
 

The Portland Group

           PGI®  2013
Release Notes

 
        Version 13.10



PGI® 2013 Release Notes
Copyright © 2013 NVIDIA Corporation

All rights reserved.

Printed in the United States of America

First Printing: Release 2013, version 13.1, January 2013

Second Printing: Release 2013, version 13.2, February 2013

Third Printing: Release 2013, version 13.3, March 2013

Fourth Printing: Release 2013, version 13.4, April 2013

Fifth Printing: Release 2013, version 13.5, May 2013

Sixth Printing: Release 2013, version 13.6, June 2013

Seventh Printing: Release 2013, version 13.7, July 2013

Eighth Printing: Release 2013, version 13.8, August 2013

Ninth Printing: Release 2013, version 13.9, September 2013

Tenth Printing: Release 2013, version 13.10, October 2013

ID: 132821348

Technical support: trs@pgroup.com

Sales: sales@pgroup.com

Web: www.pgroup.com



iii

Contents
1. Release Overview ...............................................................................................................  1

Product Overview .................................................................................................................... 1

Licensing Terminology .....................................................................................................  1

License Options ..............................................................................................................  1

PGI Workstation and PGI Server Comparison ......................................................................  2

PGI CDK Cluster Development Kit ......................................................................................  2

Release Components ...............................................................................................................  2

Terms and Definitions .............................................................................................................  3

Supported Platforms ................................................................................................................  3

Supported Operating Systems ...................................................................................................  4

Getting Started ........................................................................................................................  4

2. New or Modified Features ...............................................................................................  7

What's New in Release 2013 ....................................................................................................  7

New or Modified Compiler Options .........................................................................................  10

New or Modified Fortran Functionality .....................................................................................  12

CUDA Fortran Atomic Functions ......................................................................................  12

F2003 Non-default Derived Type I/O ................................................................................  13

New or Modified Tools Functionality ........................................................................................  13

OpenACC/CUDA Fortran Profiling .....................................................................................  13

Debug SGI MPI Programs ..............................................................................................  15

Local and Remote Debugging .........................................................................................  15

Using MPICH-2 on Linux ........................................................................................................  16

PGI Accelerator and CUDA Fortran Enhancements .....................................................................  16

Default Target Accelerator ..............................................................................................  17

Multiple Devices and Host as Device ................................................................................  17

Device ID and Device Number ........................................................................................  17

PGI Accelerator Runtime Routines ...................................................................................  18

Memory Management in CUDA ........................................................................................  19

Declaring Interfaces to CUDA Device Built-in Routines ........................................................  19

Using the texture Attribute in CUDA Fortran ..................................................................  19

Using F90 Pointers in CUDA Fortran Device Code ..............................................................  20

Shuffle Functions ........................................................................................................... 21



iv

C++ Compiler ......................................................................................................................  23

C++ and OpenACC ........................................................................................................ 23

C++ Compatibility ......................................................................................................... 23

C++11 Features ...........................................................................................................  23

New or Modified Runtime Library Routines ............................................................................... 25

Library Interfaces ..................................................................................................................  25

Environment Modules ............................................................................................................  25

OS X Mountain Lion Support ..................................................................................................  25

3. Distribution and Deployment ........................................................................................  27

Application Deployment and Redistributables ............................................................................  27

PGI Redistributables ......................................................................................................  27

Linux Redistributables .................................................................................................... 27

Microsoft Redistributables ..............................................................................................  28

4. Troubleshooting Tips and Known Limitations  .........................................................  29

General Issues ......................................................................................................................  29

Platform-specific Issues .........................................................................................................  29

Linux ...........................................................................................................................  29

Apple OS X ..................................................................................................................  30

Microsoft Windows ........................................................................................................  30

PGDBG-related Issues ............................................................................................................  30

PGPROF-related Issues ...........................................................................................................  31

CUDA Fortran Toolkit Issues ...................................................................................................  31

Corrections ..........................................................................................................................  31

5. Contact Information ........................................................................................................  33

NOTICE ................................................................................................................................  34

TRADEMARKS .......................................................................................................................  34

COPYRIGHT ..........................................................................................................................  34



v

Figures
2.1. Accelerator Performance when Profiling Multiple Devices  ............................................................ 14

2.2. Accelerator Details when Profiling Multiple Devices  ....................................................................  15

Tables
2.1. Supported CUDA Fortran Atomic Functions ................................................................................. 12



vi



1

Chapter 1. Release Overview
Welcome to Release 2013 of PGI Workstation™, PGI Server™, and the PGI CDK® Cluster Development

Kit®, a set of compilers and development tools for 32-bit and 64-bit x86-compatible processor-based

workstations, servers, and clusters running versions of the Linux operating system. PGI Workstation and PGI

Server are also available for the Apple OS X operating system.

This document describes changes between previous versions of the PGI 2013 release as well as late-breaking

information not included in the current printing of the PGI Compiler User's Guide.

Product Overview
PGI Workstation, PGI Server, and the PGI CDK include exactly the same PGI compiler and tools software. The

difference is the manner in which the license keys enable the software.

Licensing Terminology

The PGI compilers and tools are license-managed. It is useful to have common terminology. These two terms

are often confused, so they are clarified here:

• License – a legal agreement between NVIDIA and PGI end-users, to which users assent upon installation

of any PGI product. The terms of the License are kept up-to-date in documents on pgroup.com and in the

$PGI/<platform>/<rel_number> directory of every PGI software installation.

• License keys – ASCII text strings that enable use of the PGI software and are intended to enforce the terms

of the License. License keys are generated by each PGI end-user on pgroup.com using a unique hostid

and are typically stored in a file called license.dat that is accessible to the systems for which the PGI

software is licensed.

License Options

PGI offers licenses for either x64+GPU or x64 only platforms. PGI Accelerator™ products, the x64+GPU

platform products, include support for the directive-based PGI Accelerator programming model, CUDA Fortran

and PGI CUDA-x86. PGI Accelerator compilers are supported on all Intel and AMD x64 processor-based

systems with CUDA-enabled NVIDIA GPUs running Linux, OS X, or Windows.



Release Components

2

PGI Workstation and PGI Server Comparison

• All PGI Workstation products include a node-locked single-user license, meaning one user at a time can

compile on the one system on which the PGI Workstation compilers and tools are installed. The product

and license server are on the same local machine.

• PGI Server products are offered in configurations identical to PGI Workstation, but include network-

floating multi-user licenses. This means that two or more users can use the PGI compilers and tools

concurrently on any compatible system networked to the license server, that is, the system on which the

PGI Server license keys are installed. There can be multiple installations of the PGI Server compilers

and tools on machines connected to the license server; and the users can use the product concurrently,

provided they are issued a license key by the license server.

PGI CDK Cluster Development Kit

A cluster is a collection of compatible computers connected by a network. The PGI CDK supports parallel

computation on clusters of 32-bit and 64-bit x86-compatible AMD and Intel processor-based Linux

workstations or servers interconnected by a TCP/IP-based network, such as Ethernet.

Support for cluster programming does not extend to clusters combining 64-bit processor-based systems with

32-bit processor-based systems, unless all are running 32-bit applications built for a common set of working

x86 instructions.

Note

Compilers and libraries can be installed on other platforms not in the user’s cluster, including another

cluster, as long as all platforms use a common floating license server.

Release Components
Release 2013 includes the following components:

• PGFORTRAN™ native OpenMP and auto-parallelizing Fortran 2003 compiler.

• PGCC® native OpenMP and auto-parallelizing ANSI C99 and K&R C compiler.

• PGC++® native OpenMP and auto-parallelizing ANSI C++ compiler.

• PGPROF® MPI, OpenMP, and multi-thread graphical profiler.

• PGDBG® MPI, OpenMP, and multi-thread graphical debugger.

• MPICH MPI libraries, version 1.2.7, for both 32-bit and 64-bit development environments (Linux only).

Note

64-bit linux86-64 MPI messages are limited to <2GB size each.

• Precompiled OpenMPI library for both 32-bit and 64-bit MacOS development environments.

• A UNIX-like shell environment for 32-bit and 64-bit Windows platforms.



Chapter 1. Release Overview

3

• FlexNet license utilities.

• Documentation in PDF and man page formats.

Additional components for PGI CDK
PGI CDK for Linux also includes these components:

• MPICH2 MPI libraries, version 1.0.5p3, for both 32-bit and 64-bit development environments.

• MVAPICH MPI libraries, version 1.1, for both 32-bit and 64-bit development environments.

• ScaLAPACK linear algebra math library for distributed-memory systems, including BLACS version 1.1 –

the Basic Linear Algebra Communication Subroutines) and ScaLAPACK version 1.7 for use with MPICH or

MPICH2 and the PGI compilers on Linux systems with a kernel revision of 2.4.20 or higher. This is provided

in both linux86 and linux86-64 versions for AMD64 or Intel 64 CPU-based installations.

Depending on the product configuration you purchased, you may not have licensed all of the above

components.

You can use PGI products to develop, debug, and profile MPI applications. The MPI profiler and debugger

included with PGI Workstation are limited to eight local processes. The MPI profiler and debugger included

with PGI Server are limited to 16 local processes. The MPI profiler and debugger included with PGI CDK

supports up to 256 remote processes.

Terms and Definitions
These release notes contain a number of terms and definitions with which you may or may not be familiar. If

you encounter an unfamiliar term in these notes, please refer to the online glossary at

www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

• AMD64 – a 64-bit processor from AMD designed to be binary compatible with 32-bit x86 processors,

and incorporating new features such as additional registers and 64-bit addressing support for improved

performance and greatly increased memory range. This term includes the AMD Athlon64, AMD Opteron,

AMD Turion, AMD Barcelona, AMD Shanghai, AMD Istanbul, and AMD Bulldozer processors.

• Intel 64 – a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be

binary compatible with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, Intel Core 2, Intel

Core 2 Duo (Penryn), Intel Core (i3, i5, i7) both first generation (Nehalem) and second generation (Sandy

Bridge) processors.

Supported Platforms
There are six platforms supported by the PGI Workstation and PGI Server compilers and tools. Currently, PGI

CDK supports only the first four of these.

 



Supported Operating Systems

4

 

• 32-bit Linux - supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or

an x64 compatible processor.

• 64-bit/32-bit Linux – includes all features and capabilities of the 32-bit Linux version, and is also

supported on 64-bit Linux operating systems running an x64 compatible processor.

• 32-bit Windows – supported on 32-bit Windows operating systems running on either a 32-bit x86

compatible or an x64 compatible processor.

• 64-bit/32-bit Windows – includes all features and capabilities of the 32-bit Windows version, and is also

supported on 64-bit Windows operating systems running an x64 compatible processor.

• 32-bit OS X – supported on 32-bit Apple operating systems running on either a 32-bit or 64-bit Intel-based

Mac system.

• 64-bit OS X – supported on 64-bit Apple operating systems running on a 64-bit Intel-based Mac system.

Supported Operating Systems
This section describes updates and changes to PGI 2013 that are specific to Linux, OS X, and Windows.

Linux
None.

OS X
PGI 2013 for OS X supports most of the features of the 32-bit and 64-bit versions for linux86 and linux86-64

environments. Except where noted in these release notes or the user manuals, the PGI compilers and tools on

OS X function identically to their Linux counterparts.

Windows
PGI 2013 for Windows supports most of the features of the 32-bit and 64-bit versions for linux86 and

linux86-64 environments.

Getting Started
By default, the PGI 2013 compilers generate code that is optimized for the type of processor on which

compilation is performed, the compilation host. If you are unfamiliar with the PGI compilers and tools, a good

option to use by default is –fast or –fastsse.

These aggregate options incorporate a generally optimal set of flags for targets that support SSE capability.

These options incorporate optimization options to enable use of vector streaming SIMD instructions for 64-bit

targets. They enable vectorization with SSE instructions, cache alignment, and flushz.

Note

The contents of the –fast and –fastsse options are host-dependent.



Chapter 1. Release Overview

5

–fast and –fastsse typically include these options:

–O2 Specifies a code optimization level of 2.

–Munroll=c:1 Unrolls loops, executing multiple instances of the original loop

during each iteration.

–Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

–Mlre Indicates loop-carried redundancy elimination

–Mpre Indicates partial redundancy elimination

–fast for 64-bit targets and –fastsse for both 32- and 64-bit targets also typically include:

–Mvect=sse Generates SSE instructions.

–Mscalarsse Generates scalar SSE code with xmm registers; implies –Mflushz.

–Mcache_align Aligns long objects on cache-line boundaries

Note. On 32-bit systems, if one file is compiled with the –Mcache_align option,

all files should be compiled with it. This is not true on 64-bit systems.

–Mflushz Sets SSE to flush-to-zero mode.

–M[no]vect Controls automatic vector pipelining.

Note

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler,

even for FORTRAN 77 code, and the –fastsse option.

In addition to –fast and –fastsse, the –Mipa=fast option for inter-procedural analysis and

optimization can improve performance. You may also be able to obtain further performance improvements

by experimenting with the individual –Mpgflag options that are described in the PGI Compiler Reference

Manual, such as –Mvect, –Munroll, –Minline, –Mconcur, –Mpfi/–Mpfo and so on. However,

increased speeds using these options are typically application and system dependent. It is important to time

your application carefully when using these options to ensure no performance degradations occur.



6



7

Chapter 2. New or Modified Features
This chapter provides information about the new or modified features of Release 2013 of the PGI compilers

and tools.

What's New in Release 2013

13.10 Updates and Additions

• This release contains a number of changes and additions to the -ta and -Mcuda options:

Target Accelerators option chnages:

• Added -ta=nvidia:noL1 to prevent use of the L1 hardware data cache to cache global variables.

• Replaced -ta=nvidia:keepbin, with -ta=nvidia:keep which keeps kernel files.

• Replaced -ta=nvidia:keepgpu with -ta=nvidia:keep which keeps kernel files.

• Replaced -ta=nvidia:keepptx) with -ta=nvidia:keep which keeps kernel files.

• Removed -ta=nvidia:mul24.

• Removed -ta=nvidia:[no]wait.

• Removed -ta=nvidia:analysis.

Cuda Fortran changes:

• Added -Mcuda=noL1 to prevent use of the L1 hardware data cache to cache global variables.

• A number of problems have been corrected in this release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in

recent releases of the PGI compilers and tools.

13.9 Updates and Additions

• PGI Accelerator x64+GPU native Fortran 2003 compilers and CUDA Fortran support the CUDA 5.0 Toolkit as

the default toolkit.



What's New in Release 2013

8

CUDA 5.0 has deprecated the use of character strings in the symbol API, i.e. functions such as

cudaMemcpyToSymbol(). Therefore, CUDA Fortran no longer needs the cudaSymbol derived type, and its

definition and use has been removed from the cudafor module. Users should recompile any source code

which uses the cudafor module after updating to PGI 13.9 and later.

PGI compilers and tools also support the CUDA 5.5 Toolkit. For information on specifying the toolkit

version, refer to “PGI Accelerator and CUDA Fortran Enhancements,” on page 16.

• PGI now enables CUDA Fortran device code to access compute capability 3.x shuffle functions, including

__shfl(), __shfl_up(), __shfl_down(), and __shfl_xor(). These functions enable access to

variables between threads within a warp, referred to as lanes. In CUDA Fortran, lanes use Fortran's 1-based

numbering scheme. For more information on these functions, refer to “Shuffle Functions,” on page 21.

13.7 Updates and Additions

• OpenACC/CUDA Fortran profiling supports multiple GPUs. In addition, there are improvements to

accelerator profiling as a whole. For more information, refer to “OpenACC/CUDA Fortran Profiling,” on

page 13.

• C++ -Minfo messages now use unmangled names.

• General performance improvements on AVX vectorized code.

• Support for new CUDA Fortran atomics. For a complete list, refer to “CUDA Fortran Atomic Functions,” on

page 12.

• PGI 13.7 implements the record format described in Intel Fortran User's Guide Vol. 1, Building

Applications, Variable-Length Records Greater than 2 Gigabytes. This record format is now the default

for the PGI Fortran compilers. To access files written using the old file format, set the environment variable

FORTRANOPT to pgi_legacy_large_rec_fmt.

• Debugger support for hardware data watchpoints on Linux kernels greater than 2.6.32.

13.6 Updates and Additions

• Added support for the F2008 impure attribute. Fortran 2008 removed the restriction of Fortran 95 that

elemental procedures be implicitly pure. Elemental procedures permit writing procedures as many as 16

times, once for each possible rank. In Fortran 2008, elemental procedures must now be explicitly declared

with the prefix impure.

13.5 Updates and Additions

• PGDBG and PGPROF support debugging and profiling of MPI programs built with SGI MPI.

To debug an SGI MPI program, use the PGDBG -sgimpi option, which has the same syntax as the -mpi

option.

To profile an SGI MPI program, build it with -Mprof=func,sgimpi, -Mprof=lines,sgimpi, or

-Mprof=time,sgimpi. You must specify sgimpi even if you use mpicc or mpif90 to build your

program.

• Added support for two F2008 features:



Chapter 2. New or Modified Features

9

• Finding a unit when opening a file

• Derived-type-style accesses of the real and imaginary parts of a complex number.

• Made several performance improvements for complex arithmetic, for all languages.

• A number of problems have been corrected in this release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in

recent releases of the PGI compilers and tools.

13.4 Updates and Additions

• PGI 13.4 contains support for F2003 non-default derived-type i/o. This feature allows programmers to

provide their own formatted and unformatted i/o routines for user-defined or, in certain cases, vendor-

supplied derived types. The interfaces for the called subroutines are very specific. For more information on

the interfaces refer to a recent Fortran reference manual.

For a short example of how to use this new feature, refer to “New or Modified Fortran Functionality,” on

page 12.

• PGI 13.4 contains initial support for F90 pointers in CUDA Fortran device code. In the current

implementation, the pointer declaration must be at module scope, in the module which contains the device

code. As usual, the host code can use the module and manipulate the pointers. The host code can also pass

the pointer as an argument.

For an example of how to use this new feature, refer to “Using F90 Pointers in CUDA Fortran Device Code,”

on page 20.

• PGI 13.4 does not require the system configuration for debugging and profiling on Apple OS X that was

required in previous releases. The debugger and profile data collector no longer need to run using "group

procmod" privileges. However, to use PGDBG to attach to a running process, users must be able to

enter the authentication credentials of a user who is a member of the unix group "_developer". For more

information, refer to the section System Configuration to Enable Debugger ‘Attach’ in the PGI 2013

Installation Guide.

Updates and Additions prior to 13.4

• PGI now supports OpenMP 3.1. Specifically, PGI now supports these features:

• Fortran, C, and C++ compilers and runtime:

• omp_in_final runtime routine

• OMP_NUM_THREADS and OMP_PROC_BIND environment variables

• taskyield

• final tasks and the final clause on task constructs

• mergeable clause on task constructs

• atomic read, write, capture, and update clauses

• min/max reductions in C/C++



New or Modified Compiler Options

10

• firstprivate with const data in C/C++, intent(in) in Fortran

• Added support for pgc++ on Linux, which is the PGI gnu-compatible C++ compiler.

• The PGI C++ compilers pgcpp and (Linux) pgc++ support the OpenACC and PGI Accelerator directives.

• Added support for F2003 deferred type parameters, recursive I/O. parameterized derived types, and

deferred character length.

• PGI provides ACML version 5.3.0 for 64-bit Linux and Windows. For 32-bit operating systems, PGI continues

to provide ACML version 4.4.0.

• PGI Accelerator x64+GPU native Fortran 2003 and C99 compilers and CUDA Fortran support the CUDA 4.2

Toolkit as the default toolkit. PGI compilers and tools also support CUDA 5.0 Toolkit. For information on

specifying the Toolkit version, refer to “PGI Accelerator and CUDA Fortran Enhancements,” on page 16.

• Starting in PGI 13.1, our C++ Compiler now utilizes EDG version 4.5. This version update enables a number

of C++11 language features, when compiled with the --c++11 option. For a list of these features, refer to

“C++11 Features,” on page 23.

• PGI 13.1 supports a number of new command line options as well as new keyword subarguments for

the existing command line options: -ta=nvidia and -Mcuda. For more information, refer to “New or

Modified Compiler Options,” on page 10.

• CUDA Fortran now supports separate compilation and linking of device routines, including device routines

in Fortran modules.

To enable separate compilation and linking, include the command line option -Mcuda=rdc on both the

compile and the link steps.

• The OpenACC runtime has the concept of device type and device number. For more information, refer to

“Device ID and Device Number,” on page 17

• In Fortran and C, there is a new deviceid clause for the data, parallel, kernels, update and wait

directives. The deviceid clause has a single scalar integer argument. For more information, refer to

“DEVICEID clause,” on page 18

• PGI supports a command line option, -Mstack_arrays, which allows Fortran automatic arrays to be

allocated from the stack.

New or Modified Compiler Options
PGI 13.10 supports a number of new command line options as well as new keyword subarguments for existing

command line options. These changes include:

• -Mstack_arrays and -Mnostack_arrays

-Mstack_arrays places automatic arrays on the stack. while -Mnostack_arrays allocates automatic

arrays on the heap. -Mnostack_arrays is the default and what traditionally has been the approach used.

• -ta=nvidia has the following new target accelerator arguments:

• -ta=nvidia:noL1 prevents the use of L1 hardware data cache to cache global variables.



Chapter 2. New or Modified Features

11

• -ta=nvidia:keep keeps kernel files.

• -ta=nvidia,tesla is equivalent to -ta=nvidia,cclx

• -ta=nvidia,fermi is equivalent to -ta=nvidia,cc2x

• -ta=nvidia,kepler is equivalent to -ta=nvidia,cc3x

PGI continues to support the specific compute capability options (cc10, cc11, etc.) as well as the new cc35

option for compute capability 3.5.

• -Mcuda has the following new target accelerator arguments:

• -Mcuda=noL1 prevents the use of L1 hardware data cache to cache global variables.

• -Mcuda,tesla is equivalent to -Mcuda,cclx

• -Mcuda,fermi is equivalent to -Mcuda,cc2x

• -Mcuda,kepler is equivalent to -Mcuda,cc3x

PGI continues to support the specific compute capability options (cc10, cc11, etc.) as well as the new cc35

option for compute capability 3.5.

• -Mcuda has the new option rdc that enables CUDA Fortran separate compilation and linking of device

routines, including device routines in Fortran modules. To enable separate compilation and linking, include

the command line option -Mcuda=rdc on both the compile and the link steps.

• -Mipa has the new suboption -Mipa=reaggregation that enables IPA-guided structure reaggregation.

This automatically attempts to reorder elements in a struct or to split structs into substructs to improve

memory locality and cache utilization.

• -O

The optimizations performed at -O, -O1, -O2, -O3 and -O4 have changed. Beginning in 13.1, these

options have these meanings:

–O0

Level zero specifies no optimization. A basic block is generated for each language statement.

–O1

Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is

performed.

–O

When no level is specified, level two global optimizations are performed, including traditional scalar

optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is enabled.

–O2

Level two specifies global optimization. This level performs all level-one local optimization as well as

level-two global optimization described in –O. In addition, more advanced optimizations such as SIMD

code generation, cache alignment, and partial redundancy elimination are enabled.



New or Modified Fortran Functionality

12

–O3

Level three specifies aggressive global optimization. This level performs all level-one and level-two

optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or

may not be profitable.

–O4

 Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of

guarded invariant floating point expressions.

• -Mfprelaxed has the following new suboption: -Mfprelaxed=intrinsic that enables use of relaxed

precision intrinsics.

• -tp has the following new command line target processor options:

-piledriver

generate code that is usable on any Piledriver processor-based system.

-piledriver-32

generate 32-bit code that is usable on any Piledriver processor-based system.

-piledriver-64

generate 64-bit code that is usable on any Piledriver processor-based system.

Unknown options are treated as errors instead of warnings. This feature means it is a compiler error to pass

switches that are not known to the compiler; however, you can use the switch –noswitcherror to issue

warnings instead of errors for unknown switches.

New or Modified Fortran Functionality
PGI 13.10 contains additional fortran functionality.

CUDA Fortran Atomic Functions
PGI 13.10 supports new CUDA Fortran atomics. Table 2.1 indicates the data types supported prior to 13.8

(prev) and the additional data types that PGI now supports (new) for each atomic function.

Table 2.1. Supported CUDA Fortran Atomic Functions

 integer*4 integer*8 real*4 real*8
atomicCAS prev new new new

atomicADD prev prev prev prev

atomicEXCH prev prev prev new

atomicSUB prev new new new

atomicMAX prev new new new

atomicMIN prev new new new

  



Chapter 2. New or Modified Features

13

F2003 Non-default Derived Type I/O

PGI 13.10 supports F2003 non-default derived-type i/o. Using this feature allows programmers to provide

their own formatted and unformatted i/o routines for user-defined derived types and for some vendor-supplied

derived types. The following module is one example of a user-defined derived type:

module m1
   use iso_c_binding
   interface write(formatted)
     module procedure print_c_ptr
   end interface
   contains
     subroutine print_c_ptr(dtv,unit,iotype,v_list,iostat,iomsg)
       class(c_ptr), intent(in)    :: dtv
       integer, intent(in)         :: unit
       character(*), intent(in)    :: iotype
       integer, intent(in)         :: v_list(:)
       integer, intent(out)        :: iostat
       character(*), intent(inout) :: iomsg
       integer(c_intptr_t)         :: iptrval
       iptrval = transfer(dtv, iptrval)
       if (c_intptr_t.eq.4) then
         write(unit,fmt='("0x",z8.8)') iptrval
       else
         write(unit,fmt='("0x",z16.16)') iptrval
       endif
     end subroutine print_c_ptr
end module m1

program p1
use m1
type(c_ptr) :: p
integer, target :: i, j
p = c_loc(i)
print *,p
end

You can compile and run the preceding example using 32 or 64-bit compilers:

32-bit compilers 64-bit compilers
% pgf90 -m32 derivedio.f90
% ./a.out
0x080AA4D4

% pgf90 -m64 derivedio.f90
% ./a.out
0x00007FFF76AD6490

New or Modified Tools Functionality
This section provides information about the debugger, PGDBG, and the profiler, PGPROF.

OpenACC/CUDA Fortran Profiling

In addition to general improvements to accelerator profiling, PGPROF includes all-new support for accelerator

profiling of multiple devices. As with profiling of single devices, you can view information such as accelerator

performance or device configuration. Figure 2.1 shows a view of PGPROF that details the accelerator

performance on two GPUs for a routine.



New or Modified Tools Functionality

14

Figure 2.1. Accelerator Performance when Profiling Multiple Devices

Figure 2.2 shows the details about the accelerators on the system where the profile was run.



Chapter 2. New or Modified Features

15

Figure 2.2. Accelerator Details when Profiling Multiple Devices

Debug SGI MPI Programs

In PGI 13.10 PGDBG and PGPROF support debugging and profiling of MPI programs built with SGI MPI. To

debug an SGI MPI program, use the PGDBG -sgimpi option, which has the same syntax as the -mpi option.

To profile an SGI MPI program, build it with -Mprof=func,sgimpi, -Mprof=lines,sgimpi, or -

Mprof=time,sgimpi. You must specify sgimpi even if you use mpicc or mpif90 to build your program.

Local and Remote Debugging

PGDBG is licensed software available from The Portland Group. PGDBG supports debugging programs

running on local and remote systems. The PGI license keys that enable PGDBG to debug must be located on

the same system where the program you want to debug is running.



Using MPICH-2 on Linux

16

Local debugging

If you want to debug a program running on the system where you have launched PGDBG, you are doing

local debugging and you need license keys on that local system.

Remote debugging

If you want to debug a program running on a system other than the one on which PGDBG is launched,

then you are doing remote debugging and you need license keys on the remote system. The remote system

also needs an installed copy of PGI Workstation, PGI Server, or PGI CDK.

Using MPICH-2 on Linux
PGI CDK for Linux includes MPICH-2 libraries, tools, and licenses required to compile, execute, profile, and

debug MPI programs.

If you want to build your MPI application using the instance of MPICH-2 installed with the PGI compilers, you

need to append the location of libmpl.so.1 to the LD_LIBRARY_PATH environment variable.

For 32-bit:
%setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":$PGI/linux86/2013/mpi2/mpich/libso:
/$PGI/linux86/13.10/libso

For 64-bit:
%setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":$PGI/linux86-64/2013/mpi2/mpich/libso:
$PGI/linux86-64/13.10/libso

You may need to put in .cshrc/.bashrc when running a program on slave nodes.

Then add the -Mmpi=mpich2 option to the compilation and link steps, or you can use the -Mprof=mpich2

option to instrument for MPICH-2 profiling. The -Mmpi=mpich2 option automatically sets up the include and

library paths to use the MPICH-2 headers and libraries. For example, you can use the following command to

compile for profiling with MPICH-2:

% pgfortran -fast -Mprof=mpich2,time my_mpi_app.f90

To use a different instance of MPICH-2, set the MPIDIR environment variable before invoking and linking with

-Mmpi=mpich2. MPIDIR specifies the location of the instance of MPI to use. For example, set MPIDIR to

the root of the MPICH-2 installation directory that you want to use, that is, the directory that contains bin,

include, lib, and so on.

PGI Accelerator and CUDA Fortran Enhancements

CUDA Toolkit Version
The PGI Accelerator x64+GPU compilers with OpenACC and CUDA Fortran compilers now support the CUDA

5.0 toolkit as the default. The compilers and tools also support the CUDA 5.5 Toolkit. To specify the version of

the CUDA Toolkit, use one of the following options:

In PGI Accelerator:
For CUDA Toolkit 4.2: -ta=nvidia:cuda4.2



Chapter 2. New or Modified Features

17

For CUDA Toolkit 5.0: -ta=nvidia:cuda5.0

For CUDA Toolkit 5.5: -ta=nvidia:cuda5.5

For CUDA Fortran:

For CUDA Toolkit 4.2: -Mcuda=cuda4.2

For CUDA Toolkit 5.0: -Mcuda=cuda5.0

For CUDA Toolkit 5.5: -Mcuda=cuda5.5

You may also specify a default version by adding a line to the siterc file in the installation bin/ directory

or to a file named .mypgirc in your home directory. For example, to specify CUDA Toolkit 5.5, add the

following line to one of these files:

    set DEFCUDAVERSION=5.5;

Support for CUDA Toolkit versions 3.2 and earlier has been removed.

Default Target Accelerator

When compiling with the OpenACC command line option -acc, the default target accelerators are 'nvidia' and

'host' if CUDA extensions are not enabled. The host is treated as another accelerator device, and is enabled by

default, for both 64-bit and 32-bit targets. Compiling for NVIDIA GPUs only can be enabled by including the

command line option -ta=nvidia. You may also change the default target accelerators by adding a line to

the siterc file in the installation bin/ directory or to a file named .mypgirc in your home directory. To

set the default target accelerator to NVIDIA GPUs only, add the following line to one of these files:

    set DEFACCEL=nvidia;

Compiling for both NVIDIA GPUs and the host can always be enabled by including the command line option -

ta=nvidia,host.

CUDA extensions are enabled with a .cuf or .CUF file suffix, or by including the -Mcuda command line

option. When CUDA extensions are enabled, the default target accelerator is nvidia. Compiling with CUDA

extensions for the host is not fully supported in this release.

Multiple Devices and Host as Device

This release allows use of multiple devices from a single program and a single host thread. The host is treated

as another device. The routine acc_get_num_devices now returns a non-negative number, since the

host is always available as a device. The program may dynamically set and reset which device to use by calling

the acc_set_device_type or acc_set_device_num API routines during program execution. When

setting the device type to acc_device_host, the device number is ignored.

Device ID and Device Number

The OpenACC runtime has the concept of device type and device number. The supported device types for this

release are NVIDIA GPUs (acc_device_nvidia) and X86 host (acc_device_host). For NVIDIA GPUs,

the device number is assigned by the CUDA driver API; the first device is number zero, and other devices have

positive numbers.



PGI Accelerator and CUDA Fortran Enhancements

18

Device ID

This release supports the concept of device ID, which is set by the OpenACC runtime. The available devices are

enumerated and given a nonnegative integer device ID, starting at one; the host itself is given the highest device

ID value.

The number of available devices can be determined by calling the acc_get_num_devices API routine.

Since the host is always available as a device, this routine always returns a nonnegative number.

At any point in the program, the runtime keeps track of the current device to be used for the next

accelerator construct or directive. The current device can be changed for the host thread by calling the

acc_set_device_type or acc_set_device_num API routines. The current device type and number

can be determined by calling the acc_get_device_type and acc_get_device_num routines.

New, simpler API routines are now supported to allow setting or querying the current device using the device

ID.

• acc_set_deviceid takes a single integer argument, and sets the current device to the device that

corresponds to that device ID.

• acc_get_deviceid returns the device ID for the current device.

A value of zero for a device ID argument corresponds to using the current device for this host thread.

If you build your program with the -ta=nvidia command line option, only NVIDIA GPU code is generated

for the accelerator regions and constructs. At runtime, acc_get_num_devices still returns the count of

all available devices, including the host, even though your program was not built to run those regions on the

host. If your program changes the current device to the host, you get a runtime error when you try to execute a

compute region that was only compiled for the NVIDIA GPU.

DEVICEID clause

In Fortran and C, there is a new deviceid clause for the data, parallel, kernels, update and wait directives.

The deviceid clause has a single scalar integer argument.

• If the deviceid clause argument is zero, the current device for this host thread is used.

• If the deviceid clause argument is nonzero, the current device for this host thread is changed to the

corresponding device for the duration of the region created by this construct.

PGI Accelerator Runtime Routines

PGI_ACC_TIME

When timing the accelerator constructs by setting PGI_ACC_TIME to 1, you must run the program with

the LD_LIBRARY_PATH environment variable set to include the $PGI/linux86-64/13.10/lib or

$PGI/linux86/13.10/lib directory (as appropriate). This release dynamically loads a shared object to

implement the profiling feature, and the path to the library must be available.

For complete descriptions of the PGI Accelerator model runtime routines available in version 13.10, refer to

Chapter 4, “PGI Accelerator Compilers Reference” of the PGI Compiler Reference Manual.



Chapter 2. New or Modified Features

19

Memory Management in CUDA
A new memory management routine, cudaMemGetInfo, returns the amount of free and total memory

available (in bytes) for allocation on the device.

The syntax for cudaMemGetInfo is:

integer function cudaMemGetInfo( free, total )
     integer(kind=cuda_count_kind) :: free, total

Declaring Interfaces to CUDA Device Built-in Routines
A Fortran module is available to declare interfaces to many of the CUDA device built-in routines.

To access this module, do one of the following:

• Add this line to your Fortran program:

use cudadevice

• Add this line to your C program:

#include <cudadevice.h>

You can also use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in PGI

Accelerator compute regions both in Fortran and in C. Further, the PGI compilers come with implementations

of these routines for host code, though these implementations are not specifically optimized for the host.

For a complete list of the CUDA built-in routines that are available, refer to the PGI CUDA Fortran

Programming and Reference.

Using the texture Attribute in CUDA Fortran
To use the texture attribute as supported in this release, do the following:

1. Add a declaration similar to the following one to a module declaration section that is used in both the host

and device code:

          real, texture, pointer :: t(:)

2. In your host code, add the target attribute to the device data that you wish to put into texture memory:

Change:
        real, device :: a(n)

To:
        real, target, device :: a(n)

The target attribute is standard F90/F2003 syntax to denote an array or other data structure that may be

"pointed to" by another entity.

3. Tie the global (by module use-association in both the host program and device subroutine) texture

declaration to the device array by using the F90 pointer assignment operator, so a simple expression like

the following one performs all the underlying CUDA texture binding operations.

          t =>  a



PGI Accelerator and CUDA Fortran Enhancements

20

Your CUDA Fortran device code contained in the module that declares t, or uses a module that contains

the declaration of t, can now access t without any other declaration. For example:

  ! Vector add, s through device memory, t is through texture memory
  i = threadIdx%x + (blockIdx%x-1)*blockDim%x
  s(i) = s(i) + t(i)

Accesses of t, targeting a, go through the texture cache.

Using F90 Pointers in CUDA Fortran Device Code
PGI 13.10 contains support for F90 pointers in CUDA Fortran device code. In the current implementation, the

pointer declaration must be at module scope, in the module which contains the device code. The host code

can use the module and manipulate the pointers. The host code can also pass the pointer as an argument.

The following example shows how to use F90 pointers in CUDA Fortran as supported by the current release:

! Device pointer in module, and passed as argument

module devptr
! pointer declarations must be in the module in which they are used
   real, device, pointer, dimension(:) :: mod_dev_ptr
   real, device, pointer, dimension(:) :: arg_dev_ptr
   real, device, target,  dimension(4) :: mod_dev_arr
   real, device, dimension(4) :: mod_res_arr
contains
   attributes(global) subroutine test(arg_ptr)
     real, device, pointer, dimension(:) :: arg_ptr
     if (associated(arg_ptr)) then
       mod_res_arr = arg_ptr
     else
       mod_res_arr = mod_dev_ptr
     end if
   end subroutine test
end module devptr

program test
use devptr
real, device, target, dimension(4) :: a_dev
real  result(20)

a_dev = (/ 1.0, 2.0, 3.0, 4.0 /)

! Pointer assignment to device array declared on host,
! passed as argument
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(1:4) = mod_res_arr

!$cuf kernel do <<<*,*>>>
do i = 1, 4
   mod_dev_arr(i) = a_dev(i) + 4.0
   a_dev(i)       = a_dev(i) + 8.0
end do

! Pointer assignment to module array, argument nullified
mod_dev_ptr => mod_dev_arr
arg_dev_ptr => null()
call test<<<1,1>>>(arg_dev_ptr)



Chapter 2. New or Modified Features

21

result(5:8) = mod_res_arr

! Pointer assignment to updated device array, now asssociated
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(9:12) = mod_res_arr

!$cuf kernel do <<<*,*>>>
do i = 1, 4
   mod_dev_arr(i) = 25.0 - mod_dev_arr(i)
   a_dev(i)       = 25.0 - a_dev(i)
end do

! Non-contiguous pointer assignment to updated device array
arg_dev_ptr => a_dev(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(13:16) = mod_res_arr

! Non-contiguous pointer assignment to updated module array
nullify(arg_dev_ptr)
mod_dev_ptr => mod_dev_arr(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(17:20) = mod_res_arr

print *,result
end

You can compile and run the preceding example as follows:

% pgf90 devptr.cuf
% ./a.out
     1.000000        2.000000        3.000000        4.000000
     5.000000        6.000000        7.000000        8.000000
     9.000000        10.00000        11.00000        12.00000
     13.00000        14.00000        15.00000        16.00000
     17.00000        18.00000        19.00000        20.00000

Shuffle Functions
PGI 13.10 enables CUDA Fortran device code to access compute capability 3.x shuffle functions. These

functions enable access to variables between threads within a warp, referred to as lanes. In CUDA Fortran,

lanes use Fortran's 1-based numbering scheme.

__shfl()

__shfl() returns the value of var held by the thread whose ID is given by srcLane. If the srcLane

is outside the range of 1:width, then the thread's own value of var is returned. The width argument is

optional in all shuffle functions and has a default value of 32, the current warp size.

    integer(4) function __shfl(var, srcLane, width)
       integer(4) var, srcLane
       integer(4), optional :: width

    real(4) function __shfl(var, srcLane, width)
       real(4) :: var
       integer(4) :: srcLane
       integer(4), optional :: width



PGI Accelerator and CUDA Fortran Enhancements

22

       real(8) :: var
       integer(4) :: srcLane
       integer(4), optional :: width

__shfl_up()

__shfl_up() calculates a source lane ID by subtracting delta from the caller's thread ID. The value of var

held by the resulting thread ID is returned; in effect, var is shifted up the warp by delta lanes.

The source lane index will not wrap around the value of width, so the lower delta lanes are unchanged.

    integer(4) function __shfl_up(var, delta, width)
       integer(4) var, delta
       integer(4), optional :: width

    real(4) function __shfl_up(var, delta, width)
       real(4) :: var
       integer(4) :: delta
       integer(4), optional :: width

    real(8) function __shfl_up(var, delta, width)
       real(8) :: var
       integer(4) :: delta
       integer(4), optional :: width

__shfl_down()

__shfl_down() calculates a source lane ID by adding delta to the caller's thread ID. The value of var

held by the resulting thread ID is returned: this has the effect of shifting var down the warp by delta lanes.

The ID number of the source lane will not wrap around the value of width, so the upper delta lanes remain

unchanged.

    integer(4) function __shfl_down(var, delta, width)
       integer(4) var, delta
       integer(4), optional :: width

    real(4) function __shfl_down(var, delta, width)
       real(4) :: var
       integer(4) :: delta
       integer(4), optional :: width

    real(8) function __shfl_down(var, delta, width)
       real(8) :: var
       integer(4) :: delta
       integer(4), optional :: width

__shfl_xor()

__shfl_xor() uses ID-1 to calculate the source lane ID by performing a bitwise XOR of the caller's lane ID

with the laneMask. The value of var held by the resulting lane ID is returned. If the resulting lane ID falls

outside the range permitted by width, the thread's own value of var is returned. This mode implements a

butterfly addressing pattern such as is used in tree reduction and broadcast.

       

    real(8) function __shfl(var, srcLane, width)



Chapter 2. New or Modified Features

23

       integer(4) var, laneMask
       integer(4), optional :: width

    real(4) function __shfl_xor(var, laneMask, width)
       real(4) :: var
       integer(4) :: laneMask
       integer(4), optional :: width

    real(8) function __shfl_xor(var, laneMask, width)
       real(8) :: var
       integer(4) :: laneMask
       integer(4), optional :: width

Here is an example using __shfl_xor() to compute the sum of each thread's variable contribution within a

warp:

        j = . . .
        k = __shfl_xor(j,1);  j = j + k
        k = __shfl_xor(j,2);  j = j + k
        k = __shfl_xor(j,4);  j = j + k
        k = __shfl_xor(j,8);  j = j + k
        k = __shfl_xor(j,16); j = j + k

C++ Compiler

C++ and OpenACC
This release introduces the OpenACC directives to our C++ compilers, pgcpp and (Linux only) pgc++. There

are limitations to the data that can appear in data constructs and compute regions:

• Variable-length arrays are not supported in OpenACC data clauses; VLAs are not part of the C++ standard.

• Variables of class type that require constructors and destructors do not behave properly when they appear

in data clauses.

• Exceptions are not handled in compute regions.

• Any function call in a compute region must be inlined. This includes implicit functions such as for I/O

operators, operators on class type, user-defined operators, STL functions, lambda operators, and so on.

C++ Compatibility
PGI 2013 C++ object code is incompatible with prior releases.

All C++ source files and libraries that were built with prior releases must be recompiled to link with PGI 2013

or higher object files.

C++11 Features
Starting in PGI 13.1, our C++ Compiler now utilizes EDG version 4.5. This update enables the following  C+

+11 language features, when compiled with the --c++11 option:

• A "right shift token" (>>) can be treated as two closing angle brackets.

• The static_assert construct is supported

    integer(4) function __shfl_xor(var, laneMask, width)



C++ Compiler

24

• The friend class syntax is extended to allow nonclass types as well as class types expressed through a typedef

or without an elaborated type name.

• Local and unnamed types (and types based on such types) can be used for template type arguments. They

can also be used in the signatures of functions, if they appear there through template substitution.

• Mixed string literal concatenations are accepted.

• C99 preprocessor extensions are carried over.

• The C99-style _Pragma operator is supported.

• In function bodies, the reserved identifier __func__ refers to a predefined array containing a string

representing the function's name.

• A trailing comma in the definition of an enumeration type is silently accepted.

• The type long long is accepted.

• An explicit instantiation directive may be prefixed with the extern keyword to suppress the instantiation of

the specified entity.

• Export templates are disabled.

• The keyword typename followed by a qualified-id can appear outside a template declaration.

• The keyword auto can be used as a type specifier in the declaration of a variable or reference.

• Trailing return types are allowed in top-level function declarators.

• The keyword decltype is supported: It allows types to be described in terms of expressions.

• Changes in the constraints on the code points implied by universal character names (UCNs).

• Scoped enumeration types (defined with the keyword sequence enum class) and explicit underlying

integer types for enumeration types are supported.

• Lambdas are supported.

• Rvalue references are supported.

• Functions can be "deleted".

• Special member functions can be explicitly "defaulted".

• Move constructors and move assignment operators are now generated as specified by the C++11 standard.

• Conversion functions can be marked explicit to indicate that they should only be considered for explicit

conversions, and in certain contexts that require a boolean value (like the controlling expression for an if-

statement).

• The operand of sizeof, typeid, or decltype can refer directly to a non-static data member of a class

without using a member access expression.

• The keyword nullptr can be used as both a null pointer constant and a null pointer-to-member constant.

• Attributes delimited by double square brackets ([[ ... ]]) are accepted in declarations. The standard

attributes noreturn and carries_dependency are supported.



Chapter 2. New or Modified Features

25

• The context-sensitive keyword final is accepted on class types (to indicate they cannot be derived from)

and on virtual member functions (to indicate they cannot be overridden).

• The context-sensitive keyword override can be specified on virtual member functions to assert that they

override a corresponding base class member.

• Alias and alias template declarations are supported.

• Variadic templates are supported.

• U-literals as well as the char16_t and char32_t keywords are supported.

• Many errors in expressions that arise during the substitution of template parameters in function templates

are now treated as deduction failures rather than definite errors.

• Access checking of names used as base classes is done in the context of the class being defined.

• Inline namespaces are supported.

• Initializer lists are supported.

• The noexcept specifier and operator are supported.

• Range-based for loops are supported.

New or Modified Runtime Library Routines
PGI 2013 supports new runtime library routines associated with the PGI Accelerator compilers. For more

information, refer to the ”Using an Accelerator” chapter of the PGI Compiler User’s Guide.

Library Interfaces
PGI provides access to a number of libraries that export C interfaces by using Fortran modules. These libraries

and functions are described in Chapter 8 of the PGI Compiler User’s Guide.

Environment Modules

Note

This section is only applicable to PGI CDK

On Linux, if you use the Environment Modules package (e.g., the module load command), then PGI 2013

includes a script to set up the appropriate module files.

OS X Mountain Lion Support
If you upgraded to OS X Mountain Lion, it is best to update Xcode to 4.0 or later before installing the PGI

compilers and tools. To update, follow these steps:

 



OS X Mountain Lion Support

26

 

1. Go to Apple App store. Apple menu | App Store...

2. Search for "Xcode"

3. Click the "Install" button.

4. Once step 3 is complete, double click the "Install Xcode" icon in the Application folder and follow the

directions on the screen.



27

Chapter 3. Distribution and
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users

who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications

built using PGI compilers and tools.

Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library files must be distributed

with such programs to enable them to execute on systems where the PGI compilers are not installed. There are

PGI redistributable files for all platforms. On Windows, PGI also supplies Microsoft redistributable files.

PGI Redistributables
The PGI 2013 release includes these directories:

$PGI/linux86/13.10/REDIST

$PGI/linux86-64/13.10/REDIST

$PGI/osx86/13.10/REDIST

$PGI/win32/13.10/REDIST

$PGI/win64/13.10/REDIST

These directories contain all of the PGI Linux runtime library shared object files, Mac OS dynamic libraries, or

Windows dynamically linked libraries that can be re-distributed by PGI 2013 licensees under the terms of the

PGI End-user License Agreement (EULA). For reference, a text-form copy of the PGI EULA is included in the

2013 directory.

Linux Redistributables
The Linux REDIST directories contain the PGI runtime library shared objects for all supported targets. This

enables users of the PGI compilers to create packages of executables and PGI runtime libraries that will

execute successfully on almost any PGI-supported target system, subject to these requirements:

  
      



Application Deployment and Redistributables

28

• End-users of the executable have properly initialized their environment.

• Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared objects.

Microsoft Redistributables
The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools directory contains

a subdirectory named "redist". PGI 2013 licensees may redistribute the files contained in this directory in

accordance with the terms of the PGI End-User License Agreement.

Microsoft supplies installation packages, vcredist_x86.exe and vcredist_x64.exe, containing these

runtime files. These files are available in the redist directory.



29

Chapter 4. Troubleshooting Tips and
Known Limitations

This chapter contains information about known limitations, documentation errors, and corrections.

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ)

section on pgroup.com at: www.pgroup.com/support/index.htm

General Issues
Most issues in this section are related to specific uses of compiler options and suboptions.

• Object files created with prior releases of PGI compiler are incompatible with object files from PGI 2013

and should be recompiled.

• The –i8 option can make programs incompatible with the ACML libraries; use of any INTEGER*8 array size

argument can cause failures. Visit developer.amd.com to check for compatible libraries.

• Using –Mipa=vestigial in combination with –Mipa=libopt with PGCC, you may encounter

unresolved references at link time. This problem is due to the erroneous removal of functions by the

vestigial sub-option to –Mipa. You can work around this problem by listing specific sub-options to –Mipa,

not including vestigial.

• OpenMP programs compiled using –mp and run on multiple processors of a SuSE 9.0 system can run

very slowly. These same executables deliver the expected performance and speed-up on similar hardware

running SuSE 9.1 and above.

Platform-specific Issues

Linux

The following are known issues on Linux:

• Programs that incorporate object files compiled using -mcmodel=medium cannot be statically linked.

This is a limitation of the linux86-64 environment, not a limitation of the PGI compilers and tools.



PGDBG-related Issues

30

Apple OS X
The following are known issues on Apple OS X:

• On MacOS platform, the PGI 2013 compilers do not support static linking of binaries. For compatibility with

future Apple updates, the compilers only support dynamic linking of binaries.

• Using –Mprof=func or –Mprof=lines is not supported.

Microsoft Windows
The following are known issues on Windows:

• For the Cygwin emacs editor to function properly, you must set the environment variable CYGWIN to the

value "tty" before invoking the shell in which emacs will run. However, this setting is incompatible with

the PGBDG command line interface (-text), so you are not able to use pgdbg -text in shells using

this setting.

The Cygwin team is working to resolve this issue.

• On Windows, the version of vi included in Cygwin can have problems when the SHELL variable is defined to

something it does not expect. In this case, the following messages appear when vi is invoked:

E79: Cannot expand wildcards Hit ENTER or type command to continue

To workaround this problem, set SHELL to refer to a shell in the cygwin bin directory, e.g. /bin/bash.

• C++ programs on Win64 that are compiled with the option -tp x64 fail when using PGI Unified Binaries.

The -tp x64 switch is not yet supported on the Windows platform for C++.

• On Windows, runtime libraries built for debugging (e.g. msvcrtd and libcmtd) are not included with

PGI Workstation. When a program is linked with -g, for debugging, the standard non-debug versions of

both the PGI runtime libraries and the Microsoft runtime libraries are always used. This limitation does not

affect debugging of application code.

The following are known issues on Windows and PGDBG:

• In PGDBG on the Windows platform, Windows times out stepi/nexti operations when single stepping over

blocked system calls. For more information on the workaround for this issue, refer to the online FAQs at

www.pgroup.com/support/tools.htm.

The following are known issues on Windows and PGPROF:

• Do not use -Mprof with PGI runtime library DLLs. To build an executable for profiling, use the static

libraries. When the compiler option -Bdynamic is not used, the static libraries are the default.  
  
  

PGDBG-related Issues
The following are known issues on PGDBG:



Chapter 4. Troubleshooting Tips and Known Limitations

31

• Before PGDBG can set a breakpoint in code contained in a shared library, .so or .dll, the shared library

must be loaded.

• Breakpoints in processes other than the process with rank 0 may be ignored when debugging MPICH-1

applications when the loading of shared libraries to randomized addresses is enabled.

• Debugging of PGI Unified Binaries, that is, 64-bit programs built with more than one -tp option, is not fully

supported. The names of some subprograms are modified in the creation, and PGDBG does not translate

these names back to the names used in the application source code. For detailed information on how to

debug a PGI Unified Binary, see www.pgroup.com/support/tools.htm.

PGPROF-related Issues
The following are known issues on PGPROF:

• Accelerator profiling via pgcollect is disabled in PGI 2013. PGI Accelerator and OpenACC programs

profiled using pgcollect will not generate any performance data related to the GPU. This capability is

expected to be restored in a future release.

Workaround: Set the environment variable PGI_ACC_TIME to '1' for the program when it runs (not

when compiling). This setting causes the program to print some performance data to stdout on exit.

CUDA Fortran profiling is still available for CUDA Fortran programs.

• Programs compiled and linked for gprof-style performance profiling using -pg can result in

segmentation faults on system running version 2.6.4 Linux kernels.

• Times reported for multi-threaded sample-based profiles, that is, profiling invoked with options -pg or

-Mprof=time, are for the master thread only. To obtain profile data on individual threads, PGI-style

instrumentation profiling with -Mprof={lines | func} or pgcollect must be used.

CUDA Fortran Toolkit Issues
The CUDA 5.0 Toolkit is set as the default in PGI 2013. To use the CUDA 5.0 Toolkit, first download the CUDA

5.0 driver from NVIDIA at www.nvidia.com/cuda.

You can compile with the CUDA 5.0 Toolkit either by adding the-ta=nvidia:cuda5.0 option to the

command line or by adding set CUDAVERSION=5.0 to the siterc file.

pgaccelinfo prints the driver version as the first line of output. For a 4.2 driver, it prints:

CUDA Driver Version 5000

Corrections
A number of problems have been corrected in the PGI 2013 release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in recent

releases of the PGI compilers and tools. This table contains a summary description of each problem as well as

the version in which it was fixed.



32



33

Chapter 5. Contact Information
You can contact The Portland Group at:

The Portland Group

Two Centerpointe Drive, Suite 320

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other

PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI

website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax

Sales

Support

WWW

+1-503-682-2637

sales@pgroup.com

trs@pgroup.com

www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone

support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at

www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the

documentation in the release directory doc/index.htm.

 



NOTICE

34

 

NOTICE
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,

AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS."

NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT

TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infringement of patents or other

rights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change

without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or systems without

express written approval of NVIDIA Corporation.

TRADEMARKS
PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are

trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK, Cluster Development

Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of NVIDIA Corporation in the U.S.

and other countries. Other company and product names may be trademarks of the respective companies with

which they are associated.

COPYRIGHT
© 2013 NVIDIA Corporation. All rights reserved.


	PGI® 2013 Release Notes
	Contents
	Chapter 1. Release Overview
	Product Overview
	Licensing Terminology
	License Options
	PGI Workstation and PGI Server Comparison
	PGI CDK Cluster Development Kit

	Release Components
	Terms and Definitions
	Supported Platforms
	Supported Operating Systems
	Getting Started

	Chapter 2. New or Modified Features
	What's New in Release 2013
	New or Modified Compiler Options
	New or Modified Fortran Functionality
	CUDA Fortran Atomic Functions
	F2003 Non-default Derived Type I/O

	New or Modified Tools Functionality
	OpenACC/CUDA Fortran Profiling
	Debug SGI MPI Programs
	Local and Remote Debugging

	Using MPICH-2 on Linux
	PGI Accelerator and CUDA Fortran Enhancements
	Default Target Accelerator
	Multiple Devices and Host as Device
	Device ID and Device Number
	Device ID
	DEVICEID clause

	PGI Accelerator Runtime Routines
	Memory Management in CUDA
	Declaring Interfaces to CUDA Device Built-in Routines
	Using the texture Attribute in CUDA Fortran
	Using F90 Pointers in CUDA Fortran Device Code
	Shuffle Functions
	__shfl()
	__shfl_up()
	__shfl_down()
	__shfl_xor()


	C++ Compiler
	C++ and OpenACC
	C++ Compatibility
	C++11 Features

	New or Modified Runtime Library Routines
	Library Interfaces
	Environment Modules
	OS X Mountain Lion Support

	Chapter 3. Distribution and Deployment
	Application Deployment and Redistributables
	PGI Redistributables
	Linux Redistributables
	Microsoft Redistributables


	Chapter 4. Troubleshooting Tips and Known Limitations
	General Issues
	Platform-specific Issues
	Linux
	Apple OS X
	Microsoft Windows

	PGDBG-related Issues
	PGPROF-related Issues
	CUDA Fortran Toolkit Issues
	Corrections

	Chapter 5. Contact Information
	NOTICE
	TRADEMARKS
	COPYRIGHT



