
The Portland Group

PGI Visual Fortran®

 Release Notes

 Version 13.10

PGI Visual Fortran®

Copyright © 2013 NVIDIA Corporation

All rights reserved.

Printed in the United States of America

First Printing: Release 2013, version 13.2, February 2013

Second Printing: Release 2013, version 13.3, March 2013

Third Printing: Release 2013, version 13.4, April 2013

Fourth Printing: Release 2013, version 13.5, May 2013

Fifth Printing: Release 2013, version 13.6, June 2013

Sixth Printing: Release 2013, version 13.7, July 2013

Seventh Printing: Release 2013, version 13.8, August 2013

Eighth Printing: Release 2013, version 13.9, September 2013

Ninth Printing: Release 2013, version 13.10, October 2013

ID: 132821442

Technical support: trs@pgroup.com

Sales: sales@pgroup.com

Web: www.pgroup.com

iii

Contents
1. PVF® Release Overview .. 1

Product Overview .. 1

Microsoft Build Tools .. 2

Terms and Definitions ... 2

2. New or Modified Features ... 3

What's New in PVF Release 2013 .. 3

New or Modified Compiler Options ... 6

New or Modified Fortran Functionality ... 8

CUDA Fortran Atomic Functions .. 8

F2003 Non-default Derived Type I/O .. 8

OpenACC/CUDA Fortran Profiling .. 9

New or Modified Runtime Library Routines ... 11

PGI Accelerator and CUDA Fortran Enhancements ... 11

Device ID and Device Number .. 13

PGI Accelerator Runtime Routines ... 14

Memory Management in CUDA .. 14

Declaring Interfaces to CUDA Device Built-in Routines .. 14

Using F90 Pointers in CUDA Fortran Device Code .. 14

Shuffle Functions ... 16

3. Selecting an Alternate Compiler ... 19

For a Single Project ... 19

For All Projects ... 19

4. Distribution and Deployment .. 21

Application Deployment and Redistributables .. 21

PGI Redistributables .. 21

Microsoft Redistributables .. 22

5. Troubleshooting Tips and Known Limitations ... 23

Use MPI in PVF Limitations .. 23

iv

PVF IDE Limitations ... 23

PVF Debugging Limitations ... 24

PGI Compiler Limitations ... 24

Corrections .. 24

6. Contact Information .. 25

NOTICE .. 26

TRADEMARKS ... 26

COPYRIGHT .. 26

v

Figures
2.1. Accelerator Performance when Profiling Multiple Devices .. 10

2.2. Accelerator Details when Profiling Multiple Devices .. 11

Tables
2.1. Supported CUDA Fortran Atomic Functions .. 8

vi

1

Chapter 1. PVF® Release Overview
Welcome to Release 2013 of PGI Visual Fortran®, a set of Fortran compilers and development tools for 32-bit

and 64-bit Windows integrated with Microsoft® Visual Studio®.

This document describes the new features of the PVF IDE interface, differences in the PVF 2013 compilers

and tools from previous releases, and late-breaking information not included in the standard product

documentation.

PGI Visual Fortran (PVF®) is licensed using FLEXnet, the flexible license management system from Flexera

Software*. Instructions for obtaining a permanent license are included in your order confirmation. More

information on licensing is available in the PVF Installation Guide for this release.

Product Overview
PVF is integrated with several versions of Microsoft Visual Studio. Currently, Visual Studio 2008, 2010 and 2012

are supported. Throughout this document, "PGI Visual Fortran" refers to PVF integrated with any of the three

supported versions of Visual Studio. Similarly, "Microsoft Visual Studio" refers to Visual Studio 2008, VS 2010,

and VS2012. When it is necessary to distinguish among the products, the document does so.

Single-user node-locked and multi-user network floating license options are available for both products. When

a node-locked license is used, one user at a time can use PVF on the single system where it is installed. When a

network floating license is used, a system is selected as the server and it controls the licensing, and users from

any of the client machines connected to the license server can use PVF. Thus multiple users can simultaneously

use PVF, up to the maximum number of users allowed by the license.

PVF provides a complete Fortran development environment fully integrated with Microsoft Visual Studio. It

includes a custom Fortran Build Engine that automatically derives build dependencies, Fortran extensions to

the Visual Studio editor, a custom PGI Debug Engine integrated with the Visual Studio debugger, PGI Fortran

compilers, and PVF-specific property pages to control the configuration of all of these.

Release 2013 of PGI Visual Fortran includes the following components:

• PGFORTRAN OpenMP and auto-parallelizing Fortran 90/95 compiler.

• PGF77 OpenMP and auto-parallelizing FORTRAN 77 compiler.

• PVF Visual Studio integration components.

Microsoft Build Tools

2

• AMD Core Math Library (ACML), version 5.24.0 for Windows x64 and version 4.4.0 for 32-bit Windows

• PVF documentation.

If you do not already have Microsoft Visual Studio on your system, be sure to get the PVF installation package

that contains the Visual Studio 2012 Shell.

Microsoft Build Tools
PVF on all Windows systems includes the Microsoft Open Tools. On some systems (Windows XP, Windows

Server 2003, Windows Server 2008), these files are all the additional tools and libraries required to compile,

link, and execute programs on Windows. On other systems (Windows 2008 R2, Windows 7, Windows 8,

Windows Server 2012), these files are required in addition to the files Microsoft provides in the Windows 8

SDK.

Terms and Definitions
This Installation Guide contains a number of terms and definitions with which you may or may not be familiar.

If you encounter a term in these notes with which you are not familiar, please refer to the online glossary at

www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

• AMD64 – a 64-bit processor from AMDTM designed to be binary compatible with 32-bit x86 processors,

and incorporating new features such as additional registers and 64-bit addressing support for improved

performance and greatly increased memory range. This term includes the AMD Athlon64TM, AMD

OpteronTM, AMD TurionTM, AMD Barcelona, AMD Shanghai, AMD Istanbul, AMD Bulldozer, and AMD

Piledriver processors.

• Intel 64 – a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be

binary compatible with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, Intel Core 2, Intel

Core 2 Duo (Penryn), Intel Core (i3, i5, i7) both first generation (Nehalem) and second generation (Sandy

Bridge) processors.

3

Chapter 2. New or Modified Features
This chapter contains the new or modified features of this release of PGI Visual Fortran as compared to prior

releases.

What's New in PVF Release 2013

13.10 Updates and Additions

• This release contains a number of changes and additions to the PVF properties:

Target Accelerators properties:

• Added NVIDIA: Use L1 Cache to control use of the L1 hardware data cache to cache global variables. (-

ta=nvidia:noL1prevents use of the L1 hardware data cache to cache global variables.)

• Replaced NVIDIA: Keep Kernel Binary (-ta=nvidia:keepbin) with NVIDIA: Keep Kernel Files (-

ta=nvidia:keep) which keeps kernel files.

• Replaced NVIDIA: Keep Kernel Source (-ta=nvidia:keepgpu) with NVIDIA: Keep Kernel Files (-

ta=nvidia:keep) which keeps kernel files.

• Replaced NVIDIA: Keep Kernel PTX (-ta=nvidia:keepptx) with NVIDIA: Keep Kernel Files (-

ta=nvidia:keep) which keeps kernel files.

• Removed NVIDIA: Use 24-bit Subscript Mult. (-ta=nvidia:mul24)

• Removed NVIDIA: Synchronous Kernel Launch (-ta=nvidia:[no]wait)

• Removed NVIDIA: Analysis Only (-ta=nvidia:analysis)

Language properties:

• Added CUDA Fortran Use L1 Cache to control use of the L1 hardware data cache to cache global

variables. (-Mcuda=noL1 prevents use of the L1 hardware data cache to cache global variables.)

• A number of problems are corrected in this release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in

recent releases of the PVF.

What's New in PVF Release 2013

4

13.9 Updates and Additions

• PGI Accelerator x64+GPU native Fortran 2003 compilers and CUDA Fortran support the CUDA 5.0 Toolkit as

the default toolkit.

CUDA 5.0 has deprecated the use of character strings in the symbol API, i.e. functions such as

cudaMemcpyToSymbol(). Therefore, CUDA Fortran no longer needs the cudaSymbol derived type, and its

definition and use has been removed from the cudafor module. Users should recompile any source code

which uses the cudafor module after updating to PGI 13.9 or later.

PGI compilers and tools also support the CUDA 5.5 Toolkit. For information on specifying the toolkit

version, refer to “PGI Accelerator and CUDA Fortran Enhancements,” on page 11.

• PGI now enables CUDA Fortran device code to access compute capability 3.x shuffle functions, including

__shfl(), __shfl_up(), __shfl_down(), and __shfl_xor(). These functions enable access to

variables between threads within a warp, referred to as lanes. In CUDA Fortran, lanes use Fortran's 1-based

numbering scheme. For more information on these functions, refer to “Shuffle Functions,” on page 16.

13.7 Updates and Additions

• OpenACC/CUDA Fortran profiling supports multiple GPUs. In addition, there are improvements to

accelerator profiling as a whole. For more information, refer to “OpenACC/CUDA Fortran Profiling,” on

page 9.

• General performance improvements on AVX vectorized code.

• Support for new CUDA Fortran atomics. For a complete list, refer to “CUDA Fortran Atomic Functions,” on

page 8.

• PVF 13.7 implements the record format described in Intel Fortran User's Guide Vol. 1, Building

Applications, Variable-Length Records Greater than 2 Gigabytes. This record format is now the default

for the PGI Fortran compilers. To access files written using the old file format, set the environment variable

FORTRANOPT to pgi_legacy_large_rec_fmt.

13.6 Updates and Additions

• Added support for the F2008 impure attribute. Fortran 2008 removed the restriction of Fortran 95 that

elemental procedures be implicitly pure. Elemental procedures permit writing procedures as many as 16

times, once for each possible rank. In Fortran 2008, elemental procedures must now be explicitly declared

with the prefix impure.

13.5 Updates and Additions

• Added support for two F2008 features:

• Finding a unit when opening a file

• Derived-type-style accesses of the real and imaginary parts of a complex number.

• Made several performance improvements for complex arithmetic, for all languages.

Chapter 2. New or Modified Features

5

• A number of problems have been corrected in this release. Refer to www.pgroup.com/support/

release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in

recent releases of the PGI compilers and tools.

13.4 Updates and Additions

• PGI 13.4 contains support for F2003 non-default derived-type i/o. This feature allows programmers to

provide their own formatted and unformatted i/o routines for user-defined or, in certain cases, vendor-

supplied derived types. The interfaces for the called subroutines are very specific. For more information on

the interfaces refer to a recent Fortran reference manual.

For a short example of how to use this new feature, refer to “New or Modified Fortran Functionality,” on

page 8.

• PGI 13.4 contains initial support for F90 pointers in CUDA Fortran device code. In the current

implementation, the pointer declaration must be at module scope, in the module which contains the device

code. As usual, the host code can use the module and manipulate the pointers. The host code can also pass

the pointer as an argument.

For an example of how to use this new feature, refer to “Using F90 Pointers in CUDA Fortran Device Code,”

on page 14.

13.3 Updates and Additions

• PVF now supports a new property: Debugging | Accelerator Profiling

Use this property to generate accelerator profiling information at runtime. To do this, set the Accelerator

Profiling property to Yes which causes the PGI_ACC_TIME environment variable to be set to 1 at runtime.

The default is No.

13.2 Updates and Additions

• PVF 13.2 provides support for F2003 Deferred Type Parameters.

• PVF 13.2 provides ACML version 5.3.0 for 64-bit Windows. For 32-bit Windows, PGI continues to provide

ACML version 4.4.0.

• PGI Accelerator x64+GPU native Fortran 2003 compilers and CUDA Fortran support the CUDA 4.2 Toolkit

as the default toolkit. PGI compilers and tools also support the CUDA 5.0 Toolkit. For information on

specifying the toolkit version, refer to “PGI Accelerator and CUDA Fortran Enhancements,” on page 11.

• PVF 13.2 includes expanded properties for new keyword subarguments for existing command line options

like -ta=nvidia and -Mcuda. For more information, refer to “New or Modified Compiler Options,” on

page 6.

• CUDA Fortran now supports separate compilation and linking of device routines, including device routines

in Fortran modules.

To enable separate compilation and linking, use the CUDA Fortran Generate RDC property to add the

command line option -Mcuda=rdc to both the compile and the link steps.

New or Modified Compiler Options

6

• The OpenACC runtime has the concept of device type and device number. For more information, refer to

“Device ID and Device Number,” on page 13

• In Fortran, there is a new deviceid clause for the data, parallel, kernels, update and wait directives. The

deviceid clause has a single scalar integer argument. For more information, refer to “DEVICEID clause,”

on page 13

• PGI supports a new command line option, -Mstack_arrays, which allows Fortran automatic arrays to

be allocated from the stack.

13.1 Updates and Additions

• PGI now supports OpenMP 3.1. Specifically, PGI now supports these features:

• Fortran, C, and C++ compilers and runtime:

• omp_in_final runtime routine

• OMP_NUM_THREADS and OMP_PROC_BIND environment variables

• taskyield

• final tasks and the final clause on task constructs

• mergeable clause on task constructs

• atomic read, write, capture, and update clauses

• min/max reductions in C/C++

• firstprivate with const data in C/C++, intent(in) in Fortran

New or Modified Compiler Options
PVF 13.10 supports a number of new command line options as well as new keyword subarguments for existing

command line options. These changes include:

• -Mstack_arrays and -Mnostack_arrays

-Mstack_arrays places automatic arrays on the stack while -Mnostack_arrays allocates automatic

arrays on the heap.

• -ta=nvidia has the following new target accelerator arguments:

• -ta=nvidia:noL1 prevents the use of L1 hardware data cache to cache global variables.

• -ta=nvidia:keep keeps kernel files.

• -ta=nvidia,tesla is equivalent to -ta=nvidia,cclx

• -ta=nvidia,fermi is equivalent to -ta=nvidia,cc2x

• -ta=nvidia,kepler is equivalent to -ta=nvidia,cc3x

PGI continues to support the specific compute capability options (cc10, cc11, etc.) as well as the new cc35

option for compute capability 3.5.

Chapter 2. New or Modified Features

7

Refer to PVF’s Target Accelerators property page when setting compute capability options.

• -Mcuda has the following new target accelerator arguments:

• -Mcuda=noL1 prevents the use of L1 hardware data cache to cache global variables.

• -Mcuda,tesla is equivalent to -Mcuda,cclx

• -Mcuda,fermi is equivalent to -Mcuda,cc2x

• -Mcuda,kepler is equivalent to -Mcuda,cc3x

PGI continues to support the specific compute capability options (cc10, cc11, etc.) as well as the new cc35

option for compute capability 3.5.

Refer to PVF’s Language property page when setting compute capability options for CUDA Fortran.

• -Mcuda has the new option rdc that enables CUDA Fortran separate compilation and linking of device

routines, including device routines in Fortran modules. To enable separate compilation and linking, enable

PVF’s CUDA Fortran Generate RDC property to include the command line option -Mcuda=rdc on both the

compile and the link steps.

• -Mipa has the new suboption -Mipa=reaggregation that enables IPA-guided structure reaggregation.

This automatically attempts to reorder elements in a struct or to split structs into substructs to improve

memory locality and cache utilization.

• -O

The optimizations performed at -O, -O1, -O2, -O3 and -O4 have changed. These options now have these

meanings:

–O0

Level zero specifies no optimization. A basic block is generated for each language statement.

–O1

Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is

performed.

–O

When no level is specified, level two global optimizations are performed, including traditional scalar

optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is enabled.

–O2

Level two specifies global optimization. This level performs all level-one local optimization as well as

level-two global optimization described in –O. In addition, more advanced optimizations such as SIMD

code generation, cache alignment, and partial redundancy elimination are enabled.

–O3

Level three specifies aggressive global optimization. This level performs all level-one and level-two

optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or

may not be profitable.

New or Modified Fortran Functionality

8

–O4

 Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of

guarded invariant floating point expressions.

• -Mfprelaxed has the following new suboption: -Mfprelaxed=intrinsic that enables use of relaxed

precision intrinsics.

• -tp has the following new command line target processor options:

-piledriver

generate code that is usable on any Piledriver processor-based system.

-piledriver-32

generate 32-bit code that is usable on any Piledriver processor-based system.

-piledriver-64

generate 64-bit code that is usable on any Piledriver processor-based system.

Refer to PVF’s Target Processors property page to enable compilation for Piledriver or other specific

processors.

Unknown options are treated as errors instead of warnings. This feature means it is a compiler error to pass

switches that are not known to the compiler; however, you can use the switch –noswitcherror to issue

warnings instead of errors for unknown switches.

New or Modified Fortran Functionality
PGI 13.10 contains additional fortran functionality.

CUDA Fortran Atomic Functions
PGI 13.10 supports new CUDA Fortran atomics. Table 2.1 indicates the data types supported prior to 13.8

(prev) and the additional data types that PGI now supports (new) for each atomic function.

Table 2.1. Supported CUDA Fortran Atomic Functions

 integer*4 integer*8 real*4 real*8
atomicCAS prev new new new

atomicADD prev prev prev prev

atomicEXCH prev prev prev new

atomicSUB prev new new new

atomicMAX prev new new new

atomicMIN prev new new new

F2003 Non-default Derived Type I/O
PGI 13.10 supports F2003 non-default derived-type i/o. Using this feature allows programmers to provide

their own formatted and unformatted i/o routines for user-defined derived types and for some vendor-supplied

derived types.

Chapter 2. New or Modified Features

9

The following module is one example of a user-defined derived type:

 module m1
 use iso_c_binding
 interface write(formatted)
 module procedure print_c_ptr
 end interface
 contains
 subroutine print_c_ptr(dtv,unit,iotype,v_list,iostat,iomsg)
 class(c_ptr), intent(in) :: dtv
 integer, intent(in) :: unit
 character(*), intent(in) :: iotype
 integer, intent(in) :: v_list(:)
 integer, intent(out) :: iostat
 character(*), intent(inout) :: iomsg
 integer(c_intptr_t) :: iptrval
 iptrval = transfer(dtv, iptrval)
 if (c_intptr_t.eq.4) then
 write(unit,fmt='("0x",z8.8)') iptrval
 else
 write(unit,fmt='("0x",z16.16)') iptrval
 endif
 end subroutine print_c_ptr
end module m1

program p1
use m1
type(c_ptr) :: p
integer, target :: i, j
p = c_loc(i)
print *,p
end

You can compile and run the preceding example using 32 or 64-bit compilers:

32-bit compilers 64-bit compilers
% pgf90 -m32 derivedio.f90
% ./a.out
0x080AA4D4

% pgf90 -m64 derivedio.f90
% ./a.out
0x00007FFF76AD6490

OpenACC/CUDA Fortran Profiling
In addition to general improvements to accelerator profiling, PGPROF includes all-new support for accelerator

profiling of multiple devices. As with profiling of single devices, you can view information such as accelerator

performance or device configuration. Figure 2.1 shows a view of PGPROF that details the accelerator

performance on two GPUs for a routine.

OpenACC/CUDA Fortran Profiling

10

Figure 2.1. Accelerator Performance when Profiling Multiple Devices

Figure 2.2 shows the details about the accelerators on the system where the profile was run.

Chapter 2. New or Modified Features

11

Figure 2.2. Accelerator Details when Profiling Multiple Devices

New or Modified Runtime Library Routines
PGI 2013 supports new runtime library routines associated with the PGI Accelerator compilers. For more

information, refer to the “Using an Accelerator” chapter of the PGI Visual Fortran User’s Guide.

PGI Accelerator and CUDA Fortran Enhancements
The PGI Accelerator x64+GPU compilers with OpenACC and CUDA Fortran compilers now support the CUDA

5.0 toolkit as the default. The compilers and tools also support the CUDA 5.5 Toolkit. To specify the version of

the CUDA Toolkit, use one of the following options:

PGI Accelerator and CUDA Fortran Enhancements

12

Since the default toolkit for 13.10 is CUDA 5.0, CUDA Fortran host programs should be recompiled because

the PGI 13.3 and higher CUDA Fortran runtime libraries are not compatible with previous CUDA Fortran

releases.

To specify the version of the CUDA Toolkit that is targeted by the compilers, use one of the following properties:

For PGI Accelerator model:

Use the property: Fortran | Target Accelerators | NVIDIA: CUDA Toolkit

When Target NVIDIA Accelerator is set to Yes, you can specify the version of the NVIDIA CUDA Toolkit targeted

by the compilers.

Default: The compiler selects the default CUDA Toolkit version, which is 5.0 for this release.

5.5: Specifies use of toolkit version 5.5.

5.0: Specifies use of toolkit version 5.0. This is the default.

4.2: Specifies use of toolkit version 4.2.

4.1: Specifies use of toolkit version 4.1.

4.0: Specifies use of toolkit version 4.0.

3.2: Specifies use of toolkit version 3.2.

3.1: Specifies use of toolkit version 3.1.

3.0: Specifies use of toolkit version 3.0.

2.3: Specifies use of toolkit version 2.3.

Selecting one of these properties is equivalent to adding the associated switch to the PVF compilation and link

lines:

–ta=nvidia[:cuda3.2 | cuda4.0 | cuda4.1 | cuda4.2 | cuda5.0 | cuda5.5]

For CUDA Fortran:

Use the property: Fortran | Language | CUDA Fortran Toolkit

When Enable CUDA Fortran is set to Yes, you can specify the version of the CUDA Toolkit targeted by the

compilers.

Default: The compiler selects the default CUDA Toolkit version, which for 13.10 is version 5.0

5.5: Specifies use of toolkit version 5.5.

5.0: Specifies use of toolkit version 5.0. This is the default.

4.2: Specifies use of toolkit version 4.2.

4.1: Specifies use of toolkit version 4.1.

4.0: Specifies use of toolkit version 4.0.

3.2: Specifies use of toolkit version 3.2.

3.1: Specifies use of toolkit version 3.1.

3.0: Specifies use of toolkit version 3.0.

2.3: Specifies use of toolkit version 2.3.

Chapter 2. New or Modified Features

13

Selecting one of these properties is equivalent to adding the associated switch to the PVF compilation and link

lines:

–Mcuda[=cuda3.2 | cuda4.0 | cuda4.1 | cuda4.2 | cuda5.0 | cuda5.5]

Device ID and Device Number
The OpenACC runtime has the concept of device type and device number. The supported device types for this

release are NVIDIA GPUs (acc_device_nvidia) and X86 host (acc_device_host). For NVIDIA GPUs,

the device number is assigned by the CUDA driver API; the first device is number zero, and other devices have

positive numbers.

Device ID

This release supports the concept of device ID, which is set by the OpenACC runtime. The available devices are

enumerated and given a nonnegative integer device ID, starting at one; the host itself is given the highest device

ID value.

The number of available devices can be determined by calling the acc_get_num_devices API routine.

Since the host is always available as a device, this routine always returns a nonnegative number.

At any point in the program, the runtime keeps track of the current device to be used for the next

accelerator construct or directive. The current device can be changed for the host thread by calling the

acc_set_device_type or acc_set_device_num API routines. The current device type and number

can be determined by calling the acc_get_device_type and acc_get_device_num routines.

New, simpler API routines are now supported to allow setting or querying the current device using the device

ID.

• acc_set_deviceid takes a single integer argument, and sets the current device to the device that

corresponds to that device ID.

• acc_get_deviceid returns the device ID for the current device.

A value of zero for a device ID argument corresponds to usingthe current device for this host thread.

If you build your program with the -ta=nvidia command line option, only NVIDIA GPU code is generated

for the accelerator regions and constructs. At runtime, acc_get_num_devices still returns the count of

all available devices, including the host, even though your program was not built to run those regions on the

host. If your program changes the current device to the host, you get a runtime error when you try to execute a

compute region that was only compiled for the NVIDIA GPU.

DEVICEID clause

In Fortran, there is a new deviceid clause for the data, parallel, kernels, update and wait directives. The

deviceid clause has a single scalar integer argument.

• If the deviceid clause argument is zero, the current device for this host thread is used.

• If the deviceid clause argument is nonzero, the current device for this host thread is changed to the

corresponding device for the duration of the region created by this construct.

PGI Accelerator and CUDA Fortran Enhancements

14

PGI Accelerator Runtime Routines

PGI_ACC_TIME

When timing the accelerator constructs by setting PGI_ACC_TIME to 1, you must run the program with

the LD_LIBRARY_PATH environment variable set to include the $PGI/win64/13.10/lib or $PGI/

win32/13.10/lib directory (as appropriate). This release dynamically loads a shared object to implement

the profiling feature, and the path to the library must be available.

For a complete description of the PGI Accelerator model runtime routines available in version 13.10, refer to

Chapter 4, “PGI Accelerator Compilers Reference” of the PGI Compiler Reference Manual.

Memory Management in CUDA
A new memory management routine, cudaMemGetInfo, returns the amount of free and total memory

available (in bytes) for allocation on the device.

The syntax for cudaMemGetInfo is:

integer function cudaMemGetInfo(free, total)
 integer(kind=cuda_count_kind) :: free, total

Declaring Interfaces to CUDA Device Built-in Routines
A Fortran module is available to declare interfaces to many of the CUDA device built-in routines.

To access this module, add this line to your Fortran program:

use cudadevice

You can also use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in PGI

Accelerator compute regions in Fortran. Further, the PGI compilers come with implementations of these

routines for host code, though these implementations are not specifically optimized for the host.

For a complete list of the CUDA built-in routines that are available, refer to the PGI CUDA Fortran

Programming and Reference.

Using F90 Pointers in CUDA Fortran Device Code
PGI 13.10 contains support for F90 pointers in CUDA Fortran device code. In the current implementation, the

pointer declaration must be at module scope, in the module which contains the device code. The host code

can use the module and manipulate the pointers. The host code can also pass the pointer as an argument.

The following example shows how to use F90 pointers in CUDA Fortran as supported by the current release:

! Device pointer in module, and passed as argument
module devptr
! pointer declarations must be in the module in which they are used
 real, device, pointer, dimension(:) :: mod_dev_ptr
 real, device, pointer, dimension(:) :: arg_dev_ptr
 real, device, target, dimension(4) :: mod_dev_arr
 real, device, dimension(4) :: mod_res_arr

Chapter 2. New or Modified Features

15

contains
 attributes(global) subroutine test(arg_ptr)
 real, device, pointer, dimension(:) :: arg_ptr
 if (associated(arg_ptr)) then
 mod_res_arr = arg_ptr
 else
 mod_res_arr = mod_dev_ptr
 end if
 end subroutine test
end module devptr

program test
use devptr
real, device, target, dimension(4) :: a_dev
real result(20)

a_dev = (/ 1.0, 2.0, 3.0, 4.0 /)

! Pointer assignment to device array declared on host,
! passed as argument
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(1:4) = mod_res_arr

!$cuf kernel do <<<*,*>>>
do i = 1, 4
 mod_dev_arr(i) = a_dev(i) + 4.0
 a_dev(i) = a_dev(i) + 8.0
end do

! Pointer assignment to module array, argument nullified
mod_dev_ptr => mod_dev_arr
arg_dev_ptr => null()
call test<<<1,1>>>(arg_dev_ptr)
result(5:8) = mod_res_arr

! Pointer assignment to updated device array, now asssociated
arg_dev_ptr => a_dev
call test<<<1,1>>>(arg_dev_ptr)
result(9:12) = mod_res_arr

!$cuf kernel do <<<*,*>>>
do i = 1, 4
 mod_dev_arr(i) = 25.0 - mod_dev_arr(i)
 a_dev(i) = 25.0 - a_dev(i)
end do

! Non-contiguous pointer assignment to updated device array
arg_dev_ptr => a_dev(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(13:16) = mod_res_arr

! Non-contiguous pointer assignment to updated module array
nullify(arg_dev_ptr)
mod_dev_ptr => mod_dev_arr(4:1:-1)
call test<<<1,1>>>(arg_dev_ptr)
result(17:20) = mod_res_arr

print *,result
end

PGI Accelerator and CUDA Fortran Enhancements

16

You can compile and run the preceding example as follows:
% pgf90 devptr.cuf
% ./a.out
 1.000000 2.000000 3.000000 4.000000
 5.000000 6.000000 7.000000 8.000000
 9.000000 10.00000 11.00000 12.00000
 13.00000 14.00000 15.00000 16.00000
 17.00000 18.00000 19.00000 20.00000

Shuffle Functions
PGI 13.10 enables CUDA Fortran device code to access compute capability 3.x shuffle functions. These

functions enable access to variables between threads within a warp, referred to as lanes. In CUDA Fortran,

lanes use Fortran's 1-based numbering scheme.

__shfl()

__shfl() returns the value of var held by the thread whose ID is given by srcLane. If the srcLane

is outside the range of 1:width, then the thread's own value of var is returned. The width argument is

optional in all shuffle functions and has a default value of 32, the current warp size.
 integer(4) function __shfl(var, srcLane, width)
 integer(4) var, srcLane
 integer(4), optional :: width

 real(4) function __shfl(var, srcLane, width)
 real(4) :: var
 integer(4) :: srcLane
 integer(4), optional :: width

 real(8) function __shfl(var, srcLane, width)
 real(8) :: var
 integer(4) :: srcLane
 integer(4), optional :: width

__shfl_up()

__shfl_up() calculates a source lane ID by subtracting delta from the caller's thread ID. The value of var

held by the resulting thread ID is returned; in effect, var is shifted up the warp by delta lanes.

The source lane index will not wrap around the value of width, so the lower delta lanes are unchanged.
 integer(4) function __shfl_up(var, delta, width)
 integer(4) var, delta
 integer(4), optional :: width

 real(4) function __shfl_up(var, delta, width)
 real(4) :: var
 integer(4) :: delta
 integer(4), optional :: width

 real(8) function __shfl_up(var, delta, width)
 real(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

__shfl_down()

__shfl_down() calculates a source lane ID by adding delta to the caller's thread ID. The value of var

held by the resulting thread ID is returned: this has the effect of shifting var down the warp by delta lanes.

Chapter 2. New or Modified Features

17

The ID number of the source lane will not wrap around the value of width, so the upper delta lanes remain

unchanged.

 integer(4) function __shfl_down(var, delta, width)
 integer(4) var, delta
 integer(4), optional :: width

 real(4) function __shfl_down(var, delta, width)
 real(4) :: var
 integer(4) :: delta
 integer(4), optional :: width

 real(8) function __shfl_down(var, delta, width)
 real(8) :: var
 integer(4) :: delta
 integer(4), optional :: width

__shfl_xor()

__shfl_xor() uses ID-1 to calculate the source lane ID by performing a bitwise XOR of the caller's lane ID

with the laneMask. The value of var held by the resulting lane ID is returned. If the resulting lane ID falls

outside the range permitted by width, the thread's own value of var is returned. This mode implements a

butterfly addressing pattern such as is used in tree reduction and broadcast.

 integer(4) function __shfl_xor(var, laneMask, width)
 integer(4) var, laneMask
 integer(4), optional :: width

 real(4) function __shfl_xor(var, laneMask, width)
 real(4) :: var
 integer(4) :: laneMask
 integer(4), optional :: width

 real(8) function __shfl_xor(var, laneMask, width)
 real(8) :: var
 integer(4) :: laneMask
 integer(4), optional :: width

Here is an example using __shfl_xor() to compute the sum of each thread's variable contribution within a

warp:

 j = . . .
 k = __shfl_xor(j,1); j = j + k
 k = __shfl_xor(j,2); j = j + k
 k = __shfl_xor(j,4); j = j + k
 k = __shfl_xor(j,8); j = j + k
 k = __shfl_xor(j,16); j = j + k

18

19

Chapter 3. Selecting an Alternate
Compiler

Each release of PGI Visual Fortran contains two components - the newest release of PVF and the newest release

of the PGI compilers and tools that PVF targets.

When PVF is installed onto a system that contains a previous version of PVF, the previous version of PVF is

replaced. The previous version of the PGI compilers and tools, however, remains installed side-by-side with the

new version of the PGI compilers and tools. By default, the new version of PVF will use the new version of the

compilers and tools. Previous versions of the compilers and tools may be uninstalled using Control Panel | Add

or Remove Programs.

There are two ways to use previous versions of the compilers:

• Use a different compiler release for a single project.

• Use a different compiler release for all projects.

The method to use depends on the situation.

For a Single Project
To use a different compiler release for a single project, you use the compiler flag -V<ver> to target the

compiler with version <ver>. This method is the recommended way to target a different compiler release.

For example, -V10.1 causes the compiler driver to invoke the 10.1 version of the PGI compilers if these are

installed.

To use this option within a PVF project, add it to the Additional options section of the Fortran | Command Line

and Linker | Command Line property pages.

For All Projects
You can use a different compiler release for all projects.

For All Projects

20

The Tools | Options dialog within PVF contains entries that can be changed to use a previous version of the

PGI compilers. Under Projects and Solutions | PVF Directories, there are entries for Executable Directories,

Include and Module Directories, and Library Directories.

• For the x64 platform, each of these entries includes a line containing $(PGIToolsDir). To change the

compilers used for the x64 platform, change each of the lines containing $(PGIToolsDir) to contain the

path to the desired bin, include, and lib directories.

• For the 32-bit Windows platform, these entries include a line containing $(PGIToolsDir) on 32-bit Windows

systems or $(PGIToolsDir32) on 64-bit Windows systems. To change the compilers used for the 32-bit

Windows platform, change each of the lines containing $(PGIToolsDir) or $(PGIToolsDir32) to contain the

path to the desired bin, include, and lib directories.

Warning

The debug engine in PVF 2013 is not compatible with previous releases. If you use Tools | Options to

target a release prior to 2013, you cannot use PVF to debug. Instead, use the -V method described

earlier in this chapter to select an alternate compiler.

21

Chapter 4. Distribution and
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users

who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications

built using PGI compilers and tools.

Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library files must be distributed

with such programs to enable them to execute on systems where the PGI compilers are not installed. There are

PGI redistributable files for all platforms. On Windows, PGI also supplies Microsoft redistributable files.

PGI Redistributables

PGI Visual Fortran includes redistributable directories which contain all of the PGI dynamically linked libraries

that can be re-distributed by PVF 2013 licensees under the terms of the PGI End-User License Agreement

(EULA). For reference, a copy of the PGI EULA in PDF form is included in the release.

The following paths for the redistributable directories assume 'C:' is the system drive.

• On a 32-bit Windows system, the redistributable directory is:

C:\Program Files\PGI\win32\13.10\REDIST

• On a 64-bit Windows system, there are two redistributable directories:

C:\Program Files\PGI\win64\13.10\REDIST

C:\Program Files (x86)\PGI\win32\13.10\REDIST

The redistributable directories contain the PGI runtime library DLLs for all supported targets. This enables

users of the PGI compilers to create packages of executables and PGI runtime libraries that execute

successfully on almost any PGI-supported target system, subject to the requirement that end-users of the

executable have properly initialized their environment to use the relevant version of the PGI DLLs.

Application Deployment and Redistributables

22

Microsoft Redistributables
PGI Visual Fortran includes Microsoft Open Tools, the essential tools and libraries required to compile, link,

and execute programs on Windows. PVF 2013 includes the latest version, version 10, of the Microsoft Open

Tools.

The Microsoft Open Tools directory contains a subdirectory named REDIST. PGI 2013 licensees may

redistribute the files contained in this directory in accordance with the terms of the associated license

agreements.

Note

On Windows, runtime libraries built for debugging (e.g. msvcrtd and libcmtd) are not included

with PGI Visual Fortran. When a program is linked with -g for debugging, the standard non-debug

versions of both the PGI runtime libraries and the Microsoft runtime libraries are always used. This

limitation does not affect debugging of application code.

23

Chapter 5. Troubleshooting Tips and
Known Limitations

This chapter contains information about known limitations, documentation errors, and corrections that have

occurred to PVF 2013. Whenever possible, a workaround is provided.

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ)

section on pgroup.com at: www.pgroup.com/support/index.htm

Use MPI in PVF Limitations

• The multi-process debug style known as "Run One At a Time" is not supported in this release.

PVF IDE Limitations
The issues in this section are related to IDE limitations.

• Integration with source code revision control systems is not supported.

• When moving a project from one drive to another, all .d files for the project should be deleted and the

whole project should be rebuilt. When moving a solution from one system to another, also delete the

solution's Visual Studio Solution User Options file (.suo).

• The Resources property pages are limited. Use the Resources | Command Line property page to pass

arguments to the resource compiler. Resource compiler output must be placed in the intermediate directory

for build dependency checking to work properly on resource files.

• There are several properties that take paths or pathnames as values. In general, these may not work as

expected if they are set to the project directory $(ProjectDir) or if they are empty, unless empty is the

default. Specifically:

General | Output Directory should not be empty or set to $(ProjectDir).

General | Intermediate Directory should not be empty or set to $(ProjectDir).

Fortran | Output | Object File Name should not be empty or set to $(ProjectDir).

Fortran | Output | Module Path should not be empty or set to include $(ProjectDir).

PVF Debugging Limitations

24

• Dragging and dropping files in the Solution Explorer that are currently open in the Editor may result in a file

becoming "orphaned." Close files before attempting to drag-and-drop them.

PVF Debugging Limitations
The following limitations apply to PVF debugging:

• Debugging of unified binaries is not fully supported. The names of some subprograms are modified in

the creation of the unified binary, and the PVF debug engine does not translate these names back to the

names used in the application source code. For more information on debugging a unified binary, see

www.pgroup.com/support/tools.htm.

• In some situations, using the Watch window may be unreliable for local variables. Calling a function or

subroutine from within the scope of the watched local variable may cause missed events and/or false

positive events. Local variables may be watched reliably if program scope does not leave the scope of the

watched variable.

• Rolling over Fortran arrays during a debug session is not supported when Visual Studio is in Hex mode. This

limitation also affects Watch and Quick Watch windows.

Workaround: deselect Hex mode when rolling over arrays.

PGI Compiler Limitations
The frequently asked questions (FAQ) section on the pgroup.com web page at www.pgroup.com/support/

index.htm provides more up to date information about the state of the current release.

• Take extra care when using -Mprof with PVF runtime library DLLs. To build an executable for profiling,

use of the static libraries is recommended. The static libraries are used by default in the absence of -

Bdynamic.

• Using –Mpfi and –mp together is not supported. The –Mpfi flag disables –mp at compile time, which

can cause runtime errors in programs that depend on interpretation of OpenMP directives or pragmas.

Programs that do not depend on OpenMP processing for correctness can still use profile feedback. Using

the –Mpfo flag does not disable OpenMP processing.

• The –i8 option can make programs incompatible with the ACML library; use of any INTEGER*8 array size

argument can cause failures with these libraries. Visit developer.amd.com to check for compatible ACML

libraries.

• ACML 5.1.0 is built using the –fastsse compile/link option, which includes –Mcache_align. When

linking with ACML on 32-bit Windows, all program units must be compiled with –Mcache_align, or an

aggregate option such as –fastsse, which incorporates –Mcache_align. This process is not an issue

on 64-bit targets where the stack is 16-byte aligned by default. You can use the lower-performance, but fully

portable, blas and lapack libraries on CPUs that do not support SSE instructions.

Corrections
Refer to www.pgroup.com/support/release_tprs.htm for a complete, up-to-date table of technical problem

reports, TPRs, fixed in recent releases of the PGI compilers and tools. The table contains a summary

description of each problem as well as the version in which it was fixed.

25

Chapter 6. Contact Information
You can contact The Portland Group at:

The Portland Group

Two Centerpointe Drive, Suite 320

Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other

PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI

website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax

Sales

Support

WWW

+1-503-682-2637

sales@pgroup.com

trs@pgroup.com

www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone

support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at

www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the

documentation in the release directory doc/index.htm.

NOTICE

26

NOTICE
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,

AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS."

NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT

TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infringement of patents or other

rights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change

without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or systems without

express written approval of NVIDIA Corporation.

TRADEMARKS
PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are

trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK, Cluster Development

Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of NVIDIA Corporation in the U.S.

and other countries. Other company and product names may be trademarks of the respective companies with

which they are associated.

COPYRIGHT
© 2013 NVIDIA Corporation. All rights reserved.

	PGI Visual Fortran®
	Contents
	Chapter 1. PVF® Release Overview
	Product Overview
	Microsoft Build Tools
	Terms and Definitions

	Chapter 2. New or Modified Features
	What's New in PVF Release 2013
	New or Modified Compiler Options
	New or Modified Fortran Functionality
	CUDA Fortran Atomic Functions
	F2003 Non-default Derived Type I/O

	OpenACC/CUDA Fortran Profiling
	New or Modified Runtime Library Routines
	PGI Accelerator and CUDA Fortran Enhancements
	Device ID and Device Number
	Device ID
	DEVICEID clause

	PGI Accelerator Runtime Routines
	Memory Management in CUDA
	Declaring Interfaces to CUDA Device Built-in Routines
	Using F90 Pointers in CUDA Fortran Device Code
	Shuffle Functions
	__shfl()
	__shfl_up()
	__shfl_down()
	__shfl_xor()

	Chapter 3. Selecting an Alternate Compiler
	For a Single Project
	For All Projects

	Chapter 4. Distribution and Deployment
	Application Deployment and Redistributables
	PGI Redistributables
	Microsoft Redistributables

	Chapter 5. Troubleshooting Tips and Known Limitations
	Use MPI in PVF Limitations
	PVF IDE Limitations
	PVF Debugging Limitations
	PGI Compiler Limitations
	Corrections

	Chapter 6. Contact Information
	NOTICE
	TRADEMARKS
	COPYRIGHT

