
The Portland Group

 PGI AcceleratorTM Compilers
 OpenACC Getting Started Guide

 Version 13.8

 ii

OpenACC 2013 Getting Started Guide
Copyright © 2013 NVIDIA Corportation

All rights reserved.

Printed in the United States of America

 First Printing: Release 2012, version 12.3, March 2012
Second Printing: Release 2012, version 12.4, April 2012
Third Printing: Release 2012, version 12.5, May 2012
Fourth Printing: Release 2012, version 12.6, July 2012

Fifth Printing: Release 2013, version 13.2, February 2013
Sixth Printing: Release 2013, version 13.3, March 2013
Seventh Printing: Release 2013, version 13.7, July 2013

Eighth Printing: Release 2013, version 13.8, August 2013

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

81520131254

mailto:trs@pgroup.com
http://www.pgroup.com/

iii

Contents

Overview ... 1
Terminology and Definitions .. 1

System Prerequisites ... 2

Prepare Your System .. 2

Supporting Documentation and Examples .. 4

Using OpenACC with the PGI Compilers ... 5
C Examples ... 5

Fortran Examples ... 11

Troubleshooting Tips and Known Limitations ... 17

PGI Accelerator Model Interoperability .. 19
OpenAcc New Features ... 19

PGI Accelerator Features not available in the OpenACC .. 20

Changes from PGI Accelerator 1.3 to OpenACC .. 21

Mapping PGI Accelerator Features to OpenACC .. 23

Using the new PGI Accelerator Model with OpenACC .. 23

Implemented Features ... 25
In This Release ... 25

Defaults .. 26

Environment Variables ... 26

Known Limitations .. 27

In Future Releases .. 27

Contact Information .. 29

 iv

1

CHAPTER 1

Overview

The OpenACC Application Program Interface is a collection of compiler directives and
runtime routines that allow you, the programmer, to specify loops and regions of code in
standard C and Fortran that you want offloaded from a host CPU to an attached
accelerator, such as a GPU. The OpenACC API was designed and is maintained by an
industry consortium. See the OpenACC website http://www.openacc.org for more
information about the OpenACC API. In particular, the whole specification is available
at http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf.

This Getting Started guide helps you prepare your system for using the PGI OpenACC
implementation, and provides examples of how to write, build and run programs using
the OpenACC directives. More information about PGI’s OpenACC implementation is
available at http://www.pgroup.com/openacc.

This release of the PGI compilers implements the OpenACC specification. In particular,
where there were conflicts between the PGI Accelerator Programming directives and the
OpenACC directives, this release uses the OpenACC interpretation. See Chapter 3, PGI
Accelerator Model Interoperability, for examples and details.

Terminology and Definitions
Throughout this document certain terms have very specific meaning:

• OpenACC is the name of the specification, which includes compiler directives,
runtime routines, and environment variables.

• PGCC and PGFORTRAN are the names of the PGI compiler products.

http://www.openacc.org/
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.pgroup.com/openacc

PGI OpenACC Compilers Getting Started Guide

2

• pgcc and pgfortran are the names of the PGI compiler drivers. pgfortran may
also be spelled pgf90 and pgf95.

• CUDA is the parallel computing platform and programming model invented and
supported by NVIDIA for GPUs.

System Prerequisites
Using this release of PGI OpenACC API implementation requires the following:

• A 32-bit or 64-bit Linux, Microsoft Windows, or Apple OS/X Intel or AMD x86
system, with a PGI-supported and CUDA-supported release of the operating
system. Get information about the PGI-supported Linux releases at
http://www.pgroup.com/support/install.htm. Get information about CUDA-
supported Linux releases at http://www.nvidia.com/cuda.

• A CUDA-enabled NVIDIA GPU.

• An installed CUDA driver, version 4.0 or later. CUDA drivers can be downloaded
at http://www.nvidia.com/cuda.

Prepare Your System
To enable OpenACC, follow these steps:

1. Download the latest 13.0 Linux packages from the Download page on the PGI
website at http://www.pgroup.com/.

2. Install the downloaded package.

3. Put the installed bin directory on your path.

4. Run pgaccelinfo to see that your NVIDIA GPU and CUDA drivers are properly
installed and available. You should see output that looks something like the
following:

http://www.pgroup.com/support/install.htm
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.pgroup.com/

 Chapter 1 Overview

3

This tells you the CUDA driver version, the name and compute capability of the GPU (or
GPUs, if you have more than one), the available memory, and so on.

CUDA Driver Version: 5000
NVRM version: NVIDIA UNIX x86_64 Kernel Module 310.19 Thu Nov 8
00:52:03 PST 2012

CUDA Device Number: 0
Device Name: Tesla K20c
Device Revision Number: 3.5
Global Memory Size: 5032706048
Number of Multiprocessors: 13
Number of SP Cores: 2496
Number of DP Cores: 832
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 65536
Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: 705 MHz
Execution Timeout: No
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: Yes
Memory Clock Rate: 2600 MHz
Memory Bus Width: 320 bits
L2 Cache Size: 1310720 bytes
Max Threads Per SMP: 2048
Async Engines: 2
Unified Addressing: Yes
Initialization time: 1487991 microseconds
Current free memory: 4952023040
Upload time (4MB): 942 microseconds (708 ms pinned)
Download time: 1060 microseconds (673 ms pinned)
Upload bandwidth: 4452 MB/sec (5924 MB/sec pinned)
Download bandwidth: 3956 MB/sec (6232 MB/sec pinned)
PGI Compiler Option: -ta=nvidia,cc35

PGI OpenACC Compilers Getting Started Guide

4

Supporting Documentation and Examples
You may want to consult the OpenACC 1.0 specification, included with this release, for
additional information. It is also available at the OpenACC website,
http://www.openacc-standard.org. Simple examples appear in Chapter 3, Using
OpenACC with the PGI Compilers.

An SDK is available at the OpenACC website. In future releases, it will be installed with
the PGI compilers, at /opt/pgi/linux86[-64]/2013/openacc/SDK.

http://www.openacc-standard.org/

5

CHAPTER 2

Using OpenACC with the PGI Compilers

The OpenACC directives are enabled by adding the -acc or the -ta=nvidia flag to the
PGI compiler command line. This release targets OpenACC to NVIDIA GPUs. See
Chapter 3 for discussion about using OpenACC directives or the -acc flag with object
files compiled with previous PGI releases using the PGI Accelerator directives. In
particular, specifying either -acc or -ta=nvidia enables the OpenACC directives and the
OpenACC runtime, as well as the PGI Accelerator Model directives.

This release does not fully implement the OpenACC 1.0 specification. Refer to Chapter
4, Implemented Features, for details about what features are included in this release, and
what features are coming in updates over the next few months.

C Examples
The simplest C example of OpenACC is a vector addition on the GPU:

PGI OpenACC Compilers Getting Started Guide

6

The important part of this example is the routine vecaddgpu, which includes one
OpenACC directive for the loop. This (#pragma acc) directive tells the compiler to
generate a kernel for the following loop (kernels loop), to allocate and copy from the
host memory into the GPU memory n elements for the vectors a and b before executing
on the GPU, starting at a[0] and b[0] (copyin(a[0:n],b[0:n])), and to allocate n
elements for the vector r before executing on the GPU, and copy from the GPU memory
out to the host memory those n elements, starting at r[0] (copyout(r[0:n])).

#include <stdio.h>
#include <stdlib.h>

void vecaddgpu(float *restrict r, float *a, float *b, int n){
 #pragma acc kernels loop copyin(a[0:n],b[0:n]) copyout(r[0:n])
 for(int i = 0; i < n; ++i) r[i] = a[i] + b[i];
}

int main(int argc, char* argv[]){
 int n; /* vector length */
 float * a; /* input vector 1 */
 float * b; /* input vector 2 */
 float * r; /* output vector */
 float * e; /* expected output values */
 int i, errs;
 if(argc > 1) n = atoi(argv[1]);
 else n = 100000; /* default vector length */
 if(n <= 0) n = 100000;
 a = (float*)malloc(n*sizeof(float));
 b = (float*)malloc(n*sizeof(float));
 r = (float*)malloc(n*sizeof(float));
 e = (float*)malloc(n*sizeof(float));
 for(i = 0; i < n; ++i){
 a[i] = (float)(i+1);
 b[i] = (float)(1000*i);
 }
 /* compute on the GPU */
 vecaddgpu(r, a, b, n);
 /* compute on the host to compare */
 for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
 /* compare results */
 errs = 0;
 for(i = 0; i < n; ++i){
 if(r[i] != e[i]){
 ++errs;
 }
 }
 printf(“%d errors found\n”, errs);
 return errs;
}

 Chapter 2 Using OpenACC with the PGI Compilers

7

If you type this example into a file a1.c, you can build it with this release using the
command pgcc -acc a1.c. The -acc flag enables recognition of the OpenACC pragmas
and includes the OpenACC runtime library. This command generates the usual a.out
executable file, and you run the program by running a.out as normal. You should see
the output:

If instead you get the following output, then there is something wrong with your
hardware installation or your CUDA driver.

You can enable additional output by setting environment variables. If you set the
environment variable PGI_ACC_NOTIFY to 1, then the runtime prints a line of output each
time you run a kernel on the GPU. For this program, you might get output that looks
like:

The extra output tells you that the program launched a kernel for the loop at line 6, with
a CUDA grid of size 391, and a thread block of size 256. If you set the environment
variable PGI_ACC_NOTIFY to 3, the output will include information about the data
transfers as well:

If you set the environment variable PGI_ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU. On
Linux, you may need to set the LD_LIBRARY_PATH environment variable to include
the /opt/pgi/linux86[-64]/13.3/lib or /opt/pgi/linux86/13.3/lib directory (as

0 errors found

libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your LD_LIBRARY_PATH.

launch CUDA kernel file=/user/guest/a1.c function=vecaddgpu
line=6 device=0 grid=782 block=128
0 errors found

upload CUDA data file=/user/guest/a1.c function=vecaddgpu
line=5 device=0 variable=b bytes=400000
upload CUDA data file=/user/guest/a1.c function=vecaddgpu
line=5 device=0 variable=a bytes=400000
launch CUDA kernel file=/user/guest/a1.c function=vecaddgpu
line=6 device=0 grid=782 block=128
download CUDA data file=/user/guest/a1.c function=vecaddgpu
line=7 device=0 variable=r bytes=400000
0 errors found

PGI OpenACC Compilers Getting Started Guide

8

appropriate). This release dynamically loads a shared object to implement the profiling
feature, and the path to the library must be available.

For this program, you might get output like:

This tells you that the program entered one accelerator region and spent a total of about
598 microseconds in that region. It copied two arrays to the device, launched one kernel
and brought one array back to the host.

You might also find it useful to enable the compiler feedback when you are writing your
own OpenACC programs. This is enabled with the -Minfo flag. If you compile this
program with the command pgcc -acc -fast -Minfo a1.c, you get the output:

This tells you that the compiler generated three versions of the code, one for NVIDIA
devices with compute capability 1.0 and higher (Tesla), and one for devices with compute
capability 2.0 and higher (Fermi), and third for compute capability 3.0 and higher
(Kepler). It also gives the schedule used for the loop; in this case, the schedule is gang,
vector(128). This means the iterations of the loop are broken into vectors of 128, and
the vectors executed in parallel by SMPs of the GPU.

0 errors found

Accelerator Kernel Timing data
/user/guest/a1.c
 vecaddgpu NVIDIA devicenum=0
 time(us): 598
 5: data copyin reached 2 times
 device time(us): total=315 max=161 min=154 avg=157
 6: kernel launched 1 times
 grid: [782] block: [128]
 device time(us): total=32 max=32 min=32 avg=32
 elapsed time(us): total=41 max=41 min=41 avg=41
 7: data copyout reached 1 times
 device time(us): total=251 max=251 min=251 avg=251

vecaddgpu:
 5, Generating present_or_copyout(r[0:n])
 Generating present_or_copyin(b[0:n])
 Generating present_or_copyin(a[0:n])
 Generating NVIDIA code
 Generating compute capability 1.0 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 6, Loop is parallelizable
 Accelerator kernel generated
 6, #pragma acc loop gang, vector(128) /* blockIdx.x
threadIdx.x */

 Chapter 2 Using OpenACC with the PGI Compilers

9

This output is important because it tells you when you are going to get parallel execution
or sequential execution. If you remove the restrict keyword from the declaration of
the dummy argument r to the routine vecaddgpu, the -Minfo output tells you that there
may be dependences between the stores through the pointer r and the fetches through
the pointers a and b:

The compiler generated a scalar kernel, which runs on one thread of one thread block,
and which runs about 1000 times slower than the parallel kernel. For this simple
program, the total time is dominated by GPU initialization, so you might not notice the
difference in times, but in production mode you need parallel kernel execution to get
acceptable performance.

For our second example, we modify the program slightly by replacing the data clauses on
the kernels pragma with a present clause, and add a data construct surrounding the call
to the vecaddgpu routine. The data construct moves the data across to the GPU in the
main program. The present clause in the vecaddgpu routine tells the compiler to use the
GPU copy of the data that has already been allocated on the GPU. If you run this
program on the GPU with PGI_ACC_TIME set, you see that the kernel region now has no
data movement associated with it. Instead, the data movement is all associated with the
data construct in the main program.

 6, Complex loop carried dependence of '*(b)' prevents
parallelization
 Complex loop carried dependence of '*(a)' prevents
parallelization
 Loop carried dependence of '*(r)' prevents parallelization
 Loop carried backward dependence of '*(r)' prevents
vectorization
 Accelerator scalar kernel generated

PGI OpenACC Compilers Getting Started Guide

10

#include <stdio.h>
#include <stdlib.h>

void vecaddgpu(float *restrict r, float *a, float *b, int n){
 #pragma acc kernels loop present(r,a,b)
 for(int i = 0; i < n; ++i) r[i] = a[i] + b[i];
}

int main(int argc, char* argv[]){
 int n; /* vector length */
 float * a; /* input vector 1 */
 float * b; /* input vector 2 */
 float * r; /* output vector */
 float * e; /* expected output values */
 int i, errs;

 if(argc > 1) n = atoi(argv[1]);
 else n = 100000; /* default vector length */
 if(n <= 0) n = 100000;
 a = (float*)malloc(n*sizeof(float));
 b = (float*)malloc(n*sizeof(float));
 r = (float*)malloc(n*sizeof(float));
 e = (float*)malloc(n*sizeof(float));
 for(i = 0; i < n; ++i){
 a[i] = (float)(i+1);
 b[i] = (float)(1000*i);
 }
 /* compute on the GPU */
 #pragma acc data copyin(a[0:n],b[0:n]) copyout(r[0:n])
 {
 vecaddgpu(r, a, b, n);
 }
 /* compute on the host to compare */
 for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
 /* compare results */
 errs = 0;
 for(i = 0; i < n; ++i){
 if(r[i] != e[i]){
 ++errs;
 }
 }
 printf(“%d errors found\n”, errs);
 return errs;
}

 Chapter 2 Using OpenACC with the PGI Compilers

11

Fortran Examples
Vector Addition on the GPU
The simplest Fortran example of OpenACC is a vector addition on the GPU:

module vecaddmod
 implicit none
contains
 subroutine vecaddgpu(r, a, b, n)
 real, dimension(:) :: r, a, b
 integer :: n
 integer :: i
!$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
 do i = 1, n
 r(i) = a(i) + b(i)
 enddo
 end subroutine
end module

program main
 use vecaddmod
 implicit none
 integer :: n, i, errs, argcount
 real, dimension(:), allocatable :: a, b, r, e
 character*10 :: arg1
 argcount = command_argument_count()
 n = 1000000 ! default value
 if(argcount >= 1)then
 call get_command_argument(1, arg1)
 read(arg1, '(i)') n
 if(n <= 0) n = 100000
 endif
allocate(a(n), b(n), r(n), e(n))
 do i = 1, n
 a(i) = i
 b(i) = 1000*i
 enddo
 ! compute on the GPU
 call vecaddgpu(r, a, b, n)
 ! compute on the host to compare
 do i = 1, n
 e(i) = a(i) + b(i)
 enddo

PGI OpenACC Compilers Getting Started Guide

12

The important part of this example is the subroutine vecaddgpu, which includes one
OpenACC directive for the loop. This (!$acc) directive tells the compiler to generate a
kernel for the following loop (kernels loop), to allocate and copy from the host memory
into the GPU memory n elements for the vectors a and b before executing on the GPU,
starting at a(1) and b(1) (copyin(a(1:n),b(1:n)), and to allocate n elements for the
vector r before executing on the GPU, and copy from the GPU memory out to the host
memory those n elements, starting at r(1) (copyout(r(1:n)).

If you type this example into a file f1.f90, you can build it with this release using the
command pgfortran -acc f1.f90. The -acc flag enables recognition of the OpenACC
pragmas and includes the OpenACC runtime library. This command generates the usual
a.out executable file, and you run the program by running a.out as normal. You should
see the output:

If instead you get the following output, then there is something wrong with your
hardware installation or your CUDA driver.

You can enable additional output by setting environment variables. If you set the
environment variable ACC_NOTIFY to 1, then the runtime prints a line of output each time
you run a kernel on the GPU. For this program, you might get output that looks like:

The extra output tells you that the program launched a kernel for the loop at line 9, with
a CUDA grid of size 391, and a thread block of size 128. If you set the environment

! compare results
 errs = 0
 do i = 1, n
 if(r(i) /= e(i))then
 errs = errs + 1
 endif
 enddo
 print *, errs, ' errors found'
 if(errs) call exit(errs)
end program

0 errors found

libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your LD_LIBRARY_PATH.

launch CUDA kernel file=/user/guest/f1.f90 function=vecaddgpu
line=9 device=0 grid=7813 block=128
0 errors found

 Chapter 2 Using OpenACC with the PGI Compilers

13

variable PGI_ACC_NOTIFY to 3, the output will include information about the data
transfers as well:

If you set the environment variable PGI_ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU. For
this program, you might get output like:

This tells you that the program entered one accelerator region and spent a total of about 2
milliseconds in that region. It copied two arrays to the device, launched one kernel and
brought one array back to the host.

You might also find it useful to enable the compiler feedback when you are writing your
own OpenACC programs. This is enabled with the -Minfo flag.

If you compile the previous program with the command

pgfortran -acc -fast -Minfo f1.f90, you get the following output:

upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu line=8
device=0 variable=b bytes=4000000
upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu line=8
device=0 variable=a bytes=4000000
launch CUDA kernel file=/user/guest/f1.f90 function=vecaddgpu
line=9 device=0 grid=7813 block=128
download CUDA data file=/user/guest/f1.f90 function=vecaddgpu
line=12 device=0 variable=r bytes=4000000
0 errors found

0 errors found

Accelerator Kernel Timing data
/user/guest/f1.f90
 vecaddgpu NVIDIA devicenum=0
 time(us): 1,971
 8: data copyin reached 2 times
 device time(us): total=1,242 max=623 min=619 avg=621
 9: kernel launched 1 times
 grid: [7813] block: [128]
 device time(us): total=109 max=109 min=109 avg=109
 elapsed time(us): total=118 max=118 min=118 avg=118
 12: data copyout reached 1 times
 device time(us): total=620 max=620 min=620 avg=620

PGI OpenACC Compilers Getting Started Guide

14

This tells you that the compiler generated three versions of the code, one for NVIDIA
devices with compute capability 1.0 and higher (Tesla), and one for devices with compute
capability 2.0 and higher (Fermi), and one for devices with compute capability 3.0 and
higher (Kepler). It also gives the schedule used for the loop; in this case, the schedule is
gang, vector(128). This means the iterations of the loop are broken into vectors of 128,
and the vectors executed in parallel by SMPs of the GPU. This output is important
because it tells you when you are going to get parallel execution or sequential execution.

For our second example, we modify the program slightly by replacing the data clauses on
the kernels pragma with a present clause, and add a data construct surrounding the call
to the vecaddgpu subroutine. The data construct moves the data across to the GPU in the
main program. The present clause in the vecaddgpu subroutine tells the compiler to use
the GPU copy of the data that has already been allocated on the GPU. If you run this
program on the GPU with PGI_ACC_TIME set, you will see that the kernel region now has
no data movement associated with it. Instead, the data movement is all associated with
the data construct in the main program.

In Fortran programs, you don't have to specify the array bounds in data clauses, if the
compiler can figure out the bounds from the declaration, or if the arrays are assumed-
shape dummy arguments or allocatable arrays.

vecaddgpu:
 8, Generating present_or_copyout(r(:n))
 Generating present_or_copyin(b(:n))
 Generating present_or_copyin(a(:n))
 Generating NVIDIA code
 Generating compute capability 1.0 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 9, Loop is parallelizable
 Accelerator kernel generated
 9, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

 Chapter 2 Using OpenACC with the PGI Compilers

15

module vecaddmod
 implicit none
contains
 subroutine vecaddgpu(r, a, b, n)
 real, dimension(:) :: r, a, b
 integer :: n
 integer :: i
!$acc kernels loop present(r,a,b)
 do i = 1, n
 r(i) = a(i) + b(i)
 enddo
 end subroutine
end module

program main
 use vecaddmod
 implicit none
 integer :: n, i, errs, argcount
 real, dimension(:), allocatable :: a, b, r, e
 character*10 :: arg1
 argcount = command_argument_count()
 n = 1000000 ! default value
 if(argcount >= 1)then
 call get_command_argument(1, arg1)
 read(arg1, '(i)') n
 if(n <= 0) n = 100000
 endif
 allocate(a(n), b(n), r(n), e(n))
 do i = 1, n
 a(i) = i
 b(i) = 1000*i
 enddo
 ! compute on the GPU
!$acc data copyin(a,b) copyout(r)
 call vecaddgpu(r, a, b, n)
!$acc end data
 ! compute on the host to compare
 do i = 1, n
 e(i) = a(i) + b(i)
 enddo
 ! compare results
 errs = 0
 do i = 1, n
 if(r(i) /= e(i))then
 errs = errs + 1
 endif
 enddo
 print *, errs, ' errors found'
 if(errs) call exit(errs)
end program

PGI OpenACC Compilers Getting Started Guide

16

Multi-Threaded Program Utilizing Multiple Devices
This simple example shows how to run a multi-threaded host program that utilizes
multiple devices.

program tdot
! Compile with "pgfortran -mp -acc tman.f90 -lacml
! Compile with "pgfortran -mp -acc tman.f90 -lblas,
! where acml is not available
! Set OMP_NUM_THREADS environment variable to run with
! up to 2 threads, currently.
!
use openacc
use omp_lib
!
integer, parameter :: N = 10000
real*8 x(N), y(N), z
integer, allocatable :: offs(:)
real*8, allocatable :: zs(:)
real*8 ddot

! Max at 2 threads for now
nthr = omp_get_max_threads()
if (nthr .gt. 2) nthr = 2
call omp_set_num_threads(nthr)

! Run on host
call random_number(x)
call random_number(y)
z = ddot(N,x,1,y,1)
print *,"Host Serial",z

! Attach each thread to a device
!$omp PARALLEL private(i)
 i = omp_get_thread_num()
 call acc_set_device_num(i, acc_device_nvidia)
!$omp end parallel

! Break up the array into sections
nsec = N / nthr
allocate(offs(nthr),zs(nthr))
offs = (/ (i*nsec,i=0,nthr-1) /)
zs = 0.0d0

 Chapter 2 Using OpenACC with the PGI Compilers

17

The program starts by having each thread call acc_set_device_num so each thread
will use a different GPU. Within the computational OpenMP parallel region, each
thread copies the data it needs to its GPU and proceeds.

Troubleshooting Tips and Known Limitations
This release of the PGI compilers does not implement the full OpenACC specification.
For an explanation of what features are not yet implemented, refer to Chapter 4,
Implemented Features.

The Linux CUDA driver will power down an idle GPU. This means if you are using a
GPU with no attached display, or an NVIDIA Tesla compute-only GPU, and there are no
open CUDA contexts, the GPU will power down until it is needed. Since it takes about a
second to power the GPU back up, you may experience noticeable delays when you start
your program. When you run your program with the environment variable
PGI_ACC_TIME set to 1, this time will appear as initialization time. If you have an
NVIDIA S1070 or S2050 with four GPUs, this initialization time may be up to 4 seconds.
If you are running many tests, or want to isolate the actual time from the initialization
time, you can run the PGI utility pgcudainit in the background. This utility opens a
CUDA context and holds it open until you kill it or let it complete.

This release has support for the async clause and wait directive. When you use
asynchronous computation or data movement, you are responsible for ensuring that the
program has enough synchronization to resolve any data races between the host and the
GPU. If your program uses the async clause and wrong answers are occuring, you can
test whether the async clause is causing problems by setting the environment variable

! Decompose the problem across devices
!$omp PARALLEL private(i,j,z)
 i = omp_get_thread_num() + 1
 z = 0.0d0
 !$acc kernels loop &
 copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))
 do j = offs(i)+1, offs(i)+nsec
 z = z + x(j) * y(j)
 end do
 zs(i) = z
!$omp end parallel
z = sum(zs)
print *,"Multi-Device Parallel",z
end

PGI OpenACC Compilers Getting Started Guide

18

PGI_ACC_SYNCHRONOUS to 1 before running your program. This action causes the
OpenACC runtime to ignore the async clauses and run the program in synchronous
mode.

19

CHAPTER 3

PGI Accelerator Model Interoperability

This chapter describes how the PGI OpenACC implementation interoperates with the
PGI Accelerator model implementation, and with object files created with previous
releases of the PGI compiler using the PGI Accelerator directives. PGI continues to
support the PGI Accelerator model and directives as extensions to the OpenACC API.
Where there were conflicts between the previous version of the PGI Accelerator model
directives and OpenACC, the new PGI Accelerator model is now fully compatible with
OpenACC.

OpenAcc New Features
OpenACC has added six important features that were not available in the PGI
Accelerator model version 1.3.

• OpenACC has two types of compute constructs, the acc parallel construct and
the acc kernels construct. The acc kernels construct is very similar to the PGI
Accelerator acc region construct. The acc parallel construct is new to
OpenACC. The PGI compilers support both the kernels and the parallel
constructs.

• OpenACC has the present, present_or_copy, present_or_copyin,
present_or_copyout, and present_or_create data clauses. These give
functionality that is similar to the reflected data clause in the PGI Accelerator
model, except the present clauses can be used for global data, and do not need an
explicit interface. PGI OpenACC compilers support the present clauses.

PGI OpenACC Compilers Getting Started Guide

20

• OpenACC has support for asynchronous data movement between the host and
GPU, and asynchronous computation on the GPU, using the async clause and the
wait directive. This release of the PGI OpenACC compilers implements the
async clause and asynchronous data movement and computation, and the wait
directive. The async clause is supported on all relevant OpenACC directives, as
well as PGI Accelerator directives.

• OpenACC defines three levels of parallelism: gang, worker and vector. The PGI
Accelerator model version 1.3 defined two levels of parallelism: parallel and
vector, where each level can have multiple dimensions. The OpenACC gang
parallelism corresponds directly to the PGI Accelerator parallel level of
parallelism. The OpenACC vector parallelism corresponds to the PGI Accelerator
vector parallelism. The OpenACC worker parallelism is new. This release of the
PGI OpenACC compilers supports worker parallelism.

• OpenACC supports an explicit reduction clause for inner loops. PGI OpenACC
compilers support the reduction clause on the parallel and kernels constructs,
and on the loop constructs.

• OpenACC supports worker and vector parallelism for nontightly nested loops.
The PGI Accelerator model version 1.3 only allowed vector parallelism for tightly
nested outer loops. PGI OpenACC compilers support worker and vector
parallelism on nontightly nested loops.

There are other differences between OpenACC and the PGI Accelerator model, described
in the following sections.

PGI Accelerator Features not available in the OpenACC
The PGI Accelerator Model has one feature that is not available in OpenACC.

• In Fortran, the PGI Accelerator model has mirror and reflected data clauses.
The mirror data clause tells the compiler to allocate a device copy of the array
whenever the host copy is allocated. For global arrays, the device copy is
accessible in any subprogram where the host copy is accessible. The reflected
data clause tells the compiler to pass the address of the device copy of an array as
an argument when it passes the address of the host copy of the array. The
functionality of both of these is similar to that of the present data clause in
OpenACC. The advantage of mirror and reflected is that the compiler can

 Chapter 2 Using OpenACC with the PGI Compilers

21

check at compile time whether the calling routine is passing an array with a
device copy, or whether the global array has a device copy. The advantage of the
present clause is that it doesn't require an explicit interface, and the same
mechanism can be applied to dummy arguments and global arrays. PGI will
continue to support the mirror and reflected clauses.

Changes from PGI Accelerator 1.3 to OpenACC
There were several incompatibilities in the PGI Accelerator model 1.3 and OpenACC.
This release implements a new version of the PGI Accelerator model that is fully
compatible with OpenACC. This change may affect how your program behaves, and
may, in some cases, requires changes to your source program.

• The PGI Accelerator model version 1.3 allows for any rectangular subarray to be
specified in a data clause, such as the interior of a matrix. OpenACC requires that
data in a data clause be contiguous in memory. For instance, in the PGI
Accelerator model, the following is legal:

In OpenACC, the corresponding example would have to move a contiguous
subarray, even though some of the elements moved are not used:

subroutine sub(a,n,m)
 integer :: n, m
 real :: a(n,m)
 integer :: i,j
 !$acc region do copy(a(2:n-1,2:m-1))
 do j = 2, m-1
 do i = 2, n-1
 a(i,j) = exp(a(i,j))
 enddo
 enddo
end subroutine

subroutine sub(a,n,m)
 integer :: n, m
 real :: a(n,m)
 integer :: i,j
 !$acc kernels loop copy(a(1:n,2:m-1))
 do j = 2, m-1
 do i = 2, n-1
 a(i,j) = exp(a(i,j))
 enddo
 enddo
end subroutine

PGI OpenACC Compilers Getting Started Guide

22

This new PGI Accelerator model uses the OpenACC interpretation that device
data must correspond to contiguous memory on the host. However, to promote
portability and expressibility, if a noncontiguous subarray is specified in a data
clause, as in the previous example, memory is allocated corresponding to the
smallest contiguous region containing that subarray, but only the specified
subarray is copied in either direction. This may change the behavior of your
program, if the contiguous region is significantly larger than the subarray you
specified.

• The new PGI Accelerator model allows for two dimensional dynamic C arrays,
such as C float** arrays, to be moved to the accelerator. OpenACC does not
currently allow this, because of the contiguous data requirement. In previous
release, the two dimensional dynamic C array was linearized to a single long
vector. The new PGI Accelerator model allocates and fills in a pointer vector in
device memory, corresponding to the pointer vector on the host, as well as
allocating and copying (if specified) the data array. This is an extension to
OpenACC.

• In the PGI Accelerator model version 1.3, if no data region or data clause for an
array is specified at an accelerator compute region, the compiler used copyin,
copyout or copy for that array, depending on whether the array is read-only,
written-only, or may be partially written or read before written. The new PGI
Accelerator model implements the OpenACC default, which is to use
present_or_copyin, present_or_copyout or present_or_copy.

• OpenACC has an explicit reduction clause for loops, the kernels constructs and
the parallel construct. The PGI Accelerator model version 1.3 depended on the
compiler to automatically detect reduction operations in the code. The new PGI
Accelerator model allows for explicit reduction clauses, as well as automatically
detected reduction operators.

• OpenACC has an explicit cache directive inside of loop. The PGI Accelerator
model has a cache clause on the loop (for or do) construct, which is treated as a
hint to the compiler. The new PGI Accelerator model allows for both.

• In C, the PGI Accelerator model version 1.3 used x[lower:upper] notation for
subarrays in data clauses. The new PGI Accelerator model uses the OpenACC
notation for subarrays in C, which is x[lower:length]. This may require changes
to your program, if it uses subarrays in data clauses in C programs.

 Chapter 2 Using OpenACC with the PGI Compilers

23

Mapping PGI Accelerator Features to OpenACC
Most of the PGI Accelerator Model features map directly to OpenACC features, with
some important differences described in the next section.

• The general pragma and directive syntax are the same, with the same acc prefix.

• The PGI Accelerator region construct maps directly to the OpenACC kernels
construct.

• The PGI Accelerator data region construct maps directly to the OpenACC data
construct.

• The PGI Accelerator copy, copyin and copyout data clauses map almost directly
to OpenACC, with some differences noted in the previous section relating to
noncontiguous data regions.

• The PGI Accelerator local data clause maps to the OpenACC create data clause.

• The PGI Accelerator deviceptr data clause for C maps to the OpenACC
deviceptr data clause for C.

• The PGI Accelerator update device and update host data clauses map directly
to OpenACC.

• The PGI Accelerator async clause, wait directive and async API routines were
defined to use an opaque handle. The OpenACC async clause, wait directive and
async API routines use an integer expression. In this release, we have
implemented the OpenACC specification for both OpenACC and the PGI
Accelerator model.

• The PGI Accelerator for (C) and do (Fortran) directives map directly to the
OpenACC loop directive.

Using the new PGI Accelerator Model with OpenACC
This release begins to implement the new PGI Accelerator model, which is fully
compatible with OpenACC. If you specify the -acc or -ta=nvidia flag, the PGI
Accelerator and OpenACC directives are enabled.

Object files created from PGI Accelerator model version 1.3 sources using older PGI
releases may be linked with object files created from this release, by specifying either

PGI OpenACC Compilers Getting Started Guide

24

-acc or -ta=nvidia on the link command. However, arrays moved to the GPU in data
regions implemented in the PGI Accelerator routines will not be available with the
present clause in OpenACC routines.

25

CHAPTER 4

Implemented Features

This chapter lists the OpenACC features available in this release, and what features will
be implemented in upcoming PGI releases.

In This Release
The following OpenACC features are available in this release:

• The kernels construct and the kernels loop combined construct.

• The parallel construct and parallel loop combined construct.

• The data construct.

• The cache construct.

• The if clause on the kernels, parallel, and data constructs.

• The async clause on the kernels and parallel constructs.

• The copy, copyin, copyout, create, present, present_or_copy,
present_or_copyin, present_or_copyout and present_or_create data clauses
in C and Fortran.

• The pcopy, pcopyin, pcopyout and pcreate alternate spellings for present,
present_or_copy, present_or_copyin, present_or_copyout and
present_or_create data clauses.

• The deviceptr data clause for C.

• The loop construct, and the seq, gang, worker, vector, independent, private,
reduction and collapse clauses for the loop construct.

PGI OpenACC Compilers Getting Started Guide

26

• The update directive, and all its clauses.

• The wait directive.

• Implicit data regions.

• The declare directive, except for the acc_resident clause.

• The openacc.h header file for C.

• The openacc_lib.h header file and openacc module for Fortran.

• All the runtime API library routines.

• The environment variables ACC_DEVICE_TYPE and ACC_DEVICE_NUM.

• The _OPENACC preprocessor macro.

• The host_data construct is supported in C only.

Defaults
In this release, the default ACC_DEVICE_TYPE is acc_device_nvidia, just as the -acc
compiler option targets -ta=nvidia by default. The device types acc_device_default
and acc_device_not_host behave the same as acc_device_nvidia. The device type can
be changed using the environment variable or by a call to acc_set_device_type().

In this release, the default ACC_DEVICE_NUM is 0 for the acc_device_nvidia type, which
is consistent with the PGI Accelerator Model and with the CUDA device numbering
system. For more information, refer to the pgaccelinfo output on page 3. The device
number can be changed using the environment variable or by a call to
acc_set_device_num.

Environment Variables
This section summarizes the environment variables that PGI OpenACC supports.

• PGI_ACC_TIME
 enables the lightweight PGI timers.

• PGI_ACC_PROFILE
 is used by pgcollect internally to enable the lightweight PGI timers and write
 the information out for pgprof.

 Chapter 2 Using OpenACC with the PGI Compilers

27

• PGI_ACC_PROFLIB
 enables 3rd party tools interface using the new profiler dynamic library
 interface.

• PGI_ACC_NOTIFY == ACC_NOTIFY
 writes out a line for each kernel launch and/or data movement.

• PGI_ACC_SYNCHRONOUS
 disables pinning and asynchronous launches and data movement.

• PGI_ACC_DEVICE_NUM == ACC_DEVICE_NUM
 sets the default device number to use.
 PGI_ACC_DEVICE_NUM overrides ACC_DEVICE_NUM.

• PGI_ACC_DEVICE_TYPE == ACC_DEVICE_TYPE == ACC_DEVICE
 sets the default device type to use.
 PGI_ACC_DEVICE_TYPE overrides ACC_DEVICE_TYPE.

Known Limitations
• This release does not support targeting another accelerator device after

acc_shutdown has been called.

In Future Releases
The following Open ACC features are not implemented in this release; they will appear
in future releases:

• The deviceptr data clause for Fortran dummy arguments.

• The device_resident clause on the declare directive.

• The firstprivate() clause on parallel regions.

PGI OpenACC Compilers Getting Started Guide

28

29

CHAPTER 5

Contact Information

You can contact The Portland Group at:

The Portland Group
Two Centerpointe Drive, Suite 320
Lake Oswego, OR 97035 USA

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com

Support: trs@pgroup.com
WWW: www.pgroup.com

The PGI User Forum is monitored by members of the PGI engineering and support teams
as well as other PGI customers. The forum newsgroups may contain answers to
commonly asked questions. Log in to the PGI website to access the forum:

www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the
information available at our frequently asked questions (FAQ) site:

www.pgroup.com/support/faq.htm

All technical support is by e-mail or submissions using an online form at:

www.pgroup.com/support.

Phone support is not currently available.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

PGI OpenACC Compilers Getting Started Guide

30

NOTICE
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its
use. No license is granted by implication of otherwise under any patent rights of NVIDIA
Corporation. Specifications mentioned in this publication are subject to change without
notice. This publication supersedes and replaces all other information previously
supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

TRADEMARKS
PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI
Unified Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual
Fortran, PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland
Group are registered trademarks of NVIDIA Corporation in the U.S. and other countries.
Other company and product names may be trademarks of the respective companies with
which they are associated.

COPYRIGHT
© 2013 NVIDIA Corporation. All rights reserved.

	OpenACC Getting Started Guide
	Contents
	Overview
	Terminology and Definitions
	System Prerequisites
	Prepare Your System
	Supporting Documentation and Examples

	Using OpenACC with the PGI Compilers
	C Examples
	Fortran Examples
	Vector Addition on the GPU
	Multi-Threaded Program Utilizing Multiple Devices

	Troubleshooting Tips and Known Limitations

	PGI Accelerator Model Interoperability
	OpenAcc New Features
	PGI Accelerator Features not available in the OpenACC
	Changes from PGI Accelerator 1.3 to OpenACC
	Mapping PGI Accelerator Features to OpenACC
	Using the new PGI Accelerator Model with OpenACC

	Implemented Features
	In This Release
	Defaults
	Environment Variables
	Known Limitations
	In Future Releases

	Contact Information
	NOTICE
	TRADEMARKS
	COPYRIGHT

