

The Portland Group

 PGPROF® Profiler Guide
 Parallel Profiling for Scientists and Engineers

 Release 2011

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no

warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.

The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran,

PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the

express written permission of STMicroelectronics and/or The Portland Group.

PGI® Profiler Guide
Copyright © 2010-2011 STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America

ID: 11941058

First Printing: Release 11.0, December 2010

Second Printing: Release 11.1, January 2011

Third Printing: Release 11.2, February 2011

Fourth Printing: Release 11.4, April 2011

ID: 11941058

Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com

iii

Contents
Preface .. xiii

Intended Audience .. xiii

Supplementary Documentation ... xiii

Compatibility and Conformance to Standards .. xiii

Organization ... xiv

Conventions .. xv

Terminology .. xv

Related Publications .. xvi

System Requirements ... xvi

1. Getting Started .. 1

Basic Profiling .. 1

Methods of Collecting Performance Data .. 2

Instrumentation-based Profiling ... 2

Sample-based Profiling .. 3

Choose Profile Method .. 4

Collect Performance Data .. 4

Profiling Output File .. 4

Using System Environment Variables .. 4

Profiling with Hardware Event Counters ... 4

Profiler Invocation and Initialization .. 5

Application Tuning .. 5

Troubleshooting .. 5

Selecting a Version of Java ... 6

Slow Network ... 6

2. Using PGPROF ... 7

PGPROF Tabs and Icons Overview ... 8

Profile Navigation .. 9

HotSpot Navigation .. 13

Sorting Profile Data ... 13

Compiler Feedback ... 14

Special Feedback Messages .. 15

iv

Profiling Parallel Programs ... 15

Profiling Multi-threaded Programs ... 15

Profiling MPI Programs ... 17

Scalability Comparison ... 19

Profiling Resource Utilization with Hardware Event Counters ... 21

Profiling with Hardware Event Counters (Linux Only) ... 21

Analyzing Event Counter Profiles .. 21

Profiling GPU Programs ... 22

Profiling PGI Accelerator Model Programs .. 22

Profiling CUDA Fortran Programs .. 26

3. Compiler Options for Profiling ... 29

-Mprof Syntax ... 29

Profiling Compilation Options ... 29

Configuration Files for OpenMPI Profiling ... 30

Compiler Wrapper Data Files .. 30

Configure OpenMPI for PGI Profiling ... 31

Modified Compiler Wrapper Data File Sample ... 32

4. Command Line Options .. 35

Command Line Option Descriptions ... 35

Profiler Invocation and Startup ... 36

5. Environment Variables .. 39

System Environment Variables ... 39

6. Data and Precision .. 41

Measuring Time .. 41

Profile Data .. 41

Caveats (Precision of Profiling Results) .. 42

Accuracy of Performance Data .. 42

Clock Granularity .. 43

Source Code Correlation .. 43

7. PGPROF Reference ... 45

PGPROF User Interface Overview ... 45

PGPROF Menus ... 46

File Menu .. 46

Edit Menu .. 47

View Menu ... 48

Sort Menu .. 49

Help Menu ... 49

PGPROF Toolbar ... 50

PGPROF Statistics Table .. 51

Performance Data Views .. 51

Source Code Line Numbering ... 52

PGI® Profiler Guide

v

PGPROF Focus Panel ... 52

Parallelism tab .. 53

Histogram tab ... 53

Compiler Feedback tab .. 53

System Configuration tab .. 54

Accelerator Performance tab ... 54

8. Command Line Interface .. 59

Command Description Syntax ... 59

PGPROF Command Summary .. 59

Command Reference ... 61

9. pgcollect Reference ... 65

pgcollect Overview .. 65

Invoke pgcollect ... 66

Build for pgcollect .. 66

General Options .. 66

Time-Based Profiling ... 66

Time-Based Profiling Options .. 66

Event-Based Profiling ... 67

Root Privileges Requirement ... 67

Interrupted Profile Runs .. 67

Event-based Profiling Options ... 68

Defining Custom Event Specifications ... 68

PGI Accelerator Model and CUDA Fortran Profiling .. 69

Accelerator Model Profiling .. 69

CUDA Fortran Program Profiling ... 70

Performance Tip ... 70

Index .. 71

vi

vii

Figures
2.1. PGPROF Overview ... 8

2.2. PGPROF Initial View .. 10

2.3. Source Code View ... 11

2.4. Assembly Level View .. 12

2.5. View Navigation Buttons ... 12

2.6. HotSpot Navigation Controls ... 13

2.7. Sort Example .. 14

2.8. Multi-Threaded Program Example ... 16

2.9. Sample MPI Profile ... 19

2.10. Sample Scalability Comparison .. 20

2.11. Profile with Hardware Event Counter ... 22

2.12. Accelerator Performance Data for Routine-Level Profiling Example ... 24

2.13. Source-Level Profiling for an Accelerator Region ... 25

2.14. Source-Level Profiling for an Accelerator Kernel .. 26

2.15. CUDA Program Profile .. 28

7.1. PGPROF User Interface .. 46

7.2. PGPROF Toolbar ... 50

7.3. Focus Panel Tabs .. 53

7.4. Accelerator Performance tab of Focus Panel ... 55

7.5. CUDA Program Profile ... 57

viii

ix

Tables
2.1. PGPROF Icon Summary ... 9

8.1. PGPROF Commands .. 60

x

xi

Examples
9.1. Custom Event Example 1 ... 69

9.2. Custom Event Example 2 ... 69

xii

xiii

Preface
This guide describes how to use the PGPROF profiler to tune serial and parallel applications built with The

Portland Group (PGI) Fortran, C, and C++ compilers for X86, AMD64 and Intel 64 processor-based systems.

It contains information about how to use the PGI profiling tools, as well as detailed reference information on

commands and graphical interfaces.

Intended Audience
This guide is intended for application programmers, scientists and engineers proficient in programming with

the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,

AMD64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Supplementary Documentation
See http://www.pgroup.com/docs.htm for the PGPROF documentation updates. Documentation delivered

with PGPROF should be accessible on an installed system by accessing docs/index.htm in the PGI installation

directory. Typically the value of the environment variable PGI is set to the PGI installation directory. See http://

www.pgroup.com/faq/index.htm for frequently asked PGPROF questions and answers.

Compatibility and Conformance to Standards
The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms to

the ANSI standards for FORTRAN 77, Fortran 95, C, and C++ and includes extensions from MIL-STD-1753,

VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGF90, PGCC ANSI C,

and PGCPP support parallelization extensions based on the OpenMP defacto standard. PGHPF supports

data parallel extensions based on the High Performance Fortran (HPF) defacto standard. The PGI Fortran

Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran compilers.

PGPROF permits profiling of serial and parallel (multi-threaded, OpenMP and/or MPI) programs compiled

with PGI compilers.

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• ISO/IEC 1539:1991, Information technology – Programming Languages – Fortran, Geneva, 1991 (Fortran

90).

Organization

xiv

• ISO/IEC 1539:1997, Information technology – Programming Languages – Fortran, Geneva, 1997 (Fortran

95).

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),

http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),

http://www.crpc.rice.edu/HPFF.

• OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming Language

Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

• ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

• HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

• Fortran 2003 Standard

(High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization
The PGPROF Profiler User’s Guide contains ten chapters that describe the PGPROF Profiler, a tool for

analyzing the performance characteristics of C, C++, F77, and F95 programs.

Chapter 1, “Getting Started”

contains information on how to start using the profiler, including a description of the profiling process,

information specific to certain how to profile MPI and OpenMP programs and how to profile with

hardware event counters.

Chapter 2, “Using PGPROF”

describes how to use the PGPROF graphical user interface (GUI).

Chapter 3, “Compiler Options for Profiling”

describes the compiler options available for profiling and how they are interpreted.

Chapter 4, “Command Line Options”

describes the PGPROF command-line options used for profiling and provides sample invocations and

startup commands.

Chapter 5, “Environment Variables”

contains information on environment variables that you can set to control the way profiling is performed

in PGPROF.

Chapter 6, “Data and Precision”

contains descriptions of the profiling mechanisms that measure time, how statistics are collected, and the

precision of the profiling results.

Preface

xv

Chapter 7, “PGPROF Reference”

provides reference information about the PGPROF graphical user interface, including information about

the menus, the toolbars, and the subwindows.

Chapter 8, “Command Line Interface”

provides information about the PGPROF profiler command line interface language, providing both a

summary table and details about the commands. The table includes the command name, the arguments

for the command, and a brief description of the command - all separated by area of use.

Chapter 9, “pgcollect Reference”

provides reference information about the pgcollect command. It describes the PGPROF command line

options and how to use them to configure and control collection of application performance data.

Conventions
This guide uses the following conventions:

italic

is used for emphasis.

Constant Width

is used for filenames, directories, arguments, options, examples, and for language statements in the text,

including assembly language statements.

Bold

is used for commands.

[item1]

in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-

sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}

braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...

ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple

filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++

C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows

operating systems on a variety of x86-compatible processors. There are a wide variety of releases and

distributions of each of these types of operating systems.

Terminology
If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can

access at www.pgroup.com/support/definitions.htm

Related Publications

xvi

Related Publications
The following documents contain additional information related to the X86 architecture and the compilers and

tools available from The Portland Group.

• PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data

types, input/output format specifiers, and additional reference material related to the use of PGI Fortran

compilers.

• System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.

(Prentice Hall, Inc.).

• FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories, Inc.

(Addison-Wesley Publishing Co., 1990)

• PGI User’s Guide, PGI Release Notes, FAQ, Tutorials, http://www.pgroup.com/

• MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /

• OpenMP http://www.openmp.org/

System Requirements
• Linux or Windows (See http://www.pgroup.com/faq/install.htm for supported releases)

• Intel x86 (and compatible), AMD Athlon or AMD64, or Intel 64 or Core2 processor

• Intel x86 (and compatible), AMD Athlon or AMD64, or Intel 64 or Core2 processor

1

Chapter 1. Getting Started
This chapter describes the PGPROF profiler. PGPROF provides a way to visualize and diagnose the performance

of the components of your program. Using tables and graphs, PGPROF associates execution time with the

source code and instructions of your program, allowing you to see where and how execution time is spent.

Through resource utilization data and compiler feedback information, PGPROF also provides features for

helping you to understand why certain parts of your program have high execution times.

You can also use the PGPROF profiler to profile parallel programs, including multiprocess MPI programs,

multi-threaded programs such as OpenMP programs, or a combination of both. PGPROF provides views of

the performance data for analysis of MPI communication, multiprocess and multi-thread load balancing, and

scalability.

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information about how your

program was optimized, or why a particular optimization was not made. PGPROF can extract this information

and associate it with source code and other performance data, allowing you to view all of this information

simultaneously. PGPROF also supports a feedbackonly mode, which allows you to browse Compiler Feedback

in the absence of a performance profile.

Each performance profile depends on the resources of the system where it is run. PGPROF provides a

summary of the processor(s) and operating system(s) used by the application during any given performance

experiment.

Basic Profiling
Performance profiling can be considered a two-stage process.

• In the first stage, you collect performance data when your application runs using typical input.

• In the second stage, you analyze the performance data using PGPROF.

There are a variety of ways to collect performance data from your application. For basic execution-time

profiling, we recommend that you use the pgcollect tool, which has several attributes that make it a good

choice:

• You don't have to recompile or relink your application.

• Data collection overhead is low.

Methods of Collecting Performance Data

2

• It is simple to use.

• It supports multi-threaded programs.

• It supports shared objects, DLLs, and dynamic libraries.

To profile your application named myprog, you execute the following commands:

 $ pgcollect myprog
 $ pgprof -exe myprog

The information available to you when you analyze your application's performance can be significantly

enhanced if you compile and link your program using the –Minfo=ccff option. This option saves

information about the compilation of your program, compiler feedback, for use by PGPROF. For more

information on compiler feedback, refer to “Compiler Feedback,” on page 14.

For a more complete analysis, our command execution might look similar to this:

 $ pgfortran -fast -Minfo=ccff -o myprog myprog.90
 $ pgcollect myprog
 $ pgprof -exe myprog

Methods of Collecting Performance Data
PGI provides a number of methods for collecting performance data in addition to the basic pgcollect method

described in the previous section. Some of these have advantages or capabilities not found in the basic

pgcollect method. We divide these methods into two categories: instrumentation-based profiling and sample-

based profiling.

Instrumentation-based Profiling
Instrumentation-based profiling is one way to measure time spent executing the functions or source lines

of your program. The compiler inserts timer calls at key points in your program and does the bookkeeping

necessary to track the execution time and execution counts for routines and source lines. This method is

available on all platforms on which PGI compilers are supported.

Instrumentation-based profiling:

• Provides exact call counts.

• Provides exact line/block execution counts.

• Reports time attributable to only the code in a routine.

• Reports time attributable to the code in a routine and all the routines it called.

This method requires that you recompile and relink your program using one of these compiler options:

• Use -Mprof=func for routine-level profiling.

Routine-level profiling can be useful in identifying which portions of code to analyze with line-level

profiling.

• Use -Mprof=lines for source line-level profiling.

Chapter 1. Getting Started

3

The overhead of using line-level profiling can be high, so it is more suited for fine-grained analysis of small

pieces of code, rather than for analysis of large, long-running applications.

Sample-based Profiling
Sample-based profiling uses statistical methods to determine the execution time and resource utilization of

the routines, source lines, and assembly instructions of the program. Sample-based profiling is less intrusive

than instrumentation-based profiling, so profiling runs take much less time. Further, in some cases it is not

necessary to rebuild the program.

Note
The basic pgcollect method described earlier in “Basic Profiling” is a time-based sampling method.

pgcollect also supports event-based profiling on linux86-64.

The following sections describe both time-based and event-based sampling. For information on the differences

in how instrumentation- and sample- based profiling measure time, refer to “Measuring Time,” on page 41.

Time-based Sampling

With time-based sampling the program's current instruction address (program counter) is read, and tracked,

at statistically significant intervals. Instruction addresses where a lot of time is spent during execution are read

numerous times. The profiler can map these addresses to source lines and/or functions in your program,

providing an easy way to navigate from the function where the most time is spent, to the line, to the assembly

instruction.

You can build your program using the -Mprof=time compiler option for time-based sampling of single-

threaded Linux programs. When using -Mprof=time, you are required only to re-link your program. However,

unless you compile with -Minfo=ccff, compiler feedback will not be available.

As described previously in “Basic Profiling”, we recommend using pgcollect for time-based profiling.

Event-based Sampling

As well as reading the program's instruction address, event-based sampling uses various methods to read and

track the values of selected hardware counters. These counters track processor events such as data cache

misses and floating point operations. You can use this information to help determine not just that time is

being spent in a particular block of code, but why so much time is spent there. If there is bottleneck related

to a particular resource, such as the level two data cache, these counters can help you discover where the

bottleneck is occurring.

Event-based sampling requires that a performance tool named OProfile be co-installed with the PGI software

on the Linux system.

OProfile is a performance profiling utility for Linux systems. It runs in the background collecting information

at a low overhead and providing profiles of code based on processor hardware events. When installed,

pgcollect collects this type of performance data for analysis with PGPROF. For more information on OProfile,

see http://oprofile.sourceforge.net/.

Run your program using the pgcollect command for event-based sampling with OProfile.

Choose Profile Method

4

Note
MPI profiling is not available with pgcollect profiling.

Choose Profile Method
Use the following guidelines to decide which performance data collection method to use:

• A good starting point for any performance analysis is to use time-based sampling with pgcollect, as

described in “Basic Profiling,” on page 1.

• If you are profiling an MPI application on Linux, build your application using -Mprof=time,<mpi>,

where <mpi> is the supported MPI distribution that you are using, for example, mpich1.

• If your MPI application also uses OpenMP or multiple threads per process and you want to determine

where the majority of time is spent, build with -Mprof=func,<mpi>. Then build that portion of the

program with -Mprof=lines,<mpi> to isolate the performance problem.

• If you want exact execution counts, build with -Mprof=func or -Mprof=lines.

• On Linux86-64 platforms on which OProfile is installed, once you have collected a time-based profile using

either instrumentation- or sample-based profiling, consider further examining the resource utilization

of those portions of code where the most time is spent. You do this with event-based sampling, using the

pgcollect command with event-based sampling options as described in Chapter 9, “pgcollect Reference”.

Collect Performance Data
To obtain the performance data required for PGPROF, you must run your program.

• If you use any method other than the pgcollect command to collect data, run your program normally using

a representative input data set.

• If you use the pgcollect command to collect data, refer to “Basic Profiling,” on page 1 for information

of how to execute a profiling run of your program. For specific details on pgcollect, refer to Chapter 9,

“pgcollect Reference”

Profiling Output File
In all profiling methods, once the program's profiling run is complete, a file named pgprof.out is written

to the program's working directory. This file contains the performance data used by PGPROF to analyze the

program's performance.

Using System Environment Variables
You can use system environment variables to change the way profiling is performed. For more information on

these variables, refer to Chapter 5, “Environment Variables”.

Profiling with Hardware Event Counters
 You can also profile using hardware event counters. For more specific information on this type of profiling,

refer to “Profiling Resource Utilization with Hardware Event Counters,” on page 21.

Chapter 1. Getting Started

5

Profiler Invocation and Initialization
PGPROF is invoked as follows:

% pgprof.exe [options] [datafile]

If invoked without any options or arguments, PGPROF attempts to open a data file named pgprof.out, and

assumes that application source files are in the current directory. The program executable name, specified

when the program was run, is usually stored in the profile data file. If all program-related activity occurs in a

single directory, PGPROF needs no options.

Probably the most common method to invoke the profiler is this:

% pgprof -exe <execname>

When you use this command to launch PGPROF:

• If a pgprof.out file exists in the current directory, PGPROF opens it and uses <execname> to display the

profile data.

• If no pgprof.out file exists in the current directory, no profile data is displayed. Further, when the user

selects the menu File | Open Profile..., the Text Field for Executable is set with <execname>

in the dialog.

For information on all available profiler options and how they are interpreted, refer to Chapter 3, “Compiler

Options for Profiling”. For information on the command line options for the Profiler, refer to Chapter 4,

“Command Line Options”. For sample launch commands; refer to “Profiler Invocation and Startup,” on page

36.

Application Tuning
So how do you make your program faster? The process of tuning your program ranges from simple to

complex.

• In the simple case, you may be able to easily tune the application and improve performance dramatically

simply by adding a compiler option when you build. The Compiler Feedback and System Configuration tabs

in the PGPROF user interface contain information that can help identify these situations.

• In a slightly more challenging scenario, you may need to restructure part of your code to allow the compiler

to optimize it more effectively. For instance, the Compiler Feedback for a given loop may provide a hint

to remove a call from the loop. If the call can be moved out of the loop or inlined, the loop might be

vectorized by the next compile.

• More difficult cases involve memory alignment and algorithm restructuring. These issues are beyond the

scope of this manual.

Troubleshooting
If you are having trouble during invocation or the initialization process, use the following sections for tips on

what might be causing your problem.

Troubleshooting

6

Selecting a Version of Java
PGPROF (both GUI and command line) depends on Java. PGPROF requires that the Java Virtual Machine be a

specific minimum version or above. On MAC OS, PGPROF uses the version of Java that comes with the system.

For all other systems, by default, PGPROF uses the version of Java installed with your PGI software. If you

chose not to install Java when installing your PGI software, PGPROF looks for Java on your PATH. The default

Java executables can be overridden by setting the PGI_JAVA environment variable to the full path of the Java

executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

Slow Network
If you are viewing a profile across a slow network connection, or a connection that does not support remote

display of Java GUIs, consider using the PGPROF command-line interface, described in Chapter 8, “Command

Line Interface,” on page 59.

7

Chapter 2. Using PGPROF
In Chapter 1, “Getting Started” you learned how to choose a profiling method, build your program, and

execute it to collect profile data. This chapter provides a more detailed description of how to use the features

of PGPROF, in particular:

• Profile navigation

• HotSpot navigation

• Sorting profile data

• Compiler Feedback

• Profiling parallel programs, including multi-threaded and MPI programs

• Scalability comparison

• Profiling resource utilization with hardware event counters

• Profiling accelerator programs

PGPROF Tabs and Icons Overview

8

Figure 2.1. PGPROF Overview

PGPROF Tabs and Icons Overview
Before we describe how to navigate within PGPROF, it is useful to have some common terminology for the tabs

and icons that you see within the application.

Closeable and Non-closeable Tabs

PGPROF displays both closeable and non-closeable tabs. For example, when you first invoke PGPROF, you see

the function-level statistics table in a panel with a non-closeable tab. Then, to access profiling data specific

to a given function, you double-click on the function name and a closeable tab opens with source code and

profiling statistics for that function. This closeable tab navigation approach provides a way for you to easily

view a variety of information quickly.

PGPROF Common Icons

Table 2.1 provides a summary of the common icons you see in the statistics table during profile navigation.

Chapter 2. Using PGPROF

9

Table 2.1. PGPROF Icon Summary

Click this icon... to...
Display the corresponding assembly code for this line.

Hide the corresponding assembly code for this line.

Close the tab on which it is displayed.

Display the compiler feedback for this line.

Click to expand Focus Panel item.

Click to hide Focus Panel item.

Profile Navigation
When you first invoke PGPROF, it displays top-level profiling information in a non-closeable tab, as illustrated

in Figure 2.2.

This tab shows the Statistics Table containing a routine list in the Function column and performance data

associated with each routine in the Seconds column. This list is sorted by the Seconds value, assuming there is

such a value in the profile data.

By default, PGI compilers include enough symbol information in executables to allow PGPROF to display

performance data at the source line level as well as at the routine level. However, if you compiled with the

option –Mnodwarf or –Mprof=func or if you built your program using another compiler, you may only be

able to access the routine-level view.

Profile Navigation

10

Figure 2.2. PGPROF Initial View

• To zoom in to the line level for a particular routine, double-click the function name.

This action opens a tab that displays profiling data specific to the given function. The tab label is the

function name followed by an x icon. You use the x icon to close the tab when you no longer want to view

that information.

In this tab, PGPROF displays the source code for that routine, together with the performance data for each

line. For example, if you double-click on the function fft, PGPROF displays a new tab labelled fft that

contains the source code for that function, as illustrated in Figure 2.3.

Because your program is probably optimized, you may notice that performance data is only shown for a

subset of the source lines. For example, a multi-line loop may only have line-level data for the first line of

the loop.

Chapter 2. Using PGPROF

11

Figure 2.3. Source Code View

In the optimization process, the compiler may significantly reorder the assembly instructions used to

implement the loop, making it impractical to associate any given instruction with a line in the loop.

However, it is possible to associate all of a loop's instructions with that loop, so all of the performance data

for the loop is associated with a single "line". For example, in Figure 2.3, the information for the entire do

loop at line 516 is associated with line 516.

• To zoom in to the assembly level for a particular source line, click the plus symbol (+) in the row of the

Statistics Table containing that source line.

PGPROF displays the routine with assembly code interspersed with the source lines with which that

assembly code is associated, as Figure 2.4 illustrates for the loop at line 510.

PGPROF displays performance data associated with a specific assembly instruction in the row of the

Statistics Table containing that instruction.

Profile Navigation

12

Figure 2.4. Assembly Level View

• To return to a previous view, use the Back button ("<") in the Toolbar, just below the Menus.

Figure 2.5. View Navigation Buttons

The Back and Forward buttons work much like those

found in web browsers, moving to previous and next

views, respectively.

• To select and jump to a specific view, use the down arrow on each of the Forward and Back buttons.

Note

You can have multiple function views open at a time, as illustrated in Figure 2.4, where tabs for both

functions fft and cfft3 are displayed.

Chapter 2. Using PGPROF

13

HotSpot Navigation
The HotSpot navigation controls in the Toolbar are usually the quickest way to locate a hot spot. By hot spot we

mean a program location that has a high value for some performance measurement such as Time, Count, and

so on.

To locate the hot spot, select the desired performance measurement in the HotSpot drop-down menu in the

Toolbar, then click on the "Hottest" button ("<<+"), illustrated in Figure 2.6, “HotSpot Navigation Controls”,

to select the highest value for that measurement in the current view.

Figure 2.6. HotSpot Navigation Controls

In addition to the HotSpot navigation controls on the toolbar, illustrated in Figure 2.6, you can find the

performance-critical parts of your program using the Histogram tab which shows clickable bar graphs of the

performance data plotted against the address range of the program.

To find a HotSpot using the Histogram, click on the Histogram tab. In the histogram for the measurement you

are interested in, click on the tallest bar. The corresponding row in the Statistics Table will be selected.

Sorting Profile Data
PGPROF maintains a consistent sort order for the Statistics Table and the Histogram tab. Changing the sort

order for either of these changes it for both of them. The sort order can be changed by using the Sort Menu,

as described in “Sort Menu,” on page 49 or by clicking the column header in the Statistics Table or the row

header in the Histogram tab.

The current sort order, such as sorting by the CPU Clock time, is displayed at the bottom of the Statistics Table.

For example, Figure 2.7 shows the message Sort By CPU_CLK_UNHALTED at the bottom of the Statistics

Table and the Histogram.

Compiler Feedback

14

Figure 2.7. Sort Example

Compiler Feedback
The PGI compilers generate a special kind of information that is saved inside the executable file so that it is

available to tools, such as PGPROF, to help with program analysis. A compiler discovers a lot about a program

during the build process. Most compilers use such information for compilation, and then discard it. However,

when the –Mprof or –Minfo=ccff options are used, the PGI compilers save this information in the object

and executable files using the Common Compiler Feedback Format, or CCFF.

Feedback messages provide information about what the compiler did in optimizing the code, as well as

describe obstacles to optimization. Most feedback messages have associated explanations or hints that explain

what the message means in more detail. Further, these messages sometimes provide suggestions for improving

the performance of the program.

The information icon indicates that CCFF information is available.

In PGPROF you can access Compiler Feedback by clicking an information icon in the left margin of the

Statistics Table. This opens the Compiler Feedback tab in the Focus Panel. Messages are categorized

according to the type of information that they contain.

For more information on the Compiler Feedback tab, refer to “Compiler Feedback tab,” on page 53.

For more information on the Common Compiler Feedback Format (CCFF), refer to the website:

www.pgroup.com/ccff/

Chapter 2. Using PGPROF

15

Special Feedback Messages
There are some Compiler Feedback messages that deserve some explanation, specifically, intensity messages

and messages for inlined routines.

Intensity Messages

Computational intensity has been defined as the number of arithmetic operations performed per memory

transfer.1The key idea is this: a high compute intensity value means that the time spent on data transfer is low

compared to the time spent on arithmetic; a low compute intensity value suggests that memory traffic involving

data transfer may dominate the overall time used by the computer.

The PGI Compiler emphasizes floating point operations, if they are present, to calculate the compute intensity

ratio within a particular loop. If floating point operations are not present, the PGI compiler uses integer

operations.

In some cases it is necessary to build programs using profile-guided optimization by building with –Mpfi or–

Mpfo, as described in the section Profile-Feedback Optimization using -Mpfi/Mpfo in the Optimizing and

Parallelizing chapter of the PGI User’s Guide. Profile-guided optimization can often determine loop counts and

other information needed to calculate the Compute Intensity for a given statement or loop.

Messages for Inlined Routines

Inlined functions are identified by CCFF messages. These Compiler Feedback messages for routines that have

been inlined are associated with the source line where the routine is called. Further, these messages are

prefixed with the routine and line number, and are indented to show the level of inlining. Currently there is not

a way to view the source code of that inlined instance of the routine.

Profiling Parallel Programs
You can use PGPROF to analyze the performance of parallel programs, including multi-threaded and OpenMP

programs, multi-process MPI programs, and programs that are a combination of the two. PGPROF also

provides a Scalability Analysis feature that allows you to compare two profiling runs, and thus determine how

well different parts of your program scale as the number of threads or processes changes.

Profiling Multi-threaded Programs
Multi-threaded programs that you can profile using PGPROF include OpenMP programs that are built with –

mp, auto-parallelized programs that are built with –Mconcur, and programs that use native thread libraries

such as pthreads.

Collecting Data from Multi-Threaded Programs

Some methods of performance data collection work better with multi-threaded programs than others. As

always, the recommended approach is to use pgcollect, initially with time-based sampling, optionally followed

by event-based sampling. Building with –Minfo=ccff is always a good idea when using pgcollect.

Alternatively, building with the compiler option –Mprof=lines creates a program that collects accurate

multi-threaded performance profiles.

1R.W. Hockney and C. R. Jesshope, Parallel Computers 2: Architecture, Programming and Algorithms 1988

Profiling Parallel Programs

16

The –Mprof=func option works with multi-threaded programs. However, routines that contain one or more

parallel regions appear to be run on a single thread; because the data collection is at the entry and exit of the

routine when the parallelism is not active.

The –Mprof=time and –pg options generate programs that only collect data on a single thread.

To collect data, for programs built using –Mprof, run your program normally. Upon successful termination, a

pgprof.out file is created.

Analyzing the Performance of Multi-Threaded Programs

The display of profile data for a multi-threaded program differs from that of a single-threaded program in a

couple of ways:

• In the Statistics Table, the data shown is the maximum value for any single thread in the process.

• The Parallelism tab shows the thread-specific performance data for the row selected in the Statistics Table,

whether the Statistics Table is in the routine-level, line-level, or assembly-level view. Click the arrow icon to

the left of the P to expand the view to show all threads.

Figure 2.8. Multi-Threaded Program Example

Chapter 2. Using PGPROF

17

You can use thread-specific data to determine how well-balanced the application is. Ideally, each thread

would spend exactly the same amount of time on a given part of the program. If there are large disparities

in the time spent by the various threads, this points to a load imbalance, where some threads are left idle

while other threads are working. In this case, the resources of the system are not being used with 100%

efficiency.

For example, in the program illustrated in Figure 2.8, we can see that thread 0 spent 30% of the time in the

routine, while thread 3 spent only 13% of the time there. Performance might improve if the work could be

distributed more evenly.

Profiling MPI Programs

You can profile MPI programs using PGI compilers and tools by building with the -Mprof option, which

allows you to specify the implementation of MPI you want to use. Supported versions of MPI include: MPICH-1

(using the included version of MPICH-1), HP-MPI for Linux, MPICH-2, OpenMPI, MVAPICH, and on Windows,

Microsoft MPI (MSMPI). For the latest list of supported MPI implementations and MPI profiling options, refer

to the PGI Release Notes.

To collect MPI performance data, you must build your program using one of the MPI suboptions to the option

-Mprof. These suboptions include:

For Linux:

-Mprof=mpich1

-Mprof=mpich2

-Mprof=mvapich1

-Mprof=hpmpi

For Windows:

-Mprof=msmpi

Important

The MPI profiling options cannot be used alone. They may only be used in concert with another

suboption of -Mprof, such as lines, func, and time.

For example, to build for time-based profiling with MPICH-1 profiling on Linux, use the following command:

$ pgfortran -fast -Mprof=time,mpich1 myprog.f90

To collect MPI profile data, run your program normally. On successful program termination, one profile data

file is created for each MPI process. The master profile data file is named pgprof.out. The other files have

names similar to pgprof.out, but they are numbered.

PGPROF MPI profiling on Linux collects counts of the number of messages and bytes sent and received. You

can then use this information to analyze a program's message passing behavior.

Profiling Parallel Programs

18

OpenMPI Profiling

PGI provides performance profiling of MPI message passing support for OpenMPI applications on Linux and

Mac OS. On Mac systems, no special configuration is necessary. On Linux systems you must configure the

OpenMPI installation to work with the PGI profiling system.

Once your system has been configured for OpenMPI profiling, you can follow these steps to build your

program, run it, and invoke the profiler.

Note

For information on how to build and install PGI-built OpenMPI and how to configure OpenMPI for

PGI profiling, refer to the PGI Workstation Installation Guide.

On Linux

1. Build your program using the OpenMPI compiler wrappers (mpicc, mpic++, mpif77, and/or mpif90)

with one of the PGI profiling options.

Note

When you build with -Mprof=time|lines|func, MPI profiling is included automatically.

2. Run your program as you normally would. One or more files named pgprof.out is created in your

working directory.

3. Invoke the profiler to see the results of your profiling run.

pgprof -exe your_program

On Mac OS

Note

On Mac OS, there is no need to install or configure OpenMPI. PGI Workstation for Mac OS includes a

pre-configured version of OpenMPI.

1. Build your program using the OpenMPI compiler wrappers (mpicc, mpic++, mpif77, and/or mpif90)

with one of the PGI profiling options.

Note

When you build with -Mprof=lines|func, MPI profiling is included automatically.

2. Run your program as you normally would. One or more files named pgprof.out is created in your

working directory.

3. Invoke the profiler to see the results of your profiling run.

pgprof -exe your_program

Chapter 2. Using PGPROF

19

Analyzing the Performance of MPI Programs

Figure 2.9 illustrates an MPI profile.

Figure 2.9. Sample MPI Profile

This sample shows an example MPI profile with maximum times and counts in the Statistics Table, and per

process measurements in the Parallelism tab. The Parallelism tab for MPI programs is used in the same way

that it is used for multi-threaded programs, as described in “Analyzing the Performance of Multi-Threaded

Programs,” on page 16.

You can use the send and receive counts for messages, and the byte counts to identify potential communication

bottlenecks, and use the process-specific data to find load imbalances.

Scalability Comparison
PGPROF provides a Scalability Comparison feature that measures changes in the program's performance

between multiple executions of an application. Generally this information is used to measure the performance

of the program when it is run with a varying number of processes or threads. To use scalability comparison,

first generate two or more profiles for a given application. For best results, compare profiles from the same

application using the same input data with a different number of threads or processes.

Scalability is computed using the maximum time spent in each thread/process. Depending on how you profiled

your program, this measurement may be displayed in the Statistics Table in a column with one of these heading

titles:

Scalability Comparison

20

Time if you used -Mprof=func, -Mprof=lines, or -Mprof=time

CPU_CLK_UNHALTED if you used pgcollect

Important

Profiling multi-process MPI programs with the pgcollect command is not supported.

The number of processes and/or threads used in each execution can be different. After generating two or more

profiles, load one of them into PGPROF. Select the Scalability Comparison item under the File menu, described

in“File Menu,” on page 46, or click the Scalability Analysis button in the Toolbar. Choose a second profile

for comparison. A new instance of PGPROF appears, with a column named Scale in the Statistics Table.

Figure 2.10 shows the profile of a run that used four threads with Scalability Comparison to the same program

run with a single thread.

Figure 2.10. Sample Scalability Comparison

Each profile entry that has timing information has a Scale value. The scale value measures how well these parts

of the program scaled, or improved their performance as a result of parallelism.

• A scale value of zero indicates no change in the execution time between the two runs.

• A scale value of one means that part of the program achieved perfect scalability. For example, if a routine

had a Time value of 100 seconds with one thread, and 25 seconds with four threads, it would have a Scale

value of one.

Chapter 2. Using PGPROF

21

• A negative value is the relative slowdown without taking the number of threads or processes into account. If

a routine takes 20% more time to execute using four threads than it took using one thread, the Scale value

is -0.2.

• A question mark ('?') in the Scale column indicates that PGPROF is unable to perform the scalability

comparison for this profile entry. For example, scalability comparison may not be possible if the two

profiles do not share the same executable or input data.

Profiling Resource Utilization with Hardware Event Counters

Important
Profiling with hardware counters is available only on Linux.

Modern x86 and x64 processors provide low-level hardware counters that can be used to track the resource

utilization of a program. Tracking this information can be useful in tuning program performance because it

allows you to go beyond just knowing where the program is spending the most time and examine why it is

spending time there.

Linux systems do not provide hardware counter support by default. These systems must have the OProfile

package installed.

Profiling with Hardware Event Counters (Linux Only)
PGPROF supports hardware counter data collection through the execution of the program under the control of

the pgcollect command.

Collection of profile data using pgcollect may be done on any linux86 or linux86_64 system where Oprofile

is installed. OProfile is included as an install-time option with most Linux distributions; it may also be

downloaded from http://oprofile.sourceforge.net/.

No special build options are required to enable event-based profiling with pgcollect, although building with

the option –Minfo=ccff may provide useful compiler feedback.

For specific information on using PGPROF with hardware event counters, refer to Chapter 9, “pgcollect

Reference,” on page 65.

Analyzing Event Counter Profiles
If you executed your program under the control of pgcollect, then you can profile up to four event counters

and view them in PGPROF. For brief descriptions of what each hardware counter measures, use

pgcollect --list-events

For more detailed information, see the processor vendor’s documentation.

Figure 2.11 shows a profile of four event counters: CPU_CLK_UNHALTED, DATA_CACHE_MISSES,

DATA_CACHE_REFILLS _FROM_L2, DATA_CACHE_REFILLS _FROM_SYSTEM.

In this example, the routine using the most time is also getting many cache misses. Investigating the memory

access behavior in that routine, and looking at the Compiler Feedback, may offer some clues for improving its

performance.

Profiling GPU Programs

22

Figure 2.11. Profile with Hardware Event Counter

Profiling GPU Programs
You can use PGPROF to analyze the performance of GPU programs. GPU performance data is included

in the profile, pgprof.out, when a GPU program is run using pgcollect. PGI provides two methods of

programming GPUs: The PGI Accelerator model, which uses programs and directives to tell the compiler how

to generate GPU code, and CUDA Fortran, which is used to program the GPU more directly.

The next section describes how to use pgcollect with PGI Accelerator model programs, and the subsequent

section describes using it with CUDA Fortran programs.

Profiling PGI Accelerator Model Programs
For the Accelerator model, the profiling procedure is the same as for host-only programs, except that PGPROF

provides an Accelerator Performance tab that allows you to review profiling information provided by the

accelerator. You do not need to build or run with any special options to collect accelerator performance data.

Here is an example of the commands you might use in a simple accelerator profiling session:

 $ pgfortran -ta=nvidia -o myprog myprog.f90
 $ pgcollect -time ./myprog
 $ pgprof -exe ./myprog

Chapter 2. Using PGPROF

23

Note

You can build your program to print GPU performance data to the standard output by using the time

suboption to the target accelerator option -ta'. For example, you can use this command:

 $ pgfortran -ta=nvidia,time myprog.f90

The time suboption has no effect on pgcollect or PGPROF profiling.

For more information on using PGI compilers to build programs for accelerators and on related terminology,

refer to Chapter 7, “Using an Accelerator,” in the PGI User's Guide.

For more information on pgcollect, refer to Chapter 9, “pgcollect Reference”.

Analyzing Accelerator Performance Data

This section provides a basic description of how to examine accelerator performance data using PGPROF,

including function-level analysis, region-level analysis and kernel-level analysis. A comprehensive guide to

tuning accelerator programs is beyond the scope of this manual.

Function-Level Analysis

When you invoke PGPROF on the profile of an accelerator program, the initial view displays a function list

showing host times in the Seconds column and accelerator times in the Accelerator Region Time column and

Accelerator Kernel Time column. Figure 2.12 illustrates a routine-level view with the routine jacobi selected

and the Accelerator Performance tab chosen in the Focus Panel.

One of the first things to look at in tuning an accelerator program is whether the Data Transfer Time is large

relative to the Accelerator Kernels Time. In the example illustrated in Figure 2.12, the Accelerator Kernels Time

of 4.134521 seconds is much larger than the Data Transfer Time of 0.132602 seconds, so we have efficient use

of the accelerator.

If data transfer time is taking a significant portion of the total time, you would want to investigate if transfer

time could be reduced using data regions, described in Chapter 7, Using an Accelerator, of the PGI User’s

Guide.

If data transfer time is relatively high and you have already considered data regions, you might want to examine

the Compiler Feedback. You must compile with–Minfo=ccff to be able to do this. Check if the compiler is

generating copyin/copyout operations that use slices of your arrays. If so, you may want to override the

compiler to copyin/copyout the entire array.

Profiling GPU Programs

24

Figure 2.12. Accelerator Performance Data for Routine-Level Profiling Example

For more information on compiler feedback, refer to “Compiler Feedback,” on page 14.

Region-Level Analysis

As with host-only profiles, you can drill down to the source code level by double-clicking on the routine name

in the Function column. For an accelerator program, the display centers on the accelerator region directive for

the longest-executing region. The Accelerator Performance tab shows a breakdown of timing statistics for the

region and the accelerator kernels it contains.

Note

A routine can contain more than one accelerator region.

Figure 2.13 shows an example of a source-level view with an accelerator region directive selected.

Note

In this illustration, if you want to see the Seconds column, you could scroll to the right in the Statistics

Table.

Chapter 2. Using PGPROF

25

Figure 2.13. Source-Level Profiling for an Accelerator Region

Kernel-Level Analysis

Since an accelerator region can contain multiple distinct kernels, you may want to examine performance data

for an individual kernel. You do this by selecting the first source line of the kernel.

In the source-level view, the first line of a kernel has data listed in the Accelerator Kernel Time column.

To navigate to the longest-executing kernel:

1. Select Accelerator Kernel Time in the HotSpot selector in the upper-right portion of the user interface.

2. Click the double left arrow (<<+) located next to the HotSpot selector.

In Figure 2.14 the selected line in the main Statistics Table has a value only in the Accelerator Kernel Time. The

Accelerator Performance tab displays all the details for the Accelerator Kernel performance data.

Profiling GPU Programs

26

Figure 2.14. Source-Level Profiling for an Accelerator Kernel

For more information on tuning accelerator programs, refer to Chapter 7, Using an Accelerator, of the PGI

User’s Guide.

Profiling CUDA Fortran Programs
For CUDA Fortran, pgcollect provides an option -cuda that enables collection of performance data on the

CUDA device. Analysis of this performance data is much the same as for accelerator model programs, as

described in the previous section, except that the data is collected from counters on the device and in the

CUDA driver.

If you are profiling a program that uses CUDA Fortran kernels running on a GPU, pgcollect -cuda collects

performance data from CUDA-enabled GPU and includes it in the profile output for the program. The syntax for

this command option is:

-cuda[=gmem|branch|cfg:<cfgpath>|cc13|cc20|list]

The sub-options modify the behavior of pgcollect -cuda as described here:

branch Collect branching and warp statistics.

cc13 Use counters for compute capability 1.3. [default]

ccnm Use counters for compute capability n.m.

Use pgcollect -help to see which compute capabilities your system supports.

cfg:<cfgpath> Specify <cfgpath> as CUDA profile config file.

Chapter 2. Using PGPROF

27

gmem Collect global memory access statistics.

list List cuda event names available for use in profile config file.

Performance Profiling with Pre-defined Counter Configurations

The -gmem and -branch suboptions initiate profiling with predefined sets of performance counters to

measure specific areas of GPU resource utilization.

• -gmem measures accesses to global memory.

• -branch tracks divergent branches and thread warp statistics.

Some of the counters used for -gmem and -branch differ depending on the version (compute capability)

of the GPU you are using. To ensure that you use the counters available on your GPU, you must specify the

compute capability you want to use. You can do this in two ways:

• On the pgcollect command line. For example, to specify compute capability 1.3, you can use:

 pgcollect -cuda=branch,cc13 myprog

• In a special file in your home directory. The home directory is specified by the environment variable HOME.

The name of the file depends on your OS:

• On Windows, the name of the file is mypgirc.

• On Linux and Mac OS, the name of the file is .mypgirc.

In this file you put a line that indicates compute capability 1.3 or 2.0:

 COMPUTECAP=13
 or
 COMPUTECAP=20

Note

Placing this line in this file also affects the compiler defaults with respect to compute capability.

Performance Profiling with User-defined Counter Configurations

You have the ability to specify which counters to use in data collection. To do this, you create a profile

configuration file with any filename. You can do this using this command:

pgcollect -cuda=list

To specify the counters to use, place a list of NVIDIA counters in your file, listing one counter per line. In

general, the number of counters you can list is limited to four, although with compute capability 2.0 you

may be able to use more, depending on the counters selected. In addition, you may always list certain data

collection options that do not depend on hardware counters, such as these:

gridsize

threadblocksize

dynsmemperblock

stasmemperblock

regperthread

memtransfersize

Profiling GPU Programs

28

To get a full list of the counters available, use this command:

pgcollect -cuda=list

Figure 2.15. CUDA Program Profile

In Figure 2.15:

• The columns labeled Max CUDA GPU Secs and Max CUDA CPU Secs show times captured by the CUDA driver.

• The Max Seconds column contains timings for host-only code.

• Pseudo-function names [Data_Transfer_To_Host] and [Data_Transfer_To_Device] show the transfer times

to and from the GPU.

• The Accelerator Performance Tab shows counter values collected from the GPU.

29

Chapter 3. Compiler Options for
Profiling

This chapter describes the PGI compiler options that are used to control profiling and how they are

interpreted.

-Mprof Syntax
You can use the following compiler options to control data collection. Most of these options are related to -

Mprof, for which the syntax is:

-Mprof{=option[,option, ...]}

You use -Mprof to set performance profiling options. Use of these options causes the resulting executable to

create a performance profile that can be viewed and analyzed with the PGPROF performance profiler.

Note
If you are going to use pgcollect to gather performance data, you don’t need to compile or link with -

Mprof.

Profiling Compilation Options
In the descriptions that follow, instrumentation-based profiling implies compiler-generated source

instrumentation. MPICH-style profiling implies the use of instrumented wrappers for MPI library routines.

–Minfo=ccff

Generate compiler feedback information and store it in object and executable files for later access by

performance tools. Use –Minfo=ccff when collecting performance data using pgcollect. All –Mprof

options except –Mprof=dwarf imply –Minfo=ccff.

–Mprof=dwarf

Generate a subset of DWARF symbol information adequate for viewing source line information with most

performance profilers.

In the PGI compilers –Mprof=dwarf is on by default. You can use the –Mnodwarf option to disable it.

Source-level information is not available if you profile a program built with–Mnodwarf.

Configuration Files for OpenMPI Profiling

30

–Mprof=func

Perform routine-level instrumentation-based profiling.

–Mprof=hpmpi

[Linux only] Use the profiled HPMPI communication library. Implies –Mmpi=hpmpi.

–Mprof=lines

Perform instrumentation-based line-level profiling.

–Mprof=mpich1

Perform MPICH-style profiling for MPICH-1. Implies –Mmpi=mpich1.

–Mprof=mpich2

Perform MPICH-style profiling for MPICH-2. Implies –Mmpi=mpich2.

–Mprof=msmpi

[Microsoft only] Perform MPICH-style profiling for Microsoft MSMPI. Implies option –Mmpi=msmpi.

For –Mprof=msmpi to work, the CCP_SDK environment variable must be set. This variable is typically

set when the Microsoft HPC Server SDK is installed.

–Mprof=mvapich1

[Linux only] Perform MPICH-style profiling for MVAPICH-1. Implies –Mmpi=mvapich1.

–Mprof=time

[Linux only] Generate a profile using time-based assembly-level statistical sampling. This is equivalent to

using the -pg option, except the profile is saved in a file named pgprof.out rather than in gmon.out.

–pg

[Linux Only] Enable gprof-style (sample-based) profiling. Running an executable compiled with this

option produces a gmon.out profile file which contains routine, line, and assembly-level profiling data.

Configuration Files for OpenMPI Profiling
For OpenMPI profiling on Linux, the OpenMPI installation must be properly built and configured to work

with the PGI profiling system. The Installation Guide contains complete instructions on how to build the

OpenMPI software distribution with PGI compilers and install it. It also includes the information required to

modify some configuration files, which are alos known as compiler wrapper data files. This section provides

information about these wrappers.

Once these compiler wrapper data files are modified, your system is ready for OpenMPI profiling, as described

in “OpenMPI Profiling,” on page 18.

Compiler Wrapper Data Files
The compiler wrapper data files are located in the /share/openmpi directory of your OpenMPI installation.

Sample compiler wrapper data files located in your PGI '/etc' directory are available for you to direct

modifications of the wrapper data files generated when you built OpenMPI.

The wrapper file names are:

Chapter 3. Compiler Options for Profiling

31

mpicc-wrapper-data.txt
mpic++-wrapper-data.txt
mpif77-wrapper-data.txt
mpif90-wrapper-data.txt

A sample wrapper file includes a block of data similar to the following:

Note
The lines in bold are ones that must be modified to configure your OpenMPI installation for PGI

profiling.

compiler_args=
project=Open MPI
project_short=OMPI
version=1.2.8
language=C
compiler_env=CC
compiler_flags_env=CFLAGS
compiler=pgcc
extra_includes=
preprocessor_flags=-D_REENTRANT
compiler_flags=
linker_flags=
libs=-lmpi -lopen-rte -lopen-pal
-lrt -ldl -Wl,--export-dynamic -lnsl -lutil -lpthread -ldl
required_file=
includedir=${includedir}
libdir=${libdir}

Configure OpenMPI for PGI Profiling
To configure OpenMPI for PGI profiling, you edit the compiler wrapper data files.

Note
The lines that you modify are in bold in the sample wrapper data file in the previous section.

Important
Before you begin, make backup copies of your original wrapper data files.

Make these modifications:

1. Add the line compiler_args= before any other configuration lines.

2. Copy the entire data block in the sample file twice.

You need a data block for each of these compiler options:

• –Mprof=func|lines

• –Mprof=time

3. In the second data block, modify the compiler_args= and the compiler_flags= lines. The PGI

profiling options are shown just to the right of the equal sign. The compiler flags you select immediately

follow the equal sign, with a space between each flag.

Configuration Files for OpenMPI Profiling

32

Your lines should look similar to these:

 compiler_args=-Mprof=func;-Mprof=lines
 ...
 compiler_flags=
 ...

4. In the third data block, modify the compiler_args= and the compiler_flags= lines. The PGI

profiling options are shown just to the right of the equal sign. The compiler flags in this data block should

include: -W0, -profile, lines at the beginning of the list of flags you select.

Your lines should look similar to these:

 compiler_args=-Mprof=time
 ...
 compiler_flags=-W0,-profile,lines
 ...

5. In both the second and third data blocks, modify the libs= line so that -lpgnod_prof_openmpi

comes just before -lmpi.

Note

Do not modify any other lib values.

The new libs= line looks similar to this:

libs=-lpgnod_prof_openmpi -lmpi -lopen-rte -lopen-pal -lrt
 -ldl -Wl,--export-dynamic -lnsl -lutil -lpthread -ldl

Modified Compiler Wrapper Data File Sample
When you complete your modifications, your new wrapper data file has three data blocks that look similar to

these. The lines you modified are in bold.

compiler_args=
project=Open MPI
project_short=OMPI
version=1.2.8
language=C
compiler_env=CC
compiler_flags_env=CFLAGS
compiler=pgcc
extra_includes=
preprocessor_flags=-D_REENTRANT
compiler_flags=
linker_flags=
libs=-lmpi -lopen-rte -lopen-pal -lrt -ldl -Wl,--export-dynamic -lnsl -lutil
 -lpthread -ldl
required_file=
includedir=${includedir}
libdir=${libdir}

compiler_args=-Mprof=func;-Mprof=lines
project=Open MPI
project_short=OMPI
version=1.2.8
language=C

Chapter 3. Compiler Options for Profiling

33

compiler_env=CC
compiler_flags_env=CFLAGS
compiler=pgcc
extra_includes=
preprocessor_flags=-D_REENTRANT
compiler_flags=
linker_flags=
libs=-lpgnod_prof_openmpi
-lmpi -lopen-rte -lopen-pal -lrt -ldl -Wl,--export-dynamic -lnsl
-lutil -lpthread -ldl
required_file=
includedir=${includedir}
libdir=${libdir}

compiler_args=-Mprof=time
project=Open MPI
project_short=OMPI
version=1.2.8
language=C
compiler_env=CC
compiler_flags_env=CFLAGS
compiler=pgcc
extra_includes=
preprocessor_flags=-D_REENTRANT
compiler_flags=-W0,-profile,lines
linker_flags=
libs=-lpgnod_prof_openmpi
-lmpi -lopen-rte -lopen-pal -lrt -ldl -Wl,--export-dynamic -lnsl
-lutil -lpthread -ldl
required_file=
includedir=${includedir}
libdir=${libdir}

34

35

Chapter 4. Command Line Options
This chapter describes the PGPROF command-line options and how they are interpreted. As we stated in

Chapter 1, “Getting Started”, PGPROF can interpret command-line options when present on the command

line.

Command Line Option Descriptions
The following list describes the options and how PGPROF interprets them.

datafile

A single datafile name may be specified on the command line. For profiled MPI applications, the specified

datafile should be that of the initial MPI process. Access to the profile data for all MPI processes is

available in that case, and data may be filtered to allow inspection of the data from a subset of the

processes.

The default datafile name is pgprof.out. If no datafile argument is used, PGPROF attempts to use

pgprof.out in the current directory.

–exe <filename>

Set the executable to filename. The default filename is a.out.

–feedbackonly (Linux only)

Only browse source code and Compiler Feedback information. Do not load any performance data from

profile runs.

–help

Prints a list of available command-line arguments.

–I <srcpath>

Specify the source file search path.

PGPROF always looks for a program source file in the current directory first. If it does not find the source

file in the current directory, it consults the search path specified in srcpath.

The srcpath argument is a string containing one or more directories separated by a path separator.

The path separator is platform dependent: on Linux and Mac OS, it is a colon (:), and on Windows it is

a semicolon (;). Directories in the path are then searched in order from left-to-right. When a directory

with a filename that matches a source file is found, that directory is used.

Profiler Invocation and Startup

36

Here is an example for Linux and Mac OS. In this example, the profiler first looks for source files in the

current directory, then in the ../src directory, followed by the STEPS directory.

–I ../src:STEPS

Here is the same example for Windows:

–I ..\src;STEPS

For more information, see the Open Profile… item in the description of the “File Menu,” on page 46.

–jarg, arg1[, arg2,..., argn]

Pass specified arguments, separated by commas, to java. For example, the following option passes the

argument -Xmx256m to java.

-jarg, -Xmx256m

This option is provided for troubleshooting purposes and is expected to rarely be used. If you do use this

option, be certain not to forget the comma between the option and the first argument.

–scale “file(s)”

Compare scalability of datafile with one or more files. A list of files may be specified by enclosing the list

within quotes and separating each filename with a space. For example:

–scale one.out two.out

This example compares the profiles one.out and two.out with datafile (or pgprof.out by default). If only

one file is specified quotes are not required.

For sample based profiles (e.g., gmon.out) specified with this option, PGPROF assumes that all profile

data was generated by the same executable. For information on how to specify multiple executables in a

sample-based scalability comparison, see the Scalability Comparison… item in the description of the “File

Menu,” on page 46.

–text

Use the PGPROF Command-Line Interface (CLI).

–V

Print version information.

Profiler Invocation and Startup
Let’s take a look at some common ways to invoke the profiler, describing what each launch command means.

% pgprof

• If a pgprof.out file exists in the current directory, PGPROF tries to open it.

• If an executable name can be determined from the pgprof.out file, the GUI is populated

according to profile data, if valid.

• If an executable name can NOT be determined from the pgprof.out file, then a dialog is opened

on top of the main window with the following message:

Chapter 4. Command Line Options

37

Can't determine executable for file 'pgprof.out'Please use 'File |

Open Profile...' menu to specify one

• If no pgprof.out file exists in the current directory, the GUI is not populated and no dialog appears.

% pgprof -exe <execname>

• If a pgprof.out file exists in the current directory, PGPROF tries to open it and use <execname>.

Further, the GUI is populated according to profile data, if valid.

• If no pgprof.out file exists in the current directory, the GUI is not populated and no dialog appears.

Further, when the user selects the menu File | Open Profile..., then the Text Field for

Executable is set with <execname> in the dialog.

% pgprof -exe <execname> <profilename>

PGPROF tries to open the profile <profilename> using <execname> for the executable name. Further,

the GUI is populated according to profile data, if valid.

% pgprof -feedbackonly

• If an a.out file exists in the current directory, PGPROF tries to open it.Further, if a.out is an

executable with valid DWARF/ELF/CCFF information, then PGPROF populates the GUI. You are then in

feedback-only mode.

• If no a.out file exists in the current directory, the GUI is not populated and no dialog appears. Further,

when the user selects the menu File | Open Profile..., then the Feedback only checkbox

is selected in the dialog.

% pgprof -exe <execname> -feedbackonly

PGPROF tries to open the executable <execname>. Further, if the executable <execname> is valid with

DWARF/ELF/CCFF info, then PGPROF populates the GUI. You are then in feedback-only mode.

% pgprof -exe <execname> -feedbackonly <profilename>

Note

<profilename> is ignored without warning

PGPROF tries to open the executable <execname>. Further, if the executable contains valid DWARF/ELF/

CCFF information, then PGPROF populates the GUI. You are then in feedback-only mode.

38

39

Chapter 5. Environment Variables
This chapter describes the system environment variables that you can set to change the way profiling is

performed.

System Environment Variables
As you learned in “Basic Profiling,” on page 1, a profiled program collects call counts and/or time data. When

the program terminates, a profile data file is generated. Depending on the profiling method used, this data file

is called pgprof.out or gmon.out.

You can set the following system environment variables to change the way profiling is performed:

• GMON_ARCS – Use this environment variable to set the maximum number of arcs (caller/callee pairs).

The default is 4096. This option only applies to gprof style profiling, that is, programs compiled with the –

pg option.

• PGPROF_DEPTH – Use this environment variable to change the maximum routine call depth for PGPROF

profiled programs.

The default is 4096 and is applied to programs compiled with any of the following options: –Mprof=func,

–Mprof=lines, or –Mprof=time.

• PGPROF_EVENTS – Use this environment variable to specify hardware (event) counters from which to

collect data.

This variable is applied to programs executed with the pgcollect command using one of the event-based

profiling options. The use of hardware (event) counters is discussed in further detail in “Profiling Resource

Utilization with Hardware Event Counters,” on page 21.

• PGPROF_NAME – Use this environment variable to change the name of the output file intended for PGPROF.

The default is pgprof.out. This option is only applied to programs compiled with any of the following

options: –Mprof=[func | lines | MPI | time]. If a program is compiled with the –pg option,

then the output file is always called gmon.out.

40

41

Chapter 6. Data and Precision
This chapter contains descriptions of the profiling mechanism that measures time, how statistics are collected,

and the precision of the profiling results.

Measuring Time
The sample-based profiling mechanism collects total CPU time for programs that are compiled with the options

–pg and –Mprof=time, or executed with pgcollect -time, as described in “Sample-based Profiling,” on

page 3. The profiling mechanism collects cycle counts for programs run under the control of pgcollect or

executed with pgcollect event-based sampling. PGPROF automatically converts CPU cycles into CPU time.

Programs compiled for instrumentation-based profiling with –Mprof=lines or –Mprof=func employ

a virtual timer for measuring the elapsed time of each running process/thread. This data collection method

employs a single timer that starts at zero (0) and is incremented at a fixed rate while the active program is

being profiled. For multiprocessor programs, there is a timer on each processor, and the profiler’s summary

data (minimum, maximum and per processor) is based on each processor’s time executing in a function.

How the timer is incremented and at what frequency depends on the target machine. The timer is read from

within the data collection functions and is used to accumulate COST and TIME values for each line, function,

and the total execution time. The line level data is based on source lines; however, in some cases, there may be

multiple statements on a line and the profiler shows data for each statement.

NOTE

For instrumentation-based profiling, information provided for longer running functions are more

accurate than for functions that only execute for a short time relative to the overhead of the individual

timer calls. Refer to “Caveats (Precision of Profiling Results),” on page 42 for more information

about profiler accuracy.

Profile Data
The following statistics are collected and may be displayed by the PGPROF profiler.

BYTES

For MPI profiles only. This is the number of message bytes sent and received.

Caveats (Precision of Profiling Results)

42

BYTES RECEIVED

For MPI profiles only. This is the number of bytes received in a data transfer.

BYTES SENT

For MPI profiles only. This is the number of bytes sent.

CALLS

The number of times a function is called.

COST

The sum of the differences between the timer value entering and exiting a function. This includes time

spent on behalf of the current function in all children whether profiled or not. PGPROF can provide cost

information when you compile your program with either the –Mprof=cost or the –Mprof=lines

option. For more information, refer to “Basic Profiling,” on page 1.

COUNT

The number of times a line or function is executed.

LINE NUMBER

For line mode, this is the line number for that line. For function mode, this is the line number of the

first line of the function. PGPROF sometimes generates multiple statements for a single source line; thus

multiple profiling entries might appear for a single source line. To distinguish them, PGPROF uses the

notation: lineNo.statementNo

MESSAGES

For MPI profiles only. This is the number of messages sent and received by the function or line.

RECEIVES

For MPI profiles only. This is the number of messages received by the function or line.

SENDS

For MPI profiles only. This is the number of messages sent by the function or line.

TIME

The time spent only within the function or executing the line. The TIME does not include time spent in

functions called from this function or line. TIME may be displayed in seconds or as a percent of the total

time.

Caveats (Precision of Profiling Results)

Accuracy of Performance Data

The collection of performance data always introduces some overhead, or intrusion, that can affect the behavior

of the application being monitored. How this overhead affects the accuracy of the performance data depends

on the performance monitoring method chosen, system software and hardware attributes, the load on the

system during data collection, and the idiosyncrasies of the profiled application. Although the PGPROF

implementation attempts to minimize intrusion and maximize accuracy, it would be unwise to assume the data

is beyond question.

Chapter 6. Data and Precision

43

Clock Granularity
Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these

circumstances, a routine must consume at least a few seconds of CPU time to generate meaningful line level

times.

Source Code Correlation
At higher optimization levels, and especially with highly vectorized code, significant code reorganization may

occur within functions. The PGPROF profiler allows line profiling at any optimization level. In some cases, the

correlation between source and data may at times appear inconsistent. Compiling at a lower optimization level

or examining the assembly language source may help you interpret the data in these cases.

44

45

Chapter 7. PGPROF Reference
This chapter provides a reference guide to the features of the PGPROF performance profiler.

For information about how to invoke PGPROF, refer to “Profiler Invocation and Initialization,” on page 5.

For information about using the PGPROF text-based command-line interface, refer to Chapter 3, “Compiler

Options for Profiling”.

For information about how to choose a profiling method, build your program, and execute it to collect profile

data, refer to Chapter 1, “Getting Started”.

PGPROF User Interface Overview
On startup, PGPROF attempts to load the profile datafile specified on the command line or the default,

pgprof.out. If no file is found, a file chooser dialog box is displayed. Choose a profile datafile from the list

or select Cancel.

When a profile datafile is opened, PGPROF populates the user interface, as illustrated and labeled in

Figure 7.1.

Menu Bar

Contains these menus: File, Edit, View, Sort, and Help.

Toolbar

Provides navigation shortcuts and controls for frequently performed operations.

Statistics Table

Displays profile summary information for each profile entry. Information can be displayed at up to three

levels - routine, line, or assembly - depending on the type of profile data collected, how the program

was built, and whether the PGPROF source file search path has been set to include the program source

directories. The initial view is the routine level view.

Focus Panel

Consists of tabbed panes labeled Parallelism, Histogram, Compiler Feedback, System Configuration, and

Accelerator Performance.

PGPROF Menus

46

Information Bar

Displays the profile summary information such as the name of the executable, the time and date of the

profile run, execution time, number of processes, if more than one, and the datafile name.

The following sections describe each of these components in more detail.

Figure 7.1. PGPROF User Interface

PGPROF Menus
PGPROF had the following menus: File, Edit, View, Sort, and Help. This section describes each menu in detail.

Keyboard shortcuts, when available, are listed next to menu items.

File Menu
The File menu contains the following items:

• New Window (control N) – Select this option to create a copy of the current profiler window on your

screen.

• Open Profile… – Select this option to begin analyzing a different profile. When you see the dialog box,

fill in or browse to the information requested about the profile data file (default pgprof.out), the

Chapter 7. PGPROF Reference

47

executable file, and the location of the source files. When you click OK, a new profile session is started

using the information specified in the dialog box.

If the Source Path is the only parameter that is changed from current session parameters, then the current

session uses the new Source Path to search for sources.

• Set Source Directory… – Select this option to add or remove a directory in the source file search path.

• Scalability Comparison… – Select this option to open another profile for scalability comparison. As you

did for the Open Profile… option described above, provide information about the profile data file, the

executable file, and the location of the source files. Notice that the new profile contains a Scale column in its

Statistics table.

Note

Another method to open profiles for scalability comparison is by using the –scale command-line

option explained in “Profiler Invocation and Initialization,” on page 5.

For more information on scalability, refer to “Scalability Comparison,” on page 19.

• Print… – Select this option to make a hard copy of the current profile data. The profiler processes data

from the Statistics table and sends the output to a printer. A printer dialog box appears.

You can select a printer using the Name drop-down list under Print Service. Alternately, click the Print

To File check box to send the output to a file. Other print options may be available; however, they are

dependent on the specific printer and the Java Runtime Environment (JRE).

• Print to File… – Option, output is not sent to printer, but is formatted as an editable text file. After

selecting this menu item, a Save File dialog box appears. Enter or choose an output file in the dialog box.

Click Cancel to abort the print operation.

• Close… – Select this option to close the current profiling session. This option is enabled only when more

than one profile is open.

• Exit… – Select this option to end the profiling session and exit the profiler.

Edit Menu
Use the Edit menu to launch a text search in the Statistics Table, and to restore, revert or save user preference

settings. This menu contains the following items:

• Search Forward… – Displays a dialog box that prompts for the text to be located. Once the text is entered

and the OK button selected, PGPROF searches forward to the next occurrence of the text in the function list,

source code, or assembly code displayed in the Statistics Table. Matching text is displayed in red. A search

can also be invoked using the Find text box on the main toolbar.

• Search Backward… – Displays a dialog box that prompts for the text to be located. Once the text is

entered and the OK button selected, PGPROF searches backward to the previous occurrence of the text in

the function list, source code, or assembly code displayed in the Statistics Table. Matching text is displayed

in red.

• Search Again – Use this option to repeat the last search.

PGPROF Menus

48

• Clear Search – Use this option to clear the search and turn the color of all matching text back to black.

• Restore Default Settings... – Use this option to restore the configuration of the user interface to the

original default settings.

• Revert to Saved Settings... – Use this option to restore the configuration of the GUI to the previously

saved settings.For more information, refer to the See the Save Settings on Exit option.

• Save Settings on Exit... – When this check box is selected, PGPROF saves the current GUI configuration

settings on exit. These settings include the size of the main window, position of the horizontal dividers, the

bar chart colors, the selected font, the tool tips preference, and the options selected in the View menu.

When PGPROF is started again, these saved settings are used. To prevent saving these settings on exit, clear

this check box. On Linux and Mac OS, settings are saved on a per-user basis. On Windows, settings are

saved on a per-user per-system basis.

Note
You can also use the Find: box in the toolbar to invoke the PGPROF search facility.

View Menu
Use the View menu to change the configuration of the PGPROF user interface. This menu contains the following

items:

• Select Columns… - Invokes a dialog box that allows you to select which columns of the Statistics Table

are to be displayed, and how to display the data in the columns.

The choices for how to display the data are: Value, Percent, Bar, or All, though not all of these choices are

available for all columns.

• Select Graph Colors… – This menu option opens a color chooser dialog box and a bar chart preview

panel.

The preview panel contains the bar chart bar colors, and the three bar chart attributes.

• The bar chart bars can be 'gradient filled', meaning that the color of the bar gradually transitions from

the Bar Start Color to the Bar End Color. To have solid colored bars without gradient fill, which is the

default, simply set both of these colors to the same color.

• The Filled Text Color attribute represents the text color inside the filled portion of the bar chart.

• The Unfilled Text Color attribute represents the text color outside the filled portion of the bar chart.

• The Background Color attribute represents the color of the unfilled portion of the bar chart.

• The Reset button allows you to reset the selected bar chart or attribute to its previously selected color.

• The OK button accepts your changes and closes the dialog box.

Note
Closing the dialog box is the same as choosing OK.

To modify a bar chart or attribute color:

Chapter 7. PGPROF Reference

49

1. Click the radio button.

2. Choose a color from the Swatches, HSB, or RGB pane.

3. Click the OK button to accept the changes and close the dialog box.

PGPROF saves color selections for subsequent runs unless the Save Settings on Exit box is unchecked, as

described later in this section.

• Font… – This menu option opens the Fonts dialog box.

You can change the font and/or font size using this dialog's drop-down lists. As you change the font, you can

preview the changes in the Sample Text pane.

To change the font you must click the OK button.

Click Cancel or close the dialog box to abort any changes.

• Show Tool Tips - Select this check box to enable tool tips. Tool tips are small temporary messages that

pop-up when the mouse pointer is positioned over a component, such as a button, in the user interface.

Tool tips provide a summary or hint about what a particular component does. Clear this check box to turn

tool tips off.

Sort Menu
Use the Sort menu to change the metric used to sort profile entries. The current sort order is displayed at the

bottom of the Statistics Table and the Histogram tab.

The default sorting metric is time for function-level profiling and source line number for line-level profiling.

The sort is performed in descending order, from highest to lowest value, except when sorting by filename,

function name, or line number. Filename, function name, and line number sorting is performed in ascending

order; lowest to highest value. Sorting is explained in greater detail in “Sorting Profile Data,” on page 13.

Help Menu
The Help menu contains the following items:

• PGPROF Help… – This option invokes PGPROF’s integrated help utility. The help utility includes an HTML

version of this manual. To find a help topic, use one of the tabs in the left panel:

• The book tab presents a table of contents.

• The index tab presents an index of commands.

• The magnifying glass tab presents a search engine.

Each help page, displayed on the right, may contain hyperlinks, denoted in underlined blue, to terms

referenced elsewhere in the help engine.

Use the arrow buttons to navigate between visited pages.

Use the printer buttons to print the current help page.

• About PGPROF… – This option opens a dialog box with version and contact information for PGPROF.

PGPROF Toolbar

50

PGPROF Toolbar
As illustrated in Figure 7.2, the PGPROF toolbar provides navigation shortcuts and controls for frequently

performed operations.

Figure 7.2. PGPROF Toolbar

The toolbar includes these buttons and controls:

• Open Profile button – clicking this button is the same as selecting File | Open Profile… from the menu

bar.

• Print button – clicking this button is the same as selecting File | Print… from the menu bar.

• Scalability Analysis button – clicking this button is the same as selecting File | Scalability Comparison…

from the menu bar.

• Forward and Back buttons – click these buttons to navigate forward and back to previous and subsequent

views, respectively.

Use the down-arrow to display the full list of views, and to select a view to jump to. These lists use a notation

to describe the profile views as follows:

profile_data_file@source_file@routine@line@address

The address field is omitted for line-level views, and both the line and address fields are omitted for routine-

level views. For example, the following item in a list would describe a view that uses profile data from

pgprof.out, and is displaying line 370 in the routine named solver in source file main.f.

pgprof.out@main.f@solver@370

• Search controls – use these to locate information. The controls include:

• A text box labeled Find:. Entering a search string here and hitting Enter is the same as using the dialog

box invoked from the Edit | Search Forward… menu bar item.

• Two buttons labeled with down and up arrows, respectively. These buttons provide Search Next

and Search Previous operations, similar to Edit | Search Again. Search Next searches for the next

occurrence of the last search string below the current location, and Search Previous searches for the

next occurrence above.

Chapter 7. PGPROF Reference

51

• HotSpot Navigation controls – use these to navigate to the most significant measurements taken in the

profiling run. The controls include:

• A drop-down menu labeled HotSpot:, which you use to select the specific performance measurement of

interest.

• Three navigation buttons, containing Forward and Back icons with associated plus (+) and minus (-)

signs.

When the profile is first displayed, the Statistics Table selects the row for the routine with the highest

measured Time as though you had clicked on that row. To navigate to the row with the next-highest Time,

you click on the button labeled with the Forward icon and the minus (-) sign, denoting the next Time

HotSpot lower than the current one. Once you have navigated to this second HotSpot, the Back HotSpot

buttons are activated, allowing you to navigate to the hottest HotSpot using the "<<" button, or to the

next higher Time, using the "<" button.

You can use the HotSpot drop-down menu to change the measurement used to identify the HotSpots. The

default selection in the HotSpot menu is Time, assuming that Time is one of the available measurements.

You can click on the down-arrow in the drop-down menu to select any other metric listed in the menu,

then click the "Hottest" button to navigate to the row showing the routine with the highest measured

value for that metric.

PGPROF Statistics Table
This section describes the PGPROF Statistics Table. The Statistics Table displays an overview of the

performance data, and correlates it with the associated source code or assembly instructions. This is where

you should start when analyzing performance data with PGPROF.

The Statistics Table displays information at up to three levels, depending on the type of profile data collected,

how the program was built, and whether the PGPROF source file search path has been set to include the

program source directories.

Performance Data Views
The Statistics Table allows you to zoom in and out on the components of your program by providing several

views: the routine-level view, the line-level view, and the assembly-level view.

• The initial view when you invoke PGPROF is the routine-level view.

• To navigate to the line level from the routine level, double- click on the Statistics Table row corresponding

to the function of interest. If the program was built so thatit does not contain line location information, then

this action results in an assembly-level display.

• To navigate to the assembly code level from the line level, click the assembly code icon, the plus (+)

symbol, on the Statistics Table row that corresponds to the source line of interest.

Note
You can use the View | Select Columns… menu option to select the data shown in the Statistics Table.

PGPROF Focus Panel

52

Routine-level view

The routine-level view shows a list of the functions or subprograms in your application, with the performance

data for that routine in the same row of the table. In addition, if there is any compiler feedback information for

the routine, a round button containing the letter 'i' is at the far left of the row. Clicking that button populates

the Compiler Feedback tab with the compiler feedback relating to that routine.

Line-level View

You access the line-level view of a routine by clicking that routine's row in the routine-level view. PGPROF

opens a new tab showing the line-level information for the routine. The tab label is the routine name and the

tab contains an x which allows you to close the tab when you are done viewing the source code. The Statistics

Table in the new tab shows the source code for the selected function, with performance data and Compiler

Feedback buttons as with the routine-level view.

Assembly-level View

You access the assembly-level view of a source line or routine by clicking the assembly code icon, the plus

(+) symbol, on the Statistics Table row that corresponds to the row of interest in the line-level view. The table

changes to show the assembly code, interspersed with the source lines that were compiled to generate the

code.

Source Code Line Numbering
In the optimization process, the compiler may reorder the assembly instructions such that they can no longer

be associated with a single line. Therefore, for optimized code, a source line may actually be a code block

consisting of multiple source lines. This occurrence is common, and expected, and should not interfere with

the tuning process when using PGPROF.

PGPROF sometimes shows multiple rows in the Statistics Table for a single source line. The line numbers for

such lines are shown in the Statistics Table using the notation
 line.statement

There are several situations where this line numbering can occur:

• When there is more than one statement in a source line, as in a C/C++ program where one line contains

multiple statements, separated by semicolons (;).

• When the compiler generates multiple alternative implementations of a loop. The compiler may create

alternate versions to handle differences in the data and how it is stored in memory.

• When there is a complicated or conditional loop setup.

For these cases, it is generally safe to sum the times and counts of all the lines. However, take care, particularly

with call counts, not to double-count measurements.

PGPROF Focus Panel
The Focus Panel consists of a number of tabs that allow you to select the focus of your attention as you view the

profile data.

Chapter 7. PGPROF Reference

53

Figure 7.3. Focus Panel Tabs

Parallelism tab
This tab displays a table with detailed profile information organized by processes and threads. Profile

information for the entire application is labeled 'Profile' while information for the currently-selected routine

is labeld 'Routine.' Information is listed by process. Each process can be expanded to reveal profiling

information by each thread in that process. To expand a process into its threads, click on the '>' icon on the

left of the 'P' icon.

Histogram tab
This tab displays a histogram of one or more profiled data items.

• Each bar graph corresponds to one of the performance measurements.

• Each vertical bar corresponds to a profile entry, that is, performance data associated with a program

location.

• The bars are sorted in the order specified in the Sort menu, described in “Sort Menu,” on page 49, and

the current sorting metric is labeled in the lower-right hand corner of the table itself.

• Clicking on a bar displays information for the corresponding profile item in the Statistics Table.

• Double-clicking on a bar drills down into the profile for the portion of the program corresponding to the

bar.

• Selected bars are highlighted in yellow.

Compiler Feedback tab
This tab displays information provided by the compiler regarding the characteristics of a selected piece of the

program, including optimization and parallelization information, obstacles to optimization or parallelization,

and hints about how to improve the performance of that portion of the code. Such information is available at

the line level and the routine level.

If Compiler Feedback information is available, round, blue buttons, containing a lower-case 'i', are displayed

on the left side of the Statistics Table. To access the information, click on one of these info buttons.

The information is separated into categories of information about these items:

• A source line

• Routines referenced inside another routine

• Variables referenced inside a routine

• How a file was compiled

Each category is represented by a wide bar that functions like a button. Clicking the bar expands the display

to show the information in that category. If no information is available in a given category, that category is not

listed.

PGPROF Focus Panel

54

This information is only available if the program was compiled and also linked using either the –Mprof or

the –Minfo=ccff option. In some cases it is necessary to build programs using profile-guided optimization

by building with –Mpfi or–Mpfo, as described in the section Profile-Feedback Optimization using -Mpfi/

Mpfo in the Optimizing and Parallelizing chapter of the PGI User’s Guide. Profile-guided optimization can often

determine loop counts and other information needed to calculate the Compute Intensity for a given statement

or loop.

System Configuration tab
This tab displays System and Accelerator tabs containing information about the system on which the profile run

was executed.

System Tab

Can include information such as process(es), process manufacturer, processor model, processor, the

program’s OS target, cores per socket, total cores, processor frequency, CUDA driver version, and NVRM

version.

Note
The Program’s OS Target is the operating system platform that the executable was built for. Although

the processor may be a 64-bit processor, the executable may target a 32-bit platform.

Tip
If you need further explanations for any of these items, refer to vendor processor documentation.

Accelerator tab

Contains information about the GPU(s) that are on the system on which the profile was run.

If there is no GPU on this system, the Accelerator tab is empty.

For each GPU, also known as a device, the Accelerator tab can include information such as the device name,

device revision number, global memory set, number of multiprocessors, number of cores, concurrent

copy and execution, total constant memory, total shared memory per block, registers per block, warp size,

maximum threads per block, maximum block dimensions, maximum grid dimensions, maximum memory

pitch, texture alignment, and clock rate.

Tip
If you need further explanations for any of these items, refer to vendor GPU documentation.

Accelerator Performance tab
This tab displays profiling information collected by pgcollect on for programs built using CUDA Fortran or the

PGI Accelerator Model. For more information on pgcollect, refer to Chapter 9, “pgcollect Reference”.

Accelerator Model Profiles

The profiling information is relative either to an Accelerator Region or to an Accelerator Kernel.

Chapter 7. PGPROF Reference

55

Accelerator Region

An accelerator region is a region of code that has been executed on the accelerator device. An accelerator

region might transfer data between the host and the accelerator device. Further, an accelerator region can

be split into several accelerator kernels.

Accelerator Kernel

An accelerator kernel is a compute intensive, highly parallel portion of code executed on an accelerator

device. Each compiler-generated kernel is code executed by a block of threads mapped into a grid of

blocks.

Figure 7.4 illustrates one possible display for the Accelerator Performance tab, one that is relative to the

Accelerator Kernel:

Figure 7.4. Accelerator Performance tab of Focus Panel

PGPROF displays two Accelerator events in the Statistic table:

• Accelerator Region Time – the time, in seconds, spent in the Accelerator region

• Accelerator Kernel Time – the time, in seconds, spent in the Accelerator kernel.

When a user selects a line for which one of these events is non-zero, the table in the Accelerator Performance

tab contains details about that event. The information displayed depends on the selection.

If a user selects a line in which both events are non-zero, then the Accelerator Performance tab displays only

Accelerator Initialization Time, Accelerator Region Time, and Accelerator Kernel Time.

Accelerator Region Timing Information

Time is reported in seconds. When you select a non-zero Accelerator Region Timing item, you see the

following information in the Accelerator Performance tab:

• Accelerator Initialization Time – time spent in accelerator initialization for the selected region.

• Accelerator Kernel Time– time spent in compute kernel(s) for the selected region.

• Data Transfer Time– time spent in data transfer between host and accelerator memory.

• Accelerator Execution Count– execution count for the selected region.

• Maximum time spent in accelerator region (w/o init)– the maximum time spent in a single

execution of selected region.

• Minimum time spent in accelerator region (w/o init)– the minimum time spent in a single

execution of selected region.

PGPROF Focus Panel

56

• Average time spent in accelerator region (w/o init)– the average time spent per execution of

selected region.

Note

The table does not contain values that are not relevant, such as zero values or values that cannot

be computed. For example, in a routine-level profile, a routine can execute multiple accelerator

regions. In this instance, only time spent in Initialization, in the Region, and in the Kernel can be

accurately computed so other values are not displayed in the Accelerator Performance tab.

Accelerator Kernel Timing Information

Time is reported in seconds. When you select a non-zero Accelerator Kernel Timing item, you see the

following information in the Accelerator Performance tab:

• Kernel Execution Count – execution count for the selected kernel.

• Grid Size – the size, in 1D [X] or 2D [XxY], of the grid used to execute blocks of threads for the

selected kernel.

• Block Size – the size, in 1D [X], 2D [XxY] or D3 [XxYxZ], of the grid used to execute blocks of threads

for the selected kernel.

• Maximum time spent in accelerator kernel – the maximum time spent in a single execution of

selected kernel.

• Minimum time spent in accelerator kernel – the minimum time spent in a single execution of

selected kernel.

• Average time spent in accelerator kernel – the average time spent per execution of selected kernel.

Note

When there are multiple invocations of the same kernel in which the grid-size and/or block-

size changes, the size information displayed in the Accelerator Performance tab is expressed as

a range. For example, if the same kernel could be executed with a 2D-block of size [2,64] and

a 2D-block of size [4,32], then the size displayed in Accelerator Performance tab is the range:

[2-4, 32-64].

CUDA Fortran Profiles

Profiles generated by pgcollect for CUDA Fortran programs capture data from GPU performance counters.

The specific counters available for a given GPU depend on the GPU’s compute capability.

In Figure 7.5:

• The columns labeled Max CUDA GPU Secs and Max CUDA CPU Secs show times captured by the CUDA driver.

• The Max Seconds column contains timings for host-only code.

• Pseudo-function names [Data_Transfer_To_Host] and [Data_Transfer_To_Device] show the transfer times

to and from the GPU.

• The Accelerator Performance Tab shows counter values collected from the GPU.

Chapter 7. PGPROF Reference

57

Figure 7.5. CUDA Program Profile

58

59

Chapter 8. Command Line Interface
The command line interface (CLI) for non-GUI versions of the PGPROF profiler is a simple command

language. This command language is available in the profiler through the –text option. The language is

composed of commands and arguments separated by white space. A pgprof> prompt is issued unless input is

being redirected.

This chapter describes PGPROF’s command line interface, providing both a summary and then more details

about the commands.

Command Description Syntax
This chapter describes the profiler’s command set.

• Command names are printed in bold and may be abbreviated as indicated.

• Arguments enclosed by brackets (‘[‘’]’) are optional.

• Separating two or more arguments by ‘|’ indicates that any one is acceptable.

• Argument names in italics are chosen to indicate what kind of argument is expected.

• Argument names that are not in italics are keywords and should be entered as they appear.

PGPROF Command Summary
Table 8.1 summarizes the commands for use in the CLI version of PGPROF, providing the applicable arguments

and a brief description of the use of each command. The section that follows the table provides more details

about each command.

PGPROF Command Summary

60

Table 8.1. PGPROF Commands

Name Arguments Usage
a[sm] routine [[>] filename] Display the instruction and line level data

together with the source and assembly for

the specified routine.

c[cff] file[@function] [line_numb Display compiler feedback for the

specified file, function, or source line

d[isplay] [display options] | all | none Specify display information.

he[lp] [command] Provide brief command synopsis.

h[istory] [size] Display the history list, which stores

previous commands in a manner similar

to that available with csh or dbx.

l[ines] function [[>] filename] Display the line level data together with

the source for the specified function.

lo[ad] [datafile] Load a new dataset. With no arguments

reloads the current dataset.

m[erge] datafile Merge the profile data from the named

datafile into the current loaded dataset.

pro[cess] processor_num For multi-process profiles, specify the

processor number of the data to display.

p[rint] [[>] filename] Display the currently selected function

data.

q[uit] Exit the profiler.

sel[ect] calls | timecall | time | cost | cover |

all [[>] cutoff]

Display data for a selected subset of the

functions.

so[rt] [by] [max | avg | min | proc | thread]

calls | cover | timecall | time | cost |

name | msgs | msgs_sent | msgs_recv

| bytes | bytes_sent | bytes_recv | visits

| file]

Function level data is displayed as a sorted

list.

src[dir] directory Set the source file search path.

s[tat] [no]min|[no]avg|[no]max|[no]proc|

[no]thread|[no]all]

Set which process fields to display (or

not to display when using the arguments

beginning with “no”)

th[read] thread_num Specify a thread for a multi-threaded

process profile.

t[imes] raw | pct Specify whether time-related values

should be displayed as raw numbers or as

percentages. The default is pct.

Chapter 8. Command Line Interface

61

Name Arguments Usage
! (history) ! | num | -num | string Repeat recent commands

Command Reference
This section provides more details about the commands in the previous Command Summary Table.

asm
a[sm] routine [[>] filename]

Display the instruction and line level data together with the source and assembly for the specified routine. If

the filename argument is present, the output is placed in the named file. The '>' means redirect output, and is

optional. This command is only available on platforms that support assembly-level profiling.

ccff
c[cff] file[@function] [line_number]

Display compiler feedback for the specified file, function, or source line. PGI compilers can produce

information in the Common Compiler Feedback Format (CCFF) that provides details about the compiler's

analysis and optimization of your program. Often this information can illuminate ways in which to further

optimize a program.

The CCFF information is produced by default when using the –Mprof' compiler option, but if you are profiling

with the pgcollect command, you must build your program with the '–Minfo=ccff' compiler option to

produce this information.

display
d[isplay] [display options] | all | none

Specify display information. This includes information on minimum values, maximum values, average values,

or per processor/thread data. Below is a list of possible display options:

[no]calls [no]cover [no]time [no]timecall [no]cost [no]proc [no]thread [no]msgs [no]msgs_sent

[no]msgs_recv [no]bytes [no]bytes_sent [no]name [no]file [no]line [no]lineno [no]visits [no]scale

[no]stmtno

help
he[lp] [command]

Provide brief command synopsis. If the command argument is present, only information for that command is

displayed. The character "?" may be used as an alias for help.

Command Reference

62

history
h[istory] [size]

Display the history list, which stores previous commands in a manner similar to that available with csh or dbx.

The optional size argument specifies the number of lines to store in the history list.

lines
l[ines] function [[>] filename]

Display the line level data together with the source for the specified function. If the filename argument is

present, the output is placed in the named file. The '>' means redirect output, and is optional.

load
lo[ad] [datafile]

Load a new dataset. With no arguments reloads the current dataset. A single argument is interpreted as a new

data file. With two arguments, the first is interpreted as the program and the second as the data file.

merge
m[erge] datafile

Merge the profile data from the named datafile into the current loaded dataset. The datafile must be in

standard pgprof.out format, and must have been generated by the same executable file as the original dataset

(no datafiles are modified.)

process
pro[cess] processor_num

For multi-process profiles, specify the processor number of the data to display.

print
p[rint] [[>] filename]

Display the currently selected function data. If the filename argument is present, the output is placed in the

named file. The '>' means redirect output, and is optional.

quit
q[uit]

Exit the profiler.

select
sel[ect] calls | timecall | time | cost | cover | all [[>] cutoff]

Display data for a selected subset of the functions. This command is used to set the selection key and

establish a cutoff percentage or value. The cutoff value must be a positive integer, and for time related fields is

interpreted as a percentage. The '>' means greater than, and is optional. The default is all.

Chapter 8. Command Line Interface

63

sort
so[rt] [by] [max | avg | min | proc | thread] calls | cover | timecall | time |
cost | name | msgs | msgs_sent | msgs_recv | bytes | bytes_sent | bytes_recv |
visits | file]

Function level data is displayed as a sorted list. This command establishes the basis for sorting. The default is

max time.

srcdir
src[dir] directory

Set the source file search path.

stat
s[tat] [no]min|[no]avg|[no]max|[no]proc|[no]thread|[no]all]

Set which process fields to display (or not to display when using the arguments beginning with “no”).

thread
th[read] thread_num

Specify a thread for a multi-threaded process profile.

times
t[imes] raw | pct

Specify whether time-related values should be displayed as raw numbers or as percentages. The default is pct.

! (history)
!!

Repeat previous command.

! num

Repeat previous command numbered num in the history list.

!-num

Repeat the num-th previous command numbered num in the history list.

! string

Repeat most recent command starting with string from the history list.

64

65

Chapter 9. pgcollect Reference
The pgcollect command is a development tool used to collect performance data for analysis using the pgprof

performance profiler. This chapter describes how to use pgcollect.

pgcollect Overview
pgcollect runs the specified program with the supplied arguments. While the program runs, pgcollect gathers

performance statistics. When the program exits, the data that is gathered is written to a file. You can then use

this file in the PGPROF performance profiler to analyze and tune the performance of the program.

The pgcollect command supports two distinct methods of performance data collection:

Time-based sampling

Creates a time-based profile that correlates execution time to code, showing the amount of time spent in

each routine, each source line, and each assembly instruction in the program. For more information on

time-based profiling, refer to “Time-based Sampling,” on page 3.

Event-based sampling

Supported only on linux86-64 systems, creates an event-based profile that correlates hardware events

to program source code. In this method, pgcollect uses hardware event counters supported by the

processor to gather resource utilization data, such as cache misses.

Note

This method requires co-installation of the open source performance tool OProfile.

For more information on event-based profiles, refer to “Event-based Sampling,” on page 3.

Both forms of the pgcollect command gather performance data that can be correlated to individual threads,

including OpenMP threads, as well as to shared objects, dynamic libraries, and DLLs.

For current availability of pgcollect and pgcollect features on a given platform, refer to the PGI Release

Notes.

Invoke pgcollect

66

Invoke pgcollect
The command you use to invoke pgcollect depends on the type of profile you wish to create.

Use the following command to invoke pgcollect for time-based sampling:

pgcollect [-time] program [program_args]

Use the following command to invoke pgcollect for event-based sampling available on Linux86-64:

pgcollect [<event_options>] program_or_script [program_or_script_args]

program or program_or_script are either the filename of the program to be profiled, or the name of

a script that invokes the program. When applicable, you can provide arguments for the specified program or

script: program_args or program_or_script_args.

The following sections describe the pgcollect command-line options in more detail.

Build for pgcollect
If your program was built with PGI compilers, you do not need to use any special options to use pgcollect.

However, if your programs are built using the -Minfo=ccff option, then PGPROF can correlate compiler

feedback and optimization hints with the source code and performance data.

If you built your program using a non-PGI compiler, consider building with debugging information so you can

view source-level performance data. Be aware, however, that building with debugging information may change

the performance of your program.

General Options
This section describes options that apply to all forms of the pgcollect command. For options specific to

controlling time-based or event-based profiling, refer to “Time-Based Profiling Options” and “Event-based

Profiling Options” respectively.

-V

Display the version of pgcollect being run.

-help

Show pgcollect usage and switches.

Time-Based Profiling
Time-based profiling runs the program using time-based sampling. This form of pgcollect uses operating

system facilities for sampling the program counter at 10-millisecond intervals.

Time-Based Profiling Options

-time

Provide time-based sampling only. The sampling interval is 10 milliseconds. This option is the default.

When using pgcollect for time-based sampling, you can have multiple instances of pgcollect running

simultaneously, but doing so is not recommended, since this will probably skew your performance results.

Chapter 9. pgcollect Reference

67

Event-Based Profiling
You can use the pgcollect command on linux86-64 to drive an OProfile session. Event-based profiling

provides several predefined data collection options that gather data from commonly used counters.

For event-based sampling, the only required argument is the program_or_script, which is either the

filename of the program to be profiled, or the name of a script that invokes the program. Using a script can

be useful if you want to produce an aggregated profile of several invocations of the program using different

data sets. In this situation, use the -exe option, which allows the data collection phase to determine which

program is being profiled.

When applicable, you can provide arguments for the specified program or script.

Since OProfile provides only system-wide profiling, when you invoke pgcollect it provides a locking

mechanism that allows only one invocation to be active at a time.

Note

The pgcollect locking mechanism is external to OProfile and does not prevent other profile runs

from invoking opcontrol through other mechanisms.

Root Privileges Requirement
When using pgcollect for event-based profiling, you control the OProfile kernel driver and the sample

collection daemon via the OProfile command opcontrol. This control requires root privileges for

management operations. Thus, invocations to opcontrol performed by pgcollect are executed via the sudo

command.

When using pgcollect, you control the OProfile kernel driver and the sample collection daemon via the

OProfile command opcontrol. This control requires root privileges for management operations. Thus,

invocations to opcontrol, which are performed when pgcollect is used, are executed via the sudo command.

One technique that requires minimal updates to the /etc/sudoers files is to assume that all users in a

group are allowed to execute opcontrol with group privileges. For example, you could make the following

changes to /etc/sudoers to permit all members of the group 'sw' to run opcontrol with root privileges.

 # User alias specification
 User_Alias SW = %sw
 ...
 SW ALL=NOPASSWD: /usr/bin/opcontrol

Interrupted Profile Runs
pgcollect shuts down the OProfile daemon when interrupted. However, if the script is terminated with

SIGKILL, you must execute the following:

 pgcollect -shutdown

Executing this command is important because if the OProfile daemon is left running, disk space on the root file

system eventually is exhausted.

Event-Based Profiling

68

Event-based Profiling Options

-check-events

Do not execute a profiling run, just check the event settings specified on the command line.

-exe <exename>

Specify the program to be profiled. You only need to use -exe when the program argument is a script that

invokes the program.

-list-events

List profiling events supported by the system.

-shutdown

Shut down the profiling interface. You only need to use this option in rare cases when a profiling run was

interrupted and OProfile was not shut down properly.

Predefined Performance Data Collection Options

-allcache

Profile instruction, data, and branch cache misses

-dcache

Profile various sources of data cache misses

-imisses

Profile instruction cache-related misses.

-hwtime <millisecs>

Provide time-based sampling only. Specify the sampling interval in milliseconds.

User-Defined Performance Data Collection Options

-es-function <name>

Set profile events via a shell function.

-event <spec>

Manually add an event profile specification. An event profile specification is an opcontrol '--event'

argument; that is, the event profile specification provided on the command line is appended to '--event='

and passed as an argument to opcontrol.

-post-function <name>

Execute a shell function after profiling is complete.

Defining Custom Event Specifications
The pgcollect '-event=EVENTSPEC' options are accumulated and used to specify events to be

measured. For more information about these events, refer to the opcontrol man page.

x64 processors provide numerous event counters that measure the usage of a variety of processor resources.

Not all processors support the same set of counters. To see which counters are supported on a given system,

use the following command:

 pgcollect -list-events

Chapter 9. pgcollect Reference

69

The output of this command also provides information on event masks (the hex value in the event

specification) and minimum overflow values.

Here are two examples of shell functions providing event specifications to pgcollect. These functions would be

implemented in a .pgoprun file:

Example 9.1. Custom Event Example 1

This function specifies the events needed to calculate cycles per instruction (CPU_CLK_UNHALTED /

RETIRED_INSTRUCTIONS). The fewer cycles used per instruction, the more efficient a program is.

cpi_data () {
 event[${#event[@]}]=--event=CPU_CLK_UNHALTED:500000:0x00:0:1
 event[${#event[@]}]=--event=RETIRED_INSTRUCTIONS:500000:0x00:0:1
}

To use these events, invoke pgcollect with the following arguments:

-es-function cpi_data

Example 9.2. Custom Event Example 2

Example 2

This function specifies events needed to determine memory bandwidth:

mem_bw_data () {
 event[${#event[@]}]=--event=CPU_CLK_UNHALTED:500000:0x00:0:1
 event[${#event[@]}]=--event=SYSTEM_READ_RESPONSES:500000:0x07:0:1
 event[${#event[@]}]=--event=QUADWORD_WRITE_TRANSFERS:500000:0x00:0:1
 event[${#event[@]}]=--event=DRAM_ACCESSES:500000:0x07}:0:1
}

To use these events, invoke pgcollect with the following arguments:

 -es-function mem_bw_data

PGI Accelerator Model and CUDA Fortran Profiling
If you are profiling a program that uses the PGI Accelerator model or CUDA Fortran, pgcollect automatically

collects information for you.

Accelerator Model Profiling
pgcollect automatically collects and includes performance information for the PGI Accelerator model

programs in the profile output for the program.

Note

Inclusion of the accelerator performance information in the program’s profile output occurs for both

time-based sampling and, on Linux, for event-based sampling.

PGI Accelerator Model and CUDA Fortran Profiling

70

CUDA Fortran Program Profiling
If you are profiling a program that uses CUDA Fortran kernels running on a GPU, pgcollect -cuda collects

performance data from CUDA-enabled GPUs and includes it in the profile output for the program. The syntax

for this command option is:

-cuda[=gmem|branch|cfg:<cfgpath>|cc13|cc20|list]

The sub-options modify the behavior of pgcollect -cuda as described here:

branch

Collect branching and warp statistics.

cc13

Use counters for compute capability 1.3. [default]

ccnm

Use counters for compute capability n.m.

Tip

Use pgcollect -help to see which compute capabilities your system supports.

cfg:<cfgpath>

Specify <cfgpath> as CUDA profile config file.

gmem

Collect global memory access statistics.

list

List CUDA event names available for use in profile config file.

Performance Tip
On some Linux systems, initialization of the CUDA driver for accelerator hardware that is in a power-save state

can take a significant amount of time. You can avoid this delay in one of these ways:

• Run the pgcudainit program in the background, which keeps the GPU powered on and significantly

reduces initialization time for subsequent programs. For more information on this approach, refer to

Chapter 7 of the PGI User’s Guide.

• Use the pgcollect option -cudainit to eliminate much of the initialization overhead and to provide a

more accurate profile.

pgcollect -time -cudainit myaccelprog

Note

In release 10.5, the option -cudainit was called -accinit. These two options have exactly the

same functionality.

71

Index
Symbols
-allcache

pgcollect, 68

-check-events

pgcollect, 68

-cuda, 70

branch, 70

cc13, 70

cc20, 70

gmem, 70

list, 70

-dcache

pgcollect, 68

-es-function

pgcollect, 68

-event

pgcollect, 68

-exe

pgcollect, 68

-help

pgcollect, 66

-hwtime

pgcollect, 68

-imisses

pgcollect, 68

-list-events

pgcollect, 68

-Minfo

ccff, 29

-Mprof

dwarf, 29

func, 30

hpmpi, 30

hwcts, 4

lines, 30

mpich1, 30

mpich2, 30

msmpi, 30

mvapich, 30

time, 4, 30

-pg, 30

-post-function

pgcollect, 68

-shutdown

pgcollect, 68

-time

pgcollect, 66

-V

pgcollect, 66

A
Accelerator

kernel, 55

kernel time, 55

region, 55

region time, 55

Analyze

performance data, MPI programs,

19

performance data, multi-threaded

programs, 16

Application

tuning, 5

asm

PGPROF command, 61

Attribute

modify color, 48

Audience Description, xiii

B
Background

color, 48

Bytes

profile data, 41

received, 42

sent, 42

C
call

routine or function, 42

Caveats, 42

CCFF, 1, 14

-Minfo, 29

PGPROF command, 61

CCP_SDK, 30

clear

search, 48

Clock

granularity, 43

resolution, 43

Close

PGPROF, 47

Collect

performance data, multi-threaded

programs, 15

Colors

background, 48

filled text, 48

modify attribute, 48

set in GUI, 48

unfilled text, 48

command line

PGPROF options, 35

Compare

scalability, 19, 47

Compiler

feedback, 14

Feedback Format, 1

Configure

-es-function pgcollect option, 68

-event pgcollect option, 68

-post-function pgcollect option,

68

Conformance to Standards, xiii

conventions

in text, xv

Cost

information in profile, 42

Count

line or function execution, 42

D
Data

analysis, MPI programs, 19

72

analysis, multi-threaded

programs, 16

collection, 4

collection, multi-threaded

programs, 15

precsion, 41

profile, 41

sort profile, 13

transfer time, 55

view performance, 51

datafile

PGPROF command line option, 35

Default

restore settings, 48

Display

columns, 48

display

PGPROF command, 61

Documentation

accessing, xiii

location, xiii

dwarf

-Mprof, 29

E
Edit

menu, PGPROF, 47

Environment

variables, PGPROF, 39

Environment variables

CCP_SDK, 30

GMON_ARCS, 39

PGI_JAVA, 6

PGPROF, 39

PGPROF_DEPTH, 39

PGPROF_EVENTS, 39

PGPROF_NAME, 39

system, 39

using, 4

Event-based profiling, 67

Event counters

hardware, 21

Events

counters, 4

counters, Linux, 21

custom specification, pgcollect,

68

profile, 68

profile specification, 68

settings check, 68

exe

PGPROF command line option, 35

Execute

shell function after profile, 68

Exit

PGPROF, 47

F
Feedback

CCFF, 1

compiler, 14

messages, 15

tab, Focus Panel, 53

feedbackonly

PGPROF command line option, 35

Files

print profile data, 47, 47

profile output, 4

Focus

Accelerator tab

Accelerator, 54

Compiler Feedback tab

Compiler, 53

histogram tab

Historgram, 53

panel in PGPROF, 45, 52

parallelism tab

Parallelism, 53

System Information tab

System, 54

Fonts

set, 49

G
GMON_ARCS, 39

gmon.out, 30, 30

GUI

set colors, 48

H
Hardware

counters, profile with, 21

event counters, 4, 21

Help

menu, 49

pgcollect, 66

PGPROF command, 61

PGPROF command line option,

35, 36

profiler usage, 66

Histogram tab

PGPROF, 53

history

PGPROF command, 62, 63

HotSpot

controls, 13

navigation, 51

HPF, xiii

HPMPI

-Mprof, 30

I
I

PGPROF command line option, 35

Information

profile summary, 46

Inlining

routines, 15

Intensity

computational, 15

messages, 15

Invoke

pgcollect, 66, 66

profiler, 5

J
jarg

PGPROF command line option, 36

Java

-jarg, 36

PGPROF, 6

specify location, 6

version selection, 6

JVM

Java, 6

Index

73

K
Kernels

accelerator, 55

accelerator time, 55

L
Launch

profiler, 5

Libraries

HPMPI, 30

Lines

-Mprof option, 30

numbering, 42, 52

profiling and optimization, 43

lines

PGPROF command, 62

Linux

profiles, 4

load

PGPROF command, 62

M
Manual organization, xiv

Measure

time, 41

Menu items

Backward search, 47

Clear Search, 48

Close, 47

Exit, 47

Font, 49

Forward search, 47

Help, PGPROF, 49

new Window, 46

Open Profile, 46

PGPROF Help, 49

Print, 47

Print to File, 47, 47

Restore Default Settings, 48

Revert to Saved Settings, 48

Save Settings on Exit, 48

Scalability comparison, 47

Search Again, 47

Select Columns, 48

Select Graph Colors, 48

Show Tool Tips, 49

Menus

File, PGPROF, 46

PGPROF, 45, 46

View, 48

merge

PGPROF command, 62

Messages

feedback, 15

inlined, 15

intensity, 15

number received, 42

number sent, 42

received, 42, 42

sent, 42, 42

MPI

data analysis, 19

performance analysis, 19

MPICH-1

-Mprof option, 30

MPICH-2

-Mprof option, 30

MSMPI

-Mprof option, 30

Multi-threaded

data analysis, 16

data collection, 15

profiling, 15

MVAPICH

-Mprof option, 30

N
Navigation

HotSpot, 13, 51

jump to profile, 12

previous PGPROF view, 12

Profile, 9

select profile, 12

Network

slow connections, 6

O
OpenMP, xiii

OProfile

pgcollect, 67, 67

Options

-Minfo=ccff, 29

-Mprof=dwarf, 29

-Mprof=func, 30

-Mprof=hpmpi, 30

-Mprof=lines, 30

-Mprof=mpich1, 30

-Mprof=mpich2, 30

-Mprof=msmpi, 30

-Mprof=mvapich, 30

-Mprof=time, 30

-pg, 30

P
Parallel

program profiles, 15

Performance

-allcache pgcollect option, 68

assembly-level view, 52

collect data, 4

data views, 51

-dcache pgcollect option, 68

displyed, 51

-dmisses pgcollect option, 68

line-level view, 52

MPI programs, 19

multi-threaded programs, 15

routine-level view, 52

pgcollect, 65

-allcache option, 68

-check-events option, 68

-cuda=branch, 70

-cuda=cc13, 70

-cuda=cc20, 70

-cuda=cfg, 70

-cuda=gmem, 70

-cuda=list, 70

custom event specification, 68

-dcache option, 68

-es-function option, 68

event-based, 67

-event option, 68

-exe option, 68

help, 66

-hwtime option, 68

-imisses option, 68

invoking, 66, 66

-list-events option, 68

74

OProfile, 67, 67

-post-function option, 68

-shutdown option, 68

time-based, 66

-time option, 66

version, 66

-V option, 66

PGI_JAVA

environment variable, 6

PGPROF

Command-line options, 35

commands, 59

command summary, 60

command syntax, 59

Compilation, 29

Edit menu, 47

environment variables, 39

features reference, 45, 45

File menu, 46

focus panel, 45

Help, 49

information bar, 46

menu bar, 45

menus, 46

optimization, 43

overview, 1, 45

Overview, 1

scalability comparison, 19

Sorting Profile Data, 13

Sort menu, 49

statistics table, 45

toobar, 45

toolbar, 50

Using, 7

View Menu, 48

PGPROF_DEPTH, 39

PGPROF_EVENTS, 39

PGPROF_NAME, 39

pgprof.out, 4

PGPROF command line option, 35,

35, 36

-datafile, 35

-feedbackonly, 35

help, 36

-help, 35

-jarg, 36

-text, 36

-V, 36

PGPROF Commands

! (history), 63

asm, 61

ccff, 61

display, 61

help, 61

history, 62

lines, 62

load, 62

merge, 62

print, 62

process, 62

quit, 62

select, 62

sort, 63

srcdir, 63

stat, 63

thread, 63

times, 63

Print

PGPROF, 47

PGPROF command, 62

process

PGPROF command, 62

Profile

calls, 42

cost information, 42

count executions, 42

data statistics, 41

hardware counters, 21

line information, 42

MPI, 41, 42, 42, 42, 42, 42

pgcollect, 65

time, 42

Profiler

invoke, 5

sample launch, 5

Profiles

collect data, 4

edit, 47

Event-based, 3

Instrumentation-based, 2

multi-threaded programs, 15

navigation, 9

open, 46

output file, 4

parallel programs, 15

platforms, 4

sort, 13, 49

Time-based, 3

use hardware event counters, 4

ProfilesL data, print, 47

Profiling

clock resolution, 43

Command-level interface, 59

compilation, 29

HPMPI communication library, 30

line-level, 30

measurements, 51

MPICH, 30

MPICH-1, 30

MPICH-2, 30

MVAPICH-1, 30

optimization, 43

overhead, 42

PGPROF, 1, 39

routine-level, 30

sample-based, 30

time-based, 30

Virtual Timer, 41

profiling

event-based, 67

time-based, 66

Program execution

Using Hardware Event Counters, 4

Q
quit

PGPROF command, 62

R
Region

accelerator, 55

accelerator time, 55

Related Publications, xvi

Repeat

search, 47

Reset

Bar Chart colors, 48

Resource

Index

75

utilization, profiling, 21

Restore

settings, 48

Revert

settings, 48

Routines

execuation time, 42

inlined messages, 15

-Mprof, 30

S
Save

current settings, 48

Scalability

comparison, 19, 47

Scale

PGPROF command line option, 36

scrdir

PGPROF command, 63

Search

again, 47

backward, 47

clear, 48

forward, 47

Select

columns, 48

PGPROF command, 62

Set

colors in GUI, 48

font, PGPROF, 49

Settings

restore default, 48

revert to saved, 48

save on exit, 48

Sort

menu, PGPROF, 49

PGPROF command, 63

profile data, 13, 13

Source

line numbering, 52

source file

search path, 35

Specify

custom events pgcollect, 68

stat

PGPROF command, 63

Statistics

data profile, 41

select data, 51

table, PGPROF, 45

table in PGPROF, 51

System

environment, 4

variables, 4

System Requirements, xvi

T
Tables

Focus Panel, PGPROF, 52

statistics in PGPROF, 45

tabs

Histogram, PGPROF, 53

text

PGPROF command line option, 36

Threads

PGPROF command, 63

Time

execution, 42

measure, 41

-Mprof option, 30

time-based profiling, 66

times

PGPROF command, 63

Toolbar

PGPROF, 45, 50

Tool tips

show, 49

Troubleshoot

PGPROF, 5

Tune

application, 5

V
V

PGPROF command line option, 36

Variables

system environment, 4

Versions

-V option, 36

View

menu, 48

performance data, 51

previous profile, 12

profiles with hardware event

counters, 21

select profile, 12

W
Window

new, PGPROF, 46

76

	PGI® Profiler Guide
	Contents
	Preface
	Intended Audience
	Supplementary Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications
	System Requirements

	Chapter 1. Getting Started
	Basic Profiling
	Methods of Collecting Performance Data
	Instrumentation-based Profiling
	Sample-based Profiling
	Time-based Sampling
	Event-based Sampling

	Choose Profile Method
	Collect Performance Data
	Profiling Output File
	Using System Environment Variables
	Profiling with Hardware Event Counters

	Profiler Invocation and Initialization
	Application Tuning
	Troubleshooting
	Selecting a Version of Java
	Slow Network

	Chapter 2. Using PGPROF
	PGPROF Tabs and Icons Overview
	Profile Navigation
	HotSpot Navigation
	Sorting Profile Data
	Compiler Feedback
	Special Feedback Messages
	Intensity Messages
	Messages for Inlined Routines

	Profiling Parallel Programs
	Profiling Multi-threaded Programs
	Collecting Data from Multi-Threaded Programs
	Analyzing the Performance of Multi-Threaded Programs

	Profiling MPI Programs
	OpenMPI Profiling
	Analyzing the Performance of MPI Programs

	Scalability Comparison
	Profiling Resource Utilization with Hardware Event Counters
	Profiling with Hardware Event Counters (Linux Only)
	Analyzing Event Counter Profiles

	Profiling GPU Programs
	Profiling PGI Accelerator Model Programs
	Function-Level Analysis
	Region-Level Analysis
	Kernel-Level Analysis

	Profiling CUDA Fortran Programs
	Performance Profiling with Pre-defined Counter Configurations
	Performance Profiling with User-defined Counter Configurations

	Chapter 3. Compiler Options for Profiling
	-Mprof Syntax
	Profiling Compilation Options
	Configuration Files for OpenMPI Profiling
	Compiler Wrapper Data Files
	Configure OpenMPI for PGI Profiling
	Modified Compiler Wrapper Data File Sample

	Chapter 4. Command Line Options
	Command Line Option Descriptions
	Profiler Invocation and Startup

	Chapter 5. Environment Variables
	System Environment Variables

	Chapter 6. Data and Precision
	Measuring Time
	Profile Data
	Caveats (Precision of Profiling Results)
	Accuracy of Performance Data
	Clock Granularity
	Source Code Correlation

	Chapter 7. PGPROF Reference
	PGPROF User Interface Overview
	PGPROF Menus
	File Menu
	Edit Menu
	View Menu
	Sort Menu
	Help Menu

	PGPROF Toolbar
	PGPROF Statistics Table
	Performance Data Views
	Routine-level view
	Line-level View
	Assembly-level View

	Source Code Line Numbering

	PGPROF Focus Panel
	Parallelism tab
	Histogram tab
	Compiler Feedback tab
	System Configuration tab
	System Tab
	Accelerator tab

	Accelerator Performance tab
	Accelerator Model Profiles
	CUDA Fortran Profiles

	Chapter 8. Command Line Interface
	Command Description Syntax
	PGPROF Command Summary
	Command Reference

	Chapter 9. pgcollect Reference
	pgcollect Overview
	Invoke pgcollect
	Build for pgcollect
	General Options
	Time-Based Profiling
	Time-Based Profiling Options

	Event-Based Profiling
	Root Privileges Requirement
	Interrupted Profile Runs
	Event-based Profiling Options
	Defining Custom Event Specifications

	PGI Accelerator Model and CUDA Fortran Profiling
	Accelerator Model Profiling
	CUDA Fortran Program Profiling
	Performance Tip

	Index

