

The Portland Group

 PGDBG® Debugger Guide
 Parallel Debugging for Scientists and Engineers

 Release 2011

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no

warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.

The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran,

PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated. Other brands and names are

property of their respective owners.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the

express written permission of STMicroelectronics and/or The Portland Group.

PGDBG® Debugger Guide
Copyright © 2010-2011 STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America

ID: 1195945

First Printing: Release 11.0, December 2010

Second Printing: Release 11.1, January 2011

Third Printing: Release 11.2, February 2011

Third Printing: Release 11.4, April 2011

ID: 1195945

Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com

iii

Contents
Preface .. xvii

Intended Audience ... xvii

Documentation .. xvii

Compatibility and Conformance to Standards ... xvii

Organization ... xviii

Conventions ... xix

Terminology .. xx

Related Publications ... xx

1. Getting Started .. 1

Definition of Terms ... 1

Building Applications for Debug ... 1

Debugging Optimized Code .. 2

Building for Debug on Windows ... 2

User Interfaces ... 2

Invoking PGDBG ... 3

PGDBG Initialization .. 3

Debugging ... 3

Selecting a Version of Java ... 3

2. The Graphical User Interface .. 5

Main Components ... 5

Source Window .. 6

Source and Disassembly Displays .. 6

Source Window Context Menu .. 7

Call Stack Navigation ... 8

Status Message Area .. 8

Main Toolbar ... 8

Buttons .. 8

Drop-Down Lists ... 9

Debug Information Tabs .. 9

Command Tab .. 10

Events tab .. 10

iv

Groups Tab .. 11

Call Stack Tab ... 11

Locals Tab .. 12

Memory Tab ... 12

MPI Messages Tab ... 13

Procs & Threads Tab ... 14

Registers Tab .. 14

Status Tab .. 15

Menu Bar .. 16

File Menu .. 16

Edit Menu .. 17

View Menu ... 17

Data Menu ... 18

Debug Menu .. 19

Help Menu ... 20

3. Command Line Options .. 21

Command-Line Options Syntax .. 21

Command-Line Options ... 21

Command-Line Options for MPI Debugging .. 22

4. Command Language ... 23

Command Overview ... 23

Command Syntax ... 23

Command Modes .. 23

Constants ... 24

Symbols ... 24

Scope Rules ... 24

Register Symbols ... 24

Source Code Locations .. 24

Lexical Blocks .. 25

Statements .. 26

Events .. 26

Event Commands ... 27

Event Command Action .. 28

Expressions .. 29

Ctrl-C ... 30

5. Command Summary ... 33

Notation Used in Command Sections .. 33

Command Summary .. 34

6. Assembly-Level Debugging ... 47

Assembly-Level Debugging Overview .. 47

Assembly-Level Debugging on Microsoft Windows Systems .. 47

Assembly-Level Debugging with Fortran .. 48

Assembly-Level Debugging with C++ ... 48

PGDBG® Debugger Guide

v

Assembly-Level Debugging Using the PGDBG GUI ... 48

Assembly-Level Debugging Using the PGDBG CLI .. 48

SSE Register Symbols ... 49

7. Source-Level Debugging ... 51

Debugging Fortran .. 51

Fortran Types ... 51

Arrays .. 51

Operators ... 51

Name of the Main Routine ... 52

Common Blocks ... 52

Internal Procedures ... 52

Modules ... 53

Module Procedures ... 53

Debugging C++ ... 54

Calling C++ Instance Methods ... 54

8. Platform-Specific Features ... 55

Pathname Conventions ... 55

Debugging with Core Files .. 55

Signals ... 56

Signals Used Internally by PGDBG ... 57

Signals Used by Linux Libraries ... 57

9. Parallel Debugging Overview .. 59

Overview of Parallel Debugging Capability ... 59

Graphical Presentation of Threads and Processes .. 59

Basic Process and Thread Naming ... 59

Thread and Process Grouping and Naming ... 60

PGDBG Debug Modes .. 60

Threads-only Debugging ... 61

Process-only Debugging ... 61

Multilevel Debugging ... 61

Process/Thread Sets .. 62

Named p/t-sets .. 62

p/t-set Notation ... 62

Dynamic vs. Static p/t-sets .. 63

Current vs. Prefix p/t-set .. 63

p/t-set Commands ... 64

Using Process/Thread Sets in the GUI .. 65

p/t set Usage .. 67

Command Set ... 67

Process Level Commands ... 67

Thread Level Commands .. 67

Global Commands ... 69

Process and Thread Control ... 69

Configurable Stop Mode ... 70

vi

Configurable Wait Mode ... 70

Status Messages .. 73

The PGDBG Command Prompt .. 73

Parallel Events .. 74

Parallel Statements .. 75

Parallel Compound/Block Statements ... 75

Parallel If, Else Statements ... 75

Parallel While Statements ... 76

Return Statements ... 76

10. Parallel Debugging with OpenMP .. 77

OpenMP and Multi-thread Support .. 77

Multi-thread and OpenMP Debugging .. 77

Debugging OpenMP Private Data ... 78

11. Parallel Debugging with MPI .. 81

MPI and Multi-Process Support ... 81

Process Control .. 81

Process Synchronization ... 82

MPI Message Queues ... 82

MPI Groups .. 82

Use halt instead of Ctrl+C .. 82

SSH and RSH .. 83

MPI Debugging on Linux .. 83

Invoking PGDBG for MPI Debugging .. 84

Using PGDBG for MPI Debugging .. 85

Debugging Support for MPICH-1 ... 86

MPI Debugging on Windows ... 86

Installing MSMPI ... 86

Building with MSMPI ... 87

Debug MSMPI Applications Locally .. 87

Debug MSMPI Applications on a Cluster ... 87

12. Parallel Debugging of Hybrid Applications .. 89

PGDBG Multilevel Debug Mode ... 89

Multilevel Debugging ... 89

13. Command Reference ... 91

Notation Used in Command Sections .. 91

Process Control .. 92

attach ... 92

cont .. 92

debug ... 92

detach .. 92

halt .. 93

load ... 93

next .. 93

PGDBG® Debugger Guide

vii

nexti ... 93

proc ... 93

procs .. 93

quit .. 93

rerun ... 93

run ... 94

setargs ... 94

step .. 94

stepi ... 94

stepout ... 94

sync .. 94

synci ... 95

thread .. 95

threads ... 95

wait .. 95

Process-Thread Sets .. 95

defset ... 95

focus .. 95

undefset ... 95

viewset ... 96

whichsets ... 96

Events .. 96

break ... 96

breaki .. 97

breaks .. 97

catch .. 98

clear ... 98

delete ... 98

disable ... 98

do .. 98

doi ... 99

enable .. 99

hwatch ... 99

hwatchboth .. 99

hwatchread .. 99

ignore .. 100

status ... 100

stop .. 100

stopi ... 100

trace ... 100

tracei .. 101

track ... 101

tracki ... 101

unbreak ... 101

unbreaki .. 101

viii

watch .. 101

watchi ... 102

when .. 102

wheni ... 102

Program Locations .. 103

arrive ... 103

cd ... 103

disasm .. 103

edit ... 103

file ... 103

lines ... 104

list .. 104

pwd .. 104

stackdump .. 104

stacktrace ... 104

where ... 105

/ .. 105

? ... 105

Printing Variables and Expressions .. 105

print ... 105

printf .. 106

ascii ... 107

bin ... 107

dec ... 107

display ... 107

hex ... 107

oct .. 107

string ... 107

undisplay .. 108

Symbols and Expressions ... 108

assign ... 108

call ... 108

declaration ... 109

entry ... 109

lval ... 109

rval ... 109

set .. 110

sizeof ... 110

type .. 110

Scope .. 110

class ... 110

classes .. 111

decls ... 111

down .. 111

enter .. 111

PGDBG® Debugger Guide

ix

files .. 111

global ... 111

names ... 111

scope .. 111

up ... 111

whereis .. 112

which ... 112

Register Access ... 112

fp ... 112

pc ... 112

regs .. 112

retaddr ... 112

sp ... 112

Memory Access ... 113

cread .. 113

dread ... 113

dump .. 113

fread .. 114

iread .. 114

lread .. 114

mqdump ... 114

sread .. 114

Conversions .. 114

addr ... 114

function .. 115

line ... 115

Target .. 115

connect ... 115

disconnect .. 115

native ... 115

Miscellaneous ... 116

alias ... 116

directory .. 116

help .. 116

history .. 117

language ... 117

log .. 117

noprint ... 117

pgienv .. 117

repeat ... 120

script .. 120

setenv ... 120

shell ... 120

sleep .. 121

source .. 121

x

unalias ... 121

use ... 121

Index .. 123

xi

Figures
2.1. Default Appearance of PGDBG GUI ... 5

2.2. Source Window .. 6

2.3. Context Menu .. 7

2.4. Call Frame Selector .. 8

2.5. Status Messages ... 8

2.6. Buttons on Toolbar ... 8

2.7. Drop-Down Lists on Toolbar .. 9

2.8. Command Tab .. 10

2.9. Events Tab ... 10

2.10. Groups Tab .. 11

2.11. Call Stack Tab .. 11

2.12. Locals Tab ... 12

2.13. Memory Tab ... 12

2.14. Memory Tab in Decimal Format .. 13

2.15. MPI Messages Tab .. 13

2.16. Process (Thread) Grid Tab .. 14

2.17. General Purpose Registers ... 15

2.18. Status Tab .. 16

9.1. Groups Tab .. 65

9.2. Process/Thread Group Dialog Box .. 66

10.1. OpenMP Private Data in PGDBG GUI .. 79

xii

xiii

Tables
2.1. Colors Describing Thread State ... 14

4.1. PGDBG Operators ... 30

5.1. PGDBG Commands ... 34

9.1. PGDBG Debug Modes .. 60

9.2. p/t-set Commands ... 64

9.3. PGDBG Parallel Commands .. 67

9.4. PGDBG Stop Modes .. 70

9.5. PGDBG Wait Modes .. 71

9.6. PGDBG Wait Behavior ... 72

9.7. PGDBG Status Messages ... 73

10.1. Thread State Is Described Using Color ... 78

11.1. MPICH Support .. 86

13.1. pgienv Commands ... 118

xiv

xv

Examples
9.1. Thread IDs in Threads-only Debug Mode ... 61

9.2. Process IDs in Process-only Debug Mode .. 61

9.3. Thread IDs in Multilevel Debug Mode ... 61

9.4. p/t-sets in Threads-only Debug Mode .. 62

9.5. p/t-sets in Process-only Debug Mode ... 63

9.6. p/t-sets in Multilevel Debug Mode ... 63

9.7. Defining a Dynamic p/t-set ... 63

9.8. Defining a Static p/t-set ... 63

12.1. Thread IDs in multilevel debug mode .. 89

13.1. Syntax examples ... 91

xvi

xvii

Preface
This guide describes how to use the PGDBG debugger to debug serial and parallel applications built with The

Portland Group (PGI) Fortran, C, and C++ compilers for X86, AMD64 and Intel 64 processor-based systems. It

contains information about how to use PGDBG, as well as detailed reference information on commands and its

graphical interface.

Intended Audience
This guide is intended for application programmers, scientists and engineers proficient in programming with

the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,

AMD64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Documentation
PGI Documentation is installed with every release. The latest version of PGDBG documentation is also available

at www.pgroup.com/docs.htm. See www.pgroup.com/faq/index.htm for frequently asked PGDBG questions and

answers.

Compatibility and Conformance to Standards
The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms

to the ANSI standards for FORTRAN 77, Fortran 95, Fortran 2003, C, and C++ and includes extensions from

MIL-STD-1753, VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGFORTRAN,

PGCC ANSI C, and PGCPP support parallelization extensions based on the OpenMP 3.0 standard. PGHPF

supports data parallel extensions based on the High Performance Fortran (HPF) defacto standard. The PGI

Fortran Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran

compilers.

PGDBG supports debugging of serial, multi-threaded, parallel OpenMP, parallel MPI and multi-process multi-

threaded hybrid MPI programs compiled with PGI compilers.

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

Organization

xviii

• ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

• ISO/IEC 1539:1991, Information technology – Programming Languages – Fortran, Geneva, 1991 (Fortran

90).

• ISO/IEC 1539:1997, Information technology – Programming Languages – Fortran, Geneva, 1997 (Fortran

95).

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),

http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),

http://www.crpc.rice.edu/HPFF.

• OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming Language

Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization
The PGDBG Debugger Manual contains these thirteen chapters that describe PGDBG, a symbolic debugger for

Fortran, C, C++ and assembly language programs.

Chapter 1, “Getting Started”

contains information on how to start using the debugger, including a description of how to build a target

application for debug and how to invoke PGDBG.

Chapter 2, “The Graphical User Interface”

describes how to use the PGDBG graphical user interface (GUI).

Chapter 3, “Command Line Options”

describes the PGDBG command-line options.

Chapter 4, “Command Language”

provides detailed information about the PGDBG command language, which can be used from the

command-line user interface or from the Command tab of the graphical user interface.

Chapter 5, “Command Summary”

provides a brief summary table of the PGDBG debugger commands with a brief description of the

command as well as information about the category of command use.

Chapter 6, “Assembly-Level Debugging”

contains information on assembly-level debugging; basic debugger operations, commands, and features

that are useful for debugging assembly code; and how to access registers.

Chapter 7, “Source-Level Debugging”

contains information on language-specific issues related to source debugging.

Preface

xix

Chapter 8, “Platform-Specific Features”

contains platform-specific information as it relates to debugging.

Chapter 9, “Parallel Debugging Overview”

contains an overview of the parallel debugging capabilities of PGDBG.

Chapter 10, “Parallel Debugging with OpenMP”

describes the parallel debugging capabilities of PGDBG and how to use them with OpenMP.

Chapter 11, “Parallel Debugging with MPI”

describes the parallel debugging capabilities of PGDBG and how to use them with MPI.

Chapter 12, “Parallel Debugging of Hybrid Applications”

describes the parallel debugging capabilities of PGDBG and how to use them with hybrid applications.

Chapter 13, “Command Reference”

provides reference information about each of the PGDBG commands, organized by area of use.

Conventions
This guide uses the following conventions:

italic

is used for emphasis.

Constant Width

is used for filenames, directories, arguments, options, examples, and for language statements in the text,

including assembly language statements.

Bold

is used for commands.

[item1]

in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-

sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}

braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...

ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple

filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/ C++

C/ C++ language statements are shown in the text of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, Windows, and

Mac OS operating systems on a variety of x86-compatible processors. There are a wide variety of releases and

distributions of each of these types of operating systems.

Terminology

xx

Terminology
If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can

access at www.pgroup.com/support/definitions.htm

Related Publications
The following documents contain additional information related to the X86 architecture and the compilers and

tools available from The Portland Group.

• PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003, and HPF

statements, data types, input/output format specifiers, and additional reference material related to the use of

PGI Fortran compilers.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.

(Prentice Hall, Inc.).

• FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories, Inc.

(Addison-Wesley Publishing Co., 1990)

• PGI Compiler User’s Guide, PGI Reference Manual, PGI Release Notes, FAQ, Tutorials, http://

www.pgroup.com/

• MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /

• OpenMP http://www.openmp.org/

1

Chapter 1. Getting Started
PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It provides debugger

features, such as execution control using breakpoints, single-stepping, and examination and modification of

application variables, memory locations, and registers.

PGDBG supports debugging of certain types of parallel applications:

• Multi-threaded and OpenMP applications.

• MPI applications.

• Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,

and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the

listed types of applications regardless of how well the number of threads match the number of CPUs or how

well the number of processes match the number of cluster nodes.

Definition of Terms
Throughout this manual we use the term host to refer to the system on which PGDBG executes, target to

refer to the program being debugged, and target machine to refer to the system on which the target runs.

For more detailed definitions of these terms, refer to the PGI glossary of terms which you can access at

www.pgroup.com/support/definitions.htm.

For an introduction to terminology used to describe parallel debugging, refer to Chapter 9, “Parallel

Debugging Overview”.

Building Applications for Debug
To build an application for debug, compile with the –g option. With this option, the compiler generates

information about the symbols and source files in the program and includes it in the executable file. The

option –g also sets the compiler optimization to level zero (no optimization) unless you specify optimization

options such as –O, –fast, or –fastsse on the command line. Optimization options take effect whether

they are listed before or after –g on the command line.

User Interfaces

2

Debugging Optimized Code
Programs built with –g and optimization levels higher than –O0 can be debugged, but due to transformations

made to the program during optimization, source-level debugging may not be reliable. Assembly-level

debugging (e.g., accessing registers, viewing assembly code, etc.) is reliable, even with optimized code.

Programs built without –g can be debugged; however, information about types, local variables, arguments

and source file line numbers are not available. For more information on assembly-level debugging, refer to

Chapter 6, “Assembly-Level Debugging”.

In programs built with both –g and optimization levels higher than –O0, some optimizations may be disabled

or otherwise affected by the –g option, possibly changing the program behavior. An alternative option, –gopt,

can be used to build programs with full debugging information, but without modifying program optimizations.

Unlike –g, the –gopt option does not set the optimization to level zero.

Building for Debug on Windows
To build an application for debug on Windows platforms, applications must be linked with the –g option as

well as compiled with –g. This process results in the generation of debug information stored in a ‘.dwf’

file and a ‘.pdb’ file. The PGI compiler driver should always be used to link applications; except for special

circumstances, the linker should not be invoked directly.

User Interfaces
PGDBG includes both a command-line interface (CLI) and a graphical user interface (GUI).

The GUI interface supports command entry through a point-and-click interface, a view of source and assembly

code, a full command-line interface panel, and several other graphical elements and features. “Command

Language” and “Command Reference” describe in detail how to use the PGDBG CLI. “The Graphical User

Interface” describes how to use the PGDBG GUI.

Command Line Interface (CLI)

Text commands are entered one line at a time through the command-line interface. A number of

command-line options can be used when launching PGDBG.

For information on these options and how they are interpreted, refer to Chapter 3, “Command Line

Options” and “Command Reference”.

Graphical User Interface

The GUI, the default user interface, supports command entry through a point-and-click interface, a view

of source and assembly code, a full command-line interface panel, and several other graphical elements

and features. There may be minor variations in the appearance of the PGDBG GUI from host to host,

depending on the type of display hardware available, the settings for various defaults and the window

manager used. Except for differences caused by those factors, the basic interface remains the same across

all systems.

For more information on the PGDBG GUI, refer to “The Graphical User Interface”.

Chapter 1. Getting Started

3

Invoking PGDBG
PGDBG is invoked using the pgdbg command as follows:

% pgdbg arguments target arg1 arg2 ... argn

where arguments may be any of the command-line arguments described in Chapter 3, “Command Line

Options”. See Chapter 11, “Parallel Debugging with MPI” for instructions on how to launch and debug an

MPI program.

The target parameter is the name of the program executable file being debugged. The arguments arg1

arg2 … argn are the command-line arguments to the target program. Invoking PGDBG as described starts

the PGDBG GUI. For users who prefer to use a command-line interface, PGDBG may also be invoked with the

–text parameter.

Note
The command shell interprets any I/O redirection specified on the PGDBG command line. Refer to

“Process Control,” on page 81 for a description of how to redirect I/O using the run command.

PGDBG supports both 32-bit and 64-bit applications. If the PATH environment variable is set to use the 32-

bit PGI tools, a 64-bit application can be debugged by invoking PGDBG normally. PGDBG automatically

determines the architecture of the target program and configures itself for 64-bit debugging. Conversely, you

can debug a 32-bit application by invoking PGDBG even when the PATH is set to invoke the 64-bit PGI tools.

For more details, refer to Chapter 3, “Command Line Options”.

PGDBG Initialization
Once PGDBG is started, it reads symbol information from the executable file, then loads the application into

memory. For large applications this process can take a few moments.

An initialization file can be useful for defining common aliases, setting breakpoints, and for other startup

commands. If an initialization file named .pgdbgrc exists in the current directory or in the home directory,

as defined by the environment variable HOME, PGDBG opens this file and executes the commands in it.

If an initialization file is found in the current directory, then the initialization file in the home directory, if there

is one, is ignored. However, a script command placed in the initialization file may execute the initialization file

in the home directory, or execute PGDBG commands in any other file.

Debugging
Once PGDBG is invoked and the initialization file is processed, PGDBG is ready to process commands.

Normally, a session begins by setting one or more breakpoints, using the break, stop or trace commands,

and then issuing a run command followed by cont, step, trace or next.

Selecting a Version of Java
The PGDBG GUI depends on Java. PGDBG command-line mode (pgdbg -text) does not depend on Java.

PGDBG requires that the Java Virtual Machine be a specific minimum version or above. By default, PGDBG

uses the version of Java installed with your PGI software; if you chose not to install Java when installing your

Selecting a Version of Java

4

PGI software, PGDBG looks for Java on your PATH. Both of these can be overridden by setting the PGI_JAVA

environment variable to the full path of the Java executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

5

Chapter 2. The Graphical User
Interface

The default user interface used by PGDBG is a graphical user interface or GUI. There may be minor variations

in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,

the settings for various defaults and the window manager used. Except for differences caused by those factors,

the basic interface remains the same across all systems.

Main Components
Figure 2.1. Default Appearance of PGDBG GUI

Figure 2.1, “Default Appearance of PGDBG GUI” shows the PGDBG GUI as it appears when PGDBG is invoked

for the first time.

Source Window

6

The GUI can be resized according to the conventions of the underlying window manager. Changes in window

size and other settings are saved and used in subsequent invocations of PGDBG. To prevent changes to the

default settings from being saved, uncheck the Save Settings on Exit item on the Edit menu.

The GUI is divided into five main areas, as illustrated in Figure 2.1. From top to bottom these areas are the

menu bar, main toolbar, source window, debug information tabs, and status message area.

The source window and all of the debug information tabs are dockable tabs. A dockable tab can be separated

from the main window by either double-clicking the tab or dragging the tab off the main window. To return

the tab to the main window, double-click it again or drag it back onto the main window. You can change the

placement of any dockable tab by dragging it from one location to another. Right-click on a dockable tab to

bring up a context menu with additional options, including closing the tab. To reopen a closed tab, use the

View menu. To return the GUI to its original state, use the Edit menu's Restore Default Settings… option.

A separate window named the Program I/O window is displayed when PGDBG is started. Any input or output

performed by the target program is entered into or displayed in this window.

The following sections explain the parts of the GUI and how they are used in a debug session.

Source Window
The source window, illustrated in Figure 2.2 displays the source code for the current location. Use the source

window to control the debug session, step through source files, set breakpoints, and browse source code.

Figure 2.2. Source Window

The source window contains a number of visual aids that allow you to know more about the execution of your

code. The following sections describe these features.

Source and Disassembly Displays

Tabs for source, disassembly, and mixed display are contained by a tab that defines the process or thread

being debugged, as illustrated in Figure 2.2. When the current process or thread changes from one process or

thread to another, the label on this tab will change and the contents of the display tab will be updated.

Choose between debugging at the source level, disassembly level, or with a mixture of source and disassembly.

When source information is unavailable, only the disassembly tab will contain code.

Chapter 2. The Graphical User Interface

7

The columns for line number or instruction address, debug event, program counter and location will be

available in any display mode.

The line number column contains line numbers when displaying source code, instruction addresses when

displaying disassembly, and a mixture of both in mixed mode. A grayed-out line number indicates a non-

executable source line. Some examples of non-executable source lines are comments, non-applicable

preprocessed code, some routine prologues, and some variable declarations. Breakpoints and other events

cannot be set on non-executable lines.

The Event column indicates where debug events such as breakpoints or watchpoints exist. An event is indicated

by a red sphere icon. Breakpoints may be set at any executable source line by left-clicking in the Event column

at the desired source line. An existing breakpoint may be deleted by left-clicking on its breakpoint icon.

The PC column is the home of a blue arrow icon which marks the current location of the program counter. In

other words, this arrow marks where program execution is during a debug session.

The title of the fourth column in the display windows is dependent on display mode. In the Source tab, this

column will contain the name and path of the displayed source file. In the Disassembly and Mixed tabs, this

column will contain the name of the disassembled function.

Source Window Context Menu
The display tabs in the source window support a context menu that provides convenient access to commonly

used features. To bring up this context menu, first select a line in the source or disassembly code by clicking

on it. Within the selected line, highlight a section of the text and right-click with the mouse to produce the

menu. The context menu options use the selected text as input.

In the example in Figure 2.3, the variable array(i) is highlighted and the context menu is set to print its

value as a decimal integer:

Figure 2.3. Context Menu

The context menu in Figure 2.3 also provides shortcuts to the Type Of, Locate Routine…, Set Breakpoint…,

and Call… menu options.

Main Toolbar

8

Call Stack Navigation
The call frame selector consists of the dropdown list and two navigation buttons. It sits below the display tabs

in the source window.

Figure 2.4. Call Frame Selector

You can select any frame on the current call stack by using the call frame’s drop-down list. The call stack can

also be navigated using the up and down buttons to the right of the drop-down list. For more information on

stack navigation, refer to the up and down commands.

Status Message Area
PGDBG displays debugging status messages in a messages area at the very bottom of the GUI.

Figure 2.5. Status Messages

Main Toolbar
The PGDBG GUI’s main toolbar contains several buttons and four drop-down lists.

Buttons

Figure 2.6. Buttons on Toolbar

Most of the buttons on the main toolbar have corresponding entries on the Debug menu. The functionality

invoked from the toolbar is the same as that achieved by selecting the menu item. Refer to the “Debug Menu”

descriptions for details on how Run, Stop, Restart, Step Into, Step Over, Step Out, and PC work.

The Cancel button is grayed-out unless an operation is in progress that can be cancelled before it is completed.

Chapter 2. The Graphical User Interface

9

Drop-Down Lists

Figure 2.7. Drop-Down Lists on Toolbar

As illustrated in Figure 2.7, the main toolbar contains four drop-down lists. A drop-down list displays

information while also offering an opportunity to change the displayed information if other choices are

available. When no or one choice is available, a drop-down list is grayed-out. When more than one choice is

available, the drop-down arrow in the component can be clicked to display the available choices.

Current Process or Current Thread

The first drop-down list displays the current process or current thread. The list’s label changes depending

on whether processes or threads are described. When more than one process or thread is available, use

this drop-down list to specify which process or thread should be the current one. The current process or

thread controls the contents of the source and disassembly display tabs. The function of this drop-down

list is the same as that of the Procs & Threads tab in the debug information tabs.

Apply

The second drop-down list is labeled Apply. The selection in the Apply drop-down determines the set

of processes and threads to which action commands are applied. Action commands are those that

control program execution and include, for example, cont, step, next, and break. By default, action

commands are applied to all processes and threads. When more than one process or thread exists, you

have additional options in this drop-down list from which to choose. The Current Group option designates

the process and thread group selected in the Groups tab, and the Current Process and Current Thread

options designate the process or thread selected in the Current Process or Current Thread drop-down.

Display

The third drop-down list is labeled Display. The selection in the Display drop-down determines the set of

processes and threads to which data display commands are applied. Data display commands are those

that print the values of expressions and program state and include, for example, print, names, regs and

stack. The options in the Display drop-down are the same as those in the Apply drop-down but can be

changed independently.

File

The fourth drop-down list is labeled File. It displays the source file that contains the current target

location. It can be used to select another file for viewing in the source window.

Debug Information Tabs
Debug information tabs take up the lower half of the PGDBG GUI. Each of these tabs provides a particular

function or view of debug information. The following sections discuss the tabs as they appear from left-to-right

in the GUI’s default configuration.

Debug Information Tabs

10

Command Tab
The Command tab provides an interface in which to use the PGDBG command language. Commands entered in

this panel are executed and the results are displayed there.

Figure 2.8. Command Tab

Using this tab is much like interacting with the debugger in text mode; the same list of commands is supported.

For a complete list of commands, refer to Chapter 5, “Command Summary”.

Events tab
The Events tab displays the current set of events held by the debugger. Events include breakpoints and

watchpoints, as illustrated in Figure 2.9.

Figure 2.9. Events Tab

Chapter 2. The Graphical User Interface

11

Groups Tab
The Groups tab displays the current set of user-defined groups of processes and threads. The group selected

(highlighted) in the Groups tab defines the Current Group as used by the Apply and Display drop-down lists. In

Figure 2.10, the ‘evens’ group is the Current Group.

Figure 2.10. Groups Tab

To change the set of defined groups use the Add…, Modify…, and Remove… buttons on the Groups tab.

Note

A defined group of processes and threads is also known as a process/thread-set or p/t-set. For more

information on p/t-sets, refer to “p/t-set Notation” in Chapter 9, “Parallel Debugging Overview”.

Call Stack Tab
The Call Stack tab displays the current call stack. An arrow ‘=>’ indicates the current stack frame.

Figure 2.11. Call Stack Tab

Debug Information Tabs

12

Locals Tab
The Locals tab displays the current set of local variables and each of their values.

Figure 2.12. Locals Tab

Memory Tab
The Memory tab displays a region of memory starting with a provided Address which can be a memory address

or a symbol name. One element of memory is displayed by default, but this amount can be changed via the

Count field. Figure 2.13 illustrates this process.

Figure 2.13. Memory Tab

The default display format for memory is hexadecimal. The display format can be changed by providing a

printf-like format descriptor in the Format field. A detailed description of the supported format strings is

available in “Memory Access” in Chapter 13, “Command Reference”.

Chapter 2. The Graphical User Interface

13

Figure 2.14. Memory Tab in Decimal Format

MPI Messages Tab

The MPI Messages tab provides a listing of the MPI message queues as by Figure 2.15.

Figure 2.15. MPI Messages Tab

Message queue information applies only to MPI applications. When debugging a non-MPI application, this tab

is empty. Additionally, message queue information is not supported by Microsoft MPI so this tab contains no

data on Windows.

Debug Information Tabs

14

Procs & Threads Tab
The Procs & Threads tab provides a graphical display of the processes and threads in a debug session.

The Process Grid in Figure 2.16 has four processes. The thicker border around process 0 indicates that it is

the current process; its threads are represented pictorially. Thread 0.0, as the current thread of the current

process, has the thickest border. Clicking on any process or thread in this grid changes that process or thread

to be the current process or thread.

Figure 2.16. Process (Thread) Grid Tab

Use the slider at the bottom of the grid to zoom in and out.

The color of each element indicates the state of that process or thread. For a list of colors and states, refer to

Table 2.1.

Table 2.1. Colors Describing Thread State

Option Description
Stopped Red

Signaled Blue

Running Green

Terminated Black

Registers Tab
The target machine’s architecture determines the number and type of system registers. Registers are organized

into groups based on their type and function. Each register group is displayed in its own tab contained in the

Registers tab. Registers and their values are displayed in a table. Values are shown for all the threads of the

currently selected process.

In Figure 2.17, the General Purpose registers are shown for threads 0-3 of process 0.

Chapter 2. The Graphical User Interface

15

Figure 2.17. General Purpose Registers

The values in the registers table are updated each time the program stops. Values that change from one

stopping point to the next are highlighted in yellow.

Register values can be displayed in a variety of formats. The formatting choices provided for each register

group depends on the type of registers in the group and whether the current operating system is 64- or 32-bit.

Use the Format drop-down list to change the displayed format.

Vector registers, such as XMM and YMM registers, can be displayed in both scalar and vector modes. Change

the Mode drop-down list to switch between these two modes.

Status Tab

The Status tab provides a text summary of the status of the program being debugged. The state and location of

each thread of each process is shown. In Figure 2.18, each of four processes has two threads.

Menu Bar

16

Figure 2.18. Status Tab

Menu Bar
The main menu bar contains these menus: File, Edit, View, Data, Debug and Help. This section describes these

menus and their contents.

You can navigate the menus using the mouse or the system’s mouseless modifier (typically the Alt key). Use the

mouseless modifier together with a menu’s mnemonic, usually a single character, to select a menu and then a

menu item. Menu mnemonics are indicated with an underscore. For example, the File menu appears as File

which indicates that ‘F’ is the mnemonic.

Keyboard shortcuts, such as Ctrl+V for Edit | Paste, are available for some actions. Where a keyboard shortcut

is available, it is shown in the GUI on the menu next to the menu item.

Menu items that contain an ellipsis (…) launch a dialog box to assist in performing the menu’s action.

File Menu

Open Target…

Begin debugging a new program. After choosing this option, select the program (i.e., the target) to debug

from the file chooser dialog. The current target, if any, is automatically closed and replaced with the new

target. For more information, refer to the debug command.

Attach to Target…

Attach to a locally running process. Attach is not supported for remote processes. For more information,

refer to the attach command.

Detach Target

Detach from the current attached-to process. This command does not terminate the target application if it

is running. This option should only be used when Attach to Target… was used to being the debug session.

For more information, refer to the detach command.

Chapter 2. The Graphical User Interface

17

Exit

End the current debug session and close all windows.

Edit Menu

Copy

Copy selected text to the system’s clipboard.

Paste

Paste selected text to the system’s clipboard.

Search Forward…

Perform a forward string search in the currently displayed source file.

Search Backward…

Perform a backward string search in the currently displayed source file.

Search Again

Repeat the last search that was performed in the source panel.

Locate Routine…

Find a routine. If symbol and source information is available for the specified routine, the routine is

displayed in the source panel.

Restore Default Settings

Restore the GUI ‘s various settings to their initial default state illustrated in Figure 2.1, “Default Appearance

of PGDBG GUI,” on page 5.

Revert to Saved Settings

Restore the GUI to the state that it was in at the start of the debug session.

Save Settings on Exit

By default, PGDBG saves the state (size and settings) of the GUI on exit on a per-system basis. To prevent

settings from being saved from one invocation of PGDBG to another, uncheck this option. This option must

be unchecked prior to every exit since PGDBG always defaults to saving the GUI state.

View Menu
Use the View menu to customize the PGDBG GUI.

Many of the items on this menu contain a check box next to the name of a tab.

• When the check box is checked, the tab is visible in the GUI.

• When the check box is not checked, the tab is hidden.

View menu items that correspond to tabs include Call Stack, Command, Events, Groups, Locals, Memory, MPI

Messages, Procs & Threads, Source and Status.

Registers

The Registers menu item opens a submenu containing items representing every subtab on the Registers

tab. Recall that each subtab represents a register group and the set of register groups is system and

Menu Bar

18

architecture dependent. Use the Registers submenu to hide or show tabs for register groups. Use the Show

Selected item to hide or show the Registers tab itself.

Font…

Use the font chooser dialog box to select the font and size used in the source window debug information

tabs. The default font is named monospace and the default size is 12.

Show Tool Tips

Tool tips are small temporary messages that pop up when the mouse pointer hovers over a component in

the GUI. They provide additional information on the functionality of the component. Tool tips are enabled

by default. Uncheck the Show Tools Tips option to prevent them from popping up.

Refresh

Update the source window and Procs & Threads tab.

Data Menu
Each Data menu item opens a Custom subwindow. The Custom subwindow provides a command field where

any debugger-supported command can be entered. For example:

The Custom menu item is always enabled. It opens a Custom subwindow with a blank Command field. All the

other Data menu items are enabled only when text (usually data) is selected in the display tabs. To select text,

first click on a line in the Source, Disassembly or Mixed tab. Within the selected line, highlight a section of the

text. With the text highlighted, open the Data menu and select the desired option.

Print

Print the value of the selected item.

Print *

Dereference and print the value of the selected item.

String

Treat the selected value as a string and print its value.

Bin

Print the value of the selected item as a base-2 integer.

Chapter 2. The Graphical User Interface

19

Oct

Print the value of the selected item as an octal integer.

Hex

Print the value of the selected item as a hexadecimal integer.

Dec

Print the value of the selected item as a decimal integer.

Ascii

Print the ASCII value of the selected item.

Addr

Print the address of the selected item.

Type Of

Print data type information for the selected item.

Custom

Open an empty Custom subwindow. Execute any supported debugging command in its Command field.

Debug Menu

The items under this menu control the execution of the target application.

Set Breakpoint…

Set a breakpoint at the first executable source line in the specified routine.

Display Current Location

Display the current program location in the Source panel. For more information, refer to the arrive

command.

Up

Enter the scope of the routine up one level in the call stack. For more information, refer to the up

command.

Down

Enter the scope of the routine down one level in the call stack. For more information, refer to the down

command.

Run

Run the target application. If the target application is currently running, this item will rerun the application

from the beginning. For more information, refer to the commands run and rerun.

Set Run Arguments...

Modify the target application’s runtime arguments.

Halt

Halt the running processes or threads. For more information, refer to the halt command.

Call…

Specify a routine to call. For more information, refer to the call command.

Menu Bar

20

Cont

Continue execution from the current location. For more information, refer to the cont command.

Step

Continue and stop after executing one source line or one assembly-level instruction depending on whether

the Source, Disassembly or Mixed tab is displayed. Step steps into called routines. For more information,

refer to the step and stepi commands.

Next

Continue and stop after executing one source line or one assembly-level instruction depending on whether

the Source, Disassembly or Mixed tab is displayed. Next steps over called routines. For more information,

refer to the next and nexti commands.

Step Out

Continue and stop after returning to the caller of the current routine. For more information, refer to the

stepout command.

Help Menu

PGDBG Help…

The PGDBG GUI provides an integrated help utility that includes information about every PGDBG

command. To find a command, use one of the following tabs in the left panel: The “book” tab presents a

table of contents, the “index” tab presents an index of commands, and the “magnifying glass” tab presents

a search engine. Each help page, displayed on the right, may contain hyperlinks, denoted in underlined

blue, to terms referenced elsewhere in the help engine. Use the arrow buttons to navigate between visited

pages. Use the printer buttons to print the current help page.

About PGDBG…

This option displays a dialog box with version and copyright information on PGDBG. It also contains sales

and support points of contact.

21

Chapter 3. Command Line Options
As we stated in Chapter 1, “Getting Started”, PGDBG can interpret command-line options when present on the

command line. This chapter describes these options and how they are interpreted.

Command-Line Options Syntax
The pgdbg command accepts several command-line options.

These options must appear on the command line before the name of the program being debugged.

Command-Line Options
The valid pgdbg options are these:

-attach <pid>

Attach to a running process with the process ID <pid>.

-c <pgdbg_cmd>

Execute the debugger command pgdbg_cmd before executing the commands in the startup file.

-cd <workdir>

Sets the working directory to the specified directory.

-core <corefile>

Analyze the core dump named corefile. [Linux only]

-dbx

Start the debugger in dbx mode, which provides a dbx-like debugger command language.

-emacs

Invoke the debugger using the Emacs GUD interface.

–help

Display a list of command-line arguments (this list).

–I <directory>

Add <directory> to the list of directories that PGDBG uses to search for source files. You can use this

option multiple times to add multiple directories to the search path.

Command-Line Options for MPI Debugging

22

-jarg, <javaarg>

Pass specified argument(s) (separated by commas) to java, e.g. -jarg,-Xmx256m.

-java <jrepath>

Add a jrepath directory to the JVM search path. Multiple '-java' options are allowed.

-nocheckjvm

Skip the test for the correct JVM architecture.

-nomin

Do not minimize the PGDBG console shell on startup. [Windows only]

-s <pgdbg_script>

Runs a pgdbg command script instead of .pgdbgrc [Linux and MacOS] or pgdbrc [Windows].

-text

Run the debugger using a command-line interface (CLI). The default is for the debugger to launch in

graphical user interface (GUI) mode.

Command-Line Options for MPI Debugging
-mpi[=<mpiexec_path>]

Start/debug an MPI job.

-pgserv[=<pgserv_path>]

Specify path for pgserv, the per-node debug agent.

-program_args

Start/debug an MPI job. -program_args delimits mpiexec args.

23

Chapter 4. Command Language
PGDBG supports a command language that is capable of evaluating complex expressions. The command

language is composed of commands, constants, symbols, locations, expressions, and statements.

You can use the command language by invoking the PGDBG command-line interface with the –text

option, or in the Command tab of the PGDBG graphical user interface, as described in “The Graphical User

Interface”.

Command Overview
Commands are named operations, which take zero or more arguments and perform some action. Commands

may also return values that may be used in expressions or as arguments to other commands.

Command Syntax
Commands are entered one line at a time.

• Lines are delimited by a carriage return.

• Each line must consist of a command and its arguments, if any.

• You can place multiple commands on a single line by using the semi-colon (;) as a delimiter.

Command Modes
There are two command modes: pgi and dbx.

• The pgi command mode maintains the original PGDBG command interface.

• In dbx mode, the debugger uses commands compatible with the Unix-based dbx debugger.

PGI and dbx commands are available in both command modes, but some command behavior may be slightly

different depending on the mode. The mode can be set when PGDBG is invoked by using command-line

options, or while the debugger is running by using the pgienv command.

Constants

24

Constants
PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string

constants.

Symbols
PGDBG uses the symbolic information contained in the executable object file to create a symbol table for

the target program. The symbol table contains symbols to represent source files, subprograms (functions,

and subroutines), types (including structure, union, pointer, array, and enumeration types), variables, and

arguments. The PGDBG command-line interface is case-sensitive with respect to symbol names; a symbol

name on the command line must match the name as it appears in the object file.

Scope Rules
Since several symbols in a single application may have the same name, scope rules are used to bind program

identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking up

identifiers. The search scope represents a routine, a source file, or global scope. When the user enters a

name, PGDBG first tries to find the symbol in the search scope. If the symbol is not found, the containing

scope (source file or global) is searched, and so forth, until either the symbol is located or the global scope is

searched and the symbol is not found.

Normally, the search scope is the same as the current scope, which is the routine where execution is currently

stopped. The current scope and the search scope are both set to the current routine each time execution of the

target program stops. However, you can use the enter command to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine with a

local variable i, then:

f@i

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name with this

operator, for example:

 "xyz.c"@i

represents the variable i defined in file xyz.c.

Register Symbols
To provide access to the system registers, PGDBG maintains symbols for them. Register names generally begin

with $ to avoid conflicts with program identifiers. Each register symbol has a default type associated with it,

and registers are treated like global variables of that type, except that their address may not be taken. For more

information on register symbols, refer to “SSE Register Symbols,” on page 49.

Source Code Locations
Some commands must refer to source code locations. Source file names must be enclosed in double quotes.

Source lines are indicated by number, and may be qualified by a quoted filename using the scope qualifier

operator. Further, a range of lines is indicated using the range operator ":".

Chapter 4. Command Language

25

Here are some examples:

break 37 sets a breakpoint at line 37 of the current source file.

break "xyz.c"@37 sets a breakpoint at line 37 of the source file xyz.c.

list 3:13 lists lines 3 through 13 of the current file.

list "xyz.c"@3:13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is not always

obvious whether a numeric constant should be interpreted as a line number or an address. The description

for these commands says which interpretation is used. However, PGDBG provides commands to convert

from source line to address and vice versa. The line command converts an address to a line, and the addr

command converts a line number to an address. Here are some examples:

line 37 means “line 37”

addr 0x1000 means "address 0x1000"

addr {line 37} means "the address associated with line 37"

line {addr 0x1000} means "the line associated with address 0x1000"

Lexical Blocks
Line numbers are used to name lexical blocks. The line number of the first instruction contained by a lexical

block is used to indicate the start scope of the lexical block. In the following example, there are two variables

named var. One is declared in function main, and the other is declared in the lexical block starting at line 5.

The lexical block has the unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@5 has

the unique name "lex.c"@main@5@var. The output of the whereis command that follows shows how these

identifiers can be distinguished.

lex.c:
1 main()
2 {
3 int var = 0;
4 {
5 int var = 1;
6 printf("var %d\n",var);
7 }
8 printf("var %d\n",var)
9 }

pgdbg> n
Stopped at 0x8048b10, function main, file
/home/demo/pgdbg/ctest/lex.c,
line 6
#6: printf("var %d\n",var);
pgdbg> print var
1
pgdbg> which var
"lex.c"@main@5@var
pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var
pgdbg> names "lex.c"@main@5
var = 1

Statements

26

Statements
Although PGDBG command-line input is processed one line at a time, statement constructs allow multiple

commands per line, as well as conditional and iterative execution. The statement constructs roughly

correspond to the analogous C language constructs. Statements may be of the following forms.

• Simple Statement: A command and its arguments. For example:

print i

• Block Statement: One or more statements separated by semicolons and enclosed in curly braces. Note:

these may only be used as arguments to commands or as part of if or while statements. For example:

if(i>1) {print i; step }

• If Statement: The keyword if, followed by a parenthesized expression, followed by a block statement,

followed by zero or more else if clauses, and at most one else clause. For example:

if(i>j) {print i} else if(i<j) {print j} else {print "i==j"}

• While Statement: The keyword while, followed by a parenthesized expression, followed by a block

statement. For example:

while(i==0) {next}

Multiple statements may appear on a line separated by a semicolon. The following example sets breakpoints in

routines main and xyz, continues, and prints the new current location.

break main; break xyz; cont; where

However, since the where command does not wait until the target application has halted, this statement

displays the stack at some arbitrary execution point in the program. To control when the stack is printed,

insert a wait command, as shown in this example:

break main; break xyz; cont; wait; where

Note
Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. For more information, refer to “Parallel

Statements,” on page 75.

Events
Breakpoints, watchpoints, and other mechanisms used to define the response to certain conditions are

collectively called events.

• An event is defined by the conditions under which the event occurs and by the action taken when the event

occurs.

• A breakpoint occurs when execution reaches a particular address.

The default action for a breakpoint is simply to halt execution and prompt the user for commands.

Chapter 4. Command Language

27

• A watchpoint occurs when the value of an expression changes.

• A hardware watchpoint occurs when the specified memory location is accessed or modified.

Event Commands
PGDBG supports six basic commands for defining events. Each command takes a required argument and may

also take one or more optional arguments. The basic commands are break, watch, hwatch, trace, track,

and do.

Event Command Descriptions

• The break command takes an argument specifying a breakpoint location. Execution stops when that

location is reached.

• The watch command takes an expression argument. Execution stops and the new value is printed when the

value of the expression changes.

• The hwatch command takes a data address argument, which can be either an identifier or a variable name.

Execution stops when memory at that address is written.

• The trace command activates source line tracing, as specified by the arguments you supply.

• The track command is like watch except that execution continues after the new value is printed.

• The do command takes a list of commands as an argument. The commands are executed whenever the

event occurs.

Event Command Arguments

The six event commands share a common set of optional arguments. The optional arguments provide the

ability to make the event definition more specific. They are:

at line

Event occurs at indicated line.

at addr

Event occurs at indicated address.

in routine

Event occurs throughout indicated routine.

if (condition)

Event occurs only when condition is true.

do {commands}

When event occurs, execute commands.

The optional arguments may appear in any order after the required argument and should not be delimited by

commas.

Events

28

Event Command Examples

Here are some event definition examples:

watch i at 37 if(y>1) This event definition says to stop and print the value

of i whenever line 37 is executed and the value of y is

greater than 1.

do {print xyz} in f This event definition says that at each line in the routine

f print the value of xyz.

break func1 if (i==37)
 do {print a[37]; stack}

This event definition says to print the value of a[37]

and do a stack trace when i is equal to 37 in routine

func1.

Event Command Action
It is useful to know when events take place.

• Event commands that do not explicitly define a location occur at each source line in the program. Here are

some examples:

do {where} prints the current location at the start of each source line.

trace a.b prints the value of a.b each time the value has changed.

track a.b prints the value of a.b at the start of each source line if the

value has changed.

Note

Events that occur at every line can be useful, but they can make program execution very slow.

Restricting an event to a particular address minimizes the impact on program execution speed, and

restricting an event that occurs at every line to a single routine causes execution to be slowed only

when that routine is executed.

• PGDBG supports instruction-level versions of several commands, such as breaki, watchi, tracei, tracki,

and doi. The basic difference in the instruction-level version is that these commands interpret integers as

addresses rather than line numbers, and events occur at each instruction rather than at each line.

• When multiple events occur at the same location, all event actions are taken before the prompt for input.

Defining event actions that resume execution is allowed but discouraged, since continuing execution may

prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:

break 37 do {continue}

break 37 do {print i}

With this sequence, it is not clear whether i will ever be printed.

• Events only occur after the continue and run commands. They are ignored by step, next, call, and other

commands.

Chapter 4. Command Language

29

• Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example, the following command sets a breakpoint at line 37 in the current file.

break 37

The following command tracks the value of whatever variable i is currently in scope.

track i

If i is a local variable, then it is wise to add a location modifier (at or in) to restrict the event to a scope

where i is defined. Scope qualifiers can also specify lines or variables that are not currently in scope. Events

can be parallelized across multiple threads of execution. See “Parallel Events,” on page 74 for details.

Expressions
The debugger supports evaluation of expressions composed of constants, identifiers, commands that return

values, and operators.

The following rules apply:

• To use a value returned by a command in an expression, the command and arguments must be enclosed in

curly braces.

For example, the following command invokes the pc command to compute the current address, adds 8 to

it, and sets a breakpoint at that address.

breaki {pc}+8

Similarly, the following command compares the start address of the current routine with the start address of

routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr xyz}

• The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as the

C language field selection operators "." and "->" .

• PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. The

precedence of ':' is between '||' and '='.

Here are a few examples that use the range operator:

print a[1:10] prints elements 1 through 10 of the array a.

list 5:10 lists source lines 5 through 10.

list "xyz.c"@5:10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.

hi is the array or range upper bound for this expression.

step is the step size between elements.

Ctrl-C

30

• An expression can be evaluated across many threads of execution by using a prefix p/t-set. For more details,

refer to “Current vs. Prefix p/t-set,” on page 63.

Table 4.1, “PGDBG Operators” shows the C language operators that PGDBG supports. The PGDBG operator

precedence is the same as in the C language.

Table 4.1. PGDBG Operators

Operator Description Operator Description
* indirection <= less than or equal

. direct field selection >= greater than or equal

-> indirect field selection != not equal

[] C/ C++ array index && logical and

() routine call || logical or

& address of ! logical not

+ add | bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide ^ bitwise exclusive or

* multiply << left shift

= assignment >> right shift

== comparison () FORTRAN array index

<< left shift % FORTRAN field selector

>> right shift

Ctrl-C
If the target application is not running, Ctrl-C can be used to interrupt long-running PGDBG commands. For

example, a command requesting disassembly of thousands of instructions might run for a long time, and it can

be interrupted by Ctrl-C. In such cases the target application is not affected.

If the target application is running, entering Ctrl-C at the PGDBG command prompt halts execution of the

target. This is useful in cases where the target “hangs” due to an infinite loop or deadlock.

Sending Ctrl-C, also known as a SIGINT, to a program while it is in the middle of initializing its threads, by

calling omp_set_num_threads() or entering a parallel region, may kill some of the threads if the signal is sent

before each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the number of

threads employed by a program is large, thread initialization may take a while.

Sending Ctrl-C to a running MPICH-1 program is not recommended. See “Use halt instead of Ctrl+C,” on page

82, for details. Use the PGDBG halt command as an alternative to sending Ctrl-C to a running program. The

PGDBG command prompt must be available in order to issue a halt command. The PGDBG command prompt

is available while threads are running if pgienv threadwait none is set.

Chapter 4. Command Language

31

As described in “Invoking PGDBG for MPI Debugging,” on page 84, when debugging an MPI job via the

command pgdbg -mpi ..., PGDBG spawns the job in a manner that prevents console-generated interrupts

from directly reaching the MPI job launcher or any of the MPI processes. In this case, typing Ctrl-C only

interrupts PGDBG, leaving the MPI processes running. When PGDBG’s thread wait mode is not set to none,

you can halt the MPI job after using Ctrl-C by entering PGDBG’s halt command, even if no PGDBG prompt is

generated.

32

33

Chapter 5. Command Summary
This chapter contains a brief summary of the PGDBG debugger commands. For a detailed description of each

command, grouped by category of use, refer to Chapter 13, “Command Reference”.

If you are viewing an online version of this manual, you can select the hyperlink under the selection category to

jump to that section in the manual.

Notation Used in Command Sections
The command sections that follow use these conventions for the command names and arguments, when the

command accepts one.

• Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

([]).

• Argument names are chosen to indicate what kind of argument is expected.

• Arguments enclosed in brackets([]) are optional.

• Two or more arguments separated by a vertical line (|) indicate that any one of the arguments is acceptable.

• An ellipsis (...) indicates an arbitrarily long list of arguments.

• Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command list may be abbreviated to lis, and that it can

be invoked without any arguments or with one of the following arguments: an integer count, a line range, a

routine name, or a line and a count.

lis[t] [count | lo:hi | routine | line,count]

Command Summary

34

Command Summary

Table 5.1. PGDBG Commands

Name Arguments Category
[n | line n | routine | var | arg] “Conversions,” on page 114ad[dr]

Creates an address conversion under certain conditions.

[name [string]] “Miscellaneous,” on page 116al[ias]

Create or print aliases.

 “Process Control,” on page 92args

Print the current program arguments.

 “Program Locations,” on page 103arri[ve]

Print location information for the current location.

exp [,...exp] “Printing Variables and Expressions,” on

page 105

asc[ii]

Evaluate and print as an ascii character.

var=exp “Symbols and Expressions,” on page

108

as[sign]

Set variable var to the value of the expression exp.

pid [exe] “Process Control,” on page 92att[ach]

Attach to a running process with process ID pid. Use exe to specify the absolute path

of the executable file.

exp [,...exp] “Printing Variables and Expressions,” on

page 105

bin

Evaluate and print the expressions. Integer values are printed in base 2.

[line | routine] [if (condition)] [do

{commands}]

“Events,” on page 96b[reak]

When arguments are specified, sets a breakpoint at the indicated line or routine. When

no arguments are specified, prints the current breakpoints.

[addr | routine] [if (condition)] [do

{commands}]

“Events,” on page 96breaki

When arguments are specified, sets a breakpoint at the indicated address or routine.

When no arguments are specified, prints the current breakpoints.

“Events,” on page 96breaks

Displays all the existing breakpoints

Chapter 5. Command Summary

35

Name Arguments Category
routine [(exp,...)] “Symbols and Expressions,” on page

108

call

Call the named routine.

[number [,number...]] “Events,” on page 96catch

With arguments, catches the signals and runs target as though signal was not sent. With

no arguments, prints the list of signals being caught.

[dir] “Program Locations,” on page 103cd

Change to the $HOME directory or to the specified directory dir.

[class] “Scope,” on page 110clas[s]

Return the current class or enter the scope of the specified class class.

 “Target,” on page 115classe[s]

Print the C++ class names.

[all | routine | line | addr {addr}] “Events,” on page 96clear

With arguments, clears the indicated breakpoints. When no arguments are specified,

this command clears all breakpoints at the current location.

[-t name [args] | -d path [args] | -f file

[name [args]]]

“Target,” on page 115con[nect]

Prints the current connection and the list of possible connection targets.

“Process Control,” on page 92c[ont]

Continue execution from the current location.

addr “Memory Access,” on page 113cr[ead]

Fetch and return an 8-bit signed integer (character) from the specified address.

[target [arg1 _ argn]] “Process Control,” on page 92de[bug]

Load the specified target program with optional command-line arguments.

dec exp [,...exp] “Printing Variables and Expressions,” on

page 105

 Evaluate and print the expressions. Integer values are printed in decimal.

name “Symbols and Expressions,” on page

108

decl[aration]

Print the declaration for the symbol based on its type according to the symbol table.

[routine | "sourcefile" | {global}] “Scope,” on page 110decls

Print the declarations of all identifiers defined in the indicated scope. If no scope is

given, print the declarations for global scope.

Command Summary

36

Name Arguments Category
name [p/t-set] “Process-Thread Sets,” on page 95defset

Assign a name to a process/thread set. Define a named set.

event-number | all | 0 | event-number

[,.event-number.]

“Events,” on page 96del[ete]

Delete the event event-number or all events (delete 0 is the same as delete all).

Multiple event numbers can be supplied if they are separated by commas.

“Process Control,” on page 92det[ach]

Detach from the current running process.

[pathname] “Miscellaneous,” on page 116dir[ectory]

Add the directory pathname to the search path for source files. If no argument is

specified, the currently defined directories are printed.

event-number | all “Printing Variables and Expressions,” on

page 105

disab[le]

With arguments, disables the event event-number or all events. When no arguments

are specified, prints both enabled and disabled events.

[count | lo:hi | routine | addr, count] “Program Locations,” on page 103dis[asm]

Disassemble memory. If no argument is given, disassemble four instructions starting at

the current address.

 “Events,” on page 96disc[onnect]

Close connection to target.

display [exp [,...exp]] “Printing Variables and Expressions,” on

page 105

 With an argument or several arguments, print expression exp at every breakpoint.

Without arguments, list the expressions for PGDBG to automatically display at

breakpoints.

{commands} [at line | in routine] [if

(condition)]

“Events,” on page 96do

Define a do event. Without the optional arguments at or in, the commands are

executed at each line in the program.

{commands} [at addr | in routine] [if

(condition)]

“Events,” on page 96doi

Define a doi event. If neither the at or in argument is specified, then the commands

are executed at each instruction in the program.

[number] “Scope,” on page 110down

Enter scope of routine down one level or number levels on the call stack.

addr “Memory Access,” on page 113dr[ead]

Fetch and return a 64 bit double from the specified address.

Chapter 5. Command Summary

37

Name Arguments Category
[addr [,count [,format]]] “Memory Access,” on page 113du[mp]

Dumps the contents of a region of memory. The output is formatted according to a

printf-like format descriptor.

[filename | routine] “Program Locations,” on page 103edit

Edit the specified file or file containing the routine. If no argument is supplied, edit the

current file starting at the current location. In the PGDBG GUI, command-line editors

like vi, emacs, or nano are launched in the Program I/O Window.

[event-number | all] “Events,” on page 96enab[le]

With arguments, this command enables the event event-number or all events. When

no arguments are specified, prints both enabled and disabled events.

en[ter] [routine | "sourcefile" | global] “Scope,” on page 110

 Set the search scope to be the indicated symbol, which may be a routine, source file or

global. Using no argument is the same as using enter global

[routine] “Symbols and Expressions,” on page

108

entr[y]

Return the address of the first executable statement in the program or specified

routine.

[filename] “Program Locations,” on page 103fil[e]

Change the source file to the file filename and change the scope accordingly. With no

argument, print the current file.

“Scope,” on page 110files

Return the list of known source files used to create the executable file

[p/t-set] “Process-Thread Sets,” on page 95focus

Set the target process/thread set for commands. Subsequent commands are applied to

the members of this set by default.

“Register Access,” on page 112fp

Return the current value of the frame pointer.

addr “Memory Access,” on page 113fr[ead]

Fetch and print a 32-bit float from the specified address.

[addr | line] “Conversions,” on page 114func[tion]

Return a routine symbol. If no argument is specified, return the current routine.

“Scope,” on page 110glob[al]

Return a symbol representing global scope.

[command] “Process Control,” on page 92halt

Halt the running process or thread.

Command Summary

38

Name Arguments Category
[command] “Miscellaneous,” on page 116he[lp]

If no argument is specified, print a brief summary of all the commands. If a command

name is specified, print more detailed information about the use of that command.

hex exp [,...exp] “Printing Variables and Expressions,” on

page 105

 Evaluate and print expressions as hexadecimal integers.

[num] “Miscellaneous,” on page 116hi[story]

List the most recently executed commands. With the num argument, resize the history

list to hold num commands.

addr | var [if (condition)] [do

{commands}]

“Events,” on page 96hwatch

Define a hardware watchpoint.

addr | var [if (condition)] [do

{commands}]

“Events,” on page 96hwatchb[oth]

Define a hardware read/write watchpoint.

addr | var [if (condition)] [do

{commands}]

“Events,” on page 96hwatchr[ead]

Define a hardware read watchpoint.

[number [,number...]] “Events,” on page 96ignore

Ignore the specified signals and does not deliver them to the target. When no

arguments are specified, prints the list of signals being ignored.

addr “Memory Access,” on page 113ir[ead]

Fetch and print a signed integer from the specified address.

“Miscellaneous,” on page 116language

Print the name of the language of the current file.

[n | routine | addr] “Conversions,” on page 114lin[e]

Create a source line conversion. If no argument is given, return the current source

line.

[routine] “Program Locations,” on page 103lines

Print the lines table for the specified routine. If no argument is specified, prints the

lines table for the current routine.

[count | line,count | lo:hi | routine] “Program Locations,” on page 103lis[t]

With no argument, list 10 lines centered at the current source line. If an argument is

specified, list lines based on information requested.

Chapter 5. Command Summary

39

Name Arguments Category
[prog [args]] “Process Control,” on page 92lo[ad]

Without options, print the name and arguments of the program being debugged. With

arguments, invoke the debugger using the specified program and program args, if any.

filename “Miscellaneous,” on page 116log

Keep a log of all commands entered by the user and store it in the named file.

addr “Memory Access,” on page 113lr[ead]

Fetch and print an address from the specified address.

exp “Symbols and Expressions,” on page

108

lv[al]

Return the lvalue of the expression expr.

“Memory Access,” on page 113mq[dump]

Dump MPI message queue information for the current process.

[routine | "sourcefile" | {global}] “Scope,” on page 110names

Print the names of all identifiers defined in the indicated scope. If no scope is

specified, use the search scope.

[command] “Target,” on page 115nat[ive]

Without arguments, print a list of the available target commands. With a command

argument, send the native command directory to the target.

[count] “Process Control,” on page 92n[ext]

Stop after executing one or count source line(s) in the current routine.

[count] “Process Control,” on page 92nexti

Stop after executing one or count instruction(s) in the current routine.

exp “Miscellaneous,” on page 116nop[rint]

Evaluate the expression but do not print the result.

exp [,...exp] “Printing Variables and Expressions,” on

page 105

oct

Evaluate and print expressions as octal integers.

“Register Access,” on page 112pc

Return the current program address.

[command] “Miscellaneous,” on page 116pgienv

Define the debugger environment. With no arguments, display the debugger settings.

exp1 [,...expn] “Printing Variables and Expressions,” on

page 105

p[rint]

Evaluate and print one or more expressions.

Command Summary

40

Name Arguments Category
"format_string", expr,...expr “Printing Variables and Expressions,” on

page 105

printf

Print expressions in the format indicated by the format string.

[id] “Process Control,” on page 92proc

Set the current process to the process identified by id. When issued with no argument,

lists the location of the current thread of the current process in the current program.

“Process Control,” on page 92procs

Print the status of all active processes, listing each process by its logical process ID.

“Program Locations,” on page 103pwd

Print the current working directory.

“Process Control,” on page 92q[uit]

Terminate the debugging session.

regs [-info] [-grp=grp1[,grp2...]] [-

fmt=fmt1[,fmt2...]] [-mode=vector|scalar]

“Register Access,” on page 112regs

Print a formatted display of the names and values of registers. Specify the register

group(s) with the -grp option and formatting with the -fmt option. Use -info to

see a listing of available register groups and formats.

[first, last] | [first: last:n] | [num] | [-num] “Miscellaneous,” on page 116rep[eat]

Repeat the execution of one or more previous history list commands.

[arg0 arg1 ... argn] [< inputfile] [[> | >&

| >> | >>&] outputfile]

“Process Control,” on page 92rer[un]

Like the run command with one exception: if no args are specified with rerun, then

no args are used when the program is launched.

“Register Access,” on page 112ret[addr]

Return the current return address.

[arg0 arg1 ... argn] [< inputfile] [>

outputfile]

“Process Control,” on page 92ru[n]

Execute program from the beginning. If arguments arg0, arg1, and so on are specified,

they are set up as the command-line arguments of the program. Otherwise, the

arguments for the previous run command are used.

expr “Symbols and Expressions,” on page

108

rv[al]

Return the rvalue of the expression expr.

“Scope,” on page 110sco[pe]

Return a symbol for the search scope.

Chapter 5. Command Summary

41

Name Arguments Category
filename “Miscellaneous,” on page 116scr[ipt]

Open the indicated file and execute the contents as though they were entered as

commands. If you use ~ before the filename, it is expanded to the value of the

environment variable HOME.

var = exp “Symbols and Expressions,” on page

108

set

Set variable var to the value of expression.

[arg1 , arg2, ... argn] “Process Control,” on page 92setargs

Set program arguments to be used by the current program,

name [value] “Miscellaneous,” on page 116setenv

Print value of environment variable name. With a specified value, set name to value.

[arg0 , arg1, ... argn] “Miscellaneous,” on page 116sh[ell]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell

is sh). Without arguments, invokes an interactive shell, and executes until a "^D" is

entered.

name “Symbols and Expressions,” on page

108

siz[eof]

Return the size, in bytes, of the variable type name; or, if the name refers to a routine,

returns the size in bytes of the subprogram.

[time] “Miscellaneous,” on page 116sle[ep]

Pause for time seconds. If no time is specified, pause for one second

filename “Miscellaneous,” on page 116sou[rce]

Open the indicated file and execute the contents as though they were entered as

commands. If you use ~ before the filename, it is expanded to the value of $HOME.

“Register Access,” on page 112sp

Return the current stack pointer address.

addr “Memory Access,” on page 113sr[ead]

Fetch and print a short signed integer from the specified address

[count] “Program Locations,” on page 103stackd[ump]

Print a formatted dump of the stack. This command displays a hex dump of the stack

frame for each active routine.

[count] “Program Locations,” on page 103stack[trace]

Print a stacktrace. For each active routine print the routine name, source file, line

number, current address, provided that information is available.

Command Summary

42

Name Arguments Category
“Events,” on page 96stat[us]

Display all the event definitions, including an event number by which the event can be

identified.

[count | up] “Process Control,” on page 92s[tep]

Step into the current routine and stop after executing one or count source line(s). If

the up argument is specified, stops execution after stepping out of the current routine.

[count | up] “Process Control,” on page 92stepi

Step into the current routine and stop after executing one or count source line(s). If

the up argument is specified, stops execution after stepping out of the current routine.

“Process Control,” on page 92stepo[ut]

Stop after returning to the caller of the current routine.

[at line | in routine] [var] [if (condition)]

[do {commands}]

“Events,” on page 96stop

Set a breakpoint at the indicated routine or line. Break when the value of the indicated

variable var changes.

[at addr | in routine] [var] [if (condition)]

[do {commands}]

“Events,” on page 96stopi

Set a breakpoint at the indicated address or routine. Break when the value of the

indicated variable var changes.

exp [,...exp] “Printing Variables and Expressions,” on

page 105

str[ing]

Evaluate and print expressions as null-terminated character strings, up to a maximum

of 70 characters.

[routine | line] “Process Control,” on page 92sync

Advance the current process/thread to a specific program location, ignoring any user-

defined events.

[routine | addr] “Process Control,” on page 92synci

Advance the current process/thread to a specific program location, ignoring any user-

defined events.

[number] “Process Control,” on page 92thread

Set the current thread to the thread identified by number; where number is a logical

thread id in the current process’ active thread list. When issued with no argument,

thread lists the current program location of the currently active thread.

“Process Control,” on page 92threads

Prints the status of all active threads, grouped by process.

Chapter 5. Command Summary

43

Name Arguments Category
[at line | in routine] [var | routine] [if

(condition)] do {commands}

“Events,” on page 96trace

Activates source line tracing as specified by the arguments supplied.

[at addr | in routine] [var] [if (condition)]

do {commands}

“Events,” on page 96tracei

Activates instruction tracing as specified by the arguments supplied.

expression [at line | in routine] [if

(condition)] [do {commands}]

“Events,” on page 96track

Define a track event.

expression [at addr | in routine] [if

(condition)] [do {commands}]

“Events,” on page 96tracki

Define an assembly-level track event.

expr “Symbols and Expressions,” on page

108

type

Return the type of the expression.

name “Miscellaneous,” on page 116unal[ias]

Remove the alias definition for name, if one exists.

line | routine | all “Events,” on page 96unb[reak]

Remove a breakpoint from the statement line, the routine routine, or remove all

breakpoints.

addr | routine | all “Events,” on page 96unbreaki

Remove a breakpoint from the address addr, the routine routine, or remove all

breakpoints.

[name | -all] “Process-Thread Sets,” on page 95undefset

Remove a previously defined process/thread set from the list of process/thread sets.

[all | 0 | exp] “Printing Variables and Expressions,” on

page 105

undisplay

Remove all expressions specified by previous display commands. With an argument or

several arguments, remove the expression exp from the list of display expressions.

[number] “Scope,” on page 110u[p]

Move up one level or number levels on the call stack.

[dir] “Miscellaneous,” on page 116use

Print the current list of directories or add dir to the list of directories to search. If the

first character in pathname is ~, the value of $HOME is substituted for this character.

Command Summary

44

Name Arguments Category
name “Process-Thread Sets,” on page 95viewset

List the members of a process/thread set that currently exist as active threads or list

defined p/t-sets.

[any | all | none] “Process Control,” on page 92wait

Inserts explicit wait points in a command stream.

expression [at line | in routine] [if

(condition)] [do {commands}]

“Events,” on page 96wa[tch]

Define a watch event. The given expression is evaluated, and subsequently, each time

the value of the expression changes, the program stops and the new value is printed.

expression [at addr | in routine]

[if(condition)] [do {commands}]

“Events,” on page 96watchi

Define an assembly-level watch event.

[name] “Symbols and Expressions,” on page

108

whatis

With no arguments, prints the declaration for the current routine. With argument

name, prints the declaration for the symbol name.

[at line | in routine] [if (condition)] do

{commands}

“Events,” on page 96when

Execute commands at every line in the program, at a specified line in the program or

in the specified routine.

[at addr | in routine] [if(condition)] do

{commands}

“Events,” on page 96wheni

Execute commands at each address in the program. If an addr is specified, the

commands are executed each time the address is reached.

[count] “Program Locations,” on page 103w[here]

Print a stacktrace. For each active routine print the routine name, routine arguments,

source file, line number, current address, provided that information is available.

name “Symbols and Expressions,” on page

108

whereis

Print all declarations for name.

name “Scope,” on page 110which

Print full scope qualification of symbol name.

[p/t-set] “Process-Thread Sets,” on page 95whichsets

List all defined p/t-sets to which the members of a process/thread set belong.

/ [string] / “Program Locations,” on page 103/

Search forward for a string (string) of characters in the current source file

Chapter 5. Command Summary

45

Name Arguments Category
?[string] ? “Program Locations,” on page 103?

Search backward for a string (string) of characters in the current source file.

History modification “Miscellaneous,” on page 116!

Executes a command from the command history list. The command executed depends

on the information that follows the !.

History modification “Miscellaneous,” on page 116^

Quick history command substitution ^old^new^<modifier> this is equivalent to !:s/

old/new/

46

47

Chapter 6. Assembly-Level
Debugging

This section provides information about PGDBG assembly-level debugging, including an overview and what to

expect if you are using assembly-level debugging or if you did not compile your program for debugging.

Assembly-Level Debugging Overview
PGDBG supports debugging regardless of how a program was compiled. Specifically, PGDBG does not require

that the program under debug be compiled with debugging information, such as using -g. It can debug code

that is lacking debug information, but because it is missing information about symbols and line numbers, it

can only access the program at the assembly level. PGDBG also supports debugging at the assembly level if

debug symbols are available.

As described in “Building Applications for Debug,” on page 1, the most information is available when the

program is compiled using -g or -gopt with no optimization. When a program is compiled at higher levels

of optimization, less information about source-level symbols and line numbers is available, even if the program

was compiled with -g or -gopt. In such cases, if you want to find the source of a problem without rebuilding

the program, you may need to debug at the assembly level.

If a program has been "stripped" of all symbols, either by the linker or a separate utility, then debugging is at

the assembly level. PGDBG is only able to examine or control the program in terms of memory addresses and

registers.

Assembly-Level Debugging on Microsoft Windows Systems

When applications are built without -g on Windows systems, the resulting binary, the .exe file, does not

contain any symbol information. Microsoft stores symbol information in a program database, a .pdb file.

To generate a .pdb file using the PGI compiler drivers, you must use -g during the link step. You can do

this even if you did not use -g during the compile step. Having this .pdb file available provides PGDBG with

enough symbol information to map addresses to routine names.

Assembly-Level Debugging Overview

48

Assembly-Level Debugging with Fortran
To refer to Fortran symbol names when debugging at the assembly level, you must translate the names to use

the naming convention that matches the calling convention in use by the compiler. For code compiled by the

PGI compilers, in most cases this means translating to lower case and appending an underbar. For example, a

routine that appears in the source code as "VADD" would be referred to in the debugger as "vadd_".

On 32-bit Windows systems there are alternative calling conventions. The one described above matches the

convention used when the compiler is invoked with -Miface=unix (previously -Munix). For details of

other 32-bit Windows calling conventions, refer to the PGI Compiler User's Guide.

Note
Name translation is only necessary for assembly-level debugging. When debugging at the source level,

you may refer to symbol names as they appear in the source.

A special symbol, MAIN_, is created by PGFORTRAN to refer to the main program. PGFORTRAN generates this

special symbol whether or not there is a PROGRAM statement. One way to run to the beginning of a Fortran

program is to set a breakpoint on MAIN_, then run.

Assembly-Level Debugging with C++

C++ symbol names are "mangled" names. For the names of C++ methods, the names are modified to include

not only the name as it appears in the source code, but information about the enclosing class hierarchy,

argument and return types, and other information. The names are long and arcane. At the source level these

names are translated by PGDBG to the names as they appear in the source. At the assembly level, these names

are in the mangled form. Translation is not easy and not recommended. If you have no other alternative, you

can find information about name mangling in the PGI Compiler User's Guide.

Assembly-Level Debugging Using the PGDBG GUI
This section describes some basic operations for assembly-level debugging using the PGDBG GUI. If you

encounter the message “Can’t find main function compiled -g” on startup, assembly -level

debugging is required.

To get into a program in this situation, you can select the Debug | Set Breakpoint... menu option. To stop at

program entry, for example, in Fortran you could enter MAIN_ in response to the dialog query; in C or C++

you could enter main.

PGDBG debug information tabs that are useful in assembly-level debugging include the Call Stack, Memory,

and Register tabs. Use the Disassembly tab in the source pane to view the disassembled code.

If disassembly is not automatically displayed in the source pane, use the dls command in either the Command

tab or Data | Custom window to generate disassmbly for an address or function.

Assembly-Level Debugging Using the PGDBG CLI
This section describes some basic operations for assembly-level debugging using the PGDBG command-line

interface. When you invoke the PGDBG CLI and are presented with a message telling you that PGDBG "Can't

find main function compiled -g", assembly-level debugging is required.

Chapter 6. Assembly-Level Debugging

49

To get into the program, you can set a breakpoint at a named routine. To stop at program entry, for example, in

Fortran you could use

 pgdbg> break MAIN_

and in C/ C++ you could use

 pgdbg> break main

Some useful commands for assembly-level debugging using the PGDBG command-line interface include:

run

run the program from the beginning

cont

continue program execution from the current point

nexti

single-step one instruction, stepping over calls

stepi

single-step one instruction, stepping into calls

breaki

set a breakpoint at a given address

regs

display the registers

print $<regname>

display the value of the specified register

For more information on register names, refer to “SSE Register Symbols,” on page 49.

dump

dump memory locations

stacktrace

display a stack traceback

stackdump

 display a traceback/dump of stack frame

SSE Register Symbols
X64 processors and x86 processors starting with Pentium III provide SSE (Streaming SIMD Enhancements)

registers and a SIMD floating-point control/status register.

Each SSE register may contain four 32-bit single-precision or two 64-bit floating-point values. The PGDBG

regs command reports these values individually in both hexadecimal and floating-point format. PGDBG

provides command notation to refer to these values individually or all together.

The component values of each SSE register can be accessed using the same syntax that is used for array

subscripting. Pictorially, the SSE registers can be thought of as follows:

SSE Register Symbols

50

[32-bit]

127 96 95 64 63 32 31 0

$xmm0[3] $xmm0[2] $xmm0[1] $xmm0[0]

$xmm1[3] $xmm1[2] $xmm1[1] $xmm1[0]

$xmm2[3] $xmm2[2] $xmm2[1] $xmm2[0]

To access $xmm0[3], the 32-bit single-precision floating point value that occupies bits 96 – 127 of SSE

register 0, use the following PGDBG command:

 pgdbg> print $xmm0[3]

To set $xmm2[0] to the value of $xmm3[2], use the following PGDBG command:

 pgdbg> set $xmm2[3] = $xmm3[2]

[64-bit]

127 64 63 0

$xmm0d[1] $xmm0d[0]

$xmm1d[1] $xmm1d[0]

$xmm2d[1] $xmm2d[0]

To access the 64-bit floating point values in xmm0, append the character 'd' (for double precision) to the

register name and subscript as usual, as illustrated in the following pgdbg commands:

 pgdbg> print $xmm0d[0]

 pgdbg> print $xmm0d[1]

In most cases, PGDBG detects when the target environment supports the SSE registers. In the event PGDBG

does not allow access to SSE registers on a system that should have them, set the PGDBG_SSE environment

variable to on to enable SSE support.

51

Chapter 7. Source-Level Debugging
This chapter describes source-level debugging, including debugging Fortran and C++.

Debugging Fortran

Fortran Types
PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran character

types, which are treated as arrays of the C type char.

Arrays
Fortran array subscripts and ranges are accessed using the Fortran language syntax convention, denoting

subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (AMD64 or Intel 64) support large arrays (arrays with an

aggregate size greater than 2GB). You can enable large array support by compiling using these options: –

mcmodel=medium –Mlarge_arrays. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts that

are used in the target application.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is used

in the target application.

Operators
In general, PGDBG uses C language style operators in expressions and supports the Fortran array index

selector “()” and the Fortran field selector “%” for derived types. However, .eq., .ne., and so forth are not

supported. You must use the analogous C operators ==, !=, and so on, instead.

Note

The precedence of operators matches the C language, which may in some cases be different than for

Fortran.

See Table 5.1, “PGDBG Commands” for a complete list of operators and their definition.

Debugging Fortran

52

Name of the Main Routine
If a PROGRAM statement is used, the name of the main routine is the name in the program statement. You can

always use the following command to set a breakpoint at the start of the main routine.

break MAIN

Common Blocks
Each subprogram that defines a common block has a local static variable symbol to define the common.

The address of the variable is the address of the common block. The type of the variable is a locally-defined

structure type with fields defined for each element of the common block. The name of the variable is the

common block name, if the common block has a name, or _BLNK_ otherwise.

For each member of the common block, a local static variable is declared which represents the common block

variable. Thus given declarations:

common /xyz/ a, b
integer a
integer b

then the entire common block can be printed out using,

print xyz

Individual elements can be accessed by name. For example:,

print a, b

Internal Procedures
To unambiguously reference an internal procedure, qualify its name with the name of its host using the scoping

operator @.

For example:

subroutine sub1 ()
 call internal_proc ()
 contains
 subroutine internal_proc ()
 print *, "internal_proc in sub1"
 end subroutine internal_proc
end subroutine

subroutine sub2 ()
 call internal_proc ()
 contains
 subroutine internal_proc ()
 print *, "internal_proc in sub2"
 end subroutine internal_proc
end subroutine

program main
 call sub1 ()
 call sub2 ()
end program

Chapter 7. Source-Level Debugging

53

pgdbg> whereis internal_proc
function: "/path/ip.f90"@sub1@internal_proc
function: "/path/ip.f90"@sub2@internal_proc

pgdbg> break sub1@internal_proc
(1)breakpoint set at: internal_proc line: "ip.f90"@5 address: 0x401E3C 1

pgdbg> break sub2@internal_proc
(2)breakpoint set at: internal_proc line: "ip.f90"@13 address: 0x401EEC 2

Modules
A member of a Fortran 90 module can be accessed during debugging.

module mod
 integer iMod
end module
subroutine useMod()
 use mod
 iMod = 1000
end subroutine
program main
 call useMod()
end program

• If the module is in the current scope, no qualification is required to access the module's members.

pgdbg> b useMod
(1)breakpoint set at: usemod line: "modv.f90"@7 address: 0x401CC4
1

Breakpoint at 0x401CC4, function usemod, file modv.f90, line 7
 #7: iMod = 1000

pgdbg> p iMod
0

• If the module is not in the current scope, use the scoping operator @ to qualify the member's name.

Breakpoint at 0x401CF0, function main, file modv.f90, line 11
 #11: call useMod()

pgdbg> p iMod
"iMod" is not defined in the current scope

pgdbg> p mod@iMod
0

Module Procedures
A module procedure is a subroutine contained within a module. A module procedure itself can contain

internal procedures. The scoping operator @ can be used when working with these types of subprograms to

prevent ambiguity.

module mod
 contains
 subroutine mod_proc1()
 call internal_proc()
 contains
 subroutine internal_proc()

Debugging C++

54

 print *, "internal_proc in mod_proc1"
 end subroutine
 end subroutine
 subroutine mod_proc2()
 call internal_proc()
 contains
 subroutine internal_proc()
 print *, "internal_proc in mod_proc2"
 end subroutine
 end subroutine
end module

program main
 use mod
 call mod_proc1
 call mod_proc2
end program

pgdbg> whereis internal_proc
function: "/path/modp.f90"@mod@mod_proc1@internal_proc
function: "/path/modp.f90"@mod@mod_proc2@internal_proc

pgdbg> break mod@mod_proc1@internal_proc
(1)breakpoint set at: internal_proc line: "modp.f90"@7 address: 0x401E3C
1
pgdbg> break mod@mod_proc2@internal_proc
(2)breakpoint set at: internal_proc line: "modp.f90"@14 address: 0x401EEC
2

Debugging C++

Calling C++ Instance Methods
To use the call command to call a C++ instance method, the object must be explicitly passed as the first

parameter to the call. For example, suppose you were given the following definition of class Person and the

appropriate implementation of its methods:

class Person
{
 public:
 char name[10];
 Person(char * inName);
 void print();
};

int main ()
{
 Person * pierre;
 pierre = new Person("Pierre");
 pierre->print();
 return 0;
}

Call the instance method print on object pierre as follows:

pgdbg> call Person::print(pierre)

Notice that pierre must be explicitly passed into the method because it is the this pointer. You can also

specify the class name to remove ambiguity.

55

Chapter 8. Platform-Specific
Features

This chapter describes the PGDBG features that are specific to particular platforms, such as pathname

conventions, debugging with core files, and signals.

Pathname Conventions
PGDBG uses the forward slash character (/) as the path component separator on all platforms. The backslash

(\) is used as the escape character in the PGDBG command language.

On Windows systems, a drive letter specifier may be used whenever specifying a full path, but the forward slash

separator convention is still in effect. For example, to add the Windows pathname C:\Temp\src to the list of

searched source directories, use the command:

pgdbg> dir C:/Temp/src

To set a breakpoint at line 10 of the source file specified by the relative path sub1\main.c, use this

command:

pgdbg> break "sub1/main.c":10

Debugging with Core Files
PGDBG supports debugging of core files on Linux platforms. To invoke PGDBG for core file debugging, use the

following options:

$ pgdbg –core coreFileName programName

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,

one common exception is the segmentation violation, which can be caused by referencing an invalid memory

address. The memory and register states of the program are written into a core file so that they can be

examined by a debugger.

The shell environment in which the application runs must be set up to allow core file creation. On many

systems, the default user setting ulimit does not allow core file creation.

Check the ulimit as follows:

Signals

56

For sh/bash users:

$ ulimit -c

For csh/tcsh users:

% limit coredumpsize

If the core file size limit is zero or something too small for the application, it can be set to unlimited as follows:

For sh/bash users:

$ ulimit -c unlimited

For csh/tcsh users:

% limit coredumpsize unlimited

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits on core

file creation.

The core file is normally written into the current directory of the faulting application. It is usually named core

or core.pid where pid is the process ID of the faulting thread. If the shell environment is set correctly and a

core file is not generated in the expected location, the system core dump policy may require configuration by a

system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are

written to the core file in most modern implementations of Linux. In some new versions of Linux, if more than

one thread faults, then each thread’s state is written to separate core files using the core.pid file naming

convention previously described. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.so), as most programs on

Linux do, then accurate core file debugging requires that the program be debugged on the system where the

core file was created. Otherwise, slight differences in the version of a shared library or the dynamic linker

can cause erroneous information to be presented by the debugger. Sometimes a core file can be debugged

successfully on a different system, particularly on more modern Linux systems, but you should take care when

attempting this.

When debugging core files, PGDBG:

• Supports all non-control commands.

• Performs any command that does not cause the program to run.

• Generates an error message in PGDBG for any command that causes the program to run.

• May provide the status of multiple threads, depending on the type of core file created.

PGDBG does not support multi-process core file debugging.

Signals
PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on

according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands), except

for signals that cannot be intercepted or signals used internally by PGDBG.

Chapter 8. Platform-Specific Features

57

Signals Used Internally by PGDBG
SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG. Management of

these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG (via catch and ignore)

results in undefined behavior.

Signals Used by Linux Libraries
Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads internally. Other Linux

thread libraries, on systems that do not have support for real-time signals in the kernel, use SIGUSR1 and

SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) result in undefined

behavior.

Target applications compiled with the options –pg or –Mprof=time generate numerous SIGPROF signals.

Although SIGPROF can be handled by PGDBG via the ignore command, debugging of applications built for

sample-based profiling is not recommended.

58

59

Chapter 9. Parallel Debugging
Overview

This chapter provides an overview of how to use PGDBG to debug parallel applications. It includes important

definitions and background information on how PGDBG represents processes and threads.

Overview of Parallel Debugging Capability
PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread

and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate

between multi-threaded or OpenMP processes.

For specific information on multi-thread and OpenMP debugging, refer to Chapter 10, “Parallel Debugging

with OpenMP”.

For specific information on multi-process MPI debugging, refer to Chapter 11, “Parallel Debugging with

MPI”.

Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail in

“The Graphical User Interface”.

Basic Process and Thread Naming
Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-

threaded/multi-process applications, it provides a convention for uniquely identifying each thread in each

process. This section gives a brief overview of this naming convention and how it is used to provide adequate

background for the subsequent sections. A more detailed discussion of this convention, including advanced

techniques for applying it, is provided in “Thread and Process Grouping and Naming,” on page 60.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG assigns

arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

Thread and Process Grouping and Naming

60

PGDBG identifies processes in an MPI application using MPI rank (in communicator MPI_COMM_WORLD).

Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of process

creation. Process IDs are unique across all active processes.

In a multi-threaded/multi-process application, each thread can be uniquely identified across all processes by

prefixing its thread ID with the process ID of its parent process. For example, thread 1.4 identifies the thread

with ID 4 in the process with ID 1.

An OpenMP application logically runs as a collection of threads with a single process, process 0, as the parent

process. In this context, a thread is uniquely identified by its thread ID. The process ID prefix is implicit and

optional. For more information on debugging threads, refer to “Threads-only Debugging,” on page 61.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.

Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and thread ID

is implicit and optional. For more information on process debugging, refer to “Process-only Debugging,” on

page 61.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to uniquely

identify a particular thread. For more information on multilevel debugging, refer to “Multilevel Debugging,” on

page 61.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0. The

use of thread IDs and process IDs is allowed but unnecessary.

Thread and Process Grouping and Naming
This section describes how to name a single thread, how to group threads and processes into sets, and how to

apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes
PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming threads and

processes. The debug mode is set automatically or by the pgienv mode command.

Table 9.1. PGDBG Debug Modes

Debug Mode Program Characterization
Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution

Multilevel Multiple processes, at least one process employing multiple threads of execution

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be ignored in

serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. For a

description of the PGDBG prompt, refer to “The PGDBG Command Prompt,” on page 73.

The debug mode can be changed at any time during a debug session.

Chapter 9. Parallel Debugging Overview

61

To change debug mode manually, use the pgienv command.

pgienv mode [serial|thread|process|multilevel]

Threads-only Debugging
Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the

process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial debug

mode when it detects and attaches to new threads.

Example 9.1. Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*. 1)

* All threads of process 0 (*. *)

0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on context.

Process-only Debugging
Enter process-only mode to debug an application consisting of single-threaded processes. As a convenience,

the thread ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial

debug mode when multiple processes are detected.

Example 9.2. Process IDs in Process-only Debug Mode

0 All threads of process 0 (0.*)

* All threads of all processes (*.*)

1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending on context.

Multilevel Debugging
The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms

a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG

changes automatically to multilevel debug mode when at least one MPI process creates multiple threads.

Example 9.3. Thread IDs in Multilevel Debug Mode

0.1 Thread 1 of process 0

0.* All threads of process 0

* All threads of all processes

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on

context.

Process/Thread Sets

62

Process/Thread Sets
You use a process/thread set (p/t-set) to restrict a debugger command to apply to just a particular set of

threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/t-set

notation, described in “p/t-set Notation”, to define a p/t-set.

Named p/t-sets
In the following sections, you will notice frequent references to three named p/t-sets:

• The target p/t-set is the set of processes and threads to which a debugger command is applied. The target

p/t-set is initially defined by the debugger to be the set [all] which describes all threads of all processes.

• A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the prefixed

command, the target p/t-set is the prefix p/t-set.

• The current p/t-set is the p/t set currently set in the PGDBG environment. You can use the focus command

to define the current p/t-set. Unless a prefix p/t-set overrides it, the current p/t set is used as the target p/t-

set.

p/t-set Notation
The following rules describe how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:
[p/t-set prefix] command parm0, parm1, ...

Use a prefix p/t-set with a compound command:
[p/t-set prefix] simple-command [;simple-command ...]

p/t-id:
{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect. For more information,

refer to the pgienv command.

p/t-range:
p/t-id:p/t-id

p/t-list:
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set
[[!]{p/t-list|set-name}]

Example 9.4. p/t-sets in Threads-only Debug Mode
[0,4:6] Threads 0,4,5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is valid in threads-only mode

[*.*] All threads

Chapter 9. Parallel Debugging Overview

63

Example 9.5. p/t-sets in Process-only Debug Mode
[0,2:3] Processes 0, 2, and 3 (equivalent to [0.*,2:3.*])

[*] All processes (equivalent to [*.*])

[0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is valid in process-only mode.

[0:2.*] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

Example 9.6. p/t-sets in Multilevel Debug Mode
[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

Dynamic vs. Static p/t-sets
The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic

p/t-set are those active threads described by the p/t-set at the time that the p/t-set is used. By default, a p/t-

set is dynamic. Threads and processes are created and destroyed as the target program runs and, therefore,

membership in a dynamic set varies as the target program executes.

Example 9.7. Defining a Dynamic p/t-set
defset clients [*.1:3] Defines a named set clients whose members are threads 1, 2, and

3 of all processes that are currently active when clients is used.

Membership in clients changes as processes are created and

destroyed.

Membership in a static set is fixed at definition time. The members of a static p/t-set are those threads

described by that p/t-set when it is defined. Use a ! to specify a static set.

Example 9.8. Defining a Static p/t-set
defset clients [!*.1:3] Defines a named set clients whose members are threads 1, 2, and 3

of those processes that are currently active at the time of the definition.

Note
p/t-sets defined with defset are not mode-dependent and are valid in any debug mode.

Current vs. Prefix p/t-set
The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt and

depends on debug mode. For a description of the PGDBG prompt, refer to “The PGDBG Command Prompt,”

Process/Thread Sets

64

on page 73. You can use a p/t-set to prefix a command that overrides the current p/t-set. The prefix p/t-set

becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be affected by

a command.

• In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

• In contrast, a prefix p/t-set is used in the following command so that the target p/t-set is the prefix p/t-set,

shown in this example in bold:

pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all] is

the target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set. The

continue command is applied to all active threads in the target p/t-set. Also, using a prefix p/t-set does not

change the current p/t-set.

p/t-set Commands
You can use the following commands to collect threads and processes into logical groups.

• Use defset and undefset to manage a list of named p/t-sets.

• Use focus to set the current p/t-set.

• Use viewset to view the active members described by a particular p/t-set, or to list all the defined p/t-sets.

• Use whichsets to describe the p/t-sets to which a particular process/thread belongs.

Table 9.2. p/t-set Commands

Command Description
defset Define a named process/thread set. This set can later be referred to by name. A

list of named sets is stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent commands are

applied to the members of this set by default.

undefset Undefine a previously defined process/thread set. The set is removed from the

list. The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads,

or list all the defined p/t-sets.

whichsets List all defined p/t-sets to which the members of a process/thread set belong.

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-set initial to contain only thread 0:

pgdbg [all] 0> defset initial [0]
"initial" [0] : [0]

Use the focus command to change the current p/t-set to initial:

Chapter 9. Parallel Debugging Overview

65

pgdbg [all] 0> focus [initial]
[initial] : [0]
[0]

Advance the thread using the current p/t-set, which is initial:

pgdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]
Thread 0 belongs to:
all
initial

The viewset command displays all threads that are active and are members of defined p/t-sets:

pgdbg [initial] 0> viewset
"all" [*.*] : [0.0,0.1,0.2,0.3]
"initial" [0] : [0]

You can use the focus command to set the current p/t-set back to [all]:

pgdbg [initial] 0> focus [all]
[all] : [0.0,0.1,0.2,0.3]
[*.*]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set name "initial" deleted.

Using Process/Thread Sets in the GUI
The previous examples illustrate how to manage named p/t-sets using the command-line interface. A similar

capability is available in the PGDBG GUI. “Groups Tab,” on page 11 provides an overview of the Groups tab.

Figure 9.1. Groups Tab

Process/Thread Sets

66

The Groups tab contains a table with two columns: a Group Name column and a p/t-set Composition column.

The entries in the Composition column are the same p/t-sets used in the command-line interface.

Using this tab you can create, select, modify and remove p/t sets.

Create a p/t set

To create a p/t set in the Groups tab:

1. Click the Add button. This opens a dialog box similar to the one in Figure 9.2.

2. Enter the name of the p/t-set in the Group Name field and enter the p/t-set in the Composition field.

3. Click OK to add the p/t-set.

The new p/t-set appears in the Groups table. Clicking the Cancel button or closing the dialog box aborts the

operation.

Figure 9.2. Process/Thread Group Dialog Box

Select a p/t set

To select a p/t-set, click the desired p/t-set in the table. The selected p/t-set defines the Current Group used in

the Apply and Display drop-down lists on the main toolbar.

Modify a p/t set

To modify an existing p/t-set, select the desired group in the Group table and click the Modify... button. A

dialog box similar to that in Figure 9.2 appears, except that the Group Name and Composition fields contain

Chapter 9. Parallel Debugging Overview

67

the selected group’s name and p/t-set respectively. You can edit the information in these fields and click OK to

save the changes.

Remove a p/t set

To remove an existing p/t-set, select the desired item in the Groups Table and click the Remove... button.

PGDBG displays a dialog box asking for confirmation of the removal request.

p/t set Usage
When Current Group is selected in either the Apply or Display drop-down lists on the main toolbar, the

currently selected p/t-set in the Groups tab defines the Current Group.

Command Set
For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets

according to how each command reacts to the current p/t-set. Process level and thread level commands can be

parallelized. Global commands cannot be parallelized.

Table 9.3. PGDBG Parallel Commands

Commands Action
Process Level Commands Parallel by current p/t-set or prefix p/t-set

Thread Level Commands Parallel by prefix p/t-set only; current p/t-set is ignored.

Global Commands Non-parallel commands

Process Level Commands
The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set can

be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1:2]
pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:

pgdbg [all] 0.0> [0.3] n

Thread Level Commands
The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used, these

commands execute in the context of the current thread of the current process by default. That is, thread level

Command Set

68

commands ignore the current p/t-set. Thread level commands can be applied to multiple threads by using a

prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed in the context of each

active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if present, or the current

thread (not the current p/t-set) if no prefix p/t-set exists.

The thread level commands are:

addr do hwatch print stack

ascii doi iread regs stackdump

assign dread line retaddr string

bin dump lines rval track

break* entry lval scope tracki

cread fp noprint set watch

dec fread oct sizeof watchi

decl func pc sp whatis

disasm hex pf sread where

* breakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is specified, [all] is used

(overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:

• The threads described by the prefix are sorted per process by thread ID in increasing order.

• The processes are sorted by process ID in increasing order, and duplicates are removed.

• The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the current

process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print myrank
0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print

command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*,1:2.*] print myrank
[1.0] print myrank:
1
[2.0] print myrank:
2
[2.1] print myrank:
2
[2.2] print myrank:
2

Chapter 9. Parallel Debugging Overview

69

[3.0] print myrank:
3
[3.2] print myrank:
3
[3.1] print myrank:
3

Global Commands
The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads across

all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

? defset funcs quit threads

/ delete help repeat unalias

alias directory history rerun unbreak

arrive disable ignore run undefset

breaks display log script use

call edit pgienv shell viewset

catch enable proc source wait

cd files procs status whereis

debug focus pwd thread whichsets

Process and Thread Control
PGDBG supports thread and process control everywhere in the program. Threads and processes can be

advanced in groups anywhere in the program.

The PGDBG control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current thread single-

steps over an _mp_init call (found at the beginning of every OpenMP parallel region) using the next

command, then all threads created by _mp_init step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So if the current process

returns from a call to MPI_Init under the control of a cont command, the new process does the same.

Configurable Stop Mode

70

Configurable Stop Mode
PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG defines

two pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines two stop modes,

synchronous (sync) and asynchronous (async).

Table 9.4. PGDBG Stop Modes

Command Result
sync Synchronous stop mode; when one thread stops at a breakpoint (event),

all other threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other

threads. One thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [sync|async]

Process stop mode is set using the pgienv command as follows:

pgienv procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging

an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and

asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfig and procstopconfig can be set to automatic

(auto) or user defined (user) to enable or disable this behavior:

pgienv threadstopconfig [auto|user]
pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.

Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode
Wait mode describes when PGDBG accepts the next command. The wait mode is defined in terms of the

execution state of the program. Wait mode describes to the debugger which processes/threads must be

stopped before it will accept the next command.

In certain situations, it is desirable to be able to enter commands while the program is running and not

stopped at an event. The PGDBG prompt does not appear until all processes/threads are stopped. However, a

prompt may be available before all processes/threads have stopped. Pressing <enter> at the command line

Chapter 9. Parallel Debugging Overview

71

brings up a prompt if it is available. The availability of the prompt is determined by the current wait mode and

any pending wait commands.

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence of semicolon-

separated commands, which are processed immediately in order.

The wait mode describes when to accept the next compound statement. PGDBG supports three wait modes,

which can be applied to processes and/or threads.

Table 9.5. PGDBG Wait Modes

Command Result
all The prompt is available only after all threads have stopped since the

last control command.

any The prompt is available only after at least one thread has stopped

since the last control command.

none The prompt is available immediately after a control command is

issued.

• Thread wait mode describes which threads PGDBG waits for before accepting new commands.

Thread wait mode is set using the pgienv command as follows:

pgienv threadwait [any|all|none]

• Process wait mode describes which processes PGDBG waits for before accepting new commands.

Process wait mode is set using the pgienv command as follows:

pgienv procwait [any|all|none]

If process wait mode is set to none, then thread wait mode is ignored.

The PGDBG CLI defaults to:

threadwait all
procwait any

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG. The

pgienv environment variable threadwaitconfig can be set to automatic (auto) or user defined (user) to

enable or disable this behavior.

pgienv threadwaitconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.

Automatic wait mode is the default thread wait mode.

The PGDBG GUI defaults to:

threadwait none

Configurable Wait Mode

72

procwait none

Setting the wait mode may be necessary when invoking the PGDBG GUI using the -s (script file) option. This

step ensures that the necessary threads are stopped before the next command is processed).

PGDBG also provides a wait command that can be used to insert explicit wait points in a command stream.

wait uses the target p/t-set by default, which can be set to wait for any combination of processes/threads. You

can use the wait command to insert wait points between the commands of a compound command.

The threadwait and procwait pgienv variables can be used to configure the behavior of wait. For more

information, refer to pgienv usage in “Configurable Wait Mode,” on page 70.

Table 9.6, “PGDBG Wait Behavior” describes the behavior of wait.

Suppose S is the target p/t-set. In the table,

• P is the set of all processes described by S.

• p is a single process.

• T is the set of all threads described by S.

• t is a single thread.

Table 9.6. PGDBG Wait Behavior

Command threadwait procwait Wait Set
wait all

any

none

all Wait for T

wait all any

none

Wait for all threads in at least one p in P

wait any

none

any

none

Wait for all t in T for at least one p in P

wait all all

any

none

all Wait for T

wait all all any

none

Wait for all threads of at least one p in P

wait all any

none

any

none

Wait for all t in T for at least one p in P

wait any all all Wait for at least one thread for each process p in P

wait any all

any

none

any

none

Wait for at least one t in T

wait any any

none

all Wait for at least one thread in T for each process p in P

Chapter 9. Parallel Debugging Overview

73

Command threadwait procwait Wait Set
wait none all

any

none

all

any

none

Wait for no threads

Status Messages
PGDBG can produce a variety of status messages during a debug session. This feature can be useful in the CLI

if the graphical aids provided by the GUI are unavailable. Use the pgienv command to enable or disable the

types of status messages produced by setting the verbose environment variable to an integer-valued bit mask:

pgienv verbose <bitmask>

The values for the bit mask, listed in the following table, control the type of status messages desired.

Table 9.7. PGDBG Status Messages

Value Type Information
0x0 Standard Disable all messages.

0x1 Standard Report status information on current process/thread only. A

message is printed when the current thread stops and when threads

and processes are created and destroyed. Standard messaging is the

default and cannot be disabled.

0x2 Thread Report status information on all threads of current processes. A

message is reported each time a thread stops. If process messaging

is also enabled, then a message is reported for each thread across

all processes. Otherwise, messages are reported for threads of the

current process only.

0x4 Process Report status information on all processes. A message is reported

each time a process stops. If thread messaging is also enabled,

then a message is reported for each thread across all processes.

Otherwise, messages are reported for the current thread only of

each process.

0x8 SMP Report SMP events. A message is printed when a process enters

or exits a parallel region, or when the threads synchronize. The

PGDBG OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default).

0x32 Symbolic debug

information

Report any errors encountered while processing symbolic debug

information (e.g. ELF, DWARF2).

The PGDBG Command Prompt
The PGDBG command prompt reflects the current debug mode, as described in “PGDBG Debug Modes,” on

page 60.

In serial debug mode, the PGDBG prompt looks like this:

Parallel Events

74

pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current thread:

pgdbg [all] 0>
Current thread is 0

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current process:

pgdbg [all] 0>
Current process is 0

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the

current p/t-set at the prompt.

Parallel Events
This section describes how to use a p/t-set to define an event across multiple threads and processes. Events,

such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-level commands,

described in “Thread Level Commands,” on page 67.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set

breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (ii) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.

By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user

events on specific processes and threads. For example:

i) pgdbg [all] 0> watch glob
ii) pgdbg [all] 0> [*] watch glob

(i) sets a watchpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are currently

active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or thread.

All other events must be defined explicitly after the process or thread is created. All processes must be stopped

to add, enable, or disable a user event.

Events may contain if and do clauses. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint fires. The if and do

clauses execute in the context of a single thread. The conditional in the if clause and the body of the do execute

Chapter 9. Parallel Debugging Overview

75

in the context of a single thread, the thread that triggered the event. The conditional definition as above can be

restated as follows:

[0] if (glob!=0) {[0] set f = 0}
[1] if (glob!=0) {[1] set f = 0}
...

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is bound

in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only well

defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current process.

For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

If conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, the following command

is illegal:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

The body of a do statement cannot be parallelized.

Parallel Statements
This section describes how to use a p/t-set to define a statement that executes for multiple threads and

processes.

Parallel Compound/Block Statements
Each command in a compound statement is executed in order. The target p/t-set is applied to all statements in

a compound statement. The following two examples (i) and (ii) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print f@11@i
ii) pgdbg [all] 0>[*] break main; [*]cont; [*]wait; [*]print f@11@i

Use the wait command if subsequent commands require threads to be stopped, as the print command in the

example does.

The threadwait and procwait environment variables do not affect how commands within a compound

statement are processed. These pgienv environment variables describe to PGDBG under what conditions

(runstate of program) it should accept the next (compound) statement.

Parallel If, Else Statements
A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the current

thread by default. The following example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

is equivalent to the following pseudo-code:

Parallel Statements

76

 for the subset of [*] where (i==1)
 break func; c; wait; for the subset of [*] where (i!=1) sync func2

Parallel While Statements
A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of the

current thread by default. The following example:

pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

 loop:
 if the subset of [*] is the empty set
 goto done
 endif
 for the subset [s] of [*] where (i<10)
 [s]n; [s]wait; [s]print i;
 endfor
 goto loop

The while statement terminates when either the subset of the target p/t-set matching the while condition is the

empty set, or a return statement is executed in the body of the while.

Return Statements
The return statement is defined only in serial context since it cannot return multiple values. When return is

used in a parallel statement, it returns the last value evaluated.

77

Chapter 10. Parallel Debugging with
OpenMP

This chapter provides information on how to debug OpenMP applications. Before reading this chapter, review

the information in Chapter 9, “Parallel Debugging Overview”.

OpenMP and Multi-thread Support
PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a single

thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering scheme for

OpenMP applications; for other types of multi-threaded applications thread numbering is arbitrary. OpenMP

PRIVATE data can be accessed accurately for each thread. PGDBG provides understandable status displays

regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger operation

that is concurrent with application execution.

Multi-thread and OpenMP Debugging
PGDBG automatically attaches to new threads as they are created during program execution. PGDBG reports

when a new thread is created and the thread ID of the new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through the threads command. You can use the procs

command to display information about the parent process.

PGDBG maintains a conceptual current thread. When using the PGDBG CLI, the current thread is chosen by

using the thread command.

pgdbg [all] 2> thread 3
pgdbg [all] 3>

When using the PGDBG GUI, the current thread can be selected using the Current Thread drop-down list or by

clicking in the Thread Grid. A subset of PGDBG commands known as thread-level commands apply only to the

current thread. See “Thread Level Commands,” on page 67, for more information.

Debugging OpenMP Private Data

78

The threads command lists all threads currently employed by an active program. It displays each thread’s

unique thread ID, system ID (OS process ID), execution state (running, stopped, signaled, exited, or killed),

signal information and reason for stopping, and the current location if stopped or signaled. An arrow (=>)

indicates the current thread. The process ID of the parent is printed in the top left corner. The threads

command does not change the current thread.

pgdbg [all] 3> threads
0 ID PID STATE SIGNAL LOCATION
=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
 2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address: 0x80490cf
 1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
 0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Table 10.1. Thread State Is Described Using Color

Thread State Description Color
Stopped The threas is stopped at a breakpoint, or was

directed to stop by PGDBG.

Red

Signaled The thread is stopped due to delivery of a signal. Blue

Running The thread is running. Green

Exited or Killed The thread has been killed or has exited. Black

Debugging OpenMP Private Data
PGDBG supports debugging of OpenMP private data for all supported languages. When an object is declared

private in the context of an OpenMP parallel region, it essentially means that each thread team has its own copy

of the object. This capability is shown in the following Fortran and C/ C++ examples, where the loop index

variable i is private by default.

FORTRAN example:

 program omp_private_data
 integer array(8)
 call omp_set_num_threads(2)
!$OMP PARALLEL DO
 do i=1,8
 array(i) = i
 enddo
!$OMP END PARALLEL DO
 print *, array
 end

C/ C++ example:

#include <omp.h>
int main ()
{
 int i;
 int array[8];
 omp_set_num_threads(2);
#pragma omp parallel

Chapter 10. Parallel Debugging with OpenMP

79

{
#pragma omp for
 for (i = 0; i < 8; ++i) {
 array[i] = i;
 }
}
 for (i = 0; i < 8; ++i) {
 printf("array[%d] = %d\n",i, array[i]);
 }
}

Compile the examples with a PGI compiler. The display of OpenMP private data in the resulting executables as

debugged by PGDBG is as follows:

pgdbg [all] 0> [*] print i
[0] print i:
1
[1] print i:
5

The example specifies [*] for the p/t-set to execute the print command on all threads. Figure 10.1 shows the

values for i in the PGDBG GUI using a Custom Window.

Note

All Threads is selected in the Context drop-down list to display the value on both threads.

Figure 10.1. OpenMP Private Data in PGDBG GUI

80

81

Chapter 11. Parallel Debugging with
MPI

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications and

hybrid multi-thread/multi-process applications that use MPI to communicate between multi-threaded or

OpenMP processes. This section begins with a general overview of how to use PGDBG to debug parallel

MPI applications before detailing how to launch MPI applications under debug using the various supported

platforms and versions of MPI.

For information on compiling a program using MPI, refer to “Using MPI” in the PGI Compiler User’s Guide.

MPI and Multi-Process Support
PGDBG can debug MPI applications running on the local system or distributed across a cluster. MPI

applications must be started under debugger control. Process identification uses the MPI rank within

MPI_COMM_WORLD.

An MPI program under debug cannot be restarted. The program must be reloaded as though it were a new

program. You must exit the debugger and start a new debug session.

MPI debugging is supported on Linux, Windows, and Mac OSX.

Process Control
Here are some general things to consider when debugging an MPI program:

• Use p/t-sets to focus on a set of processes. Be mindful of process dependencies.

• For a running process to receive a message, the sending process must be allowed to run.

• Process synchronization points, such as MPI_Barrier, do not return until all processes have hit the sync

point.

• MPI_Finalize acts as an implicit barrier except when using MPICH-1 where Process 0 returns while

Processes 1 through n-1 exit.

Process Synchronization

82

You can apply a control command, such as cont or step, to a stopped process while other processes are

running. A control command applied to a running process is applied to the stopped threads of that process

and is ignored by its running threads.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process. See

the pgienv command and “Configurable Wait Mode,” on page 70 for details.

Process Synchronization
Use the PGDBG sync command to synchronize a set of processes to a particular point in the program. The

following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI_Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:

pgdbg [all] 0.0> [0:1.*] sync MPI_Finalize

A sync command only successfully syncs the target processes if the sync address is well defined for each

member of the target process set, and all process dependencies are satisfied. If these conditions are not met,

a member could wait forever for a message. The debugger cannot predict if a text address is in the path of an

executing process.

MPI Message Queues
PGDBG can dump MPI message queues. When using the CLI, use the mqdump command, described in

“Memory Access,” on page 113. When using the GUI, the message queues are displayed in the MPI Messages

debug information tab.

The following error message may appear in the MPI Messages tab or when invoking mqdump:

ERROR: MPI Message Queue library not found.
Try setting ‘PGDBG_MQS_LIB_OVERRIDE’environment variable
or set via the PGDBG command: pgienv mqslib <path>.

If this message is displayed, then the PGDBG_MQS_LIB_OVERRIDE environment variable should be set to the

absolute path of libtvmpich.so or another shared object that is compatible with the version of MPI being

used. The default path can also be overridden via the mqslib variant of the pgienv command.

Microsoft MPI does not currently provide support for dumping message queues.

MPI Groups
PGDBG identifies each process by its MPI_COMM_WORLD rank. In general, PGDBG currently ignores MPI

groups.

Use halt instead of Ctrl+C
Entering Ctrl+C from the PGDBG command line can be used to halt all running processes. However, this is not

the preferred method to use while debugging an MPICH-1 program. PGDBG automatically switches to process

wait mode none (pgienv procwait none) as soon as it attaches to its first MPI process.

Chapter 11. Parallel Debugging with MPI

83

Setting pgienv procwait none allows commands to be entered while there are running processes, which

allows the use of the halt command to stop running processes without the use of Ctrl+C.

Note
halt cannot interrupt a wait command. Ctrl+C must be used for this.

In MPI debugging, wait should be used with care.

SSH and RSH
By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also use

ssh for secure environments. The environment variable PGRSH should be set to ssh or rsh, to indicate the

desired communication method.

If you opt to use ssh as the mechanism for launching the remote components of PGDBG, you may want to

do some additional configuration. The default configuration of ssh can result in a password prompt for each

remote cluster node on which the debugger runs. Check with your network administrator to make sure that

you comply with your local security policies when configuring ssh. The following steps provide one way to

configure SSH to eliminate this prompt.

$ ssh-keygen -t dsa
$ eval `ssh-agent -s`
$ ssh-add
<make sure that $HOME is not group-writable>
$ cd $HOME/.ssh
$ cp id_dsa.pub authorized_keys

Then for each cluster node you use in debugging, use:

$ ssh <host>

A few things that are important related to this example are these:

• The ssh-keygen command prompts for a passphrase that is used to authenticate to the ssh-agent during

future sessions. The passphrase can be anything you choose.

• Once you answer the prompts to make the initial connection, subsequent connections should not require

further prompting.

• The ssh-agent -s command is correct for the sh or bash shells. For csh shells, use ssh-agent -c.

After logging out and logging back in, the ssh-agent must be restarted and reauthorized. For example, in a bash

shell, this is accomplished as follows:

$ eval `ssh-agent -s`
$ ssh-add

You must enter the passphrase that was initially given to ssh-add to authenticate to the ssh-agent.

For further information, consult your ssh documentation.

MPI Debugging on Linux
When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports multi-

process MPI debugging. The PGI CDK contains versions of MPICH, MPICH2, and MVAPICH pre-configured to

MPI Debugging on Linux

84

support debugging cluster applications with PGDBG. Versions of MPI not included in the PGI CDK must be

configured to support PGDBG; refer to the PGI Installation Guide or www.pgroup.com/support/faq.htm for

more information.

Invoking PGDBG for MPI Debugging
The command used to start MPI debugging under MPICH-1 using the PGDBG GUI is:

% mpirun -np nprocs -dbg=pgdbg executable [arg1,...argn]

To use MPI debugging in text mode, be certain that the DISPLAY variable is undefined in the shell that is

invoking mpirun. If this variable is set, you can undefine it by using one of the following commands:

For sh/bash users, use this command:

$ unset DISPLAY

For csh/tcsh users, use this command:

% unsetenv DISPLAY

To launch and debug an MPICH-2, MVAPICH, or HPMPI job, use this command:

% pgdbg [-text] -mpi[:<launcher>] <mpiexec_args> [-program_args arg1,...argn]

The default setting for <launcher> in -mpi:<launcher> is mpiexec.

Note

If the path for <launcher> is not part of the PATH environment variable, then you must specify the

full path to the <launcher> command.

% pgdbg [-text] -mpi:mpiexec <mpiexec_args> [-program_args arg1,...argn]

• For HPMPI, <launcher> is mpirun, so use -mpi:mpirun

• For MVAPICH, <launcher> is mpirun_rsh, so use -mpi:mpirun_rsh

When debugging an MPI job by invoking PGDBG with the -mpi option, each process is stopped before the first

assembly instruction in the program. Continuing execution using step or next is not appropriate; instead, use

the cont command.

Another way to invoke the PGDBG GUI for debugging an MPI job applies only to the CDK version of MPICH-2:

% mpiexec -np nprocs -pgi executable [arg1,...argn]

Note

You cannot restart an MPI application from within PGDBG. You must exit the debugger and start a

new debug session.

Newer versions of the Linux kernel support a security feature that allows shared objects to be loaded at

randomized addresses. Older versions of PGDBG assumed that a shared object loaded by an MPI application

would be loaded at the same address for each process of an MPI job; thus incorrect mapping of symbols in

shared objects could occur when this mode is enabled.

Chapter 11. Parallel Debugging with MPI

85

PGDBG supports debugging of MPI jobs running on Linux kernels when this address randomization mode

is enabled. However, when this mode is enabled, the current implementation of PGDBG does not share

symbol table information associated with shared objects that are loaded by each process of an MPI job, which

increases memory usage by PGDBG. Therefore, PGI recommends that this kernel mode be disabled on Linux

clusters where PGDBG is used to debug MPI applications.

You can disable randomization mode by executing the following command as root on each node of the cluster:

sysctl -w kernel.randomize_va_space=0

Note

PGDBG emits a warning whenever it detects that it is being invoked on a multi-process MPI job when

this kernel mode is enabled.

Using PGDBG for MPI Debugging
PGDBG automatically attaches to new MPI processes as they are created by the running MPI application.

PGDBG displays an informational message as it attaches to the freshly created processes.

 ([1] New Process)

The MPI global rank is printed with the message. You can use the procs command to list the host and the PID

of each process by rank. The current process is indicated by an arrow (=>). You can use the proc command

to change the current process by process ID.

pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPI.c, line 30
 #30: aft=time(&aft);
 ID IPID STATE THREADS HOST
 0 24765 Stopped 1 local
 => 1 17890 Stopped 1 red2.wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. See

Table 10.1, “Thread State Is Described Using Color,” on page 78 for a description of how thread state is

represented in the GUI.

The PGDBG command prompt displays the current process and the current thread. In the above example, the

current process was changed to process 1 by the proc 1 command and the current thread of process 1 is 0;

this is written as 1.0:

pgdbg [all] 1.0>

See “Process and Thread Control,” on page 69 for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:

• PGDBG maintains a conceptual current process and current thread.

• Each active process has a thread set of size >=1.

• The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. See “Process Level

Commands,” on page 67 and “Thread Level Commands,” on page 67 for more information.

Debugging Support for MPICH-1

86

The PGI license keys restrict the total number of MPI processes that can be debugged. In addition, there are

internal limits on the number of threads per process that can be debugged.

Debugging Support for MPICH-1
With the CDK version of MPICH-1, PGDBG supports redirecting stdin, stdout, and stderr with the following

MPICH switches:

Table 11.1. MPICH Support

Command Output
-stdout <file> Redirect standard output to <file>

-stdin <file> Redirect standard input from <file>

-stderr <file> Redirect standard error to <file>

PGDBG also provides support for the following MPICH switches:

Command Output
-nolocal PGDBG runs locally, but no MPI processes run locally

-all-local PGDBG runs locally, all MPI processes run locally

For information about how to configure an arbitrary installation of MPICH to use PGDBG, see the PGDBG

online FAQ at www.pgroup.com/support/faq.htm.

When PGDBG is invoked via mpirun the following PGDBG command-line arguments are not accessible. A

workaround is listed for each.

Argument Workaround
-dbx Include 'pgienv dbx on' in .pgdbgrc file.

-s startup Use .pgdbgrc default script file and the script command.

-c "command" Use .pgdbgrc default script file and the script command.

-text Clear your DISPLAY environment variable before invoking mpirun.

-t <target> Add to the beginning of the PATH environment variable a path to the

appropriate PGDBG.

MPI Debugging on Windows
PGDBG supports Microsoft's version of MPI called MSMPI. PGDBG can debug MSMPI programs running

locally or on a distributed system. This section provides general information about building with and

debugging MSMPI applications

Installing MSMPI
The MSMPI headers and libraries are available in the Microsoft HPC Pack SDK. This install package is available

for download directly from Microsoft. You must install the HPC Pack SDK before you can build, run or debug

MSMPI applications.

Chapter 11. Parallel Debugging with MPI

87

Building with MSMPI
To build an application using the MSMPI libraries, use the option -Mmpi=msmpi. This compiler flag inserts

options into the compile and link lines to pick up the MSMPI headers and libraries. For -Mmpi=msmpi

to work properly, the CCP_SDK environment variable must be set. This variable is typically set when the

Microsoft HPC Pack SDK is installed.

Debug MSMPI Applications Locally
MSMPI applications can be run and debugged locally. In other words, an HPC Server cluster is not required to

take advantage of MSMPI.

To invoke the PGDBG debugger to debug an MSMPI application locally, use the pgdbg -mpi option:

pgdbg -mpi[:<path>] <mpiexec_args> [-program_args arg1,...argn]

The location of mpiexec should be part of your PATH environment variable. Otherwise, you should specify the

pathname for mpiexec as <path> in -mpi[:<path>].

In this example, to debug an MSMPI application named prog using four processes running on the host

system, use a command like:

PGI$ pgdbg -mpi -n 4 prog.exe

Debug MSMPI Applications on a Cluster
PGDBG provides support for debugging MSMPI applications on Windows HPC Server 2008 clusters. A PGI CDK

license is required to enable PGDBG's distributed debugging capabilities.

Microsoft's cluster management software uses a job management application to launch and manage

executables on the head and cluster nodes. To begin distributed debugging on a cluster, invoke pgdbg with

both the -pgserv and -mpi options:

pgdbg -pgserv:<path_to_pgserv.exe> -mpi[:<job submit command>]

The -pgserv option causes the PGDBG remote debug agent, called pgserv, to be copied into the current

working directory when debugging is launched. This action ensures that pgserv can be found on all the nodes.

The job submit command references Microsoft's HPC Job Manager.

Note

The current working directory must be designated as a shared directory across all nodes of the

cluster. All nodes must have access to this directory in order for distributed execution and debugging

to succeed.

In this example, to debug an MSMPI application named prog using four processes running on a Windows

cluster, use a command like:

PGI$ pgdbg -pgserv -mpi:job.exe
 submit /numprocessors:4 /workdir:\\head-node\shareddir mpiexec prog.exe

88

89

Chapter 12. Parallel Debugging of
Hybrid Applications

PGDBG supports debugging hybrid multi-thread/multi-process applications that use MPI to communicate

between multi-threaded or OpenMP processes. Multi-threaded and OpenMP applications may be run using

more threads than the available number of CPUs, and MPI applications may allocate more than one process

to a cluster node. PGDBG supports debugging the supported types of applications regardless of how well the

requested number of threads matches the number of CPUs or how well the requested number of processes

matches the number of cluster nodes.

PGDBG Multilevel Debug Mode
As described in “PGDBG Debug Modes,” on page 60, PGDBG can operate in four debug modes. The mode

determines a short form for uniquely naming threads and processes.

The debug mode is set automatically or by the pgienv command.

When PGDBG detects multilevel debugging, it sets the debug mode to multilevel. To manually set the debug

mode to multilevel, use the pgienv command:

pgdbg> pgienv mode multilevel

Multilevel Debugging
The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms

a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG

changes automatically to multilevel debug mode from process-only debug mode or threads-only debug mode

when at least one MPI process creates multiple threads.

Example 12.1. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0

0.* All threads of process 0

* All threads of all processes

Multilevel Debugging

90

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on

context. Further, in multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by

the ID of the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

For more information on p/t sets, refer to “Process/Thread Sets,” on page 62.

91

Chapter 13. Command Reference
This chapter describes the PGDBG command set in detail, grouping the commands by these categories:

Conversions Miscellaneous Process-Thread Sets Scope

Events Printing Variables and

Expressions

Program Locations Symbols and Expressions

Memory Access Process Control Register Access Target

For an alphabetical listing of all the commands, with a brief description of each, refer to “Command

Summary,” on page 34 in “Command Summary”.

Notation Used in Command Sections
The command sections that follow use these conventions for the command names and arguments, when the

command accepts one.

• Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

([]).

• Argument names are italicized.

• Argument names are chosen to indicate what kind of argument is expected.

• Arguments enclosed in brackets([]) are optional.

• Two or more arguments separated by a vertical line (|) indicate that any one of the arguments is acceptable.

• An ellipsis (...) indicates an arbitrarily long list of arguments.

• Other punctuation, such as commas and quotes, must be entered as shown.

Example 13.1. Syntax examples

Example 1:

lis[t] [count | lo:hi | routine | line,count]

Process Control

92

This syntax indicates that the command list may be abbreviated to lis, and that it can be invoked without any

arguments or with one of the following: an integer count, a line range, a routine name, or a line and a count.

Example 2:

att[ach] pid [exe]

This syntax indicates that the command attach may be abbreviated to att, and, when invoked, must have a

process ID argument, pid. Optionally you can specify an executable file, exe.

Process Control
The following commands control the execution of the target program. PGDBG lets you easily group and

control multiple threads and processes. For more details, refer to “Basic Process and Thread Naming,” on

page 59.

attach
att[ach] pid [exe]

Attach to a running process with process ID pid. Use exe to specify the absolute path of the executable file.

For example, attach 1234 attempts to attach to a running process whose process ID is 1234. You may

enter something like attach 1234 /home/demo/a.out to attach to a process ID 1234 called /home/

demo/a.out.

PGDBG attempts to infer the arguments of the attached target application. If PGDBG fails to infer the argument

list, then the program behavior is undefined if the run or rerun command is executed on the attached

process.

The stdio channel of the attached process remains at the terminal from which the program was originally

invoked.

The attach command is not supported for MPI programs.

cont
c[ont]

Continue execution from the current location.

debug
de[bug] [target [arg1... argn]]

Load the specified target program with optional command-line arguments.

detach
det[ach]

Detach from the current running process.

Chapter 13. Command Reference

93

halt
halt [command]

Halt the running process or thread.

load
lo[ad] [program [args]]

Without arguments, load prints the name and arguments of the program being debugged. With arguments,

load loads the specified program for debugging. Provide program arguments as needed.

next
n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines. The

count argument stops execution only after executing count source lines.

nexti
nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines. The

count argument stops execution only after executing count instructions.

proc
proc [id]

Set the current process to the process identified by id. When issued with no argument, proc lists the location

of the current thread of the current process in the current program. For information on how processes are

numbered, refer to “MPI Debugging on Linux,” on page 83.

procs
procs

Print the status of all active processes, listing each process by its logical process ID.

quit
q[uit]

Terminate the debugging session.

rerun
rer[un] [arg0
arg1 ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

Process Control

94

The rerun command is the same as run with one exception: if no args are specified with rerun, then no args

are used when the program is launched.

run
ru[n] [arg0 arg1
... argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

Execute the program from the beginning. If arguments arg0, arg1, and so on are specified, they are set up as

the command-line arguments of the program. Otherwise, the arguments for the previous run command are

used. Standard input and standard output for the target program can be redirected using < or > and an input

or output filename.

setargs
setargs [arg1, arg2, ... argn]

Set program arguments for use by the run command. The rerun command does not use the arguments

specified by setargs.

step
s[tep] [count | count]

Stop after executing one source line. This command steps into called routines. The count argument stops

execution after executing count source lines. The up argument stops execution after stepping out of the

current routine (see stepout).

stepi
stepi [count | up]

Stop after executing one instruction. This command steps into called routines. The count argument stops

execution after executing count instructions. The up argument stops the execution after stepping out of the

current routine (see stepout).

stepout
stepo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the current

return address and continues execution to that point. For this commant to work correctly, it must be possible

to compute the value of the return address. Some routines, particularly terminal (i.e. leaf) routines at

higher optimization levels, may not set up a stack frame. Executing stepout from such a routine causes the

breakpoint to be set in the caller of the most recent routine that set up a stack frame. This command halts

execution immediately upon return to the calling routine.

sync
sy[nc] line | func

Advance to the specified source location, either the specified line or the first line in the specified function

func, ignoring any user-defined events.

Chapter 13. Command Reference

95

synci
synci addr | func

Advance to the specified address addr, or to the first address in the specified function func, ignoring any user-

defined events.

thread
thread [number]

Set the current thread to the thread identified by number; where number is a logical thread id in the current

process’ active thread list. When issued with no argument, thread lists the current program location of the

currently active thread.

threads
threads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical

process id. Each thread is listed by its logical thread id.

wait
wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

Process-Thread Sets
The following commands deal with defining and managing process thread sets. See “Process/Thread Sets,” on

page 62, for a detailed discussion of process-thread sets.

defset
defset name [p/t-set]

Assign a name to a process/thread set. In other words, define a named set of processes/threads. This set can

then be referred to by its name. A list of named sets is stored by PGDBG.

focus
focus [p/t-set]

Set the target process/thread set for PGDBG commands. Subsequent commands are applied to the members of

this set by default.

undefset
undefset [name | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-defined p/t-

set [all] cannot be removed.

Events

96

viewset
viewset [name]

List the active members of the named process/thread set. If no process/thread set is given, list the active

members of all defined process/thread sets.

whichsets
whichsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no process/thread set is

specified, the target process/thread set is used.

Events
The following commands deal with defining and managing events.

break
b[reak]
b[reak] line [if condition)] [do {commands}]
b[reak] routine [if(condition)] [do {commands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise, set

a breakpoint at the indicated line or routine. If a routine is specified, and the routine was compiled for

debugging, then the breakpoint is set at the start of the first statement in the routine (after the routine’s

prologue code). If the routine was not compiled for debugging, then the breakpoint is set at the first

instruction of the routine, prior to any prologue code. This command interprets integer constants as line

numbers. To set a breakpoint at an address, use the addr command to convert the constant to an address, or

use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified condition is true. If do is

specified with a command or several commands as an argument, the command or commands are executed

when the breakpoint occurs.

The following table provides examples of using break to set breakpoints at various locations.

This break command... Sets breakpoints...
break 37 at line 37 in the current file

break "xyz.c"@37 at line 37 in the file xyz.c

break main at the first executable line of routine main

break {addr 0xf0400608} at address 0xf0400608

break {line} at the current line

break {pc} at the current address

The following more sophisticated command stops when routine xyz is entered only if the argument n is

greater than 10.

break xyz if(xyz@n > 10)

Chapter 13. Command Reference

97

The next command prints the value of n and performs a stack trace every time line 100 in the current file is

reached.

break 100 do {print n; stack}

breaki
breaki
breaki routine [if (condition)] [do {commands}]
breaki addr [if (condition)] [do {commands}]

When no arguments are specified, the breaki command prints the current breakpoints. Otherwise, this

command sets a breakpoint at the indicated address addr or routine.

• If a routine is specified, the breakpoint is set at the first address of the routine. This means that when the

program stops at this type of breakpoint the prologue code which sets up the stack frame will not yet have

been executed. As a result, values of stack arguments may not yet be correct.

• Integer constants are interpreted as addresses.

• To specify a line, use the lines command to convert the constant to a line number, or use the break

command.

• The if and do arguments are interpreted in the same way as for the break command.

The following table provides examples of setting breakpoints using breaki.

This breaki command... Sets breakpoints...
breaki 0xf0400608 at address 0xf0400608

breaki {line 37} at line 37 in the current file

breaki "xyz.c"@37 at line 37 in the file xyz.c

breaki main at the first executable address of routine main

breaki {line} at the current line

breaki {pc} at the current address

In the following slightly more complex example, when n is greater than 3, the following command stops and

prints the new value of n at address 0x6480:

breaki 0x6480 if(n>3) do {print "n=", n}

breaks
breaks

Display all the existing breakpoints.

Events

98

catch
catch [sig:sig] [sig [, sig...]]

When no arguments are specified, the catch command prints the list of signals being caught. With the sig:sig

argument, this command catches the specified range of signals. With a list of signals, catch the signals with

the specified number(s). When signals are caught, PGDBG intercepts the signal and does not deliver it to the

target application. The target runs as though the signal was never sent.

clear
clear [all | routine| line | {addr addr}]

Clear one or more breakpoints. Use the all argument to clear all breakpoints. Use the routine argument

to clear all breakpoints from the first statement in the specified routine. Use the line number argument to

clear all breakpoints from the specified line number in the current source file. Use the addr argument, clear

breakpoints from the specified address addr.

When no arguments are specified, the clear command clears all breakpoints at the current location.

delete
del[ete] [event-number | 0 | all | event-number [, event-number...]]

Use the delete command without arguments to list all defined events by their event-number.

Use the delete command with arguments to delete events. Delete all events with all or delete just the event with

the specified event-number. Providing the argument 0, that is, using delete 0, is the same as using delete

all.

disable
disab[le] [event-number | all]

When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command disables the event specified by event-number or all events. Disabling an event

definition suppresses actions associated with the event, but leaves the event defined so that it can be used later.

(see enable.)

do
do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it defines a

list of commands to be executed. Without the optional arguments at or in, the commands are executed at each

line in the program.

Use at with a line number to specify the commands to be executed each time that line is reached. Use in with

a routine to specify the commands to be executed at each line in the routine. The optional if argument has the

same meaning that it has in the watch. If a condition is specified, the do commands are executed only when

the condition is true.

Chapter 13. Command Reference

99

doi
doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in routine [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an expression, doi

defines a list of commands to be executed. If an address addr is specified, then the commands are executed

each time that the specified address is reached. If a routine is specified, then the commands are executed

at each instruction in the routine. If neither an address nor a routine is specified, then the commands are

executed at each instruction in the program. The optional if argument has the same meaning that it has in the

do and watch commands. If a condition is specified, the doi commands are executed only when the condition

is true.

enable
enab[le] [event-number | all]

Without arguments, the enable command prints both enabled and disabled events.

With arguments, this command enables the event event-number or all events.

hwatch
hwatch addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a particular

address or variable. The event is triggered by hardware when the byte at the given address is written. This

command is only supported on systems that provide the necessary hardware and software support.

Note

Only one hardware watchpoint can be defined at a time.

When the optional if argument is specified, the event action is only triggered if the expression is true. When the

optional do argument is specified, then the commands are executed when the event occurs.

hwatchboth
hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given

address or variable is either read or written. As with hwatch, system hardware and software support must

exist for this command to be supported. The optional if and do arguments have the same meaning as for the

hwatch command.

hwatchread
hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given address or

variable is read. As with hwatch, system hardware and software support must exist for this command to be

supported. The optional if and do arguments have the same meaning as for the hwatch command.

Events

100

ignore
ignore [sig:sig] [sig [, sig...]]

Without arguments, the ignore command prints the list of signals being ignored. With the sig:sig argument

this command ignores the specified range of signals. With a list of signals the command ignores signals with

the specified number.

When a particular signal number is ignored, signals with that number sent to the target application are not

intercepted by PGDBG; rather, the signals are delivered to the target.

For information on intercepting signals, refer to catch.

status
stat[us]

Display all the event definitions, including an event number by which each event can be identified.

stop
stop var
stop at line [if (condition)][do {commands}]
stop in routine [if(condition)][do {commands}]
stop if (condition)

Break when the value of the indicated variable var changes. Use the at argument and a line to set a breakpoint

at a line number. Use the in argument and a routine name to set a breakpoint at the first statement of the

specified routine. With the if argument is used, the debugger stops when the condition is true.

stopi
stopi var
stopi at address [if (condition)][do {commands}]
stopi in routine [if (condition)][do {commands}]
stopi if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated address or

routine. Use the at argument and an address to specify an address at which to stop. Use the in argument and

a routine name to specify the first address of the specified routine at which to stop. When the if argument is

used, the debugger stops when the condition is true.

trace
trace var [if (condition)][do {commands}]
trace routine [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in routine [if (condition)][do {commands}]
trace inclass class [if (condition)][do {commands}]

Use var to activate tracing when the value of var changes. Use routine to activate tracing when the subprogram

routine is called. Use at to display the specified line each time it is executed. Use in to display the current

line while in the specified routine. Use inclass to display the current line while in each member function of

the specified class. If a condition is specified, tracing is only enabled if the condition evaluates to true. The do

argument defines a list of commands to execute at each trace point.

Chapter 13. Command Reference

101

Use the command pgienv speed to set the time in seconds between trace points. Use the clear command to

remove tracing for a line or routine.

tracei
tracei var [if (condition)][do {commands}]
tracei at addr [if (condition)][do {commands}]
tracei in routine [if (condition)][do {commands}]
tracei inclass class [if (condition)][do {commands}]

Activate tracing at the instruction level. Use var to activate tracing when the value of var changes. Use at to

display the instruction at addr each time it is executed. Use in to display memory instructions while in the

subprogram routine. Use inclass to display memory instructions while in each member function of the

specified class. If a condition is specified, tracing is only enabled if the condition evaluates to true. The do

argument defines a list of commands to execute at each trace point.

Use the command pgienv speed to set the time in seconds between trace points. Use the clear command to

remove tracing for a line or routine.

track
track expression [at line | in func] [if (condition)][do {commands}]

Define a track event. This command is equivalent to watch except that execution resumes after the new value

of the expression is printed.

tracki
tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that execution resumes

after the new value of the expression is printed.

unbreak
unb[reak] line | routine| all

Remove a breakpoint from the specified line or routine, or remove all breakpoints.

unbreaki
unbreaki addr | routine | all

Remove a breakpoint from the specified address addr or routine, or remove all breakpoints.

watch
wa[tch] expression
wa[tch] expression [if (condition)][do {commands}]
wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the

expression changes, the program stops and the new value of the expression is printed. If a line is specified,

Events

102

the expression is only evaluated at that line. If a routine is specified, the expression is evaluated at each line in

the routine. If no location is specified, the expression is evaluated at each line in the program. If a condition

is specified, the expression is evaluated only when the condition is true. If commands are specified using do,

they are executed whenever the expression is evaluated and its value changes.

The watched expression may contain local variables, although this is not recommended unless a routine or

address is specified to ensure that the variable is only evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in arguments speeds up execution by reducing the amount of single-stepping and expression

evaluation that must be performed to watch the expression. For example:

watch i at 40

may not slow program execution noticeably, while

watch i

does slow execution considerably.

watchi
watchi expression
watchi expression [if (condition)][do {commands}]
watchi expression at addr [if (condition)][do {commands}]
watchi expression in routine [if (condition)][do {commands}]

Define an assembly-level watch event. This command functions similarly to the watch command with two

exceptions: 1) the argument interprets integers as addresses rather than line numbers and 2) the expression

is evaluated at every instruction rather than at every line.

This command is useful when line number information is limited, which may occur when debug information

is not available or assembly must be debugged. Using watchi causes programs to execute more slowly than

watch.

when
when do {commands} [if (condition)]
when at line do {commands} [if (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program, or in the specified

routine. If an optional condition is specified, commands are executed only when the condition evaluates to

true.

wheni
wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {commands} [if (condition)]

Chapter 13. Command Reference

103

Execute commands at each address in the program. If an address addr is specified, the commands are

executed each time the address is reached. If a routine is specified, the commands are executed at each

line in the routine. If an optional condition is specified, commands are executed whenever the condition

evaluates to true.

Program Locations
This section describes PGDBG program location commands.

arrive
arri[ve]

Print location information for the current location.

cd
cd [dir]

Change directories to the $HOME directory or to the specified directory dir.

disasm
dis[asm] [count | lo:hi | routine | addr, count]

Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If an integer count is

given, disassemble count instructions starting at the current address. If an address range (lo:hi) is given,

disassemble the memory in the range. If a routine is given, disassemble the entire routine. If the routine was

compiled for debugging and source code is available, the source code is interleaved with the disassembly. If an

address addr and a count are both given, disassemble count instructions starting at the provided address.

edit
edit [filename | routine]

Use the editor specified by the environment variable $EDITOR to edit a file.

If no argument is supplied, edit the current file starting at the current location. To edit a specific file, provide

the filename argument. To edit the file containing the subprogram routine, specify the routine name.

In the PGDBG GUI, command-line editors like vi, emacs, or nano are launched in the Program I/O Window.

On Windows platforms, arguments to the editor may need to be quoted to account for spaces in pathnames.

file
file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument, print the

current file.

Program Locations

104

lines
lines [routine]

Print the lines table for the specified routine. With no argument, prints the lines table for the current routine.

list
lis[t] [count | line,num | lo:hi | routine[,num]]

Provide a source listing.

By default, list displays ten lines of source centered at the current source line. If a count is given, list the

specified mnumber of lines. If a line and count are both given, start the listing of count lines at line. If a line

range (lo:hi) is given, list the indicated source lines in the current source file. If a routine name is given, list

the source code for the indicated routine. If a number is specified with routine, list the first number lines of

the source code for the indicated routine.

list [dbx mode]

The list command works somewhat differently when PGDBG is in dbx mode.

lis[t] [line | first,last | routine | file]

By default, list displays ten lines of source centered at the current source line. If a line is provided, the source

at that line is displayed. If a range of line numbers is provided (first,last), lines from the first specified line to

the last specified line are displayed. If a routine is provided, the display listing begins in that routine. If a file

name is provided, the display listing begins in that file. File names must be quoted.

pwd
pwd

Print the current working directory.

stackdump
stackd[ump] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for each active

routine. This command is an assembly-level version of the stacktrace command. If a count is specified,

display a maximum of count stack frames.

stacktrace
stack[trace] [count]

Print the call stack. Print the available information for each active routine, included the routine name, source

file, line number, and current address. This command also prints the names and values of any arguments,

when available. If a count is specified, display a maximum of count stack frames. The stacktrace and where

commands are equivalent.

Chapter 13. Command Reference

105

where
w[here] [count]

Print the call stack. Print the available information for each active routine, included the routine name, source

file, line number, and current address. This command also prints the names and values of any arguments,

when available. If a count is specified, display a maximum of count stack frames. The where and stacktrace

commands are equivalent.

/
/
/string/

Search forward for a string of characters in the current source file. With a specified string, search for the next

occurrence of string in the current source file.

?
?
?string?

Search backward for a string of characters in the current source file. Without arguments, search for the

previous occurrence of string in the current source file.

Printing Variables and Expressions
This section describes PGDBG commands used for printing and setting variables. The primary print commands

are print and printf, described at the beginning of this section. The rest of the commands for printing provide

alternate methods for printing.

print
p[rint] exp1 [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of

command input. Values are printed in a format appropriate to their type. For values of structure type, each

field name and value is printed. Character pointers are printed as a hex address followed by the character

string.

Character string constants print out literally using a comma-separated list. For example:

pgdbg> print "The value of i is ", i

Prints this:

"The value of i is", 37

The array sub-range operator (:) prints a range of an array. The following examples print elements 0 through 9

of the array a:

C/ C++ example 1:

pgdbg> print a[0:9]
a[0:4]: 0 1 2 3 4
a[5:9]: 5 6 7 8 9

Printing Variables and Expressions

106

FORTRAN example 1:

pgdbg> print a(0:9)
a(0:4): 0 1 2 3 4
a(5:9): 5 6 7 8 9

Notice that the output is formatted and annotated with index information. PGDBG formats array output into

columns. For each row, the first column prints an index expression which summarizes the elements printed

in that row. Elements associated with each index expression are then printed in order. This is especially useful

when printing slices of large multidimensional arrays.

PGDBG also supports array expression strides. Below are examples for C/ C++ and FORTRAN.

C/ C++ example 2:

pgdbg> print a[0:9:2]
a[0:8] 0 2 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0 2 4 6 8

The print statement may be used to display members of derived types in FORTRAN or structures in C/ C++.

Here are examples.

C/ C++ example 3:

typedef struct tt {
 int a[10];
 }TT;
 TT d = {0,1,2,3,4,5,6,7,8,9};
 TT * p = &d;

pgdbg> print d.a[0:9:2]
 d.a[0:8:2]: 0 2 4 6 8
pgdbg> print p->a[0:9:2]
 p->a[0:7:2]: 0 2 4 6
 p->a[8]: 8

FORTRAN example 3:

 type tt
 integer, dimension(0:9) :: a
 end type
 type (tt) :: d
 data d%a / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 /

 pgdbg> print d%a(0:9:2)
 d%a(0:8:2): 0 2 4 6 8

printf
printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. This command behaves like the C library

function printf. For example:

pgdbg> printf "f[%d]=%G",i,f[i]
f[3]=3.14

Chapter 13. Command Reference

107

The pgienv stringlen command sets the maximum number of characters that print with a print command.

For example, the char declaration below:

char *c="a whole bunch of chars over 1000 chars long....";

By default, the print c command prints only the first 512 (default value of stringlen) bytes. Printing of C strings

is usually terminated by the terminating null character. This limit is a safeguard against unterminated C strings.

ascii
asc[ii] exp [,...exp]

Evaluate and print exp as an ASCII character. Control characters are prefixed with the '^' character; for

example, 3 prints as ^c. Otherwise, values that cannot be printed as characters are printed as integer values

prefixed by `\'. For example, 250 is printed as \250.

bin
bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in base2.

dec
dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display
display [exp [,...exp]]

Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With one or more

arguments, print expression exp at every breakpoint. For more information, refer to the undisplay command.

hex
hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

oct
oct exp [,...exp]

Evaluate and print expressions as octal integers.

string
str[ing] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command prints a maximum of 70

characters.

Symbols and Expressions

108

undisplay
undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several arguments,

remove the expression exp from the list of display expressions.

Symbols and Expressions
This section describes the commands that deal with symbols and expressions.

assign
as[sign] var = exp

Set variable var to the value of the expression exp. The variable can be any valid identifier accessed properly

for the current scope. For example, given a C variable declared ‘int * i’, you can use the following

command to assign the value 9999 to it.

assign *i = 9999

call
call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered during execution

of the routine are ignored. Fortran functions and subroutines can be called, but the argument values are

passed according to C conventions. PGDBG may not always be able to access the return value of a Fortran

function if the return value is an array. In the example below, PGDBG calls the routine foo with four

arguments:

pgdbg> call foo(1,2,3,4)

If a signal is caught during execution of the called routine, PGDBG stops the execution and asks if you want

to cancel the call command. For example, suppose a command is issued to call foo as shown above, and for

some reason a signal is sent to the process while it is executing the call to foo. In this case, PGDBG prints the

following prompt:

PGDBG Message: Thread [0] was signalled while executing a function
reachable from the most recent PGDBG command line call to foo. Would you
like to cancel this command line call? Answering yes will revert the register
state of Thread [0] back to the state it had prior to the last call to foo
from the command line. Answering no will leave Thread [0] stopped in the call
to foo from the command line.
Please enter 'y' or 'n' > y
Command line call to foo cancelled

Answering yes to this question returns the register state of each thread back to the state they had before

invoking the call command. Answering no to this question leaves each thread at the point they were at when

the signal occurred.

Note

Answering no to this question and continuing execution of the called routine may produce

unpredictable results.

Chapter 13. Command Reference

109

declaration
decl[aration] name

Print the declaration for the symbol name based on its type according to the symbol table. The symbol must be

a variable, argument, enumeration constant, routine, structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

the decl command provides the following output:

pgdbg> decl I
int i

pgdbg> decl iar
int iar[10]

pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
 int a;
 char b[4];
 struct abc *c;
};

entry
entr[y] [routine]

Return the address of the first executable statement in the program or specified routine. This is the first

address after the routine's prologue code.

lval
lv[al] expr

Return the lvalue of the expression expr. The lvalue of an expression is the value it would have if it appeared

on the left hand side of an assignment statement. Roughly speaking, an lvalue is a location to which a value can

be assigned. This may be an address, a stack offset, or a register.

rval
rv[al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it appeared

on the right hand side of an assignment statement. The type of the expression may be any scalar, pointer,

structure, or function type.

Scope

110

set
set var=expression

Set variable var to the value of expression. The variable can be any valid identifier accessed properly for the

current scope. For example, given a C variable declared int * i, the following command could be used to

assign the value 9999 to it.

pgdbg> set *i = 9999

sizeof
siz[eof] name

Return the size, in bytes, of the variable type name. If name refers to a routine, sizeof returns the size in bytes

of the subprogram.

type
type expr

Return the type of the expression expr. The expression may contain structure reference operators (. , and -

>), dereference (*), and array index ([]) expressions. For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}val;

the type command provides the following output:

pgdbg> type i
int
pgdbg> type iar
int [10]
pgdbg> type val
struct abc
pgdbg> type val.a
int

pgdbg> type val.abc->b[2]
char

pgdbg> whatis
whatis name

With no arguments, print the declaration for the current routine.

With the name argument name, print the declaration for the symbol name.

Scope
The following commands deal with program scope. See “Scope Rules”, for a discussion of scope meaning and

conventions.

class
class[s [class]

Without arguments, class returns the current class. With a class argument, enter the scope of class class.

Chapter 13. Command Reference

111

classes
classse[s]

Print the C++ class names.

decls
decls [routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the

declarations for the current search scope.

down
down [number]

Enter the scope of the routine down one level or number levels on the call stack.

enter
en[ter] [routine | "sourcefile" | global]

Set the search scope to be the indicated scope, which may be a routine, sourcefile or global. Using enter with

no argument is the same as using enter global.

files
files

Return the list of known source files used to create the executable file.

global
glob[al]

Return a symbol representing global scope. This command is useful in combination with the scope operator @

to specify symbols with global scope.

names
names [routine | "sourcefile" | global]

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search scope.

scope
sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program

execution stops. It may also be set using the enter command. The search scope is always searched first for

symbols.

up
up [number]

Register Access

112

Enter the scope of the routine up one level or number levels from the current routine on the call stack.

whereis
whereis name

Print all declarations for name.

which
which name

Print the full scope qualification of symbol name.

Register Access
System registers can be accessed by name. For details on referring to registers in PGDBG, refer to“SSE Register

Symbols,” on page 49.

fp
fp

Return the current value of the frame pointer.

pc
pc

Return the current program address.

regs
regs
regs -info
regs -grp=grp1[,grp2...]
regs -fmt=fmt1[,fmt2...]
regs -mode=scalar|vector

Print the names and values of registers. By default, regs prints the General Purpose registers. Use the –grp

option to specify one or more register groups, the –fmt option to specify one or more display formats, and

–mode to specify scalar or vector mode. Use the –info option to display the register groups on the current

system and the display formats available for each group. All optional arguments with the exception of –info

can be used with the others.

retaddr
ret[addr]

Return the current return address.

sp
sp

Return the current value of the stack pointer.

Chapter 13. Command Reference

113

Memory Access
The following commands display the contents of arbitrary memory locations. For each of these commands, the

addr argument may be a variable or identifier.

cread
cr[ead]addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread
dr[ead]addr

Fetch and return a 64-bit double from the specified address.

dump
du[mp] address[, count[,format-string]]

This command dumps the contents of a region of memory. The output is formatted according to a descriptor.

Starting at the indicated address, values are fetched from memory and displayed according to the format

descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to that used by printf. Format specifiers are preceded by %.

The recognized format descriptors are for decimal, octal, hex, or unsigned:

 %d, %D, %o, %O, %x, %X, %u, %U

Default size is machine dependent. The size of the item read can be modified by either inserting 'h', or 'l'

before the format character to indicate half word or long word. For example, if your machine’s default size is

32-bit, then %hd represents a 16-bit quantity. Alternatively, a 1, 2, or 4 after the format character can be used

to specify the number of bytes to read.

 %c

Fetch and print a character.

 %c

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.

 %f, %F, %e, %E, %g, %G

Fetch and print a null terminated string.

 %s

Interpret the next object as a pointer to an item specified by the following format characters. The pointed-to

item is fetched and displayed.

 %p<format-chars>

Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents of the pointed-to

address, which is printed using hexadecimal format.

 %px

Fetch an instruction and disassemble it.

Conversions

114

 %i

Display address about to be dumped.

 %w, %W

Display nothing but advance or decrement current address by n bytes.

 %z<n>, %Z<n>, %z<-n>, %Z<-n>

Display nothing but advance current address as needed to align modulo n.

 %a<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.

fread
fr[ead]addr

Fetch and print a 32-bit float from the specified address.

iread
ir[ead] addr

Fetch and print a signed integer from the specified address.

lread
lr[ead] addr

Fetch and print an address from the specified address.

mqdump
mq[dump]

Dump MPI message queue information for the current process. For more information on mqdump, refer to

“MPI Message Queues,” on page 82.

sread
sr[ead]addr

Fetch and print a short signed integer from the specified address.

Conversions
The commands in this section are useful for converting between different kinds of values. These commands

accept a variety of arguments, and return a value of a particular kind.

addr
ad[dr] [n | line n | routine | var | arg]

Create an address conversion under these conditions:

Chapter 13. Command Reference

115

• If an integer is given, return an address with the same value.

• If a line is given, return the address corresponding to the start of that line.

• If a routine is given, return the first address of the routine.

• If a variable or argument is given, return the address where that variable or argument is stored.

For example,

breaki {line {addr 0x22f0}}

function
func[tion] [[addr...] | [line...]]

Return a routine symbol. If no argument is specified, return the current routine. If an address is given, return

the routine containing addr. An integer argument is interpreted as an address. If a line is specified, return the

routine containing that line.

line
lin[e] [n | routine | addr]

Create a source line conversion. If no argument is given, return the current source line. If an integer n is given,

return it as a line number. If a routine is given, return the first line of the routine. If an address is given, return

the line containing that address.

For example, the following command returns the line number of the specified address:

line {addr 0x22f0}

Target
The following commands are applicable to system architectures for which multiple debugging environment

targets are available. The commands in this section do not apply to the x86 or x86-64 environments.

connect
con[nect]
con[nect] -t target [args]
con[nect] -d path [args]
con[nect] -f file
con[nect] -f file name [args]

Without arguments, connect prints the current connection and the list of possible connection targets. Use -t

to connect to a specific target. Use -d to connect to a target specified by path. Use -f to print a list of possible

targets as contained in a file, or to connect to a target selected by name from the list defined in file. Pass

configuration arguments to the target as appropriate.

disconnect
disc[onnect]

Close connection to the current target.

native
nati[ve] [command]

Miscellaneous

116

Without arguments native prints the list of available target commands. Given a command argument, native

sends command directly to the target.

Miscellaneous
The following commands provide shortcuts, mechanisms for querying, customizing and managing the PGDBG

environment, and access to operating system features.

alias
al[ias] [name [string]]

Create or print aliases.

• If no arguments are given print all the currently defined aliases.

• If just a name is given, print the alias for that name.

• If both a name and string are given, make name an alias for string. Subsequently, whenever name is

encountered it is replaced by string.

Although string may be an arbitrary string, name must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x= ",x,"y= ",y,"z= ",z;
cont

Now whenever xyz is typed, PGDBG responds as though the following command was typed:

print "x= ",x,"y= ",y,"z= ",z;
cont

directory
dir[ectory] [pathname]

Add the directory pathname to the search path for source files.

If no argument is specified, the currently defined directories are printed. This command assists in finding

source code that may have been moved or is otherwise not found by the default PGDBG search mechanisms.

For example, the following statement adds the directory morestuff to the list of directories to be searched.

dir morestuff

Now, source files stored in morestuff are accessible to PGDBG.

If the first character in pathname is ~, then $HOME replaces that character.

help
help [command]

If no argument is specified, print a brief summary of all the commands. If a command is specified, print more

detailed information about the use of that command.

Chapter 13. Command Reference

117

history
history [num]

List the most recently executed commands. With the num argument, resize the history list to hold num

commands.

History allows several characters for command substitution:

!! [modifier] Execute the previous command.

! num [modifier] Execute command number num.

!-num [modifier] Execute the command that is num commands from the most current

command

!string [modifier] Execute the most recent command starting with string.

!?string? [modifier] Execute the most recent command containing string.

^ Command substitution. For example, ^old^new^<modifier> is

equivalent to !:s/old/new/.

There are two possible history modifiers. To substitute the value new for the value old use:

:s/old/new/

To print the command without executing it use:

:p

Use the pgienv history command to toggle whether or not the history record number is displayed. The default

value is on.

language
language

Print the name of the language of the current file.

log
log filename

Keep a log of all commands entered by the user and store it in the named file. This command may be used in

conjunction with the script command to record and replay debug sessions.

noprint
nop[rint] exp

Evaluate the expression but do not print the result.

pgienv
pgienv [command]

Miscellaneous

118

Define the debugger environment. With no arguments, display the debugger settings.

Table 13.1. pgienv Commands

Use this command... To do this...
help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands

pgienv dbx off Set the debugger to use PGI style commands

pgienv history on Display the history record number with prompt

pgienv history off Do not display the history number with prompt

pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab Digest executable’s native symbol table (typeless)

pgienv exe demand Digest executable’s symbolic debug information incrementally on

command

pgienv exe force Digest executable’s symbolic debug information when executable is

loaded

pgienv solibs none Ignore symbolic debug information from shared libraries

pgienv solibs symtab Digest native symbol table (typeless) from each shared library

pgienv solibs demand Digest symbolic debug information from shared libraries

incrementally on demand

pgienv solibs force Digest symbolic debug information from each shared library at load

time

pgienv mode serial Single thread of execution (implicit use of p/t-sets)

pgienv mode thread Debug multiple threads (condensed p/t-set syntax)

pgienv mode process Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel Debug multiple processes and multiple threads

pgienv omp [on|off] Enable/Disable the PGDBG OpenMP event handler. This option

is disabled by default. The PGDBG OpenMP event handler, when

enabled, sets breakpoints at the beginning and end of each parallel

region. Breakpoints are also set at each thread synchronization

point. The handler coordinates threads across parallel constructs to

maintain source level debugging. This option, when enabled, may

significantly slow down program performance. Enabling this option

is recommended for localized debugging of a particular parallel

region only.

pgienv prompt <name> Set the command-line prompt to <name>

pgienv promptlen <num> Set maximum size of p/t-set portion of prompt

pgienv speed <secs> Set the time in seconds <secs> between trace points

Chapter 13. Command Reference

119

Use this command... To do this...
pgienv stringlen <num> Set the maximum # of chars printed for ‘`char *'s’

pgienv termwidth <num> Set the character width of the display terminal.

pgienv logfile <name> Close logfile (if any) and open new logfile <name>

pgienv threadstop sync When one thread stops, the rest are halted in place

pgienv threadstop async Threads stop independently (asynchronously)

pgienv procstop sync When one process stops, the rest are halted in place

pgienv procstop async Processes stop independently (asynchronously)

pgienv threadstopconfig auto For each process, debugger sets thread stopping mode to 'sync' in

serial regions, and 'async' in parallel regions

pgienv threadstopconfig user Thread stopping mode is user defined and remains unchanged by

the debugger.

pgienv procstopconfig auto Not currently used.

pgienv procstopconfig user Process stop mode is user defined and remains unchanged by the

debugger.

pgienv threadwait none Prompt available immediately; do not wait for running threads

pgienv threadwait any Prompt available when at least one thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; do not wait for running processes

pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto For each process, the debugger sets the thread wait mode to ‘all’ in

serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user The thread wait mode is user-defined and remains unchanged by the

debugger.

pgienv mqslib default Set MPI message queue debug library by inspecting executable.

pgienv mqslib <path> Determine MPI message queue debug library to <path>.

Miscellaneous

120

Use this command... To do this...
Choose which debug status messages to report. Accepts an integer

valued bit mask of the following values:

• 0x0 - Disable all messages.

• 0x1 - Standard messaging (default). Report status information on

current process/thread only.

• 0x2 - Thread messaging. Report status information on all threads

of (current) processes.

• 0x4 - Process messaging. Report status information on all

processes.

• 0x8 - OpenMP messaging (default). Report OpenMP events.

• 0x10 - Parallel messaging (default). Report parallel events.

• 0x20 - Symbolic debug information. Report any errors

encountered while processing symbolic debug information (e.g.

STABS, DWARF). Pass 0x0 to disable all messages.

pgienv verbose <bitmask>

• Pass 0x0 to disable all messages.

repeat
rep[eat] [first, last]
rep[eat] [first:last:n]
rep[eat] [num]
rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num (i.e., to num), re-

execute the last num commands. With the first and last arguments, re-execute commands number first to last

(optionally n times).

script
scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. Use ~ before the

filename in place of the environment variable $HOME.

setenv
setenv name | name value

Print the value of the environment variable name. With a specified value, set name to value.

shell
shell [arg0, arg1,... argn]

Fork a shell and give it the indicated arguments . The default shell type is sh or defined by $Shell. If no

arguments are specified, an interactive shell is invoked, and executes until a Ctrl+D is entered.

Chapter 13. Command Reference

121

sleep
sle[ep] [time]

Pause for one second or time seconds.

source
sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. Use ~ before the

filename in place of the environment variable $HOME.

unalias
unal[ias] name

Remove the alias definition for name, if one exists.

use
use [dir]

Print the current list of directories or add dir to the list of directories to search. The character ~ or

environment variable $HOME can be used interchangeably.

122

123

Index
Symbols
.pdb file, 47

.pgdbgrc file

initialization, 3

$EDITOR, 103

32-bit Windows, 48

-g option, -gopt option, 47

A
add

directory pathname, 116

addr

command, 114

address

32-bit float, 114

64-bit double, 113

conversion, 114

current, 112

current program, 112

fetch, 114

print, 19, 114

print integer, 114

print short integer, 114

read double, 113

read integer, 113

return, 109

set breakpoint, 100

short signed integer, 114

signed integer, 113, 114

alias

command, 116

create, 116

print, 116

remove, 121

Application

terminate target, 17

arguments

intepretation, 25

print name and value, 105

print names, 104

print values, 104, 105

target program, 3

Arguments

set, 94

arrays

Fortran, 51

large, 51

ranges, 51

subscripts, 51

arrive

command, 103

ascii

command, 107

print, 19, 107

assembly-level

debug with C++, 48

debug with Fortran, 48

debug with PGDBG GUI, 48

assign

command, 108

async command, 70

Attach

command, 92

running process, 16

Audience Description, xvii

B
bin

command, 107

Binary

print, 18, 107

blocks

common, 52

Fortran, 52

lexical, 25

statements, 26

break

command, 27, 96, 96

conditional, 100

on variable change, 100, 100

breaki

command, 49, 97, 97

breakpoints

at address, 49

clear, 98

clear all, 98

display all, 97

display existing, 97

print, 96, 97

print current, 96, 97

remove, 101, 101

remove all, 101, 101

remove from address, 101

set, 19, 96, 97, 100, 100

set at address, 97

variable, 100, 100

breaks

command, 97

breaks command, 97

Buttons

toolbar, 8

C
C++, 48

Instance Methods, 54

symbol names, 48

call

command, 54, 108

routine, 19

stack, 19

calling conventions, 48

Fortran, 48

Call Stacks

display, 11

tab, 11

cancel

call command, 108

catch

command, 98

catch command, 98

cd

command, 103

change

directories, 103

Class

124

command, 110

Classes

command, 111

clear

breakpoints, 98

command, 98, 98

code

source locations, 24

command

argument interpretation, 25

blocks, 26

categories, 91

conditional execution, 102

constants, 24

control, 69

events, 27

Invoke PGDBG, 3

log, 117

modes, 23

notation, 33

PGDBG, 23

PGDBG set, 91

print use, 116

prompt, 73

recently executed, 117

set, 67

Summary Table, 33

symbols, 24

syntax, 23

Command

tab, 10

command line

PGDBG options, 21, 21, 22

Command-Line Options

syntax, 21

Commands

execute, 19

common blocks, 52

Configure

stop mode, 70

wait mode, 71

Conformance to Standards, xvii

constants, 24

cont command, 49, 92

Continue

cont command, 92

execution, 20, 20, 20, 20

control-B, 17

control-C, 30

MPI use, 30

thread initialization issues, 30

control-D, 19

control-E, 17

control-F, 17

control-G, 20

control-H, 19

control-L, 18

control-N, 20

control-O, 20

control-P, 18

control-R, 19

control-S, 20

control-U, 19

conventions

calling, 48

calling conventions, 48

in text, xix

conversions, 114

convert

address, 114

address to line, 25

line to address, 25

Copy, 17

Copyright

display, 20

core files

generation, 55

location, 56

name, 56

set size limit, 56

cread

command, 113

create

aliases, 116

D
Data

print type, 19

Data Menu, 18

Data menu

Addr, 19

ascii, 19

Bin, 18

Custom, 19, 19

decimal, 19

Hex, 19

Oct, 19

Print, 18

Print *, 18

String, 18

Type of, 19

dbx

command mode, 23

Debig

threads, 14

debug

assemble-level with C++, 48

assemble-level with Fortran, 48

assemble-level with PGDBG GUI,

48

assembly-level, 47

assembly-level commands, 49

assembly-level menu options, 48

C++, 54

command, 92

command-line interface, 48

Fortran source, 51

-g option, 47

modes, 60

MPI, 81

multilevel, 89

name translation, 48

on Microsoft Windows systems,

47

on windows, 2

parallel, 59, 67

PGDBG features, 1, 1

using memory addresses, 47

using registers, 47

with core files, 55

with -Munix, 48

Debug

commands, 10

events, 10

groups, 11, 13, 13, 15

memory, 12

menu, 19

processes, 14

Index

125

program status, 16

Debug Information Tabs

Call Stack tab, 11

Command tab, 10

Events tab, 10

Groups tab, 11, 13, 13, 15

Locals tab, 12

Memory tab, 12

Process(Thread) Grid, 14

Status tab, 16

Debug Menu, 19

Debug menu, 20, 20

Call, 19

Cont, 20

Display Current Location, 19

Down, 19

Halt, 19

Run, 19

Set Run Arguments, 19

Step, 20

Up, 19

debug mode

multilevel, 89

process-only, 61

serial, 60

threads-only, 61

dec

command, 107

decimal

print, 19, 107

declaration command, 109

declarations

print, 111

symbol, 109

decls

command, 111

define

command list to execute, 98, 99

debugger environment, 118

do event, 98

doi event, 99

event, 100

instruction-level track event, 101

instruction-level watch event, 102

read/write watchpoint, 99

read watchpoint, 99

track event, 101

watchpoint, 99

defset

command, 64, 95

delete

command, 98

event number, 98

Detach

command, 92

end debug session, 16

directory

add pathname, 116

add to search list, 121

change, 103

command, 116

working, 104

disable

command, 98

event number, 98

tool tips, 18

disasm command, 103

disassemble

Memory, 103

display

breakpoints, 97, 97

command, 107

debugger settings, 118

event definition, 100

event definitions, 100

expressions, 107

OpenMP private data, 79

program location, 19

registers, 49

routine scope, 19, 19

unique thread ID, 78

do

command, 27, 98

Documentation

accessing, xvii

location, xvii

doi

command, 99

Down

command, 111

menu item, 19

dread

command, 113

dump

command, 49, 113

memory contents, 113

MPI message queue, 114

Dynamic p/t-set, 63

E
Edit

file, 103

menu, 17, 17, 17, 17, 17

specify editor, 103

edit

command, 103

file, 103

enable

command, 99

tool tips, 18

enter

command, 111

entry

command, 109

Environment

debugger, 118

define, 118

Environment varaibles

threadstoconfig, 71

Environment variables

$EDITOR, 103

HOME, 3

name, 120

PATH, 3

PGI_JAVA, 4

set, 120

evaluate

without printing, 117

Events, 26, 96

at address, 27

at line, 27

commands, 27

conditional, 27

definitions, 100

delete, 98

disable, 98, 99

enable, 99

hardware triggered, 99, 99, 99

126

in routine, 27

multiple at same location, 28

parallel, 74

print, 98, 99

program speed, 28

status, 100

tab, 10

track, 101

tracki, 101

watch, 101

watchi, 102

Execute

command, 19, 102, 103

conditional, 102, 103

continue, 20

rerun command, 94

run command, 94

single line, 20, 20

Expressions, 29

evaluate, 117

lvalue, 109

print, 105

print formatted, 106

print with pgienv, 106

rvalue, 109

type, 110

F
file command, 103

File Menu, 16

Files

.exe, 47

.pdb, 47

.pgdbgrc, 3

Attach to Target menu, 16

change, 103

change source file, 103

command, 111

DetachTarget menu, 16

edit, 103

execute contents, 120, 121

Exit menu item, 17

initialization hierarchy, 3

menu, 16

open for debug, 16

Open Target menu, 16

source file list, 111

source list, 111

focus command, 64

Fonts

change, 18

default in debugger, 18

select, 18

fork

shell, 120

Fortran

debugging, 51

symbol names, 48

Fortran 90 modules, 53

fp

command, 112

frame pointer, 112

value, 112

Frames

call stack, 8

selecting, 8

fread

command, 114

function

command, 115

G
Global

commands, PGDBG, 111

Global commands, 69

grid

color meaning, 14

refresh, 18

Groups

debug, 11

Groupss

tab, 13, 13, 15

GUI

PGDBG, 5

H
halt

command, 83, 93

control-C, 30

running processes, 19

running threads, 19

Hardware

read/write watchpoint, 99

read watchpoint, 99, 99

watchpoint, 99

Help

About PGDBG menu item, 20

menu, 20

on PGDBG commands, 20

PGDBG menu item, 20

help

command, 116

Help Menu, 20

Hex

print, 19

hex

command, 107

hexadecimal

print, 107

Hide

tabs for register groups, 17

history

command, 117

modifiers, 117

repeat command, 120

resize list, 117

HOME

environment variable, 3

Host

defined, 1

HPF, xvii

HPMPI

debug, 84

hwatchboth command, 99

hwatch command, 27, 99

hwatchread command, 99, 99

hybrid applications

parallel debugging, 89

I
ID

process, 93

identifiers

declarations, 111

if else

parallel statements, 75

if statement, 26

ignore

Index

127

command, 100

signals, 100

ignore command, 100

Initialization

PGDBG, 2

Initialize

PGDBG, 3

PGDBG file, 3

instance

methods, 54

instruction

tracing, 101

integer

print as binary, 107

print as decimal, 107

print as hexadecimal, 107

print as octal, 107

internal

procedures, 52, 52

interrupt

control-C, 30

Invocation

PGDBG, 2

Invoke

PGDBG, 3

PGDBG for MPI debug, 84

iread

command, 114

J
Java

specify location, 4

version selection, 3

JVM

Java and PGDBG, 3, 4

L
language

command, 117

Lexical blocks, 25

line command, 115

lines

command, 104

Lines

table, print, 104

list

command, 104

source lines, 104

Locals

tab, 12

Locate

routine, 17

string, 105, 105

Locate Routine, 17

location

menu item, 19

Location

change, 103

current, 103

program, 19

log

all commands, 117

command, 117, 117

lread

command, 114

lval

command, 109

lvalue

defined, 109

M
Main routine

name, 52

Manual organization, xviii

Memory

access commands, 113

disassemble, 103

display addresses, 12

dump, 113

tab, 12

menu, 7

Menu items

About PGDBG, 20

Addr, 19

ASCII, 19

Attach to Target, 16

bin, 18

binary, 18

Call, 19

Cont, 20

Copy, 17

Custom, 19

custom, 19

Dec, 19

decimal, 19

Detach Target, 16

Display Current Location, 19

Down, 19

Exit, 17

Font, 18

Halt, 19

Hex, 19

hexadecimal, 19

Locate Routine, 17

Next, 20

Oct, 19

octal, 19

Open Target, 16

Paste, 17

PGDBG Help, 20

print, 18

print *, 18

Refresh, 18

Registers, 17

Restore Default Settings, 17

Revert to Saved Settings, 17

Run, 19

Save Settings on Exit, 17

Search Again, 17

Search Backward, 17

Search Forward, 17

Set Breakpoint, 19

Set Run Arguments, 19

Show Tool Tips, 18

Step, 20

Step Out, 20

string, 18

type, 19

Up, 19

Menus

assembly-level options, 48

context, 7

file, 16

Help, 20

Messages

MPI, 82

MPI queue, 114

queues, 82

128

status, 8, 73

Microsoft Windows

debug, 47

Miscellaneous commands, 116

Modes

stop, 70

wait, 70

modules

debug access, 53

Fortran 90, 53

procedures, 53

MPI

debug considerations, 81

Debugging, 81

debugging options, 22

debug multi-process, 81

global rank, 85

groups, 82

listener processes, 82

local process, 85

message queue dump, 114

message queues, 82

MPICH-1, 86

multi-process debug, 83

parallel debug, 81

process, local, 85

MPI_COMM_WORLD, 82

MPICH

support, 86

MPICH-2

debug, 84

mqdump

command, 114

MSMPI

debug, 84

multilevel

debugging, 89

error messages, 90

mode status, 90

multilevel debugging, 61

MVAPICH

debug, 84

N
Names

command, 111

declarations, 112

identifiers, 111

print declarations, 112

registers, 112

remove alias, 121

translation, 48

Next

command, 20

next

command, 93

nexti

command, 49, 93

noprint

command, 117

O
oct

command, 107

Octal

print, 19, 107

Open

submenu containing Registers tab,

17

OpenMP, xvii

parallel debug, 77

private data debug, 78

Operators

@, 29, 52, 111

in expressions, 51

range, 29

scope, 52

scope qualifier @, 24

Optimize

code, 2

-g use, 2

Options

command line, 21, 21, 21, 22

-g, 2, 47

-gopt, 47

menu, 17

-Munix, 48

-O0, 2

P
p/t-sets, 62

commands, 64

create, 66, 66

current, 62, 63

define dynamic, 63

define static, 63

dynamic vs static, 63

Editor, 66

ignore, 67

modify, 66

multilevel debug mode, 63

multiple threads and processes,

74

notation, 62

override current, 67

prefix, 62, 64

process-only debug mode, 63

remove, 67

select, 66

target, 62

thread-only debug mode, 62

undefine, 65

Parallel

debug commands, 67

debugging, 59

debugging, overview, 59

debug hybrid apps, 89

debug with MPI, 81

events, 74

regions, stepi command, 94

statements, 75

statements, return, 76

Paste, 17

PATH

environment variable, 3

pathname

add to search path, 116

pause, 121

pc

command, 112

PGDBG

Assembly-level debugging, 47

C++ debugging, 54

Command-Line Arguments, 21, 21

Command-Line MPI Debugging,

22

Command prompt, 73

Commands, 23, 91

Index

129

Commands Summary, 33

Conversions, 114

Debugger, 1, 1

Debug modes, 60, 89

Default GUI appearance, 5

Events, 26, 96

Expressions, 29

Fortran arrays, 51

Fortran Common Blocks, 52

Fortran debugging, 51

Graphical user interface, 2, 5

Initialization, 2

initialize, 3

Internal Procedures, 52

Invocation, 2

Main Window, 5, 5

Memory access, 113

Miscellaneous commands, 116

Name of main routine, 52

Operators, 30, 51

Printing and setting variables, 105

Process commands, 67

Process control commands, 92

Program locations, 103

Register access, 112

Register symbols, 24

Scope, 110

Scope rules, 24

Source code locations, 24

start session, 3

Statements, 26

Status messages, 73

Symbols and expressions, 108

Thread commands, 67

Wait modes, 71

PGDBG Commands

addr, 114

alias, 116

arrive, 103

ascii, 107

assign, 108

attach, 34, 92

bin, 107

break, 96

break command, 96

breaki, 49, 97

breaki command, 97

breaks, 97

breaks command, 97

call, 108

catch, 98

catch command, 98

cd, 103

class, 110

classes, 111

clear, 98

clear command, 98

cont, 49, 92

cread, 113

debug, 92

dec, 107

declaration, 109

decls, 111

defset, 64

defset command, 95

delete, 98

detach, 92

directory, 116

disable, 98

disasm, 103

display, 107

do, 98

doi, 99

down, 111

dread, 113

dump, 49, 113

edit, 103

enable, 99

enter, 111

entry, 109

file, 103

files, 111

focus, 64

focus command, 95

fp, 112

fread, 114

function, 115

global, 111

halt, 93

help, 116

hex, 107

history, 117

hwatch, 99

hwatchboth, 99

hwatchread, 99, 99

ignore, 100

iread, 114

language, 117

line, 115

lines, 104

list, 104

log, 117, 117

lread, 114

lval, 109

mqdump, 114

names, 111

next, 93

nexti, 49, 93

noprint, 117

oct, 107

pc, 112

pgienv, 118

print, 49, 105

printf, 106

proc, 93

procs, 93

pwd, 104

quit, 93

regs, 49, 112

repeat, 120, 120

rerun, 94

retaddr, 112

run, 49, 94

rval, 109

scope, 111

script, 120, 120

search backward, 105

search forward, 105

set, 110

setargs, 94

setenv, 120, 120

shell, 120, 120

sizeof, 110

sleep, 121, 121

source, 121, 121

sp, 112

sread, 114

stackdump, 49, 104

130

stacktrace, 49, 104

status, 100

step, 94

stepi, 49, 94

stepout, 94

stop, 100

stopi, 100

string, 107

sync command, 94, 95

synci command, 94, 95

thread command, 95

threads command, 95

trace, 100

tracei, 101

track, 101

tracki, 101

type, 110

unalias, 121, 121

unbreak, 101

unbreaki, 101

undefset, 65

undefset command, 95

undisplay, 108

up, 112

use, 121, 121

viewset

viewset command, 64

viewset command, 96

wait command, 95

watch, 101

watchi, 102

when, 102

wheni, 103

where, 105

whereis, 112

which, 112

whichsets, 64

whichsets command, 96

PGDBG control commands, 69

PGDBG GUI

assembly-level debugging, 48

PGDBG Signals, 57

pgi

command mode, 23

PGI_JAVA

environment variable, 4

pgienv, 100, 101, 118

command, 118

pgienv command arguments, 118

Print

active threads, 95

address, 19, 114

aliases, 116

all registers, 112

arg values and names, 104

ascii, 19, 107

binary, 18, 107

breakpoints, 96, 96, 97, 97

command, 49, 105

command info, 116

command summary, 116

current, 103

current file, 103

current location, 103

current working directory, 104

data type, 19

data value, 18, 18

dec, 19

decimal, 107

defined aliases, 116

defined directories, 116

directory list, 121

envirnment variable name, 120

events, 98, 99

expressions, 105, 107, 107

formated stack dump, 104

formatted expressions, 106

formatted register names, 112

hex, 19

hexadecimal, 107

identifier declarations, 111

identifier names, 111

ignored signals, 100, 100

integer address, 114

language name, 117

lines table, 104

list of signals ignored, 100

location, 103

name declarations, 112

noprint, 117

octal, 19, 107

procs command, 93

register info, 112

register value, 49

scope qualification, 112

scope qualified symbol name, 112

short integer address, 114

signals, 98, 98

stack dump, 104

stacktrace, 104, 104, 105

string, 18

strings, 107

symbol declaration, 109

values, 105

values as change, 101

watched event values, 101

printf command, 106

proc

command, 93

procedures

Fortran 90 modules, 53

internal, 52, 52

process

assign name, 95

IDs, 61

proc command, 93

process/thread set, 62

process and thread control, 69

process level commands, 67

process-only debugging, 61

stop mode, 70

wait mode, 71

Process/Thread

element color, 14

Processes

MPI rank, 60

parallel debugging, 59

print, 93

Process-parallel debugging, 85

Process-thread sets, 95

Process grid tab, 14

process set

list members, 96

membership, 96

remove, 95

set target, 95

procwait, 71

program location

Index

131

arrive, 19

sync command, 94, 95

synci command, 94, 95

thread command, 95

Programs

status, 16

prologue code, 109

prompt

return, 95

pwd

command, 104

Q
quit

command, 93

R
read

watchpoint, 99, 99

record session, 117, 117

Refresh

Process/Thread Grid, 18

windows, 18

Registers

access, 112

formatted names, 112

print info, 112

symbols, 49

view mmenu, 17

register symbols, 24

regs

command, 49, 112

Related Publications, xx

remove

alias definition, 121

all expressions, 108

breakpoint, 101, 101

expression from display list, 108

Repeat

command, 120

search, 17

replay debug session, 117, 117

Rerun

target application, 19

rerun command, 94

Restore

default settings, 17

retaddr

command, 112

return

address, 109

lvalue, 109

routine, 115

rvalue, 109

size of var type name, 110

statement, 76

type of expression, 110

Revert

saved settings, 17

Routines

breakpoint, 19

call, 108

clear breakpoints, 98

disassemble, 103

display in source panel, 17

edit, 103

enter scope, 112

first line, 115

instruction tracing, 101

list source code, 104

locate, 17

main name, 52

print lines table, 104

print name, 104, 105, 105

request, 19

return, 115

scope, 19, 19, 111

set breakpoint, 100

size of, 110

source line tracing, 100

step, 94

stepi, 94

step into, 20

stepout command, 94

step out of, 20

step over, 20

symbol, 115

rsh communication, 83

Run

arguments, 19

target application, 19

run command, 49, 94

Runtime

arguments, 19

rval

command, 109

rvalue

defined, 109

S
Sales

contact information, 20

Save

GUI settings, 17

scope, 110

change, 103

class, 110

classes, 111

command, 111

current, 24

enter, 112

global, 111, 111

identifiers defined, 111

operator, 52

print identifier names, 111

print symbol name qualification,

112

qualifier operator, 24

routine, 19, 19, 111

rules, 24

search, 24, 111

set, 111

start, 25

up one level, 112

script command, 120

Search

backward, 105

command, 105

for strings, 105, 105

forward, 105

keyword, 17, 17

last keyword, 17

path, 116

scope, 24, 111

Search Again, 17

Search Backward, 17

command, 105

Search Forward, 17

132

Search Forward command, 105

Select

frame, 8

Sessions

end debug, 16, 17

PGDBG, 3

terminate, 93

Set

breakpoints, 19, 19

command, 110

search scope, 111

variable value, 108, 110

setargs

command, 94

setenv command, 120

Settings

display for debugger, 118

restore, 17, 17

Restore Default Settings menu

item, 17

revert, 17

Revert to Saved Settings menu

item, 17

saved, 17

save GUI state, 17

Save Settings on Exit menu item,

17

shell

command, 120

invoke, 120

Show

tabs for register groups, 17

tool tips, 18

signals, 56, 57

ignore, 100

ignored, 100, 100

interrupt, 98

Linux Libraries, 57

list, 98

PGDBG, 57

print, 98

Print, 100

SIGPROF, 57

size

variable, 110

sizeof

command, 110

sleep command, 121

Source

current, 115

line conversion, 115

list lines, 104

source code

locations, 24

source command, 121

source file

change, 103

source line

conversion, 115

source line tracing, 100

Source Window, 6, 8, 9

Call frame, 8

Context Menu, 7

sp

command, 112

sread

command, 114

SSE Register Symbols, 49

ssh communication, 83

stack

display frames, 104

frame, 104

frames, display, 104

frames, display hex dump, 104

pointer, 112

pointer value, 112

print dump, 104

print stacktrace, 105

print trace, 104, 105

stackdump

command, 49, 104

stack frames

display, 105

stacktrace

command, 49, 104

Start

debug session, 16

PGDBG debugger, 1, 1

statements

block, 26

compound, 75

constructs, 26

execution order, 75

if, 26

parallel, 75

parallel if else, 75

parallel while, 76

PGDBG, 26

return, 76

simple, 26

while, 26

static p/t-set, 63

Status

message area, 8

program, 16

status

command, 100

events, 100

messages, 73

status message area, 8

Statuss

tab, 16

Step

into routines, 20

out of routine, 20

over routines, 20

step command, 94

stepi

command, 49, 94

Step into

called routines, 20

stepout

command, 94

Step Out, 20

Step over

called routines, 20

Stop

after return to caller, 94

at value change, 101, 102

configure mode, 70

execution, 94

modes, 70

stop

command, 100

stopi

command, 100

string

command, 107

Index

133

Strings

locate, 105, 105

print, 18, 107

subroutines

nested, 52

Support

information, 20

symbol

declarations, 109

name qualification, 112

symbol names

C++, 48

Fortran, 48

Symbols, 24

global scope, 111

MAIN_, 48

print declaration, 109

register, 24

routine, 115

scope-qualified name, 112

search scope, 111

SSE register, 49

Symbols and Expressions, 108

sync

command, 94

sync command, 70, 82

synci command, 94, 95

T
Tables

routine lines, 104

Tabs

Call Stack, 11

Command, 10

Events, 10

Groups, 11, 13, 13, 15

Locals, 12

Memory, 12

Process Grid, 14

Status, 16

Thread Grid, 14

Target

Application

run or rerun, 19

arguments to, 3

runtime arguments, 19

usage, 3

Terminology

PGDBG, 1

Terms, 1

text mode debug, 84

Thread Grid tab, 14

Thread level commands, 68

Threads

assign name, 95

command, 95

commands, 67

grouping, 60

IDs in multilevel debug mode, 89

location, 95

logical id, 95

naming, 60

naming convention, 59

naming scheme, 89

OpenMP, 59

parallel debugging, 59

process/thread set, 62

stop mode, 70

threads-only debugging, 61

wait mode, 71

threads

command, 95

Threads, configure, 71

threads command, 78

thread set

list members, 96

membership, 96

remove, 95

set target, 95

threadstoconfig environment

variable, 71

threadwait, 71

Toolbar

buttons, 8

trace

command, 27, 100

conditional, 100

source, 100

subprogram routines, 100

tracei

command, 101

conditional, 101

source, 101

subprogram routines, 101

track

command, 27, 101

event, 101

tracki

command, 101

event, 101

type

command, 110

U
unalias command, 121

unbreak command, 101

unbreaki

command, 101

undefset command, 65, 95

undisplay

command, 108

up

command, 112

menu item, 19

use command, 121

Utilities

help, 20

V
Variables

breakpoint, 100, 100

display local, 12

instruction tracing, 101

set value, 108, 110

trace changes, 100, 101

Versions

display, 20

View

Font menu item, 18

Refresh, 18

Registers menu item, 17

Show Tool Tips menu item, 18

View Menu, 17

viewset command, 96

W
wait command, 72, 95

wait mode, 70, 71

134

process, 71

thread, 71

watch

command, 101

event, 101

watch command, 27

watchi

command, 102

event, 102

Watchpoints

define, 99, 99

hardware, 99

hardware read, 99, 99

when command, 102

wheni command, 103

where

command, 105

whereis

command, 112

which command, 112

whichsets command, 64, 96

while

parallel statements, 76

while statement, 26

Window

source, 6, 9

Windows

build for debug, 2

PGDBG main, 5, 5

refresh, 18

working directory

print, 104

write

watchpoiont, 99

	PGDBG® Debugger Guide
	Contents
	Preface
	Intended Audience
	Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications

	Chapter 1. Getting Started
	Definition of Terms
	Building Applications for Debug
	Debugging Optimized Code
	Building for Debug on Windows

	User Interfaces
	Invoking PGDBG
	PGDBG Initialization
	Debugging
	Selecting a Version of Java

	Chapter 2. The Graphical User Interface
	Main Components
	Source Window
	Source and Disassembly Displays
	Source Window Context Menu
	Call Stack Navigation
	Status Message Area

	Main Toolbar
	Buttons
	Drop-Down Lists

	Debug Information Tabs
	Command Tab
	Events tab
	Groups Tab
	Call Stack Tab
	Locals Tab
	Memory Tab
	MPI Messages Tab
	Procs & Threads Tab
	Registers Tab
	Status Tab

	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Data Menu
	Debug Menu
	Help Menu

	Chapter 3. Command Line Options
	Command-Line Options Syntax
	Command-Line Options
	Command-Line Options for MPI Debugging

	Chapter 4. Command Language
	Command Overview
	Command Syntax
	Command Modes

	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Event Commands
	Event Command Action

	Expressions
	Ctrl-C

	Chapter 5. Command Summary
	Notation Used in Command Sections
	Command Summary

	Chapter 6. Assembly-Level Debugging
	Assembly-Level Debugging Overview
	Assembly-Level Debugging on Microsoft Windows Systems
	Assembly-Level Debugging with Fortran
	Assembly-Level Debugging with C++
	Assembly-Level Debugging Using the PGDBG GUI
	Assembly-Level Debugging Using the PGDBG CLI

	SSE Register Symbols

	Chapter 7. Source-Level Debugging
	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Common Blocks
	Internal Procedures
	Modules
	Module Procedures

	Debugging C++
	Calling C++ Instance Methods

	Chapter 8. Platform-Specific Features
	Pathname Conventions
	Debugging with Core Files
	Signals
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Chapter 9. Parallel Debugging Overview
	Overview of Parallel Debugging Capability
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging

	Process/Thread Sets
	Named p/t-sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands
	Using Process/Thread Sets in the GUI
	p/t set Usage

	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	Chapter 10. Parallel Debugging with OpenMP
	OpenMP and Multi-thread Support
	Multi-thread and OpenMP Debugging
	Debugging OpenMP Private Data

	Chapter 11. Parallel Debugging with MPI
	MPI and Multi-Process Support
	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	Use halt instead of Ctrl+C
	SSH and RSH
	MPI Debugging on Linux
	Invoking PGDBG for MPI Debugging
	Using PGDBG for MPI Debugging

	Debugging Support for MPICH-1
	MPI Debugging on Windows
	Installing MSMPI
	Building with MSMPI
	Debug MSMPI Applications Locally
	Debug MSMPI Applications on a Cluster

	Chapter 12. Parallel Debugging of Hybrid Applications
	PGDBG Multilevel Debug Mode
	Multilevel Debugging

	Chapter 13. Command Reference
	Notation Used in Command Sections
	Process Control
	attach
	cont
	debug
	detach
	halt
	load
	next
	nexti
	proc
	procs
	quit
	rerun
	run
	setargs
	step
	stepi
	stepout
	sync
	synci
	thread
	threads
	wait

	Process-Thread Sets
	defset
	focus
	undefset
	viewset
	whichsets

	Events
	break
	breaki
	breaks
	catch
	clear
	delete
	disable
	do
	doi
	enable
	hwatch
	hwatchboth
	hwatchread
	ignore
	status
	stop
	stopi
	trace
	tracei
	track
	tracki
	unbreak
	unbreaki
	watch
	watchi
	when
	wheni

	Program Locations
	arrive
	cd
	disasm
	edit
	file
	lines
	list
	pwd
	stackdump
	stacktrace
	where
	/
	?

	Printing Variables and Expressions
	print
	printf
	ascii
	bin
	dec
	display
	hex
	oct
	string
	undisplay

	Symbols and Expressions
	assign
	call
	declaration
	entry
	lval
	rval
	set
	sizeof
	type

	Scope
	class
	classes
	decls
	down
	enter
	files
	global
	names
	scope
	up
	whereis
	which

	Register Access
	fp
	pc
	regs
	retaddr
	sp

	Memory Access
	cread
	dread
	dump
	fread
	iread
	lread
	mqdump
	sread

	Conversions
	addr
	function
	line

	Target
	connect
	disconnect
	native

	Miscellaneous
	alias
	directory
	help
	history
	language
	log
	noprint
	pgienv
	repeat
	script
	setenv
	shell
	sleep
	source
	unalias
	use

	Index

