPROF graphical MPI/OpenMP/multi-thread performance analysis and tuning profiler has these
enhancements in this release:

• New data collection mechanism via pgcollect enables profiling without re-compiling or any special
software co-installation requirements for OProfile.

• Updated GUI for easier navigation with tabbed access to multiple source files and improved drill-down to
assembly code

• Support for profiling of binaries compiled by non-PGI compilers.

• Uniform cross-platform performance profiling without re-compiling or any special software privileges on
Windows

• PGI Accelerator and CUDA Fortran GPU-side performance statistics

• Updated graphical user interface

MPI Support
Message Passing Interface (MPI) is a set of function calls and libraries that are used to send messages between
multiple processes. These processes can be located on the same system or on a collection of distributed
servers. Unlike OpenMP, the distributed nature of MPI allows it to work in almost any parallel environment.
Further, distributed execution of a program does not necessarily mean that you must run your MPI job on
many machines.

In this release, PVF provides built-in support for Microsoft's version of MPI: MSMPI. Inside PVF you can build,
run, and debug MSMPI applications with ease. For information on how to compile, run, and debug your MPI
application, refer to Chapter 4, Using MPI in PVF of the PVF User's Guide.

Important

To use PVF's MPI features, you must first install additional Microsoft software which you can
download from Microsoft. For the specific corequirements and how to obtain the software, refer to
the "MPI Corequirements" section of the PVF Installation Guide.

13

Chapter 3. Alternate Compiler
Release Selection

Each release of PGI Visual Fortran contains two components - the newest release of PVF and the newest release
of the PGI compilers and tools that PVF targets.

When PVF is installed onto a system that contains a previous version of PVF, the previous version of PVF is
replaced. The previous version of the PGI compilers and tools, however, remains installed side-by-side with the
new version of the PGI compilers and tools. By default, the new version of PVF will use the new version of the
compilers and tools. Previous versions of the compilers and tools may be uninstalled using Control Panel | Add
or Remove Programs.

There are two ways to use previous versions of the compilers:

• Use a different compiler release for a single project.

• Use a different compiler release for all projects.

The method to use depends on the situation.

For a Single Project
To use a different compiler release for a single project, you use the compiler flag -V<ver> to target the
compiler with version <ver>.

For example, -V10.1 causes the compiler driver to invoke the 10.1 version of the PGI compilers if these are
installed.

To use this option within a PVF project, add it to the Additional options section of the Fortran | Command Line
and Linker | Command Line property pages.

For All Projects
You can use a different compiler release for all projects. The Tools | Options dialog within PVF contains
entries that can be changed to use a previous version of the PGI compilers. Under Projects and Solutions |
PVF Directories, there are entries for Executable Directories, Include and Module Directories, and Library
Directories.

For All Projects

14

• For the x64 platform, each of these entries includes a line containing $(PGIToolsDir). To change the
compilers used for the x64 platform, change each of the lines containing $(PGIToolsDir) to contain the
path to the desired bin, include, and lib directories.

• For the Win32 platform, these entries include a line containing $(PGIToolsDir) on Win32 systems or
$(PGIToolsDir32) on Windows x64 systems. To change the compilers used for the Win32 platform, change
each of the lines containing $(PGIToolsDir) or $(PGIToolsDir32) to contain the path to the desired bin,
include, and lib directories.

Warning

The debug engine in PVF 2010 is not compatible with previous releases. If you use Tools | Options to
target a release prior to 2010, you cannot use PVF to debug. Instead, use the -V method described in
section 3.1 to select an alternate compiler.

15

Chapter 4. PGI Accelerator
An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations. This chapter describes the new PGI Accelerator
compilers, including the collection of compiler directives used to specify regions of code in Fortran and C
programs that can be offloaded from a host CPU to an attached accelerator.

Note

For more information and more details about the PGI Accelerator compilers, the programming model
and directives, refer to Chapter 10, Using an Accelerator and Chapter 20, PGI Accelerator Compilers

Reference, in the PVF User's Guide.

Components
The PGI Accelerator compiler technology includes the following components:

• PGFORTRAN auto-parallelizing accelerator-enabled Fortran 90/95 compiler

• NVIDIA CUDA Toolkit components

• PVF Target Accelerators property page.

• A simple command-line tool to detect whether the system has an appropriate GPU or accelerator card.

No accelerator-enabled debugger or profiler is included with this release.

Availability
The PGI 2010 Fortran Accelerator compilers are available only on x86 processor-based workstations and
servers with an attached NVIDIA CUDA-enabled GPU or Tesla card. These compilers target all platforms that
PGI supports. For a list of supported GPUs, refer to the Accelerator Installation and Supported Platforms list in
the latest PVF Release Notes.

User-directed Accelerator Programming Line Flag
In user-directed accelerator programming the user specifies the regions of a host program to be targeted for
offloading to an accelerator device. The bulk of a user’s program, as well as regions containing constructs

Features Not Covered or Implemented

16

that are not supported on the targeted accelerator, are executed on the host. This chapter concentrates on
specification of loops and regions of code to be offloaded to an accelerator.

Features Not Covered or Implemented
Currently the PGI Accelerator compilers do not include features for automatic detection and offloading of
regions of code to an accelerator by a compiler or other tool. While future versions of the PGI compilers may
allow for automatic offloading, multiple accelerators of the same type, or multiple accelerators of different
types, these features are not currently supported.

System Requirements
To use the PGI Accelerator compiler features, you must install the NVIDIA CUDA component: NVIDIA Driver.

You may download this driver from the NVIDIA website at www.nvidia.com/cuda. These are not PGI products,
and are licensed and supported by NVIDIA.

Supported Processors and GPUs
This PGI Accelerator compiler release supports all AMD64 and Intel 64 host processors supported by Release
2010 or higher of the PGI compilers and tools. Further, you can use the Target Processors property page as
documented in this release.

You can also use the -ta=nvidia flag to enable the accelerator directives and target the NVIDIA GPU. This
flag is available from the Target Accelerators property page. You can then use the generated code on any
system with CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla card.

For more information on these flags as they relate to accelerator technology, refer to the PVF User's Guide. For
a complete list of supported GPUs, refer to the NVIDIA website at:

www.nvidia.com/object/cuda_learn_products.html

Installation and Licensing
The PGI Accelerator compilers require a separate license key in addition to a normal PGI PVF license key. For
specific information related to installation, refer to the PVF Installation Guide.

Running an Accelerator Program
In PVF you can use the PVF Target Accelerators property page to enable accelerator compilation. For more
information on the properties, refer to Tips on Running Accelerator Programs section of the PVF User’s
Guide.

Running a program that has accelerator directives and was compiled and linked with the -ta=nvidia flag is
the same as running the program compiled without the -ta=nvidia flag.

• The program looks for and dynamically loads the CUDA libraries. If the libraries are not available, or if they
are in a different directory than they were when the program was compiled, you may need to append the
CUDA library directory to your PATH environment variable on Windows.

Chapter 4. PGI Accelerator

17

• If you run an accelerated program on a system without a CUDA-enabled NVIDIA GPU, or without the CUDA
software installed in a directory where the runtime library can find it, the program fails at runtime with an
error message.

• If you set the environment variable ACC_NOTIFY to a nonzero integer value, the runtime library prints a
line to standard error every time it launches a kernel.

PGI Accelerator Compilers Runtime Libraries

PGI Accelerator Compilers provide user-callable functions and library routines that are available for use by
programmers to query the accelerator features and to control behavior of accelerator-enabled programs at
runtime. In Fortran, none of the PGI Accelerator compilers runtime library routines may be called from a
PURE or ELEMENTAL procedure.

To access accelerator libraries, you must link an accelerator program with the same –ta flag used when
compiling. When you use the Target Accelerator properties page, this flag is automatically added to both
compilation and linking.

There are separate runtime library files for C and for Fortran.

• Fortran Runtime Library Files - In Fortran, interface declarations are provided in a Fortran include file
named accel_lib.h and in a Fortran module named accel_lib. These files define:

• Interfaces for all routines in this section.

• Integer parameters to define integer kinds for arguments to those routines.

• Integer parameters to describe types of accelerators.

The integer parameter accel_version has a value yyyymm, where yyyy and mm are the year and
month designations of the version of the Accelerator programming model supported. This value matches
the value of the preprocessor variable _ACCEL.

The following list briefly describes the supported PGI Accelerator compilers runtime library routines that
PGI currently supports. For a complete description of these routines, refer to the PGI Accelerator Runtime

Routines section of the PVF User’s Guide.

• acc_get_device - returns the type of accelerator device being used.

• acc_get_num_devices - returns the number of accelerator devices of the given type attached to the host.

• acc_init - connects to and initializes the accelerator device and allocates control structures in the
accelerator library.

• acc_set_device - tells the runtime which type of device to use when executing an accelerator compute
region.

• acc_set_device_num - tells the runtime which device of the given type to use among those that are
attached.

• acc_shutdown - tells the runtime to shutdown the connection to the given accelerator device, and free up
any runtime resources.

Applicable PVF Property Pages

18

Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section defines the
user-setable environment variables used to control behavior of accelerator-enabled programs at execution.
These environment variables must comply with these rules:

• The names of the environment variables must be upper case.

• The values assigned environment variables are case insensitive and may have leading and trailing white
space.

• The behavior is implementation-defined if the values of the environment variables change after the program
has started, even if the program itself modifies the values.

The following list briefly describes the Accelerator environment variables that PGI supports. For more
information on these variables, refer to the PVF User’s Guide.

• ACC_DEVICE - controls which accelerator device to use when executing PGI Unified Binary for accelerators.
The value of this environment variable may be the string NVIDIA or HOST.

• ACC_DEVICE_NUM - controls the default device number to use when executing accelerator regions. The
value of this environment variable must be a nonnegative integer between zero and the number of devices
attached to the host.

• ACC_NOTIFY - when set to a non-negative integer, indicates to print a message for each kernel launched on
the device.

Applicable Command Line Options

There are command line options that apply specifically when working with accelerators. The options are
available from the property pages in PVF.

Applicable PVF Property Pages
The following property pages are applicable specifically when working with accelerators.

Fortran | Target Accelerators

Use the –ta option to enable recognition of Accelerator directives.

Fortran | Target Processors

Use the –tp option to specify the target host processor architecture.

Fortran | Diagnostics

Use the –Minfo option to see messages about the success or failure of the compiler in translating the
accelerator region into GPU kernels.

For more information about the many suboptions available with these options, refer to the Fortran Property

Pages section of the PVF User’s Guide.

Chapter 4. PGI Accelerator

19

PGI Unified Binary for Accelerators
PGI compilers support the PGI Unified Binary feature to generate executables with functions optimized
for different host processors, all packed into a single binary. This release extends the PGI Unified Binary
technology for accelerators. Specifically, you can generate a single binary that includes two versions of
functions:

• one version is optimized for the accelerator.

• one version runs on the host processor when the accelerator is not available or when you want to compare
host to accelerator execution.

To enable this feature, use the Target Accelerators properties page to select Yes for both the Target NVIDIA
Accelerator and the Target Host properties.

These properties tell the compiler to generate two versions of functions that have valid accelerator regions.

• A compiled version that targets the accelerator.

• A compiled version that ignores the accelerator directives and targets the host processor.

If you enable the Unified Binary Information property on the Diagnostics property page flag, you get messages
similar to the following during compilation:

s1:
 12, PGI Unified Binary version for -tp=barcelona-64 -ta=host
 18, Generated an alternate loop for the inner loop
 Generated vector sse code for inner loop
 Generated 1 prefetch instructions for this loop
s1:
 12, PGI Unified Binary version for -tp=barcelona-64 -ta=nvidia
 15, Generating copy(b(:,2:90))
 Generating copyin(a(:,2:90))
 16, Loop is parallelizable
 18, Loop is parallelizable
 Parallelization requires privatization of array t(2:90)
 Accelerator kernel generated
 16, !$acc do parallel
 18, !$acc do parallel, vector(256) Using register for t

The PGI Unified Binary message shows that two versions of the subprogram s1 were generated:

• one for no accelerator (–ta=host)

• one for the NVIDIA GPU (–ta=nvidia)

At run time, the program tries to load the NVIDIA CUDA dynamic libraries and test for the presence of a GPU. If
the libraries are not available or no GPU is found, the program runs the host version.

You can also set an environment variable to tell the program to run on the NVIDIA GPU. To do this, set
ACC_DEVICE to the value NVIDIA or nvidia. Any other value of the environment variable causes the program to
use the host version.

The only supported –ta targets for this release are nvidia and host.

Multiple Accelerators

20

Multiple Accelerators
You can use multiple NVIDIA GPUs in your application by writing a parallel MPI or OpenMP program.

MPI
In an MPI program where each MPI rank is actually running in parallel on the same node, you can use the
MPI rank value to select a different GPU to use with the acc_set_device_num procedure.

OpenMP
In an OpenMP program, you can use the omp_get_thread_num function result to select a different
GPU to use for each thread.

In an OpenMP parallel region, you can include an accelerator region with loops such that each thread
computes a different subset of the iterations.

Profiling Accelerator Kernels
This release supports the Target Accelerator property NVIDIA: Enable Profiling (-ta=nvidia,time).

The time suboption links in a timer library, which collects and prints out simple timing information about the
accelerator regions and generated kernels.

Example 4.1. Sample Accelerator Kernel Timing Data

Accelerator Kernel Timing data
bb04.f90
s1
 15: region entered 1 times
 time(us): total=1490738
 init=1489138 region=1600
 kernels=155 data=1445
 w/o init: total=1600 max=1600
 min=1600 avg=1600
 18: kernel launched 1 times
 time(us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

• For each accelerator region, the file name bb04.f90 and subroutine or function name s1 is printed, with
the line number of the accelerator region, which in the example is 15.

• The library counts how many times the region is entered (1 in the example) and the microseconds spent in
the region (in this example 1490738), which is split into initialization time (in this example 1489138) and
execution time (in this example 1600).

• The execution time is then divided into kernel execution time and data transfer time between the host and
GPU.

• For each kernel, the line number is given, (18 in the example), along with a count of kernel launches, and
the total, maximum, minimum, and average time spent in the kernel, all of which are 155 in this example.

Chapter 4. PGI Accelerator

21

Supported Intrinsics
PGI Accelerator compilers support Fortran intrinsics. For complete descriptions of these intrinsics, refer to
the "Supported Intrinsics" section of the Using an Accelerator chapter of the PVF User's Guide. PGI plans to
support additional intrinsics in future releases.

22

23

Chapter 5. Distribution and
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users
who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications
built using PGI compilers and tools. The application must be installed in such a way that it executes accurately
on a system other than the one on which it was built, and which may be configured differently.

Application Deployment and Redistributables
Programs built with PGI compilers may depend on run-time library files. These library files must be distributed
with such programs to enable them to execute on systems where the PGI compilers are not installed. There are
PGI redistributable files for all platforms. On Windows, PGI also supplies Microsoft redistributable files.

PGI Redistributables
PGI Visual Fortran 2010 includes directories named REDIST. These directories contain all of the PGI
dynamically linked libraries that can be re-distributed by PGI 2010 licensees under the terms of the PGI End-
User License Agreement (EULA). For reference, a copy of the PGI EULA in PDF form is included in the release.

The following paths for the REDIST directories assume 'C:' is the system drive.

• On a Win32 system, there are two redistributable directories:

• C:\Program Files\PGI\win32\10.4\REDIST

• C:\Program Files\PGI\win32\10.4\REDIST-RLR

• On a Win64 system, there are four REDIST directories:

C:\Program Files\PGI\win64\10.4\REDIST and
C:\Program Files\PGI\win64\10.4\REDIST-RLR and
C:\Program Files (x86)\PGI\win32\10.4\REDIST

C:\Program Files (x86)\PGI\win32\10.4\REDIST-RLR

The REDIST directories contain the PGI runtime library DLLs for all supported targets. This enables users
of the PGI compilers to create packages of executables and PGI runtime libraries that execute successfully

Application Deployment and Redistributables

24

on almost any PGI-supported target system, subject to the requirement that end-users of the executable have
properly initialized their environment to use the relevant version of the PGI DLLs.

Microsoft Redistributables
PGI Visual Fortran includes Microsoft Open Tools, the essential tools and libraries required to compile, link,
and execute programs on Windows. PVF 2010 includes the latest version, version 9, of the Microsoft Open
Tools.

The Microsoft Open Tools directory contains two subdirectories with names that begin with REDIST. PGI 2010
licensees may redistribute the files contained in this directory in accordance with the terms of the associated
license agreements.

25

Chapter 6. Troubleshooting Tips and
Known Limitations

This chapter contains information about known limitations, documentation errors, and corrections that have
occurred to PVF 2010. Whenever possible, a workaround is provided.

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ)
section of the pgroup.com web page at: www.pgroup.com/support/index.htm

Use MPI in PVF Limitations

• The multi-process debug style known as "Run One At a Time" is not supported in this release.

PVF IDE Limitations
The issues in this section are related to IDE limitations.

• Integration with source code revision control systems is not supported.

• PVF on Vista or Server 2008 may be unable to attach to an application running on a mapped network drive.
If this occurs, run the application to which you want to attach on a local drive.

• When moving a project from one drive to another, all .d files for the project should be deleted and the
whole project should be rebuilt. When moving a solution from one system to another, also delete the
solution's Visual Studio Solution User Options file (.suo).

• The Resources property pages are limited. Use the Resources | Command Line property page to pass
arguments to the resource compiler. Resource compiler output must be placed in the intermediate directory
for build dependency checking to work properly on resource files.

• There are several properties that take paths or pathnames as values. In general, these may not work as
expected if they are set to the project directory $(ProjectDir) or if they are empty, unless empty is the
default. Specifically:

General | Output Directory should not be empty or set to $(ProjectDir).
General | Intermediate Directory should not be empty or set to $(ProjectDir).

PVF Debugging Limitations

26

Fortran | Output | Object File Name should not be empty or set to $(ProjectDir).
Fortran | Output | Module Path should not be empty or set to include $(ProjectDir).

• Dragging and dropping files in the Solution Explorer that are currently open in the Editor may result in a file
becoming "orphaned." Close files before attempting to drag-and-drop them.

PVF Debugging Limitations
The following limitations apply to PVF debugging:

• Debugging of unified binaries is not fully supported. The names of some subprograms are modified in
the creation of the unified binary, and the PVF debug engine does not translate these names back to the
names used in the application source code. For more information on debugging a unified binary, see
www.pgroup.com/support/tools.htm.

• In some situations, using the Watch Window may be unreliable for local variables. Calling a function or
subroutine from within the scope of the watched local variable may cause missed events and/or false
positive events. Local variables may be watched reliably if program scope does not leave the scope of the
watched variable.

PGI Compiler Limitations
The frequently asked questions (FAQ) section of the pgroup.com web page at www.pgroup.com/support/
index.htm provides more up to date information about the state of the current release.

• If an executable is linked with any PVF-compiled DLL, the PVF runtime library DLLs must be used (in
particular the static libraries cannot be used). To accomplish this, use the compiler option -Bdynamic
when creating the executable.

• Do not use -Mprof with PVF runtime library DLLs. To build an executable for profiling, use the static
libraries. The static libraries will be used by default in the absence of -Bdynamic.

• The –i8 option can make programs incompatible with MPI; use of any INTEGER*8 array size argument can
cause failures with these libraries.

• The –i8 option can make programs incompatible with the bundled ACML library. Visit developer.amd.com
to check for compatible libraries.

• Using -Mprof=func and –mp together with any of the PGI compilers can result in segmentation faults by
the generated executable. These options should not be used together.

• Using –Mpfi and –mp together is not supported. The –Mpfi flag disables –mp at compile time, which
can cause run-time errors in programs that depend on interpretation of OpenMP directives or pragmas.
Programs that do not depend on OpenMP processing for correctness can still use profile feedback. Using
the –Mpfo flag does not disable OpenMP processing.

• ACML 4.3.0 is built using the –fastsse compile/link option, which includes –Mcache_align. When
linking with ACML on Win32, all program units must be compiled with –Mcache_align, or an aggregate
option such as –fastsse, which incorporates –Mcache_align. This process is not an issue on 64-bit
targets where the stack is 16-byte aligned by default. You can use the lower-performance, but fully portable,
blas and lapack libraries on CPUs that do not support SSE instructions.

Chapter 6. Troubleshooting Tips and Known Limitations

27

CUDA Fortran Toolkit Issues

Note

Compiling with the CUDA 3.0 toolkit, either by adding the-ta=nvidia:cuda3.0 option to the
command line or by adding set CUDAVERSION=2.0 to the siterc file, generates binaries that
may not work on machines with a 2.3 CUDA driver.

pgaccelinfo prints the driver version as the first line of output.

For a 2.3 driver: CUDA Driver Version 2030
For a 3.0 driver: CUDA Driver Version 3000

Corrections
Refer to www.pgroup.com/support/release_tprs.htm for a complete, up-to-date table of technical problem
reports, TPRs, fixed in recent releases of the PGI compilers and tools. The table contains a summary
description of each problem as well as the release in which it was fixed.

28

29

Chapter 7. Contact Information
You can contact The Portland Group at:

The Portland Group
STMicroelectronics, Inc.
Two Centerpointe Drive
Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other
PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI
website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax
Sales
Support
WWW

+1-503-682-2637
sales@pgroup.com
trs@pgroup.com
www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone
support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at
www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm.

30

	PGI Visual Fortran®
	Contents
	Chapter 1. PVF® Release Overview
	Product Overview
	Terms and Definitions

	Chapter 2. Compiler Features
	What's New in PVF Release 2010
	10.4 Additions
	10.3 Additions
	Prior to 10.3

	Compiler Optimizations and Features
	New or Modified Compiler Options
	Fortran Enhancements
	Enhanced Fortran Interoperability with C
	New or Modified Fortran Statements
	New or Modified Fortran Intrinsic Functions
	New Fortran Intrinsic Modules
	IEEE_ARITHMETIC
	IEEE_EXCEPTIONS

	Additional Fortran Enhancements

	New or Modified Runtime Library Routines
	New or Modified Tools Support
	MPI Support

	Chapter 3. Alternate Compiler Release Selection
	For a Single Project
	For All Projects

	Chapter 4. PGI Accelerator
	Components
	Availability
	User-directed Accelerator Programming Line Flag
	Features Not Covered or Implemented
	System Requirements
	Supported Processors and GPUs

	Installation and Licensing
	Running an Accelerator Program
	PGI Accelerator Compilers Runtime Libraries
	Environment Variables
	Applicable Command Line Options

	Applicable PVF Property Pages
	PGI Unified Binary for Accelerators
	Multiple Accelerators
	Profiling Accelerator Kernels
	Supported Intrinsics

	Chapter 5. Distribution and Deployment
	Application Deployment and Redistributables
	PGI Redistributables
	Microsoft Redistributables

	Chapter 6. Troubleshooting Tips and Known Limitations
	Use MPI in PVF Limitations
	PVF IDE Limitations
	PVF Debugging Limitations
	PGI Compiler Limitations
	CUDA Fortran Toolkit Issues
	Corrections

	Chapter 7. Contact Information

