

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPE, PGF77, PGCC, PGC++, PGI Visual Fortran,
PVE PGI CDK, Cluster Development Kit, PGPROE, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated. Other brands and names are
property of their respective owners.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGDBG® Debugger Guide
Copyright © 2010-2012 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America

First Printing: Release 11.0, December 2010
Second Printing: Release 11.1, January 2011
Third Printing: Release 11.2, February 2011
Fourth Printing: Release 11.4, April 2011
Fifth Printing: Release 12.1, January 2012
Sixth Printing: Release 12.6, June 2012
Seventh Printing: Release 12.9, September 2012

Technical support: http://www.pgroup.com/support/
Sales: sales@pgroup.com
Web: http://www.pgroup.com

ID: 122621335

Contents

PLEEACEoooviiiiii s Xvii
INEENAEA AUBIENCEc.viiveiiieiieiie ettt ettt ettt e e enee e Xvii
DOCUMENTALIONeeiiiiiiiiiiiiiie ettt e st e e Xvii
Compatibility and Conformance to Standardsccccoceviiiiiniiiiiii Xvii
OFZANIZALIONvviiiiiiiit ettt e et e e Xviii
CONVEILIONSeveeiiiiiieeeiiiie ettt ettt e ettt e e sttt e e et e e e st e e e s saibaeeesnatneas Xix
TEIMUINOLOZY ...ttt ettt XX
Related PUDLCAONSc.ooviiiiiiiiiiit ettt XX

1. GettiNG STATTEMc.oviiiiiiiicc s 1
Definition Of TEIMSc.eoiiiiieiiieie ettt ettt e nbe e eneens 1
Building Applications for DeDUGc..coeriiiiiiiiiiiii 1

Debugging Optimized COMEccueriiriiriiniiiiiiiei e 2
Building for Debug 0n Windowscccooiiiiiiiiiiiiiiice e 2
USET INEEITACESiveeiieiieiiecie ettt ettt et et ne et ebeantesneeae s 2
Command Line INterface (CLL)cccveiiiiiuiiiiiiiiiii ettt 2
Graphical USer INErfACEccviiiiiieriiiieii e 2
CO-inStallation REQUITEIMENLScc.veruierieiiieiieiieeie ettt ettt e e enee e neeaneea 3
Java VIrtual MACiNeccoevuiiiiiiiiieie ettt 3
LICENSING ...ovvviiiiiiiiiiiiiii i 3
Start DEDUZZINGoveiiiiiiiiiiiii e 5
Program LOAGc.ooiiiiiiiiiiiiii e 5
INItHALZAHON FILESc..iiviiiieiieie ettt ettt 5
Program ArCRItECIUTEc...coviiiiiiiiiiiiiit et 5

2. The Graphical User Interface ..., 7
Main COMPONENLSevviiiiiiiiiiiiiiiiii i 7
SOUICE WINAOW ...ttt ettt et e b ettt et eebee e 8

Source and Disassembly DiSPLaYscccovieriiiiiiiiiniiiiii 8
Source Window CONtEXt MEIUcoovvriiiiiieiiiiieiee e 9
AN TOOIDAT ...t ssesssnenen 9
BUELONS ... e 10
Drop-DOwWn LiSESc..oooiiiiiiiiiiiiiiiiiiii 10

Program I/0 WINAOWccooiiiiiiiiiiiieie et 11

Debug INformation TADScoueririiiiiiiiii e 11
COMMANG TADviiiiiiiiie e 11
BVENLS TAD ...ooiiiiii e 12
GTOUPS TAD .. 12
CONNECHONS TADeiiiiiiieiiit ettt ettt et 13
Call SEACK TAD ..o 14
LOCALS TAD ..ottt ettt e e et et e et b e eeenaeas 14
MEMOTY TAD ..ottt 15
MPI MESSAZES TADcvviniiiiiiiiiiiieie e 15
Procs & THreads TADcccooviiiiiiieii et 16
REGISEETS TAD ..ottt 17
SEAUS TAD ..ot 18

MENU BAL ... 18
FILE MENU .o 19
EAit MENU .oooovviiiiiiiiii 19
VAW IMCIIUL ..ttt 20
Data MENU ... 20
CONNECLIONS MEMUeeeiiiiiiiiiee et e et e e 21
DEDUZG MEIU ...ttt e 22
HEIP MENU ...ttt 23

3. Command Line OPtiONSccoooviiiiiiiiniiiece e 25

Command-Line OPtONS SYNLAXevvveruiiieriieteitierieete sttt ettt ettt ettt e e 25

COMMANA-LINE OPHONS ...e.vveiieriieiieiieie ettt ettt ettt ettt sttt et e e 25

Command-Line Options for MPI DeDUZZINGccverieriiiiiiiiiiiiiieiieritee e 26

/0 REAITECHONvvivieitieiiieiieie ettt ettt ettt et et e e e st e eae e beenbeebaesbeesbeeaeenas 26

4. Command LANGUAZEccooooiiiiiiiiiiieee s 27

COMMANA OVEIVIEWc.vvieiiiieieiieeeieeeeie e et e ettt e e stae e e tae e et e e s staeessbeeessbaeessbeeessseeessseeenneeennns 27
COMMAN SYNEAX ...ttt ettt 27
ComMMANA MOGESoeovviiiiiieiiiie et s e e s e e stbe e e sabe e e staeeeanee e 27

L0001 21 1L PP P PP PP P PP PP PPPPPPPPPPPPP 27

SYMDOLS ... 28

SCOPE RUIES ...t et 28

Re@iSter SYMDOLSooiiiiiiiiii e 28

SOUICE COAE LOCAONSeeieiiiiieiiiiii ettt ettt et et 28

LEXICAL BLOCKS ...ttt ettt ettt aaaaaeeees 29

STALCIMIEIESvveeieieee ettt e ettt e e e st e e e s et eeeeen e 30

BVENES 30
Event COMMEANGSooiiiiiiiiiiiiiei e 31
Event Command ACHONcoouiiiiiiiiiiiiiit e 32

EXPIESSIONSovvviiiiiiiiiiiiiiii i 33

(014 SR PPRROPRPPR 34
Command-Line DebUZZINGcc.cooviriiriiiiiiiiiiiiiciei e 34

GUI DEDUZZING ...t 35

PGDBG® Debugger Guide

MPIL DEDUZZING ..ottt ettt 35

5. ComMMANA SUMMALYooviiiiiiiiieiiiee s 37
Notation Used in Command SECHONScc.coovirieriiiiiniiiinieicic e 37
CoOMMANA SUMIMIALYviiiiiiiiiiiiiiet ettt 38

6. Assembly-Level Debuggingcccoocovvviiiiiiiiiiiiinieeeeeeee s 51
Assembly-Level Debugging OVEIVIEWcc.cocveiiiriiiiiiniiiiiiiiniieie et 51
Assembly-Level Debugging on Microsoft Windows SyStemsccccevveriiierienieniennane. 51
Assembly-Level Debugging with FOItrancccccocoviiiiniiiniiiiiiecc 52
Assembly-Level Debugging with C™ccooviiiiiiiiieieccieeeeeeeeeeeee e 52
Assembly-Level Debugging Using the PGDBG GUIccocoeviviiiiiniiiiniinieiceiccecn 52
Assembly-Level Debugging Using the PGDBG CLIc.ccovviiniiniiiinienieiccicecee 52

SSE RegiSter SYMDOIScviriiiiiiiiiiiiiii e 53

7. Source-Level Debugging ... 55
Debugging FOTTIANccoiiiiiiiiiiiiti it 55
FOItran TYPESooviiiiiiiiiiiiiiii 55

ATTAYS oo 55

OPEIALOLS ...vvviiiiiiiiiii i 55

Name of the Main ROULNEccoooviriiiiiiiiiiiiiiccccc e 56

COMMON BIOCKScvviviiiiiiiiiiiiiicc s 56

INEErNAl PrOCEAUIEScviviiiiiiiiiiiiiii et 56

MOGUIES ... 57

MOdule PrOCEUIEScocviriiiiiiiiiieicit e 57
DEDUZZING €™ oo 58
Calling C** InStance MEthOASocoviiiiiriiiieiiiie s 58

8. Platform-Specific FEAtures ..o, 59
Pathname CONVENTIONSoovvrviiiiiiiiiiiiiie e 59
Debugging with Core FAlesccoooiiiiiiiiiiiiiiiic e 59
SIGNALS ...ttt 61
Signals Used Internally by PGDBGcccooiiiiiiiiiiiniiniiiicicsiteieccee e 61

Signals Used by LInUX LIDIALIESccooiiiiiiiiiiiiieici e 61

9. Parallel Debugg@ing OVErview ... 63
Overview of Parallel Debugging Capabilityccoeeiiiriiiiiiiiei e 03
Graphical Presentation of Threads and ProCeSSESc.cccvervirrieiieriiaieiieii e 03

Basic Process and Thread NAMINGcccoiiiriiiiiiiiiiiiiieee s 03
Thread and Process Grouping and NAmMingcoccovveriiniiiiiiininieniee e 04
PGDBG DebUZ MOESc..eviiiiieiieiieieiet ettt 04
Threads-only DeDUZZINGc.oiueiiiiiiiiiiiiiiee s 05
Process-only DeDUZZINGc..cooviiiiiiiiiiiiiiii e 05

Multilevel DEDUZZINGcvevieiiiiiieieiiieie e 05
ProCeSS/TRIEAA SELSc.vieiiiiiiiiiti et 06
NAMEA P/ESELS ..ottt bbbt 06

P/ASEE NOTAOM ...ttt 06

DYNAMIC VS. SEAHC P/A-SLSevveveeritieieiieteieiete ettt 67

CUrrent VS. PrEfiX P/E-SELcoveiiiiiiiieiiiieieiete et 67

P/t=Set COMMEANAS ...ttt 68
Using Process/Thread Sets in the GUIcceovverieriieienieieiie it 69

P/ SEE USAZE ...t 71
COMMANG SELeeviiieitiii ettt ettt e e et e e et e e st e e sabe e e eabeeesnbaeenabeeennaee e e 71
Process Level COMMANAScc.ooiiiiiiiiiiiiieiie e 71
Thread Level COMMANASccveeiiiiiiiiieiiie e sbae e siaee e 71
Global COMMEANASccvviiiiiiieiiie et nana e 73
Process and Thread CONrolccooiiiiiiiiiiiii e 73
Configurable StOP MOcoveriiriiiiiiiiiie e 74
Configurable Wait MOGEooiiiiiiiiiiieie e 74
SEAUS MESSAZESveveveniettetetese ettt ettt ettt ekt st bt b et es bt es bbb e st et b e e n ettt n bt en et 76
The PGDBG Command PrOMPLcc.oocviriiiiiiiiniiiiiiiciiteie et 77
PAralle]l EVENLSccvviiiiiiiiiieeiiie ettt ettt e e st e e e et e et e e et e e et e e et e e enaaeeenns 78
Parallel StACMENTSooooviiiiiiiiiiiiei 79
Parallel Compound/Block Statementscooeeiiieiiiiiiiiiniiieiccee e 79
Paralle]l If, EISE STALEIMENLSc.uvvieeiiiiiieieiieie et e ettt eaae e 79
Paralle]l WHile SEATEINEIESeeeeeeeeee e 79
RetUIN SEACMENLSeveiiieiiiiiiiiiiiie ettt e st e e e 80

10. Parallel Debugging with OpenMP ... 81
OpenMP and Multi-thread SUPPOITcc.eiiiiiiiiiiiiieee e 81
Multi-thread and OpenMP DeDUZZINGooviiiiiiiiiiiiieiec e 81
Debugging OpenMP Private DALAcccveeruieiiiieriieiieaiieeieenite e eriee e stee e ieeesaeeseeenee e 82
11. Parallel Debugging with MPI ...t 85
MPI and Multi-ProCess SUPPOTTeviruiiriiiiiiieiieit ettt 85
Launch Debugging From Within the GUIcc.cooiiiiiiiiii 85
Launch Debugging From the Command Linecc.cocoeviiniiiiniiiniiiic e, 85
1171 (00§ 3 T SSPPPPN 85
171 (00§ USSP 86
MVAPICHooeeniicee et e e e e e e e et s e e e e e e e e e sb e e aeees 86
MSMPI (LOCAL) ©.vvviiiiiiieee ettt ettt e e 86
MSMPI (CIUSEEE) ..ottt ettt e e e e eraae e e e aaaeeas 86
Using MPI 00 LINUXooiiiiiiiiiiiiiiiiiii i 87
INSEALLNG MPI ..ottt e 87
Randomized Load AAAreSSescooioiiiiiiiiiiiiiiie s 87
Using MPL 00 WAAOWSc.viiiiiiiiniiiiiiiiei it 88
InStAllng MSMPIooiiiiiiiiiiii e 88
Building with MSMPIooiiiiiiiiiiii e 88
PrOCESS COMITOLc.uviiiiieiiii ettt ettt ettt et et e st e enae e 88
Process SYNChrOMIZAtONcccooiiiiiiiiiiiiiie e 89
MPI MESSAZE QUEUESceviniiiiiiiiiieeeeiiiiiti ettt e e e sttt e e s ettt e e e e st e et e e e e s st reeeeeees 89
MPI GLOUPS .ottt ettt e e e sttt e e e e et e et e e e e s nenennees 90
Use Dalt INSTEAA OF CUIIHC «.oveeeeeeeeeeeeee et e e e 90

SSH N0 RSH ...ttt ettt ettt e be e 90

PGDBG® Debugger Guide

USING the CLL ..ottt ettt et ettt b et et e e 91
Setting DISPLAY ... 91
USING COMLMUEoevvieiiiiiiiiiiiiiiee ettt e ettt e e s ettt ee e e s 91

Debugging Support for MPICH-1cccooiiiiiiiiiiiiicicc e 91

12. Parallel Debugging of Hybrid Applicationsccccccoooovininininince, 93
PGDBG Multilevel Debug MOAEccviiiiiiiiiiieiiieiiie e 93
Multilevel DEDUZZINGcc.veruriiiiiiiiietiii et 93

13. Command Referencecococoiviiiiiieieeeeeeeeeeee e, 95

Notation Used in Command SECHONScccvveeiiiiiiiieiiiiiee et ettt 95

PLOCESS COMIIOL ... e et e et e e e e e e et e e e e e e e 96
ALEACKL .o 96
COME .ottt e e e e ettt e e e e e e ettt e e e et a e e e e e 96
AEDUG ..o 96
AEUACK ... 96
ALt o ————————— 97
J0Ad ... 97
11 1, (TP PUPPPPOPSR 97
11 1. (i (PP U TP UPPPPPPRIRt 97
PIOC oottt 97
PIOCS ..ottt 97
QUIL oo 97
5 o 1) | PP 97
11 | RSP PTPT 98
SCUATES ...oooiiiiiiiiiiiiiii i e 98
] 1 | PP PP PP PP TP PP PP TPPPPPPPPPPPRPON 98
STRPT ..ottt e 98
STEPOUL ...ooiiiiiiiiiiiiiii 98
) L LT OO P PRSP PP PP PP SROTPPPPP 98
) L0 PP PP PSP PP PP PP PRPPPPN 99
TRE@A ... 99
BRE@AAS ... 99
L) L AT 99

ProCeSS-TRICAA SELSooovvvviiiiiiiiiiiiii 99
QOESCE oo e 99
BOCUIS .o 99
UIACESEE ...t 99
VEBWSCE .oooiiiiiiii ittt ettt e e e e e et e e e e e e e e e e e e e e e e 100
WHACHISEESoovvvviiiiiiiii e 100

BVOIIES . e e e e e e e e e e aeaaaaaa 100
DIEAKoooiiiiiiiiiii e 100
DIEAKEoovviiiiiiiiccie s 101
DIEAKSoovvviiiiiiiiiie e 101
CALCR ..o e 102
CLEAL ..o e 102

viii

QESADIEvvvvveiiiiiee e 102
QO o 102
QOT e 103
ENADIE ..ot 103
RWALCK ... 103
RWatchbothcooiii e 103
RWALCEAdooooiiiiiiiii e 103
IBIOTE ..ot e 104
) 111 L S PP OTPPPRRRRITR 104
SEOP ettt ettt ettt 104
SEOPI ...ttt e 104
11 v 1V PP 104
BEACRL .oovvniii ittt e e e e et e e e e e e e et e aaeeaaaaaa 105
TEACK Loovieiiiiiiii e 105
TPACKL ...o.ovviiiii e 105
UNDLEAK ..ot 105
UNDLEAKIooovviiiiiiiii e 105
WALCH ..o s 105
WALCH ...ooiiiiie e 106
WHEIL ..o 106
WRCI ...oooviiii e 106
Program LOCALONSccuvvvviiiiiiiiiiiiiiiii e 107
ALTIVE ..ottt ettt et e e e e e e e e e 107
U oo 107
QESASINovvviiiiiiiiiii e 107
CUIL ..ot 107
Bl .o 107
JHIMES ..o 108
ISt .o 108
PWA oo 108
SEACKAUMP ..ot 108
STACKLIACEvvvvviiiiiieec ettt e et e e e 108
WO ... 109
e 109
e 109
Printing Variables and EXPreSSIONScoeivveriieriiiiiiieniiiieniienit ettt 109
PIIIE oo e 109
PIINE Lo e 110
.1 o | S PPPOPPUPPPPPPPOt 111
DEIL e 111
QG oo 111
BESPIAY ..o e 111
X 111
114 SO PPPRTR 111

PGDBG® Debugger Guide

SUFIIMG ..ot 111
UNAISPIAY ..o 112
SYMDOIS ANA EXPIESSIONSc..vviiiiiieiiiiieieieitcst ettt 112
ASSILI ..ottt 112
CAll oo 112
AeClArAtiONoovvveiiiiiiiii e 113
(3 111 O T TP P PP PP P PPUPRORTPPPP 113
IVAL oo s 113
IVAL Lo s 113
S oottt ettt e e oot — e e e et e e e e e —a e e e et e e e e e raeeeanareeeeeanes 114
SIZEOL ..o 114
BY DI ettt 114
SCOPE .tttk h bbbt b bbbt ettt et na e et entees 114
CLASS .o 114
CLASSES ... 115
ECIS ..o ——— 115
QOWIL Loooiiiiiiiii et e e et e e 115
L3 1L PP PPPPPPPPRPPIRt 115
BHLES ..o s 115
GLODAL ... s 115
TMAIMIESooooiiiiinnneeeeeeeet e e e eeeeeeetae e seeeeeeeas b ate e eaeeeeeaesaaaa e eeaeeesesbttaeeaeeeeeerrnennnans 115
L1 L 115
1171 J TSP URUPRTUTPR 115
WRETEESooiiiiiiiiie ettt 116
WHHCH ..o et 116
REGISIET ACCESSvvveeviviereetietesteteetesteteete st eseete st et se et eseeb e b e st ese et et e s e ese b e st ebe s et eseese s ensen e 116
DD ettt ettt ettt et 116
P ettt s e h bt h b b s et b b st bbb st ettt ettt te b 116
T@ES ..eiueettetetest ettt e ettt et s ettt ettt ekt s Rt h b s bR e bRtttk e b e s et e b b en e et e bt ere bt ereen e 116
PELAAMALooooiiiiiii e 116
IO OSSP USOPTPOTPOPRPTSPURPIN 116
MEIMIOTY ACCESSvvveiieeeeiiiiiiiiet e e ettt e e e ettt e e e s e ettt e e e e s s ettt et et eeesssebbbbeeeeeees 117
CPEAWooiiiiiiiii i et 117
APCAA ..o 117
QUIMP ..o 117
FP@AM ... 118
IP@AW ..o 118
IPEAM ... ——— 118
MAAUINP ..o 118
SPEAM ...ttt 118
COTVETSIONS .evvvvueneeeeeeettiiieeseeeeeeeatt e e e eeeeeeaas b eeeeeaeeeaasaata e aeaeessssbstannsaeesesssssstannseaaeaeeeses 118
AAAL ..o 118
FUNCHON ...t 119
BHE oo 119
TATGEL ... e et e st e e e e s e e 119

(007111 (< PP 119

QESCOMMECT ... 119
1T 11\ (TP PTRPR 119
MISCELIANEOUSeeovvieiiieiiieiie ettt ettt ettt ettt et e et eetbeesbe e stbeesbeeenbeebaeenaeebeeenne 120
ALIAS ...t enaes 120
QEPECLOTY ..ottt et ettt e et e e tb e et e e e tbeeearee e 120
BEIP ..o 120
BESTOTY ..ottt ettt 121
JAIGUAGE ..ot 121
G e 121
MOPTLIIE ..ot 121
PICIV .o 121
FEPEAL ..ottt ettt et 124
0y |1 OO P SRRSO 124
SEURILYoitiietiieteteesteetteeteeteesteete e teesseete e beesbeete e beesbeesbeebeesbeeae e e te e b e erb e e teebe e st e ereees 124
SHEIL ..o 124
SLBRD .ttt 125
SOUICE ...oeeeeeeiiiiiiiittteeeee s ettt ettt eeeeaaabbtb bttt eeeessasbbtb b et e et eesaaa bbbt b e et teeeesaabbbbbbeeeeeeesannnnes 125
UNALIAS ...ocoiiiiiiiiiii ettt et na e enaas 125
USC ittt e e e e e e e e e e e e 125

Figures

1.1. Local Debugging LICENSINGccueeviriieriiiiiiiieite ettt 4
1.2. Local Debugging LICENSINGccutiiviriieriiiiiiiieitt ettt 4
2.1. Default Appearance of PGDBG GUIc.coouieiiiiiiieiiiiiie et eiee ettt sttt snaeesiee e e e 7
2.2, SOULCE WINAOW ...ttt ettt ekttt sttt ettt ettt e b e s neee 8
2.3, COMEEXE MEIUooiiiiiiiiiiiiiii ittt et st e s 9
2.4. BULONS 0N TOOIDALcvviviiiiiiiii ittt ettt 10
2.5. Drop-Down Lists 0N TOOIDATcc.oeriiiiiiiiiiiiiiie e e 10
2.6. Program I/O WANAOWcooerieiiiiiierietiiei ettt re ettt ettt se bt se b besa s 11
2.7, ComMANG TADoiviiiiiiiiiieie e 12
2.8 EVENLS TADeivviiiiiiett ettt ettt 12
2.9, GLOUPS TAD ..vieiviiiiieeiit ettt ettt ettt et ettt et et e et e e ab e et e et e e bt eerbeebeeenbeeteas 13
2.10. CONNECHONS TADovviiiiiiiiti ittt ettt ettt et n et e e 13
211 Call SEACK TAD ..ecvvivieeieieeit ettt bbbt 14
2.12. Call Stack Outside CUITENt FIAMEcc.eiveriiiiiiieiieieci et 14
2.13. LOCAUS TAD ..ottt ettt 14
2.14. MEMOTY TAD ...o.viiiiiiiietiet ettt ettt ettt bbbttt ettt ene s 15
2.15. Memory Tab in Decimal FOTMALcc.eoiviiiiiiiiiiieie e 15
2.16. MPL MESSAZES TADo.vivveviiiieiietieieieie ettt ettt sttt et s ettt ebe b ne s 16
2.17. Process (TRread) GIid TADcc.ooiiiiieiieeeiie et 16
2.18. General PUIPOSE REZISLEISeevieriieiiieiiieeitesiie et e site et e sieeesbeeetteenbeestaeesbeestbeenbeessseesbeensnes 17
2.19. SEAUS TAD ..ttt ettt 18
0.1, GIOUPS TAD ...ovviviiiieicte ettt ettt ettt ettt ettt ettt ereere s 69
9.2. Process/Thread Group DIidlog BOXcceeviiiiiiiiiiiiieiiieiie et 70
10.1. OpenMP Private Data in PGDBG GUIoouviiiiiiiiiiiiiiic e 83

Xi

Xii

Tables

2.1. Colors Describing Thread SEALecocoiiiiiiiriiiiiiiet s 17
4.1. PGDBG OPEIALOISvvevvievveiiessiesteeteesteestesteesteestesseesseeseesteesseessasseessesssesbaesseesseseessesssesseenseens 34
5.1. PGDBG COMMEANUSceviiuiiiiieiieiieiiieitt ettt ettt sttt nieas 38
9.1. PGDBG DEDUZ MOUESc.vevviiiiiiiieiieiieiee ettt bbb 64
9.2, P/t-5€t COMMEANUSvevverieniiiiitiett ettt ettt ettt ettt ettt e et st be ettt en e est et e beebesbeebeeneaneas 68
9.3. PGDBG Parallel COMMANGScceeruiimiiriiiiiiieiieit et 71
0.4, PGDBG StOP MOGESeovvivieiiieiieiteie ettt ettt ettt ettt ettt e e sb e st e beensesaeebeenaesaes 74
9.5. PGDBG Wit MOGESooviinieiiieniieiieitieite ettt ettt 75
9.6. PGDBG Wit BERAVIOTc.ooviiiviiiiiiiieiiciiiee ettt 76
0.7. PGDBG Status MESSAZESoviiviiiiiiiiiiiiiiiiiiiiii ettt 77
10.1. Thread State Is Described Using COLOTccoviiiriiiiiiiiiiiiiiieiiet e 82
11,10 MPICH SUPPOTL .ottt e e e ettt e e e e e s e sttt e e e e e s s anaeenes 92
13.1. pIeny COMMANUScvveiviieiieiiiteiieete et ettt rtte b e e bt e sbeebeestbeesbaessbeebeestbeesbeeesaeesbeessbeenseas 122

xiii

Xiv

Examples

9.1. Thread IDs in Threads-only Debug MOAEcooueriiiiiiiiiiiiiiieeetee e 65
9.2. Process IDs in Process-only Debug MOcccooviiiiiiiniiiiiiiiiiicie e 65
9.3. Thread IDs in Multilevel Debug MOdEcoueriiiiiriiiiiriieieiie e 65
9.4. p/t-sets in Threads-only Debug MOccoviiriiriiiiiiiiiieieeee e 66
9.5. p/t-sets in Process-only Debug MOdeccoeriiiiiiiiiiiiiiiiee e 67
9.6. p/t-sets in Multilevel DeDUZ MOGEc.orviriiiiiiiiiiiiiiiei et 67
9.7. Defining 2 DYNAMIC P/E-SELeovierierierierieieite ettt ettt sttt ettt bbbt ereeneeneenees 67
0.8. DefiliNg A SALC P/A-SEL ...e.viviiviirierieeieieiet ettt ettt ettt et ettt ettt sb bt ereereens 67
12.1. Thread IDs in multilevel debug mOdeccooiiriiiiiiiiiiii e 93

13.1. Syntax examples

XV

XVi

Preface

This guide describes how to use the PGDBG debugger to debug serial and parallel applications built with The
Portland Group (PGI) Fortran, C, and C** compilers for X86, AMD64 and Intel 64 processor-based systems. It
contains information about how to use PGDBG, as well as detailed reference information on commands and its
graphical interface.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming with
the Fortran, C, and/or C*™ languages. The PGI tools are available on a variety of operating systems for the X86,
AMDG64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Documentation

PGI Documentation is installed with every release. The latest version of PGDBG documentation is also available
at www.pgroup.com/docs.htm. See www.pgroup.com/fag/index.htm for frequently asked PGDBG questions and
answers.

Compatibility and Conformance to Standards

The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms

to the ANSI standards for FORTRAN 77, Fortran 95, Fortran 2003, C, and C** and includes extensions from
MIL-STD-1753, VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGFORTRAN,
PGCC ANSI C, and PGCPP support parallelization extensions based on the OpenMP 3.0 standard. PGHPF
supports data parallel extensions based on the High Performance Fortran (HPF) defacto standard. The PGI
Fortran Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran
compilers.

PGDBG supports debugging of serial, multi-threaded, parallel OpenMP, parallel MPI and multi-process multi-
threaded hybrid MPI programs compiled with PGI compilers.

For further information, refer to the following:

e American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
e American National Standard Programming Language C, ANSI X3.159-1989.

XVii

Organization

e ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).

e ISO/IEC 1539:1991, Information technology — Programming Languages — Fortran, Geneva, 1991 (Fortran
90).

e ISO/IEC 1539:1997, Information technology — Programming Languages — Fortran, Geneva, 1997 (Fortran
95).

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

* OpenMP Application Program Interface, Version 2.5, May 2005, http.//www.openmp.org.
e Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

e HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization

The PGDBG Debugger Manual contains these thirteen chapters that describe PGDBG, a symbolic debugger for
Fortran, C, C*" and assembly language programs.

Chapter 1, “Getting Started’
contains information on how to start using the debugger, including a description of how to build a
program for debug and how to invoke PGDBG.

Chapter 2, “The Graphical User Interface”
describes how to use the PGDBG graphical user interface (GUI).

Chapter 3, “Command Line Options”
describes the PGDBG command-line options.

Chapter 4, “Command Language”
provides detailed information about the PGDBG command language, which can be used from the
command-line user interface or from the Command tab of the graphical user interface.

Chapter 5, “Command Summary”
provides a brief summary table of the PGDBG debugger commands with a brief description of the
command as well as information about the category of command use.

Chapter 6, “Assembly-Level Debugging”
contains information on assembly-level debugging; basic debugger operations, commands, and features
that are useful for debugging assembly code; and how to access registers.

Chapter 7, “Source-Level Debugging”
contains information on language-specific issues related to source debugging.

Xviii

Preface

Chapter 8, “Platform-Specific Features”
contains platform-specific information as it relates to debugging.

Chapter 9, “Parallel Debugging Overview”
contains an overview of the parallel debugging capabilities of PGDBG.

Chapter 10, “Parallel Debugging with OpenMP”
describes the parallel debugging capabilities of PGDBG and how to use them with OpenMP.

Chapter 11, “Parallel Debugging with MPI’
describes the parallel debugging capabilities of PGDBG and how to use them with MPL.

Chapter 12, “Parallel Debugging of Hybrid Applications”
describes the parallel debugging capabilities of PGDBG and how to use them with hybrid applications.

Chapter 13, “Command Reference”
provides reference information about each of the PGDBG commands, organized by area of use.

Conventions

This guide uses the following conventions:

italic
is used for emphasis.
Constant Wdth

is used for filenames, directories, arguments, options, examples, and for language statements in the text,
including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-
sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}
braces indicate that a selection is required. In this case, you must select either item?2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/ C++

C/ C*" language statements are shown in the text of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, Windows, and
Mac OS operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems.

XiX

Terminology

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can
access at www.pgroup.com/support/definitions.htm

Related Publications

The following documents contain additional information related to the X86 architecture and the compilers and
tools available from The Portland Group.

¢ PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003, and HPF
statements, data types, input/output format specifiers, and additional reference material related to the use of
PGI Fortran compilers.

e System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

e FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e The C Programming Language by Kernighan and Ritchie (Prentice Hall).

* (: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

e The Annotated C** Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories, Inc.
(Addison-Wesley Publishing Co., 1990)

e PGI Compiler User’s Guide, PGI Reference Manual, PGI Release Notes, FAQ, Tutorials, http://
WWW.pgroup.com/

e MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /
e OpenMP http://www.openmp.org/

XX

Chapter 1. Getting Started

PGDBG is a symbolic debugger for Fortran, C, C** and assembly language programs. It provides debugger
features, such as execution control using breakpoints, single-stepping, and examination and modification of
application variables, memory locations, and registers.

PGDBG supports debugging of certain types of parallel applications:

e Multi-threaded and OpenMP applications.
e MPI applications.

e Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,
and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the
listed types of applications regardless of how well the number of threads match the number of CPUs or how
well the number of processes match the number of cluster nodes.

Definition of Terms

Throughout this manual we use several debugging-specific terms. The program is the executable being
debugged. The platform is the combination of the operating system and processors(s) on which the program
runs. The program architecture is the platform for which the program was built, which may be different from
the platform on which the program runs, such as a 32-bit program running on a 64-bit platform

The PGI 2012 release of remote debugging support introduced a few more terms. Remote debugging is the
process of running the debugger on one system (the c/ient) and using it to debug a program running on

a different system (the server). Local debugging, by contrast, occurs when the debugger and program are
running on the same system. A connection is the set of information the debugger needs to begin debugging a
program. This information always includes the program name and whether debugging will be local or remote.

Additional terms are defined as needed. Terminology specific to parallel debugging is introduced in Chapter 9,
“Parallel Debugging Overview”.

Building Applications for Debug

To build a program for debug, compile with the —g option. With this option, the compiler generates
information about the symbols and source files in the program and includes it in the executable file. The

User Interfaces

option —g also sets the compiler optimization to level zero (no optimization) unless you specify optimization
options such as -0, —f ast, or —f ast sse on the command line. Optimization options take effect whether
they are listed before or after —g on the command line.

Debugging Optimized Code

Programs built with —g and optimization levels higher than —Q0 can be debugged, but due to transformations
made to the program during optimization, source-level debugging may not be reliable. Assembly-level
debugging (e.g., accessing registers, viewing assembly code, etc.) is reliable, even with optimized code.
Programs built without —g can be debugged; however, information about types, local variables, arguments
and source file line numbers are not available. For more information on assembly-level debugging, refer to
Chapter 6, “Assembly-Level Debugging”.

In programs built with both —g and optimization levels higher than —00, some optimizations may be disabled
or otherwise affected by the —g option, possibly changing the program behavior. An alternative option, —gopt ,
can be used to build programs with full debugging information, but without modifying program optimizations.
Unlike —g, the —gopt option does not set the optimization to level zero.

Building for Debug on Windows

To build an application for debug on Windows platforms, applications must be linked with the —g option as
well as compiled with —g. This process results in the generation of debug information stored in a ‘. dwf’
file and a ‘. pdb’ file. The PGI compiler driver should always be used to link applications; except for special
circumstances, the linker should not be invoked directly.

User Interfaces

PGDBG includes both a command-line interface (CLI) and a graphical user interface (GUI).

Command Line Interface (CLI)

Text commands are entered one line at a time through the command-line interface. A number of command-
line options can be used when launching PGDBG.

For information on these options and how they are interpreted, refer to Chapter 3, “Command Line Options”,
Chapter 4, “Command Language”, and “Command Reference”.

Graphical User Interface

The GUI, the default user interface, supports command entry through a point-and-click interface, a view

of source and assembly code, a full command-line interface panel, and several other graphical elements

and features. There may be minor variations in the appearance of the PGDBG GUI from system to system,
depending on the type of display hardware available, the settings for various defaults and the window manager
used. Except for differences caused by those factors, the basic interface remains the same across all systems.

For more information on the PGDBG GUI, refer to “The Graphical User Interface”.

Chapter 1. Getting Started

Co-installation Requirements

There are no co-installation requirements for PGDBG when the program being debugged is running on the
same system on which the debugger is running. This section describes the requirements when the program to
be debugged is running on a different system (i.e., a remote system:

e Java Virtual Machine for the PGDBG GUI

¢ Licensing

Java Virtual Machine

Linux

OSX

The PGDBG GUI depends on the Java Virtual Machine (JVM) which is part of the Java Runtime Environment
(JRE). PGDBG requires that the JRE be a specific minimum version or above.

When PGI software is installed on Linux, the version of Java required by the debugger is also installed. PGDBG
uses this version of Java by default. You can override this behavior in two ways: set your PATH to include a
different version of Java; or, set the PGI_JAVA environment variable to the full path of the Java executable. The
following example uses a bash command to set PGI_JAVA:

$ export PG _JAVA=/ hone/ myuser/ nyj aval bi n/ j ava

The PGI debugger on OSX uses the version of Java installed by Apple's OSX software updater. If your system is
configured such that Java is not installed in the default location, you need to set your PATH to include the Java
bin directory or use the PGI_JAVA environment variable to specify the full path to the java executable.

Windows

If an appropriately-versioned JRE is not already on your system, the PGI software installation process installs

it for you. The PGI command shell and Start menu links are automatically configured to use the JRE. If you
choose to skip the JRE-installation step or want to use a different version of Java to run the debugger, then set
your PATH to include the Java bin directory or use the PGI_JAVA environment variable to specify the full path to
the java executable.

The command-line mode debugger does not require the JRE.

Licensing

The licensing depends on whether the program to be debugged is running lon the same system as PGDBG is
installed or on a different, remote system.

Local Debugging Llcensing

Figure 1.1 illustrates debugging in which the program to be debugged is running on the same system as
PGDBG is installed, local debugging. For local debugging, the PGI License Keys associated with the debugger
are all you need.

Co-installation Requirements

Figure 1.1. Local Debugging Licensing

Local Debugging
Licensing

Linux
Mac0s
Windows

Remote Debugging Llcensing

Figure 1.2 illustrates debugging in which the program to be debugged is running on the system other than the
one on which PGDBG is installed, remote debugging.

Figure 1.2. Local Debugging Licensing

Remote Debugging
Licensing

Linux
Mac0s
Windows

For remote debugging, PGI Workstation, PGI Server, or PGI CDK must be installed on that system with valid
license keys in place. Further, the remote system must be a Linux system.

Chapter 1. Getting Started

Start Debugging

You can start debugging a program right away by launching PGDBG and giving it the program name. For
example, to load your _pr ogr aminto the debugger, launch PGDBG in this way.

% pgdbg your _program
Now you are ready to set breakpoints and start debugging.

You can also launch PGDBG without a program. Once the debugger is up, use the Connections tab to specify

the program to debug. To load the specified program into the debugger, use the Connections tab's Open
button.

Program Load

When PGDBG loads a program, it reads symbol information from the executable file, then loads the
application into memory. For large applications this process can take a few moments.

Initialization Files

An initialization file can be useful for defining common aliases, setting breakpoints, and for other startup
commands. If an initialization file named . pgdbgr c exists in the current directory or in your home directory,
as defined by the environment variable HOME, PGDBG opens this file when it starts up and executes the
commands in it.

If an initialization file is found in the current directory, then the initialization file in the home directory, if there
is one, is ignored. However, a scri pt command placed in the initialization file can be used to execute the
initialization file in the home directory or any other file.

Program Architecture

PGDBG supports debugging both 32-bit and 64-bit programs. PGDBG automatically determines the
architecture of the program and configures itself accordingly.

Chapter 2. The Graphical User
Interface

The default user interface used by PGDBG is a graphical user interface or GUI There may be minor variations
in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,
the settings for various defaults and the window manager used. Except for differences caused by those factors,

the basic interface remains the same across all systems.

Main Components

Figure 2.1. Default Appearance of PGDBG GUI

Menu Bar

£ PGDBG - The Portiand Grouh_ (=] C o]
fE{: Edit View Data Connections Debug Heilﬂ' [
Toolbar —#|» @ 11 O 3|3 (X < CurrentProcess: Apply: Dispiay: File:
[Pr q R
(& =
i4)
Program| \
Source < T
Window 1/0
Window
4] I
N 1y | Input: | Enter || clear 4
| | |
A
by 4
Debug g
Information || -
Tabs =T
A ¥ q »
: Connected: Default Host: southwell.wil.st.com

Figure 2.1, “Default Appearance of PGDBG GUI” shows the PGDBG GUI as it appears when PGDBG is invoked
for the first time.

Source Window

The GUI can be resized according to the conventions of the underlying window manager. Changes in window
size and other settings are saved and used in subsequent invocations of PGDBG. To prevent changes to the
default settings from being saved, uncheck the Save Settings on Exit item on the Edit menu.

As illustrated in Figure 2.1, the GUI is divided into several areas: the menu bar, main toolbar, source window,
program I/0 window, and debug information tabs.

The source window and all of the debug information tabs are dockable tabs. A dockable tab can be separated
from the main window by either double-clicking the tab or dragging the tab off the main window. To return
the tab to the main window, double-click it again or drag it back onto the main window. You can change the
placement of any dockable tab by dragging it from one location to another. Right-click on a dockable tab to
bring up a context menu with additional options, including closing the tab. To reopen a closed tab, use the
View menu. To return the GUI to its original state, use the Edit menu's Restore Default Settings. .. option.

The following sections explain the parts of the GUI and how they are used in a debug session.

Source Window

The source window, illustrated in Figure 2.2 displays the source code for the current location. Use the source
window to control the debug session, step through source files, set breakpoints, and browse source code.

Figure 2.2. Source Window

Thread 0
Source | Disassembly | Mixed

Ling No. | Event | PC | c./tmp/itest/omp.f90
1 program omp_ private_data
integer array(8)
call omp set_num threads(4)
'¢0MP PRARALLEL. DO
do i=1,8
=) = 3 array(i) = i
enddo
'$0MP END PARRLLEL DO
print *, array L
10 end

i [»

R 7, B R

w oo

A i [T

The source window contains a number of visual aids that allow you to know more about the execution of your
code. The following sections describe these features.

Source and Disassembly Displays

Tabs for source, disassembly, and mixed display are contained by a tab that defines the process or thread
being debugged, as illustrated in Figure 2.2. When the current process or thread changes from one process or
thread to another, the label on this tab will change and the contents of the display tab will be updated.

Choose between debugging at the source level, disassembly level, or with a mixture of source and disassembly.
When source information is unavailable, only the disassembly tab will contain code.

The columns for line number or instruction address, debug event, program counter and location will be
available in any display mode.

Chapter 2. The Graphical User Interface

The line number column contains line numbers when displaying source code, instruction addresses when
displaying disassembly, and a mixture of both in mixed mode. A grayed-out line number indicates a non-
executable source line. Some examples of non-executable source lines are comments, non-applicable
preprocessed code, some routine prologues, and some variable declarations. Breakpoints and other events
cannot be set on non-executable lines.

The Event column indicates where debug events such as breakpoints or watchpoints exist. An event is indicated
by a red sphere icon. Breakpoints may be set at any executable source line by left-clicking in the Event column
at the desired source line. An existing breakpoint may be deleted by left-clicking on its breakpoint icon.

The PC column is the home of a blue arrow icon which marks the current location of the program counter. In
other words, this arrow marks where program execution is during a debug session.

The title of the fourth column in the display windows is dependent on display mode. In the Source tab, this
column will contain the name and path of the displayed source file. In the Disassembly and Mixed tabs, this
column will contain the name of the disassembled function.

Source Window Context Menu

The display tabs in the source window support a context menu that provides convenient access to commonly
used features. To bring up this context menu, first select a line in the source or disassembly code by clicking
on it. Within the selected line, highlight a section of the text and right-click with the mouse to produce the
menu. The context menu options use the selected text as input.

In the example in Figure 2.3, the variable ar r ay (i) is highlighted and the context menu is set to print its
value as a decimal integer:

Figure 2.3. Context Menu

Source | Disassembly | Mixed

Line No. | Event | PC] c:ftmpitest/omp.f90
1 program omp_private_data

integer array(8)

call omp_set_num threads(2)
'$0MF PARRLLEL DO

do i=1,8

[»

[R T I S TR

[] = array(iy = i
enddo | Print |
1$0MP END
- Print Options * Print * =
print *, =

10 end Type of String

ez
5

Locate Routine
Set Breakpoint | Oct
Call . Hex

[«]

Addr

4] I [T

The context menu in Figure 2.3 also provides shortcuts to the Type Of, Locate Routine. . ., Set Breakpoint. . .,
and Call... menu options.

Main Toolbar

The PGDBG GUI's main toolbar contains several buttons and four drop-down lists.

Main Toolbar

Buttons

Figure 2.4. Buttons on Toolbar

Stop Festart Step Display

Debugging Over Current
Location
Start Stop Step Step
Debugging [Frogram Into Cut l
b B O E|EE 9

Most of the buttons on the main toolbar have corresponding entries on the Debug menu. The functionality
invoked from the toolbar is the same as that achieved by selecting the menu item. Refer to the “Debug Menu”
descriptions for details on how Start Debugging (Continue), Stop Debugging, Stop Program, Restart, Step Into,
Step Over, Step Out, and Display Current Location work.

Drop-Down Lists

Figure 2.5. Drop-Down Lists on Toolbar

Current Thread: [0~ | Apply: |All ~| Display: |All ~| File:|

As illustrated in Figure 2.5, the main toolbar contains four drop-down lists. A drop-down list displays
information while also offering an opportunity to change the displayed information if other choices are
available. When no or one choice is available, a drop-down list is grayed-out. When more than one choice is
available, the drop-down arrow in the component can be clicked to display the available choices.

Current Process or Current Thread
The first drop-down list displays the current process or current thread. The list’s label changes depending
on whether processes or threads are described. When more than one process or thread is available, use
this drop-down list to specify which process or thread should be the current one. The current process or
thread controls the contents of the source and disassembly display tabs. The function of this drop-down
list is the same as that of the Procs & Threads tab in the debug information tabs.

Apply
The second drop-down list is labeled Apply. The selection in the Apply drop-down determines the set
of processes and threads to which action commands are applied. Action commands are those that
control program execution and include, for example, cont, step, next, and break. By default, action
commands are applied to all processes and threads. When more than one process or thread exists, you
have additional options in this drop-down list from which to choose. The Current Group option designates
the process and thread group selected in the Groups tab, and the Current Process and Current Thread
options designate the process or thread selected in the Current Process or Current Thread drop-down.

Display
The third drop-down list is labeled Display. The selection in the Display drop-down determines the set of
processes and threads to which data display commands are applied. Data display commands are those

10

Chapter 2. The Graphical User Interface

that print the values of expressions and program state and include, for example, print, names, regs and

stack. The options in the Display drop-down are the same as those in the Apply drop-down but can be
changed independently.

File

The fourth drop-down list is labeled File. It displays the source file that contains the current target
location. It can be used to select another file for viewing in the source window.

Program 1/0 Window

Program output is displayed in the Program IO tab’s central window. Program input is entered into this tab’s
Input field.

Figure 2.6. Program I/0 Window

Program O

L ¥

q] il

[¥
Input:][Enter | | ciear |

Debug Information Tabs

Debug information tabs take up the lower half of the PGDBG GUI. Each of these tabs provides a particular

function or view of debug information. The following sections discuss the tabs as they appear from left-to-right
in the GUI's default configuration.

Command Tab

The Command tab provides an interface in which to use the PGDBG command language. Commands entered in
this panel are executed and the results are displayed there.

11

Debug Information Tabs

Figure 2.7. Command Tab

Command

Loaded: C:/Windows/system3zZ/MSCIF.dll
Loaded: C:/Windows/syscem32/flclib.dll
{[1] Hew Thread)

{[2] Hew Thread)

{[3] Hew Thread)

[0] Breakpoint at Ox140001220, function omp private data, file cmp.f£90,
&6 array(i) =

pgdbg [all] 0> princ i
k5
pgdbg [all] 0> print array(i)
i

pgdbg [2ll] 0> next

#7: enddo

pgdbg [all] 0>

line &

[0] Stopped at Ox140001234, function omp private data, file omp.£f90, line 7

q] il

[4

Using this tab is much like interacting with the debugger in text mode; the same list of commands is supported.

For a complete list of commands, refer to Chapter 5, “Command Summary”.

Events tab

The Events tab displays the current set of events held by the debugger. Events include breakpoints and

watchpoints, as illustrated in Figure 2.8.

Figure 2.8. Events Tab

Events

1l: break ™c:/tmp/test/omp.f90"@6 [all]
2: break "c:ftmp/test/omp.f90"@6 if(i>4) [all]
3: watch array at "c:/tmp/test/omp.f90"89 [0]

Groups Tab

The Groups tab displays the current set of user-defined groups of processes and threads. The group selected
(highlighted) in the Groups tab defines the Current Group as used by the Apply and Display drop-down lists. In

Figure 2.9, the ‘evens’ group is the Current Group.

12

Chapter 2. The Graphical User Interface

Figure 2.9. Groups Tab

Groups
Grc—up MName Composition
all [% %
Vens [*.0,*.2]
odds [*.1,*.3]

[Add...]\ Modify...][Remove...]

To change the set of defined groups use the Add. .., Modify. .., and Remove. .. buttons on the Groups tab.
Note

A defined group of processes and threads is also known as a process/thread-set or p/t-set. For more
information on p/t-sets, refer to “p/t-set Notation” in Chapter 9, “Parallel Debugging Overview”.

Connections Tab

The term connection, defined in Chapter 1, is a concept introduced by the PGI 2012 release. A connection
is the set of information the debugger needs to begin debugging a program. The Connections tab provides
the interface to specifying information for a particular connection, and allows you to create and save multiple
connections. Saved connections persist from one invocation of the debugger to the next. When you launch

PGDBG, the Default connection is created for you. If you launched the debugger with an executable, the
Program field is filled in for you.

Figure 2.10. Connections Tab

Connections

Connections

COnnecﬂan[f_\e:ault {active)] l Open][Close]

@ Local) Remote

Default® [I Attach || Core [MPI

-General- =
Program [C:\tmp\te::\cmp.exe] _E |
Program Args f 1
Environment[1

|

L4l T'i

Fields required by the debugger for program launch are bold. Fields not applicable to the current
configuration options are grayed-out. To display a tooltip describing the use of a field, hover over its name.

Use the Connections menu to manage your connections.

13

Debug Information Tabs

Call Stack Tab

The Call Stack tab displays the current call stack. A blue arrow indicates the current stack frame.

Figure 2.11. Call Stack Tab

Call Stack

= 0 sub5S line 33 in subs.£90 0x1400011Ed i
1l subd line 27 in subks.f90 0x1400011e2

2 3ub3 line 21 in subks.f90 0x1400011c2
3 sub2 line 15 in subs.f90 0x1400011a2
4 subl line 9 in subs.f90 0x140001182
5 prog line 3 in subs.f90 0x140001158
=
4] [+]

Double-click in any call frame to move the debugging scope to that frame. A hollow arrow is used to indicate
when the debug scope is in a frame other than the current frame.

Figure 2.12. Call Stack Outside Current Frame

Call Stack
= 0 sub5 line 33 in subs.£90 0x1400011£4 -
1 sub4 line 27 in subks.f90 0x1400011e2
o> 2 sub3 line 21 in subs.£90 0x1400011c2
3 sub? line 15 in 3subs.f90 0x1400011a2
4 subl line 9 in subs.f90 0x140001182
5 prog line 3 in subs.f%0 0x140001158
=
4] [#]

You can also navigate the call stack using the Up and Down options on the Debug menu.

Locals Tab

The Locals tab displays the current set of local variables and each of their values.

Figure 2.13. Locals Tab

Call Stack | Locals | Memory | MPl Messages | Procs & Threads | Registers | Status
il
i=11
j = 22
k=33 =
= 50.5
¥y = 60.599932
=0 __
-
1 Dl

14

Chapter 2. The Graphical User Interface

Memory Tab

The Memory tab displays a region of memory starting with a provided Address which can be 2 memory address
or a symbol name. One element of memory is displayed by default, but this amount can be changed via the
Count field. Figure 2.14 illustrates this process.

Figure 2.14. Memory Tab

Call 5tack | Locals | Memory | MPl Messages | Procs & Threads | Reqgisters| Status

F

Ox004828C00: 21
Ox004828C4: 16
0x004828C8: b
0x004828CC: 0
Ox00482800: 0

-

<] I

The default display format for memory is hexadecimal. The display format can be changed by providing a
printf-like format descriptor in the Format field. A detailed description of the supported format strings is
available in “Memory Access” in Chapter 13, “Command Reference”.

Figure 2.15. Memory Tab in Decimal Format

Call Stack | Locals | Memory | MPl Messages | Procs & Threads | Registers| Status
Address: [Dx4ﬁ28{:0] Count: |3 Format: | 3d]
T e
0x002R28C0:133 | «—potice these are now decimal :
Ox004R28C4:] 22 rather than hexadecimal values Decimal
0x004R28CE:] 11 Format =
Ox004R253CCz| 0
Ox004R28D0:) 0 |
i
4] [

MPI Messages Tab

The MPI Messages tab provides a listing of the MPI message queues as by Figure 2.16.

15

Debug Information Tabs

Figure 2.16. MPI Messages Tab

Call 5tack | Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

[»

0] modump

MPI_COMM_WORLD -
Comm_s1ze 4 ||
Camm_rank 8]

Fending sends: none

Fending receives: nomne

Unexpected messages: nare

MPI_COMM_SELF

Comnmn_size 1
Comm_rank 0
Fending sends: nomne
Fending receives: nare
Unexpected messages: nane
||
1] [

Message queue information applies only to MPI applications. When debugging a non-MPI application, this tab
is empty. Additionally, message queue information is not supported by Microsoft MPI so this tab contains no
data on Windows.

Procs & Threads Tab

The Procs & Threads tab provides a graphical display of the processes and threads in a debug session.

The Process Grid in Figure 2.17 has four processes. The thicker border around process 0 indicates that it is
the current process; its threads are represented pictorially. Thread 0.0, as the current thread of the current
process, has the thickest border. Clicking on any process or thread in this grid changes that process or thread
to be the current process or thread.

Figure 2.17. Process (Thread) Grid Tab

Call Stack | Locals | Memory | MPI Messages | Procs 8 Threads | Registers | Status

Use the slider at the bottom of the grid to zoom in and out.

16

The color of each element indicates the state of that process or thread. For a list of colors and states, refer to

Table 2.1.

Registers Tab

Chapter 2. The Graphical User Interface

Table 2.1. Colors Describing Thread State

Option Description
Stopped Red

Signaled Blue
Running Green
Terminated Black

The target machine’s architecture determines the number and type of system registers. Registers are organized

into groups based on their type and function. Each register group is displayed in its own tab contained in the
Registers tab. Registers and their values are displayed in a table. Values are shown for all the threads of the

currently selected process.

In Figure 2.18, the General Purpose registers are shown for threads 0-3 of process 0.

Call 5tack | Locals | Memory

GP | FLAGS | X&7 | XMM

Format: |hex 64

Figure 2.18. General Purpose Registers

MXCSR

3 Mode:

MPI Messages | Procs & Threads | Reqisters | Status

EO T0 T1 T2 T3
rax Ox2 0x2 Ox2 Ox2|~
rbx 0x2E3150 0x2E3150 0x2E3150 0x2E3150
rcx 0x0 Ox2 Oxd 0x6
rdx 0x0 0x0 0xa0 0x0
rdi Oxl 0xl Oxl 0xl
rai 0x0 0x0 0x0 0x0) =
rbp 0x12FF30 0x12FF30 0x12FF30 0x12FF30
rap 0x12FCEQ 0x250FCE0 0x2DOFCED 0x350FCEQ
rf 0x8 0x8& 0x8 0x8
rs Oxd0 Ox250FEAD 0x2DOFEAD Ox350FERD
rll 0x0 0x0 0x0 0x0f—
rll 0x140001175 0x1400011735 0x140001175 0x14000117%
rl2 0x0 0x0 0x0 0x0
rl3 0x0 0x0 0x0 0x0
rld 0xa 0xa 0xa0 0x0
rl5 0x0 0x0 0x0 00| - |
q] | |

17

Menu Bar

The values in the registers table are updated each time the program stops. Values that change from one
stopping point to the next are highlighted in yellow.

Register values can be displayed in a variety of formats. The formatting choices provided for each register
group depends on the type of registers in the group and whether the current operating system is 64- or 32-bit.
Use the Format drop-down list to change the displayed format.

Vector registers, such as XMM and YMM registers, can be displayed in both scalar and vector modes. Change
the Mode drop-down list to switch between these two modes.

Status Tab

Call Stack | Locals | Memory MPI Messages | Procs & Threads | Registers | Status
-
0 ID BID STRTE S1G/CODE CCATICH
=> 0 57492 Stopped TELFP prog line: "mpi.f£90"@11 address: 0x140001179
1 3432 Stopped STOP HtWaitForMultiplelbjects address: 0x774D0464
1 ID BID STRTE S1G/CODE LOCRTION
=> 0 D288 Stopped TRAP prog line: "mpi.f90"@11 address: 0x1400011739
1 5696 Stopped STOP NtWaitForMultipleCbjects address: OxT774D046R |
2 ID BID STRTE S1G/CODE LOCRTION -
=> 0 4772 Stopped TELD prog line: "mpi.f90"@11 address: 0x140001179
1 D228 Stopped STOP HtWaitForMultiplelbjects address: 0x774D0464
3 ID BID STRTE S1G/CODE CCATICH
=> 0 5608 Stopped TELFP prog line: "mpi.f307@11 address: 0x140001173
1 4568 Stopped STOP HtWaitForMultiplelbjects address: 0x774D0464
>
4] [¥]
Menu Bar

18

The Status tab provides a text summary of the status of the program being debugged. The state and location of
each thread of each process is shown. In Figure 2.19, each of four processes has two threads.

Figure 2.19. Status Tab

The main menu bar contains these menus: File, Edit, View, Data, Connections, Debug and Help. This section
describes these menus and their contents.

You can navigate the menus using the mouse or the system’s mouseless modifier (typically the Alt key). Use the
mouseless modifier together with a menu’s mnemonic, usually a single character, to select 2 menu and then a
menu item. Menu mnemonics are indicated with an underscore. For example, the File menu appears as File
which indicates that ‘F’ is the mnemonic.

Keyboard shortcuts, such as Ctrl+V for Edit | Paste, are available for some actions. Where a keyboard shortcut
is available, it is shown in the GUI on the menu next to the menu item.

Chapter 2. The Graphical User Interface

Menu items that contain an ellipsis (...) launch a dialog box to assist in performing the menu’s action.
File Menu

Open
The Open menu option has been deprecated. Use the Program field on the Connections tab to specify the
executable you want to debug; then click the Open button.

Attach
The Attach menu option has been deprecated. To attach to a locally running process, select the Attach
check box on the Connections tab. Then use the Program and PID fields to specify the process to which to
attach.

Detach
The Detach menu option has been deprecated. To stop debugging during an attached session, select the
Detach option on the Debug menu or click the Detach (Stop) button on the main tool bar.

Exit
End the current debug session and close all windows.

Edit Menu

Copy
Copy selected text to the system’s clipboard.

Paste
Paste selected text to the system’s clipboard.

Search Forward. ..
Perform a forward string search in the currently displayed source file.

Search Backward. ..
Perform a backward string search in the currently displayed source file.

Search Again
Repeat the last search that was performed in the source panel.

Locate Routine. ..
Find a routine. If symbol and source information is available for the specified routine, the routine is
displayed in the source panel.

Restore Default Settings
Restore the GUI's various settings to their initial default state illustrated in Figure 2.1, “Default Appearance
of PGDBG GUL” on page 7.

Revert to Saved Settings
Restore the GUI to the state that it was in at the start of the debug session.

Save Settings on Exit
By default, PGDBG saves the state (size and settings) of the GUI on exit on a per-system basis. To prevent
settings from being saved from one invocation of PGDBG to another, uncheck this option. This option must
be unchecked prior to every exit since PGDBG always defaults to saving the GUI state.

19

Menu Bar

View Menu

Use the View menu to customize the PGDBG GUI.

Many of the items on this menu contain a check box next to the name of a tab.

e When the check box is checked, the tab is visible in the GUL
e When the check box is not checked, the tab is hidden.

View menu items that correspond to tabs include Call Stack, Command, Connections, Events, Groups, Locals,
Memory, MPI Messages, Procs & Threads, Program 1/0, Source, and Status.

Registers
The Registers menu item opens a submenu containing items representing every subtab on the Registers
tab. Recall that each subtab represents a register group and the set of register groups is system and
architecture dependent. Use the Registers submenu to hide or show tabs for register groups. Use the Show
Selected item to hide or show the Registers tab itself.

Font. ..
Use the font chooser dialog box to select the font and size used in the source window and debug
information tabs. The default font is named monospace and the default size is 12.

Show Tool Tips
Tool tips are small temporary messages that pop up when the mouse pointer hovers over a component in
the GUL They provide additional information on the functionality of the component. Tool tips are enabled
by default. Uncheck the Show Tools Tips option to prevent them from popping up.

Refresh
Update the source window and Procs & Threads tab.

Data Menu

20

Each Data menu item opens a Custom subwindow. The Custom subwindow provides a command field where
any debugger-supported command can be entered. For example:

-

— PGDEG Custom =RRCN X
File Options
Comnmand: [print i, i, k]

Stop]| Clear]

11, 22, 33

|‘ Reset]| Close] Update]| Lock]

Chapter 2. The Graphical User Interface

The Custom menu item is always enabled. It opens a Custom subwindow with a blank Command field. All the
other Data menu items are enabled only when text (usually data) is selected in the display tabs. To select text,
first click on a line in the Source, Disassembly or Mixed tab. Within the selected line, highlight a section of the
text. With the text highlighted, open the Data menu and select the desired option.

Print

Print the value of the selected item.
Print *

Dereference and print the value of the selected item.
String

Treat the selected value as a string and print its value.
Bin

Print the value of the selected item as a base-2 integer.

Oct
Print the value of the selected item as an octal integer.

Hex
Print the value of the selected item as a hexadecimal integer.

Dec
Print the value of the selected item as a decimal integer.

Ascii
Print the ASCII value of the selected item.

Addr
Print the address of the selected item.

Type Of

Print data type information for the selected item.

Custom
Open an empty Custom subwindow. Execute any supported debugging command in its Command field.

Connections Menu

Use the items under this menu to manage the connections displayed in the Connections list on the Connections
tab.

Connect Default
Open the currently displayed connection. When the debugger starts, this connection is named ‘Default.’
When a different connection is selected, the name of this menu option changes to reflect the name of the
selected connection. This menu option works the same way that the Open button on the Connections tab
works.

New
Create 2 new connection.

Save
Save changes to all the connections.

21

Menu Bar

Save As
Save the selected connection as a new connection.

Rename
Change the name of the selected connection.

Delete
Delete the selected connection.

Debug Menu

22

The items under this menu control the execution of the program.

Start Debugging (Continue)
Run (continue running) the program. The text of this menu option changes depending on whether the
program is currently running.

Stop Debugging
Stop debugging the program.

Stop Program
Stop the running program.This action halts the running processes or threads. For more information, refer
to the halt command.

Restart Program
Start the program from the beginning.

Set Program Arguments
This menu option has been deprecated. Use the Program Args field on the Connections tab to specify the
arguments to the program being debugged.

Step
Continue and stop after executing one source line or one assembly-level instruction depending on whether
the Source, Disassembly or Mixed tab is displayed. Step steps into called routines. For more information,
refer to the step and stepi commands.

Next
Continue and stop after executing one source line or one assembly-level instruction depending on whether
the Source, Disassembly or Mixed tab is displayed. Next steps over called routines. For more information,
refer to the next and nexti commands.

Step Out
Continue and stop after returning to the caller of the current routine. For more information, refer to the
stepout command.

Set Breakpoint. ...
Set a breakpoint at the first executable source line in the specified routine.

Call. ..
Specify a routine to call. For more information, refer to the call command.

Chapter 2. The Graphical User Interface

Display Current Location
Display the current program location in the Source panel. For more information, refer to the arrive
command.

Up
Enter the scope of the routine up one level in the call stack. For more information, refer to the up
command.

Down
Enter the scope of the routine down one level in the call stack. For more information, refer to the down
command.

Help Menu

Debugger Guide
Launch your system’s PDF reader to view the PGDBG Debugger Guide (this document).

About PGDBG. ..
This option displays a dialog box with version and copyright information on PGDBG. 1t also contains sales
and support points of contact.

23

24

Chapter 3. Command Line Options

PGDBG accepts a variety of options when the debugger is invoked from the command line. This chapter
describes these options and how they can be used.

Command-Line Options Syntax

% pgdbg ar gunents program argl
arg2 ... argn

The optional arguments may be any of the command-line arguments described in this chapter. The program
parameter is the name of the executable file being debugged. The optional arguments arg? arg2 ... argn are
the command-line arguments to the program.

Command-Line Options
-attach <pi d>
Attach to a running process with the process ID <pid>.

-c <pgdbg_cnd>
Execute the debugger command pgdbg_cmd before executing the commands in the startup file.

-cd <wor kdi r >
Sets the working directory to the specified directory.

-core <corefil e>
Analyze the core dump named corefile. [Linux only]

-emacs
Invoke the debugger using the Emacs GUD interface.

—help
Display a list of command-line arguments (this list).

—I <directory>
Add <di r ect or y> to the list of directories that PGDBG uses to search for source files. You can use this
option multiple times to add multiple directories to the search path.

-jarg, <j avaar g>
Pass specified argument(s) (separated by commas) to java, e.g. -jarg,-Xmx256m.

25

Command-Line Options for MPI Debugging

-java <j r epat h>
Add a jrepath directory to the JVM search path. Multiple '-java’ options are allowed.

-nomin
Do not minimize the PGDBG console shell on startup. [Windows only]

-program_args
Pass subsequent arguments to the program under debug.

-s <pgdbg_scri pt >
Runs the provided debugger command script instead of the configuration file: pgdbgrc [Linux,08X] or
pgdbrc [Windows].

-text
Run the debugger using a command-line interface (CLI). The default is for the debugger to launch in
graphical user interface (GUI) mode.

-V
Display the version of PGDBG being run.

v
Display commands as they are run.

Command-Line Options for MPI Debugging

-mpi[=<npi exec_pat h>]
Start/debug an MPT job.

-pgserv[=<pgser v_pat h>]
Specify path for pgserv, the per-node debug agent.

I/0 Redirection

The command shell interprets any /0 redirection specified on the PGDBG command line. For a description of
how to redirect I/0 using the run command, refer to “Process Control,” on page 88.

26

Chapter 4. Command Language

PGDBG supports a command language that is capable of evaluating complex expressions. The command
language is composed of commands, constants, symbols, locations, expressions, and statements.

You can use the command language by invoking the PGDBG command-line interface with the —t ext
option, or in the Command tab of the PGDBG graphical user interface, as described in “The Graphical User
Interface”.

Command Overview

Commands are named operations, which take zero or more arguments and perform some action. Commands
may also return values that may be used in expressions or as arguments to other commands.

Command Syntax
Commands are entered one line at a time.

e Lines are delimited by a carriage return.
e FEach line must consist of a command and its arguments, if any.

e You can place multiple commands on a single line by using the semi-colon (;) as a delimiter.
Command Modes
There are two command modes: pgi and dbx.

e The pgi command mode maintains the original PGDBG command interface.

e In dbx mode, the debugger uses commands compatible with the Unix-based dbx debugger.

PGI and dbx commands are available in both command modes, but some command behavior may be slightly
different depending on the mode. The mode can be set while the debugger is running by using the pgienv
command.

Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string
constants.

27

Symbols

Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol table for the
target program. The symbol table contains symbols to represent source files, subroutines, types (including
structure, union, pointer, array, and enumeration types), variables, and arguments. The PGDBG command-line
interface is case-sensitive with respect to symbol names; a symbol name on the command line must match the
name as it appears in the object file.

Scope Rules

Since several symbols in a single application may have the same name, scope rules are used to bind program
identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking up
identifiers. The search scope represents a subroutine, a source file, or global scope. When the user enters

a name, PGDBG first tries to find the symbol in the search scope. If the symbol is not found, the containing
scope (source file or global) is searched, and so forth, until either the symbol is located or the global scope is
searched and the symbol is not found.

Normally, the search scope is the same as the current scope, which is the subroutine where execution is
currently stopped. The current scope and the search scope are both set to the current subroutine each time
execution of the program stops. However, you can use the enter command to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine with a
local variable i, then:

f@

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name with this
operator. The following example represents the variable i defined in file xyz.c.

anZ. c" @

Register Symbols

To provide access to the system registers, PGDBG maintains symbols for them. Register names generally begin
with $ to avoid conflicts with program identifiers. Each register symbol has a default type associated with it,
and registers are treated like global variables of that type, except that their address may not be taken. For more
information on register symbols, refer to “SSE Register Symbols,” on page 53.

Source Code Locations

28

Some commands must refer to source code locations. Source file names must be enclosed in double quotes.
Source lines are indicated by number, and may be qualified by a quoted filename using the scope qualifier
operator. Further, a range of lines is indicated using the range operator ":".

Here are some examples:

break 37 sets a breakpoint at line 37 of the current source file.
break "xyz.c" @7 sets a breakpoint at line 37 of the source file xyz.c.

Chapter 4. Command Language

list 3:13 lists lines 3 through 13 of the current file.
list "xyz.c"@: 13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is not always
obvious whether a numeric constant should be interpreted as a line number or an address. The description
for these commands says which interpretation is used. However, PGDBG provides commands to convert
from source line to address and vice versa. The line command converts an address to a line, and the addr
command converts a line number to an address. Here are some examples:

l'ine 37 means “line 37”

addr 0x1000 means "address 0x1000"

addr {line 37} means "the address associated with line 37"
l'ine {addr 0x1000} means "the line associated with address 0x1000"

Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained by a lexical
block is used to indicate the start scope of the lexical block. In the following example, there are two variables
named var. One is declared in function main, and the other is declared in the lexical block starting at line 5.
The lexical block has the unique name "lex.c" @main@5. The variable var declared in "lex.c" @main@5 has
the unique name "lex.c' @main@5@var. The output of the whereis command that follows shows how these
identifiers can be distinguished.

| ex.c:

1 main()

2 {

3 int var = 0;

4

5 int var = 1;

6 printf("var %\ n", var);
7}

8 printf("var %\ n", var)
9}

pgdbg> n

St opped at 0x8048b10, function nmain, file
/ horre/ deno/ pgdbg/ ct est/ | ex. c,

line 6

#6: printf("var %\ n", var);

pgdbg> print var

1

pgdbg> whi ch var

"| ex. c" @mi n@@ar

pgdbg> whereis var

vari able: "lex.c"@mi n@ar

vari able: "lex.c"@mi n@®@ar

pgdbg> nanes "l ex.c" @mai n@®
var = 1

29

Statements

Statements

Although PGDBG command-line input is processed one line at a time, statement constructs allow multiple
commands per line, as well as conditional and iterative execution. The statement constructs roughly
correspond to the analogous C language constructs. Statements may be of the following forms.

e Simple Statement: A command and its arguments. For example:
print

e Block Statement: One or more statements separated by semicolons and enclosed in curly braces. Note:
these may only be used as arguments to commands or as part of i f or whi | e statements. For example:
if(i>1) {print i; step }

o [f Statement: The keyword if, followed by a parenthesized expression, followed by a block statement,
followed by zero or more el se i f clauses, and at most one else clause. For example:
if(i>) {print i} else if(i<j) {print j} else {print "i=="}

o While Statement: The keyword while, followed by a parenthesized expression, followed by a block
statement. For example:
whi | e(i ==0) {next}

Multiple statements may appear on a line separated by a semicolon. The following example sets breakpoints in
routines main and xyz, continues, and prints the new current location.

break main; break xyz; cont; where

However, since the where command does not wait until the program has halted, this statement displays the
call stack at some arbitrary execution point in the program. To control when the call stack is printed, insert a
wait command, as shown in this example:

break main; break xyz; cont; wait; where

Note

Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. For more information, refer to “Parallel
Statements,” on page 79.

Events

30

Breakpoints, watchpoints, and other mechanisms used to define the response to certain conditions are
collectively called events.

* An event is defined by the conditions under which the event occurs and by the action taken when the event
occurs.

e A breakpoint occurs when execution reaches a particular address.

The default action for a breakpoint is simply to halt execution and prompt the user for commands.

Chapter 4. Command Language

e A watchpoint occurs when the value of an expression changes.

e A hardware watchpoint occurs when the specified memory location is accessed or modified.

Event Commands

PGDBG supports six basic commands for defining events. Each command takes a required argument and may
also take one or more optional arguments. The basic commands are break, watch, hwatch, trace, track,
and do.

Event Command Descriptions

* The break command takes an argument specifying a breakpoint location. Execution stops when that
location is reached.

* The watch command takes an expression argument. Execution stops and the new value is printed when the
value of the expression changes.

¢ The hwatch command takes a data address argument, which can be either an identifier or a variable name.
Execution stops when memory at that address is written.

* The trace command activates source line tracing, as specified by the arguments you supply.
* The track command is like watch except that execution continues after the new value is printed.

e The do command takes a list of commands as an argument. The commands are executed whenever the
event occurs.

Event Command Arguments

The six event commands share a common set of optional arguments. The optional arguments provide the
ability to make the event definition more specific. They are:

atline
Event occurs at indicated line.

at addr
Event occurs at indicated address.

inroutine
Event occurs throughout indicated routine.

if (condi ti on)
Event occurs only when condition is true.

do {commands}
When event occurs, execute commands.

The optional arguments may appear in any order after the required argument and should not be delimited by
commas.

Event Command Examples

Here are some event definition examples:

31

Events

watch i at 37 if(y>1) This event definition says to stop and print the value
of i whenever line 37 is executed and the value of y is
greater than 1.

do {print xyz} in f This event definition says that at each line in the routine
f print the value of xyz.
break funcl if (l ==37) This event definition says to print the value of a[37]
do {print a[37]; stack} and do a stack trace when i is equal to 37 in routine
funcl.

Event Command Action

It is useful to know when events take place.

e Event commands that do not explicitly define a location occur at each source line in the program. Here are

some examples:

do {where} prints the current location at the start of each source line.
trace a.b prints the value of a.b each time the value has changed.
track a.b prints the value of a.b at the start of each source line if the

value has changed.

Note

Events that occur at every line can be useful, but they can make program execution very slow.
Restricting an event to a particular address minimizes the impact on program execution speed, and
restricting an event that occurs at every line to a single routine causes execution to be slowed only
when that routine is executed.

e PGDBG supports instruction-level versions of several commands, such as breaki, watchi, tracei, tracki,

and doi. The basic difference in the instruction-level version is that these commands interpret integers as
addresses rather than line numbers, and events occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions are taken before the prompt for input.
Defining event actions that resume execution is allowed but discouraged, since continuing execution may
prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:
break 37 do {conti nue}

break 37 do {print i}

With this sequence, it is not clear whether i will ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and other
commands.

e Identifiers and line numbers in events are bound to the current scope when the event is defined.

32

Chapter 4. Command Language

For example, the following command sets a breakpoint at line 37 in the current file.
break 37

The following command tracks the value of whatever variable i is currently in scope.
track i
Ifi is alocal variable, then it is wise to add a location modifier (at or in) to restrict the event to a scope

where i is defined. Scope qualifiers can also specify lines or variables that are not currently in scope. Events
can be parallelized across multiple threads of execution. See “Parallel Events,” on page 78 for details.

Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands that return
values, and operators.

The following rules apply:

e To use a value returned by 2 command in an expression, the command and arguments must be enclosed in
curly braces.

For example, the following command invokes the pc command to compute the current address, adds 8 to
it, and sets a breakpoint at that address.

breaki {pc}+8

Similarly, the following command compares the start address of the current routine with the start address of
routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr xyz}

* The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as the

nn

C language field selection operators "." and "->" .

"

* PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. The
precedence of ;' is between 'll' and '=".

Here are a few examples that use the range operator:

print a[1:10] prints elements 1 through 10 of the array a.
list 5:10 lists source lines 5 through 10.
list "xyz.c"@: 10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.

step is the step size between elements.

* An expression can be evaluated across many threads of execution by using a prefix p/t-set. For more details,
refer to “Current vs. Prefix p/t-set,” on page 67.

33

Ctrl+C

Table 4.1, “PGDBG Operators” shows the C language operators that PGDBG supports. The PGDBG operator
precedence is the same as in the C language.

Table 4.1. PGDBG Operators

Operator |Description Operator |Description

* indirection <= less than or equal
direct field selection >= greater than or equal

-> indirect field selection I= not equal

[] ¢/ C*™" array index && logical and

0 routine call I logical or

& address of ! logical not

+ add I bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide A bitwise exclusive or

* multiply << left shift

= assignment >> right shift

== comparison 0 FORTRAN array index

<< left shift % FORTRAN field selector

>> right shift

Ctrl+C

The effect of Ctrl+C depends on how debugging is occuring.

Command-Line Debugging

34

If the program is not running, Ctrl+C can be used to interrupt long-running PGDBG commands. For example,
a command requesting disassembly of thousands of instructions might run for a long time, and it can be
interrupted by Ctrl+C. In such cases the program is not affected.

If the program is running, entering Ctrl+C at the PGDBG command prompt halts execution of the program.
This is useful in cases where the program “hangs” due to an infinite loop or deadlock.

Sending Ctrl+C, also known as a SIGINT, to a program while it is in the middle of initializing its threads, by
calling omp_set_num_threads() or entering a parallel region, may kill some of the threads if the signal is sent
before each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the number of
threads employed by a program is large, thread initialization may take a while.

Chapter 4. Command Language

GUI Debugging

If the program is running, entering Ctrl+C in the Input field of the Program IO tab sends SIGINT to the
program.

MPI Debugging

Sending Ctrl+C to a running MPICH-1 program is not recommended. For details, refer to “Use halt instead
of Ctrl+C,” on page 90. Use the PGDBG halt command as an alternative to sending Ctrl+C to a running
program. The PGDBG command prompt must be available in order to issue a halt command. The PGDBG
command prompt is available while threads are running if pgienv threadwait none is set.

As described in “Using Continue,” on page 91, when debugging an MPI job via the following command,
PGDBG spawns the job in 2 manner that prevents console-generated interrupts from directly reaching the MPI
job launcher or any of the MPI processes.

pgdbg - npi

In this case, typing Ctrl+C only interrupts PGDBG, leaving the MPI processes running. When PGDBG’s thread
wait mode is not set to none, you can halt the MPI job after using Ctrl+C by entering PGDBG’s halt command,
even if no PGDBG prompt is generated.

35

36

Chapter 5. Command Summary

This chapter contains a brief summary of the PGDBG debugger commands. For a detailed description of each
command, grouped by category of use, refer to Chapter 13, “Command Reference”.

If you are viewing an online version of this manual, you can select the hyperlink under the selection category to
jump to that section in the manual.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(1D).

 Argument names are chosen to indicate what kind of argument is expected.
e Arguments enclosed in brackets([]) are optional.

¢ Two or more arguments separated by a vertical line (I) indicate that any one of the arguments is acceptable.

An ellipsis (...) indicates an arbitrarily long list of arguments.

Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command list may be abbreviated to lis, and that it can
be invoked without any arguments or with one of the following arguments: an integer count, a line range, a
routine name, or a line and a count.

lis[t] [count | lo:hi | routine | |ine,count]

37

Command Summary

Command Summary

38

Table 5.1. PGDBG Commands

Name Arguments Category
adl[dr] [nlline n | routine | var | arg | “Conversions,” on page 118
Creates an address conversion under certain conditions.
allias] [name [string] “Miscellaneous,” on page 120
Create or print aliases.
args “Process Control,” on page 96
Print the current program arguments.
arrifve] “Program Locations,” on page 107
Print location information for the current location.
asclii] exp [,...exp] “Printing Variables and Expressions,” on
page 109
Evaluate and print as an ascii character.
as[sign] var=exp “Symbols and Expressions,” on page
112
Set variable var to the value of the expression exp.
attfach] pid [exe] “Process Control,” on page 96
Attach to a running process with process ID pid. Use exe to specify the absolute path
of the executable file.
bin exp [,...exp] “Printing Variables and Expressions,” on
page 109
Evaluate and print the expressions. Integer values are printed in base 2.
b[reak] [line | routine] [if (condition)] [do “Events,” on page 100
{commands}]
When arguments are specified, sets a breakpoint at the indicated line or routine. When
no arguments are specified, prints the current breakpoints.
breaki [addr | routine] [if (condition)] [do “Events,” on page 100
{commands}]
When arguments are specified, sets a breakpoint at the indicated address or routine.
When no arguments are specified, prints the current breakpoints.
breaks “Events,” on page 100

Displays all the existing breakpoints

Chapter 5. Command Summary

Name Arguments Category
call routine [(exp,...)] “Symbols and Expressions,” on page
112
Call the named routine.
catch [number [,number...]] “Events,” on page 100
With arguments, catches the signals and runs target as though signal was not sent. With
no arguments, prints the list of signals being caught.
cd [dir] “Program Locations,” on page 107
Change to the $HOME directory or to the specified directory dir.
clas[s] [class] “Scope,” on page 114
Return the current class or enter the scope of the specified class cl ass.
classe[s] “Target,” on page 119
Print the C++ class names.
clear [all | routine | line | addr {addr} | “Events,” on page 100
With arguments, clears the indicated breakpoints. When no arguments are specified,
this command clears all breakpoints at the current location.
con[nect] [-t name [args] | -d path [args] | -f file “Target,” on page 119
[name [args]] |
Prints the current connection and the list of possible connection targets.
c[ont] “Process Control,” on page 96
Continue execution from the current location.
crlead] addr “Memory Access,” on page 117
Fetch and return an 8-bit signed integer (character) from the specified address.
de[bug] [target [argl _ argn]] “Process Control,” on page 96
Load the specified program with optional command-line arguments.
dec exp [,...exp] “Printing Variables and Expressions,” on
page 109
Evaluate and print the expressions. Integer values are printed in decimal.
decl[aration] |name “Symbols and Expressions,” on page
112
Print the declaration for the symbol based on its type according to the symbol table.
decls [routine | "sourcefile" | {global}] “Scope,” on page 114

Print the declarations of all identifiers defined in the indicated scope. If no scope is
given, print the declarations for global scope.

39

Command Summary

Name Arguments Category

defset name [p/t-set] “Process-Thread Sets,” on page 99

Assign a name to a process/thread set. Define a named set.

del[ete] event-number | all | 0 | event-number “Events,” on page 100
[,.event-number. |

Delete the event event - nunber or all events (delete 0 is the same as delete all).
Multiple event numbers can be supplied if they are separated by commas.

det[ach] “Process Control,” on page 96

Detach from the current running process.

dir[ectory] [pathname] “Miscellaneous,” on page 120

Add the directory pathname to the search path for source files. If no argument is
specified, the currently defined directories are printed.

disab[le] event-number | all “Printing Variables and Expressions,” on
page 109

With arguments, disables the event event - nunber or all events. When no arguments
are specified, prints both enabled and disabled events.

dis[asm] [count | lo:hi | routine | addr, count] “Program Locations,” on page 107

Disassemble memory. If no argument is given, disassemble four instructions starting at
the current address.

disc[onnect] “Events,” on page 100
Close connection to target.
display [exp [,...exp]] “Printing Variables and Expressions,” on
page 109

With an argument or several arguments, print expression exp at every breakpoint.
Without arguments, list the expressions for PGDBG to automatically display at
breakpoints.

do {commands} [at line | in routine] [if “Events,” on page 100
(condition) |

Define a do event. Without the optional arguments at or i n, the commands are
executed at each line in the program.

doi {commands} [at addr | in routine] [if “Events,” on page 100
(condition) |

Define a doi event. If neither the at or i n argument is specified, then the commands
are executed at each instruction in the program.

down [number] “Scope,” on page 114

Enter scope of routine down one level or nunber levels on the call stack.

dr[ead] addr “Memory Access,” on page 117

Fetch and return a 64 bit double from the specified address.

40

Chapter 5. Command Summary

Name Arguments Category
du[mp] [addr [,count [,format]]] “Memory Access,” on page 117
Dumps the contents of a region of memory. The output is formatted according to a
printf-like format descriptor.
edit [filename | routine] “Program Locations,” on page 107
Edit the specified file or file containing the subroutine. If no argument is supplied, edit
the current file starting at the current location. {Command-line interface only]
enab|[le] [event-number | all] “Events,” on page 100
With arguments, this command enables the event event - nunber or all events. When
no arguments are specified, prints both enabled and disabled events.
enfter] [routine | "sourcefile" | global] “Scope,” on page 114
Set the search scope to be the indicated symbol, which may be a subroutine, source
file or global. Using no argument is the same as using enter global
entr[y] [routine] “Symbols and Expressions,” on page
112
Return the address of the first executable statement in the program or specified
subroutine.
fille] [filename] “Program Locations,” on page 107
Change the source file to the file filename and change the scope accordingly. With no
argument, print the current file.
files “Scope,” on page 114
Return the list of known source files used to create the executable file
focus [p/t-set] “Process-Thread Sets,” on page 99
Set the target process/thread set for commands. Subsequent commands are applied to
the members of this set by default.
b “Register Access,” on page 116
Return the current value of the frame pointer.
fr[ead] addr “Memory Access,” on page 117
Fetch and print a 32-bit float from the specified address.
func[tion] [addr | line] “Conversions,” on page 118
Return a subroutine symbol. If no argument is specified, return the current routine.
glob[al] “Scope,” on page 114
Return a symbol representing global scope.
balt [command] “Process Control,” on page 96

Halt the running process or thread.

41

Command Summary

Name Arguments Category

he[lp] [command] “Miscellaneous,” on page 120
If no argument is specified, print a brief summary of all the commands. If a command
name is specified, print more detailed information about the use of that command.

bex exp [,...exp] “Printing Variables and Expressions,” on

page 109

Evaluate and print expressions as hexadecimal integers.

hi[story] [num] “Miscellaneous,” on page 120
List the most recently executed commands. With the numargument, resize the history
list to hold num commands.

bhwatch addr | var [if (condition)] [do “Events,” on page 100
{commands}]
Define a hardware watchpoint.

hwatchb[oth] addr | var [if (condition)] [do “Events,” on page 100
{commands}]
Define a hardware read/write watchpoint.

hwatchr[ead] addr | var [if (condition)] [do “Events,” on page 100
{commands}]
Define a hardware read watchpoint.

ignore [number [,number...]] “Events,” on page 100
Ignore the specified signals and do not deliver them to the program. When no
arguments are specified, prints the list of signals being ignored.

ir[ead] addr “Memory Access,” on page 117
Fetch and print a signed integer from the specified address.

language “Miscellaneous,” on page 120
Print the name of the language of the current file.

linfe] [n | routine | addr] “Conversions,” on page 118
Create a source line conversion. If no argument is given, return the current source
line.

lines [routine] “Program Locations,” on page 107
Print the lines table for the specified routine. If no argument is specified, prints the
lines table for the current routine.

lis[t] [count | line,count | lo:hi | routine] “Program Locations,” on page 107
With no argument, list 10 lines centered at the current source line. If an argument is
specified, list lines based on information requested.

42

Chapter 5. Command Summary

Name Arguments Category
lo[ad] [prog [args]] “Process Control,” on page 96
Without options, print the name and arguments of the program being debugged. With
arguments, invoke the debugger using the specified program and program arguments,
if any.
log filename “Miscellaneous,” on page 120
Keep a log of all commands entered by the user and store it in the named file.
Ir[ead] addr “Memory Access,” on page 117
Fetch and print an address from the specified address.
lvlal] exp “Symbols and Expressions,” on page
112
Return the Ivalue of the expression expr.
mq[dump] “Memory Access,” on page 117
Dump MPI message queue information for the current process.
names [routine | "sourcefile" | {global}] “Scope,” on page 114
Print the names of all identifiers defined in the indicated scope. If no scope is
specified, use the search scope.
natfive] [command] “Target,” on page 119
Without arguments, print a list of the available target commands. With a command
argument, send the native command directory to the target.
nfext] [count] “Process Control,” on page 96
Stop after executing one or count source line(s) in the current subroutine.
nexti [count] “Process Control,” on page 96
Stop after executing one or count instruction(s) in the current subroutine.
nop[rint] exp “Miscellaneous,” on page 120
Evaluate the expression but do not print the result.
oct exp [,...exp] “Printing Variables and Expressions,” on
page 109
Evaluate and print expressions as octal integers.
pc “Register Access,” on page 116
Return the current program address.
pgienv [command] “Miscellaneous,” on page 120
Define the debugger environment. With no arguments, display the debugger settings.
p[rint] expl [,...expn] “Printing Variables and Expressions,” on

page 109

Evaluate and print one or more expressions.

43

Command Summary

44

Name Arguments Category
printf "format_string", expr,...expr “Printing Variables and Expressions,” on
page 109

Print expressions in the format indicated by the format string.

proc [id] “Process Control,” on page 96
Set the current process to the process identified by id. When issued with no argument,
lists the location of the current thread of the current process in the current program.

procs “Process Control,” on page 96
Print the status of all active processes, listing each process by its logical process ID.

pwd “Program Locations,” on page 107
Print the current working directory.

qluit] “Process Control,” on page 96
Terminate the debugging session.

regs regs [-info] [-grp=grpl[,grp2...]] [- “Register Access,” on page 116
fmt=fmt1[,fmt2...]] [-mode=vectorlscalar]
Print a formatted display of the names and values of registers. Specify the register
group(s) with the - gr p option and formatting with the - f nt option. Use - i nf o to
see a listing of available register groups and formats.

rep[eat] [first, last] | [first: last:n] | [num] | [-num] | “Miscellaneous,” on page 120
Repeat the execution of one or more previous history list commands.

rer[un] [arg0 argl ... argn] [< inputfile] [[> | >&|“Process Control,” on page 96
| >> | >>&] outputfile]
Like the run command with one exception: if no args are specified with rerun, then
no args are used when the program is launched.

ret [addr] “Register Access,” on page 116
Return the current return address.

rufn] [arg0 argl ... argn] [< inputfile] [> “Process Control,” on page 96
outputfile]
Execute program from the beginning. If arguments arg0, argl, and so on are specified,
they are set up as the command-line arguments of the program. Otherwise, the
arguments for the previous run command are used.

rvfal] expr “Symbols and Expressions,” on page

112

Return the rvalue of the expression expr.

sco[pe] “Scope,” on page 114

Return a symbol for the search scope.

Chapter 5. Command Summary

Name Arguments Category

scrlipt] filename “Miscellaneous,” on page 120

Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of the
environment variable HOME.

set var = exp “Symbols and Expressions,” on page
112

Set variable var to the value of expression.

setargs [argl , arg2, ... argn] “Process Control,” on page 96

Set program arguments to be used by the current program,

setenv name [value] “Miscellaneous,” on page 120

Print value of environment variable name. With a specified value, set name to value.

shlell] [arg0 , argl, ... argn] “Miscellaneous,” on page 120

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell
is sh). Without arguments, invokes an interactive shell, and executes until 2 "~D" is
entered.

siz[eof] name “Symbols and Expressions,” on page
112

Return the size, in bytes, of the variable type name; or, if the name refers to a routine,
returns the size in bytes of the subroutine.

slefep] [time] “Miscellaneous,” on page 120

Pause for time seconds. If no time is specified, pause for one second

sou[rce] filename “Miscellaneous,” on page 120

Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of $HOME.

sp “Register Access,” on page 116

Return the current stack pointer address.

srlead] addr “Memory Access,” on page 117

Fetch and print a short signed integer from the specified address

stackd[ump] [count] “Program Locations,” on page 107

Print a formatted dump of the call stack. This command displays a hex dump of the
stack frame for each active subroutine.

stack[trace] [count] “Program Locations,” on page 107

Print the call stack. For each active subroutine print the subroutine name, source file,
line number, and current address, provided that this information is available.

45

Command Summary

46

Name

Arguments

Category

stat[us]

“Events,” on page 100

Display all the event definitions, including an event number by which the event can be

identified.

s[tep]

[count | up]

“Process Control,” on page 96

Step into the current subroutine and stop after executing one or count source line(s).

If the up argument is specified, stops executi
subroutine.

on after stepping out of the current

stepi

[count | up]

“Process Control,” on page 96

Step into the current subroutine and stop after executing one or count source line(s).

If the up argument is specified, stops executi
subroutine.

on after stepping out of the current

stepo[ut]

“Process Control,” on page 96

Stop after returning to the caller of the curre

nt subroutine.

stop

[at line | in routine] [var] [if (condition)]
[do {commands}]

“Events,” on page 100

Set a breakpoint at the indicated subroutine or line. Break when the value of the

indicated variable var changes.

stopi

[at addr | in routine] [var] [if (condition)]

“Events,” on page 100

[do {commands}]

Set a breakpoint at the indicated address or subroutine. Break when the value of the

indicated variable var changes.

strfing]

exp [,...exp]

“Printing Variables and Expressions,” on
page 109

Evaluate and print expressions as null-terminated character strings, up to 2 maximum

of 70 characters.

sync

[routine | line]

“Process Control,” on page 96

Advance the current process/thread to a specific program location, ignoring any user-

defined events.

synci

[routine | addr]

“Process Control,” on page 96

Advance the current process/thread to a specific program location, ignoring any user-

defined events.

thread

[number]

“Process Control,” on page 96

Set the current thread to the thread identified by number; where number is a logical
thread ID in the current process’ active thread list. When issued with no argument, list
the current program location of the currently active thread.

threads

“Process Control,” on page 96

Prints the status of all active threads, grouped by process.

Chapter 5. Command Summary

Name Arguments Category
trace [at line | in routine] [var | routine] [if “Events,” on page 100
(condition)] do {commands}
Activates source line tracing as specified by the arguments supplied.
tracei [at addr | in routine] [var] [if (condition)] | “Events,” on page 100
do {commands}
Activates instruction tracing as specified by the arguments supplied.
track expression [at line | in routine] [if “Events,” on page 100
(condition)] [do {commands}]
Define a track event.
tracki expression [at addr | in routine] [if “Events,” on page 100
(condition)] [do {commands}]
Define an assembly-level track event.
type expr “Symbols and Expressions,” on page
112
Return the type of the expression.
unalfias] name “Miscellaneous,” on page 120
Remove the alias definition for name, if one exists.
unb[reak] line | routine | all “Events,” on page 100
Remove a breakpoint from the statement line or subroutine, or remove all
breakpoints.
unbreaki addr | routine | all “Events,” on page 100
Remove a breakpoint from the address addr or the subroutine, or remove all
breakpoints.
undefset [name | -all] “Process-Thread Sets,” on page 99
Remove a previously defined process/thread set from the list of process/thread sets.
undisplay [alll0lexp] “Printing Variables and Expressions,” on
page 109
Remove all expressions specified by previous display commands. With an argument or
several arguments, remove the expression exp from the list of display expressions.
ulp] [number] “Scope,” on page 114
Move up one level or number levels on the call stack.
use [dir] “Miscellaneous,” on page 120

Print the current list of directories or add dir to the list of directories to search. If the
first character in pathname is ~, the value of $HOME is substituted for this character.

47

Command Summary

48

Name Arguments Category
viewset name “Process-Thread Sets,” on page 99
List the members of a process/thread set that currently exist as active threads or list
defined p/t-sets.
wait [any | all | none] “Process Control,” on page 96
Inserts explicit wait points in a command stream.
waftch] expression [at line | in routine] [if “Events,” on page 100
(condition)] [do {commands}]
Define a watch event. The given expression is evaluated, and subsequently, each time
the value of the expression changes, the program stops and the new value is printed.
watchi expression [at addr | in routine] “Events,” on page 100
[if (condition)] [do {commands}]
Define an assembly-level watch event.
whatis [name] “Symbols and Expressions,” on page
112
With no arguments, prints the declaration for the current subroutine. With argument
name, prints the declaration for the symbol name.
when [at line | in routine] [if (condition)] do “Events,” on page 100
{commands}
Execute commands at every line in the program, at a specified line in the program or
in the specified subroutine.
wheni [at addr | in routine] [if(condition)] do | “Events,” on page 100
{commands}
Execute commands at each address in the program. If an address is specified, the
commands are executed each time the address is reached.
w/here] [count] “Program Locations,” on page 107
Print the call stack. For each active subroutine print the subroutine name, subroutine
arguments, source file, line number, and current address, provided that this
information is available.
whereis name “Symbols and Expressions,” on page
112
Print all declarations for name.
which name “Scope,” on page 114
Print full scope qualification of symbol name.
whichsets [p/t-set] “Process-Thread Sets,” on page 99
List all defined p/t-sets to which the members of a process/thread set belong.
/ / [string] / “Program Locations,” on page 107

Search forward for a string (st ri ng) of characters in the current source file

Chapter 5. Command Summary

Name Arguments Category

? ?[string] ? “Program Locations,” on page 107

Search backward for a string (st ri ng) of characters in the current source file.

! History modification “Miscellaneous,” on page 120

Executes 2 command from the command history list. The command executed depends
on the information that follows the !.

A History modification “Miscellaneous,” on page 120

Quick history command substitution ~old”new” <modifier> this is equivalent to !:s/
old/new/

49

50

Chapter 6. Assembly-Level
Debugging

This section provides information about PGDBG assembly-level debugging, including an overview about what
to expect if you are using assembly-level debugging or if you did not compile your program for debugging.

Assembly-Level Debugging Overview

PGDBG supports debugging regardless of how a program was compiled. In other words, PGDBG does not
require that the program under debug be compiled with debugging information, such as using - g. It can
debug code that is lacking debug information, but because it is missing information about symbols and
line numbers, it can only access the program at the assembly level. PGDBG also supports debugging at the
assembly level if debug symbols are available.

As described in “Building Applications for Debug,” on page 1, the richest debugging experience is available
when the program is compiled using - g or - gopt with no optimization. When a program is compiled at
higher levels of optimization, less information about source-level symbols and line numbers is available, even
if the program was compiled with - g or - gopt . In such cases, if you want to find the source of a problem
without rebuilding the program, you may need to debug at the assembly level.

If a program has been "stripped" of all symbols, either by the linker or a separate utility, then debugging will
be at the assembly level. PGDBG is only able to examine or control the program in terms of memory addresses
and registers.

Assembly-Level Debugging on Microsoft Windows Systems

When applications are built without - g on Windows systems, the resulting binary, the . exe file, does not
contain any symbol information. Microsoft stores symbol information in a program database, a . pdb file.

To generate a . pdb file using the PGI compiler drivers, you must use - g during the link step. You can do
this even if you did not use - g during the compile step. Having this . pdb file available provides PGDBG with
enough symbol information to map addresses to routine names.

51

Assembly-Level Debugging Overview

Assembly-Level Debugging with Fortran

To refer to Fortran symbol names when debugging at the assembly level, you must translate the names to use
the naming convention that matches the calling convention in use by the compiler. For code compiled by the
PGI compilers, in most cases this means translating to lower case and appending an underscore. For example,
a routine that appears in the source code as "VADD" would be referred to in the debugger as "vadd_".

On 32-bit Windows systems there are alternative calling conventions. The one described above matches the
convention used when the compiler is invoked with - M f ace=uni x (previously - Muni x). For details of
other 32-bit Windows calling conventions, refer to the PGI Compiler User's Guide.

Note

Name translation is only necessary for assembly-level debugging. When debugging at the source level,
you may refer to symbol names as they appear in the source.

A special symbol, MAI N_, is created by PGFORTRAN to refer to the main program. PGFORTRAN generates this
special symbol whether or not there is a PROGRAM statement. One way to run to the beginning of a Fortran
program is to set a breakpoint on MAI N_, then run.

Assembly-Level Debugging with C**

C** symbol names are "mangled" names. For the names of C** methods, the names are modified to include
not only the name as it appears in the source code, but information about the enclosing class hierarchy,
argument and return types, and other information. The names are long and arcane. At the source level these
names are translated by PGDBG to the names as they appear in the source. At the assembly level, these names
are in the mangled form. Translation is not easy and not recommended. If you have no other alternative, you
can find information about name mangling in the PGI Compiler User's Guide.

Assembly-Level Debugging Using the PGDBG GUI

This section describes some basic operations for assembly-level debugging using the PGDBG GUL. If you
encounter the message “ Can’t find mai n function conpiled -g” on startup, assembly -level
debugging is required.

To get into a program in this situation, you can select the Debug | Set Breakpoint... menu option. To stop at
program entry, for example, in Fortran you could enter MAI N_ in response to the dialog query; in C or C**
you could enter mai n.

PGDBG debug information tabs that are useful in assembly-level debugging include the Call Stack, Memory,
and Register tabs. Use the Disassembly tab in the source pane to view the disassembled code.

If disassembly is not automatically displayed in the source pane, use the di s command in either the Command
tab or Data | Custom window to generate disassembly for an address or function.

Assembly-Level Debugging Using the PGDBG CLI

This section describes some basic operations for assembly-level debugging using the PGDBG command-line
interface. When you invoke the PGDBG CLI and are presented with a message telling you that PGDBG " Can' t
find main function conpiled -g",assembly-level debugging is required.

52

Chapter 6. Assembly-Level Debugging

To get into the program, you can set a breakpoint at a named routine. To stop at program entry, for example, in
Fortran you could use

pgdbg> break MAI N_
and in ¢/ C** you could use
pgdbg> break nmain

Some useful commands for assembly-level debugging using the PGDBG command-line interface include:

run
run the program from the beginning

cont
continue program execution from the current point

nexti
single-step one instruction, stepping over calls

stepi
single-step one instruction, stepping into calls

breaki
set a breakpoint at a given address

regs
display the registers

print $ <regname>
display the value of the specified register

For more information on register names, refer to “SSE Register Symbols,” on page 53.

dump
dump memory locations

stacktrace
display the current call stack.

stackdump
display the current call stack.

SSE Register Symbols

X64 processors and x86 processors starting with Pentium III provide SSE (Streaming SIMD Enhancements)
registers and a SIMD floating-point control/status register.

Each SSE register may contain four 32-bit single-precision or two 64-bit floating-point values. The PGDBG
regs command reports these values individually in both hexadecimal and floating-point format. PGDBG
provides command notation to refer to these values individually or all together.

The component values of each SSE register can be accessed using the same syntax that is used for array
subscripting. Pictorially, the SSE registers can be thought of as follows:

53

SSE Register Symbols

54

[32-bit]
127 96 95 64 63 3231 0
$xmmO|[3] $xmmO0|2] $xmmO|[1] $xmmO|[0]
$xmm1|[3] $xmm1|[2] $xmm1|[1] $xmm1][0]
$xmm2[3] $xmm2[2] $xmm2[1] $xmm2[0]

To access $xmmO[3], the 32-bit single-precision floating point value that occupies bits 96 — 127 of SSE
register 0, use the following PGDBG command:

pgdbg> print $xmmoO[3]
To set $xmm2[0] to the value of $xmm3[2], use the following PGDBG command:
pgdbg> set $xmm2[3] = $xmmB[2]
[64-Dbit]
127 64 63 0
$xmmOd|[1] $xmmO0d|[0]
$xmm1d[1] $xmm1d[0]
$xmm2d|[1] $xmm2d[0]

To access the 64-bit floating point values in xmm0, append the character 'd' (for double precision) to the
register name and subscript as usual, as illustrated in the following pgdbg commands:

pgdbg> print $xmOd[0]
pgdbg> print $xmmOd[1]
In most cases, PGDBG detects when the target environment supports SSE registers. In the event PGDBG does

not allow access to SSE registers on a system that should have them, set the PGDBG_SSE environment variable
to on to enable SSE support.

Chapter 7. Source-Level Debugging

This chapter describes source-level debugging, including debugging Fortran and C*™.
Debugging Fortran
Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran character
types, which are treated as arrays of the C type char.

Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention, denoting
subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (AMD64 or Intel 64) support large arrays (arrays with an
aggregate size greater than 2GB). You can enable large array support by compiling using these options: —
mcodel =nedi um —M ar ge_ar r ays. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts that
are used in the program.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is used
in the program.

Operators

In general, PGDBG uses C language style operators in expressions and supports the Fortran array index
selector “()” and the Fortran field selector “%” for derived types. However, . eq. , . ne. , and so forth are not
supported. You must use the analogous C operators ==, !=, and so on, instead.

Note

The precedence of operators matches the C language, which may in some cases be different than that
used in Fortran.

See Table 5.1, “PGDBG Commands” for a complete list of operators and their definition.

99

Debugging Fortran

Name of the Main Routine

If 2 PROGRAM statement is used, the name of the main routine is the name in the program statement. You can
always use the following command to set a breakpoint at the start of the main routine.

break MAIN

Common Blocks

Each subprogram that defines 2 common block has a local static variable symbol to define the common.
The address of the variable is the address of the common block. The type of the variable is a locally-defined
structure type with fields defined for each element of the common block. The name of the variable is the
common block name, if the common block has a name, or _BLNK_ otherwise.

For each member of the common block, a local static variable is declared which represents the common block
variable. Thus given declarations:
conmmon /xyz/ a, b

i nteger a
i nteger b

then the entire common block can be printed out using,
print xyz

Individual elements can be accessed by name. For example:,

print a, b

Internal Procedures

56

To unambiguously reference an internal procedure, qualify its name with the name of its host using the scoping
operator @.

For example:

subroutine subl ()
call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in subl"
end subroutine internal _proc
end subroutine

subrouti ne sub2 ()

call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in sub2"

end subroutine internal _proc
end subroutine

program nai n
call subl ()
call sub2 ()

end program

Chapter 7. Source-Level Debugging

pgdbg> wherei s internal _proc
function: "/path/ip.f90" @ubl@ nternal _proc
function: "/path/ip.f90" @ub2@ nt er nal _proc

pgdbg> break subl@nternal proc
(1) breakpoint set at: internal _proc line: "ip.f90"@ address: 0x401E3C 1

pgdbg> break sub2@ nternal _proc
(2) breakpoint set at: internal _proc line: "ip.f90"@3 address: Ox401EEC 2

Modules

A member of a Fortran 90 module can be accessed during debugging.

nodul e nod

i nteger i Mod
end nodul e
subrouti ne useMd()

use nod

i Mod = 1000
end subroutine
program nai n

call useMod()
end program

e [f the module is in the current scope, no qualification is required to access the module's members.

pgdbg> b useMbd

(1) breakpoint set at: usenod line: "nodv.f90"@ address: 0x401CC4
1

Br eakpoi nt at 0x401CC4, function usenod, file nodv.f90, line 7
#T: i Mod = 1000

pgdbg> p i Mod
0

e If the module is not in the current scope, use the scoping operator @ to qualify the member's name.

Br eakpoi nt at 0x401CFO, function main, file nodv.f90, |ine 11
#11: call usehMbd()

pgdbg> p i Mod
"i Mod" is not defined in the current scope

pgdbg> p nod@ Mod
0

Module Procedures

A module procedure is a subroutine contained within 2 module. A module procedure itself can contain
internal procedures. The scoping operator @ can be used when working with these types of subprograms to
prevent ambiguity.

nodul e nod
cont ai ns
subroutine nod_procl()
call internal proc()
cont ai ns
subroutine internal _proc()

o7

Debugging c

print *, "internal _proc in nmod_procl"
end subroutine
end subroutine
subrouti ne nod_proc2()

call internal _proc()
cont ai ns
subroutine internal _proc()
print *, "internal proc in nod_proc2"

end subroutine
end subroutine
end nodul e

program mai n
use nod
call nod_procl
cal |l nod_proc2
end program

pgdbg> wherei s internal _proc
function: "/ pat h/ modp. f 90" @rd@rod_pr ocl@ nt er nal _pr oc
function: "/ pat h/ modp. f 90" @mod@rod_pr oc2@ nt er nal _pr oc

pgdbg> break nod@mwd_procl@ nternal _proc

(1) breakpoint set at: internal_proc |line: "nodp.f90"@ address: 0x401E3C
1

pgdbg> break nod@mwd_proc2@ nt er nal _proc

(2) breakpoint set at: internal_proc |ine: "nodp.f90"@4 address: O0x401EEC
2

Debugging C*

Calling C™* Instance Methods

58

To use the call command to call 2 C*™ instance method, the object must be explicitly passed as the first
parameter to the call. For example, suppose you were given the following definition of class Per son and the
appropriate implementation of its methods:

cl ass Person

{
publi c:
char nange[10] ;
Person(char * inNane);
void print();

int main ()

Person * pierre

pierre = new Person("Pierre");
pierre->print();

return O;

}

Call the instance method pri nt on object pi er r e as follows:

pgdbg> cal | Person::print(pierre)

Notice that pi er r e must be explicitly passed into the method because it is the t hi s pointer. You can also
specify the class name to remove ambiguity.

Chapter 8. Platform-Specific
Features

This chapter describes the PGDBG features that are specific to particular platforms, such as pathname
conventions, debugging with core files, and signals.

Pathname Conventions

PGDBG uses the forward slash character (/) internally as the path component separator on all platforms. The
backslash (\) is used as the escape character in the PGDBG command language.

On Windows systems, use backslash as the path component separator in the fields of the Connections tab. Use
the forward slash as the path component separator when using a debugger command in the Command tab or
in the CLL The forward slash separator convention is still in effect when using a drive letter to specify a full
path. For example, to add the Windows pathname C:\Temp\src to the list of searched source directories, use
the command:

pgdbg> dir C./Tenp/src

To set a breakpoint at line 10 of the source file specified by the relative path sub1\ mai n. c, use this
command:

pgdbg> break "subl/main.c":10

Debugging with Core Files

PGDBG supports debugging of core files on Linux platforms. In the GUI, select the Core option on the
Connections tab to enable core file debugging. Fill in the Program and Core File fields and open the connection
to load the core file.

You can also launch PGDBG for core file debugging from the command line. To do this, use the following
options:

$ pgdbg —core coreFil eNane progranmiName

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,
one common exception is the segmentation violation, which can be caused by referencing an invalid memory

59

Debugging with Core Files

60

address. The memory and register states of the program are written into a core file so that they can be
examined by a debugger.

The shell environment in which the application runs must be set up to allow core file creation. On many
systems, the default user setting ul i mi t does not allow core file creation.

Check the ul i mi t as follows:

For sh/bash users:
$ulimt -c
For csh/tcsh users:

%limt coredunpsize
If the core file size limit is zero or something too small for the application, it can be set to unlimited as follows:

For sh/bash users:
$ulinmt -c unlinited
For csh/tcsh users:

%limt coredunpsize unlimted

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits on core
file creation.

The core file is normally written into the current directory of the faulting application. It is usually named cor e
or cor e. pi d where pid is the process ID of the faulting thread. If the shell environment is set correctly and a
core file is not generated in the expected location, the system core dump policy may require configuration by a
system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are
written to the core file in most modern implementations of Linux. In some new versions of Linux, if more than
one thread faults, then each thread’s state is written to separate core files using the cor e. pi d file naming
convention previously described. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.s0), as most programs on
Linux do, then accurate core file debugging requires that the program be debugged on the system where the
core file was created. Otherwise, slight differences in the version of a shared library or the dynamic linker
can cause erroneous information to be presented by the debugger. Sometimes a core file can be debugged
successfully on a different system, particularly on more modern Linux systems, but you should take care when
attempting this.

When debugging core files, PGDBG:

Supports all non-control commands.

Performs any command that does not cause the program to run.

Generates an error message in PGDBG for any command that causes the program to run.

May provide the status of multiple threads, depending on the type of core file created.

Chapter 8. Platform-Specific Features

PGDBG does not support multi-process core file debugging.

Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on
according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands), except
for signals that cannot be intercepted or signals used internally by PGDBG.

Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG. Management of
these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG (via catch and ignore)
results in undefined behavior.

Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads internally. Other Linux
thread libraries, on systems that do not have support for real-time signals in the kernel, use SIGUSR1 and
SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) results in undefined
behavior.

Target applications compiled with the options —pg or —Mpr of =t i me generate numerous SIGPROF signals.
Although SIGPROF can be handled by PGDBG via the ignore command, debugging of applications built for
sample-based profiling is not recommended.

61

62

Chapter 9. Parallel Debugging
Overview

This chapter provides an overview of how to use PGDBG to debug parallel applications. It includes important
definitions and background information on how PGDBG represents processes and threads.

Overview of Parallel Debugging Capability

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread
and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes.

For specific information on multi-thread and OpenMP debugging, refer to Chapter 10, “Parallel Debugging
with OpenMP”.

For specific information on multi-process MPI debugging, refer to Chapter 11, “Parallel Debugging with
MPI”’.
Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail in
“The Graphical User Interface”.

Basic Process and Thread Naming

Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-
threaded/multi-process applications, it provides a convention for uniquely identifying each thread in each
process. This section gives a brief overview of this naming convention and how it is used to provide adequate
background for the subsequent sections. A more detailed discussion of this convention, including advanced
techniques for applying it, is provided in “Thread and Process Grouping and Naming,” on page 64.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG assigns
arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

63

Thread and Process Grouping and Naming

PGDBG identifies processes in an MPI application using MPI rank (in communicator MPI_COMM_WORLD).
Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of process
creation. Process IDs are unique across all active processes.

In 2 multi-threaded/multi-process application, each thread can be uniquely identified across all processes by
prefixing its thread ID with the process ID of its parent process. For example, thread 1.4 identifies the thread
with ID 4 in the process with ID 1.

An OpenMP application logically runs as a collection of threads with a single process, process 0, as the parent
process. In this context, a thread is uniquely identified by its thread ID. The process ID prefix is implicit and
optional. For more information on debugging threads, refer to “Threads-only Debugging,” on page 65.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.
Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and thread ID
is implicit and optional. For more information on process debugging, refer to “Process-only Debugging,” on
page 65.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to uniquely
identify a particular thread. For more information on multilevel debugging, refer to “Multilevel Debugging,” on
page 65.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0. The
use of thread IDs and process IDs is allowed but unnecessary.

Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes into sets, and how to
apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes

64

PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming threads and
processes. The debug mode is set automatically or by the pgienv mode command.

Table 9.1. PGDBG Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution
Multilevel Multiple processes, at least one process employing multiple threads of execution

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be ignored in
serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. For a
description of the PGDBG prompt, refer to “The PGDBG Command Prompt,” on page 77.

The debug mode can be changed at any time during a debug session.

Chapter 9. Parallel Debugging Overview

To change debug mode manually, use the pgienv command.
pgi env node [serial|thread| process|nultilevel]
Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the
process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial debug
mode when it detects and attaches to new threads.

Example 9.1. Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*. 1)
i All threads of process 0 (*. *)
0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on context.

Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded processes. As a convenience,
the thread ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial
debug mode when multiple processes are detected.

Example 9.2. Process IDs in Process-only Debug Mode

0 All threads of process 0 (0.*)

*

All threads of all processes (*.*)

1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending on context.

Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms
a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG
changes automatically to multilevel debug mode when at least one MPI process creates multiple threads.

Example 9.3. Thread IDs in Multilevel Debug Mode

0.1 Thread 1 of process 0
0.* All threads of process 0
i All threads of all processes

In multilevel debugging, mode status and error messages are prefixed with process/thread IDs depending on
context.

65

Process/Thread Sets

Process/Thread Sets

You use a process/thread set (p/t-set) to restrict a debugger command to apply to just a particular set of
threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/t-set
notation, described in “p/t-set Notation”, to define a p/t-set.

Named p/t-sets
In the following sections, you will notice frequent references to three named p/t-sets:

o The farget p/t-set is the set of processes and threads to which a debugger command is applied. The target
p/t-set is initially defined by the debugger to be the set [all] which describes all threads of all processes.

* A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the prefixed
command, the target p/t-set is the prefix p/t-set.

e The current p/t-set is the p/t set currently set in the PGDBG environment. You can use the focus command
to define the current p/t-set. Unless a prefix p/t-set overrides it, the current p/t set is used as the target p/t-
set.

p/t-set Notation
The following rules describe how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:
[p/t-set prefix] conmmand parn0, parnil, ..

Use a prefix p/t-set with a compound command:
[p/t-set prefix] sinple-command [;sinple-comrmand ...]

p/t-id:
{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect. For more information,
refer to the pgienv command.

p/t-range:
p/t-id:p/t-id

p/t-list:
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set
[[!']{p/t-list]|set-nane}]

Example 9.4. p/t-sets in Threads-only Debug Mode

[0, 4:6] Threads 0, 4, 5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is valid in threads-only mode
[*.*] All threads

66

Chapter 9. Parallel Debugging Overview

Example 9.5. p/t-sets in Process-only Debug Mode

[0,2:3] Processes 0, 2, and 3 (equivalent to [0.%,2:3.%])

[*] All processes (equivalent to [*.*])

[0] Process 0 (equivalent to [0.%])

[*.0] Process 0. Multilevel syntax is valid in process-only mode.

[0:2.7%] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

Example 9.6. p/t-sets in Multilevel Debug Mode

[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.7] All threads of process 0

[1.1:3] Thread 1, 2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic
p/t-set are those active threads described by the p/t-set at the time that the p/t-set is used. By default, a p/t-
set is dynamic. Threads and processes are created and destroyed as the target program runs and, therefore,
membership in a dynamic set varies as the target program executes.

Example 9.7. Defining a Dynamic p/t-set

defset clients [*.1:3] |Definesanamed setcl i ent s whose members are threads 1, 2, and
3 of all processes that are currently active when cl i ent s is used.
Membership in cl i ent s changes as processes are created and
destroyed.

Membership in a static set is fixed when it is defined. The members of a static p/t-set are those threads
described by that p/t-set when it is defined. Use a ‘!’ to specify a static set.

Example 9.8. Defining a Static p/t-set

defset clients [!*.1:3] |Defines a named set cl i ent s whose members are threads 1, 2, and 3
of those processes that are currently active at the time of the definition.

Note

p/t-sets defined with defset are not mode-dependent and are valid in any debug mode.

Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt and
depends on debug mode. For a description of the PGDBG prompt, refer to “The PGDBG Command Prompt,”

67

Process/Thread Sets

on page 77. You can use a p/t-set to prefix a command that overrides the current p/t-set. The prefix p/t-set
becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be affected by
a command.

e In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

e In contrast, a prefix p/t-set is used in the following command so that the target p/t-set is the prefix p/t-set,
shown in this example in bold:

pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all] is
the target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set. The
continue command is applied to all active threads in the target p/t-set. Also, using a prefix p/t-set does not
change the current p/t-set.

p/t-set Commands

68

You can use the following commands to collect threads and processes into logical groups.

* Use defset and undefset to manage a list of named p/t-sets.
e Use focus to set the current p/t-set.
o Use viewset to view the active members described by a particular p/t-set, or to list all the defined p/t-sets.

» Use whichsets to describe the p/t-sets to which a particular process/thread belongs.

Table 9.2. p/t-set Commands

Command Description

defset Define 2 named process/thread set. This set can later be referred to by name. A
list of named sets is stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent commands are
applied to the members of this set by default.

undefset Undefine a previously defined process/thread set. The set is removed from the
list. The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads,
or list all the defined p/t-sets.

whichsets List all defined p/t-sets to which the members of a process/thread set belong.

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-seti ni ti al to contain only thread 0:

pgdbg [all] 0> defset initial [O]
"initial" [0] : [0]

Use the focus command to change the current p/t-set to i ni ti al :

Chapter 9. Parallel Debugging Overview

pgdbg [all] 0> focus [initiall]

[initial] : [0]

[0]

Advance the thread using the current p/t-set, which isi ni ti al :
pgdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 bel ongs to:

al |

initial

The viewset command displays all threads that are active and are members of defined p/t-sets:
pgdbg [initial] 0> viewset

"all" [*.*] : [0.0,0.1,0.2,0.3]

"initial" [0] : [O]

You can use the focus command to set the current p/t-set back to [all]:
pgdbg [initial] 0> focus [all]

[all] : [0.0,0.1,0.2,0.3]

[*.*]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set nane "initial" deleted.

Using Process/Thread Sets in the GUI

The previous examples illustrate how to manage named p/t-sets using the command-line interface. A similar
capability is available in the PGDBG GUL “Groups Tab,” on page 12 provides an overview of the Groups tab.

Figure 9.1. Groups Tab

Command | Events | Groups

Group Name Composition
all ===

Add...]| Modify...]| Remove...]

69

Process/Thread Sets

The Groups tab contains a table with two columns: a Group Name column and a p/t-set Composition column.
The entries in the Composition column are the same p/t-sets used in the command-line interface.

Using this tab you can create, select, modify and remove p/t sets.

Create a p/t set

To create a p/t set in the Groups tab:

1. Click the Add button. This opens a dialog box similar to the one in Figure 9.2.
2. Enter the name of the p/t-set in the Group Name field and enter the p/t-set in the Composition field.

3. Click OK to add the p/t-set.

The new p/t-set appears in the Groups table. Clicking the Cancel button or closing the dialog box aborts the

operation.
Figure 9.2. Process/Thread Group Dialog Box
© B
— Define Process/Thread Group lﬁ
Group Name: []
Composition: []
L group iz composed of a et of processes and threads.
Examples:
[0.1,0.2,0.3] — thread 1, 2, and 3 of process 0
[O.*] — all threads of process 0
[1.1,2.1] — thread 1 of processes 1 and 2
[1=2.1] — thread 1 of processes 1 and 2
OK]| Cancel]
L
Select a p/t set

To select a p/t-set, click the desired p/t-set in the table. The selected p/t-set defines the Current Group used in
the Apply and Display drop-down lists on the main toolbar.

Modify a p/t set

To modify an existing p/t-set, select the desired group in the Group table and click the Modify... button. A
dialog box similar to that in Figure 9.2 appears, except that the Group Name and Composition fields contain

70

Chapter 9. Parallel Debugging Overview

the selected group’s name and p/t-set respectively. You can edit the information in these fields and click OK to
save the changes.

Remove a p/t set

To remove an existing p/t-set, select the desired item in the Groups Table and click the Remove... button.
PGDBG displays a dialog box asking for confirmation of the removal request.

p/t set Usage

When Current Group is selected in either the Apply or Display drop-down lists on the main toolbar, the
currently selected p/t-set in the Groups tab defines the Current Group.

Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets
according to how each command reacts to the current p/t-set. Process level and thread level commands can be
parallelized. Global commands cannot be parallelized.

Table 9.3. PGDBG Parallel Commands

Commands Action

Process Level Commands Parallel by current p/t-set or prefix p/t-set

Thread Level Commands Parallel by prefix p/t-set only; current p/t-set is ignored.

Global Commands Non-parallel commands

Process Level Commands
The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set can
be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [O0.1: 2]
pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:

pgdbg [all] 0.0> [0.3] n

Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used, these
commands execute in the context of the current thread of the current process by default. That is, thread level

71

Command Set

72

commands ignore the current p/t-set. Thread level commands can be applied to multiple threads by using a
prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed in the context of each
active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if present, or the current
thread (not the current p/t-set) if no prefix p/t-set exists.

The thread level commands are:

addr do hwatch print stack

ascii doi iread regs stackdump
assign dread line retaddr string

bin dump lines rval track
break* entry Ival scope tracki
cread fp noprint set watch

dec fread oct sizeof watchi
decl func pc sp whatis
disasm hex pf sread where

* breakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:

e The threads described by the prefix are sorted per process by thread ID in increasing order.
e The processes are sorted by process ID in increasing order, and duplicates are removed.

* The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the current
process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print nyrank
0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print
command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*,1:2.*] print myrank
[1.0] print myrank:

ELZ. 0] print nmyrank:

[22. 1] print myrank:

[22. 2] print nyrank:

[23. 0] print nmyrank:

?3. 2] print nyrank:

3

Chapter 9. Parallel Debugging Overview

[3.1] print myrank:
3

Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads across
all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

? defset funcs quit threads

/ delete help repeat unalias
alias directory history rerun unbreak
arrive disable ignore run undefset
breaks display log script use

call edit pgienv shell viewset
catch enable proc source wait

cd files procs status whereis
debug focus pwd thread whichsets

Process and Thread Control

PGDBG supports thread and process control everywhere in the program. Threads and processes can be
advanced in groups anywhere in the program.

The PGDBG control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current thread single-
steps over an _np_i ni t call (found at the beginning of every OpenMP parallel region) using the next
command, then all threads created by _np_i ni t step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So if the current process
returns from a call to MPI _I ni t under the control of a cont command, the new process does the same.

73

Configurable Stop Mode

Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG defines
two pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines two stop modes,
synchronous (sync) and asynchronous (async).

Table 9.4. PGDBG Stop Modes

Command Result

sync Synchronous stop mode; when one thread stops at a breakpoint (event),
all other threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other
threads. One thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgi env t hreadstop [sync|async]

Process stop mode is set using the pgienv command as follows:
pgi env procstop [sync|async]
PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging

an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and
asynchronous thread stop mode in parallel regions.

The pgienv environment variables t hr eadst opconf i g and pr ocst opconf i g can be set to automatic
(auto) or user defined (user) to enable or disable this behavior:

pgi env t hreadst opconfig [auto| user]
pgi env procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.
Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode

74

Wait mode describes when PGDBG accepts the next command. The wait mode is defined in terms of the
execution state of the program. Wait mode describes to the debugger which processes/threads must be
stopped before it will accept the next command.

In certain situations, it is desirable to be able to enter commands while the program is running and not
stopped at an event. The PGDBG prompt does not appear until all processes/threads are stopped. However, a
prompt may be available before all processes/threads have stopped. Pressing <enter> at the command line
brings up a prompt if it is available. The availability of the prompt is determined by the current wait mode and
any pending wait commands.

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence of semicolon-
separated commands, which are processed immediately in order.

The wait mode describes when to accept the next compound statement. PGDBG supports three wait modes,
which can be applied to processes and/or threads.

Chapter 9. Parallel Debugging Overview

Table 9.5. PGDBG Wait Modes

Command Result

all The prompt is available only after all threads have stopped since the
last control command.

any The prompt is available only after at least one thread has stopped
since the last control command.

none The prompt is available immediately after a control command is
issued.

e Thread wait mode describes which threads PGDBG waits for before accepting new commands.
Thread wait mode is set using the pgienv command as follows:
pgi env threadwait [any]|all|none]

* Process wait mode describes which processes PGDBG waits for before accepting new commands.

Process wait mode is set using the pgienv command as follows:

pgi env procwait [any|all]|none]

If process wait mode is set to none, then thread wait mode is ignored.

The PGDBG CLI defaults to:

threadwai t al
procwait any

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG. The
pgienv environment variable t hr eadwai t conf i g can be set to automatic (auto) or user defined (user) to
enable or disable this behavior.

pgi env t hreadwait config [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.
Automatic wait mode is the default thread wait mode.

The PGDBG GUI defaults to:

threadwait none
procwait none

Setting the wait mode may be necessary when invoking the PGDBG GUI using the - s (script file) option. This
step ensures that the necessary threads are stopped before the next command is processed.

PGDBG also provides a wait command that can be used to insert explicit wait points in a command stream.
wait uses the target p/t-set by default, which can be set to wait for any combination of processes/threads. You
can use the wait command to insert wait points between the commands of 2 compound command.

The t hr eadwai t and pr ocwai t pgienv variables can be used to configure the behavior of wait. For more
information, refer to pgienv usage in “Configurable Wait Mode,” on page 74.

75

Status Messages

Table 9.6, “PGDBG Wait Behavior” describes the behavior of wait.
Suppose S is the target p/t-set. In the table,

e Pis the set of all processes described by S.

* p is a single process.

e Tis the set of all threads described by S.

e t isasingle thread.

Table 9.6. PGDBG Wait Behavior

Command |threadwait |procwait |Wait Set
wait all all Wait for T
any
none
wait all any Wait for all threads in at least one p in P
none
wait any any Wait for all tin T for at least one p in P
none none
wait all all all Wait for T
any
none
wait all all any Wait for all threads of at least one p in P
none
wait all any any Wait for all tin T for at least one p in P
none none
wait any all all Wait for at least one thread for each process p in P
wait any all any Wait for at least one t in T
any none
none
wait any any all Wait for at least one thread in T for each process p in P
none
wait none |all all Wait for no threads
any any
none none

Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be useful in the CLI
if the graphical aids provided by the GUI are unavailable. Use the pgienv command to enable or disable the
types of status messages produced by setting the verbose environment variable to an integer-valued bit mask:

pgi env ver bose <bitmask>

76

Chapter 9. Parallel Debugging Overview

The values for the bit mask, listed in the following table, control the type of status messages desired.

Table 9.7. PGDBG Status Messages

Value |Type Information
0x0 Standard Disable all messages.
0x1 Standard Report status information on current process/thread only. A

message is printed when the current thread stops and when threads
and processes are created and destroyed. Standard messaging is the
default and cannot be disabled.

0x2 Thread Report status information on all threads of current processes. A
message is reported each time a thread stops. If process messaging
is also enabled, then a message is reported for each thread across
all processes. Otherwise, messages are reported for threads of the
current process only.

0x4 Process Report status information on all processes. A message is reported
each time a process stops. If thread messaging is also enabled,
then a message is reported for each thread across all processes.
Otherwise, messages are reported for the current thread only of
each process.

0x8 SMP Report SMP events. A message is printed when a process enters
or exits a parallel region, or when the threads synchronize. The
PGDBG OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default).

0x32 Symbolic debug |Report any errors encountered while processing symbolic debug
information information (e.g. ELF, DWARF2).

The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode, as described in “PGDBG Debug Modes,” on
page 64.

In serial debug mode, the PGDBG prompt looks like this:
pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread:

pgdbg [all] 0>
Current thread is O

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current process:

pgdbg [all] 0>
Current process is 0

"7

Parallel Events

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the
current p/t-set at the prompt.

Parallel Events

78

This section describes how to use a p/t-set to define an event across multiple threads and processes. Events,
such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-level commands,
described in “Thread Level Commands,” on page 71.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set
breakpoints on specific processes and threads. For example:
i) pgdbg [all] 0> b 15

ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (i) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.
By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user
events on specific processes and threads. For example:

i) pgdbg [all] 0> watch gl ob
ii) pgdbg [all] 0> [*] watch gl ob

(i) sets a watchpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are currently
active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or thread.
All other events must be defined explicitly after the process or thread is created. All processes must be stopped
to add, enable, or disable a user event.

Events may contain if and do clauses. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint fires. The if and do
clauses execute in the context of a single thread. The conditional in the if clause and the body of the do execute

in the context of a single thread, the thread that triggered the event. The conditional definition as above can be
restated as follows:

[0] if (glob!l=0) {[0] set f
[1] if (glob!=0) {[1] set f

0}
0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is bound
in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only well
defined as the last command in the do clause. For example:

Chapter 9. Parallel Debugging Overview

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current process.
For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

If conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, the following command
is illegal:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} |LLEGAL

The body of a do statement cannot be parallelized.

Parallel Statements

This section describes how to use a p/t-set to define a statement that executes for multiple threads and
processes.

Parallel Compound/Block Statements

Each command in 2 compound statement is executed in order. The target p/t-set is applied to all statements in
a compound statement. The following two examples (i) and (ii) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print f@l@
ii) pgdbg [all] O0>[*] break main; [*]cont; [*]wait; [*]print f@Al@

Use the wait command if subsequent commands require threads to be stopped, as the print command in the
example does.

The t hr eadwai t and pr ocwai t environment variables do not affect how commands within a2 compound
statement are processed. These pgienv environment variables describe to PGDBG under what conditions
(state of program) it should accept the next (compound) statement.

Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the current
thread by default. The following example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}
is equivalent to the following pseudo-code:

for the subset of [*] where (i==1)
break func; c; wait; for the subset of [*] where (i!=1) sync func2

Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of the
current thread by default. The following example:

pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

79

Parallel Statements

| oop:

if the subset of [*] is the enpty set
got o done

endi f

for the subset [s] of [*] where (i<10)
[s]n; [s]wait; [s]print i;

endf or

goto | oop

The while statement terminates when either the subset of the target p/t-set matching the while condition is the
empty set, or a return statement is executed in the body of the while.

Return Statements

The return statement is defined only in serial context since it cannot return multiple values. When return is
used in a parallel statement, it returns the last value evaluated.

80

Chapter 10. Parallel Debugging with
OpenMP

This chapter provides information on how to debug OpenMP applications. Before reading this chapter, review
the information in Chapter 9, “Parallel Debugging Overview”.

OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a single
thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering scheme for
OpenMP applications; for other types of multi-threaded applications thread numbering is arbitrary. OpenMP
private data can be accessed accurately for each thread. PGDBG provides understandable status displays
regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger operation
that is concurrent with application execution.

Multi-thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution. PGDBG reports
when a new thread is created and the thread ID of the new thread is printed.

([1] New Thr ead)

The system ID of the freshly created thread is available through the threads command. You can use the procs
command to display information about the parent process.

PGDBG maintains a conceptual current thread. When using the PGDBG CLL, the current thread is chosen by
using the thread command.

pgdbg [all] 2> thread 3
pgdbg [all] 3>

When using the PGDBG GUI, the current thread can be selected using the Current Thread drop-down list or by
clicking in the Thread Grid. A subset of PGDBG commands known as thread-level commands apply only to the
current thread. See “Thread Level Commands,” on page 71, for more information.

81

Debugging OpenMP Private Data

The threads command lists all threads currently employed by an active program. It displays each thread’s
unique thread ID, system ID (OS process ID), execution state (running, stopped, signaled, exited, or killed),
signal information and reason for stopping, and the current location if stopped or signaled. An arrow (=>)
indicates the current thread. The process ID of the parent is printed in the top left corner. The threads
command does not change the current thread.

pgdbg [all] 3> threads
O I D PID STATE SI GNAL LOCATI ON
=> 3 18399 Stopped SIGIRAP main line: 31 in "onp.c" address: 0x80490ab
2 18398 Stopped SIGTRAP nmain line: 32 in "onp.c" address: 0x80490cf

1 18397 Stopped SI GTRAP main line: 31 in "onp.c" address: 0x80490ab

0 18395 Stopped SIGTRAP f line: 5 in "onp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Table 10.1. Thread State Is Described Using Color

Thread State Description Color

Stopped The thread is stopped at a breakpoint, or was Red
directed to stop by PGDBG.

Signaled The thread is stopped due to delivery of a signal. |Blue

Running The thread is running. Green

Exited or Killed The thread has been killed or has exited. Black

Debugging OpenMP Private Data

82

PGDBG supports debugging of OpenMP private data for all supported languages. When an object is declared
private in the context of an OpenMP parallel region, it essentially means that each thread team has its own

copy of the object. This capability is shown in the following Fortran and C/C** examples, where the loop index
variable i is private by default.

FORTRAN example:

program onp_privat e_dat a

i nteger array(8)

call onp_set_numt hreads(2)
I $OVP PARALLEL DO

do i=1,8

array(i) =

enddo
I $OVP END PARALLEL DO

print *, array
end

¢/ C** example:

#i ncl ude <onp. h>

int main ()

{ . .
int i;
int array[8];
onp_set _num t hreads(2);

Chapter 10. Parallel Debugging with OpenMP

#pragma onp parall el

{
#pragma onp for
for (i =0; i < 8; ++i) {

array[i] =i;
}
}
for (i =0; i < 8; ++i) {
printf("array[%] = %\n",i, array[i]);
}
}

Compile the examples with a PGI compiler. The display of OpenMP private data in the resulting executables as
debugged by PGDBG is as follows:

pgdbg [all] 0> [*] print i

[O] print i:

1

[1] print i:

5

The example specifies [*] for the p/t-set to execute the print command on all threads. Figure 10.1 shows the
values for i in the PGDBG GUI using a Custom Window.

Note

All Threads is selected in the Context drop-down list to display the value on both threads.

Figure 10.1. OpenMP Private Data in PGDBG GUI

= PGDBG Custom
File Options

Corgoarcd > {p i

| stop][Clear]

[0] print i:
1
[1] print 1i:
5

[Reset][Close] |All Threads : [Upiate]L Lock]

83

84

Chapter 11. Parallel Debugging with
MPI

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications and

hybrid multi-thread/multi-process applications that use MPI to communicate between multi-threaded or
OpenMP processes. This section begins with a general overview of how to use PGDBG to debug parallel
MPI applications before detailing how to launch MPI applications under debug using the various supported
platforms and versions of MPI.

For information on compiling a program using MPI, refer to “Using MPI” in the PGI Compiler User’s Guide.

MPI and Multi-Process Support

PGDBG can debug MPI applications running on the local system or distributed across a cluster. MPI
applications must be started under debugger control. Process identification uses the MPI rank within
MPI_COMM_WORLD.

MPI debugging is supported on Linux, Windows, and Mac OSX. Applications are limited to 256 processes and
64 threads per process, depending on your PGI license keys. A PGI CDK license is required to enable PGDBG's
distributed debugging capabilities.

Launch Debugging From Within the GUI

Debugging of almost every type of MPI program can be started from within the Connections tab. MPICH-1 is
the single exception; launching an MPICH-1 program for debug must be done from the command line.

Select the MPI option on the Connections tab to enable the MPI-specific fields. The Command field must be
used to specify the path, including the executable, to the MPI launch program (i.e., mpiexec, mpirun, job
submit). The Arguments field is optional. Use it to pass arguments to the MPI launch program (i.e., -n 8).

Launch Debugging From the Command Line

MPICH-1

Debugging of an MPICH-1 program using the GUI must be started by invoking mpirun at the command line:

85

Launch Debugging From the Command Line

% npi run -np nprocs -dbg=pgdbg executable [argl,...argn]

A default connection will be created for this MPICH-1 session. You cannot save this connection. MPICH-1
debugging cannot be restarted from within the GUI; you must rerun the mpirun command.

MPICH-2

To launch debugging of an MPICH-2 program from the command line, use this command:
% pgdbg [-text] -npi[:<launcher>] <npiexec_args> [-programargs argl,...argn]
You can use —npi without an argument if, as is the case for MPICH-2, the launcher is named mpiexec.

If the path for <I auncher > is not part of the PATH environment variable, then you must specify the full path
to the <l auncher > command.

Another way to invoke the PGDBG GUI for debugging an MPICH-2 job applies only to the PGI CDK version of
MPICH-2:

% npi exec -np nprocs -pgi executable [argl,...argn]

MVAPICH

To launch debugging of an MVAPICH program from the command line, use this command:
% pgdbg [-text] -npi[:<launcher>] <mpiexec_args> [-programargs argl,...argn]

For MVAPICH, <I auncher > is npi r un_r sh, so use - npi : npi r un_r sh.If the path for <I auncher > is
not part of the PATH environment variable, then you must specify the full path to the <I auncher > command.

MSMPI (Local)

MSMPI applications can be run and debugged locally. In other words, an HPC Server cluster is not required to
take advantage of MSMPL

To invoke the PGDBG debugger to debug an MSMPI application locally, use the pgdbg - npi option:
PG $ pgdbg - npi[: <pat h>] <npi exec_args> [-program args argl,...argn]

The location of mpiexec should be part of your PATH environment variable. Otherwise, you should specify the
pathname for npi exec as <pat h>in - npi [: <pat h>] .

In this example, to debug an MSMPI application named pr og using four processes running on the host
system, use a command like this one:

PE@ $ pgdbg -npi -n 4 prog. exe

MSMPI (Cluster)

86

PGDBG provides support for debugging MSMPI applications on Windows HPC Server 2008 clusters. To use
PGDBG for Windows cluster debugging, you must first install components of the Microsoft runtime libraries on
each compute node of the cluster.

Your PGI installation provided the install packages for these components. Assuming that your installation was
made to the C: drive, find these packages here:

Chapter 11. Parallel Debugging with MPI

C\Program Fil es\PG\M crosoft Open Tools 10\redi st\and64\vcredi st_x64. exe
C.\Program Fil es\PG@\ M crosoft Open Tools 10\redi st\x86\vcredi st_x86. exe

On 64-bit compute nodes, install both packages. On 32-bit compute nodes, you only need to install
veredist_x86.exe.

Microsoft's cluster management software uses a job management application to launch and manage
executables on the head and cluster nodes. To begin distributed debugging on a cluster, invoke pgdbg with
both the - pgser v and - npi options:

pgdbg -pgserv: <path_to_pgserv.exe> -npi[:<job submt conmmand>]

The - pgser v option causes the PGDBG remote debug agent, called pgser v, to be copied into the current
working directory when debugging is launched. This action ensures that pgserv can be found on all the nodes.

The j ob submit command references Microsoft's HPC Job Manager.

The current working directory must be designated as a shared directory across all nodes of the cluster. All
nodes must have access to this directory in order for distributed execution and debugging to succeed.

In this example, to debug an MSMPI application named pr og using four processes running on a Windows
cluster, use a command like this:

PGE $ pgdbg - pgserv -npi:job. exe
submit /nunprocessors: 4 /workdir:\\head-node\ shareddir npi exec prog.exe

Using MPI on Linux
Installing MPI

When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports multi-
process MPI debugging. The PGI CDK contains versions of MPICH-1, MPICH-2, and MVAPICH pre-configured
to support debugging cluster applications with PGDBG. Versions of MPI not included in the PGI CDK must be
configured to support PGDBG. For more information, refer to the PGI Installation Guide or www.pgroup.com/
support/faq.htm.

Randomized Load Addresses

Newer versions of the Linux kernel support a security feature that allows shared objects to be loaded at
randomized addresses.

PGDBG supports debugging of MPI jobs running on Linux kernels when this address randomization mode

is enabled. However, when this mode is enabled, the current implementation of PGDBG does not share
symbol table information associated with shared objects that are loaded by each process of an MPI job, which
increases memory usage by PGDBG. Therefore, PGI recommends that this kernel mode be disabled on Linux
clusters where PGDBG is used to debug MPI applications.

You can disable randomization mode by executing the following command as root on each node of the cluster:

sysctl -w kernel .random ze_va_space=0

PGDBG emits a warning whenever it detects that it is being invoked on a multi-process MPI job when this
kernel mode is enabled.

87

Using MPI on Windows

Using MPI on Windows

PGDBG supports Microsoft's version of MPI called MSMPI. PGDBG can debug MSMPI programs running
locally or on a distributed system. This section provides general information about building with and
debugging MSMPI applications

Installing MSMP!I

To use the RTM, SP1 or SP2 versions of MSMPI, install Microsoft HPC Pack 2008 SDK. To use the SP3 or SP4
version instead, install the HPC Pack 2008 R2 MS-MPI Redistributable Package. These install packages are
available for download directly from Microsoft. You must install the MS-MPI components before you can build,
run, or debug MSMPI applications.

Building with MSMPI

To build an application using the MSMPI libraries, use the option - Mypi =nsnpi . This compiler flag inserts
options into the compile and link lines to pick up the MSMPI headers and libraries.

Process Control

88

Here are some general things to consider when debugging an MPI program:

e Use the Groups tab (p/t-sets in the CLI) to focus on a set of processes. Be mindful of process dependencies.
e For a running process to receive a message, the sending process must be allowed to run.

e Process synchronization points, such as MPI_Barrier, do not return until all processes have hit the sync
point.

e MPI_Finalize acts as an implicit barrier except when using MPICH-1 where Process 0 returns while
Processes 1 through n-1 exit.

You can apply a control command, such as cont or step, to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that process
and is ignored by its running threads.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process. See
the pgienv command and “Configurable Wait Mode,” on page 74 for details.

PGDBG automatically attaches to new MPI processes as they are created by the running MPI application.
PGDBG displays an informational message as it attaches to the freshly created processes.

([1] New Process)
The MPI global rank is printed with the message.

You can use the pr ocs command to list the host and the PID of each process by rank. The current process is
indicated by an arrow (=>). You can use the pr oc command to change the current process by process ID.

Chapter 11. Parallel Debugging with MPI

pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPl.c, line 30
#30: aft=time(&aft);
ID |IPID STATE THREADS HOST
0 24765 Stopped 1 | oca
=> 1 17890 Stopped 1 red2. wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. For a
description of how thread state is represented in the GUI, refer to Table 10.1, “Thread State Is Described Using
Color,” on page 82.

The PGDBG command prompt displays the current process and the current thread. In the above example, the
current process was changed to process 1 by the pr oc 1 command and the current thread of process 1 is 0;
this is written as 1.0:

pgdbg [all] 1.0>
For a complete description of the prompt format, refer to “Process and Thread Control,” on page 73.

The following rules apply during a PGDBG debug session:

* PGDBG maintains a conceptual current process and current thread.
e Each active process has a thread set of size >=1.

e The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. For more
information, refer to “Process Level Commands,” on page 71 and “Thread Level Commands,” on page 71.

The PGI license keys restrict the total number of MPI processes that can be debugged. In addition, there are
internal limits on the number of threads per process that can be debugged.

Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the program. The
following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI _Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:
pgdbg [all] 0.0> [0:1.*] sync MPI_Finalize

A sync command only successfully syncs the target processes if the sync address is well defined for each
member of the target process set, and all process dependencies are satisfied. If these conditions are not met,
a member could wait forever for a message. The debugger cannot predict if a text address is in the path of an
executing process.

MPI Message Queues

PGDBG can dump MPI message queues. When using the CLI, use the mqdump command, described in
“Memory Access,” on page 117. When using the GUI, the message queues are displayed in the MPI Messages
debug information tab.

89

MPI Groups

The following error message may appear in the MPI Messages tab or when invoking mqdump:

ERROR: MPI Message Queue library not found.
Try setting ‘' PGDBG MJS_LI B_OVERRI DE' envi ronnment vari abl e
or set via the PGDBG command: pgienv ngslib <path>.

If this message is displayed, then the PGDBG_MQS_LI B_OVERRI DE environment variable should be set to the
absolute path of | i bt vipi ch. so or another shared object that is compatible with the version of MPI being
used. The default path can also be overridden via the mqslib variant of the pgienv command.

Microsoft MPI does not currently provide support for dumping message queues.

MPI Groups

PGDBG identifies each process by its MPI_COMM_WORLD rank. In general, PGDBG currently ignores MPI
groups.

Use halt instead of Ctrl+C

Entering Ctrl+C from the PGDBG command line can be used to halt all running processes. However, this is not
the preferred method to use while debugging an MPICH-1 program. PGDBG automatically switches to process
wait mode none (pgienv procwait none) as soon as it attaches to its first MPI process.

Setting pgienv procwait none allows commands to be entered while there are running processes, which
allows the use of the halt command to stop running processes without the use of Ctrl+C.

Note

halt cannot interrupt a wait command. Ctrl+C must be used for this.

In MPI debugging, wait should be used with care.

SSH and RSH

90

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also use
ssh for secure environments. The environment variable PGRSH should be set to ssh or r sh, to indicate the
desired communication method.

If you opt to use ssh as the mechanism for launching the remote components of PGDBG, you may want to
do some additional configuration. The default configuration of ssh can result in a password prompt for each
remote cluster node on which the debugger runs. Check with your network administrator to make sure that
you comply with your local security policies when configuring ssh.

The following steps provide one way to configure SSH to eliminate this prompt. These instructions assume
$HOME is the same on all nodes of the cluster.

$ ssh-keygen -t dsa

$ eval “ssh-agent -s°

$ ssh-add

<make sure that $HOVE is not group-witable>
$ cd $HOWE . ssh

$ cat id _dsa.pub >> authorized_keys

Chapter 11. Parallel Debugging with MPI

Then for each cluster node you use in debugging, use:

$ ssh <host>

A few things that are important related to this example are these:

e The ssh-keygen command prompts for a passphrase that is used to authenticate to the ssh-agent during
future sessions. The passphrase can be anything you choose.

* Once you answer the prompts to make the initial connection, subsequent connections should not require
further prompting.

e The ssh-agent -s command is correct for sh or bash shells. For csh shells, use ssh-agent -c.

After logging out and logging back in, the ssh-agent must be restarted and reauthorized. For example, in a bash
shell, this is accomplished as follows:

$ eval “ssh-agent -s°
$ ssh-add

You must enter the passphrase that was initially given to ssh-add to authenticate to the ssh-agent.

For further information, consult your ssh documentation.

Using the CLI

Setting DISPLAY

To use MPI debugging in text mode, be certain that the DISPLAY variable is undefined in the shell that is
invoking mpirun. If this variable is set, you can undefine it by using one of the following commands:

For sh/bash users, use this command:
$ unset DI SPLAY

For csh/tcsh users, use this command:
% unset env DI SPLAY

Using Continue

When debugging an MPI job after invoking the PGDBG CLI with the - npi option, each process is stopped
before the first assembly instruction in the program. Continuing execution using step or next is not
appropriate; instead, use the cont command.

Debugging Support for MPICH-1

With the CDK version of MPICH-1, PGDBG supports redirecting stdin, stdout, and stderr with the following
MPICH switches:

91

Debugging Support for MPICH-1

92

Table 11.1. MPICH Support

Command Output

-stdout <file> Redirect standard output to <file>
-stdin <file> Redirect standard input from <file>
-stderr <file> Redirect standard error to <file>

PGDBG also provides support for the following MPICH switches:

Command Output
-nol ocal PGDBG runs locally, but no MPI processes run locally
-all-local PGDBG runs locally, all MPI processes run locally

When PGDBG is invoked via mpirun the following PGDBG command-line arguments are not accessible. A
workaround is listed for each.

Argument Workaround

- dbx Include 'pgienv dbx on' in .pgdbgrc file.

-s startup Use .pgdbgrc default script file and the script command.

-¢ "command” Use .pgdbgrc default script file and the script command.

-text Clear your DISPLAY environment variable before invoking npi r un.

-t <target> Add to the beginning of the PATH environment variable a path to the
appropriate PGDBG.

Chapter 12. Parallel Debugging of
Hybrid Applications

PGDBG supports debugging hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes. Multi-threaded and OpenMP applications may be run using
more threads than the available number of CPUs, and MPI applications may allocate more than one process
to a cluster node. PGDBG supports debugging the supported types of applications regardless of how well the

requested number of threads matches the number of CPUs or how well the requested number of processes
matches the number of cluster nodes.

PGDBG Multilevel Debug Mode

As described in “PGDBG Debug Modes,” on page 64, PGDBG can operate in four debug modes. The mode
determines a short form for uniquely naming threads and processes.

The debug mode is set automatically or can be set manually using the pgienv command.

When PGDBG detects multilevel debugging, it sets the debug mode to multilevel. To manually set the debug
mode to multilevel, use the pgienv command:

pgdbg> pgi env node nultil evel

Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms
a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG

changes automatically to multilevel debug mode from process-only debug mode or threads-only debug mode
when at least one MPI process creates multiple threads.

Example 12.1. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0
0.* All threads of process 0
B All threads of all processes

93

Multilevel Debugging

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context. Further, in multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by
the ID of the current thread prefixed by the ID of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

For more information on p/t sets, refer to “Process/Thread Sets,” on page 66.

94

Chapter 13. Command Reference

This chapter describes the PGDBG command set in detail, grouping the commands by these categories:

Conversions Miscellaneous Process-Thread Sets Scope

Events Printing Variables and ~ Program Locations Symbols and Expressions
Expressions

Memory Access Process Control Register Access Target

For an alphabetical listing of all the commands, with a brief description of each, refer to “Command
Summary,” on page 38 in “Command Summary”.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(1D.

Argument names are italicized.

Argument names are chosen to indicate what kind of argument is expected.

Arguments enclosed in brackets ([]) are optional.

Two or more arguments separated by a vertical line (I) indicate that any one of the arguments is acceptable.
An ellipsis (...) indicates an arbitrarily long list of arguments.

Other punctuation, such as commas and quotes, must be entered as shown.

Example 13.1. Syntax examples

Example 1:

lis[t] [count | lo:hi | routine | |ine,count]

95

Process Control

This syntax indicates that the command list may be abbreviated to lis, and that it can be invoked without any
arguments or with one of the following: an integer count, a line range, a routine name, or a line and a count.

Example 2:
att[ach] pid [exe]

This syntax indicates that the command attach may be abbreviated to att, and, when invoked, must have a
process ID argument, pid. Optionally you can specify an executable file, exe.

Process Control

The following commands control the execution of the target program. PGDBG lets you easily group and
control multiple threads and processes. For more details, refer to “Basic Process and Thread Naming,” on
page 63.

attach
att[ach] pid [exe]

Attach to a running process with process ID pi d. Use exe to specify the absolute path of the executable file.
For example, at t ach 1234 attempts to attach to a running process whose process ID is 1234. You may
enter something like at t ach 1234 / hone/ deno/ a. out to attach to a process ID 1234 called / horne/
deno/ a. out .

PGDBG attempts to infer the arguments of the attached program. If PGDBG fails to infer the argument list, then
the program behavior is undefined if the run or rerun command is executed on the attached process.

The st di o channel of the attached process remains at the terminal from which the program was originally
invoked.

The attach command is not supported for MPI programs.

cont
c[ont]

Continue execution from the current location.

debug

de[bug] [target [argl...
argn]]

Load the specified target program with optional command-line arguments.
detach
det [ach]

Detach from the current running process.

96

Chapter 13. Command Reference

halt
hal t [command]

Halt the running process or thread.

load
lo[ad] [program [args]]
Without arguments, load prints the name and arguments of the program being debugged. With arguments,
load loads the specified program for debugging. Provide program arguments as needed.
next
n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines. The
count argument stops execution only after executing count source lines.

nexti
nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines. The
count argument stops execution only after executing count instructions.

proc
proc [id]

Set the current process to the process identified by i d. When issued with no argument, proc lists the location
of the current thread of the current process in the current program. For information on how processes are
numbered, refer to “Using the CLI,” on page 91.

procs

procs
Print the status of all active processes, listing each process by its logical process ID.
quit
gl uit]

Terminate the debugging session.

rerun

rer[un] [argO
argl ... argn] [<inputfile] [[>| >&| >>| >>&] outputfile]

The rerun command is the same as run with one exception: if no args are specified with rerun, then no args
are used when the program is launched.

97

Process Control

run

ru[n] [arg0 argl
argn] [<inputfile] [[>| >&| >>| >>&] outputfile]

Execute the program from the beginning. If arguments arg0, argl, and so on are specified, they are set up as
the command-line arguments of the program. Otherwise, the arguments for the previous run command are
used. Standard input and standard output for the target program can be redirected using < or > and an input
or output filename.

setargs
setargs [argl, arg2, ... argn]
Set program arguments for use by the run command. The rerun command does not use the arguments
specified by setargs.

step
s[tep] [count | count]
Stop after executing one source line. This command steps into called routines. The count argument stops
execution after executing count source lines. The #p argument stops execution after stepping out of the
current routine (see stepout).

stepi
stepi [count | up]
Stop after executing one instruction. This command steps into called routines. The count argument stops
execution after executing count instructions. The #p argument stops the execution after stepping out of the
current routine (see stepout).

stepout
st epo[ut]
Stop after returning to the caller of the current subroutine. This command sets a breakpoint at the current
return address and continues execution to that point. For this command to work correctly, it must be possible
to compute the value of the return address. Some subroutines, particularly terminal (i.e. leaf) subroutines at
higher optimization levels, may not set up a stack frame. Executing stepout from such a routine causes the
breakpoint to be set in the caller of the most recent routine that set up a stack frame. This command halts
execution immediately upon return to the calling subroutine.

sync

sy[nc] line | func

Advance to the specified source location, either the specified /ine or the first line in the specified function
f unc, ignoring any user-defined events.

98

Chapter 13. Command Reference

SyNci
synci addr | func

Advance to the specified address addr , or to the first address in the specified function f unc, ignoring any
user-defined events.

thread

thread [nunber]

Set the current thread to the thread identified by number; where number is a logical thread ID in the current
process’ active thread list. When issued with no argument, thread lists the current program location of the
currently active thread.

threads
t hr eads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical
process ID. Each thread is listed by its logical thread ID.

wait
wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

Process-Thread Sets

The following commands deal with defining and managing process thread sets. See “Process/Thread Sets,” on
page 60, for a detailed discussion of process-thread sets.

defset

defset name [p/t-set]

Assign a name to a process/thread set. In other words, define a named set of processes/threads. This set can
then be referred to by its name. A list of named sets is stored by PGDBG.

focus
focus [p/t-set]

Set the target process/thread set for PGDBG commands. Subsequent commands are applied to the members of
this set by default.

undefset

undefset [nane | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-defined p/t-
set [all] cannot be removed.

99

Events

viewset

vi ewset [nane]

List the active members of the named process/thread set. If no process/thread set is given, list the active
members of all defined process/thread sets.

whichsets
whi chsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no process/thread set is
specified, the target process/thread set is used.

Events

The following commands deal with defining and managing events.

break

b[r eak]
b[reak] line [if condition)] [do {commands}]
b[reak] routine [if(condition)] [do {conmands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise, set

a breakpoint at the indicated line or routine. If a routine is specified, and the routine was compiled for
debugging, then the breakpoint is set at the start of the first statement in the routine (after the routine’s
prologue code). If the routine was not compiled for debugging, then the breakpoint is set at the first
instruction of the routine, prior to any prologue code. This command interprets integer constants as line
numbers. To set a breakpoint at an address, use the addr command to convert the constant to an address, or
use the breaki command.

When a condition is specified with #f; the breakpoint occurs only when the specified condition is true. If do is
specified with a command or several commands as an argument, the command or commands are executed
when the breakpoint occurs.

The following table provides examples of using break to set breakpoints at various locations.

This break command... Sets breakpoints...

break 37 at line 37 in the current file

break "xyz.c"@7 at line 37 in the file xyz. ¢

break main at the first executable line of routine main
break {addr Oxf 0400608} at address Oxf 0400608

break {line} at the current line

break {pc} at the current address

The following more sophisticated command stops when routine xyz is entered only if the argument n is
greater than 10.

break xyz if(xyz@ > 10)

100

Chapter 13. Command Reference

The next command prints the value of n and performs a stack trace every time line 100 in the current file is
reached.

break 100 do {print n; stack}

breaki

br eaki
breaki routine [if (condition)] [do {conmands}]
breaki addr [if (condition)] [do {commands}]

When no arguments are specified, the breaki command prints the current breakpoints. Otherwise, this
command sets a breakpoint at the indicated address addr or routine.

e Ifaroutine is specified, the breakpoint is set at the first address of the routine. This means that when the
program stops at this type of breakpoint the prologue code which sets up the stack frame will not yet have
been executed. As a result, values of stack arguments may not yet be correct.

* Integer constants are interpreted as addresses.

* To specify a line, use the lines command to convert the constant to a line number, or use the break
command.

e The if and do arguments are interpreted in the same way as for the break command.

The following table provides examples of setting breakpoints using breaki.

This breaki command... Sets breakpoints...

breaki 0xf 0400608 at address Oxf 0400608

breaki {line 37} at line 37 in the current file

breaki "xyz.c" @7 at line 37 in the file xyz. ¢

breaki main at the first executable address of routine main
breaki {Iine} at the current line

breaki {pc} at the current address

In the following slightly more complex example, when n is greater than 3, the following command stops and
prints the new value of n at address 0x6480:

breaki 0x6480 if(n>3) do {print "n=", n}

breaks

br eaks

Display all the existing breakpoints.

101

Events

catch

clear

catch [sig:sig] [sig][, sig...]1]

When no arguments are specified, the catch command prints the list of signals being caught. With the sig:sig
argument, this command catches the specified range of signals. With a list of signals, catch the signals with
the specified number(s). When signals are caught, PGDBG intercepts the signal and does not deliver it to the
program. The program runs as though the signal was never sent.

clear [all | routine| line | {addr addr}]

Clear one or more breakpoints. Use the a// argument to clear all breakpoints. Use the routine argument

to clear all breakpoints from the first statement in the specified routine. Use the /ine number argument to
clear all breakpoints from the specified line number in the current source file. Use the addr argument, clear
breakpoints from the specified address addr.

When no arguments are specified, the clear command clears all breakpoints at the current location.

delete

del[ete] [event-nunber | 0| all | event-nunber [, event-nunber...]]
Use the delete command without arguments to list all defined events by their event-number.

Use the delete command with arguments to delete events. Delete all events with a// or delete just the event with

the specified event-number. Providing the argument 0, that is, using delete 0, is the same as using delete
all.

disable

do

102

di sab[l e] [event-nunber | all]
When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command disables the event specified by event-number or all events. Disabling an event
definition suppresses actions associated with the event, but leaves the event defined so that it can be used later.
(See the enable command.)

do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it defines a
list of commands to be executed. Without the optional arguments at or in, the commands are executed at each
line in the program.

Use at with a /ine number to specify the commands to be executed each time that line is reached. Use iz with
a routine to specify the commands to be executed at each line in the routine. The optional 7f‘argument has the
same meaning that it has in the watch. If a condition is specified, the do commands are executed only when
the condition is true.

Chapter 13. Command Reference

doi
doi {conmands} [if (condition)]
doi {conmands} at addr [if (condition)]
doi {conmands} in routine [if (condition)]
Define a doi event. This command is similar to wat chi except that instead of defining an expression, doi
defines a list of commands to be executed. If an address addr is specified, then the commands are executed
each time that the specified address is reached. If a routine is specified, then the commands are executed
at each instruction in the routine. If neither an address nor a routine is specified, then the commands are
executed at each instruction in the program. The optional 7/ argument has the same meaning that it has in the
do and watch commands. If a condition is specified, the doi commands are executed only when the condition
is true.

enable
enab[l e] [event-nunber | all]
Without arguments, the enable command prints both enabled and disabled events.
With arguments, this command enables the event event-number or all events.

hwatch
hwatch addr | var [if (condition)] [do {conmands}]
Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a particular
address or variable. The event is triggered by hardware when the byte at the given address is written. This
command is only supported on systems that provide the necessary hardware and software support.

Note
Only one hardware watchpoint can be defined at a time.

When the optional if argument is specified, the event action is only triggered if the expression is true. When the
optional do argument is specified, then the commands are executed when the event occurs.

hwatchboth
hwat chb[ot h] addr | var [if (condition)] [do {comrands}]
Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given
address or variable is either read or written. As with hwatch, system hardware and software support must
exist for this command to be supported. The optional i and do arguments have the same meaning as for the
hwatch command.

hwatchread

hwat chb[ot h] addr | var [if (condition)] [do {comrands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given address or
variable is read. As with hwatch, system hardware and software support must exist for this command to be
supported. The optional i/ and do arguments have the same meaning as for the hwatch command.

103

Events

ignore

ignore [sig:sig]l [sig [, sig...]]

Without arguments, the ignore command prints the list of signals being ignored. With the sig:sig argument
this command ignores the specified range of signals. With a list of signals the command ignores signals with
the specified number.

When a particular signal number is ignored, signals with that number sent to the program are not intercepted
by PGDBG; rather, the signals are delivered to the program.

For information on intercepting signals, refer to catch.

status

stop

stopi

trace

104

stat [us]

Display all the event definitions, including an event number by which each event can be identified.

stop var

stop at line [if (condition)][do {commands}]
stop in routine [if(condition)][do {comuands}]
stop if (condition)

Break when the value of the indicated variable var changes. Use the at argument and a /ine to set a breakpoint
at a line number. Use the 77 argument and a routine name to set a breakpoint at the first statement of the
specified routine. When the 4f‘argument is used, the debugger stops when the condition is true.

stopi var

stopi at address [if (condition)][do {commands}]
stopi in routine [if (condition)][do {commands}]
stopi if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated address or
routine. Use the af argument and an address to specify an address at which to stop. Use the 7z argument and
a routine name to specify the first address of the specified routine at which to stop. When the ¢f'argument is
used, the debugger stops when the condition is true.

trace var [if (condition)][do {commands}]

trace routine [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in routine [if (condition)][do {comuands}]
trace inclass class [if (condition)][do {comands}]

Use var to activate tracing when the value of var changes. Use routine to activate tracing when the subprogram
routine is called. Use at to display the specified /ine each time it is executed. Use iz to display the current

line while in the specified routine. Use inclass to display the current line while in each member function of
the specified class. If a condition is specified, tracing is only enabled if the condition evaluates to true. The do
argument defines a list of commands to execute at each trace point.

Chapter 13. Command Reference

Use the command pgienv speed to set the time in seconds between trace points. Use the clear command to
remove tracing for a line or routine.

tracei

tracei var [if (condition)][do {comands}]

tracei at addr [if (condition)][do {commands}]
tracei in routine [if (condition)][do {conmands}]
tracei inclass class [if (condition)][do {comands}]

Activate tracing at the instruction level. Use var to activate tracing when the value of var changes. Use at

to display the instruction at addr each time it is executed. Use 7 to display memory instructions while in
the subprogram routine. Use inclass to display memory instructions while in each member function of the
specified class. If a condition is specified, tracing is only enabled if the condition evaluates to true. The do
argument defines a list of commands to execute at each trace point.

Use the command pgienv speed to set the time in seconds between trace points. Use the clear command to
remove tracing for a line or routine.

track
track expression [at line | in func] [if (condition)][do {commands}]
Define a track event. This command is equivalent to watch except that execution resumes after the new value

of the expression is printed.

tracki

tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that execution resumes
after the new value of the expression is printed.

unbreak

unb[reak] line | routine| all

Remove a breakpoint from the specified /ine or routine, or remove all breakpoints.

unbreaki

unbreaki addr | routine | all

Remove a breakpoint from the specified address addr or routine, or remove all breakpoints.

watch

wa[tch] expression

wa[tch] expression [if (condition)][do {comuands}]

wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {comrands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the
expression changes, the program stops and the new value of the expression is printed. If a /ine is specified,
the expression is only evaluated at that line. If a routine is specified, the expression is evaluated at each line in

105

Events

the routine. If no location is specified, the expression is evaluated at each line in the program. If a condition
is specified, the expression is evaluated only when the condition is true. If commands are specified using do,
they are executed whenever the expression is evaluated and its value changes.

The watched expression may contain local variables, although this is not recommended unless a routine or
address is specified to ensure that the variable is only evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in arguments speeds up execution by reducing the amount of single-stepping and expression
evaluation that must be performed to watch the expression. For example:

watch i at 40

may not slow program execution noticeably, while

wat ch i

does slow execution considerably.

watchi

wat chi expr essi on

wat chi expression [if (condition)][do {commands}]

wat chi expression at addr [if (condition)][do {conmands}]
wat chi expression in routine [if (condition)][do {commands}]

Define an assembly-level watch event. This command functions similarly to the watch command with two
exceptions: 1) the argument interprets integers as addresses rather than line numbers and 2) the expression
is evaluated at every instruction rather than at every line.

This command is useful when line number information is limited, which may occur when debug information
is not available or assembly must be debugged. Using watchi causes programs to execute more slowly than
watch.

when

when do {commands} [if (condition)]
when at |ine do {commands} [if (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified /ine in the program, or in the specified
routine. If an optional condition is specified, commands are executed only when the condition evaluates to
true.

wheni

106

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {comuands} [if (condition)]

Chapter 13. Command Reference

Execute commands at each address in the program. If an address addr is specified, the commands are
executed each time the address is reached. If a routine is specified, the commands are executed at each
line in the routine. If an optional condition is specified, commands are executed whenever the condition
evaluates to true.

Program Locations

This section describes PGDBG program location commands.

arrive

cd

arri[ve]

Print location information for the current location.

cd [dir]

Change directories to the $HOME directory or to the specified directory dir.

disasm

edit

file

dis[asn] [count | lo:hi | routine | addr, count]
Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If an integer count is
given, disassemble count instructions starting at the current address. If an address range (fo:hi) is given,
disassemble the memory in the range. If a routine is given, disassemble the entire routine. If the routine was
compiled for debugging and source code is available, the source code is interleaved with the disassembly. If an
address addr and a count are both given, disassemble count instructions starting at the provided address.

edit [filenane | routine]
Use the editor specified by the environment variable $EDITOR to edit a file.

If no argument is supplied, edit the current file starting at the current location. To edit a specific file, provide
the filename argument. To edit the file containing the subprogram routine, specify the routine name.

This command is only supported in the CLL

file [fil enane]

Change the source file to the file filename and change the scope accordingly. With no argument, print the
current file.

107

Program Locations

lines

lines [routine]

Print the lines table for the specified routine. With no argument, prints the lines table for the current routine.

list
lis[t] [count | line,num| lo:hi | routine[,num]
Provide a source listing.
By default, list displays ten lines of source centered at the current source line. If a count is given, list the
specified number of lines. If a /ine and count are both given, start the listing of count lines at /ine. If a line
range (Jo:hi) is given, list the indicated source lines in the current source file. If a routine name is given, list
the source code for the indicated routine. If a number is specified with routine, list the first number lines of
the source code for the indicated routine.
list [dbx nopde]
The list command works somewhat differently when PGDBG is in dbx mode.
lis[t] [line | first,last | routine | file]
By default, list displays ten lines of source centered at the current source line. If a /ine is provided, the source
at that line is displayed. If a range of line numbers is provided (first, last), lines from the first specified line to
the last specified line are displayed. If a routine is provided, the display listing begins in that routine. If a file
name is provided, the display listing begins in that file. File names must be quoted.

pwd
pwd
Print the current working directory.

stackdump
stackd[unp] [count]
Print the call stack. This command displays a hex dump of the stack frame for each active routine. This
command is an assembly-level version of the stacktrace command. If a count is specified, display 2 maximum
of count stack frames.

stacktrace

108

stack[trace] [count]

Print the call stack. Print the available information for each active routine, including the routine name, source
file, line number, and current address. This command also prints the names and values of any arguments,
when available. If a count is specified, display a maximum of count stack frames. The stacktrace and where
commands are equivalent.

Chapter 13. Command Reference

where
w here] [count]

Print the call stack. Print the available information for each active routine, including the routine name, source
file, line number, and current address. This command also prints the names and values of any arguments,
when available. If a count is specified, display a maximum of count stack frames. The where and stacktrace
commands are equivalent.

/
/
/string/
Search forward for a string of characters in the current source file. With a specified string, search for the next
occurrence of string in the current source file.
?

?
?string?

Search backward for a string of characters in the current source file. Without arguments, search for the
previous occurrence of string in the current source file.

Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables. The primary print commands
are print and printf, described at the beginning of this section. The rest of the commands for printing provide
alternate methods for printing.

print
plrint] expl [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of
command input. Values are printed in a format appropriate to their type. For values of structure type, each
field name and value is printed. Character pointers are printed as a hex address followed by the character
string.

Character string constants print out literally using a comma-separated list. For example:

pgdbg> print "The value of i is ", i

Prints this:

"The value of i is", 37

The array sub-range operator (:) prints a range of an array. The following examples print elements 0 through 9
of the array a:

¢/ C*" example 1:

pgdbg> print af0: 9]
a[0:4]: 012 3 4
a[5:9]: 56 7 89

109

Printing Variables and Expressions

FORTRAN example 1:

pgdbg> print a(0:9)
a(0:4): 01234
a(5:9): 567 89

Notice that the output is formatted and annotated with index information. PGDBG formats array output into
columns. For each row, the first column prints an index expression which summarizes the elements printed
in that row. Elements associated with each index expression are then printed in order. This is especially useful
when printing slices of large multidimensional arrays.

PGDBG also supports array expression strides. Below are examples for G/ C++ and FORTRAN.

C/ C++ example 2:

pgdbg> print a[0:9: 2]
a[0:8] 02 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0246 8

The print statement may be used to display members of derived types in FORTRAN or structures in ¢/ C* ™.
Here are examples.

¢/ C™" example 3:

typedef struct tt {
int a[10];

}TTS
TT d

={0,1,2,3,4,5,6,7,8, 9};
TT * p =

&d;

pgdbg> print d.a[0:9: 2]
d.af[0:8:2]: 02 46 8
pgdbg> print p->a[0:9: 2]
p->a[0:7:2]: 02 46

p->a[8]: 8

FORTRAN example 3:

type tt
integer, dinension(0:9) :: a

end type

type (tt) :: d

data d%a / 0O, 1, 2, 3, 4, 5, 6, 7, 8, 9/

pgdbg> print d%a(0: 9: 2)
d%a(0:8:2): 0 2 46 8

printf

110

printf "format_string", expr,...expr
Print expressions in the format indicated by the format string. This command behaves like the C library
function printf. For example:

pgdbg> printf "f[%]=%",i,f[i]
f[3]=3.14

ascii

bin

dec

Chapter 13. Command Reference

The pgienv stringlen command sets the maximum number of characters that print with a print command.
For example, the char declaration below:

char *c="a whol e bunch of chars over 1000 chars long....";

By default, the print ¢ command prints only the first 512 (default value of stringlen) bytes. Printing of C strings
is usually terminated by the terminating null character. This limit is a safeguard against unterminated C strings.

asc[ii] exp [,...exp]

Evaluate and print exp as an ASCII character. Control characters are prefixed with the ' ' character; for
example, 3 prints as ~c. Otherwise, values that cannot be printed as characters are printed as integer values
prefixed by "\'. For example, 250 is printed as \250.

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in base2.

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display

hex

oct

display [exp [,...exp]]

Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With one or more
arguments, print expression exp at every breakpoint. For more information, refer to the undisplay command.

hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

oct exp [,...exp]

Evaluate and print expressions as octal integers.

string

str[ing] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command prints a maximum of 70
characters.

1M

Symbols and Expressions

undisplay

undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several arguments,
remove the expression exp from the list of display expressions.

Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

assign

call

112

as[sign] var = exp

Set variable var to the value of the expression exp. The variable can be any valid identifier accessed properly
for the current scope. For example, given a C variable declared ‘ i nt * i’ you can use the following
command to assign the value 9999 to it.

assign *i = 9999

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered during execution
of the routine are ignored. Fortran functions and subroutines can be called, but the argument values are
passed according to G conventions. PGDBG may not always be able to access the return value of a Fortran
function if the return value is an array. In the example below, PGDBG calls the routine f oo with four
arguments:

pgdbg> cal |l foo(1, 2,3, 4)

If a signal is caught during execution of the called routine, PGDBG stops the execution and asks if you want

to cancel the call command. For example, suppose a command is issued to call f oo as shown above, and for
some reason a signal is sent to the process while it is executing the call to f 0o. In this case, PGDBG prints the
following prompt:

PGDBG Message: Thread [0] was signalled while executing a function
reachabl e fromthe nost recent PGDBG conmand |line call to foo. Wuld you

like to cancel this command [ine call? Answering yes will revert the register
state of Thread [0] back to the state it had prior to the last call to foo
fromthe command |line. Answering no will |eave Thread [0] stopped in the call

to foo fromthe command | i ne.
Pl ease enter 'y' or 'n' >y
Command line call to foo cancell ed

Answering yes to this question returns the register state of each thread back to the state they had before
invoking the call command. Answering no to this question leaves each thread at the point they were at when
the signal occurred.

Note

Answering no to this question and continuing execution of the called routine may produce
unpredictable results.

Chapter 13. Command Reference

declaration
decl [aration] nane

Print the declaration for the symbol name based on its type according to the symbol table. The symbol must be
a variable, argument, enumeration constant, routine, structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

the decl command provides the following output:

pgdbg> decl |
int i

pgdbg> decl iar
int iar[10]

pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
int a;

char b[4];
struct abc *c;

b
entry

entr[y] [routine]

Return the address of the first executable statement in the program or specified routine. This is the first

address after the routine's prologue code.

lval

Ivial] expr

Return the Ivalue of the expression expr. The lvalue of an expression is the value it would have if it appeared
on the left hand side of an assignment statement. Roughly speaking, an Ivalue is a location to which a value can
be assigned. This may be an address, a stack offset, or a register.

rval
rvial] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it appeared
on the right hand side of an assignment statement. The type of the expression may be any scalar, pointer,
structure, or function type.

113

Scope

set
set var =expr essi on
Set variable var to the value of expression. The variable can be any valid identifier accessed properly for the
current scope. For example, given a C variable declared i nt * i, the following command could be used to
assign the value 9999 to it.
pgdbg> set *i = 9999
sizeof
si z[eof] name
Return the size, in bytes, of the variable type name. If name refers to a routine, sizeof returns the size in bytes
of the subprogram.
type
type expr
Return the type of the expression expr. The expression may contain structure reference operators (. , and -
>), dereference (*), and array index ([|) expressions. For example, given the C declarations:
int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}val;
the type command provides the following output:
pgdbg> type
i nt
pgdbg> type iar
int [10]
pgdbg> type val
struct abc
pgdbg> type val . a
i nt
pgdbg> type val . abc- >b[2]
char
pgdbg> whati s
whati s name
With no arguments, print the declaration for the current routine.
With the argument name, print the declaration for the symbol name.
Scope
The following commands deal with program scope. See “Scope Rules”, for a discussion of scope meaning and
conventions.
class

class[s [class]

Without arguments, class returns the current class. With a class argument, enter the scope of class class.

114

Chapter 13. Command Reference

classes

cl assse[s]

Print the C++ class names.

decls

decls [routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for the current search scope.

down

down [nunber]

Enter the scope of the routine down one level or number levels on the call stack.

enter

en[ter] [routine | "sourcefile" | global]

Set the search scope to be the indicated scope, which may be a routine, file or global. Using enter with no
argument is the same as using enter global.

files

files

Return the list of known source files used to create the executable file.

global
gl ob[al]

Return a symbol representing global scope. This command is useful in combination with the scope operator @
to specify symbols with global scope.

names

names [routine | "sourcefile” | global]

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search scope.
scope

scol pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program
execution stops. It may also be set using the enter command. The search scope is always searched first for
symbols.

up
up [nunber]

115

Register Access

Enter the scope of the routine up one level or number levels from the current routine on the call stack.

whereis

wherei s nane

Print all declarations for name.

which

whi ch nane

Print the full scope qualification of symbol name.

Register Access

System registers can be accessed by name. For details on referring to registers in PGDBG, refer to “SSE
Register Symbols,” on page 53.

fp

Return the current value of the frame pointer.

pc
pc

Return the current program address.

regs

regs

regs -info

regs -grp=grpl[,grp2...]
regs -fm=fmt1[,fn2. ..]
regs -node=scal ar| vect or

Print the names and values of registers. By default, regs prints the General Purpose registers. Use the —gr p
option to specify one or more register groups, the —f nt option to specify one or more display formats, and
—nmode to specify scalar or vector mode. Use the —i nf o option to display the register groups on the current
system and the display formats available for each group. All optional arguments with the exception of —i nf o
can be used with the others.

retaddr

ret[addr]

Return the current return address.
Sp

sp

Return the current value of the stack pointer.

116

Chapter 13. Command Reference

Memory Access

The following commands display the contents of arbitrary memory locations. For each of these commands, the
addr argument may be a variable or identifier.

cread
cr[ead] addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread
dr [ead] addr

Fetch and return a 64-bit double from the specified address.

dump

du[np] address[, count[,format-string]]

This command dumps the contents of a region of memory. The output is formatted according to a descriptor.
Starting at the indicated address, values are fetched from memory and displayed according to the format
descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to that used by printf. Format specifiers are preceded by %.

The recognized format descriptors are for decimal, octal, hex, or unsigned:
wd, 9D, %o, %O W, WK, %, A

Default size is machine dependent. The size of the item read can be modified by either inserting 'h' or 'l
before the format character to indicate half word or long word. For example, if your machine’s default size is
32-bit, then %hd represents a 16-bit quantity. Alternatively, a 1, 2, or 4 after the format character can be used
to specify the number of bytes to read.

%

Fetch and print a character.
%

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.
%, oF, %, %E %, Y%G

Fetch and print a null terminated string.
%

Interpret the next object as a pointer to an item specified by the following format characters. The pointed-to
item is fetched and displayed.
%

Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents of the pointed-to
address, which is printed using hexadecimal format.
%px

Fetch an instruction and disassemble it.

117

Conversions

%

Display address about to be dumped.
o, 9N

Display nothing but advance or decrement current address by 7 bytes.

% <n>, %<n>, %<-n>, WW<-n>

Display nothing but advance current address as needed to align modulo 7.

Y%<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.
fread

fr[ead] addr

Fetch and print a 32-bit float from the specified address.
iread

ir[ead] addr

Fetch and print a signed integer from the specified address.
Iread

Ir[ead] addr

Fetch and print an address from the specified address.
mqgdump

[dunp]

Dump MPI message queue information for the current process. For more information on mqdump, refer to
“MPI Message Queues,” on page 89.

sread
sr[ead] addr

Fetch and print a short signed integer from the specified address.

Conversions

The commands in this section are useful for converting between different kinds of values. These commands
accept a variety of arguments, and return a value of a particular kind.

addr

ad[dr] [n | line n| routine | var | arg]

Create an address conversion under these conditions:

118

Chapter 13. Command Reference

If an integer is given, return an address with the same value.

If a line is given, return the address corresponding to the start of that line.

If a routine is given, return the first address of the routine.

If a variable or argument is given, return the address where that variable or argument is stored.

For example,
breaki {line {addr 0x22f0}}

function

line

func[tion] [[addr...] | [line...]]

Return a routine symbol. If no argument is specified, return the current routine. If an address is given, return
the routine containing addr. An integer argument is interpreted as an address. If a /ine is specified, return the
routine containing that line.

linf[e] [n| routine | addr]

Create a source line conversion. If no argument is given, return the current source line. If an integer # is given,
return it as a line number. If a routine is given, return the first line of the routine. If an address is given, return
the line containing that address.

For example, the following command returns the line number of the specified address:
| i ne {addr 0x22f 0}

Target

The following commands are applicable to system architectures for which multiple debugging environment
targets are available. The commands in this section do not apply to the x86 or x86-64 environments.

connect

con[nect]

con[nect] -t target [args]
con[nect] -d path [args]
con[nect] -f file

con[nect] -f file nane [args]

Without arguments, connect prints the current connection and the list of possible connection targets. Use -#
to connect to a specific target. Use -d to connect to a target specified by path. Use -f'to print a list of possible
targets as contained in a file, or to connect to a target selected by name from the list defined in file. Pass
configuration arguments to the target as appropriate.

disconnect

di sc[onnect]

Close connection to the current target.

native

nati[ve] [command]

119

Miscellaneous

Without arguments native prints the list of available target commands. Given a command argument, native
sends command directly to the target.

Miscellaneous

alias

The following commands provide shortcuts, mechanisms for querying, customizing and managing the PGDBG
environment, and access to operating system features.

al[ias] [name [string]]

Create or print aliases.

e If no arguments are given print all the currently defined aliases.
e If just a name is given, print the alias for that name.

e If both a name and string are given, make name an alias for string. Subsequently, whenever name is
encountered it is replaced by string.

Although s#ring may be an arbitrary string, #zame must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x=",x,"y=",y,"z=", z;

cont

Now whenever xyz is typed, PGDBG responds as though the following command was typed:

prlnt Ile "’X’ Ily= Il’y’ IlZ= "’Z;
cont

directory

help

120

dir[ectory] [pathnane]
Add the directory pathname to the search path for source files.

If no argument is specified, the currently defined directories are printed. This command assists in finding
source code that may have been moved or is otherwise not found by the default PGDBG search mechanisms.

For example, the following statement adds the directory mor est uf f to the list of directories to be searched.

di r norestuff
Now, source files stored in mor est uf f are accessible to PGDBG.

If the first character in pathname is ~, then $HOME replaces that character.

hel p [command]

If no argument is specified, print a brief summary of all the commands. If a command is specified, print more
detailed information about the use of that command.

Chapter 13. Command Reference

history

hi story [num

List the most recently executed commands. With the #zm argument, resize the history list to hold num
commands.

History allows several characters for command substitution:

I' [modifier] Execute the previous command.

! num [modifier] Execute command number num.

I-num [modifier] Execute the command that is #num commands from the most current
command

Istring [modifier] Execute the most recent command starting with string.

I?string? [modifier] Execute the most recent command containing string.

A Command substitution. For example, ol d*new* <modifier> is

equivalentto ! : s/ ol d/ new .

There are two possible history modifiers. To substitute the value new for the value o/d use:

: s/ ol d/ new

To print the command without executing it use:

-p

Use the pgienv history command to toggle whether or not the history record number is displayed. The default
value is on.

language

log

| anguage

Print the name of the language of the current file.

log fil enane

Keep a log of all commands entered by the user and store it in the named file. This command may be used in
conjunction with the script command to record and replay debug sessions.

noprint

nop[rint] exp

Evaluate the expression but do not print the result.

pgienv

pgi env [command]

121

Miscellaneous

122

Define the debugger environment. With no arguments, display the debugger settings.

Table 13.1. pgienv Commands

Use this command...

To do this...

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands
pgienv dbx off Set the debugger to use PGI style commands
pgienv history on Display the history record number with prompt
pgienv history off Do not display the history number with prompt
pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab

Digest executable’s native symbol table (typeless)

pgienv exe demand

Digest executable’s symbolic debug information incrementally on
command

pgienv exe force

Digest executable’s symbolic debug information when executable is
loaded

pgienv solibs none

Ignore symbolic debug information from shared libraries

pgienv solibs symtab

Digest native symbol table (typeless) from each shared library

pgienv solibs demand

Digest symbolic debug information from shared libraries
incrementally on demand

pgienv solibs force

Digest symbolic debug information from each shared library at load
time

pgienv mode serial

Single thread of execution (implicit use of p/t-sets)

pgienv mode thread

Debug multiple threads (condensed p/t-set syntax)

pgienv mode process

Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel

Debug multiple processes and multiple threads

pgienv omp [onloff]

Enable/Disable the PGDBG OpenMP event handler. This option

is disabled by default. The PGDBG OpenMP event handler, when
enabled, sets breakpoints at the beginning and end of each parallel
region. Breakpoints are also set at each thread synchronization
point. The handler coordinates threads across parallel constructs to
maintain source level debugging. This option, when enabled, may
significantly slow down program performance. Enabling this option
is recommended for localized debugging of a particular parallel
region only.

pgienv prompt <name>

Set the command-line prompt to <name>

pgienv promptlen <num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs>

Set the time in seconds <secs> between trace points

Chapter 13. Command Reference

Use this command...

To do this...

pgienv stringlen <num>

Set the maximum # of chars printed for “char *'s’

pgienv termwidth <num>

Set the character width of the display terminal.

pgienv logfile <name>

Close logfile (if any) and open new logfile <name>

pgienv threadstop sync

When one thread stops, the rest are halted in place

pgienv threadstop async

Threads stop independently (asynchronously)

pgienv procstop sync

When one process stops, the rest are halted in place

pgienv procstop async

Processes stop independently (asynchronously)

pgienv threadstopconfig auto

For each process, debugger sets thread stopping mode to 'sync' in
serial regions, and 'async' in parallel regions

pgienv threadstopconfig user

Thread stopping mode is user defined and remains unchanged by
the debugger.

pgienv procstopconfig auto

Not currently used.

pgienv procstopconfig user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none Prompt available immediately; do not wait for running threads
pgienv threadwait any Prompt available when at least one thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; do not wait for running processes
pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto

For each process, the debugger sets the thread wait mode to ‘all’ in
serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user

The thread wait mode is user-defined and remains unchanged by the
debugger.

pgienv mgslib default

Set MPI message queue debug library by inspecting executable.

pgienv mgslib <path>

Determine MPI message queue debug library to <path>.

123

Miscellaneous

Use this command... To do this...

pgienv verbose <bitmask> Choose which debug status messages to report. Accepts an integer
valued bit mask of the following values:

e 0x0 - Disable all messages.

* 0x1 - Standard messaging (default). Report status information on
current process/thread only.

 (x2 - Thread messaging. Report status information on all threads
of (current) processes.

* (x4 - Process messaging. Report status information on all
processes.

* (x8 - OpenMP messaging (default). Report OpenMP events.
 0x10 - Parallel messaging (default). Report parallel events.

* (x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information (e.g.
STABS, DWARF).

e Pass 0x0 to disable all messages.

repeat

rep[eat] [first, |ast]
rep[eat] [first:last:n]
rep[eat] [nhum]
rep[eat] [-num]

Repeat the execution of one or more previous history list commands. Use the nzm argument to re-execute
the last num commands. With the first and last arguments, re-execute commands number first to last
(optionally 7 times).

script
scr[ipt] filenane

Open the indicated file and execute the contents as though they were entered as commands. Use ~ before the
filename in place of the environment variable $HOME.

setenv

setenv nane | nane val ue

Print the value of the environment variable name. With a specified value, set name to value.
shell

shell [arg0O, argl,... argn]

Fork a shell and give it the indicated arguments. The default shell type is sh or defined by $SHELL. If no
arguments are specified, an interactive shell is invoked, and executes until a Ctrl+D is entered.

124

Chapter 13. Command Reference

sleep
sle[ep] [tine]

Pause for one second or #ime seconds.

source

sou[rce] fil enane

Open the indicated file and execute the contents as though they were entered as commands. Use ~ before the
filename in place of the environment variable $HOME.

unalias

unal [ias] nane

Remove the alias definition for name, if one exists.
use

use [dir]

Print the current list of directories or add dir to the list of directories to search. The character ~ or
environment variable $HOME can be used interchangeably.

125

126

Index

Symbols
.pdb file, 51
.pgdbgrc file
initialization, 5
$EDITOR, 107
32-bit Windows, 52
-g option, -gopt option, 51

A
add
directory pathname, 120
addr
command, 118
address
32-bit float, 118
64-bit double, 117
conversion, 118
current, 116
current program, 116
fetch, 118
print, 21, 118
print integer, 118
print short integer, 118
read double, 117
read integer, 117
return, 113
set breakpoint, 104
short signed integer, 118
signed integer, 117, 118
alias
command, 120
create, 120
print, 120

remove, 125
Application

terminate target, 19
architecture

program, 1
arguments

intepretation, 29

print name and value, 109

print names, 108

print values, 108, 109
Arguments

set, 98
arrays

Fortran, 55

large, 55

ranges, 55

subscripts, 55
arrive

command, 107
ascii

command, 111

print, 21, 111
assembly-level

debug with C++, 52

debug with Fortran, 52

debug with PGDBG GUI, 52
assign

command, 112
async command, 74
Attach

command, 96

running process, 19
Audience Description, xvii

B
bin
command, 111
Binary
print, 21, 111
blocks
common, 56
Fortran, 56
lexical, 29
statements, 30
break
command, 31, 100, 100

conditional, 104

on variable change, 104, 104
breaki

command, 53, 101, 101
breakpoints

at address, 53

clear, 102

clear all, 102

display all, 101

display existing, 101

print, 100, 101

print current, 100, 101

remove, 105, 105

remove all, 105, 105

remove from address, 105

set, 22, 100, 101, 104, 104

set at address, 101

variable, 104, 104
breaks

command, 101
breaks command, 101
Buttons

toolbar, 10

C
C++,52
Instance Methods, 58
symbol names, 52
call
command, 58, 112
routine, 22
stack, 23
calling conventions, 52
Fortran, 52
Call Stacks
display, 14
tab, 14
cancel
call command, 112
catch
command, 102
catch command, 102
cd
command, 107
change
directories, 107

127

Class
command, 114
Classes
command, 115
clear
breakpoints, 102
command, 102, 102
Client
defined, 1
code
source locations, 28
Command
tab, 12
command
argument interpretation, 29
blocks, 30
categories, 95
conditional execution, 106
constants, 27
control, 73
events, 31
log, 121
modes, 27
notation, 37
PGDBG, 27
PGDBG set, 95
print use, 120
prompt, 77
recently executed, 121
set, 71
Summary Table, 37
symbols, 28
syntax, 27
command line
PGDBG options, 25, 25, 26
Command-Line Options
syntax, 25
Commands
execute, 21
common blocks, 56
Configure
stop mode, 74
wait mode, 75
Conformance to Standards, xvii
Connect
default, 21

128

Connection

defined, 1
Connections

delete, 22

display, 13

new, 21

rename, 22

save, 21

save as new, 22

tab, 13
Connections Menu, 21
constants, 27
cont command, 53, 96
Continue

cont command, 96

execution, 22, 22, 22, 22
control-B, 19
control-C, 34

MPI use, 35

thread initialization issues, 34

control-D, 23
control-E, 19
control-E 19
control-G, 22
control-H, 22
control-L, 20
control-N, 22
control-0, 22
control-P, 21
control-R, 22
control-S, 22
control-U, 23
conventions

calling, 52

calling conventions, 52

in text, xix
conversions, 118
convert

address, 118

address to line, 29

line to address, 29
Copy, 19
Copyright

display, 23
core files

generation, 59

location, 60

name, 60

set size limit, 60
cread

command, 117
create

aliases, 120

D

Data
print type, 21
Data Menu, 20
Data menu
Addr, 21
ascii, 21
Bin, 21
Custom, 21, 21
decimal, 21
Hex, 21
Oct, 21
Print, 21
Print *, 21
String, 21
Type of, 21
dbx
command mode, 27
Debig
threads, 16
debug
assemble-level with C++, 52
assemble-level with Fortran, 52
assemble-level with PGDBG GUI,
52
assembly-level, 51
assembly-level commands, 53
assembly-level menu options, 52
C++, 58
command, 96
command-line interface, 52
Fortran source, 55
-g option, 51
modes, 64
MPI, 88
multilevel, 93
name translation, 52

on Microsoft Windows systems,
51
on windows, 2
parallel, 63, 71
PGDBG features, 1, 1
using memory addresses, 51
using registers, 51
with core files, 59
with -Munix, 52
Debug
commands, 12
events, 12
groups, 13, 15, 16, 17
memory, 15
menu, 22
menu; Set: breakpoints;
Menu items: Set Breakpoint;
breakpoints: set; Set: breakpoints;
Routines: breakpoint, 21
processes, 16
program status, 18
Debugging
launch PGDBG, 5
remote, 1
Debug Information Tabs
Call Stack tab, 14
Command tab, 12
Connections tab, 13
Events tab, 12
Groups tab, 13, 15, 16, 17
Locals tab, 14
Memory tab, 15
Process(Thread) Grid, 16
Status tab, 18
Debug Menu, 22
Debug menu, 22, 22
Call, 22
Display Current Location, 23
Down, 23
Halt, 22
Restart Program, 22
Run, 22
Step, 22
Stop Debugging, 22
Up, 23
debug mode

multilevel, 93
process-only, 65
serial, 64
threads-only, 65
dec
command, 111
decimal
print, 21, 111
declaration command, 113
declarations
print, 115
symbol, 113
decls
command, 115
define
command list to execute, 102,
103
debugger environment, 122
do event, 102
doi event, 103
event, 104
instruction-level track event, 105
instruction-level watch event, 106
read/write watchpoint, 103
read watchpoint, 103
track event, 105
watchpoint, 103
defset
command, 68, 99
Delete
connections, 22
delete
command, 102
event number, 102
Detach
command, 96
end debug session, 19
directory
add pathname, 120
add to search list, 125
change, 107
command, 120
working, 108
disable
command, 102
event number, 102

Index

tool tips, 20
disasm command, 107
disassemble
Memory, 107
display
breakpoints, 101, 101
command, 111
debugger settings, 122
event definition, 104
event definitions, 104
expressions, 111
OpenMP private data, 83
program location, 23
registers, 53
routine scope, 23, 23
unique thread ID, 82
do
command, 31, 102
Documentation
accessing, xvii
location, xvii
doi
command, 103
Down
command, 115
menu item, 23
dread
command, 117
dump
command, 53, 117
memory contents, 117
MPI message queue, 118
Dynamic p/t-set, 67

E
Edit
file, 107
menu, 19, 19, 19, 19, 19
specify editor, 107
edit
command, 107
file, 107
enable
command, 103
tool tips, 20
enter

129

command, 115
entry

command, 113
Environment

debugger, 122

define, 122
Environment varaibles

threadstoconfig, 75
Environment variables

$EDITOR, 107

HOME, 5

name, 124

set, 124
evaluate

without printing, 121
Events, 30, 100

at address, 31

at line, 31

commands, 31

conditional, 31

definitions, 104

delete, 102

disable, 102, 103

enable, 103

hardware triggered, 103, 103,

103
in routine, 31

multiple at same location, 32

parallel, 78
print, 102, 103
program speed, 32
status, 104
tab, 12
track, 105
tracki, 105
watch, 105
watchi, 106
Execute
command, 21, 106, 107
conditional, 106, 107
continue, 22
rerun command, 97
run command, 98
single line, 22, 22
Expressions, 33
evaluate, 121

130

Ivalue, 113

print, 109

print formatted, 110
print with pgienv, 110
rvalue, 113

type, 114

F
file command, 107
File Menu, 19
Files
.exe, 51
.pdb, 51
.pgdbgre, 5
Attach to Target menu, 19
change, 107
change source file, 107
command, 115
DetachTarget menu, 19
edit, 107
execute contents, 124, 125
Exit menu item, 19
initialization hierarchy, 5
menu, 19
open for debug, 19
Open Target menu, 19
source file list, 115
source list, 115
focus command, 68
Fonts
change, 20
default in debugger, 20
select, 20
fork
shell, 124
Fortran
debugging, 55
symbol names, 52
Fortran 90 modules, 57
fp
command, 116
frame pointer, 116
value, 116
fread
command, 118
function

command, 119

G
Global

commands, PGDBG, 115
Global commands, 73
grid

color meaning, 17

refresh, 20
Groups

debug, 13
Groupss

tab, 15, 16, 17
GUI

PGDBG, 7

H
halt
command, 90, 97
control-C, 34
running processes, 22
running threads, 22
Hardware
read/write watchpoint, 103
read watchpoint, 103, 103
watchpoint, 103
Help
About PGDBG menu item, 23
menu, 23
on PGDBG commands, 23
PGDBG menu item, 23
help
command, 120
Help Menu, 23
Hex
print, 21
hex
command, 111
hexadecimal
print, 111
Hide
tabs for register groups, 20
history
command, 121
modifiers, 121
repeat command, 124

resize list, 121
HOME

environment variable, 5
HPE, xvii
hwatchboth command, 103
hwatch command, 31, 103
hwatchread command, 103, 103
hybrid applications

parallel debugging, 93

I
ID

process, 97
identifiers

declarations, 115
if else

parallel statements, 79
if statement, 30
ignore

command, 104

signals, 104
ignore command, 104
Initialization

PGDBG, 2
Initialize

PGDBG file, 5
instance

methods, 58
instruction

tracing, 105
integer

print as binary, 111

print as decimal, 111

print as hexadecimal, 111

print as octal, 111
internal

procedures, 56, 56
interrupt

control-C, 34
Invocation

PGDBG, 2
iread

command, 118

L

language

command, 121
Launch

PGDBG, 5
Lexical blocks, 29
line command, 119
lines

command, 108
Lines

table, print, 108
list

command, 108

source lines, 108
Load

PGDBG program, 5
Local Debugging

defined, Debugging

local, 1

Locals

tab, 14
Locate

routine, 19

string, 109, 109
Locate Routine, 19

location
menu item, 23
Location
change, 107
current, 107
program, 23
log

all commands, 121

command, 121, 121
Iread

command, 118
Ival

command, 113
Ivalue

defined, 113

M

Main routine
name, 56
Manual organization, xviii
Memory
access commands, 117
disassemble, 107

Index

display addresses, 15
dump, 117
tab, 15

menu, 9
Menu items

About PGDBG, 23
Addr, 21

ASCII, 21

Attach to Target, 19
bin, 21

binary, 21

Call, 22

Copy, 19

Custom, 21

custom, 21

Dec, 21

decimal, 21

Detach Target, 19
Display Current Location, 23
Down, 23

Exit, 19

Font, 20

Halt, 22

Hex, 21
hexadecimal, 21
Locate Routine, 19
Next, 22

Oct, 21

octal, 21

Open Target, 19
Paste, 19

PGDBG Help, 23
print, 21

print *, 21

Refresh, 20
Registers, 20

Restart Program, 22
Restore Default Settings, 19
Revert to Saved Settings, 19
Run, 22

Save Settings on Exit, 19
Search Again, 19
Search Backward, 19
Search Forward, 19
Set Breakpoint, 22
Show Tool Tips, 20

131

Step, 22
Step Out, 22
Stop Debugging, 22
string, 21
type, 21
Up, 23
Menus
assembly-level options, 52
Connections, 21
context, 9
Debug, 22
file, 19
Help, 23
Messages
MPI, 89
MPI queue, 118
queues, 89
status, 76
Microsoft Windows
debug, 51
Miscellaneous commands, 120
Modes
stop, 74
wait, 74
modules
debug access, 57
Fortran 90, 57
procedures, 57
MPI
debug considerations, 88
Debugging, 88
debugging options, 26
debug multi-process, 85
global rank, 88
groups, 90
listener processes, 90
message queue dump, 118
message queues, 89
MPICH-1, 91
multi-process debug, 87
parallel debug, 85
process, local; MPI: local process,
88
MPI_COMM_WORILD, 90
MPICH
support, 91

132

MPICH-2
debug; MVAPICH: debug;
MSMPI :debug; HPMPI :debug;,
86, 80
mqdump
command, 118
multilevel
debugging, 93
error messages, 94
mode status, 94
multilevel debugging, 65

N

Names

command, 115

declarations, 116

identifiers, 115

print declarations, 116

registers, 116

remove alias, 125

translation, 52
New

connection, 21
Next

command, 22
next

command, 97
nexti

command, 53, 97
noprint

command, 121

@)
oct

command, 111
Octal

print, 21, 111
Open

submenu containing Registers tab,
20
OpenMP, xvii
parallel debug, 81
private data debug, 82
Operators
@, 33, 56, 115
in expressions, 55

range, 33

scope, 56

scope qualifier @, 28
Optimize

code, 2

-g use, 2
Options

command line, 25, 25, 25, 26

-g, 2,51

-gopt, 51

menu, 19

-Munix, 52

-00, 2

P
p/t-sets, 66
commands, 68
create, 70, 70
current, 66, 67
define dynamic, 67
define static, 67
dynamic vs static, 67
Editor, 70
ignore, 71
modify, 70
multilevel debug mode, 67
multiple threads and processes,
78
notation, 66
override current, 71
prefix, 66, 68
process-only debug mode, 67
remove, 71
select, 70
target, 66
thread-only debug mode, 66
undefine, 69
Parallel
debug commands, 71
debugging, 63
debugging, overview, 63
debug hybrid apps, 93
debug with MPI, 85
events, 78
regions, stepi command, 98
statements, 79

statements, return, 80

Paste, 19

pathname
add to search path, 120

pause, 125

pc
command, 116

PGDBG
Assembly-level debugging, 51
C++ debugging, 58
Command-Line Arguments, 25, 25
Command-Line MPI Debugging,
26
Command prompt, 77
Commands, 27, 95
Commands Summary, 37
Conversions, 118
Debugger, 1, 1
Debug modes, 64, 93
Default GUI appearance, 7
Events, 30, 100
Expressions, 33
Fortran arrays, 55
Fortran Common Blocks, 56
Fortran debugging, 55
Graphical user interface, 2, 7
Initialization, 2
Internal Procedures, 56
Invocation, 2
load program, 5
Main Window, 7, 7
Memory access, 117
Miscellaneous commands, 120
Name of main routine, 56
Operators, 34, 55
Printing and setting variables, 109
Process commands, 71
Process control commands, 96
Program locations, 107
Register access, 116
Register symbols, 28
Scope, 114
Scope rules, 28
Source code locations, 28
Statements, 30
Status messages, 76

Symbols and expressions, 112

Thread commands, 71
Wait modes, 74

PGDBG Commands

addr, 118

alias, 120

arrive, 107

ascii, 111

assign, 112

attach, 38, 96

bin, 111

break, 100

break command, 100
breaki, 53, 101
breaki command, 101
breaks, 101

breaks command, 101
call, 112

catch, 102

catch command, 102
cd, 107

class, 114

classes, 115

clear, 102

clear command, 102
cont, 53, 96

cread, 117

debug, 96

dec, 111
declaration, 113
decls, 115

defset, 68

defset command, 99
delete, 102

detach, 96

directory, 120
disable, 102

disasm, 107

display, 111

do, 102

doi, 103

down, 115

dread, 117

dump, 53, 117

edit, 107

enable, 103

Index

enter, 115
entry, 113

file, 107

files, 115
focus, 68
focus command, 99
fp, 116
fread, 118
function, 119
global, 115
halt, 97

help, 120
hex, 111
history, 121
hwatch, 103
hwatchboth, 103
hwatchread, 103, 103
ignore, 104
iread, 118
language, 121
line, 119
lines, 108

list, 108

log, 121, 121
Iread, 118
Ival, 113
mqdump, 118
names, 115
next, 97

nexti, 53, 97
noprint, 121
oct, 111

pc, 116
pgienv, 122
print, 53, 109
printf, 110
proc, 97
procs, 97
pwd, 108
quit, 97

regs, 53, 116
repeat, 124, 124
rerun, 97
retaddr, 116
run, 53, 98
rval, 113

133

scope, 115
script, 124, 124
search backward, 109
search forward, 109
set, 114
setargs, 98
setenv, 124, 124
shell, 124, 124
sizeof, 114
sleep, 125, 125
source, 125, 125
sp, 116
sread, 118
stackdump, 53, 108
stacktrace, 53, 108
status, 104
step, 98
stepi, 53, 98
stepout, 98
stop, 104
stopi, 104
string, 111
sync command, 98, 99
synci command, 98, 99
thread command, 99
threads command, 99
trace, 104
tracei, 105
track, 105
tracki, 105
type, 114
unalias, 125, 125
unbreak, 105
unbreaki, 105
undefset, 69
undefset command, 99
undisplay, 112
up, 116
use, 125, 125
viewset

viewset command, 68
viewset command, 100
wait command, 99
watch, 105
watchi, 106
when, 106

134

wheni, 107

where, 109

whereis, 116

which, 116

whichsets, 68

whichsets command, 100
PGDBG control commands, 73
PGDBG GUI

assembly-level debugging, 52
PGDBG Signals, 61
pgi

command mode, 27
pgienv, 104, 105, 122

command, 122
pgienv command arguments, 122
Print

active threads, 99

address, 21, 118

aliases, 120

all registers, 116

arg values and names, 108

ascii, 21, 111

binary, 21, 111

breakpoints, 100, 100, 101, 101

command, 53, 109

command info, 120

identifier declarations, 115
identifier names, 115
ignored signals, 104, 104
integer address, 118
language name, 121

lines table, 108

list of signals ignored, 104
location, 107

name declarations, 116
noprint, 121

octal, 21, 111

procs command, 97
register info, 116

register value, 53

scope qualification, 116

scope qualified symbol name, 116

short integer address, 118
signals, 102, 102

stack dump, 108
stacktrace, 108, 108, 109
string, 21

strings, 111

symbol declaration, 113
values, 109

values as change, 105
watched event values, 105

command summary, 120
current, 107

current file, 107

current location, 107

current working directory, 108
data type, 21

data value, 21, 21

dec, 21

decimal, 111

defined aliases, 120

defined directories, 120
directory list, 125

envirnment variable name, 124
events, 102, 103

expressions, 109, 111, 111
formated stack dump, 108
formatted expressions, 110
formatted register names, 116
hex, 21

hexadecimal, 111

printf command, 110
proc
command, 97
procedures
Fortran 90 modules, 57
internal, 56, 56
process
assign name, 99
IDs, 65
proc command, 97
process/thread set, 66
process and thread control, 73
process level commands, 71
process-only debugging, 65
stop mode, 74
wait mode, 75
Process/Thread
element color, 17
Processes
MPI rank, 64

parallel debugging, 63
print, 97
Process-parallel debugging, 88
Process-thread sets, 99
Process grid tab, 16
process set
list members, 100
membership, 100
remove, 99
set target, 99
procwait, 75
Program
defined, 1
Program architecture
defined, 1
Program Architecture
described, 5
Program I/O
window, 11
program location
arrive, 23
sync command, 98, 99
synci command, 98, 99
thread command, 99
Programs
restart, 22
run or rerun, 22
status, 18
stop debugging, 22
prologue code, 113
prompt
return, 99
pwd
command, 108

Q
quit
command, 97

R
read
watchpoint, 103, 103
record session, 121, 121
Refresh
Process/Thread Grid, 20
windows, 20

Registers

access, 116

formatted names, 116

print info, 116

symbols, 53

view mmenu, 20
register symbols, 28
regs

command, 53, 116
Related Publications, xx
Remore debugging

defined, 1
remove

alias definition, 125

all expressions, 112

breakpoint, 105, 105

expression from display list, 112
Rename

connections, 22
Repeat

command, 124

search, 19
replay debug session, 121, 121
Rerun

program, 22
rerun command, 97
Restart

program, 22
Restore

default settings, 19
retaddr

command, 116
return

address, 113

Ivalue, 113

routine, 119

rvalue, 113

size of var type name, 114

statement, 80

type of expression, 114
Revert

saved settings, 19
Routines

breakpoint, 22

call, 112

clear breakpoints, 102

Index

disassemble, 107
display in source panel, 19
edit, 107
enter scope, 116
first line, 119
instruction tracing, 105
list source code, 108
locate, 19
main name, 56
print lines table, 108
print name, 108, 109, 109
request, 22
return, 119
scope, 23, 23, 115
set breakpoint, 104
size of, 114
source line tracing, 104
step, 98
stepi, 98
step into, 22
stepout command, 98
step out of, 22
step over, 22
symbol, 119
rsh communication, 90
Run
program, 22
run command, 53, 98
rval
command, 113
rvalue
defined, 113

S
Sales
contact information, 23
Save
connection, 21
connections as new, 22
GUI settings, 19
scope, 114
change, 107
class, 114
classes, 115
command, 115
current, 28

135

enter, 116

global, 115, 115
identifiers defined, 115
operator, 56

print identifier names, 115

print symbol name qualification,

116
qualifier operator, 28
routine, 23, 23, 115
rules, 28
search, 28, 115
set, 115
start, 29
up one level, 116
script command, 124
Search
backward, 109
command, 109
for strings, 109, 109
forward, 109
keyword, 19, 19
last keyword, 19
path, 120
scope, 28, 115
Search Again, 19
Search Backward, 19
command, 109
Search Forward, 19
Search Forward command, 109
Server
defined, 1
Sessions
end debug, 19, 19
terminate, 97
Set
breakpoints, 22, 22
command, 114
search scope, 115
variable value, 112, 114
setargs
command, 98
setenv command, 124
Settings
display for debugger, 122
restore, 19, 19

136

Restore Default Settings menu

item, 19
revert, 19

Revert to Saved Settings menu

item, 19
saved, 19
save GUI state, 19

Save Settings on Exit menu item,

19
shell
command, 124
invoke, 124
Show
tabs for register groups, 20
tool tips, 20
signals, 61, 61
ignore, 104
ignored, 104, 104
interrupt, 102
Linux Libraries, 61
list, 102
PGDBG, 61
print, 102
Print, 104
SIGPROF, 61
size
variable, 114
sizeof
command, 114
sleep command, 125
Source
current, 119
line conversion, 119
list lines, 108
source code
locations, 28
source command, 125
source file
change, 107
source line
conversion, 119
source line tracing, 104
Source Window, 8, 10
Context Menu, 9
Sp
command, 116

sread
command, 118
SSE Register Symbols, 53
ssh communication, 90
stack
display frames, 108
frame, 108
frames, display, 108
frames, display hex dump, 108
pointer, 116
pointer value, 116
print dump, 108
print stacktrace, 109
print trace, 108, 109
stackdump
command, 53, 108
stack frames
display, 109
stacktrace
command, 53, 108
Start
debug session, 19
PGDBG debugger, 1, 1
statements
block, 30
compound, 79
constructs, 30
execution order, 79
if, 30
parallel, 79
parallel if else, 79
parallel while, 79
PGDBG, 30
return, 80
simple, 30
while, 30
static p/t-set, 67
Status
program, 18
status
command, 104
events, 104
messages, 76
Statuss
tab, 18
Step

into routines, 22
out of routine, 22
over routines, 22
step command, 98
stepi
command, 53, 98
Step into
called routines, 22
stepout
command, 98
Step Out, 22
Step over
called routines, 22
Stop
after return to caller, 98
at value change, 105, 106
configure mode, 74
execution, 98
modes, 74
program debugging, 22
stop
command, 104
stopi
command, 104
string
command, 111
Strings
locate, 109, 109
print, 21, 111
subroutines
nested, 56
Support
information, 23
symbol
declarations, 113
name qualification, 116
symbol names
C++,52
Fortran, 52
Symbols, 28
global scope, 115
MAIN_, 52
print declaration, 113
register, 28
routine, 119
scope-qualified name, 116

search scope, 115
SSE register, 53
Symbols and Expressions, 112
sync
command, 98
sync command, 74, 89
synci command, 98, 99

T
Tables
routine lines, 108
Tabs
Call Stack, 14
Command, 12
Connections, 13
Events, 12
Groups, 13, 15, 16, 17
Locals, 14
Memory, 15
Process Grid, 16
Status, 18
Thread Grid, 16
Terminology
PGDBG, 1
Terms, 1
text mode debug, 91
Thread Grid tab, 16
Thread level commands, 72
Threads
assign name, 99
command, 99
commands, 71
grouping, 64
IDs in multilevel debug mode, 93
location, 99
logical id, 99
naming, 64
naming convention, 63
naming scheme, 93
OpenMP, 63
parallel debugging, 63
process/thread set, 66
stop mode, 74
threads-only debugging, 65
wait mode, 75
threads

Index

command, 99
Threads, configure, 75
threads command, 82
thread set
list members, 100
membership, 100
remove, 99
set target, 99
threadstoconfig environment
variable, 75
threadwait, 75
Toolbar
buttons, 10
trace
command, 31, 104
conditional, 104
source, 104
subprogram routines, 104
tracei
command, 105
conditional, 105
source, 105
subprogram routines, 105
track
command, 31, 105
event, 105
tracki
command, 105
event, 105
type

command, 114

U

unalias command, 125
unbreak command, 105
unbreaki

command, 105
undefset command, 69, 99
undisplay

command, 112
up

command, 116

menu item, 23
use command, 125
Utilities

help, 23

137

V

Variables
breakpoint, 104, 104
display local, 14
instruction tracing, 105
set value, 112, 114
trace changes, 104, 105

Versions
display, 23

View
Font menu item, 20
Refresh, 20
Registers menu item, 20

Show Tool Tips menu item, 20

View Menu, 20
viewset command, 100

W
wait command, 75, 99
wait mode, 74, 74

process, 75

thread, 75
watch

command, 105

event, 105
watch command, 31
watchi

command, 106

event, 106
Watchpoints

define, 103, 103

hardware, 103

hardware read, 103, 103
when command, 106
wheni command, 107
where

command, 109
whereis

command, 116
which command, 116
whichsets command, 68, 100
while

parallel statements, 79
while statement, 30
Window

source, 8, 10

138

Windows
build for debug, 2
PGDBG main, 7, 7
Program 1/0, 11
refresh, 20

working directory
print, 108

write
watchpoiont, 103

	PGDBG® Debugger Guide
	Contents
	Preface
	Intended Audience
	Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications

	Chapter 1. Getting Started
	Definition of Terms
	Building Applications for Debug
	Debugging Optimized Code
	Building for Debug on Windows

	User Interfaces
	Command Line Interface (CLI)
	Graphical User Interface

	Co-installation Requirements
	Java Virtual Machine
	Linux
	OSX
	Windows

	Licensing
	Local Debugging LIcensing
	Remote Debugging LIcensing

	Start Debugging
	Program Load
	Initialization Files
	Program Architecture

	Chapter 2. The Graphical User Interface
	Main Components
	Source Window
	Source and Disassembly Displays
	Source Window Context Menu

	Main Toolbar
	Buttons
	Drop-Down Lists

	Program I/O Window
	Debug Information Tabs
	Command Tab
	Events tab
	Groups Tab
	Connections Tab
	Call Stack Tab
	Locals Tab
	Memory Tab
	MPI Messages Tab
	Procs & Threads Tab
	Registers Tab
	Status Tab

	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Data Menu
	Connections Menu
	Debug Menu
	Help Menu

	Chapter 3. Command Line Options
	Command-Line Options Syntax
	Command-Line Options
	Command-Line Options for MPI Debugging
	I/O Redirection

	Chapter 4. Command Language
	Command Overview
	Command Syntax
	Command Modes

	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Event Commands
	Event Command Descriptions
	Event Command Arguments
	Event Command Examples

	Event Command Action

	Expressions
	Ctrl+C
	Command-Line Debugging
	GUI Debugging
	MPI Debugging

	Chapter 5. Command Summary
	Notation Used in Command Sections
	Command Summary

	Chapter 6. Assembly-Level Debugging
	Assembly-Level Debugging Overview
	Assembly-Level Debugging on Microsoft Windows Systems
	Assembly-Level Debugging with Fortran
	Assembly-Level Debugging with C++
	Assembly-Level Debugging Using the PGDBG GUI
	Assembly-Level Debugging Using the PGDBG CLI

	SSE Register Symbols

	Chapter 7. Source-Level Debugging
	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Common Blocks
	Internal Procedures
	Modules
	Module Procedures

	Debugging C++
	Calling C++ Instance Methods

	Chapter 8. Platform-Specific Features
	Pathname Conventions
	Debugging with Core Files
	Signals
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Chapter 9. Parallel Debugging Overview
	Overview of Parallel Debugging Capability
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging

	Process/Thread Sets
	Named p/t-sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands
	Using Process/Thread Sets in the GUI
	p/t set Usage

	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	Chapter 10. Parallel Debugging with OpenMP
	OpenMP and Multi-thread Support
	Multi-thread and OpenMP Debugging
	Debugging OpenMP Private Data

	Chapter 11. Parallel Debugging with MPI
	MPI and Multi-Process Support
	Launch Debugging From Within the GUI
	Launch Debugging From the Command Line
	MPICH-1
	MPICH-2
	MVAPICH
	MSMPI (Local)
	MSMPI (Cluster)

	Using MPI on Linux
	Installing MPI
	Randomized Load Addresses

	Using MPI on Windows
	Installing MSMPI
	Building with MSMPI

	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	Use halt instead of Ctrl+C
	SSH and RSH
	Using the CLI
	Setting DISPLAY
	Using Continue

	Debugging Support for MPICH-1

	Chapter 12. Parallel Debugging of Hybrid Applications
	PGDBG Multilevel Debug Mode
	Multilevel Debugging

	Chapter 13. Command Reference
	Notation Used in Command Sections
	Process Control
	attach
	cont
	debug
	detach
	halt
	load
	next
	nexti
	proc
	procs
	quit
	rerun
	run
	setargs
	step
	stepi
	stepout
	sync
	synci
	thread
	threads
	wait

	Process-Thread Sets
	defset
	focus
	undefset
	viewset
	whichsets

	Events
	break
	breaki
	breaks
	catch
	clear
	delete
	disable
	do
	doi
	enable
	hwatch
	hwatchboth
	hwatchread
	ignore
	status
	stop
	stopi
	trace
	tracei
	track
	tracki
	unbreak
	unbreaki
	watch
	watchi
	when
	wheni

	Program Locations
	arrive
	cd
	disasm
	edit
	file
	lines
	list
	pwd
	stackdump
	stacktrace
	where
	/
	?

	Printing Variables and Expressions
	print
	printf
	ascii
	bin
	dec
	display
	hex
	oct
	string
	undisplay

	Symbols and Expressions
	assign
	call
	declaration
	entry
	lval
	rval
	set
	sizeof
	type

	Scope
	class
	classes
	decls
	down
	enter
	files
	global
	names
	scope
	up
	whereis
	which

	Register Access
	fp
	pc
	regs
	retaddr
	sp

	Memory Access
	cread
	dread
	dump
	fread
	iread
	lread
	mqdump
	sread

	Conversions
	addr
	function
	line

	Target
	connect
	disconnect
	native

	Miscellaneous
	alias
	directory
	help
	history
	language
	log
	noprint
	pgienv
	repeat
	script
	setenv
	shell
	sleep
	source
	unalias
	use

	Index

