=
S
=
=
=
S
S
20
=
=
=
=

TABLE OF CONTENTS

o 1 2T TSP Xii
AUAIENCE DESCIIPHON. ... vttt e s bbb bbb s e R sttt a st s e e st et e bbb Xii
Compatibility and Conformance t0 STANAATGS............coeeriri e Xii
OFGANIZALION.......cocvtcecveiet ettt s bbb bbb s et b et b s bbb st bbb s s bbbt bbb bbb bbb s bt nan xiii
Hardware and SOftware CONSIAINES...........orurriirrecieres st ettt Xiv
CONVEINTIONS. ...t et eseesees st es e s s e s8Rt Xiv
=T 10T XV
RelAtEA PUDIICATIONS.ceviect i XVi

Chapter 1.Getting Started With PVF......... s ssssssasaes 1
1.1. PVF on the Start Screen and Start MENU..........ccouieiiriince et 1

1.1.1. ShOrtCUtS 10 LAUNCN PVF ...ttt bbbttt 2
1.1.2. COMMANAS SUDMENU.......uieeieieiiciescse ettt s sttt 2
1.1.3. PrOfIlEr SUDMENU......cviiiiieiici ettt bbb 2
1.1.4. DOCUMENTALION SUDMENU........iviiieeieiiees ettt sns st nn s es e 2
1.1.5. LICENSING SUDMENUL......cviiiviieiieiictc sttt b bbb bbb bbb bbb st st aeb s 3
1.2, INTFOAUCHION 10 PV ...ttt sttt ee e ettt et 3
1.2.1. ViSUIL STUIO SEHINGS.....cucvieeriiiieisiitesic ettt a bbb bbbt b e 4
1.2.2. SOIULIONS AN PrOJECES.......cocvuieiiciieeeicietees bbb bbbt 4
1.3. Creating @ Hello WOrd ProjECt........ccvicviiceicsccs ettt 4
1.4, USING PVF HEID. ... 6
1.5, PVF SAMPIE PrOJECES. ... cvuceirieiieiciiie ittt 7
1.6, COMPALDIIIEY. ... ettt Rttt 7
1.6.1. WIN32 API SUPPOIt (QWIN)......ccvviviiieiciiieictsees ettt sttt 8
1.6.2. Unix/Linux Portability Interfaces (dflib, dfport)...........ccciririirnnieseesceesse e 8
1.6.3. Windows Applications and Graphical USer INterfaces..........ouviirinininirereneses e 9

Chapter 2.BUild With PVF..........ocrsnscsrescscscssssssssssssse e sssssssssssssssssssssssssesesesssssssssssssnssssssssesssssasssssssanenens 1

2.1, Creating @ PVF PrOJEC ..ottt 11
211, PVF PrOJECE TYPES....viviviiiiitictete ettt ettt bbbttt s st ss s nnnenenas 11
2.1.2. Creating @ NEW PrOJECL.......c.iiiieirieeiie ettt 11

2.2, PVF SOIULION EXPIOTET......cocviiriieiiitiiieicieiste ettt ssa sttt s bbbttt s e 12

2.3. Adding Files 10 @ PVF PrOJECL........coviiiiiieiciei ettt 12
2.3.1. AAA 8 NBW Fl....euiiiiiieiee ettt bbbt 12
2.3.2. Add AN EXISHNG File....... ottt ettt 13

2.4. Adding @ New Project t0 @ SOIUION........c.cvieiiirieircee e 13

2.5. Project Dependencies and BUild OFQer...........ccoeuiriiininieinieieisses ettt et ss sttt ssssnsessesas 13

2.8, CONfIGUIBLIONS. ...ttt b bbb s s b8t 14

2.7 PlAtfOMMS ...ttt ettt R 14

2.8. Setting GIODal USEr OPHONS......c.cvueviiriieiriiiereisee ettt 14

2.9. Setting Configuration Options USING Property PAgES...........cccocuieiriiriiiiesicte et 15

2.10. PrOPEILY PAGES.....coceeerieieiereireieeeeseieiset ettt bbb s bbb 15

PVF User's Guide i

2.11. Setting File Properties Using the Properties WINAOW...........ccccvieuiniieicisieessee s 20

2.12. SEiNG FIXEU FOMMAL.......c.cuiirieiiiieiriiec ettt bbbt bbbt 21
2.13. BUIldING @ PrOJECt WIth PVF........oeiieiicccccs ettt st 21
2.13.1. Order of PVF BUIld OPEIAtiONS...........cceiiveiiceeieeecieiieeete ettt ettt ae st et ss et bes st sanse s 22
2.14. Build Events and CuStom BUIld SEEPS.........cveuriieiiirieiirieeisie ettt 22
2040, BUIIA EVENTS ...ttt s sttt 22
2.14.2. CUSIOM BUIIA SEEPS.... vttt 22
215, PVF BUIIA MBETOS.cevieiiiiets ettt bbb bbbt 23
2.16. Static and DYNAmIC LINKING.........coeriurireiieirieiieinieiseise et 23
217, VCH# INtEIOPEIADIIIEY.c..vvevvircreiict ettt ettt bbb b tns 23
2.18. VCAH INTEIOPETADIITY. ... cvuieeseeeeeesetreie ettt bbbttt 24
2.19. Linking PVF @Nnd VC++ PIOJECLS......c.cvviueviiiieiicteiseete sttt sttt s st seb sttt b st ss e 24
2.20. COMMON LINK-ME EITOS.......iecieeieceeeiceee ettt esee et ess et e st ee e ensnnen 24
2.21. Migrating an Existing AppliCation 10 PVF..........coiiiiircesses ettt 25
2.22. FOrtran EdIING FEAUMES.ttt ettt een 25
Chapter 3.Debug With PVF..........isss s s s s 27
3.1, WINAOWS USEA 1N DEDUGGING. .-vvvreeeereirireieteireseie sttt sese ettt ettt s bbb 27
311 AULOS WINGOW......ceeiiieicicisice ettt s et ettt esns 27
3.1.2. BreaKpoints WINGAOW.........cocviiiieieiceis ettt bbb bbb b s n s aenenenas 27
3.1.3. Call STACK WINAOW......vucviiericrsiieietssies ettt ettt 28
3.1.4. DisaSSEMDBIY WINAOW.cviriiiiiieieieirii ettt bbbttt s sttt n b 28
3.1.5. IMMEAIAIE WINAOW......eeeeceei ettt ettt 28
3.1.6. LOCAIS WINAOW......ouiieiieieiictst ettt 29
317, MEMOTY WINGOW. ...ttt bbb 29
3.1.8. MOTUIES WINUOW.coviriiiitiitet e bbb 29
31,9, OULPUL WINAOW. ...ttt sttt et e sttt 29
3.1.10. ProCESSES WINAOW.......cvcviicieiiiieisieieiis ettt sttt s e b st es bt n et s ennis 29
311, REGISIEIS WINUOW.......c.ceeeiceee ettt ettt 30
3112, THrEAAS WINGAOW.vevrieeeieieirisieisisieiss sttt es st s et s s b st nn et s ennis 30
3113, WALCH WINAOW. ...ttt bbbt 30
3.2, VariADIE ROIOVETceiieeieeeirircieisiets sttt st ettt s bbbttt 30
3.2.1. SCAIAI VANDIES........coevieeeieieiseeietse ettt bbb 31
3.2.2. ATTAY VAITADIES. ..ot 31
3.2.3. User-Defined TYPE VarDIES.........covcviiiiiiiicsce ettt bbb 31
3.3. Debugging an MPI ApplICatioN i PVF ...ttt 32
3.4. Attaching the PVF Debugger to a Running ApplICatioN........ccvuiiiiiieieiesissseseeeee s 32
3.4.1. Attach to a Native Windows APPlICALION...........c.erurriirre ettt ena 32
3.5. Using PVF to Debug a Standalone EXECULADIE...........cccuviieiiiicesicssece st 33
3.5.1. Launch PGl Visual Fortran from a Native Windows Command Prompt.............cccoenrrnennninnneenneesseeens 33
3.5.2. Using PGl Visual Fortran After a Command Line LAUNCh...........cceriurininininieneence e 34
3.5.3. Tips on Launching PVF from the COmmMaNnd LiNE...........ccoeririiininieininieisse st essssesessssesesssssssenns 34
Chapter 4.USing MPIin PVF........snsssss st s 36
4.1, MPL OVEIVIEW......covieiriiie ittt ss st ss s ss 588t 36

PVF User's Guide iii

4.2. System and SOftware REQUIFEMENLS.c.ceiirieiiiecieice sttt bbbt 36

4.3, ComPIle USING MS-MPLL.....cooiiieiiirete bbb 37
4.4, ENADIE MPI EXECULION.ouivuivriirieeiscreieres ettt 37
4.4.1. MP] Debugging Property OPLONS..........ccceiiueiieiinieieisse sttt 37
4.5. Launch an MPI APPIICALION........c..cuiieiirceieisce ettt 37
4.6. Debug an MPI ADPLICATION.cuiriieeirieee ettt 37
4.7. Profile an MPI APPICAHON. ... 38
Chapter 5.Getting Started with The Command Line COMPIIErS..........ccourmrerereresmssssmsmsmsmssesesessssssssssssssssesesesssssssssssssnens 39
LT T =Y 1T 39
5.2, Creating @n EXAMPIE........cccuiiieiieiiesce ettt sttt b bbbttt 40
5.3. Invoking the Command-level PGl COMPIIETS........c.cceuuriiriinieiire e 40
5.3.1. COMMANG-INE SYNEAX.......cviiiiiiiieiisiiesiee ettt bbb bbbttt b s e 40
5.3.2. COMMANG-INE OPHONS.euceeerieceeeieier ettt ea sttt ee e ensenen 41
B5.3.3. FOMIAN DIFECHVES......vvvieviiiciicieict ettt 41
5.4, Filename CONVENTIONS. ..ottt ettt s et ees bt 41
B INPUL FlES ...t 42
5.4.2. OULPUL FlES... ..ottt bbb bbb b s bbb bbb s st bbb s bt n bt 43
5.5, FOMTAN DAta TYPES....ceceeerieeieieireieiei sttt 44
5.6. Parallel Programming Using the PGl COMPIIETS...........ccouiuiuriiiiinieieisiensis e ssssses 45
5.6.1. RUn SMP Parallel Programs.........cceerieiiinieininieineisee ettt 45
5.7. Site-Specific Customization of the COMPIIETS.............ccuevirericicece e s 45
BT USE SHEIC FIIBS...eueeeieee ettt ettt es ettt e e snnnaenns 46
5.7.2. USING USET IC FllS......cviieeeeectcieee sttt st bbbt s et et n s 46
5.8. CommOn DEeVEIOPMENT TASKS......cueuireeeieeieerei ettt ettt 46
Chapter 6.Use Command Ling OPtiONS.........c.covuermerenmesmsmensmsmssesssssssesssssssessssssessssssesssssssesssssssesssssssesssssssssssssssesssssssesses 48
6.1. Command LiNe OPHON OVEIVIEW.c.cuririieeririectrircieirie ettt ettt s e setenas 48
6.1.1. Command-ling OPHONS SYNAX.......ceuiiiriiirieieirte et 48
6.1.2. Command-liNe SUDOPHONS........ceuiiiiiiiiccce bbb a et b baes 49
6.1.3. Command-line Conflicting OPHONS.........ciuiiriiiirieirie e 49
6.2. Help with Command-liNg OPLONS...........cceeiiiiiiiceeisece ettt bbb bbbt naees 49
6.3. Getting Started With PErfOrMaNCE...........cou ittt 51
6.3.1. Using —fast and —fastSSe OPLONS.......cccociierininieiiee ettt 51
6.3.2. Other Performance-Related OPHONS.........c.ocviiiiriiirerre ettt 52
6.4. Targeting Multiple Systems — Using the —tp OPtioN.........ccviieeiiesccc s 52
6.5, FreqUeNntly-USEA OPtIONS.veuiieeiri ettt n e 53
Chapter 7.0ptimizing and Parallelizing............cocvuurenererrensermsressesessessesessessssessesssssssesssessesssssssesssssssesssssssesssssssesssssssensenes 54
7.1, OVEIVIEW OF OPHMIZATON. ..ottt ens e ne st 55
T O I o 1@ 114112 0 PRSP 55
7.1.2. Global OPHMIZALION..........civiviieieieiiieieecce et ettt bbb bbb bbb e bbb e bbb n s 55
7.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization..............cccocvvrinnnnenisnrescseeens 55
7.1.4. Interprocedural Analysis (IPA) and Optimization..........c.cccocvinininiesees s 56
7.1.5. FUNCHON INHINING. ...ttt bbb bbbttt 56
7.1.6. Profile-Feedback Optimization (PFO).........coiiieiinieieinieseissie sttt 56

PVF User's Guide iv

7.2. Getting Started with OptMIZAtON..........coieviiici bbb 56

L2 TR 1Yo OO POT USRI 57
T7.2.2. —VINTO..ceotrr R 58
7.2.3. =MINEGINTO. .ottt bRttt 58
T2, —AUYTUN. .ottt bbb 1 AR 58
72,5, —V eSSt 58
7.2.8. PGPROF ...ttt ettt ettt 58
7.3. Common Compiler Feedback FOrmat (CCFF)........cociriiinnicnenieseee et 59
7.4. Local and Global OpHMIZALION. ..o 59
T, =00 59
7.5. Loop UNrolling USING —MUNFOIL.........c.iueiiiieieireiec ettt 61
7.6. Vectorization USING —IMVECE.........coiiiiieeee ettt ettt nsnnnsenas 62
7.6.1. Vectorization SUD-OPLONS.........c.cv ettt s sttt 63
7.6.2. Vectorization Example Using SIMD INSIUCHONS...........coviiieiiiciiisce st sssesnnns 64
7.7. Auto-Parallelization USING -MCONCUF...........curiiieerieerircieer ettt 67
7.7.1. Auto-Parallelization SUD-0PHONS. ..o 67
7.7.2. Loops That Fail to Parallelize
7.8. Processor-Specific Optimization & the Unified Binary...........ccoirnnnneesecseeeee e 72
7.9. Interprocedural Analysis and Optimization USING —=MiP@..........ccoeiririinics s 72
7.9.1. Building a Program Without IPA — Single SEEP........ccuiriirirerirerc e 73
7.9.2. Building a Program Without IPA - SEVEral SIEPS.........cccceiiuiiiiceiictsiie e 73
7.9.3. Building a Program Without IPA USING MEKE...........coiuiiiiiriinencise e 74
7.9.4. Building @ Program WIth IPA..........ccieccce sttt nee 74
7.9.5. Building a Program with IPA = SiNGIE SEEP.........ceiiiiiriir e 74
7.9.6. Building a Program with [PA - SEVEIal SEEPS.......cccovieiiiiiiieieesieies et 75
7.9.7. Building @ Program with IPA USING MaKE..........ceueriurieiiirieeirieeisee et 76
7.9.8. QUESHIONS GDOUL IPA......coiiei bbb 76
7.10. Profile-Feedback Optimization using —=Mpfi/=MpPfO.........ccovirmneesese st 77
7.11. Default Optimization LEVEIS...........cvvreuiirieiriieeisciee sttt 77
7.12. Local Optimization USING DIFECHIVES..........eurieririiririririesieisissisissss st 78
7.13. Execution Timing and INStruction COUNLING.........cceuiirieincinieinereene e 78
Chapter 8.Using FUNCLION INIINING.......cccuiimrermrcrcncssssssss s s ssssssssssssesessssssssssssssssssssesessssassssssssssnens 80
8.1. INVOKING FUNCHON INNING. c...vrteeiret et 80
8.2. USING @N INNINE LIDFAY........oiecececicicee sttt ettt s 81
8.3. Creating an INlNE LIDIAIY........ciiiuiiieiieie bbb s e 82
8.3.1. Working With INliNE LIDrari€s.........cccvvvieiecicicicicess st nes 83
8.3.2. DIBPENAEBNCIES.ceeereeeeeeeerereeeeseeeeeseseee e ees e e e easeees e e ese e aeseeeeses e e s seE e e e see e eeseEesneseeeeseEesseset s et et esseneses et enns 83
8.3.3. Updating Inline Libraries - MaKEfilES.........cccoueueriiiieiicscessse ettt 83
8.4. Error Detection during INJINING........c.crv ettt ettt 84
8.5, EXAMPIES..... ettt bR R SRR Rt 84
8.6. ReSHICONS ON ININING. ... cueiicteeeees bbbttt 84
Chapter 9.USING OPENMP.........cociiinriinssrissss s sa s s s s s s s 86
9.1, OPENMP OVEIVIEW.......cocvieiveiiicteieeectet sttt ettt bt sttt bbb st b s bbb bbb bbbttt s et s st aes 86

PVF User's Guide v

9.1.1. OpenMP Shared-Memory Parallel Programming MOEL...........cccoveviieriniiesieeeee e 86

012, TEIMINOIOGYvreeesereies ettt bbbt 87
9.1.3. OPENMP EXAMPIE.....cocoiieiieiiieiiiieietsi sttt sttt a s bbbt b b st s et n s 88
0.2, TASK OVEIVIEW. ... ceeeeeee ettt ee st ese ettt e e EEe2s 28 e 428 E e s e b e bt e e b e e e b ses et enneseeas 89
9.3. Fortran Parallelization DIMECHVES.......cveeriieeirieieisietsiseseisesssssss s s ssesssss s s sssesssssssssssssesessssesssnsesssssessssesesnes 89
9.4. DIreCtive RECOGNITION.cuetiieeericeeiriete ettt 90
9.5. Directive SUMMAIY TaDIE.....c.cei ettt bbbt 90
9.5.1. Directive SUMMANY TaDIE.......c.vuieeirieiriecs e 91
LTI =T = O =TT TS 92
9.7. RUNtIME LIbrary ROULINES.......cceueiiiiiiiiicces sttt ettt 9%
9.8. ENVIrONMENT VAITADIES.........ieeieeieeer ettt na st ees et s nnas 98
Chapter 10.USING @n ACCEIEIALON.........ccrcreeerereesresesesresesssessssssses s sse s ssse s ssessssasessnns 100
0.1, OVBIVIBW. ...ttt et s et e s e ee s e 2842 b2 e e a2 s E e e sn e £ re s e b s aesn e s e s et s eeneten et e 100
OIS R 014 oo =10 TSR 100
10.1.2. AVAIADITIEY......cvevrveses bttt 101
10.1.3. User-directed Accelerator Programming...........ceerreeinieeineereeessseeeseseeessesssessssessessssesssssssessessssssnees 101
10.1.4. Features Not Covered or IMPIEMENET...........cc.ceiiiiieiiere ettt 101
10.2. TEIMUNOIOGY ... vuvreereeeeretreeeesetseeeesee et es bbb bbb b8 888 s s bbb st 101
10.3. SYSIEM REGUITEMENTS.cuiiririiiieiiesisects ettt bbb bbbt 103
10.4. Supported ProCessors and GPUS...........coiiiieiis s 103
10.5. INSAllAtion @Nd LICENSING. ... c.tveeireeeiicieieiriet ettt 104
10.5.1. Enable Accelerator COMPIIAtION..........ccrierrerice et enen 104
10.6. EXECULION MOTEL......coviieiiicie et e 104
10.6.1. HOSE FUNCHONS. ..ottt et ettt 104
10.6.2. LEVEIS Of ParallElISM......c.iviieiiieiieiciriei sttt 104
10.7. MEMOIY MOUEL........ ettt 105
10.7.1. Separate Host and Accelerator Memory CONSIAErations............ceriererierirrerierineieneeeeseseeeseseeeeseseeneeens 105
10.7.2. ACCEIEAOr MEIMIOIY.......oi ettt e sttt b s e 105
10.7.3. CaChe MANAGEMENL.........ccruiuriieiiercieieereee et eb st bbbt 106
10.8. RuUNNiNg an ACCEIErator PrOGraM.........c.covi ittt es 106
10.9. ACCEIEIALOr DIFECHVES.vvreiseeetsieieisiees sttt ettt s ettt ses bt ns b en st s s nes 106
10.9.1. Enable ACCEIErator DIFECHVES.......ccviieiirieieirieirise ettt 106
0TI 1 | TR 107
10.9.3. Free-FOrm FOrran DIFECHVES.........ciuiuriiercier ettt 107
10.9.4. Fixed-FOrm FOrtran DIFECHVES........coiiuiirieierer ettt eeen 108
10.9.5. OpeNACC DIreCtive SUMMAIY........cceviviviiriieiicteiece sttt sttt s bbb ntns 109
10.10. Accelerator DIrECHVE ClAUSES........c.curirererceeericeere ettt ses e ses e ns s nsesennas 112
10.11. OpENACC RUNEME LIDTAMES.cviiiiceiiicieiieis ettt 115
10.11.1. Runtime Library Definitions..........coierurieiicicr ettt 115
10.11.2. RUNtiMe LIDrary ROULNES.........coviuieriiriierceicisce et 116
10.12. ENVIrONMENE VAIADIES.........cecveieecce ettt st 117
10.13. Applicable PVF Property PAgES.........c ettt sttt ses st sssssesessssennn 117
10.14. Applicable Command LiNe OPLIONS..........cccciiuiiiiieiiicieiece ettt bbbt 118

PVF User's Guide Vi

10.15. Profiling ACCEIETatOr KEIMNEIS........c.cvieiiiiciiiicicriie sttt 119

10.16. Related Accelerator Programming TOOIS...........ceueurieererriiemerniieeerseiee s es s st ensssensenns 119
10.16.1. PGPROF PGCOIIECL........cuiiiiieeiiiicieiisicisisetsst ettt sss sttt a st enas 119
10.16.2. NVIDIA CUDA PIOfiE.....ccviurireiriiriieisisissseisise ettt sttt sttt 120
10.16.3. TAU - Tuning and ANalysis ULIlItY...........cccoeuririrnnierreneeen e 120

10.17. SUPPOIEA INTHINSICS.........viviiiceeieictect ettt s s b a bbb bbbt s e 120
10.17.1. Supported Fortran Intrinsics SUMMAry TabIe............coeuiuriiriniiriereese e 120

10.18. References related 10 ACCEIBIATOTS. ..ottt 122

Chapter 11.USING DireCHIVES.....cuurrisiimrrississ s 123

11.1. PGI Proprietary FOrran DIFECHVES..........cccoviieviicrerc ettt st be s 123

11.2. PGI Proprietary Optimization DireCtive SUMMAIY..........coeuririiuriinieinieieisee s 124

11.3. Scope of Fortran Directives and Command-Ling OptioNnS...........ccccvvvevriieniiesnicesies s 125

11.4. Prefetch DIreCtives and Pragmas...........c.oceeuirieinineineieseie et 126
11.4.1. Prefetch Directive SYNtaX in FOMIaAN.........ccoiiciiiiiieicesicsss et 126
11.4.2. Prefetch Directive Format REQUIFEMENES..........ccviviviiicccee et 126
11.4.3. Sample Usage of Prefetch DIrCHVE. ..o s 127

11.5. IGNORE_TKR DiIFBCHVE.cvvveerieiieiitsiieieiseseisstssseietssse sttt sss st sss st ss st sse s sse s ss s ss st ssesnssassnsnees 127
11.5.1. IGNORE_TKR DiIr€CHVE SYNTAX.......reurerrererrereereereereieereeseis et sssessssssssssssssssssssssessessssssssesssssesssssessassssanes 127
11.5.2. IGNORE_TKR Directive Format REQUIFEMENLS............cccviiueiiiieiiceieieet et 128
11.5.3. Sample Usage of IGNORE_TKR DIrECHVE.cvuueiiurirriiiriieireireieei ettt essssennes 128

11.8. IDECS DIMECHVES......cvvuvvvvicisiiciieitseisssse ettt s 128
11.6.1. IDECS DIFECHVE SYNEAX.....curuurerrereereiieesresreeseeeeeseseseeseeese st esssesssessessessesssesses st eesssssesssesssessesssessasssesssssssens 128
11.6.2. FOrmMat REQUIFEMENES.ciiiiiieieieir ettt s s s netenas 129
11.6.3. SUMMANY TADIE. ...t bbb 129

Chapter 12.Creating and Using LIDraries........coovrennmnenmmissses s sssssssssens 130

12.1. PGI Runtime Libraries 0n WINAOWS............ocu ittt et 130

12.2. Creating and Using Static Libraries on WINAOWS...........ccouriirrniniinencs s 131
12.2.1. @5 COMMEANG........iiiieiteeie ettt ettt e s et s et s e s b e s et e e s e et s b s e st 131

YNttt R R R R R 131
OPLIONS... ...ttt ettt bbb b b s bbb bRt b A bbbt b b s b bt b bbb s et b n bt as 131
12.2.2. 1aNID COMMEANG......coiieeeiiecieces ettt s et s st 132
L1 TSP 132
OPHIONS..... ettt bbb bbb E 8RR bR 132

12.3. Creating and Using Dynamic-Link Libraries on WINAOWS.............ccccoueuriiriiiiieeiice e 132
12.3.1. BUIIA @ DLL: FOMIAN.......cuiiiieiceeeeeieis sttt sttt nnnns s 134
12.3.2. Build DLLs Containing Mutual Imports: FOMIan............cccieinieisceics et 135
12.3.3. Import a Fortran module from @ DLL..........coiieccrreer et 136

12,4, USING LIB3F ...ttt bbb 137

12.5. LAPACK, BLAS @GN0 FFTS...c.itiieieiiieiieisie ettt sttt sttt 137

12.6. LINKING WIth SCALAPACK........co ittt bbb 138

Chapter 13.Using Environment Variables...........ccccecverennnnnnnnnnscss s ssssssssesssessssssssssssssssssssessssssasas 139

13.1. Setting ENVIronmeNnt Variables............ceiiiiirs i s e 139

13.1.1. Setting Environment Variables on WINAOWS...........ccoeuririeininininneissecie s sssssssesssssnns 139

PVF User's Guide vii

13.2. PGI-Related ENVIrONMENt VAMADIES.c.cieiiiiiiiccceee ettt sttt 140

13.3. PGl ENVIFONMENT VANADIES.c.cveeieceieeictriciee sttt ettt 141
13.3. 1. FLEXLM_BATCH. ...ttt bbb 141
13.3.2. FORTRANODPT ... ettt ettt ettt s8££ bbb 141
13.3.3. LIM_LICENSE _FILE. ...ttt sttt sttt 142
1334, IMPSTHKZ. ...ttt bbb bbb bbb 142
13.3.5. IMP_BIND. ..ottt sttt sttt 142
13,318, IMP_BLIST ...ttt bbb 143
1337 IMP_SPIN ...ttt 8 £ R e E e E e 143
13.3.8. IMP_WARN. ..ottt bbb bbb 143
13.3.9. INCPUS..... ottt s8Rttt 144
13.3.10. NCPUS _MAX ..ottt 144
13.3.11. NO_STOP_MESSAGE.........ceieeieereireeeiieieeeteetseeseesetesse s et ss st ees e es e ssesans 144
13,312, PATH ot 144
131313, PGl 144
13.3.14. PGI_CONTINUE........oo ittt ittt sttt sttt bbb 145
13.3.15. PGI_OBUSUFRFIX ...ouitieieireiscee ittt bbb bbb 145
13.3.16. PGI_STACK USAGE.........oeeereieeirieiieiirete ettt sttt ss st 145
13,317, POILTERM. ...ttt sttt bbb 145
13.3.18. PGI_TERM_DEBUG........c.etiiriieieicisinceneesene ettt ss st ss st ss sttt essessessnsans 147
13.3.19. PGROUPD_LICENSE_FILE.........coitiiiiiiiieiiieiiseisieseisee st 147
13.3.20. STATIC_RANDOM_SEED.........ccotieeeureereereereereereeseeseeseeseesese s ssessess s sss s sss st ess s ssessessessessesssssesssssesens 147
13,321, TIMP bbb 148
13.3.22. TIMPDIR ...ttt b s8££ 8 582 E 5828t 148

13.4. Stack Traceback and JIT DEDUGGING.......ceicriiiririieisiee ettt st 148

Chapter 14.Distributing Files = DePIOYMENt...........ccocuiniririnini s 149

14.1. Deploying Applications 0N WINGOWS...........cviriiriirieinnieiese et 149
14.1.1. PGl REISIIDULADIES.coceeceeee ettt 149
14.1.2. Microsoft RediStriDULADIES............ccviuiriirccee e 150

14.2. Code Generation and Processor ArChItECIUTE. ..o e 150
14.2.1. Generating GeneriC X80 COUE.cvuruiurireireireeireiree ettt etes 150
14.2.2. Generating Code for @ SPECIfic PrOCESSOT.v.iuriieiiriieeirte et 150

14.3. Generating One Executable for Multiple Types 0f PrOCESSOrS.........coveiurieininieeirieesee e 150
14.3.1. PGI Unified Binary Command-line SWItChES.............ccceviiuiiiieiiccsc e 151
14.3.2. PGI Unified Binary Directives and Pragmas..........cooeeeuieriieienisniieneieiseseieesesesessssesess s 151

Chapter 15.Inter-1anguage Calling...........ocoveeremereeresmmsssresessssessssssesssssses s ssess e ssesssssssesssssasesssns 153

15.1. Overview of Calling CONVENLIONS..........cc ittt bbbt 153

15.2. Inter-language Calling CONSIAEIAtIONS.........ccviriuriiiciriciesi sttt 154

15.3. FUNCHONS @NA SUDIOULINES.........oiieieiiiei ittt ettt 154

15.4. Upper and Lower Case Conventions, UNGEISCOIES...........uvwuierirriierimeeieniseeeeesseineessseesessssessesssseesssssessssssseenees 154

15.5. COMPALIDIE DAL TYPES.....cuivierierierireiiieiseiies ettt st bbb bbb 155
15.5.1. Fortran Named CommOn BIOCKS.........cceuiuriiriiinieiniineiisee ittt 156

15.6. Argument Passing and RELUMN VAIUES...........oceuiiiiriiereerc ettt 157

PVF User's Guide viii

15.6.1. PasSiNG DY VAIUE (J0VAL)......coeuiuiereiiiriieireiste ettt ettt 157

15.6.2. Character REUMN VaIUES.........couii i 157
15.6.3. COMPIEX REIUMN VAIUES.......c.cviieeiciiisicie ettt st ns s 158
15,7, AITAY INGICES. ..ottt ettt e st E s e b et ettt 158
15,8, EXAMPIES. ... vt 159
15.8.1. Example - FOrtran CalliNg C.........cvuiriririirieiseieieiseissi ettt sttt sess 159
15.8.2. Example - C Calling FOMIAN........coiiirircre ettt 160
15.8.3. Example - FOrtran CalliNg CH........oiiiieiierieiireeiiiseisesse ettt st sssasssnees 160
15.8.4. Example - CH+ Calling FOMIaN........c.iiiriicire bbb 161
15.9. WIn32 Calling CONVENTIONS........c..cuiviiiiieiieteiiescie ettt a et s bbbt ssb bbb sebns 163
15.9.1. Win32 Fortran Calling CONVENLIONS...........ceuiuiiriiiriirieirenei et 163
15.9.2. Symbol Name Construction and Calling EXample..........ccccovvieirieeiiisseceies e 164
15.9.3. Using the Default Calling CONVENLION. ..o 165
15.9.4. Using the STDCALL Calling CONVENLION.........cveuiiiriiiiiieiiicisis et sss s st sssess s sss s ssssss s s sennes 165
15.9.5. Using the C Calling CONVENTION.cuiuriieeeririeirtees ettt sttt 165
15.9.6. Using the UNIX Calling CONVENEON..........ciiiiieriiiiirieicneies et 165
15.9.7. Using the CREF Calling CONVENTION..........cveiiiriieiciriieisissieietssiei ettt ss sttt sssessessesns 166
Chapter 16.Programming Considerations for 64-Bit Environments.............ccconmnnnnnesssnens 167
16.1. Data Types in the 64-Bit ENVIFONMENT.........c.ooiiicr et 167
16.1.1. FOMTaN Data TYPES....cccueureeereirieireeteresee et b b 167
16.2. Large Dynamically AlIOCAtEA Data...........cccvvieeiieiiiiesiiseccee e 168
16.3. Compiler Options for 64-bit Programming............ccreeeuriereiniennirenee s eeees 168
16.4. Practical Limitations of Large Array Programming...........cccccenieeiiceisiesisscssssssssese s s s ssssesesssenns 169
16.5. Large Array and Small Memory Model in FOMIaN. ... s 169

PVF User's Guide ix

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

PGl Compilers and COMMEANGScceuieririuierieirierieiie et XV
PVF WIn32 APl MOAUIE MAPPINGSvuvrieiieieiniieiieisee ettt 8
Property Summary by Property PAgecceiiiiiiiiescsreee ettt 16
PVF Project File PrOPEIHIESccuiiiiiieiiiitceetete sttt ettt s s 20
Runtime Library Values for PVF and VC++ PIOJECEScucurvieiierieiiiriesisse ettt sssssssennns 24
OPLON DESCHPHONSocevieecteicte ettt ettt s e a ettt st sttt s bt en st et s et s en st s st s anes 44
Typical —fast and —fastsSe OPHONS ..ot neen 51
Additional —fast and —fastsSe OPLONSccviirrirrirrrce et 51
Commonly Used Command—Ling OPLONS ..ot 53
Example of Effect 0f Code UNFolliNgceuiiriinieeneese e 62
—IMVECE SUDOPLIONSvoveicviiecte ettt s bbb bbbt st nns 63
-MCONCUE SUDOPHONSvuveviiictetctste ettt bbbt bbbt bbb s bt nas 67
Optimization and —O, —g and —M<OPt> OPLONScvvviurieiiriere s 78
Directive and Pragma SUmmary TaDIE ..ot 91
Directive and Pragma SUummary TabIE ..o 92
Runtime Library ROUIINES SUMMAIYc.ciiiiiiiieee s 95
OpenMP-related Environment Variable SUMMary Tableccocviininiinnenesese e, 99
PGI Accelerator Directive SUMMArY TabIEcvieiiuriniirecire sttt 109
Directive ClauSES SUMMAIYcveviiiieiriiie sttt se bbb bbbt b sttt anais 112
Accelerator Runtime Library ROULINES ..o 116
Accelerator EnVironment Variables ..o 117
SuppPOrted FOMAN INTHNSICScvcveviiicccctee ettt b b s s 121
Proprietary Optimization-Related Fortran Directive SUMMATY ..o 124
IGNORE_TKR EXMPIE ... ceorercereiicereiieieceeisseesee ettt ess sttt ss st sss st sses st esssssssssnes 128

PVF User's Guide X

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

IDECS Directives SUMMANY TaADIEcc.ccvvviveeieiieieeceeeeeeeee ettt ettt ettt 129

PGI-Related Environment Variable SUMMAIYc.cooieiiiiiiniiesice et eae s 140
SUPPOItEd PGI_TERM VEIUEScocviriiiiieiicteccte ettt sttt bbb 146
Fortran and C/C++ Data Type ComPatibIlityccccoerrurieiieirieieisce st 155
Fortran and C/C++ Representation of the COMPLEX TYPEuoviuriririrrieese e 156
Calling Conventions Supported by the PGI Fortran COMPIIETScevirerireierer e 163
B4-bit COMPIIET OPLONSovrieeircecii e 168
Effects of Options on Memory and Array SIZEScceeriruiirieiierieiiseeieeese e sseeees 168
B4-Bit LIMIATIONScouveercirieciciicce s 169

PVF User's Guide Xi

PREFACE

Thisguideis part of a set of manuals that describe how to use The Portland Group (PGI) Fortran
compilers and program development tools integrated with Microsoft Visual Studio. These

tools, combined with Visual Studio and assorted libraries, are collectively known as PGl Visual
Fortran®, or PVF®. Y ou can use PVF to edit, compile, debug, optimize, and profile serial and
parallel applications for x86 processor-based systems.

The PGI Visual Fortran User’s Guide provides operating instructions for both the Visual Studio
integrated development environment as well as command-level compilation. The PGI Visua
Fortran Reference Manual contains general information about PGI’ simplementation of the
Fortran language. This guide does not teach the Fortran programming language.

Audience Description

This manual isintended for scientists and engineers using PGl Visua Fortran. To fully
understand this guide, you should be aware of the role of high-level languages, such as Fortran,
in the software development process; and you should have some level of understanding of
programming. PGl Visual Fortran is available on avariety of x86 or x64 hardware platforms and
variants of the Windows operating system. Y ou need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards

Y our system needs to be running a properly installed and configured version of PVF. For
information on installing PVF, refer to the Release Notes and Installation Guide included with
your software.

For further information, refer to the following:

» American National Sandard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

» ISO/IEC 1539-1: 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

PVF User's Guide Xii

Preface

» 1SO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» TheFortran 2003 Handbook, Adams et a, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

Users typically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasksis key to using the PGl compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

This book contains the essential information on how to use the compiler and is divided into these
sections:

Getting Started with PV F gives an overview of the Visual Studio environment and how to use
PGI Visual Fortran in that environment.

Build with PVF gives an overview of how to use PGI Visual Fortran (PVF) within the Microsoft
Visual Studio IDE (Integrated Development Environment) to create and build a PVF project.

Debug with PVF gives an overview of how to use the custom debug engine that provides the
language-specific debugging capability required for Fortran.

Using MPI in PVF describes how to use MPI with PGI Visual Fortran.

Getting Started with The Command Line Compilers provides an introduction to the PGI
compilers and describes their use and overall features.

Use Command Line Options provides an overview of the command-line options as well as task-
related lists of options.

Optimizing and Parallelizing describes standard optimization techniques that, with little effort,
allow usersto significantly improve the performance of programs.

Using Function Inlining describes how to use function inlining and shows how to create aninline
library.

Using OpenM P provides a description of the OpenM P Fortran parallelization directives and
shows examples of their use.

Using an Accelerator describes how to use the PGl Accelerator compilers.

Using Directives provides a description of each Fortran optimization directive, and shows
examples of their use.

PVF User's Guide Xiii

www.openmp.org.

Preface

Creating and Using Libraries discusses PGI support libraries, shared object files, and environment
variables that affect the behavior of the PGI compilers.

Using Environment V ariabl es describes the environment variables that affect the behavior of the
PGI compilers.

Distributing Files - Deployment describes the deployment of your files once you have built,
debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language callsin a Fortran
program and Fortran language callsin a C program.

Programming Considerations for 64-Bit Environments discusses issues of which programmers
should be aware when targeting 64-bit processors.

Hardware and Software Constraints

This guide describes versions of the PGI Visual Fortran that are intended for use on x86 and
X64 processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the rel ease notes delivered with the PGI
Visual Fortran.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
isused for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case iteml is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename ...
ellipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/IC++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

PVF User's Guide Xiv

Preface

The PGI compilers and tools are supported on both 32-bit and 64-hit variants of the Linux, OS
X, and Windows operating systems on a variety of x86-compatible processors. There are awide
variety of releases and distributions of each of these types of operating systems.

Terms

A number of termsrelated to systems, processors, compilers and tools are used throughout this
guide. For example:

AMD64 large arrays SSE Win32
AVX -mcmodel=small SSE1 Win64
DLL -mcmodel=medium SSE2 Windows
driver MPI SSE3 x64
dynamic library MPICH SSE4A and ABM x86

Intel 64 multi-core SSSE3 x87
hyperthreading (HT) NUMA static linking

IA32 shared library

For acomplete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGl provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command
PGF77 FORTRAN 77 pgf77
PGF95 Fortran 90/95/2003 pgfas
PGFORTRAN PGl Fortran pgfortran
PGPROF Performance profiler pgprof

n The commands pg£95 and pgfortran are equivalent.

In general, the designation PGI Fortran is used to refer to The Portland Group’s Fortran
90/95/2003 compiler, and pgfortran is used to refer to the command that invokes the compiler. A
similar convention is used for each of the PGl compilers and tools.

For smplicity, examples of command-line invocation of the compilers generally reference the
pgfortran command, and most source code examples are written in Fortran. Usage of the PGF77
compiler, whose features are a subset of PGF95 or PGFORTRAN, is similar.

There are awide variety of x86-compatible processorsin use. All are supported by the PGI
compilers and tools. Most of these processors are forward-compatible, but not backward-

PVF User's Guide XV

http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm

Preface

compatible, meaning that code compiled to target a given processor will not necessarily execute
correctly on a previous-generation processor.

A table listing the processor options that PGl supportsis available in the Release Notes. The table
also includes the features utilized by the PGI compilers that distinguish them from a compatibility
standpaint.

In this manual, the convention isto use "x86" to specify the group of processors that are "32-hit"
but not "64-bit." The convention isto use "x64" to specify the group of processors that are both
"32-bit" and "64-bit." x86 processor-based systems can run only 32-bit operating systems. x64
processor-based systems can run either 32-bit or 64-bit operating systems, and can execute all
32-bit x86 binariesin either case. x64 processors have additional registers and 64-bit addressing
capabilities that are utilized by the PGl compilers and tools when running on a 64-bit operating
system. The prefetch, SSE1, SSE2, SSE3, and AV X processor features further distinguish the
various processors. Where such distinctions are important with respect to a given compiler option
or feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that support
SSE1 and SSE2.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures,
and the compilers and tools available from The Portland Group.

» PGI Fortran Reference manual describesthe FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

» SystemV Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

» SystemV Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/abi.pdf.

» Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).
» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

PVF User's Guide Xvi

http://www.x86
http://www.x86

Chapter 1.
GETTING STARTED WITH PVF

This section describes how to use PGI Visual Fortran (PVF) within the Microsoft Visual Studio
IDE (Integrated Development Environment). For information on general use of Visua Studio,
refer to Microsoft’s documentation.

PVF isintegrated with several versions of Microsoft Visual Studio. Currently, Visual Studio
2008, 2010, 2012 and 2013 are supported. Throughout this document, "PGI Visual Fortran” refers
to PVF integrated with any of these supported versions of Visua Studio. Similarly, "Microsoft
Visual Studio” refersto Visua Studio 2008, VS 2010, VS 2012, and VS 2013. When it is
necessary to distinguish among the products, the document does so.

Single-user node-locked and multi-user network floating license options are available for both
products. When a node-locked license is used, one user at atime can use PVF on the single
system where it isinstalled. When a network floating license is used, a system is selected as the
server and it controls the licensing, and users from any of the client machines connected to the
license server can use PVF. Thus multiple users can simultaneously use PVF, up to the maximum
number of users allowed by the license.

PVF provides a compl ete Fortran devel opment environment fully integrated with Microsoft
Visual Studio. It includes a custom Fortran Build Engine that automatically derives build
dependencies, Fortran extensions to the Visual Studio editor, a custom PGl Debug Engine
integrated with the Visual Studio debugger, PGI Fortran compilers, and PV F-specific property
pages to control the configuration of all of these.

The following sections provide a general overview of the many features and capabilities available
to you once you have installed PVF. Exploring the menus and trying the sample program in this
section provide a quick way to get started using PVF.

1.1. PVF on the Start Screen and Start Menu

PGI creates an entry on the Start Menu for PGI Visua Fortran to facilitate accessto PVF,
command shells pre-configured with the PV F environment, and documentation. Microsoft has
replaced the Start Menu in the Windows 8, 8.1, and Server 2012 operating systems with a Start
Screen. If you are using one of these environments, you find tiles on the Start Screen for Visual
Studio, the PGPROF performance profiler and the command shells. The document links are

PVF User's Guide 1

Getting Started with PVF

hidden tiles; to locate one, search for it from the Start Screen by typing the first letter or two of its
name. Tip: almost all of the PGI documents start with the letter ‘p’.

This section provides a quick overview of the PVF menu selections. To access the PGI Visua
Fortran menu, from the Start menu, select Sart | All Programs | PGI Visual Fortran.

1.1.1. Shortcuts to Launch PVF

From the PGI Visual Fortran menu, you have accessto PVF in each version of Visual Studio on
your system. For example, if you have VS 2010 and V'S 2013 on your system, you see shortcuts
for PVF 2010 and PVF 2013.

PVF runs within Visual Studio, so to invoke PVF you must invoke Visual Studio. If other
languages such as Visual C++ or Visual Basic are installed, they are available in the same
instance of Visual Studio as PVF.

The PVF shortcuts include the following:

PGI Visual Fortran 2013 — Select this option to invoke PGI Visual Fortran 2013.
PGI Visual Fortran 2012 — Select this option to invoke PGI Visual Fortran 2012.
PGl Visual Fortran 2010 — Select this option to invoke PGI Visua Fortran 2010.
PGI Visual Fortran 2008 — Select this option to invoke PGI Visua Fortran 2008.

1.1.2. Commands Submenu

From the Commands menu, you have access to PVF command shells configured for each version
of Visual Studio installed on your system. For example, if you have both PVF 2013 and PVF
2010 installed when you install PV, then you have selections for PVF 2013 and PV F 2010.

These shortcuts invoke a command shell with the environment configured for the PGI compilers
and tools. The command line compilers and graphical tools may be invoked from any of these
command shells without any further configuration. On 64-bit systems, there will be shortcuts for
both the 64-bit versions of the compilers and tools and the 32-bit versions.

Important If you invoke a generic Command Prompt using Start | All Programs | Accessories | Command
Prompt, then the environment is not pre-configured for PGI products.

1.1.3. Profiler Submenu

Use the profiler menu to launch the PGPROF Performance Profiler. PGPROF provides away to
visualize and diagnose the performance of the components of your program and provides features
for helping you to understand why certain parts of your program have high execution times.

1.1.4. Documentation Submenu

From the Documentation menu, you have access to all PGl documentation that is useful for PVF
users. The documentation that is available includes the following:

» AMD CoreMath Library — Select this option to display documentation that describes
elements of the AMD Core Math Library, a software development library released by AMD
that includes a set of useful mathematical routines optimized for AMD processors.

PVF User's Guide 2

Getting Started with PVF

CUDA Fortran Reference — Select this option to display the CUDA Fortran Programming
Guide and Reference. This document describes CUDA Fortran, asmall set of extensions to
Fortran that support and build upon the CUDA computing architecture.

Fortran Language Reference — Select this option to display the PGI Fortran Command
Reference for PGI Visua Fortran. This document describes The Portland Group's
implementation of the FORTRAN 77, Fortran 90/95, and Fortran 2003 languages and
presents the Fortran language statements, intrinsics, and extension directives.

Installation Guide — Select this option to display the PVF Installation Guide. This document
provides an overview of the steps required to successfully install and license PGI Visual
Fortran.

OpenACC Getting Started— Select this option to display the PGl Accelerator Compilers
OpenACC Getting Started Guide. This document helps you prepare your system for using
OpenACC, and provides examples of how to write, build and run programs using OpenACC
directives.

Profiler Guide — Select this option to display the PGPROF Profiler Guide. This document
describes the PGPROF Profiler, atool for analyzing the performance characteristics of C, C+
+, F77, and F95 programs.

Reference Manual — Select this option to display the PGI Visual Fortran Reference Manual.
This document provides command-level compilation and general information about PGI’s
implementation of the Fortran language.

Release Notes— Select this option to display the latest PVF Release Notes. This document
describes the new features of the PVF IDE interface, differences in the compilers and tools
from previous releases, and late-breaking information not included in the standard product
documentation.

User's Guide — Select this option to display the PGI Visual Fortran User's Guide. This
document provides operating instructions for both the Visual Studio integrated devel opment
environment as well as command-level compilation and general information about how to
use PVF.

1.1.5. Licensing Submenu

From the Licensing menu, you have access to the PGI License Agreement and an automated
license generating tool:

>

Generate License — Select this option to display the PGI License Setup dialog that walks
you through the steps required to download and install alicense for PVF. To complete this
process you need an internet connection.

License Agreement — Select this option to display the license agreement that is associated
with use of PGI software.

1.2. Introduction to PVF

This section provides an introduction to PGI Visua Fortran as well as basic information about
how things work in Visual Studio. It contains an example of how to create a PVF project that
builds a simple application, along with the information on how to run and debug this application
from within PVF. If you're aready familiar with PVF or are comfortable with project creation in
V'S, you may want to skip ahead to the next section.

PVF User's Guide

Getting Started with PVF

1.2.1. Visual Studio Settings

PVF projects and settings are available as with any other language. The first time Visual Studiois
started it may display alist of default settings from which to choose; select General Development
Settings. If Visual Studio wasinstalled prior to the PVF install, it will start as usual after PVFis
installed, except PV projects and settings will be available.

1.2.2. Solutions and Projects

The Visual Studio IDE frequently uses the terms solution and project. For consistency of

terminology, it is useful to discuss these here.

solution
All the things you need to build your application, including source code, configuration
settings, and build rules. Y ou can see the graphical representation of your solution in the
Solution Explorer window inthe VS IDE.

project
Every solution contains one or more projects. Each project produces one output, where an
output is an executable, astatic library, or adynamic-link library (DLL). Each projectis
specific to asingle programming language, like PGI Visual Fortran or Microsoft Visual C++,
but you can have projects of different languages in the same solution.

We examine the relationship between a solution and its projects in more detail by using an
example. But first let’slook at an overview of the process. Typically there are these steps:

Create anew PVF project.
Modify the source.

Build the solution.

Run the application.
Debug the application.

agrwDdE

1.3. Creating a Hello World Project
Let’swalk through how to create a PVF solution for a simple program that prints

"Hello World"

1. Create Hello World Project
Follow these steps to create a PVF project to run "Hello World".
1. Sdlect File| New | Project from the Visual Studio main menu.

The New Project dialog appears.

2. Inthe Project types window located in the left pane of the dialog box, expand PGl Visual
Fortran, and then select Win32.

3. Inthe Templates window located in the right pane of the dialog box, select Console
Application (32-bit).

PVF User's Guide 4

Getting Started with PVF

4. Inthe Namefield located at the bottom of the dialog box, type: HelloWorld.
5. Click OK.

Y ou should see the Solution Explorer window in PVF. If not, you can open it now using View
| Solution Explorer from the main menu. In this window you should see a solution named
HelloWorld that contains a PVF project, which is a'so named HelloWorld.

2. Modify the Hello World Source

The project contains a single source file called ConsoleApp. £90. If the sourcefile is not
already opened in the editor, open it by double-clicking the file name in the Solution Explorer.
The source code in this file should look similar to this:

program prog

implicit none

! Variables

! Body

end program prog
Now add a print statement to the body of the main program so this application produces
output. For example, the new program may look similar to this:

program prog

implicit none

! Variables

! Body

print *, "Hello World"
end program prog

3. Build the Solution

Y ou are now ready to build a solution. To do this, from the main menu, select Build | Build
Solution.

The View | Output window shows the results of the build.

4. Run the Application
To run the application, select Debug | Start Without Debugging.
This action launches a command window in which you see the output of the program. It looks
similar to this:

Hello World
Press any key to continue .

5. View the Solution, Project, and Source File Properties

The solution, projects, and source files that make up your application have properties
associated with them.

The set of property pages and properties may vary depending on whether you are looking at a
solution, a project, or a file. For a description of the property pages that PVF supports, refer to the ‘PVF
Properties’ section in the PGl Visual Fortran Reference Guide.

To seeasolution’s properties:

1. Select the solution in the Solution Explorer.
2. Right-click to bring up a context menu.

PVF User's Guide 5

Getting Started with PVF

3. Select the Properties option.
This action brings up the Property Pages dialog.
To see the properties for a project or file:

1. Sedlect aproject or afilein the Solution Explorer.
2. Right-click to bring up a context menu.
3. Select the Properties option.

This action brings up the Property Pages dialog.

At the top of the Property Pages dialog thereis a box labeled Configuration. In aPVF project,
two configurations are created by default:

» The Debug configuration has properties set to build a version of your application that can
be easily examined and controlled using the PVF debugger.

» The Release configuration has properties set so aversion of your application is built with
some general optimizations.

When a project isinitially created, the Debug configuration is the active configuration. When
you built the HelloWorld solution in Creating a Hello World Project, you built and ran the
Debug configuration of your project. Let’s look now at how to debug this application.

. Run the Application Using the Debugger
To debug an application in PVF:
1. Set abreakpoint on the print statement in ConsoleApp. £90.

To set abreakpoint, |eft-click in the far |eft side of the editor on the line where you want
the breakpoint. A red circle appears to indicate that the breakpoint is set.

2. Select Debug | Sart Debugging from the main menu to start the PGI Visual Fortran
debug engine.

The debug engine stops execution at the breakpoint set in Step 1.
3. Select Debug | Step Over to step over the print statement. Notice that the program output
appearsin aPGI Visua Fortran console window.

4. Select Debug | Continue to continue execution.
The program should exit.

For more information about building and debugging your application, refer to Build with PVF
and Debug with PVF. Now that you have seen a complete example, let’ s take alook at more
of the functionality available in several areas of PVF.

1.4. Using PVF Help

The PGI Visua Fortran User’s Guide, PGl Visual Fortran Reference Manual, and PGI Fortran
Reference are accessible in PDF form from the Visual Studio Help menu:

PVF User's Guide

Help | PGI Visua Fortran User’s Guide
Help | PGI Visua Fortran Reference
Help | PGI Fortran Language Reference

Getting Started with PVF

These documents, and all other PGl documentation installed with PVF, are also available from
the PGI Visual Fortran | Documentation folder off the Start Menu.

Context-sensitive (<F1>) help is not currently supported in PVF.

1.5. PVF Sample Projects

The PVF installation includes several sample solutions, available from the PVF installation
directory, typicaly in adirectory called Samples:
$(VSInstallDir) \PGI Visual Fortran\Samples\

These samples provide simple demonstrations of specific PVF project and solution types.

Inthe d11s subdirectory of the Samples directory, you find this sample program:

pvf_dll
CreatesaDLL that exports routines written in Fortran.

In the gpu subdirectory of the Samples directory, you find these sample programs which
require a PGl Accelerator License to compile and a GPU to run.
AccelPM Matmul
Uses directives from the PGl Accelerator Programming Model to offload a matmul
computation to a GPU.
CUDAFor Matmul
Uses CUDA Fortran to offload a matmul computation to a GPU.

Inthe interlanguage subdirectory of the Samples directory, you find this sample program
which requires that Visual C# beinstalled to build and run:
csharp calling pvfdll
CdlsaroutineinaPVF DLL from aVisual C# test program.
Inthe interlanguage subdirectory of the Samples directory, you find these sample
programs which require that Visual C++ be installed to build and run:
pvf _calling vc
Creates a solution containing a Visual C++ static library, where the source is compiled as C,
and a PVF main program that callsit.
vcmain _calling pvfdll
Cadlsaroutinein aPVF DLL from amain program compiled by VC++.
Inthewin32api subdirectory of the Samples directory, you find this sample program:

menu_dialog
Uses aresource file and Win32 API calsto create and control a menu and a dialog box.

1.6. Compatibility

PGI Visual Fortran provides features that are compatible with those supported by older Windows
Fortran products, such as Compag® Visua Fortran. These include:

» Win32 APl Support (dfwin)
» Unix/Linux Portability Support (df1ib, dfport)

PVF User's Guide 7

Getting Started with PVF

» Graphica User Interface Support

PVF provides access to a number of libraries that export C interfaces by using Fortran modules.
This is the mechanism used by PVF to support the Win32 Application Programming Interface
(API) and Unix/Linux portability libraries. If C: isyour system drive, and <target> is your target
system, such as win64, then source code containing the interfaces in these modules is located
here:

C:\Program Files\PGI\<target>\<release number>\src\

For more information about the specific functionsin dfwin, df1ib, and dfport, refer to the
Fortran Module/ Library Interfaces for Windows section in the PGI Visual Fortran Reference
Manual.

1.6.1. Win32 API Support (dfwin)

The Microsoft Windows operating system interface (the system call and library interface) is
known collectively asthe Win32 API. Thisistrue for both the 32-bit and 64-bit versions of
Windows; thereis no "Win64 API" for 64-bit Windows. The only difference on 64-hit systemsis
that pointers are 64-bits rather than the 32-bit pointers found on 32-bit Windows.

PGI Visual Fortran provides access to the Win32 API using Fortran modules. For details on
specific Win32 API routines, refer to the Microsoft MSDN website.

For ease of use, the only module you need to use to access the Fortran interfaces to the Win32
APl isdfwin. To use this module, simply add the following line to your Fortran code.

use dfwin

Table 2 lists al of the Win32 API modules and the Win32 libraries to which they correspond.

Table 2 PVF Win32 API Module Mappings

PVF Fortran Module C Win32 API Lib C Header File
advapid2 advapi32.lib WinBase.h
comdig32 comdlg32.lib ComDlg.h
gdi32 gdi32.lib WinGDL.h
kernel32 kernel32.lib WinBase.h
shell32 shell32.lib ShellAPLh
user32 user32.lib WinUser.h
winver winver.lib WinVer.h
wsock32 wsock32.lib WinSock.h

1.6.2. Unix/Linux Portability Interfaces (dflib, dfport)

PVF aso includes Fortran module interfaces to libraries supporting some standard C library and
Unix/Linux system call functionality. These functions are provided by thedf1ib and dfport
modules. To utilize these modules add the appropriate use statement:

use dflib

use dfport

PVF User's Guide 8

Getting Started with PVF

For more information about the specific functionsin df1ib and dfport, refer to ‘ Fortran
Module/Library Interfaces for Windows' in the PGI Visua Fortran Reference Manual.

1.6.3. Windows Applications and Graphical User Interfaces

Programs that manage graphical user interface components using Fortran code are referred to as
Windows Applications within PVF.

PVF Windows Applications are characterized by the lack of a PROGRAM statement. Instead,
Windows Applications must provide awinMain function like the following:

PVF WinMain for Win32

integer (4) function WinMain (hInstance, hPrevInstance, lpszCmdLine, nCmdShow)
integer (4) hInstance

integer (4) hPrevInstance

integer (4) lpszCmdLine

integer (4) nCmdShow

PVF WinMain for x64

integer (4) function WinMain (hInstance, hPrevInstance, lpszCmdLine, nCmdShow)
integer (8) hInstance

integer (8) hPrevInstance

integer (8) lpszCmdLine

integer (4) nCmdShow

nCmdShow isan integer specifying how the window is to be shown. SincehInstance,
hPrevInstance, and 1pszCmdLine areal pointers, in a32-bit program they must be 4-
byte integers; in a 64-bit program, they must be 8-byte integers. For more details you can look up
WinMain using the Microsoft MSDN website.

Y ou can create a PVF Windows Application template by selecting Windows Application
in the PVF New Project dialog. The project type of this name provides a default implementation
of WinMain, and the project’s properties are configured appropriately. Y ou can also change the
Configuration Type property of another project type to Windows Application using the General
property page, described in the ‘ General Property Page’ section of the PGI Visual Fortran
Reference Manual. If you do this, the configuration settings change to expect WinMain instead
of PROGRAW, but awinMain implementation is not provided.

For anillustration of how to build asmall application that usesWinMain, seethe
menu_dialog sample program available in the sample programs area:
$(VSInstallDir)\PGI Visual Fortran\Samples\win32api\menu dialog

Building Windows Applications from the Command Line

Windows Applications can also be built using acommand line version of pgfortran. To enable
this feature, add the ~winapp option to the compiler driver command line when linking the
application. This option causes the linker to include the correct libraries and object files needed to
support a Windows Application. However, it does not add any additional system librariesto the
link line. Add any required system libraries by adding the option ~defaultlib:<library
name> to the link command line for each library. For this option, <library name> can be any of
the following: advapi 32, comdlg32, gdi32, kernel 32, shell32, user32, winver, or wsock32.

PVF User's Guide 9

http://www.pgroup.com/resources/docs.htm

Getting Started with PVF

For more information about the specific functions in each of these libraries, refer to * Fortran
Module/Library Interfaces for Windows' in the Reference Manual.

Menus, Dialog Boxes, and Resources

The use of resourcesin PVF issimilar to their usein Visual C++. The resource files that

control menus and dialog boxes have the file extension . rc. Thesefiles are processed with the
Microsoft Resource Compiler to produce binary . res files. A . res fileisthen directly passed
to the linker which incorporates the resources into the output file. See the PV F sample project
menu_dialog for details on how resources are used within a windows application.

The complete Visual C++ Resource Editor is not available in PVF. Although you can edit files like icons

(. ico)and bitmaps (. bmp) directly, the . rc file is not updated automatically by the environment. You
must either install Visual C++, in which case the resource editor is fully functional, or you must edit . rc
files using the source code (text) editor.

PVF User's Guide

10

Chapter 2.
BUILD WITH PVF

This section describes how to use PGI Visual Fortran (PVF) within the Microsoft Visual Studio
IDE (Integrated Development Environment) to create and build a PVF project.

For information on general use of Visua Studio, see Miocrosoft’s MSDN website. PVF runs
within Visual Studio, so to invoke PVF you must invoke Visual Studio. If other languages such
as Visual C++ or Visua Basic areinstalled, they will be available in the same instance of Visua
Studio as PVF.

2.1. Creating a PVF Project

2.1.1. PVF Project Types

Once Visual Studio is running, you can use it to create a PGl Visual Fortran project. PVF
supports avariety of project types.

» Console Application - An application (. exe) that runsin a console window, using text
input and output.

» DynamicLibrary - A dynamically-linked library file (. d11) that provides routines that can
be |oaded on-demand when called by the program that needs them.

» StaticLibrary - Anarchivefile (. 1ib) containing one or more object files that can be
linked to create an executable.

» Windows Application - An application (. exe) that supports a graphical user interface that
makes use of components like windows, dialog boxes, menus, and so on. The name of the
program entry point for such applicationsisWinMain.

» Empty Project - A skeletal project intended to alow migration of existing applications to
PVF. This project type does not include any source files. By default, an empty project is set
to build an application (. exe).

2.1.2. Creating a New Project
To create a new project, follow these steps:

1. Sdlect File| New | Project from the File menu.

PVF User's Guide 11

Build with PVF

The New Project dialog appears.
2. Intheleft-hand pane of the dialog, select PGI Visual Fortran.

The right-hand pane displays the icons that correspond to the project typeslisted in Table 5.

On x64 systems, 32-bit and 64-bit project types are clearly labeled. These types may be filtered using
the 32-bit and 64-bit folders in the left-hand navigation pane of the dialog.

w

Select the project type icon corresponding to the project type you want to create.
4. Namethe project in the edit box |abeled Name.

n Tip The name of the first project in a solution is also used as the name of the solution itself.
5. Sedlect whereto create the project in the edit box labeled Location.
6. Click OK and the project is created.

Now look in the Solution Explorer to see the newly created project files and fol ders.

2.2. PVF Solution Explorer

PVF uses the standard Visual Studio Solution Explorer to organize filesin PVF projects.

n Tip If the Solution Explorer is not already visible in the VS IDE, open it by selecting View | Solution
Explorer.

Visual Studio usesthe term project to refer to a set of files, build rules, and so on that are used to
create an output like an executable, DLL, or static library. Projects are collected into a solution,
which is composed of one or more projects that are usually related in some way.

PVF projects are reference-based projects, which means that although there can be foldersin the
representation of the project in the Solution Explorer, there are not necessarily any corresponding
foldersin the file system. Similarly, files added to the project can be located anywhere in the file
system; adding them to the project does not copy them or move them to a project folder in the file
system. The PVF project system keeps an internal record of the location of all the files added to a
project.

2.3. Adding Files to a PVF Project

This section describes how to add a new file to a project and how to add an existing fileto a
project.

2.3.1. Add a New File

To add anew fileto a PVF project, follow these steps:

1. Usethe Solution Explorer to select the PVF project to which you want to add the new file.
2. Right-click on this PVF project to bring up a context menu.

PVF User's Guide 12

Build with PVF

Select Add => New Item...

In the Add New Item dialog box, select afile type from the avail able templates.

5. A default name for this new file will be in the Name box. Type in anew nameif you do not
want to use the default.

6. Click Add.

2.3.2. Add an Existing File

To add an existing file to a PVF project, follow these steps:

> w

Use the Solution Explorer to select the PVF project to which you want to add the new file.
Right-click on this PVF project to bring up a context menu.

Select Add => Existing Item...

In the Browse window that appears, navigate to the location of the file you want to add.
Select the file and click Add.

o wbdE

n Tip You can add more than one file at a time by selecting multiple files.

2.4. Adding a New Project to a Solution

Each project produces one output, where an output is an executable, a static library, or a
dynamic-link library (DLL). For example, if you want one solution to build both alibrary and an
application that links against that library, you need two projects in the solution.

To add a project to a solution, follow these steps:
1. Use the Solution Explorer to select the solution.
2. Right-click on the solution to bring up a context menu.

3. Select Add => New Project...
The Add New Project dialog appears. To learn how to use this dialog, refer to Creating a New
Project.

4. In the Add New Project dialog box, select a project type from the avail able templ ates.

5. When you have selected and named the new project, click OK.

Each project is specific to a single programming language, like PGI Visual Fortran or Microsoft Visual C++,
but you can have projects that use different languages in the same solution.

2.5. Project Dependencies and Build Order

If your solution contains more than one project, set up the dependencies for each project to ensure
that projects are built in the correct order.

PVF User's Guide 13

Build with PVF

To set project dependencies:

1. Right-click aproject in the Solution Explorer.

2. From the resulting context menu select Build Dependencies (in older version of VS, Project
Dependenciesis not under Build Dependencies.

The dialog box that opens has two tabs: Dependencies and Build Order.

a. Usethe Dependencies tab to put a check next to the projects on which the current project
depends.
b. Usethe Build Order tab to verify the order in which projects will be built.

2.6. Configurations

Visual Studio projects are generally created with two default configurations: Debug and Release.
The Debug configuration is set up to build a version of your application that can be easily
debugged. The Release configuration is set up to build a generally-optimized version of your
application. Other configurations may be created as desired using the Configuration Manager.

2.7. Platforms

In Visual Studio, the platform refersto the operating system for which you are building your
application. In a PVF project on a system running a 32-bit Windows OS, only the Win32
platformis available. In a PVF project on a system running a 64-bit Windows OS, both the
Win32 and x64 platforms are available.

When you create a new project, you select its default platform. When more than one platformis
available, you can add additional platforms to your project once it exists. To do this, you use the
Configuration Manager.

2.8. Setting Global User Options

Global user options are settings that affect all Visual Studio sessions for a particular user,
regardless of which project they have open. PV F supports several global user settings which
affect the directories that are searched for executables, include files, and library files. To access
these:

1. From the main menu, select Tools | Options...
2. From the Options dialog, expand Projects and Solutions.
3. Select PVF Directoriesin the dialog’ s navigation pane.

The PVF Directories page has two combo boxes at the top:

» Platform allows selection of the platform (i.e., x64).
» Show directoriesfor alows selection of the search path to edit.

PVF User's Guide 14

Build with PVF

Search paths that can be edited include the Executabl e files path, the Include and module files
path, and the Library files path.

Tip Itis good practice to ensure that all three paths contain directories from the same release of the
PGI compilers; mixing and matching different releases of the compiler executables, include files, and
libraries can have undefined results.

2.9. Setting Configuration Options using Property Pages

Visua Studio makes extensive use of property pages to specify configuration options. Property
pages are used to set options for compilation, optimization and linking, as well as how and where
other tools like the debugger operate in the Visual Studio environment. Some property pages
apply to the whole project, while others apply to asingle file and can override the project-wide
properties.

Y ou can invoke the Property Page dialog in several ways:

» Select Project | Propertiesto invoke the property pages for the currently selected item in the
Solution Explorer. Thisitem may be a project, afile, afolder, or the solution itself.

» Right-click a project node in the Solution Explorer and select Properties from the resulting
context menu to invoke that project’s property pages.

» Right-click afile nodein the Solution Explorer and select Properties from the context menu
to invoke that file's property pages.

The Property Page dialog has two combo boxes at the top: Configuration and Platfor m.
Y ou can change the configuration box to All Configurations so the property is changed for all
configurations.

Tip A common error is to change a property like ‘Additional Include Directories’ for the Debug configuration
but not the Release configuration, thereby breaking the build of the Release configuration.

Inthe PGI Visua Fortran Reference Manual, the * Command-Line Options Reference’ section
contains descriptions of compiler options in terms of the corresponding command-line switches.
For compiler options that can be set using the PVF property pages, the description of the option
includes instructions on how to do so.

2.10. Property Pages

Properties, or configuration options, are grouped into property pages. Further, property pages
are grouped into categories. Depending on the type of project, the set of available categories
and property pages vary. The property pagesin a PVF project are organized into the following
categories:

> General » Librarian
> Debugging > Resources
> Fortran > Build Events

PVF User's Guide 15

> Linker

Tip The Fortran, Linker and Librarian categories contain a Command Line property page where the
command line derived from the properties can be seen. Options that are not supported by the PVF property
pages can be added to the command line from this property page by entering them in the Additional
Options field.

Table 3 shows the properties associated with each property page, listing them in the order in
which you see them in the Properties dialog box. For a complete description of each property,
refer to the PVF Properties section of the PGI Visua Fortran Reference Guide.

> Custom Build Step

Table 3 Property Summary by Property Page

This Property Page... Contains these properties...

General Property Page

Output Directory

Intermediate Directory
Extensions to Delete on Clean
Configuration Type

Build Log File

Build Log Level

Build with PVF

Debugging

Application Command
Application Arguments
Environment

Merge Environment

Accelerator Profiling

MPI Debugging

Working Directory [Serial]
Number of Processes [Local MPI]
Working Directory [Local MP!]
Additional Arguments: mpiexec [Local MPI]
Location of mpiexec [Local MPI]

Fortran | General

Display Startup Banner
Additional Include Directories
Module Path

Object File Name

Debug Information Format
Optimization

Fortran | Optimization

Optimization

Global Optimizations
Vectorization

Inlining

Use Frame Pointer
Loop Unroll Count
Auto-Parellelization

Fortran | Preprocessing

PVF User's Guide

Preprocess Source File
Additional Include Directories

16

This Property Page...

Contains these properties...

Ignore Standard Include Path
Preprocessor Definitions
Undefine Preprocessor Definitions

Build with PVF

Fortran | Code Generation

Runtime Library

Fortran | Language

Fortran Dialect

Treat Backslash as Character
Extend Line Length

Enable OpenMP Directives
Enable OpenACC Directives
OpenACC Autoparallelization
OpenACC Required

OpenACC Conformance Level
MPI

Enable CUDA Fortran

CUDA Fortran Register Limit
CUDA Fortran Use Fused Multiply-Adds
CUDA Fortran Use Fast Math
CUDA Fortran Use L1 Cache
CUDA Fortran Flush to Zero
CUDA Fortran Toolkit

CUDA Fortran Compute Capability
CUDA Fortran Tesla

CUDA Fortran Tesla+

CUDA Fortran Fermi

CUDA Fortran Fermi+

CUDA Fortran Kepler

CUDA Fortran Kepler+

CUDA Fortran Keep Binary

CUDA Fortran Keep Kernel Source
CUDA Fortran Keep PTX

CUDA Fortran PTXAS Info

CUDA Fortran Generate RDC
CUDA Fortran Emulation

Fortran | Floating Point Options

Floating Point Exception Handling
Floating Point Consistency

Flush Denormalized Results to Zero
Treat Denormalized Values as Zero
IEEE Arithmetic

Fortran | External Procedures

Calling Convention
String Length Arguments
Case of External Names

Fortran | Libraries

Use ACML
Use IMSL
Use MKL

PVF User's Guide

17

Build with PVF

This Property Page... Contains these properties...

Fortran | Target Processors AMD Athlon

AMD Barcelona

AMD Bulldozer

AMD Istanbul

AMD Piledriver

AMD Shanghai

Intel Core 2

Intel Core 17

Intel Penryn

Intel Pentium 4

Intel Sandy Bridge
Generic x86 [Win32 only]
Generic x86-64 [x64 only]

Fortran | Target Accelerators Target NVIDIA Tesla

Tesla Register Limit
Tesla Use Fused Multiple-Adds
Tesla Use Fused Math Library
Tesla Pin Host Memory
Tesla Use L1 Cache
Tesla Flush to Zero

Tesla Generate RDC
Tesla CUDA Toolkit

Tesla Compute Capability
Tesla CC Tesla

Tesla CC Tesla+

Tesla CC Fermi

Tesla CC Fermi+

Tesla CC Kepler

Tesla CC Kepler+

Tesla Keep Kernel Files
Target AMD Radeon
Radeon Cape Verde
Radeon Spectre

Radeon Tahiti

Radeon Buffer Count
Radeon Keep

Target Host

Fortran | Diagnostics Warning Level

Generate Assembly

Annotate Assembly
Accelerator Information
CCFF Information

Fortran Language Information
Inlining Information

IPA Information

Loop Intensity Information
Loop Optimization Information
LRE Information

PVF User's Guide 18

Build with PVF

This Property Page... Contains these properties...

OpenMP Information
Optimization Information
Parallelization Information
Unified Binary Information
Vectorization Information

Fortran | Profiling Function-Level Profiling

Line-Level Profiling

MPI

Suppress CCFF Information
Enable Limited Dwarf

Fortran | Runtime Check Array Bounds

Check Pointers
Check Stack

Fortran | Command Line All options (read-only contents box)

Additional options (contents box you can modify)

Linker | General Output File

Additional Library Directories
Stack Reserve Size

Stack Commit Size

Export Symbols

Linker | Input Additional Dependencies

Linker | Command Line All options (read-only contents box)

Additional options (contents box you can modify)

Librarian | General Output File

Additional Library Directories
Additional Dependencies

Librarian | Command Line Al options (read-only contents box)

Additional options (contents box you can modify)

Resources | Command Line All options (read-only contents box)

Additional options (contents box you can modify)

Build Events | Pre-Build Event Command Line

Description
Excluded from Build

Build Events | Pre-Link Event Command Line

Description
Excluded from Build

Build Events | Post-Build Event Command Line

PVF User's Guide 19

Build with PVF

This Property Page... Contains these properties...

Description
Excluded from Build

Custom Build Step | General Command Line

Description
Outputs
Additional Dependencies

2.11. Setting File Properties Using the Properties Window

Properties accessed from the Property Pages dialog allow you to change the configuration options
for aproject or file. The term property, however, has another meaning in the context of the
Properties Window. In the Properties Window property means attribute or characteristic.

To see afile's properties, do this:

1. Sdlect thefilein the Solution Explorer.
2. From the View menu, open the Properties Window.

Some file properties can be modified, while others are read-only.

The values of the properties in the Properties Window remain constant regardless of the
Configuration (Debug, Release) or Platform (Win32, x64) selected.

Table 4 liststhe file properties that are available in a PVF project.

Table 4 PVF Project File Properties

This property... Does this...

Name Shows the name of the selected file.

Filename Shows the name of the selected file.

FilePath Shows the absolute path to the file on disk. (Read-only)

FileType Shows the registered type of the file, which is determined by the file’s extension. (Read-only)
IsCUDA Indicates whether the file is considered a CUDA Fortran file.

T rue indicatesthe file's extension is . cu £ or the Enable CUDA Fortran property is set to Yes
(Read-only).

Fal se indicatesthe file is not a CUDA Fortran file.

IsFixedFormat Determines whether the Fortran file is fixed format. T rue indicates fixed formatand Fal se
indicates free format.

To change whether a source file is compiledas fixed or free format source, set this property
appropriately. PVF initially uses file extensions to determine format style: the . £ and . for

PVF User's Guide 20

Build with PVF

This property... Does this...
extensions imply fixed format, while other extensions suchas . £90 or . £95 imply free
format.
The 'C' and ™' comment charactersare only valid for fixed format
compilation.
IsIncludeFile A boolean value that indicates if the file is an include file.

When T rue,PVF considers the file to be an include file and it does not attempt to compile it.

When False, if the filenamehas a supported Fortran or Resource file extension, PVF compiles
the file as part of the build.

n Tip You can use thisproperty to exclude a source file from a build.

IsOutput Indicates whether a file is produced by the build. (Read-only)
ModifiedDate Contains the date and time that the file was last saved to disk. (Read-only)
ReadOnly Indicates the status of the Read-Only attribute of the file on disk.

Size Describes the size of the file on disk.

2.12. Setting Fixed Format

Some Fortran source is written in fixed-format style. If your fixed-format code does not compile,
check that it is designated as fixed-format in PVF.

To check fixed-format in PVF, follow these steps:
1. Use the Solution Explorer to select afile: View | Solution Explorer.
2. Open the Properties Window: View | Properties Window.

3. From the dropdown list for the file property |sFixedFormat, select True.

2.13. Building a Project with PVF

Once a PVF project has been created, populated with source files, and any necessary
configuration settings have been made, the project can be built. The easiest way to start abuild is
to use the Build | Build Solution menu selection; al projectsin the solution will be built.

If there are compile-time errors, the Error List window is displayed, showing a summary of the
errors that were encountered. If the error message shows a line number, then double-clicking the
error record in the Error List window will navigate to the location of the error in the editor.

When a project is built for the first time, PVF must determine the build dependencies. Build
dependencies are the result of USE or INCLUDE statementsor #include preprocessor
directivesin the source. In particular, if file A containsa USE statement referring to a Fortran
module defined in file B, file B must be compiled successfully before file A will compile.

PVF User's Guide 21

Build with PVF

To determine the build dependencies, PVF begins compiling filesin alphabetical order. If a
compile fails due to an unsatisfied module dependency, the offending fileis placed back on
the build queue and a message is printed to the Output Window, but not to the Error List. Ina
correct Fortran program, all dependencies will eventually be met, and the project will be built
successfully. Otherwise, errors will be printed to the Error List as usual.

Unless the build dependencies change, subsequent builds use the build dependency information
generated during the course of the initial build.

2.13.1. Order of PVF Build Operations

In the default PVF project build, the build operations are executed in the following order:
1. Pre-Build Event

2. Custom Build Stepsfor Files

3. Build Resources

4. Compile Fortran Files to Objects (using the PGI Fortran compiler)
5. Pre-Link Event

6. Build Output Files (using linker or librarian)

7. Custom Build Step for Project

8. Post-Link Event

2.14. Build Events and Custom Build Steps

PVF provides default build rules for Fortran files and Resource files. Other files are ignored
unless abuild action is specified using a Build Event or a Custom Build Step.

2.14.1. Build Events

Build events allow definition of a specific command to be executed at a predetermined point
during the project build. Y ou define build events using the property pages for the project. Build
events can be specified as Pre-Build, Pre-Link, or Post-Build. For specific information about
where build events are run in the PVF build, refer to Order of PVF Build Operations. Build
events are always run unless the project is up to date. There is no dependency checking for build
events.

2.14.2. Custom Build Steps

Custom build steps are defined using the Custom Build Step Property.’ Y ou can specify a
custom build step for an entire project or for an individual file, provided the file is not a Fortran
or Resourcefile.

When a custom build step is defined for a project, dependencies are not checked during a build.
As aresult, the custom build step only runs when the project itself is out of date. Under these
conditions, the custom build step is very similar to the post-build event.

PVF User's Guide 22

Build with PVF

When a custom build step is defined for an individual file, dependencies may be specified. In this
case, the dependencies must be out of date for the custom build step to run.

n The 'Outputs' property for a file-level custom build step must be defined or the custom build step is
skipped.

2.15. PVF Build Macros

PV F implements a subset of the build macros supported by Visual C++ along with afew PVF-
specific macros. The macro names are not case-sensitive, and they should be usablein any string
field in aproperty page. Unless otherwise noted, macros that evaluate to directory names end
with atrailing backslash ('\).

In general these items can only be changed if there is an associated PVF project or file property.
For example, $(V ClnstallDir) cannot be changed, while $(IntDir) can be changed by modifying
the General | Intermediate Directory property.

For the names and descriptions of the build macros that PV F supports, refer to the * PVF Build
Macros' section in the PGl Visual Fortran Reference Manual.

2.16. Static and Dynamic Linking

PVF supports both static and dynamic linking to the PGl and Microsoft runtime.

The Fortran | Code Generation | Runtime Library property in a project's property pages
determines which runtime library the project targets.

» For executable and static library projects, the default value of this property is static linking
(-Bstatic). A statically-linked executable can be run on any system for which it is built;
neither the PGI nor the Microsoft redistributable libraries need be installed on the target
system.

» For dynamically linked library projects, the default value of this property isdynamic linking
(-Bdynamic). A dynamically-linked executable can only be run on a system on which the
PGI and Microsoft runtime redistributables have been installed.

For more information on deploying PGI-compiled applications to other systems, refer to
Distributing Files - Deployment.

2.17. VC# Interoperability

If Visual C#isingtalled along with PVF, Visual Studio solutions containing both PVF and V C#
projects can be created. Each project, though, must be purely PVF or VC#; Fortran and C# code
cannot be mixed in asingle project.

PVF User's Guide 23

Build with PVF

For an example of how to create a Fortran and V C# solution, refer to the PV F sample project
csharp calling pvfdll.

Because calling Visual C++ code (as opposed to C code) from Fortran is very complicated, it is only
recommended for the advanced programmer. Further, to make interfaces easy to call from Fortran, Visual C
++ code should export the interfaces using extern "C".

2.18. VC++ Interoperability

If Visual C++ isinstalled along with PVF, Visual Studio solutions containing both PVF and VC
++ projects can be created. Each project, though, must be purely PVF or VC++; Fortran and C/
C++ code cannot be mixed in asingle project. This constraint is purely an organizational issue.
Fortran subprograms may call C functions and C functions may call Fortran subprograms as
outlined in Inter-language Calling.

For an example of how to create a solution containing aV C++ static library, where the source
iscompiled as C, and a PVF main program that callsinto it, refer to the PVF sample project
pvf calling vc.

Because the process of calling Visual C++ code (as opposed to C code) from Fortran is very complicated,
it is only recommended for the advanced programmer. Further, to make interfaces easy to call from Fortran,
Visual C++ code should export the interfaces using extern "C".

2.19. Linking PVF and VC++ Projects

If you have multiple projects in a solution, be certain to use the same type of runtime library for
al the projects. Further, if you have Microsoft VC++ projects in your solution, you need to be
certain to match the runtime library typesin the PV F projects to those of the VC++ projects.

PVF's property Fortran | Code Generation | Runtime Library corresponds to the Microsoft VC
++ property named C/C++ | Code Generation | Runtime Library. Table 5 lists the appropriate
combinations of Runtime Library property values when mixing PVF and VC++ projects.

Table 5 Runtime Library Values for PVF and VC++ Projects

If PVF uses ... VC++ should use...

Multi-threaded (-Bstatic) Multi-threaded (/MT)
Multi-threaded DLL (-Bdynamic) Multi-threaded DLL (/MD)
Multi-threaded DLL (-Bdynamic) Multi-threaded debug DLL (/MDd)

2.20. Common Link-time Errors

The runtime libraries specified for all projectsin a solution should be the same. If both PVF and
V C++ projects exist in the same solution, the runtime libraries targeted should be compatible.

PVF User's Guide 24

Build with PVF

Keep in mind the following guidelines:

» Projectsthat produce DLLs should use the Multi-threaded DLL (-Bdynamic) runtime.
» Projectsthat produce executables or static libraries can use either type of linking.

The following examples provide alook at some of the link-time errors you might see when the
runtime library targeted by a PVF project is not compatible with the runtime library targeted by a
V C++ project. To resolve these errors, refer to Table 5 and set the Runtime Library properties for
the PVF and VC++ projects accordingly.

Errorsseen when linking a PVF project using -Bstatic and a VC++ library project using/
M Dd:

MSVCRTD.1ib (MSVCR80D.d11l) : error LNK2005: printf already defined in
libcmt.lib(printf.obj) LINK : warning LNK4098: defaultlib 'MSVCRTD'
conflicts with use of other libs; use /NODEFAULTLIB:library test.exe : fatal
error LNK1169: one or more multiply defined symbols found

Errorsseen when linking a PVF project using -Bstatic and a VC++ project using/MTd:

LIBCMTD.1lib (dbgheap.obj) : error LNK2005: malloc already defined in
libcmt.lib(malloc.obj) ... LINK : warning LNK4098: defaultlib 'LIBCMTD'
conflicts with use of other libs; use /NODEFAULTLIB:library test.exe : fatal
error LNK1169: one or more multiply defined

2.21. Migrating an Existing Application to PVF

An existing non-PVF Fortran application or library project can be migrated to PVF. This section
provides a rough outline of how one might go about such a migration.

Tip Depending on your level of experience with Visual Studio and the complexity of your existing
application, you might want to experiment with a practice project first to become familiar with the project
directory structure and the process of adding existing files.

Start your project migration by creating a new Empty Project. Add the existing source and
include files associated with your application to the project. If some of your source files build
alibrary, while other files build the application itself, you will need to create a separate project
within your solution for the files that build the library.

Set the configuration options using the property pages. Y ou may need to add include paths,
module paths, library dependency paths and library dependency files. If your solution contains
more than one project, you will want to set up the dependencies between projects to ensure that
the projects are built in the correct order.

When you are ready to try abuild, select Build | Build Solution from the main menu. Thisaction
startsafull build. If there are compiler or linker errors, you will probably have a bit more build or
configuration work to do.

2.22. Fortran Editing Features

PVF provides several Fortran-aware featuresto ease the task of entering and examining Fortran
code in the Visual Studio Editor.

PVF User's Guide 25

Build with PVF

Source Colorization — Fortran source is colorized, so keywords, comments, and strings are
distinguished from other language elements. Y ou can use the Tools | Options | Environment |
Fonts and Colors dialog to assign colors for identifiers and numeric constants, and to modify the
default colors for strings, keywords and comments.

Method Tips — Fortran intrinsic functions are supported with method tips. When an opening
parenthesis is entered in the source editor following an intrinsic name, a method tip pop-up is
displayed that shows the data types of the argumentsto the intrinsic function. If theintrinsicis
a generic function supporting more than one set of arguments, the method tip window supports
scrolling through the supported argument lists.

Keyword Completion — Fortran keywords are supported with keyword completion. When entering
akeyword into the source editor, typing <CTRL>+<SPACE> will open a pop-up list displaying
the possible completions for the portion of the keyword entered so far. Use the up or down arrow
keys or the mouse to select one of the displayed items; type <ENTER> or double-click to enter
the remainder of the highlighted keyword into the source. Type additional charactersto narrow
the keyword list or use <BACKSPACE> to expand it.

PVF User's Guide 26

Chapter 3.
DEBUG WITH PVF

PVF utilizes the Visual Studio debugger for debugging Fortran programs. PGI has implemented
a custom debug engine that provides the language-specific debugging capability required for
Fortran. This debug engine also supports Visual C++.

The Debug configuration is usually used for debugging. By default, this configuration will build
the application so that debugging information is provided.

The debugger can be started by selecting Debug | Sart Debugging. Then use the Visual Studio
debugger controls as usual.

3.1. Windows Used in Debugging

Visual Studio uses anumber of different windows to provide debugging information. Only a
subset of these is opened by default in your initial debugging session. Use the Debug | Windows
menu option to see alist of al the windows available and to select the one you want to open.

This section provides an overview of most of the debugging windows you can use to get
information about your debug session, along with afew tips about working with some of these
windows.

3.1.1. Autos Window

The autos window provides information about a changing set of variables as determined by the
current debugging location. Thiswindow is supported for VC++ code but will not contain any
information when debugging in a Fortran sourcefile.

3.1.2. Breakpoints Window

The breakpoints window contains all the breakpoints that have been set in the current application.
Y ou use the breakpoints window to manage the application's breakpoints.

n This window is available even when the application is not being debugged.

Y ou can disable, enable or delete any or all breakpoints from within this window.

PVF User's Guide 27

Debug with PVF

» Double-clicking on abreakpoint opens the editor to the place in the source where the
breakpoint is set.

» Right-clicking on a breakpoint brings up a context menu display that shows the conditions
that are set for the breakpoint. Y ou can update these conditions via this display.

» During debugging, each breakpoint's status is shown in this window.

Breakpoint States

A breakpoint can be enabled, disabled, or in an error state. A breakpoint in an error state indicates
that it failed to bind to a code location when the program was loaded. An error breakpoint can

be caused by avariety of things. Two of the most common reasons a breakpoint fails to bind are
these:

» The code containing the breakpoint may be in amodule (DLL) that has not yet been |oaded.
» A breakpoint audience may contain a syntax error.

Breakpoints in Multi-Process Programs

When debugging a multi-process program, each user-specified breakpoint is bound on a per-
process basis. When this situation occurs, the breakpoints in the breakpoints window can be
expanded to reveal each bound breakpoint.

3.1.3. Call Stack Window

The call stack window shows the call stack based on the current debugging location. Call frames
are listed from the top down, with the innermost function on the top. Double-click on acall frame
to select it.

» Theyelow arrow isthe instruction pointer, which indicates the current location.
» A green arrow beside aframe indicates the frame is selected but is not the current frame.

3.1.4. Disassembly Window

The disassembly window shows the assembly code corresponding to the source code under
debug.

Using Step and Sep Into in the disassembly window moves the instruction pointer one assembly
instruction instead of one source line. Whenever possible, source lines are interleaved with
disassembly.

3.1.5. Immediate Window

The immediate window provides direct communication with the debug engine. Y ou can type
help inthiswindow to get alist of supported commands.

PVF User's Guide 28

Debug with PVF

Variable Values in Multi-Process Programs

When debugging a multi-process program, use the print command in the immediate window
with a process/thread set to display the values of avariable across all processes at once. For
example, the following command prints the value of ivar for al processes and their threads.

[*.*] print iVar

3.1.6. Locals Window

The localswindow lists al variables in the current scope, providing the variable's name, value,
and type. Y ou can expand variables of type array, record, structure, union and derived type
variables to view all members. The variables listed include any Fortran module variables that are
referenced in the current scope.

3.1.7. Memory Window

The memory window lists the contents of memory at a specified address. Type an addressin
memory into the memory window’ s Address box to display the contents of memory at that
address.

3.1.8. Modules Window

InVisua Studio, the term module means a program unit such asaDLL. It is unrelated to the
Fortran concept of module.

The modules window displays the DLLs that were |oaded when the application itself was |oaded.
Y ou can view information such as whether or not symbol information is provided for a given
module.

3.1.9. Output Window

The output window displays a variety of status messages. When building an application, this
window displays build information. When debugging, the output window displays information
about loading and unloading modules, and exiting processes and threads.

The output window does not receive application output such as standard out or standard error. In
seria and local MPI debugging, such output is directed to a console window.

3.1.10. Processes Window

The processes window displays each process that is currently being debugged. For serial
debugging, there is only one process displayed. For MPI debugging, the number of processes
specified in the Debugging property page determines the number of processes that display in this
window. The Title column of the processes window contains the rank of each process, aswell as
the name of the system on which the process is running and the processid.

PVF User's Guide 29

Debug with PVF

Switching Processes in Multi-Process Programs

Many of the debugging windows display information for one process at atime. During multi-
process debugging, the information in these windows pertains to the process with focus in the
processes window. The process with focus has a yellow arrow next to it.

Y ou can change the focus from one process to another by selecting the desired processin one of
these ways:

» Double-click on the process.
» Highlight the process and press <Enter>.

3.1.11. Registers Window

The registers window is available during debugging so you can see the value of the OS registers.
Registers are shown in functional groups. The first time you use the registers window, the CPU
registers are shown by default.

» To show other register sets, follow these steps:

1. Right-click in the registers window to bring up a context menu.
2. From the context menu, select the group of registersto add to the registers window
display.
» Toremove agroup from the display, follow these steps:

1. Right-click in the registers window to bring up a context menu.
2. From the context menu, deselect the group of registersto remove from the registers
window display.

3.1.12. Threads Window

The threads window lists the active threads in the current process. Threads are named by process
and thread rank using the form "process.thread".

n Not all threads may be executing in user code at any given time.

3.1.13. Watch Window

Y ou use the watch window during debugging to display a user-selected set of variables.

If a watched variable is no longer in scope, its value is no longer valid in the watch window, although the
variable itself remains listed until you remove it.

3.2. Variable Rollover

Visual Studio provides a debugging feature called variable rollover. This feature is available
when an application in debug mode stops at a breakpoint or is otherwise suspended. To activate

PVF User's Guide 30

Debug with PVF

variable rollover, use the mouse pointer to hover over avariable in the source code editor. After a
moment, the value of the variable appears as a data tip next to the mouse pointer.

Thefirst datatip that you see is often upper level information, such as an array address or
possibly the members of a user-defined type. If additional information is available for avariable,
you see aplus sign in the data tip. Hovering over the plus sign expands the information. Once
the expansion reaches the maximum number of lines available for display, about fifteen lines, the
datatip has up and down triangles which allow you to scroll to see additional information.

Y ou can use variable rollover to obtain information about scalars, arrays, array elements, as well
as user-defined type variables and their members.

3.2.1. Scalar Variables

If you roll over ascalar variable, such as an integer or areal, the datatip displaysthe scalar’s
value.

3.2.2. Array Variables

If you roll over an array, the data tip displays the array’ s address.

To see the elements of an array, either roll over the specific array element’ s subscript operator
(parenthesis), or roll over the array and then expand the data tip by moving the mouse over the
plus sign in the datatip. The expanded view displays the individual array elements.

The datatip can display up to about fifteen array elements at atime. For arrays with more than
fifteen elements, use the up and down arrows on the top and bottom of the expanded datatip to
scroll through the other elements.

Fortran character arrays work slightly differently.

» Whenrolling over asingle element character array, the data tip displays the value of the
string. To seetheindividual character elements, expand the string.

» When rolling over a multi-element character array, theinitial datatip containsthe array’s
address. To see the elements of the array, expand the array. Each expanded element appears
as astring, which is also expandable.

3.2.3. User-Defined Type Variables

User-defined types include derived types, records, structs, and unions. When rolling over a user-
defined type, the initial datatip displays a condensed form of the value of the user-defined type
variable, which is a'so expandable.

To see amember of a user-defined type, you can either roll over the specific user-defined variable
directly, or roll over the user-defined type and then expand the data tip by moving the mouse over
the plus sign in the data tip. The expanded view displays the individual members of the variable
and their values.

The datatip can display up to about fifteen user-defined type members at atime. For user-defined
types with more than fifteen members, use the up and down arrows on the top and bottom of the
expanded datatip to scroll through the other members.

PVF User's Guide 31

Debug with PVF

3.3. Debugging an MPI Application in PVF

PVF has full debugging support for MPI applications running locally. For specific information on
how to do this, refer to Debug an MPI Application.

3.4. Attaching the PVF Debugger to a Running Application

PGI Visua Fortran can debug a running application using the PVF "Attach to Process' option.
PVF supports attaching to Fortran applications built for 32-bit and 64-bit native Windows
systems.

PVF includes PGI compilers that build 32-bit and, on Win64, 64-bit native Windows
applications. A PVF installation is all that is required to use PVF to attach to PGI-compiled native
Windows applications.

The following instructions describe how to use PVF to attach to a running native Windows
application. Asis often true, the richest debugging experience is abtained if the application being
debugged has been compiled with debug information enabled.

3.4.1. Attach to a Native Windows Application
To attach to a native Windows application, follow these steps:

1. Open PVF from the Start menu, invoke PVF as described in PVF on the Start Screen and Start
Menu.

2. From the main Tools menu, select Attach to Process...

3. Inthe Attach to: box of the Attach to Process dialog, verify that PGI Debug Engineis
selected.

If it is not selected, follow these stepsto select it:

1. Click Select.

2. Inthe Select Code dialog box that appears, choose Debug these code types.
3. Desdect any optionsthat are selected and select PGI Debug Engine.

4. Click OK.

4. Select the application to which you want to attach PVF from the Available Processes box in
the Attach to Process dialog.

This area of the dialog box contains the system’ s running processes. If the application to
which you want to attach PVF is missing from thislist, try this procedure to locate it:

1. Depending on where the process may be located, select Show processesin all sessions or
Show processes from all users. Y ou can select both.

2. Click Refresh.

5. With the application to attach to selected, click Attach.

PVF User's Guide 32

Debug with PVF

PVF should now be attached to the application.
To debug, there are two ways to stop the application:

» Set abreakpoint using Debug | New Breakpoint | Break at Function... and let execution stop
when the breakpoint is hit.

n Tip Be certain to set the breakpoint at a line in the function that has yet to be executed.

» Use Debug | Break All to stop execution.

With this method, if you see a message box appear that reads There is no source
code available for the current location, click OK. Use Sep Over (F10) to
advance to aline for which sourceis available.

n To detach PVF from the application and stop debugging, select Debug | Stop Debugging.

3.5. Using PVF to Debug a Standalone Executable

Y ou can invoke the PV F debug engine to debug an executabl e that was not created by a PVF
project. To do this, you invoke Visual Studio from a command shell with special arguments
implemented by PVF. Y ou can use this method in any native Windows command prompt
environment.

PGI Visual Fortran includes PGI compilers that build both 32-bit and, on Win64, 64-bit native
Windows applications. A PVF instalation is al that is required to use the PVF standalone
executabl e debugging feature with PGI-compiled native Windows applications. The following
instructions describe how to invoke the PGI Visual Fortran debug engine from a native Windows
prompt.

Tip The richest debugging experience is obtained when the application being debugged has been compiled
and linked with debug information enabled.

3.5.1. Launch PGl Visual Fortran from a Native Windows Command
Prompt

To launch PGI Visual Fortran from a native Windows Command Prompt, follow these steps:

1. Set the environment by opening a PVF Command Prompt window using the PVF Start
menu, as described in Shortcuts to Launch PVF.

» To debug a 32-hit executable, choose the 32-bit command prompt: PVF Cmd.
» Todebug a 64-bit executable, choose the 64-bit command prompt: PVF Cmd (64).

The environment in the option you choose is automatically set to debug a native
Windows application.

PVF User's Guide 33

Debug with PVF

2. Start PGI Visua Fortran using the executable devenv . exe.

If you followed Step 1 to open the PVF Command Prompt, this executable should aready be
on your path.

In the PVF Command Prompt window, you must supply the switch /PVF : DebugExe, your
executable, and any arguments that your executable requires. The following examplesillustrate
this requirement.

Use PVF to Debug an Application

This example uses PVF to debug an application, MyApp1 . exe, that requires no arguments.
CMD> devenv /PVF:DebugExe MyAppl

Use PVF to Debug an Application with Arguments

This example uses PVF to debug an application, MyApp2 . exe, and pass it two arguments: argl,
arg2.
CMD> devenv /PVF:DebugExe MyApp2 argl arg?2

Once PVF starts, you should see a Solution and Project with the same name as the name of the
executable you passed in on the command line, such asMyApp?2 in the previous example.

Y ou are now ready to use PGI Visual Fortran after acommand line launch, as described in the
next section.

3.5.2. Using PGl Visual Fortran After a Command Line Launch

Once you have started PVF from the command line, it does not matter how you started it, you are
now ready to run and debug your application from within PVF.

To run your application from within PVF, from the main menu, select Debug | Start Without
Debugging.

To debug your application using PVF:

1. Set abreakpoint using the Debug | New Breakpoint | Break at Function dialog box.
2. Enter either afunction or afunction and line that you know will be executed.

Tip You can always use the routine name MAIN for the program’s entry point (i.e. main program) in
a Fortran program compiled by PGI compilers.

3. Start the application using Debug | Start Debugging.

When the debugger hits the breakpoint, execution stops and, if available, the sourcefile
containing the breakpoint is opened in the PVF editor.

3.5.3. Tips on Launching PVF from the Command Line

If you choose to launch PV from acommand line, here are afew tipsto help you be successful:

» The path to the executable you want to debug must be specified using afull or relative path.
Further, paths containing spaces must be quoted using double quotes ().

PVF User's Guide 34

Debug with PVF

If you specify an executable that does not exist, PVF starts up with awarning message and

no solution is created.
If you specify afileto debug that exists but is not in an executable format, PVF starts up with

awarning message and no solution is created.

PVF User's Guide

35

Chapter 4.
USING MPI IN PVF

Message Passing Interface (MPI) is an industry-standard application programming interface
designed for rapid data exchange between processors in a cluster application. MPI is software
used in computer clusters that allows many computers to communicate with one ancther.

PGI provides MPI support with PGI compilers and tools. Y ou can build, run, debug, and profile
MPI applications on Windows using PVF and Microsoft’simplementation of MPl, MS-MPI.
This section describes how to use these capabilities and indicates some of their limitations,
provides the requirements for using MPI in PVF, explains how to compile and enable MPI
execution, and describes how to launch, debug, and profile your MPI application. In addition,
there are tips on how to get the most out of PVF s MPI capabilities.

4.1. MPI Overview

MPI isaset of function calls and libraries that are used to send messages between multiple
processes. These processes can be located on the same system or on a collection of distributed
servers. Unlike OpenMP, the distributed nature of MPI alowsit to work in almost any parallel
environment. Further, distributed execution of a program does not necessarily mean that an MPI
job must run on multiple machines.

PVF has built-in support for Microsoft's version of MPI: MS-MPI, on single systems. PVF does
not support using MS-MPI on Windows clusters.

4.2. System and Software Requirements

To use PVF's MPI capabilities, MS-MPI must beinstalled on your system. The MS-MPI
components include headers, libraries, and mpiexec, which PVF uses to launch MPI
applications. The 2014 release of PVF includes aversion of MS-MPI that isinstalled
automatically when PVF isinstalled. MS-MPI can also be downloaded directly from Microsoft.

PVF User's Guide 36

Using MP! in PVF

4.3. Compile using MS-MP|

The PVF Fortran | Language | MPI property enables MPI compilation and linking with the
Microsoft MPI headers and libraries. Set this property to Microsoft MPI to enable an MPI build.

4 4. Enable MPI Execution

Once your MPI application is built, you can run and debug it. The PVF Debugging property page
isthe key to both running and debugging an MPI application. For simplicity, in this section we
use the term execution to mean either running or debugging the application.

Use the MPI Debugging property to determine the type of execution you need, provided you have
the appropriate system configuration and license.

4.4.1. MPI Debugging Property Options

The MPI Debugging property can be set to either of these options: Disabled or Local.
Disabled
When Disabled is selected, execution is performed serially.
L ocal
When Local is selected, MPI execution is performed locally. That is, multiple processes are
used but all of them run on the local host.

Additional MPI properties become available when you select the Local MPI Debugging option.
For more information about these properties, refer to the Debugging Property Page’ in the PGI
Visual Fortran Reference Manual.

4.5. Launch an MPI Application

As soon as you have built your MPI application, and selected Local MPI Debugging, you can
launch your executable using the Debug | Sart Without Debugging menu option.

PVF uses Microsoft’ s version of mpiexec to support Local MPI execution.

4.6. Debug an MPI Application

To debug your MPI application, select Debug | Sart Debugging or hit F5. Aswith running your
MPI application, PVF usesmpiexec for Loca MPI jobs.

PVF s style of MPI debugging can be described as ‘run atogether.” With this style of debugging,
execution of all processes occurs at the same time. When you select Continue, all processes

are continued. When one process hits a breakpoint, it stops. The other processes do not stop,
however, until they hit a breakpoint or some other type of barrier. When you select Sep, all
processes are stepped. Control returns to you as soon as one or more processes finish its step. If

PVF User's Guide 37

Using MP! in PVF

some process does not finish its step when the other processes are finished, it continues execution
until it completes.

4.7. Profile an MPI Application

The PGI profiling tool PGPROF is included with PVF. The process of profiling involves these
basic steps:

1. Build the application with profiling options enabled.
2. Run the application to generate profiling output.
3. Analyze the profiling output with a profiler.

To build a profiling-enabled application in PVF, use the Profiling property page. Enable MPICH-
style profiling for Microsoft MPI by setting the MPI property to Microsoft MPI. Doing this adds
the -Mprof=msmpi option to compilation and linking. Y ou must also enable either Function-
Level Profiling (-Mprof=func) or Line-Level Profiling (-Mprof=lines).

The profile data generated by running an application built with the option -M prof=msmpi
contains information about the number of sends and receives, as well as the number of bytes sent
and received, correlated with the source location associated with the sends and receives.

Once you've built your application with the profiling properties enabled, run your application
to generate the profiling information files. These files, named pgprof* .out, contain the profiled
output of the application's run.

Launch PGPROF from the PVF start menu via Start | All Programs | PGI Visual Fortran | Profiler
| PGPROF Performance Profiler. Once PGPROF is running, use the File | New Profiling Session
menu option to specify the location of the pgprof . out filesand your application. For details
on using pgprof, refer to the PGPROF Profiler Guide.

PVF User's Guide 38

http://www.pgroup.com/resources/docs.htm

Chapter 5.
GETTING STARTED WITH THE COMMAND LINE
COMPILERS

This section describes how to use the command-line PGI compilers. The PGI Visual Fortran IDE
invokes the PGI compilers when you build a PVF project. Y ou can also invoke the compilers
directly from a command prompt which you can launch from the Start menu, as described in
Shortcuts to Launch PVF.

5.1. Overview

The command used to invoke a compiler, such as the pgfortran command, is called a compiler
driver. The compiler driver controls the following phases of compilation: preprocessing,
compiling, assembling, and linking. Once afile is compiled and an executablefile is produced,
you can execute, debug, or profile the program on your system. Executables produced by the
PGI compilers are unconstrained, meaning they can be executed on any compatible x86 or x64
processor-based system, regardless of whether the PGI compilers are installed on that system.

In general, using a PGl compiler involves three steps:

1. Produce program source code in afile containing a .f extension or another appropriate
extension, as described in Input Files. This program may be one that you have written or one
that you are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

Y ou might also want to deploy your application, though thisis not arequired step.

The PGI compilers allow many variations on these general program development steps. These
variations include the following:

» Stop the compilation after preprocessing, compiling or assembling to save and examine
intermediate results.

» Provide options to the driver that control compiler optimization or that specify various
features or limitations.

» Include asinput intermediate files such as preprocessor output, compiler output, or assembler
output.

PVF User's Guide 39

Getting Started with The Command Line Compilers

5.2. Creating an Example

Let’slook at asimple example of using the PGI compiler to create, compile, and execute a
program that prints

hello

1. Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello. f:
print *, "hello"
end
2. Compile the program.

When you created your program, you called it hello. £. Inthisexample, we compileit from
ashell command prompt using the default pgfortran driver option. Use the following syntax:

PGIS$ pgfortran hello.f
By default, the executable output is placed in afilename based on the name of the first source

or object file on the command line. However, you can specify an output file name by using the
—o option.

To place the executable output in the file hello, use this command:
PGIS$ pgfortran -o hello hello.f

3. Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and
press the Return or Enter key on your keyboard:

PGIS$ hello
hello

5.3. Invoking the Command-level PGl Compilers

To trandate and link a Fortran language program, the pgf 77, pgf95, and pgfortran commands do
the following:

1. Preprocess the source text file.

2. Check the syntax of the source text.

3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.

5.3.1. Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:
pgfortran [options] [path]filename [...]

PVF User's Guide 40

Getting Started with The Command Line Compilers

Where:

options
is one or more command-line options, al of which are described in detail in Use Command
Line Options.

path
is the pathname to the directory containing the file named by filename. If you do not specify
the path for afilename, the compiler uses the current directory. Y ou must specify the path
separately for each filename not in the current directory.

filename
isthe name of a source file, preprocessed source file, assembly-language file, object file,
or library to be processed by the compilation system. Y ou can specify more than one
[path]filename.

5.3.2. Command-line Options

The command-line options control various aspects of the compilation process. For a complete
alphabetical listing and a description of all the command-line options, refer to Use Command-
Line Options.

Thefollowing list provides important information about proper use of command-line options.

» Caseisdignificant for options and their arguments.
» The compiler drivers recognize characters preceded by a hyphen () as command-line
options. For example, the -M11i st option specifies that the compiler creates alisting file.

The convention for the text of this manual is to show command-line options using a dash instead of a
hyphen; for example, you see ~-M11ist.

» Theorder of options and the filename is flexible. That is, you can place options before and
after the filename argument on the command line. However, the placement of some options
issignificant, such asthe —1 option, in which the order of the filenames determines the
search order.

n If two or more options contradict each other, the last one in the command line takes precedence.

5.3.3. Fortran Directives

Y ou can insert Fortran directives in program source code to ater the effects of certain command-
line options and to control various aspects of the compilation process for a specific routine or a
specific program loop. For more information on Fortran directives, refer to Using OpenMP and
Using Directives.

5.4. Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create
input and output files. This section describes the input and output filename conventions for the
phases of the compilation process.

PVF User's Guide 41

Getting Started with The Command Line Compilers

5.4.1. Input Files

Y ou can specify assembly-language files, preprocessed source files, Fortran source files, object
files, and libraries as inputs on the command line. The compiler driver determines the type of
each input file by examining the filename extensions.

For systems with a case-insensitive file system, use the —Mpreprocess option, described in ‘Command-
Line Options Reference’ section of the PGI Visual Fortran Reference Manual, under the commands for
Fortran preprocessing.
The drivers use the following conventions:
filename. f
indicates a Fortran sourcefile.
filename.F

indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).
filename.FOR

indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.F95

indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).
filename. fpp

indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename. £90
indicates a Fortran 90/95 source file that isin freeform format.

filename. £95

indicates a Fortran 90/95 source file that isin freeform format.
filename.cuf

indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.
filename.CUF

indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that
can contain macros and preprocessor directives (to be preprocessed).

filename.s

indicates an assembly-language file.
filename.obj

(Windows systems only) indicates an object file.

PVF User's Guide 42

http://www.pgroup.com/resources/docs.htm

Getting Started with The Command Line Compilers

filename.lib

(Windows systems only) indicates a statically-linked library of object files or an import
library.
filename.dll

(Windows systems only) indicates a dynamically-linked library.

The driver passesfileswith . s extensions to the assembler and fileswith . ob7, .d11, and
. 1ib extensionsto the linker. Input files with unrecognized extensions, or ho extension, are al'so
passed to the linker.

Fileswith a . fpp suffix arefirst preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor is built in to the Fortran compilers.
This design ensures consistency in the preprocessing step regardless of the type or revision of
operating system under which you' re compiling.

Any input files not needed for a particular phase of processing are not processed. For example,

if on the command line you specify an assembly-languagefile (filename. s) and the -S
option to stop before the assembly phase, the compiler takes no action on the assembly language
file. Processing stops after compilation and the assembler does not run. In this scenario, the
compilation must have been completed in a previous pass which created the . s file. For a
complete description of the —s option, refer to Output Files.

In addition to specifying primary input files on the command line, code within other files can be
compiled as part of include files using the INCLUDE statement in a Fortran source file or the
preprocessor #include directive in Fortran source filesthat use a . F extension.

When linking a program with alibrary, the linker extracts only those library components that the
program needs. The compiler driverslink in several libraries by default. For more information
about libraries, refer to Create and Use Libraries.

5.4.2. Output Files

By default, an executable output file produced by one of the PGI compilersis placed in thefile
a.out, or, on Windows, in afilename based on the name of the first source or object file on the
command line. As the Hello example shows, you can use the —o option to specify the output file
name.

If you use one of the options: —F (Fortran only), —s or —c, the compiler produces afile
containing the output of the last completed phase for each input file, as specified by the option
supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked object
file respectively. Similarly, the —E option does not produce afile, but displays the preprocessed
source file on the standard output. Using any of these options, the —o optionisvalid only if you
specify asingle input file. If no errors occur during processing, you can use the files created by
these options as input to a future invocation of any of the PGI compiler drivers.

The following table lists the stop-after options and the output files that the compilers create when
you use these options. It also indicates the accepted input files.

PVF User's Guide 43

Getting Started with The Command Line Compilers

Table 6 Option Descriptions

Option Stop After Input Output

-E preprocessing Source files preprocessed file to standard out

-F preprocessing Source files preprocessed file (. f)

-S compilation Source files or preprocessed files assembly-language file (. s)

-C assembly Source files, or preprocessed files, or unlinked object file (. ob)
assembly-language files

none linking Source files, or preprocessed files, executable file (. exe)
assembly-language files, object files, or
libraries

If you specify multiple input files or do not specify an object filename, the compiler uses the
input filenames to derive corresponding default output filenames of the following form, where
filename is the input filename without its extension:

filename.f

indicates a preprocessed file, if you compiled a Fortran file using the —F option.
filename.i

indicates a preprocessed file, if you compiled using the —P option.
filename.lst

indicates alisting file from the -M11ist option.
filename.obj

indicates a object file from the —c option.
filename.s

indicates an assembly-language file from the —s option.

Unless you specify otherwise, the destination directory for any output file is the current working directory. If
the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output filesproto.obj and protol . obj which are binary object files.
Prior to compilation, thefileprotol . F is preprocessed becauseit hasa . F filename extension.

5.5. Fortran Data Types

The PGI Fortran compilers recognize scalar and aggregate data types. A scalar data type holds a
single value, such asthe integer value 42 or the real value 112.6. An aggregate data type consists
of one or more scalar data type objects, such as an array of integer values.

For information about the format and alignment of each datatype in memory, and the range of
values each type can have on x86 or x64 processor-based systems running a 32-bit operating
system, refer to ‘Fortran, C, and C++ Data Types' section of the PGI Visual Fortran Reference
Manual.

PVF User's Guide 44

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Getting Started with The Command Line Compilers

For more information on x86-specific data representation, refer to the System V Application
Binary Interface Processor Supplement by AT& T UNIX System Laboratories, Inc. (Prentice
Hall, Inc.).

For more information on x64 processor-based systems and the application binary interface (ABI)
for those systems, see http://www.x86-64.0rg/documentation/abi. pdf.

5.6. Parallel Programming Using the PGI Compilers

The PGI compilers support many styles of parallel programming:

» Automatic shared-memory parallel programs compiled using the -Mconcur option to
pof 77, pgf95, or pgfortran. Parallel programs of this variety can be run on shared-memory
paralel (SMP) systems such as dual-core or multi-processor workstations.

» OpenMP shared-memory parallel programs compiled using the —mp option to pgf77, pgf95,
or pgfortran. Parallel programs of this variety can be run on SMP systems. Carefully coded
user—directed parallel programs using OpenM P directives can often achieve significant
speed-ups on dual-core workstations or large numbers of processors on SMP server systems.
Using OpenM P contains compl ete descriptions of user-directed parallel programming.

» Distributed computing using an MPI message-passing library for communication between
distributed processes.

» Accelerated computing using either alow-level model such as CUDA Fortran or ahigh-level
model such asthe PGI Accelerator model or OpenACC to target a many-core GPU or other
attached accelerator.

On asingle silicon die, today’ s CPUs incorporate two or more compl ete processor cores —
functiona units, registers, level 1 cache, level 2 cache, and so on. These CPUs are known as
multi-core processors. For purposes of threads or OpenMP parallelism, these cores function as
two or more distinct processors. However, the processing cores are on a single chip occupying
asingle socket on a system motherboard. For purposes of PGI software licensing, a multi-core
processor istreated as a single CPU.

5.6.1. Run SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run

on more than one processor, set the NCPUS environment variable to the desired number of
processors. For information on how to set environment variables, refer to Setting Environment
Variables.

If you set NCPUS to a number larger than the number of physical processors, your program may execute
very slowly.

5.7. Site-Specific Customization of the Compilers

If you are using the PGl compilers and want all your users to have access to specific libraries or
other files, there are special filesthat allow you to customize the compilers for your site.

PVF User's Guide 45

http://www.x86-64.org/documentation/abi.pdf

Getting Started with The Command Line Compilers

5.7.1. Use siterc Files

The PGI compiler drivers utilize afile named s iterc to enable site-specific customization of
the behavior of the PGI compilers. The siterc fileislocated in the bin subdirectory of the
PGI installation directory. Using siterc, you can control how the compiler driversinvoke the
various components in the compilation tool chain.

5.7.2. Using User rc Files

In addition to the siterc file, user rc files can reside in a given user—s home directory, as specified
by the user—s HOME environment variable. Y ou can use these files to control the respective PGI
compilers. All of these files are optional.

On Windows, thesefilesare named mypgf77rc, mypgf90rc, mypgf95rc, and
mypgfortranrc.

5.8. Common Development Tasks

Now that you have a brief introduction to the compiler, let’slook at some common development
tasks that you might wish to perform.

» When you compile code you can specify a number of options on the command line that
define specific characteristics related to how the program is compiled and linked, typically
enhancing or overriding the default behavior of the compiler. For alist of the most common
command line options and information on all the command line options, refer to Use
Command Line Options.

» Code optimization and parallelization allows the compiler to organize your code for efficient
execution. While possibly increasing compilation time and making the code more difficult
to debug, these techniques typically produce code that runs significantly faster than code
that does not use them. For more information on optimization and parallelization, refer to
Optimizing and Parallelizing.

» Function inlining, a special type of optimization, replaces a call to afunction or a subroutine
with the body of the function or subroutine. This process can speed up execution by
eliminating parameter passing and the function or subroutine call and return overhead. In
addition, function inlining allows the compiler to optimize the function with the rest of the
code. However, function inlining may also result in much larger code size with no increase in
execution speed. For more information on function inlining, refer to Using Function Inlining.

» Directives alow usersto place hintsin the source code to help the compiler generate better
assembly code. Y ou typically use directives to control the actions of the compiler in a
particular portion of a program without affecting the program as awhole. Y ou place them
in your source code where you want them to take effect. A directive typically staysin effect
from the point where included until the end of the compilation unit or until another directive
changesits status. For more information on directives, refer to Using OpenM P and Using
Directives.

» Alibrary isacollection of functions or subprograms used to develop software. Libraries
contain "helper" code and data, which provide services to independent programs, alowing
code and data to be shared and changed in a modular fashion. The functions and programs

PVF User's Guide 46

Getting Started with The Command Line Compilers

in alibrary are grouped for ease of use and linking. When creating your programs, it is often
useful to incorporate standard libraries or proprietary ones. For more information on this
topic, refer to Creating and Using Libraries.

Environment variables define a set of dynamic values that can affect the way running
processes behave on acomputer. It is often useful to use these variables to set and pass
information that alters the default behavior of the PGI compilers and the executables

which they generate. For more information on these variables, refer to Using Environment
Variables.

Deployment, though possibly an infrequent task, can present some unique issues related

to concerns of porting the code to other systems. Deployment, in this context, involves
distribution of a specific file or set of filesthat are already compiled and configured. The
distribution must occur in such away that the application executes accurately on another
system which may not be configured exactly the same as the system on which the code was
created. For more information on what you might need to know to successfully deploy your
code, refer to Distributing Files - Deployment.

PVF User's Guide 47

Chapter 6.
USE COMMAND LINE OPTIONS

A command line option allows you to control specific behavior when a program is compiled and
linked. This section describes the syntax for properly using command-line options and provides a
brief overview of afew of the more common options.

For a complete list of command-line options, their descriptions and use, refer to the Command-Line
Options Reference section of the PGI Visual Fortran Reference Manual.

6.1. Command Line Option Overview

Before looking at al the command-line options, first become familiar with the syntax for these
options. There are alarge number of options available to you, yet most users only use a few of
them. So, start simple and progress into using the more advanced options.

By default, the PGl compilers generate code that is optimized for the type of processor on which
compilation is performed, the compilation host. Before adding options to your command-line,
review Help with Command-line Options and Frequently-used Options.

6.1.1. Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not
recognize an option, you get an unknown switch error. The error can be downgraded to awarning
by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

PVF User's Guide 48

http://www.pgroup.com/resources/docs.htm

Use Command Line Options

Horizontal ellipsesindicate that zero or more instances of the preceding item are valid.

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in the Command-Line Options Reference section of
the PGI Visual Fortran Reference Manual contains this information. .

6.1.2. Command-line Suboptions

Some options accept several suboptions. Y ou can specify these suboptions either by using the full
option statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:

pgfortran -Mvect=simd -Mvect=noaltcode

pgfortran -Mvect=simd,noaltcode

6.1.3. Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both -Mvect and -
Mnovect are available. -Mvect enables vectorization and -Mnovect disablesit. If you used
both of these commands on acommand line, they would conflict.

Rule: When you use conflicting options on a command line, the last encountered option takes precedence
OVEr any previous one.

The conflicting options rule is important for a number of reasons.

» Someoptions, such as —fast, include other options. Therefore, it is possible for you to be
unaware that you have conflicting options.

» You can usethisrule to create makefiles that apply specific flagsto a set of files, as shown in
the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags
defined for CCFLAGS but disables vectorization.

CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$ (CCFLAGS) -Mnovect

6.2. Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which
options are available, when to use them, and which options most users find effective.

Using -help

The -help option isuseful because it provides information about all options supported by a
given compiler.

PVF User's Guide 49

http://www.pgroup.com/resources/docs.htm

Use Command Line Options

You can use —help in one of three ways:

>

Use —~help with no parametersto obtain alist of all the available options with a brief one-
line description of each.

Add a parameter to —he1p to restrict the output to information about a specific option. The
syntax for thisusageis:

—help <command line option>

Suppose you use the following command to restrict the output to information about the -
fast option:
$ pgfortran -help -fast

The output you seeis similar to:

—fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the —he 1p parameter to restrict the output to information
about the help command. The usage information for ~he1p shows how groups of options
can be listed or examined according to function.

S pgfortran -help -help
-help[=groups|asm|debug|language|linker|opt|other|overall |phase|prepro]
suffix|switch|target|variable]

Add a parameter to —he 1p to restrict the output to a specific set of options or to a building
process. The syntax for this usageisthis:
-help=<subgroup>

By using the command pgfortran -help -help, aspreviously shown, we can see
output that shows the available subgroups. Y ou can use the following command to restrict
the output on the ~he 1p command to information about only the options related to only one
group, such as debug information generation.

S pgfortran -help=debug

The output you seeis similar to this:

Debugging switches:

-M[no]lbounds Generate code to check array bounds

-Mchkfpstk Check consistency of floating point stack at subprogram calls
(32-bit only)

-Mchkstk Check for sufficient stack space upon subprogram entry
-Mcoff Generate COFF format object

-Mdwarfl Generate DWARF1l debug information with -g

-Mdwarf2 Generate DWARF2 debug information with -g

-Mdwarf3 Generate DWARF3 debug information with -g

-Melf Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optimizations

For a complete description of subgroups, refer to the —he1p description in the Command
Line Options Reference section of the PVF Reference Manual.

PVF User's Guide 50

Use Command Line Options

6.3. Getting Started with Performance

One of the top priorities of most usersis performance and optimization. This section provides a
quick overview of afew of the command-line options that are useful in improving performance.

6.3.1. Using —fast and —fastsse Options

PGI compilersimplement awide range of options that allow users afine degree of control on
each optimization phase. When it comes to optimization of code, the quickest way to start isto
usetheoptions -fast or -fastsse. These options create a generally optimal set of flags for
x86 targets They incorporate optimization options to enable use of vector streaming SIMD (SSE)
instructions for 64-hit targets. They enable vectorization with SSE instructions, cache alignment,
and SSE arithmetic to flush to zero mode.

The contents of the —fast or —fastsse options are host-dependent. Further, you should use these
options on both compile and link command lines.

The following table showsthetypical -fast and -fastsse options.

Table 7 Typical -fast and -fastsse Options

Use this option... To do this...

-02 Specifies a code optimization level of 2.
-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each iteration.
—Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

—Mpre Indicates partial redundancy elimination

—fast for 64-hit targets and - fastsse for both 32— and 64-bit targets a so typically include
the options shown in thistable:

Table 8 Additional -fast and —-fastsse Options

Use this option... To do this...

-Mvect=sse Generates SSE instructions.

—-Mscalarsse Generates scalar SSE code with xmm registers; implies —-Mf lushza.
-Mcache align Aligns long objects on cache-line boundaries

Note On 32-bit systems, if one file is compiled with the -Mcache align option, then all
files should be compiled with it. This is not true on 64-bit systems.

—-Mflushz Sets SSE to flush-to-zero mode.

PVF User's Guide 51

Use Command Line Options

Use this option... To do this...

-M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler, even
for FORTRAN 77 code, and the —fa st option.

To see the specific behavior of —fast for your target, use the following command:
$ pgfortran -help -fast

6.3.2. Other Performance-Related Options

While-fast and -fastsse are options designed to be the quickest route to best performance,
they are limited to routine boundaries. Depending on the nature and writing style of the source
code, the compiler often can perform further optimization by knowing the global context of usage
of agiven routine. For instance, determining the possible value range of actual parameters of
aroutine could enable aloop to be vectorized; similarly, determining static occurrence of calls
helps to decide which routine is beneficial toinline.

These types of global optimizations are under control of Interprocedural Analysis (1PA)

in PGl compilers. Option —Mipa enables Interprocedural Analysis. -Mipa=fast isthe
recommended option to get best performances for global optimization. Y ou can also add the
suboption inline to enable automatic global inlining across files. Y ou might consider using
-Mipa=fast, inline. Thisoption for interprocedural analysisand global optimization can
improve performance.

Y ou may also obtain further performance improvements by experimenting with the —
M<pgflag> options described in the section ‘ —M Options by Category’ section of the PGI
Visual Fortran Reference Manual. These options include, but are not limited to, -Mvect, -
Munroll, -Minline, -Mconcur, -Mpfi and -Mpfo. However, performance improvements
using these options are typically application- and system-dependent. It is important to time your
application carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Optimizing and Parallelizing. For specific
information about these options, refer to the * Optimization Controls’ section of the PGl Visual
Fortran Reference Manual.

6.4. Targeting Multiple Systems — Using the —tp Option

The —tp option allows you to set the target architecture. By default, the PGI compiler uses

all supported instructions wherever possible when compiling on a given system. As aresult,
executabl es created on a given system may not be usable on previous generation systems. For
example, executables created on a Pentium 4 may fail to execute on a Pentium I11 or Pentium I1.

Processor-specific optimizations can be specified or limited explicitly by using the —tp option.
Thus, it is possible to create executables that are usable on previous generation systems. Using a
—tp flag option of k8 or p7 produces an executable that runs on most x86 hardware in use today.

PVF User's Guide 52

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Use Command Line Options

For more information about the —tp option, refer tothe—-tp <target> [, target...]
description in the Command-Line Options Reference section of the PGI Visual Fortran Reference

Manual.

6.9. Frequently-used Options

In addition to overal performance, there are a number of other options that many users find
useful when getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the compl ete description of each option available
in the Command-Line Options Reference section of the PGI Visual Fortran Reference Manual.
Also, there are anumber of suboptions available with each of the —M options listed. For more
information on those options, refer to the specific section on M Options by Category.

Table 9 Commonly Used Command-Line Options

Use this option...

To do this...

—fast These options create a generally optimal set of flags for targets that support SIMD capability. They
incorporate optimization options to enable use of vector streaming SIMD instructions (64-bit targets)

—fastsse and enable vectorization with SEE instructions, cache aligned and flushz.

-g Instructs the compiler to include symbolic debugging information in the object module.

—gopt Instructs the compiler to include symbolic debugging information in the object file, and to generate
optimized code identical to that generated when —g is not specified.

-help Provides information about available options.

—Mconcur Instructs the compiler to enable auto-concurrentization of loops. If specified, the compiler uses multiple
processors to execute loops that it determines to be parallelizable; thus, loop iterations are split to
execute optimally in a multithreaded execution context.

-Minfo Instructs the compiler to produce information on standard error.

—Minline Enables function inlining.

-Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables automatic procedure inlining.

—Mpfi or -Mpfo Enable profile feedback driven optimizations

—Mkeepasm Keeps the generated assembly files.

—~Munroll Invokes the loop unroller to unroll loops, executing multiple instances of the loop during each iteration.
This also sets the optimization level to 2 if the level is set to less than 2, or if no —O or —g options are
supplied.

—-M[no]vect Enables/Disables the code vectorizer.

-0 Names the output file.

-0 <level> Specifies code optimization level where <level>is 0, 1, 2, 3, or 4.

~tp <target> [,target...]

Specify the target processor(s); for the 64-bit compilers, more than one target is allowed, and enables
generation of PGl Unified Binary executables.

PVF User's Guide

53

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Chapter 7.
OPTIMIZING AND PARALLELIZING

Source code that is readable, maintainable, and produces correct results is not always organized
for efficient execution. Normally, the first step in the program development process involves
producing code that executes and produces the correct results. Thisfirst step usually involves
compiling without much worry about optimization. After code is compiled and debugged, code
optimization and parall€lization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler to
generate optimized code. Optimization is not always performed since it increases compilation
time and may make debugging difficult. However, optimization produces more efficient code that
usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. In PVF, you use
the Fortran | Optimization property page to specify optimization levels, on the command line,
the options you commonly useinclude -0, -Mvect, -Mipa, and —-Mconcur. In addition,
you can use several of the -M<pgflag> switchesto control specific types of optimization and
parallelization. Y ou can set the options not supported by the Fortran | Optimization property
page by using the Additional Optionsfield of the Fortran | Command Line property page. For
more information, refer to Fortran Property Pages section in the PGl Visua Fortran Reference
Manual.

This chapter describes these optimization options:

—fast —Minline -0 —Munroll
—Mconcur —Mipa=fast -Mpfi —-Mvect
-Minfo —Mneginfo -Mpfo

—Mipa=fast,inline

This chapter aso describes how to choose optimization options to use with the PGl compilers.
This overview ishelpful if you are just getting started with one of the PGI compilers, or wish to
experiment with individual optimizations.

Compl ete specifications of each of these optionsis available in the Command-Line Options
Reference section of the PGl Visua Fortran Reference Manual.

PVF User's Guide 54

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

7.1. Overview of Optimization

In general, optimization involves using transformations and replacements that generate more
efficient code. Thisis done by the compiler and involves replacements that are independent of the
particular target processor’ s architecture as well as replacements that take advantage of the x86 or
X64 architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization

Global Optimization

L oop Optimization

Interprocedural Analysis (IPA) and Optimization
Optimization Through Function Inlining

Profile Feedback Optimization (PFO)

7.1.1. Local Optimization

Local optimization is performed on a block—by—block basis within a program’ s basic blocks. A
basic block is a sequence of statements in which the flow of control enters at the beginning and
leaves at the end without the possibility of branching, except at the end.

The PGI compilers perform many types of local optimization including: algebraic identity
removal, constant folding, common sub-expression elimination, redundant load and store
elimination, scheduling, strength reduction, and peephole optimizations.

7.1.2. Global Optimization

This optimization is performed on a program unit over al its basic blocks. The optimizer
performs control—flow and data—flow analysis for an entire program unit. All loops, including
those formed by IFs and GOTOs, are detected and optimized.

Global optimization includes: constant propagation, copy propagation, dead store elimination,
global register alocation, invariant code motion, and induction variable elimination.

7.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling
options. Vectorization transforms loops to improve memory access performance and make use of
packed SSE instructions which perform the same operation on multiple dataitems concurrently.
Unrolling replicates the body of loops to reduce loop branching overhead and provide better
opportunities for local optimization, vectorization and scheduling of instructions. Performance for
loops on systems with multiple processors may also improve using the parallelization features of
the PGI compilers.

PVF User's Guide 55

Optimizing and Parallelizing

7.1.4. Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (1PA) allows use of information across function call boundaries to
perform optimizations that would otherwise be unavailable. For example, if the actual argument
to afunctionisin fact aconstant in the caller, it may be possible to propagate that constant into
the callee and perform optimizations that are not valid if the dummy argument istreated as a
variable. A wide range of optimizations are enabled or improved by using IPA, including but
not limited to data alignment optimizations, argument removal, constant propagation, pointer
disambiguation, pure function detection, FO0/F95 array shape propagation, data placement,
vestigial function removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled libraries.

7.1.5. Function Inlining

This optimization allows a call to afunction to be replaced by a copy of the body of that function.
This optimization will sometimes speed up execution by eliminating the function call and

return overhead. Function inlining may also create opportunities for other types of optimization.
Function inlining is not always beneficial. When used improperly it may increase code size and
generate less efficient code.

7.1.6. Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from a trace file produced by
specially instrumented executables which capture and save information on branch frequency,
function and subroutine call frequency, semi-invariant values, loop index ranges, and other
input data dependent information that can only be collected dynamically during execution of a
program.

By definition, use of profile-feedback optimization is atwo-phase process: compilation and
execution of a specially-instrumented executable, followed by a subsequent compilation which
reads atrace file generated during the first phase and uses the information in that trace file to
guide compiler optimizations.

7.2. Getting Started with Optimization

Y our first concern should be getting your program to execute and produce correct results. To get
your program running, start by compiling and linking without optimization. Add —00 to your
compile line to select no optimization; or add —g to allow you to debug your program easily and
isolate any coding errors exposed during porting to x86 or x64 platforms. For more information
on debugging, refer to the PGDBG Debugger Guide.

If you want to get started quickly with optimization, a good set of optionsto use with any of the
PGl compilersis-fast -Mipa=fast, inline. For example:

$ pgfortran -fast -Mipa=fast,inline prog.f

In PVF, similar options may be accessed using the Optimization property in the Fortran

| Optimization property page. For more information on these property pages, refer to the
Optimization section in the PGl Visua Fortran Reference Manual.

PVF User's Guide 56

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

For dl of the PGI Fortran compilers, the -fast -Mipa=fast, inline optionsgeneraly
produce code that is well-optimized without the possibility of significant slowdowns dueto
pathological cases.

» The-fast optionisan aggregate option that includes a number of individual PGI
compiler options; which PGI compiler options are included depends on the target for which
compilation is performed.

» The-Mipa=fast, inline optioninvokesinterprocedura analysis (IPA), including
several |PA suboptions. The inline suboption enables automatic inlining with IPA. If you do
not wish to use automatic inlining, you can compile with -Mipa=fast and use several IPA
suboptions without inlining.

By experimenting with individual compiler options on afile-by-file basis, further significant
performance gains can sometimes be realized. However, depending on the coding style,
individual optimizations can sometimes cause slowdowns, and must be used carefully to ensure
performance improvements.

In PVF, you may accessthe -03, -Minline, and -Mconcur options by using the Global
Optimizations, Inlining, and Auto-Parallelization properties on the Fortran | Optimization
property page, respectively. For more information on these property pages, refer to the
Optimization section in the PGl Visua Fortran Reference Manual.

There are other useful command line options related to optimization and parall€elization, such as—
help, -Minfo, -Mneginfo, —dryrun, and —v.

7.2.1.-help

As described in Help with Command-Line Options, you can see a specification of any
command-ine option by invoking any of the PGI compilers with —he1p in combination with the
option in question, without specifying any input files.

For example, you might want information on -0:
$ pgfortran -help -0

The resulting output is similar to this:

-0 Set opt level. All -01 optimizations plus traditional scheduling and
global scalar optimizations performed

Or you can see the full functionality of —he1p itself, which can return information on either an

individual option or groups of options:

$ pgfortran -help -help

The resulting output is similar to this:

-help[=groups|asm|debug|language|linker|opt|other|overall]|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

In PVF these options may be accessed viathe Fortran | Command Line property page, or perhaps
more appropriately for the ~he 1p option viaaBuild Event or Custom Build Step. For more
information on these property pages, refer to the Command Line section in the PGl Visual Fortran
Reference Manual.

PVF User's Guide 57

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

7.2.2. -Minfo

Y ou can use the -Minfo option to display compile-time optimization listings. When this option
is used, the PGI compilersissue informational messages to standard error (stderr) as compilation
proceeds. From these messages, you can determine which loops are optimized using unrolling,
SSE instructions, vectorization, parallelization, interprocedural optimizations and various
miscellaneous optimizations. Y ou can also see where and whether functions are inlined.

For more information on —-Minfo, refer to Optimization Controls section of the PGI Visual
Fortran Reference Manual.

7.2.3. -Mneginfo

Y ou can use the -Mneginfo option to display informational messages to standard error (stderr)
that explain why certain optimizations are inhibited.

In PVF, you can use the Warning Level property available in the Fortran | General property page
to specify the option -Mneginfo.

For more information on -Mneginfo, refer to Optimization Controls section of the PG| Visual
Fortran Reference Manual.

7.2.4. —dryrun

The -dryrun option can be useful as a diagnostic tool if you need to see the steps used by

the compiler driver to preprocess, compile, assemble and link in the presence of a given set of
command line inputs. When you specify the ~dryrun option, these steps are printed to standard
error (stderr) but are not actually performed. For example, you can use this option to inspect the
default and user—specified libraries that are searched during the link phase, and the order in which
they are searched by the linker.

7.25. -

The —v option is similar to —dryrun, except each compilation step is performed.

7.2.6. PGPROF

PGPROF is a profiling tool that provides away to visualize the performance of the components
of your program. Using tables and graphs, PGPROF associates execution time and resource
utilization data with the source code and instructions of your program. This association allows
you to see where a program’ s execution time is spent. Through resource utilization data and
compiler analysis information, PGPROF helps you to understand why certain parts of your
program have high execution times. Thisinformation may help you with selecting which
optimization options to use with your program.

PGPROF also allows you to correlate the messages produced by -Minfo and -Mneginfo,
described above, to your program’ s source code. This feature is known as the Common Compiler
Feedback Format (CCFF).

For more information on PGPROF, refer to the PGPROF Profiler Guide.

PVF User's Guide 58

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

7.3. Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information
about how your program was optimized, or why a particular optimization was not made, in
the executable file. To append thisinformation to the object file, use the compiler option —
Minfo=ccff.

If you choose to use PGPROF to aid with your optimization, PGPROF can extract this
information and associate it with source code and other performance data, allowing you to view
al of thisinformation simultaneously in one of the available profiler panels.

7.4. Local and Global Optimization

This section describes local and global optimization.

74.1.-0

Using the PGI compiler commands with the —Olevel option (the capital O isfor Optimize), you
can specify any integer level from 0 to 4.

-00

Level zero specifies no optimization. A basic block is generated for each language statement. At
thislevel, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. Thislevel is useful
for theinitial execution of aprogram. It is also useful for debugging, since thereis adirect
correlation between the program text and the code generated. To enable debugging, include —g
on your compileline.

-01

Level one specifieslocal optimization. Scheduling of basic blocksis performed. Register
allocation is performed.

Local optimization is agood choice when the codeis very irregular, such as code that contains
many short statements containing | F statements and does not contain loops (DO or DO WHILE
statements). Although this case rarely occurs, for certain types of code, this optimization level
may perform better than level-two (-02).

-0

When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is
enabled.

PVF User's Guide 59

Optimizing and Parallelizing

-02

Level two specifies global optimization. Thislevel performsall level-one local optimization as
well aslevel two global optimization described in —0. In addition, more advanced optimizations
such as SIMD code generation, cache alignment, and partial redundancy elimination are enabled.

-03

Level three specifies aggressive global optimization. This level performs all level-one and level-
two optimizations and enables more aggressive hoisting and scalar replacement optimizations that
may or may not be profitable.

04

Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of
guarded invariant floating point expressions.

Types of Optimizations

The PGI compilers perform many different types of local optimizations, including but not limited
to:

Algebraic identity removal

Constant folding

Common subexpression elimination
Local register optimization

Peephol e optimizations

Redundant load and store elimination
Strength reductions

Level-two optimization (—-02 or —0) specifies global optimization. The -fast option generally
specifies global optimization; however, the - fast switch varies from release to release,
depending on a reasonable selection of switches for any one particular release. The -0 or -

02 level performs al level-one local optimizations as well as global optimizations. Control

flow analysisis applied and global registers are allocated for al functions and subroutines.

Loop regions are given special consideration. This optimization level is agood choice when the
program contains loops, the loops are short, and the structure of the codeisregular.

The PGI compilers perform many different types of global optimizations, including but not
limited to:

Branch to branch elimination
Constant propagation

Copy propagation

Dead store elimination

Global register allocation
Induction variable elimination

PVF User's Guide 60

Optimizing and Parallelizing

Invariant code motion

Y ou can explicitly select the optimization level on the command line. For example, the following
command line specifies level-two optimization which results in global optimization:
$ pgfortran -02 prog.f

The default optimization level changes depending on which options you select on the command
line. For example, when you select the —g debugging option, the default optimization level is
set to level—zero (—00). However, if you need to debug optimized code, you can use the —gopt
option to generate debug information without perturbing optimization. For a description of the
default levels, refer to Default Optimization Levels.

The -fast optionincludes —02 on al x86 and x64 targets. If you want to override the default
for —fast with -03 while maintaining all other elements of —-fast, simply compile as follows:
$ pgfortran -fast -03 prog.f

7.5. Loop Unrolling using —Munroll

This optimization unrolls loops, which reduces branch overhead, and can improve execution
speed by creating better opportunities for instruction scheduling. A loop with a constant count
may be completely unrolled or partialy unrolled. A loop with a non-constant count may also be
unrolled. A candidate loop must be an innermost loop containing one to four blocks of code.

The following example shows the use of the -Munrol1 option:
$ pgfortran -Munroll prog.f

The -Munroll optionisincluded as part of —~fast on al x86 and x64 targets. The loop
unroller expands the contents of aloop and reduces the number of times aloop is executed.
Branching overhead is reduced when aloop is unrolled two or more times, since each iteration of
the unrolled loop corresponds to two or more iterations of the original loop; the number of branch
instructions executed is proportionately reduced. When aloop is unrolled completely, the loop’s
branch overhead is eliminated altogether.

In PVF, this option is accessed using the Loop Unroll Count property in the Fortran |
Optimization property page. For more information on these property pages, refer to Fortran
Optimization in the PGI Visual Fortran Reference Manual.

Loop unrolling may be beneficial for the instruction scheduler. When aloop is completely
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented.
The code generator can take advantage of more possibilities for instruction grouping or filling
instruction delays found within the loop.

PVF User's Guide 61

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

Examples Showing Effect of Unrolling

The following side-by—side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop; it is not meant to imply
that the programmer needs to manually change code. In fact, manually unrolling your code can sometimes
inhibit the compiler’s analysis and optimization.

Table 10 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z
INTEGER I INTEGER I
DO I=1, 100 DO I=1, 100, 2
Z =7 + A(i) * B(i) Z =7 + A(i) * B(i)
END DO Z = 7Z + A(i+l) * B(i+1)
END END DO
END

Using the -Minfo option, the compiler informs you when aloop is being unrolled. For example,
amessage similar to the following, indicating the line number, and the number of times the code
isunrolled, displays when aloop is unrolled:

dot:
5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-optionsto ~-Munrol1, or using -Mnounrol1, you can control
whether and how loops are unrolled on afile-by-file basis. Using directives, you can precisely
control whether and how a given loop is unrolled. For more information on —-Munrol1, refer to
Use Command Line Options.

7.6. Vectorization using —-Mvect

The -Mvect optionisincluded as part of —fast on al x86 and x64 targets. If your program
contains computationally-intensive loops, the -Mvect option may be helpful. If in addition
you specify -Minfo, and your code contains loops that can be vectorized, the compiler reports
relevant information on the optimizations applied.

When a PGl compiler command isinvoked with the -Mvect option, the vectorizer scans code
searching for loops that are candidates for high-evel transformations such as loop distribution,
loop interchange, cache tiling, and idiom recognition (replacement of a recognizable code
sequence, such as areduction loop, with optimized code sequences or function calls). When the
vectorizer finds vectorization opportunities, it internally rearranges or replaces sections of loops
(the vectorizer changes the code generated; your source code’ s loops are not atered). In addition
to performing these loop transformations, the vectorizer produces extensive data dependence
information for use by other phases of compilation and detects opportunities to use vector or
packed Sreaming SIMD Extensions (SSE) instructions on processors where these are supported.

PVF User's Guide 62

Optimizing and Parallelizing

The -Mvect option can speed up code which contains well-behaved countable loops which
operate on large REAL, REAL (4), REAL(8), INTEGER, INTEGER(4), COMPLEX(4) or
COMPLEX(8) arraysin Fortran and their C/C++ counterparts. However, it is possible that some
codes will show a decrease in performance when compiled with the -Mvect option due to

the generation of conditionally executed code segments, inability to determine data alignment,
and other code generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled with this
option enabled.

In PVF, you can access the basic forms of this option using the Vectorization property in the
Fortran | Optimization property page. For more advanced use of this option, use the Fortran |
Command Line property page. For more information on these property pages, refer to Fortran
Property Pagesin the PGI Visual Fortran Reference Manual.

7.6.1. Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable
if the number of iterationsis set only before loop execution and cannot be modified during loop
execution. Some of the vectorizer transformations can be controlled by arguments to the -Mvect
command line option. The following sections describe the arguments that affect the operation of
the vectorizer. In addition, some of these vectorizer operations can be controlled from within code
using directives and pragmas. For details on the use of directives, refer to Using Directives.

The vectorizer performs the following operations:

» Loop interchange

Loop splitting

Loop fusion

Memory-hierarchy (cache tiling) optimizations

Generation of SSE instructions on processors where these are supported
Generation of prefetch instructions on processors where these are supported
Loop iteration peeling to maximize vector alignment

Alternate code generation

vV v v VY

v v VY

By default, -Mvect without any sub-optionsis equivalent to:

-Mvect=assoc, cachesize=c
where c is the actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options.
These defaults may vary depending on the target system. The following table lists and briefly
describes some of the -Mvect suboptions.

Table 11 —Mvect Suboptions

Use this option ... To instruct the vectorizer to do this...
-Mvect=altcode Generate appropriate code for vectorized loops.
-Mvect=[no]assoc Perform[disable] associativity conversions that can change the

results of a computation due to a round-off error. For example,
a typical optimization is to change one arithmetic operation
to another arithmetic operation that is mathematically correct,

PVF User's Guide 63

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

Use this option ... To instruct the vectorizer to do this...

but can be computationally different and generate faster code.
This option is provided to enable or disable this transformation,
since a round-off error for such associativity conversions may
produce unacceptable results.

-Mvect=cachesize:n Tiles nested loop operations, assuming a data cache size of

n bytes. By default, the vectorizer attempts to tile nested loop
operations, such as matrix multiply, using multi-dimensional
strip-mining techniques to maximize re-use of items in the data

cache.
—Mvect=fuse Enable loop fusion.
—Mvect=gather Enable vectorization of indirect array references.
-Mvect=idiom Enable idiom recognition.
-Mvect=levels:<n> Set the maximum next level of loops to optimize.
-Mvect=nocond Disable vectorization of loops with conditions.
-Mvect=partial Enable partial loop vectorization via inner loop distribution.
-Mvect=prefetch Automatically generate prefetch instructions when vectorizable

loops are encountered, even in cases where SSE instructions
are not generated.

—Mvect=short Enable short vector operations.

-Mvect=simd Automatically generate packed SSE (Streaming SIMD
Extensions), and prefetch instructions when vectorizable loops
are encountered. SIMD instructions, first introduced on Pentium
[l and AthlonXP processors, operate on single-precision
floating-point data.

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to —~Mvect=simd.
-Mvect=tile Enable loop tiling.

-Mvect=uniform Perform consistent optimizations in both vectorized and

residual loops. Be aware that this may affect the performance
of the residual loop.

Inserting no in front of the option disables the option. For example, to disable the generation of SSE (or
SIMD) instructions, compile with —-Mvect=nosimd.

7.6.2. Vectorization Example Using SIMD Instructions

One of the most important vectorization optionsis -Mvect=simd. When you use this option,
the compiler automatically generates SSE instructions, where possible, when targeting processors
on which these instructions are supported. This process can improve performance by severa
factors compared with the equivalent scalar code. All of the PGI Fortran, C and C++ compilers
support this capability. The PGl Release Notes show which x86 and x64 processors PGl supports.

In the program in Vector operation using SIMD instructions, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch -Mvect=simd or —-fast isused.

PVF User's Guide 64

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

This example shows the compilation, informational messages, and runtime results using the SSE
instructions on a4 Core Intel Sandybridge 2.5 GHz system, along with issues that affect SSE
performance.

L oops vectorized using SSE instructions operate much more efficiently when processing vectors
that are aligned to a cache-line boundary. Y ou can cause unconstrained data objects of size

16 bytes or greater to be cache-aligned by compiling with the -Mcache align switch. An
unconstrained data object is adata object that is not a common block member and not a member
of an aggregate data structure.

For stack-based local variables to be properly aligned, the main program or function must be compiled with
-Mcache align.

The -Mcache align switch has no effect on the alignment of Fortran allocatable or autometic
arrays. If you have arrays that are constrained, such as vectors that are members of Fortran
common blocks, you must specifically pad your data structures to ensure proper cache alignment.
You can use -Mcache align for only the beginning address of each common block to be
cache-aligned.

The following examples show the results of compiling the sample code in Vector operation using
SIMD instructions both with and without the option —-Mvect=simd.

Vector operation using SIMD instructions

program vector op
parameter (N = 9999)
real*4 x(N), y(N), z(N), W(N)

doi =1, n
y(i) =i
z (1) = 2*1
w(i) = 4*1

enddo

do j =1, 200000
call loop(x,y,z,w,1.0e0,N)

print *, x(1),x(771),x(3618),x(6498),x(9999)

subroutine loop(a,b,c,d,s,n)
integer i, n
real*4 a(n), b(n), c(n), d(n),s
do i =1, n

a(i) = b(i) + c(i) - s * d(1i)
enddo
end

Assume the preceding program is compiled as follows, where -Mvect=nosimd disables SSE
vectorization:

% pgfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop unrolled 16 times
Generates 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
18, Loop unrolled 4 times

PVF User's Guide 65

Optimizing and Parallelizing

The following output shows a sample result if the generated executable is run and timed on a4
Core Intel Sandybridge 2.5 GHz system:

% /bin/time vadd

-1.000000 -771.000 -3618.000 -6498.00 -9999.00

1.35user 0.00system 0:01.35elapsed 99%CPU (Oavgtext+0avgdata 3936maxresident)k
Oinputs+Ooutputs (Omajor+290minor)pagefaults Oswaps

Now, recompile with SSE vectorization enabled, and you see results similar to these:

[)

% pgfortran -fast -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop not vectorized: may not be beneficial
Unrolled inner loop 8 times
Residual loop unrolled 7 times (completely unrolled)
Generated 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
17, Generated 4 alternate versions of the loop
Generated vector sse code for the loop
Generated 3 prefetch instructions for the loop

Notice the informational message for the loop at line 17.

» Thefirst two lines of the message indicate that the loop was vectorized, SSE instructions
were generated, and four alternate versions of the loop were also generated. The loop count
and alignments of the arrays determine which of these versions is executed.

» Thelast line of the informational message indicates that prefetch instructions have been
generated for three loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/time vadd

-1.000000 -771.000 -3618.00 -6498.00 -9999.0

0.60user 0.00system 0:00.6lelapsed 99%CPU (Oavgtext+Oavgdata 3920maxresident)k
Oinputs+0Ooutputs (Omajor+289minor)pagefaults Oswaps

The SIMD result is 2.25 times faster than the equivalent non-SIMD version of the program.
Speed-up realized by agiven loop or program can vary widely based on a number of factors:

» When the vectors of data are resident in the data cache, performance improvement using
vector SSE or SSE2 instructionsis most effective.

» If dataisaligned properly, performance will be better in general than when using vector SSE
operations on unaligned data.

» If the compiler can guarantee that datais aligned properly, even more efficient sequences of
SSE instructions can be generated.

» Theefficiency of loops that operate on single-precision data can be higher. SSE2 vector
instructions can operate on four single-precision elements concurrently, but only two double-
precision elements.

Compiling with —-Mvect=simd can resultin numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive to order of
operations and the associative transformations necessary to enable vectorization (or parallelization).

PVF User's Guide 66

Optimizing and Parallelizing

7.7. Auto-Parallelization using -Mconcur

With the -Mconcur option the compiler scans code searching for loops that are candidates for
auto-parallelization. —-Mconcur must be used at both compile-time and link-time. When the
parallelizer finds opportunities for auto-parallelization, it parallelizes loops and you are informed
of theline or loop being parallelized if the -Minfo option is present on the compile line. For a
complete specification of -Mconcur, refer to the * Optimization Controls’ section of the PGI
Visua Fortran Reference Manual.

In PVF, the basic form of this option is accessed using the Auto-Parallelization property of the
Fortran | Optimization property page. For more advanced auto-parallelization, use the Fortran |
Command Line property page. For more information on these property pages, refer to ‘ Fortran
Property Pages section of the PGI Visual Fortran Reference Manual.

A loop is considered parallelizable if it doesn't contain any cross-iteration data dependencies.
Cross-iteration dependencies from reductions and expandabl e scalars are excluded from
consideration, enabling more loops to be parallelizable. In general, loops with calls are not
paralelized due to unknown side effects. Also, loops with low trip counts are not parallelized
since the overhead in setting up and starting a parallel 1oop will likely outweigh the potential
benefits. In addition, the default is not to parallelize innermost loops, since these often by
definition are vectorizable using SSE instructions and it is seldom profitable to both vectorize and
paralelize the same loop, especially on multi-core processors. Compiler switches and directives
are available to let you override most of these restrictions on auto-parall€elization.

7.7.1. Auto-Parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the -
Mconcur command line option. The following sections describe these arguments that affect
the operation of the parallelizer. In addition, these parallelizer operations can be controlled from
within code using directives. For details on the use of directives, refer to Using Directives.

By default, -Mconcur without any sub-optionsis equivalent to:

—Mconcur=dist:block

This enables parallelization of loops with blocked iteration allocation across the available threads
of execution. These defaults may vary depending on the target system. The following table lists
and briefly describes some of the -Mconcur suboptions.

Table 12 -Mconcur Suboptions

Use this option ... To instruct the parallelizer to do this...
—Mconcur=allcores Use all available cores. Specify this option at link time.
—Mconcur=[noJaltcode Generate [do not generate] alternate serial code for parallelized

loops. If altcode is specified without arguments, the parallelizer
determines an appropriate cutoff length and generates serial
code to be executed whenever the loop count is less than or
equal to that length.

PVF User's Guide 67

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

Use this option ... To instruct the parallelizer to do this...

If altcode :nis specified, the serial altcode is executed
whenever the loop count is less than or equal to n. Specifying
noaltcode disables this option and no alternate serial
code is generated.

—Mconcur=[nolassoc Enable [disable] parallelization of loops with associative
reductions.

—Mconcur=bind Bind threads to cores. Specify this option at link time.

—Mconcur=cncall Specifies that it is safe to parallelize loops that contain

subroutine or function calls. By default, such loops are
excluded from consideration for auto-parallelization. Also,

no minimum loop count threshold must be satisfied before
parallelization occurs, and last values of scalars are assumed
to be safe.

—-Mconcur=dist: {block|cyclic} Specifies whether to assign loop iterations to the available
threads in blocks or in a cyclic (round-robin) fashion. Block
distribution is the default. If cyclic is specified, iterations are
allocated to processors cyclically. That is, processor 0 performs
iterations 0, 3, 6, etc.; processor 1 performs iterations 1, 4, 7,
etc.; and processor 2 performs iterations 2, 5, 8, efc.

—Mconcur=innermost Enable parallelization of innermost loops.

—Mconcur=levels:<n> Parallelize loops nested at most n levels deep.

—Mconcur=[no]numa Use thread/processors affinity when running on a NUMA
architecture. Specifying —Mconcur=nonuma disables
this option.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is

set to 1, aparallel program runs serially, but will use the parallel routines generated during
compilation. If NCPUS is set to avalue greater than 1, the specified number of processors

are used to execute the program. Setting NCPUS to a value exceeding the number of physical
processors can produce inefficient execution. Executing a program on multiple processorsin an
environment where some of the processors are being time-shared with another executing job can
also result in inefficient execution.

As with the vectorizer, the -Mconcur option can speed up codeiif it contains well-behaved
countable loops and/or computationally intensive nested loops that operate on arrays. However,

it is possible that some codes show a decrease in performance on multi—processor systems when
compiled with -Mconcur due to parall€ization overheads, memory bandwidth limitations in the
target system, false—sharing of cache lines, or other architectural or code—generation factors. For
thisreason, it is recommended that you check carefully whether particular program units or loops
show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to
Using OpenMP. It is possible that insertion of explicit parallelization directives or pragmas, and
use of the compiler option —mp might enable the application to run in parallel.

PVF User's Guide 68

Optimizing and Parallelizing

7.7.2. Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler,
programmers may notice loops that are seemingly parallel, but are not parallelized. In this
subsection, we look at some examples of common situations where parall€elization does not occur.

Innermost Loops

As noted earlier in this section, the PGl compilers will not paralelize innermost loops by
default, because it is usually not profitable. However, you can override this default using the -
Mconcur=innermost command-line option.

Timing Loops

Often, loops occur in programs that are similar to timing loops. The outer loop in the following
example is one such loop.
do j =1, 2

doi=1, n
1 a(i) = b(i) + c(i)
enddo
enddo

The outer loop in the preceding exampleis not parallelized because the compiler detects a cross-
iteration dependence in the assignment to a (1) . Suppose the outer loop were parallelized.

Then both processors would simultaneoudly attempt to make assignmentsinto a (1 :n) . Now

in general the values computed by each processor for a (1 :n) will differ, so that simultaneous
assignment into a (1 :n) will produce values different from sequential execution of the loops.

In this example, values computed for a (1 :n) don’t depend on 7, so that simultaneous
assignment by both processors does not yield incorrect results. However, it is beyond the scope
of the compilers' dependence analysis to determine that values computed in one iteration of
aloop don't differ from values computed in another iteration. So the worst case is assumed,
and different iterations of the outer loop are assumed to compute different valuesfor a (1:n) .
I's this assumption too pessimistic? If 5 doesn’t occur anywhere within aloop, the loop exists
only to cause some delay, most probably to improve timing resolution. It is not usually valid to
parallelize timing loops; to do so would distort the timing information for the inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate
cases that present problems. In thefirst case, scalars appear to be expandable, but appear in non-
innermost loops, as in the following example.

PVF User's Guide 69

Optimizing and Parallelizing

There are a number of technical problems to be resolved in order to recognize expandable scalars
in non-innermost loops. Until this generalization occurs, scalars like x in the preceding code
segment inhibit parallelization of loops in which they are assigned. In the following example,
scalar k is not expandable, and it is not an accumulator for areduction.

2 if (1 .gt. n/2) k =n - (i - n/2)

enddo
If the outer loop is parallelized, conflicting values are stored into k by the various processors. The
variable k cannot be made local to each processor because its value must remain coherent among
the processors. It is possible the loop could be parallelized if all assignmentsto k are placed in
critical sections. However, it is not clear where critical sections should be introduced because
in general the value for k could depend on another scalar (or on k itself), and code to obtain the
value of other scalars must reside in the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k from
being recognized as an induction variable. If the conditional statement at label 2 isremoved,
k would be an induction variable whose value varies linearly with 5, and the loop could be
parallelized.

Scalar Last Values

During paral€lization, scalars within loops often need to be privatized; that is, each execution
thread has its own independent copy of the scalar. Problems can ariseif a privatized scalar is
accessed outside the loop. For example, consider the following loop:

! Fortran version
do I =1,N
if (x(I) > 5.0) then
t = x(I)
endif
enddo
v = t

call f(v)

The value of t may not be computed on the last iteration of the loop. Normally, if ascalar is
assigned within aloop and used following the loop, the PGl compilers save the last value of the
scalar. However, if the loop is parallelized and the scalar is not assigned on every iteration, it may
be difficult, without resorting to costly critical sections, to determine on what iteration t islast
assigned. Analysis allows the compiler to determine that a scalar is assigned on each iteration and
hence that the loop is safe to parallelize if the scalar is used later, asillustrated in the following
example.

PVF User's Guide 70

Optimizing and Parallelizing

! Fortran version
do I =1,N
if (x(I)>0.0) then
t=2.0
else
t=3.0
y(i)=t
endif
enddo
v=t

Notice that t isassigned on every iteration of the loop. However, there are cases where a scalar
may be privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine the
following loop in which each use of t within the loop is reached by a definition from the same
iteration.

! Fortran Version

do I =1,N
if (x(I)>0.0) then
t=x (1)
y(i)=t
endif
enddo
v=t
call f(v)

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the
compiler may not be able to detect on which iteration of the parallelized loop t islast assigned.
The compiler detects the previous cases. When a scalar is used after the loop but is not defined on
every iteration of the loop, parall€lization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the
programmer may use a directive to let the compiler know the loop is safe to parallelize. The
directive safe lastval informsthe compiler that, for agiven loop, all scalars are assigned
in the last iteration of the loop; thus, it is safe to parallelize the loop. We could add the following
line to any of our previous examples.

'pgi$l safe lastval ! Fortran Version

The resulting code looks similar to this:

! Fortran Version
'pgi$l safe lastv

> 5.0) then

In addition, acommand-line option -Msafe lastval providesthisinformation for all loops
within the routines being compiled, which essentialy provides global scope.

PVF User's Guide 71

Optimizing and Parallelizing

7.8. Processor-Specific Optimization & the Unified Binary

Every brand of processor has differences, some subtle, in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about things such as
instruction selection, instruction scheduling, and vectorization. By default, the PGl compilers
produce code specifically targeted to the type of processor on which the compilationis
performed. That is, the default isto use al supported instructions wherever possible when
compiling on a given system. As aresult, executables created on a given system may not be
usable on previous generation systems. For example, executables created on a Pentium 4 may fail
to execute on a Pentium I11 or Pentium 11.

All PGI compilers have the capability of generating unified binaries, which provide alow-
overhead means for generating a single executabl e that is compatible with and has good
performance on more than one hardware platform.

Y ou can use the —tp option to control compilation behavior by specifying the processor or
processors with which the generated code is compatible. The compilers generate and combine
into one executable multiple binary code streams, each optimized for a specific platform. At
runtime, the executabl e senses the environment and dynamically selects the appropriate code
stream. For specific information on the —tp option, refer to the PGI Visual Fortran Reference
Manual.

Executable size is automatically controlled via unified binary culling. Only those functions and
subroutines where the target affects the generated code have unique binary images, resultingin a
code-size savings of 10% to 90% compared to generating full copies of code for each target.

Programs can use the PGI Unified Binary even if al of the object files and libraries are not
compiled as unified binaries. Like any other object file, you can use PGl Unified Binary object
filesto create programs or libraries. No special start up code is needed; support islinked in from
the PGI libraries.

The -Mipa option disables generation of PGl Unified Binary. Instead, the default target auto-
detect rules for the host are used to select the target processor.

7.9. Interprocedural Analysis and Optimization using —-Mipa

The PGI Fortran compilers use interprocedural analysis (IPA) that resultsin minimal changesto
makefiles and the standard edit-build-run application development cycle. Other than adding -
Mipa to the command line or selecting the appropriate value for the PV F Optimization property
from the property page Fortran | Optimization, no other changes are required. For reference and
background, the process of building a program without I PA is described later in this section,
followed by the minor modifications required to use IPA with the PGI compilers.

n PVF’s internal build engine uses the method described in Building a Program with IPA - Several Steps.

PVF User's Guide 72

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

7.9.1. Building a Program Without IPA - Single Step

Using the pgfortran command-level compiler driver, multiple source files can be compiled and
linked into a single executable with one command. The following example compiles and links
three sourcefiles:

% pgfortran -o filel.exe filel.f95 file2.f95 file3.£95

In actuality, the pgfortran driver executes several steps to produce the assembly code and
object files corresponding to each source file, and subsequently to link the object files together
into a single executable file. This command is roughly equivalent to the following commands
performed individually:

% pgfortran -S -o filel.s filel.f95
% as -o filel.obj filel.s
% pgfortran -S -o file2.s file2.£95
% as -o file2.obj file2.s
% pgfortran -S -o file3.s file3.£f95
% as -o file3.obj file3.s

pgfortran -o filel.exe filel.obj file2.obj file3.obj

If any of the three sourcefilesis edited, the executable can be rebuilt with the same command
line:
% pgfortran -o filel.exe filel.f95 file2.f95 file3.£95

This always works as intended, but has the side-effect of recompiling all of the source files, even if only
one has changed. For applications with a large number of source files, this can be time-consuming and
inefficient.

7.9.2. Building a Program Without IPA - Several Steps

It isalso possible to use individual pgfortran commands to compile each sourcefileinto a
corresponding object file, and one to link the resulting object filesinto an executable:

pgfortran -c filel.f95
pgfortran -c file2.£95
pgfortran -c £ile3.£f95
pogfortran -o filel.exe filel.obj file2.obj file3.obj

o o o oP

The pgfortran driver invokes the compiler and assembler as required to process each sourcefile,
and invokes the linker for the final link command. If you modify one of the source files, the
executable can be rebuilt by compiling just that file and then relinking:

pgfortran -c filel.f95
pgfortran -o filel.exe filel.obj file2.obj file3.obj

o
°
o
°

PVF User's Guide 73

Optimizing and Parallelizing

7.9.3. Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using themake utility on
systems where it is supported. Suppose you create amake file containing the following lines:

filel.exe: filel.ob]j file2.0bj file3.obj

pgfortran $(OPT) -o filel.exe filel.obj file2.o0bj file3.obj
filel.obj: filel.c

pgfortran $(OPT) -c filel.f95

file2.0bj: file2.c

pgfortran $(OPT) -c file2.f95

file3.0bj: file3.c

pgfortran $(OPT) -c file3.£95

It isthen possible to type a single make command:

[

% make

Themake utility determines which object files are out of date with respect to their corresponding
source files, and invokes the compiler to recompile only those source files and to relink the
executable. If you subsequently edit one or more source files, the executable can be rebuilt with
the minimum number of recompilations using the same single make command.

7.9.4. Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the PGI compilers aters the standard and
make utility command-level interfaces aslittle as possible. IPA occursin three phases:

» Collection: Create asummary of each function or procedure, collecting the useful
information for interprocedural optimizations. Thisis done during the compile step if the -
Mipa switchis present on the command line; summary information is collected and stored in
the object file.

» Propagation: Process al the object filesto propagate the interprocedural summary
information across function and file boundaries. Thisis done during the link step, when all
the object files are combined, if the -Mipa switch is present on the link command line.

» Recompile/Optimization: Recompile each of the object files with the propagated
interprocedural information, producing a specialized object file. This processis also
performed during the link step when the -Mipa switch is present on the link command line.

When linking with —-Mi pa, the PGl compilers automatically regenerate | PA-optimized versions
of each object file, essentially recompiling each file. If there are | PA-optimized objects from a
previous build, the compilers will minimize the recompile time by reusing those objectsiif they
are still valid. They will still be valid if the |PA-optimized object is newer than the original object
file, and the propagated IPA information for that file has not changed since it was optimized.

After each object file has been recompiled, the regular linker isinvoked to build the application
with the IPA-optimized object files. The IPA-optimized object files are saved in the same
directory as the original object files, for use in subsequent program builds.

7.9.5. Building a Program with IPA - Single Step

By adding the -Mipa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:
% pgfortran -Mipa=fast -o filel.exe filel.f95 file2.£f95 £ile3.£f95

PVF User's Guide 74

Optimizing and Parallelizing

Just like compiling without -M1ipa, the driver executes several steps to produce the assembly and
object files to create the executable:

pgfortran -Mipa=fast -S -o filel.s filel.f95

as -o filel.obj filel.s

pgfortran -Mipa=fast -S -o file2.s file2.£f95

as -o file2.obj file2.s

pgfortran -Mipa=fast -S -o file3.s file3.£f95

as -o file3.o0bj file3.s

pgfortran -Mipa=fast -o filel.exe filel.obj file2.obj file3.obj

oo

o o° o oP

o° oo

In the last step, an IPA linker isinvoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to
recompile them with interprocedural information. This creates three new objects with mangled
names:

filel ipa5 filel.exe.obj, file2 ipa5 filel.exe.obj, file3 ipab5 filel.exe.obj

The system linker is then invoked to link these | PA-optimized objectsinto the final executable.
Later, if one of the three source filesis edited, the executable can be rebuilt with the same
command line:

% pgfortran -Mipa=fast -o filel.exe filel.f95 file2.£f95 £file3.£f95

Thisworks, but again has the side-effect of compiling each source file, and recompiling each
object file at link time.

7.9.6. Building a Program with IPA - Several Steps

Just by adding the —-Mipa command-line switch, it is possible to use individua pgfortran
commands to compile each sourcefile, followed by a command to link the resulting object files
into an executable:

pgfortran -Mipa=fast -c filel.f95
pgfortran -Mipa=fast -c file2.£95
pgfortran -Mipa=fast -c file3.£f95
pgfortran -Mipa=fast -o filel.exe filel.obj file2.obj file3.obj

o oe

o° oo

The pgfortran driver invokes the compiler and assembler as required to process each source file,
and invokes the IPA linker for the final link command. If you modify one of the source files, the
executable can be rebuilt by compiling just that file and then relinking:

% pgfortran -Mipa=fast -c filel.f95
% pgfortran -Mipa=fast -o filel.exe filel.obj file2.obj file3.obj

When the IPA linker isinvoked, it will determine that the IPA-optimized object for filel. obj
(filel ipa5 filel.exe.obj)isstae, sinceitisolder thantheobject filel.obj; and
hence it needs to be rebuilt, and reinvokes the compiler to generate it. In addition, depending

on the nature of the changesto the sourcefile filel. £95, theinterprocedural optimizations
previoudy performed for £i1e2 and £1i1e3 may now beinaccurate. For instance, IPA may
have propagated a constant argument valuein acall from afunctionin filel.£95 toafunction
infile2.f95; if thevalue of the argument has changed, any optimizations based on that
constant value areinvalid. The IPA linker determines which, if any, of the previously created
IPA-optimized objects need to be regenerated; and, as appropriate, reinvokes the compiler to
regenerate them. Only those objects that are stale or which have new or different IPA information
are regenerated. This approach saves compile time.

PVF User's Guide 75

Optimizing and Parallelizing

7.9.7. Building a Program with IPA Using Make

As shown earlier, programs can be built with [PA using the make utility. Just add the command-
line switch -Mipa, as shown here:

OPT=-Mipa=fast

filel.exe: filel.obj file2.obj file3.obj

pgfortran $(OPT) -o filel filel.obj file2.obj file3.obj
filel.obj: filel.f95

pgfortran $(OPT) -c filel.f95

file2.0bj: file2.£95

pgfortran $(OPT) -c file2.f95

file3.0bj: file3.£95

pgfortran $(OPT) -c file3.f95

Using the single make command invokes the compiler to generate any of the object files that are
out-of-date, then invokes pgfortran to link the objects into the executable. At link time, pgfortran
callsthe IPA linker to regenerate any stale or invalid |PA-optimized objects.

% make

7.9.8. Questions about IPA

Question: Why isthe object file so large?

Answer: An object file created with —Mipa contains several additional sections. One isthe
summary information used to drive the interprocedural analysis. In addition, the object file
contains the compiler internal representation of the source file, so the file can be recompiled at
link time with interprocedural optimizations. There may be additional information when inlining
isenabled. Thetotal size of the object file may be 5-10 timesits original size. The extra sections
are not added to the final executable.

Question: What if | compile with -Mipa and link without -Mipa?

Answer: The PGI compilers generate alegal object file, even when the source file is compiled
with -Mipa. If you compile with —-Mipa and link without —-Mipa, the linker isinvoked on the
original object files. A legal executable is generated. While this executable does not have the
benefit of interprocedural optimizations, any other optimizations do apply.

Question: What if | compile without -Mipa and link with -Mipa?

Answer: At link time, the IPA linker must have summary information about all the functions

or routines used in the program. This information is created only when afile is compiled with
-Mipa. If you compile afile without -Mipa and then try to get interprocedural optimizations

by linking with —-Mipa, the IPA linker will issue a message that some routines have no |PA
summary information, and will proceed to run the system linker using the original object files.

If some files were compiled with —Mipa and others were not, it will determine the safest
approximation of the IPA summary information for those files not compiled with -Mipa, and use
that to recompile the other files using interprocedural optimizations.

Question: Can | build multiple applications in the same directory with -Mipa?

Answer: Yes. Suppose you have three sourcefiles: mainl. £95, main2.£95,and sub. £95,
where sub . £95 is shared between the two applications. Suppose you build the first application
with —Mipa, using this command:

% pgfortran -Mipa=fast -o appl mainl.f95 sub.f95

PVF User's Guide 76

Optimizing and Parallelizing

The IPA linker creates two | PA-optimized object files and uses them to build the first application.

mainl ipa4 appl.exe.oobj sub ipad4 appl.exe.oobj

Now suppose you build the second application using this command:

[

% pgfortran -Mipa=fast -o app2 main2.f95 sub.f95

The IPA linker creates two more | PA-optimized object files:

main2 ipa4 appZ2.exe.oobj sub ipad4 appZ2.exe.oob]j

There are now three object files for sulb . £95: the original sub . obj, and two IPA-optimized objects,
one for each application in which it appears.

Question: How is the mangled name for the |PA-optimized object files generated?

Answer: The mangled name has‘_ipa’ appended, followed by the decimal number of the length
of the executable file name, followed by an underscore and the executable file name itself. The
suffix is changed to .oobj so that linking *.obj does not pull in the IPA-optimized objects. If the
IPA linker determines that the file would not benefit from any interprocedural optimizations, it
does not have to recompile the file at link time, and uses the original object.

7.10. Profile-Feedback Optimization using —Mpfi/~-Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-
invariant val ue optimizations and block placement. These are performed under control of the -
Mpf i/-Mpfo command-line options.

When invoked with the —-Mp £ i option, the PGl compilersinstrument the generated executable for
collection of profile and data feedback information. This information can be used in subsequent
compilations that include the —~Mp £ o optimization option. —-Mp £1 must be used at both compile-
time and link-time. Programs compiled with —-Mp £ i include extra code to collect runtime
statistics and write them out to a trace file. When the resulting program is executed, a profile
feedback tracefile pgfi . out isgenerated in the current working directory.

Programs compiled and linked with —Mp £ i execute more slowly due to the instrumentation and data
collection overhead. You should use executables compiled with —Mp £ 1 only for execution of training runs.

When invoked with the —-Mp f o option, the PGl compilers use datafromapgfi . out profile
feedback tracefile to enable or enhance certain performance optimizations. Use of this option
requires the presence of apgfi.out tracefilein the current working directory.

7.11. Default Optimization Levels

The following table shows the interaction between the —O<level>, —g, and -M<opt> options. In
thetable, level canbe0, 1, 2, 3 or 4, and <opt> can be vect, concur, unroll or ipa. The
default optimization level is dependent upon these command-line options.

PVF User's Guide 77

Optimizing and Parallelizing

Table 13 Optimization and -0, —g and -M<opt> Options

Optimize Option Debug Option —-M<opt> Option Optimization Level
none none none 1

none none -M<opt> 2

none -g none 0

-0 none or -g none 2

—Olevel none or —g none level

—Olevel <=2 none or —g —-M<opt> 2

Code that is not optimized yet compiled using the option —00 can be significantly slower than
code generated at other optimization levels. The -M<opt > option, where <opt> isvect,
concur,unroll Of ipa, setsthe optimization level to 2if no -0 options are supplied. The -
fast option sets the optimization level to a target-dependent optimization level if no -0 options
are supplied.

7.12. Local Optimization Using Directives

Command-line options let you specify optimizations for an entire source file. Directives
supplied within a Fortran source file provide information to the compiler and alter the effects of
certain command-line options or the default behavior of the compiler. (Many directives have a
corresponding command-line option.)

While acommand line option affects the entire source file that is being compiled, directives let
you do the following:

> Apply, or disable, the effects of a particular command-line option to selected subprograms or
to selected loops in the source file (for example, an optimization).
» Globally override command-line options.

» Tune selected routines or loops based on your knowledge or on information obtained through
profiling.

Using Directives provides details on how to add directives and pragmas to your source files.

7.13. Execution Timing and Instruction Counting

Asthis chapter describes, once you have a program that compiles, executes and gives correct
results, you may optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you compare
several optimization levels before arriving at the best solution. To compare optimization levels,
you need to measure the execution time for your program. There are several approaches you can
take for timing execution.

» You can use shell commands that provide execution time statistics.
» You can include function callsin your code that provide timing information.

PVF User's Guide 78

Optimizing and Parallelizing

» You can profile sections of code.
Timing functions available with the PGl compilers include these:

» 3Ftiming routines.
» The SECNDS pre-declared function in PGF77, PGF95, or PGFORTRAN.
» TheSYSTEM_CLOCK or CPU_CLOCK intrinsicsin PGF95 or PGFORTRAN.

In general, when timing a program, you should try to eliminate or reduce the amount of system
level activities such as /0O, program loading, and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK
effectively within a Fortran program unit.

Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clock0O, clockl
real :: time
call system clock (count rate=hz)
call system clock (count=clockO0)

< do work>

call system clock(count=clockl)

t = (clockl - clock0)

time = real (t) / real (hz)

Or you can usethe F90 cpu_ time subroutine:

real :: tl, t2, time
call cpu time(tl)

< do work>

call cpu time(t2)
time = t2 - tl

PVF User's Guide 79

Chapter 8.
USING FUNCTION INLINING

Function inlining replaces a call to afunction or a subroutine with the body of the function

or subroutine. This can speed up execution by eliminating parameter passing and function/
subroutine call and return overhead. It also allows the compiler to optimize the function with the
rest of the code. Note that using function inlining indiscriminately can result in much larger code
size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

» Automatic inlining - During the compilation process, a hidden pass precedes the
compilation pass. This hidden pass extracts functions that are candidates for inlining. The
inlining of functions occurs as the source files are compiled.

» Inlinelibraries- You createinline libraries, for example using the pgfortran compiler driver
and the —o and —-Mextract options. There is no hidden extract pass but you must ensure
that any filesthat depend on the inline library use the latest version of theinline library.

There are important restrictions on inlining. Inlining only appliesto certain types of functions.
Refer to Restrictions on Inlining for more details on function inlining limitations.

This section describes how to use the following options related to function inlining:

—Mextract
—Minline

-Mrecursive

8.1. Invoking Function Inlining

To invoke the function inliner, use the -Min1ine option. If you do not specify an inline library,
the compiler performs a special prepass on al source files named on the compiler command

line before it compiles any of them. This pass extracts functions that meet the requirements for
inlining and puts them in atemporary inline library for use by the compilation pass.

In PVF, inlining can be turned on using the Inlining property in the Fortran | Optimization
property page. For more advanced configuration of inlining, use the Fortran | Command Line
property page. For more information on these property pages, refer to ‘ Fortran Property Pages
section of the PGl Visual Fortran Reference Guide.

PVF User's Guide 80

http://www.pgroup.com/resources/docs.htm

Using Function Inlining

Severa -Min1ine suboptionslet you determine the selection criteriafor functions to be inlined.
These suboptions include:

except: func
Inlines al eigible functions except func, afunction in the source text. you can use acomma:
separated list to specify multiple functions.

[name:] func
Inlines all functions in the source text whose name matches func. you can use a comma-
separated list to specify multiple functions.

[size]n
Inlines functions with a statement count less than or equal to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

levels:n
Inlines n level of function calling levels. The default number is one (1). Using alevel greater
than one indicates that function calls within inlined functions may be replaced with inlined
code. This approach allows the function inliner to automatically perform a sequence of inline
and extract processes.

[lib:]file.ext
Instructs the inliner to inline the functions within the library file file.ext. If noinline
library is specified, functions are extracted from atemporary library created during an extract

prepass.

n Tip Create the library file using the -Mext ract option.

If you specify both a function name and a size n, the compiler inlines functions that match the
function name or have n or fewer statements.

If anameis used without a keyword, then a name with a period is assumed to be aninline library
and a name without a period is assumed to be a function name. If a number is used without a
keyword, the number is assumed to be asize.

In the following example, the compiler inlines functions with fewer than approximately 100
statementsin the source filemyprog . £ and writes the executable code in the default output file
myprog.exe.

$ pgfortran -Minline=size:100 myprog.f

Refer to ‘—M Options by Category’ in the PGI Visual Fortran Reference Guide. For more
information on the -Min1ine options, refer to ‘—M Options by Category’ section of the PGI
Visual Fortran Reference Guide.

8.2. Using an Inline Library

If you specify one or more inline libraries on the command line with the -Min1ine option, the
compiler does not perform an initial extract pass. The compiler selects functions to inline from
the specified inline library. If you also specify a size or function name, al functionsin the inline

PVF User's Guide 81

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Function Inlining

library meeting the selection criteria are selected for inline expansion at points in the source text
where they are called.

If you do not specify afunction name or asize limitation for the -Minline option, the
compiler inlines every function in the inline library that matches afunction in the source text.

In the following example, the compiler inlines the function proc fromtheinlinelibrary 1ib.i1
and writes the executable code in the default output filemyprog . exe.

$ pgfortran -Minline=name:proc,lib:1lib.il myprog.f

The following command lineis equivalent to the preceding line, with the exception that in the
following example does not use the keywordsname : and 1ib:. You typically use keywords

to avoid name conflicts when you use an inline library name that does not contain a period.
Otherwise, without the keywords, a period informs the compiler that the file on the command line
isaninlinelibrary.

$ pgfortran -Minline=proc,lib.il myprog.f

8.3. Creating an Inline Library

Y ou can create or update an inline library using the -Mext ract command-line option. If you
do not specify selection criteriawith the -Mext ract option, the compiler attemptsto extract all
subprograms.

Several -Mextract optionslet you determine the selection criteriafor creating or updating an
inline library. These selection criteriainclude:

func
Extracts the function func. you can use a comma-separated list to specify multiple functions.
[name] func
Extracts the functions whose name matches func, afunction in the source text.
[size:]n
Limits the size of the extracted functions to functions with a statement count less than or equal
to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

[lib:]lext.1lib
Stores the extracted information in the library directory ext . 1ib.

If noinlinelibrary is specified, functions are extracted to atemporary library created during an
extract prepass for use during the compilation stage.

When you use the -Mextract option, only the extract phase is performed; the compile and
link phases are not performed. The output of an extract passisalibrary of functions available for
inlining. This output is placed in theinline library file specified on the command line with the —o
filename specification. If the library file exists, new information is appended to it. If the file does
not exist, it is created. Y ou can use acommand similar to the following:

$ pgfortran -Mextract=1lib:1ib.il myfunc.f

You can use the -Min1line option with the -Mextract option. In this case, the extracted
library of functions can have other functions inlined into the library. Using both options enables

PVF User's Guide 82

Using Function Inlining

you to obtain more than one level of inlining. In this situation, if you do not specify alibrary with
the -Minline option, the inline process consists of two extract passes. The first passis a hidden
passimplied by the -Min1ine option, during which the compiler extracts functions and places
them into atemporary library. The second pass uses the results of the first pass but putsits results
into the library that you specify with the —o option.

8.3.1. Working with Inline Libraries

Aninlinelibrary isimplemented as a directory with each inline function in the library stored as a
file using an encoded form of the inlinable function.

A specid file named TOC in theinline library directory serves as atable of contents for theinline
library. Thisisaprintable, ASCII file which you can examine to locate information about the
library contents, such as names and sizes of functions, the source file from which they were
extracted, the version number of the extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

» Inlinelibraries can be copied or renamed.
» Elements of libraries can be deleted or copied from one library to another.
» Thels ordir command can be used to determine the last-change date of alibrary entry.

8.3.2. Dependencies

When alibrary is created or updated using one of the PGl compilers, the last-change date of
the library directory is updated. Thisalows alibrary to be listed as a dependence in a makefile
or a PVF property and ensures that the necessary compilations are performed when alibrary is
changed.

8.3.3. Updating Inline Libraries - Makefiles

If you useinline libraries you must be certain that they remain up-to-date with the source files
into which they are inlined. One way to assure inline libraries are updated is to include them in a
makefile.

The makefile fragment in the following example assumesthefileutils. £ contains a number of
small functionsused inthefilesparser.fandalloc. f.

This portion of the makefile:

» Maintainstheinlinelibrary utils.il.
» Updates the library whenever you change utils. f or one of the include filesit uses.
» Compilesparser.f andalloc.f whenever you update the library.

PVF User's Guide 83

Using Function Inlining

Sample Makefile

SRC = mydir
FC = pgfortran
FFLAGS = -02
main.o: $(SRC)/main.f $(SRC)/global.h
S(FC) $(FFLAGS) -c S$(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
S (FC) S$(FFLAGS) -c $(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC) /parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
$(FC) -o myprog main.o utils.o parser.o alloc.o

8.4. Error Detection during Inlining

Y ou can specify the -Minfo=inline option to request inlining information from the compiler
when you invoke the inliner. For example:

$ pgfortran -Minline=mylib.il -Minfo=inline myext.f

8.5. Examples

Assume the program dhry consists of asingle sourcefile dhry . £. The following command line
builds an executable file for dhry inwhich proc7 isinlined wherever it is caled:

$ pgfortran dhry.f -Minline=proc?7

The following command lines build an executable file for dhry in which proc7 plus any
functions of approximately 10 or fewer statements are inlined (one level only).

The specified functions are inlined only if they are previously placed in the inline library, temp . 11,
during the extract phase.

$ pgfortran dhry.f -Mextract=lib:temp.il
$ pgfortran dhry.f -Minline=10,proc7,temp.il

Using the same source file dhry . £, the following example builds an executable for dhry in
which all functions of roughly ten or fewer statements are inlined. Two levels of inlining are
performed. This means that if function A calls function B, and B calls C, and both B and C are
inlinable, then the version of B which isinlined into A will have had C inlined into it.

$ pgfortran dhry.f -Minline=size:10,levels:2

8.6. Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

» Mainor BLOCK DATA programs.

» Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or
EQUIVALENCE statements.

PVF User's Guide 84

Using Function Inlining

v

Subprograms containing FORMAT statements.
Subprograms containing multiple entries.

v

A Fortran subprogram is not inlined if any of the following applies:

» Itisreferenced in a statement function.

» A common block mismatch exists; in other words, the caller must contain all common blocks
specified in the callee, and elements of the common blocks must agree in name, order, and
type (except that the caller's common block can have additional members appended to the
end of the common block).

» Anargument mismatch exists; in other words, the number and type (size) of actual and
formal parameters must be equal.

» A name clash exists, such as acall to subroutine xyz in the extracted subprogram and a
variable named xyz in the caler.

PVF User's Guide 85

Chapter 9.
USING OPENMP

The PGF77 and PGFORTRAN Fortran compilers support the OpenM P Fortran Application
Program Interface.

OpenMP is a specification for a set of compiler directives, an applications programming interface
(API), and a set of environment variables that can be used to specify shared memory parallelism
in FORTRAN programs. OpenMP may be used to obtain most of the parallel performance

you can expect from your code, or it may serve as a stepping stone to parallelizing an entire
application with MPI.

This section provides information on OpenMP asiit is supported by PGI compilers. Currently, all
PGI compilers support the version 3.1 OpenMP specification.

Use the -mp compiler switch to enable processing of the OMP pragmas listed in this section. As
of Release 2011, the OpenMP runtime library islinked by default.

This section describes how to use the following option related to using OpenMP: —mp

9.1. OpenMP Overview

Let'slook at the OpenM P shared-memory parallel programming model and some common
OpenMP terminology.

9.1.1. OpenMP Shared-Memory Parallel Programming Model

The OpenM P shared-memory programming model is a collection of compiler directives, library
routines, and environment variables that can be used to specify shared-memory parallelismin
Fortran programs.

Fortran directives
Allow users to mark sections of code that can be executed in parallel when the codeis
compiled using the —mp switch.

When this switch is not present, the compiler ignores these directives.

OpenMP Fortran directives begin with ! SOMP, C$OMP, or * $OMP, beginning in column 1.
Thisformat alows the user to have a single source for use with or without the —-mp switch, as
these lines are then merely viewed as comments when —mp is not present.

PVF User's Guide 86

Using OpenMP

These directives allow the user to create task, loop, and parallel section work-sharing
constructs and synchronization constructs. They also allow the user to define how datais
shared or copied between parallel threads of execution.

Fortran directivesinclude a paralldl region construct for writing coarse grain SPMD programs,
work-sharing constructs which specify that DO loop iterations should be split among the
available threads of execution, and synchronization constructs.

n The data environment is controlled either by using clauses on the directives, or with additional
directives.

Runtimelibrary routines
Are available to query the parallel runtime environment, for example to determine how many
threads are participating in execution of aparallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on
OpenMP, see www.openmp.org.

Macr o substitution
C and C++ omp pragmas are subject to macro replacement after #pragma omp.

9.1.2. Terminology

For OpenMP 3.1 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

» An OpenMP thread is athread that is managed by the OpenMP runtime system.

» A thread-safe routine is aroutine that performs the intended function even when executed
concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an
OpenMP library routine. A region includes any code in called routines as well as any implicit
code introduced by the OpenM P implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, aregion
is encountered during the execution of another region. PGI supports non-lexically nested
parallel regions.

Parallel region
In OpenMP 3.1 there is a distinction between a parallel region and an active parallel region. A
parallel region can be either inactive or active.

» Aninactive parallel region is executed by a single thread.

PVF User's Guide 87

www.openmp.org

>

Task

Using OpenMP

An active parallel region isaparallel region that is executed by ateam consisting of more

than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.1. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine

the significance of this change, look at the following example:

program test
logical omp in parallel

!Somp parallel
print *, omp in parallel ()
!'Somp end parallel

stop
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.1, the program yields F. In OpenMP 3.1, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous

programs require modification.

A specific instance of executable code and its data environment, generated when athread
encounters a task construct or aparallel construct.

9.1.3. OpenMP Example

Look at the following simple OpenM P example involving loops.

OpenMP Loop Example

! SOMP

! SOMP

! SOMP
! SOMP

! SOMP
! SOMP

PROGRAM MAIN
INTEGER I, N, OMP GET THREAD NUM
REAL*8 V(1000), GSUM, LSUM
GSUM = 0.0D0
N = 1000
DO I =1, N
V(I) = DBLE(I)
ENDDO

PARALLEL PRIVATE (I,LSUM) SHARED (V,GSUM, N)
LSUM = 0.0D0
DO
DO I =1, N
LSUM = LSUM + V(I)
ENDDO
END DO
CRITICAL

print *, "Thread ",OMP_GET THREAD NUM()," local sum:

GSUM = GSUM + LSUM
END CRITICAL
END PARALLEL

PRINT *, "Global Sum: ",GSUM
STOP
END

PVF User's Guide

", LSUM

88

Using OpenMP

If you execute this example with the environment variable OMP_NUM_THREADS s&t to 4, then
the output looks similar to this:

Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000

FORTRAN STOP

9.2. Task Overview

Every part of an OpenMP program is part of atask. A task, whose execution can be performed
immediately or delayed, has these characteristics:

» Codeto execute
» A dataenvironment - that is, it ownsits data
» Anassigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

» Packaging: Each encountering thread packages a new instance of atask - code and data.
» Execution: Some thread in the team executes the task at some later time.

In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a
task construct. A task can be implicit or explicit.

» Anexplicit task is atask generated when atask construct is encountered during execution.
» Animplicit task is atask generated by the implicit parallel region or generated when a
parallel construct is encountered during execution.

Task construct
A task directive plus a structured block
Task region
The dynamic sequence of instructions produced by the execution of atask by athread.

9.3. Fortran Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran
compilers when the option —mp is specified on the command line. The form of a parallelization
directiveis:

sentinel directive name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with
these rules:

» Beoneof these: IOMP, COMP, or *$OMP.
» Must start in column 1 (one).
» Must appear as a single word without embedded white space.

PVF User's Guide 89

Using OpenMP

» The sentinel marking a DOACROSS directiveis C$.

The directive_name can be any of the directiveslisted in Directive Summary Table. The valid
clauses depend on the directive. Directive Clauses provides alist of clauses, the directives to
which they apply, and their functionality.

In addition to the sentinel rules, the directive must also comply with these rules:

» Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply
to the directive line.

» Initia directive lines must have a space or zero in column six.

» Continuation directive lines must have a character other than a space or azero in column six.
Continuation lines for CSDOACROSS directives are specified using the C$& sentinel.

» Directiveswhich are presented in pairs must be used in pairs.

Clauses associated with directives have these characteristics:

» Theorder in which clauses appear in the parallelization directivesis not significant.
» Commas separate clauses within the directives, but commas are not allowed between the
directive name and the first clause.

» Clauses on directives may be repeated as needed, subject to the restrictions listed in the
description of each clause.

9.4. Directive Recognition

The compiler option —mp enables recognition of the parallelization directives.

The use of thisoption also implies:

—-Mreentrant

Local variables are placed on the stack and optimizations, such as -Mno frame, that may
result in non-reentrant code are disabled.

-Miomutex
For directives, critical sections are generated around Fortran I/O statements.

In PVF, you set the —mp option by using the Enable OpenM P Directives property in the Fortran
| Language property page. For more information on these property pages, refer to the ‘ Fortran
Property Pages section of the PGI Visual Fortran Reference Manual.

9.5. Directive Summary Table

The following table provides a brief summary of the directives that PGl supports.

PVF User's Guide 90

http://www.pgroup.com/resources/docs.htm

Using OpenMP

9.5.1. Directive Summary Table

Table 14 Directive and Pragma Summary Table

Fortran Directive Description

ATOMIC [TYPE} ... END ATOMIC Semantically equivalent to enclosing a single statement in the CRITCIAL...END
CRITICAL directive.

TYPE may be empty or one of the following: UPDATE, READ, WRITE, or CAPTURE.
The END ATOMIC directive is only allowed when ending ATOMIC CAPTURE regions.

n Only certain statements are allowed.

BARRIER Synchronizes all threads at a specific point in a program so that all threads complete
work to that point before any thread continues.

CRITICAL ... END CRITICAL Defines a subsection of code within a parallel region, a critical section, which is executed
one thread at a time.

DO...END DO Provides a mechanism for distribution of loop iterations across the available threads in a
parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

FLUSH When this appears, all processor-visible data items, or, when a list is present (FLUSH
[list]), only those specified in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects in memory.

MASTER ... END MASTER Designates code that executes on the master thread and that is skipped by the other
threads.
ORDERED Defines a code block that is executed by only one thread at a time, and in the order of

the loop iterations; this makes the ordered code block sequential, while allowing parallel
execution of statements outside the code block.

PARALLEL DO Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL Supports a fork/join execution model in which a single thread executes all statements
until a parallel region is encountered.

PARALLEL SECTIONS Defines a non-iterative work-sharing construct without the need to define an enclosing
parallel region.

PARALLEL WORKSHARE ... END Provides a short form method for including a WORKSHARE directive inside a

PARALLEL WORKSHARE PARALLEL construct.

SECTIONS ... END SECTIONS Defines a non-iterative work-sharing construct within a parallel region.

SINGLE ... END SINGLE Designates code that executes on a single thread and that is skipped by the other
threads.

TASK Defines an explicit task.

TASKYIELD Specifies a scheduling point for a task where the currently executing task may be
yielded, and a different deferred task may be executed.

TASKWAIT Specifies a wait on the completion of child tasks generated since the beginning of the
current task.

PVF User's Guide 91

Using OpenMP

Fortran Directive Description

THREADPRIVATE

When a common block or variable that is initialized appears in this directive, each
thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE

Provides a mechanism to effect parallel execution of non-iterative but implicitly data
parallel constructs.

9.6. Directive Clauses

Some directives accept clauses that further allow a user to control the scope attributes of variables
for the duration of the directive. Not all clauses are allowed on al directives, so the clauses that
arevalid are included with the description of the directive.

The following table provides a brief summary of the clauses associated with OPENMP directives
and pragmas that PGI supports.

For complete information on these clauses, refer to the OpenM P documentation available on the

World Wide Web.

Table 15 Directive and Pragma Summary Table

This clause...

Applies to this directive

Has this functionality

‘CAPTURE’

Specifies that the atomic action is reading and updating, or

PVF User's Guide

ATOMIC - ; . . .
writing and updating a value, capturing the intermediate state.
‘COLLAPSE (n) DO.END DO Specifies how many loops are associated with the loop construct.
PARALLEL DO
PARALLEL
WORKSHARE
‘COPYIN (listy PARALLEL Allows threads to access the master thread's value, for
a threadprivate variable. You assign the same value to
PARALLEL DO threadprivate variables for each thread in the team executing
PARALLEL SECTIONS the parallel region. Then, for each variable specified, the value
PARALLEL of the variable in the master thread of the team is copied to the
WORKSHARE threadprivate copies at the beginning of the parallel region.
‘COPYPRIVATE(list) SINGLE Specifies that one or more variables should be shared among
all threads. This clause provides a mechanism to use a private
variable to broadcast a value from one member of a team to the
other members.
‘DEFAULT PARALLEL Specifies the behavior of unscoped variables in a parallel region,
PARALLEL DO such as the data-sharing attributes of variables.
PARALLEL SECTIONS
PARALLEL
WORKSHARE
‘FINAL TASK Specifies that all subtasks of this task will be run immediately.
‘FIRSTPRIVATE(listy DO Specifies that each thread should have its own instance of a
PARALLEL variable, and that each variable in the list should be initialized
PARALLEL DO

92

Using OpenMP

This clause... Applies to this directive Has this functionality

PARALLEL SECTIONS with the value of the original variable, because it exists before the

PARALLEL parallel construct.
WORKSHARE

SECTIONS
SINGLE

IF() PARALLEL ... END Specifies whether a loop should be executed in parallel or in

PARALLEL serial.
PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS

PARALLEL
WORKSHARE

‘LASTPRIVATE(list)’ DO Specifies that the enclosing context's version of the variable is
PARALLEL DO .. §et egual Fo the private version of whichever thread executes the
final iteration of a for-loop construct.

END PARALLEL DO

PARALLEL SECTIONS ...

END PARALLEL
SECTIONS

SECTIONS

‘MERGEABLE’ TASK Specifies that this task will run with the same data environment,
including OpenMP internal control variables, as when it is
encountered.

‘NOWAIT’ DO .. END DO Eliminates the barrier implicit at the end of a parallel region.

SECTIONS
SINGLE
WORKSHARE ...
END WORKSHARE

‘NUM_THREADS’ PARALLEL Sets the number of threads in a thread team.

PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS

PARALLEL
WORKSHARE

‘ORDERED’ DO...END DO Specifies that this block within the parallel DO or FOR region
PARALLEL DO.. needs to be execute serially in the same order indicated by the

enclosing loop.
END PARALLEL DO

‘PRIVATE’ DO Specifies that each thread should have its own instance of a

PARALLEL variable.
PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...

PVF User's Guide 93

Using OpenMP

This clause... Applies to this directive Has this functionality
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
SECTIONS
SINGLE
‘READ’ ATOMIC Specifies that the atomic action is reading a value.
‘REDUCTION' DO Specifies that one or more variables that are private to each
PARALLEL thread are tlhe subject of a reduction operation at the end of the
({operator PARALLEL DO parallel region.
. . . END PARALLEL DO
| intrinsic }
. PARALLEL SECTIONS ...
END PARALLEL
list) SECTIONS
PARALLEL
WORKSHARE
SECTIONS
‘SCHEDULE’ DO ... END DO Applies to the FOR directive, allowing the user to specify the
PARALLEL DO... F;hupkmg method for parallelllzanon. Work is asggned to threads
(type [in different manners depending on the scheduling type or chunk
END PARALLEL DO size used.
, chunk])
‘SHARED’ PARALLEL Specifies that one or more variables should be shared among all
PARALLEL DO ... threads. All th.reads within a team access the same storage area
for shared variables
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
‘UNTIED’ TASK Specifies that any thread in the team can resume the task region
TASKWAIT after a suspension.
‘UPDATE’ ATOMIC Specifies that the atomic action is updating a value.
‘WRITE’ ATOMIC Specifies that the atomic action is writing a value.

9.7. Runtime Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution
environment.

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP runtime libraries - up to the hard limit of 256 threads.

PVF User's Guide 94

Using OpenMP

The following table summarizes the runtime library calls.

Table 16 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When called from a serial region,
this function returns 1. A nested parallel region is the same as a single parallel region. By default, the value returned by this
function is equal to the value of the environment variable OMP NUM THREADS or to the value set by the last previous
callto omp_set num_threads().

Fortran integer function omp get num threads ()

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine can only be called from a serial region of code. If it is called from within a parallel region, or from within a
subroutine that is called from within a parallel region, the results are undefined. Further, this subroutine has precedence over the
OMP NUM THREADS environment variable.

Fortran subroutine omp_set num threads(scalar_integer_exp)

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and omp_get num_threads () -1. When
called from a serial region, this function returns 0. A nested parallel region is the same as a single parallel region.

Fortran integer function omp get thread num()

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp get ancestor thread num(level)
integer level

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call. PGI currently supports only one
level of active parallel regions, so the return value currently is 1.

Fortran integer function omp get active level ()

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp get level ()

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num threads ().

If omp_set num threads () is used to change the number of processors, subsequent calls to
omp_get max_threads () return the new value. Further, this function returns the maximum value whether executing from a
parallel or serial region of code.

Fortran integer function omp get max threads|()

omp_get_num_procs

PVF User's Guide 95

Using OpenMP

Runtime Library Routines with Examples

Returns the number of processors that are available to the program

Fortran integer function omp get num procs|()

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a stack for a newly created
thread.

This value may not be the size of the stack of the current thread.

Fortran lomp get stack size interface

function omp get stack size ()

use omp lib kinds

integer (kind=OMP STACK SIZE KIND)
omp get stack size

end function omp get stack size

end interface

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a stack for a newly created
thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread cannot be changed. In the
PGl implementation, all OpenMP or auto-parallelization threads are created just prior to the first parallel region; therefore, only
callstoomp set stack size () thatoceur prior to the first region have an effect.

Fortran subroutine omp set stack size(integer (KIND=OMP_ STACK SIZE KIND))

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor belongs.

Fortran integer function omp get team size (level)
integer level

omp_in_final

Returns whether or not the call is within a final task.

Returns . TRUE . if called from within a parallel region and . FALSE . if called outside of a parallel region. When called
from within a parallel region that is serialized, for example in the presence of an IF clause evaluating . FALSE ., the function
returns . FALSE..

Fortran integer function omp in final ()

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE . if called from within a parallel region and . FALSE . if called outside of a parallel region. When called
from within a parallel region that is serialized, for example in the presence of an IF clause evaluating . FALSE ., the function
retuns . FALSE ..

Fortran logical function omp in parallel ()

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine omp set dynamic(scalar logical exp)

PVF User's Guide 96

Using OpenMP

Runtime Library Routines with Examples

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for execution of parallel regions is
enabled.

This function is recognized, but currently always returns . FALSE ..

Fortran logical function omp get dynamic ()

omp_set_nested

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp_set nested(nested)
logical nested

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution of parallel regions is
enabled.

Fortran logical function omp get nested()

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine omp set schedule (kind, modifier)
include ‘omp lib kinds.h’

integer (kind=omp sched kind) kind
integer modifier

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp get schedule (kind, modifier)
include ‘omp lib kinds.h’

integer (kind=omp sched kind) kind
integer modifier

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp get wtime ()

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

Fortran double precision function omp get wtick()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp init lock (lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

PVF User's Guide 97

Using OpenMP

Runtime Library Routines with Examples

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp destroy lock(lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with a lock, it is illegal to make
a call to this routine.

Fortran subroutine omp_set lock(lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer_var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp unset lock (lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.
The function returns . TRUE . if the thread gains ownership of the lock; otherwise it returns . FALSE ..

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp test lock(lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

9.8. Environment Variables

Y ou can use OpenMP environment variables to control the behavior of OpenMP programs.
These environment variables allow you to set and pass information that can alter the behavior of
directives.

To set the environment for programs run from within PVF, whether or not they are run in the debugger, use
the environment properties available in the ‘Debugging Property Page’ in the PGI Visual Fortran Reference
Manual.

The following summary table is a quick reference for the OpenMP environment variables that
PGI uses.

PVF User's Guide 98

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using OpenMP

Table 17 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description
OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or disables (FALSE)
the dynamic adjustment of the number of threads.
OMP_MAX_ACTIVE_LEVELS Specifies the maximum number of nested parallel regions.
OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.
OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions at the corresponding nested level. For example,
OMP_NUM_THREADS=4,2 uses 4 threads at the first nested parallel
level, and 2 at the next nested parallel level.
OMP_SCHEDULE STATIC with Specifies the type of iteration scheduling and optionally the chunk size

chunk size of 1

to use for omp for and omp parallel for loops that include the runtime
schedule clause. The supported schedule types, which can be specified
in upper- or lower-case are static, dynamic, guided, and auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can be used in
a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin or sleep

when idle. The values are ACTIVE and PASSIVE.

PVF User's Guide

99

Chapter 10.
USING AN ACCELERATOR

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can
offload data and executable kernels to perform compute-intensive calculations. This section
describes a collection of compiler directives used to specify regions of code in Fortran that can be
offloaded from a host CPU to an attached accelerator.

10.1. Overview

The programming model and directives described in this section allow programmers to create
high-level host+accelerator programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accelerator, or initiate accel erator
startup and shutdown. Rather, all of these details are implicit in the programming model and are
managed by the PGI Fortran accelerator compilers.

The method described provides a model for accelerator programming that is portable across
operating systems and various host CPUs and accelerators. The directives allow a programmer to
migrate applications incrementally to accelerator targets using standards-compliant Fortran.

This programming model allows the programmer to augment information available to the
compilers, including specification of datalocal to an accelerator region, guidance on mapping of
loops onto an accelerator, and similar performance-related details.

10.1.1. Components

The PGI Accelerator compiler technology includes the following components:

PGFORTRAN auto-parallelizing accel erator-enabled Fortran 90/95 and F2003 compilers
NVIDIA CUDA Toolkit components
PVF Target Accelerators property page

A simple command-line tool to detect whether the system has an appropriate GPU or
accelerator card

vV v v VY

No accelerator-enabled debugger is included with this release

PVF User's Guide 100

Using an Accelerator

10.1.2. Availability

The PGI 14.10 Fortran Accelerator compilers are available only on x86 processor-based
workstations and servers with an attached NVIDIA CUDA-enabled GPU or Tesla card.
These compilerstarget al platformsthat PGl supports. All examplesincluded in this section
are devel oped and presented on such a platform. For alist of supported GPUSs, refer to the
Accelerator Installation and Supported Platformslist in the latest PV F Release Notes.

10.1.3. User-directed Accelerator Programming

In user-directed accelerator programming the user specifies the regions of a host program to be
targeted for offloading to an accelerator device. The bulk of auser’s program, aswell asregions
containing constructs that are not supported on the targeted accelerator, are executed on the host.
This section concentrates on specification of loops and regions of code to be offloaded to an
accelerator.

10.1.4. Features Not Covered or Implemented

This section does not describe features or limitations of the host programming environment as
awhole. Further, it does not cover automatic detection and offloading of regions of code to an
accelerator by acompiler or other tool. While future versions of the PGl compilers may allow for
automatic offloading, this feature is not currently supported.

10.2. Terminology

Clear and consistent terminology isimportant in describing any programming model. This section
provides definitions of the terms required for you to effectively use this section and the associated
programming model.

Accelerator
a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations.

Compute intensity
for agiven loop, region, or program unit, the ratio of the number of arithmetic operations
performed on computed data divided by the number of memory transfers required to move
that data between two levels of amemory hierarchy.

Computeregion
astructure block defined by an OpenA CC compute construct. A compute construct is
a structured block containing loops which are compiled for the accelerator. A compute
region may require device memory to be allocated and data to be copied from host to device
upon region entry, and data to be copied from device to host memory and device memory
deallocated upon exit. The dynamic range of a compute construct, including any code in
procedures called from within the construct, is the compute region. In this release, compute
regions may not contain other compute regions or data regions.

Construct
astructured block identified by the programmer or implicitly defined by the language. Certain
actions may occur when program execution reaches the start and end of a construct, such as

PVF User's Guide 101

http://www.pgroup.com/resources/docs.htm

Using an Accelerator

device memory allocation or data movement between the host and device memory. Loops
in a compute construct are targeted for execution on the accelerator. The dynamic range of a
construct including any code in procedures called from within the construct, is called aregion.
CUDA
stands for Compute Unified Device Architecture; the CUDA environment from NVIDIA isa
C-like programming environment used to explicitly control and program an NVIDIA GPU.
Dataregion
aregion defined by an OpenACC data construct, or an implicit data region for a function or
subroutine containing OpenACC directives. Data regions typically require device memory
to be alocated and data to be copied from host to device memory upon entry, and data to be
copied from device to host memory and device memory deallocated upon exit. Data regions
may contain other data regions and compute regions.
Device
agenera reference to any type of accelerator.
Device memory
memory attached to an accelerator which is physically separate from the host memory.
Directive
aspecially formatted comment statement that is interpreted by a compiler to augment
information about or specify the behavior of the program.
DMA
Direct Memory Access, a method to move data between physically separate memories; thisis
typically performed by aDMA engine, separate from the host CPU, that can access the host
physical memory aswell asan IO device or GPU physical memory.
GPU
a Graphics Processing Unit; one type of accelerator device.
GPGPU
General Purpose computation on Graphics Processing Units.
Host
the main CPU that in this context has an attached accelerator device. The host CPU controls
the program regions and data |oaded into and executed on the device.
L oop trip count
the number of times a particular loop executes.
OpenACC
aparald programming standard describing a set of compiler directives which can be applied
to standard C, C++, and Fortran to specify regions of code for offloading from a host CPU to
an attached accelerator.
OpenCL - Open Compute Language
a standard C-like programming environment similar to CUDA that enables portable low-level
general-purpose programming on GPUs and other accelerators.
Private data
with respect to an iterative loop, data which is used only during a particular loop iteration.
With respect to amore general region of code, data which is used within the region but is not
initialized prior to the region and isre-initialized prior to any use after the region.
Region
the dynamic range of a construct, including any procedures invoked from within the construct.
Structured block
ablock of executable statements with asingle entry at the top and a single exit at the bottom.
Vector operation
asingle operation or sequence of operations applied uniformly to each element of an array.

PVF User's Guide 102

Using an Accelerator

Visible device copy
acopy of avariable, array, or subarray alocated in device memory, that is visible to the
program unit being compiled.

10.3. System Requirements

For NVIDIA GPUs

To usethe PGI Accelerator compiler features on NVIDIA GPUs, you must install the NVIDIA
drivers. Y ou may download these components from the NVIDIA website at www.nvidia.com/
cuda

These are not PGI products. They are licensed and supported by NVIDIA.

You must be using an operating system that is supported by both the current PGI release and by the
CUDA software and drivers.

For AMD Radeon GPUs

To use the PGI Accelerator compiler features on AMD Radeon GPUs, you must install the AMD
Catalyst drivers. Y ou may download these components from the AMD website at www.amd.com

These are not PGI products. They are licensed and supported by AMD.

You must be using an operating system that is supported by both the current PGl release and by the
Catalyst drivers.

10.4. Supported Processors and GPUs

This PGl Accelerator compiler release supports all AMD64 and Intel 64 host processors. Use the
-tp=<target> flag as documented in the release to specify the target processor.

Use the —acc flag to enable OpenACC directives and the —ta=<target> flag to target
NVIDIA and AMD GPU. Y ou can then use the generated code on any supported system with
CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla card, or any supported
system with a supported AMD Radeon GPU.

In PVF you can use the PVF Target Accelerators property page to enable accelerator compilation.
For more information on the properties, refer to #Fortran | Target Accelerators’ section in the PGI
Visual Fortran Reference Manual.

For more information on these flags as they relate to accel erator technology, refer to Applicable
Command Line Options.

For acomplete list of supported CUDA GPUSs, refer to the NVIDIA website at:www.nvidia.com/
object/cuda learn_products.html

PVF User's Guide 103

www.nvidia.com/cuda
www.nvidia.com/cuda
www.amd.com
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
www.nvidia.com/object/cuda_learn_products.html
www.nvidia.com/object/cuda_learn_products.html

Using an Accelerator

Y ou can detect whether the system has CUDA properly installed and has an attached GPU
by running the pgaccelinfo command, which is delivered as part of the PGl Accelerator
compilers software package.

10.5. Installation and Licensing

The PGI Accelerator compilers have a different license key than the -x64 only version of the PGl Visual
Fortran license.

10.5.1. Enable Accelerator Compilation

Onceyou have installed PVF Release 2014, you can enable accel erator compilation by using the
properties available on the Fortran | Target Accelerators property page. For more information
about these properties, refer to the * Fortran | Target Accelerators' section of the PGl Visual
Fortran Reference Manual.

10.6. Execution Model

The execution model targeted by the PGl Accelerator compilersis host-directed execution with
an attached accelerator device, such asa GPU. The bulk of a user application executes on the
host. Compute intensive regions are offloaded to the accel erator device under control of the host.
The accelerator device executes kernels, which may be as simple as a tightly-nested loop, or as
complex as a subroutine, depending on the accelerator hardware.

10.6.1. Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

allocates memory on the accelerator device
initiates data transfer

sends the kernel code to the accel erator
passes kernel arguments

queues the kernel

waits for completion

transfers results back to the host
deallocates memory

vV Vv v v v Y

v

n In most cases, the host can queue a sequence of kernels to be executed on the device, one after the
other.

10.6.2. Levels of Parallelism

Most current GPUs support two levels of parallelism:

» anouter doall (fully paralel) loop level

PVF User's Guide 104

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using an Accelerator

» aninner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly
rectangular. The synchronous level may not be fully implemented with SIMD or vector
operations, so explicit synchronization is supported and required across this level. No
synchronization is supported between parallel threads across the doall level.

The execution model on the device side exposes these two levels of parallelism and the
programmer is required to understand the difference between, for example, afully parallel loop
and aloop that is vectorizable but requires synchronization across iterations. All fully parallel
loops can be scheduled for either doall or synchronous parallel execution, but by definition
SIMD vector loops that require synchronization can only be scheduled for synchronous parallel
execution.

10.7. Memory Model

The most significant difference between a host-only program and a host+accelerator program is
that the memory on the accelerator can be completely separate from host memory, which isthe
case on most current GPUs. For example:

» Thehost cannot read or write accelerator memory by reference because it is not mapped into
the virtual memory space of the host.

» All data movement between host memory and accelerator memory must be performed by the
host through runtime library calls that explicitly move data between the separate memories.

» Itisnot valid to assume the accelerator can read or write host memory, though this may be
supported by accelerators in the future.

10.7.1. Separate Host and Accelerator Memory Considerations

The programmer must be aware of the potentially separate memories for many reasons, including
but not limited to:

» Memory bandwidth between host memory and accelerator memory determines the compute
intensity required to effectively accelerate a given region of code.

» Limited size of accelerator memory may prohibit offloading of regions of code that operate
on very large amounts of data.

10.7.2. Accelerator Memory

On the accelerator side, current GPUs implement aweak memory model. In particular, they

do not support memory coherence between threads unless those threads are parallel only at the
synchronous level and the memory operations are separated by an explicit barrier. Otherwise,

if one thread updates a memory location and another reads the same location, or two threads
store avalue to the same location, the hardware does not guarantee the results. While the results
of running such a program might be inconsistent, it is not accurate to say that the results are
incorrect. By definition, such programs are defined as being in error. While a compiler can detect
some potential errors of this nature, it is nonethel ess possible to write an accelerator region that
produces inconsistent numerical results.

PVF User's Guide 105

Using an Accelerator

10.7.3. Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and
most have hardware caches that can be used only in certain situations and are limited to read-only
data. In low-level programming models such as CUDA or OpenCL, it is up to the programmer

to manage these caches. However, in the PGl Accelerator programming model, the compiler
manages these caches using hints from the programmer in the form of directives.

10.8. Running an Accelerator Program

In PVF you can use the PVF Target Accelerators property page to enable accelerator compilation.
For more information on the properties, refer to the ‘ Fortran | Target Accelerators' section of the
PGI Visual Fortran Reference Manual.

Running a program that has accelerator directives and was compiled and linked with the -t a flag
is the same as running the program compiled without the -t a flag.

» When running programs on NVIDIA GPUs, the program looks for and dynamically loads
the CUDA libraries. When running programs on AMD GPUs, the program looks for and
dynamically loads the AMD OpenCL libraries. If the libraries are not available, or if they
are in adifferent directory than they were when the program was compiled, you may need to
append the appropriate library directory to your PATH environment variable on Windows.

» OnLinux, if you have no server running on your NVIDIA GPU, when your program reaches
itsfirst accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from
a power-off audience. Y ou can avoid this delay by running the pgcudainit programinthe
background, which keeps the GPU powered on.

» If you compile a program for a particular accelerator type, then run the program on a system
without that accelerator, or on a system where the target libraries are not in a directory where
the runtime library can find them, the program may fail at runtime with an error message.

> If you set the environment variable PGI ACC_NOTIFY to anonzero integer value,
the runtime library prints aline to standard error every time it launches a kernel on the
accelerator.

10.9. Accelerator Directives

This section provides an overview of the Fortran directives used to delineate accelerator regions
and to augment information available to the compiler for scheduling of loops and classification of
data

10.9.1. Enable Accelerator Directives

PGI Accelerator compilers enable accelerator directives with the —acc and —ta command line
option.In PVF, use the ‘ Fortran | Target Accelerators' page to enable the —ta option and the

PVF User's Guide 106

http://www.pgroup.com/resources/docs.htm

Using an Accelerator

‘Fortran | Language’ page to enable the —acc option. For more information on this option as it
relates to the Accelerator, refer to Applicable Command Line Options.

The syntax used to define directives allows compilers to ignore accelerator directives if support is disabled
or not provided.

_ACCEL macro

The ACCEL macro nameis defined to have avalue yyyymm where yyyy isthe year and

mm is the month designation of the version of the Accelerator directives supported by the
implementation. For example, the version for May, 2009 is 200905. The PGI compilers define
this macro when accelerator directives are enabled.

_OPENACC macro

The OPENACC macro nameis defined to have avalue yyyymm where yyyy isthe year
and mm is the month designation of the version of the OpenACC directives supported by the
implementation. For example, the version for June, 2013 is 201306. All OpenACC compilers
define this macro when OpenACC directives are enabled.

10.9.2. Format

The specific format of the directive depends on the language and the format or form of the source.
Directives include a name and clauses, and the format of the directive depends on the type:

» Free-form Fortran directives, described in ‘ Free-Form Fortran Directives
» Fixed-form Fortran directives, described in ‘ Fixed-Form Fortran Directives

n This document uses free form for all PGl Accelerator compiler Fortran directive examples.

Rules
The following rules apply to all OpenACC compiler directives:

» Only one directive-name can be specified per directive.

» Theorder in which clauses appear is not significant.

» Clauses may be repeated unless otherwise specified.

» For clausesthat have alist argument, alist isa comma-separated list of variable names, array
names, or, in some cases, subarrays with subscript ranges.

10.9.3. Free-Form Fortran Directives

OpenACC Fortran directives can be either Free-Form or Fixed-Form directives. Free-Form
Accelerator directives are specified with the ! Sacc mechanism.

PVF User's Guide 107

Using an Accelerator

Syntax

The syntax of directivesin free-form sourcefilesis:

!Sacc directive-name [clause [,clause]...]

Rules

In addition to the genera directive rules, the following rules apply to OpenACC Free-Form
Fortran directives:

» The comment prefix (1) may appear in any column, but may only be preceded by white space
(spaces and tabs).

» The sentinegl (!$acc) must appear as a single word, with no intervening white space.
» Linelength, white space, and continuation rules apply to the directive line.
» Initial directive lines must have a space after the sentinel.

» Continued directive lines must have an ampersand (&) as the last nonblank character on the
line, prior to any comment placed in the directive.

» Comments may appear on the same line as the directive, starting with an exclamation point
and extending to the end of theline.

» If thefirst nonblank character after the sentinel is an exclamation point, the lineisignored.
» Directives are case-insensitive.

» Directives cannot be embedded within continued statements.

» Statements must not be embedded within continued directives.

10.9.4. Fixed-Form Fortran Directives

Fixed-Form Accelerator directives are specified using one of three formats.

Syntax

The syntax of directivesin fixed-form source filesis one these three formats:

!Sacc directive-name [clause [,clause]...]
cSacc directive-name [clause [,clause]...]
*Sacc directive-name [clause [,clause]...]

Rules

In addition to the general directive rules, the following rules apply to Accelerator Fixed-Form
Fortran directives:

» The sentinel (!acc, cacc, or * $acc) must occupy columns 1-5.

» Fixed form line length, white space, continuation, and column rules apply to the directive
line.

» Initia directive lines must have a space or zero in column 6, and continuation directive lines
must have a character other than a space or zero in column 6.

» Comments may appear on the same line as a directive, starting with an exclamation point on
or after column 7 and continuing to the end of theline.

PVF User's Guide 108

Using an Accelerator

» Directives are case-insensitive.
» Directives cannot be embedded within continued statements.
» Statements must not be embedded within continued directives.

10.9.5. OpenACC Directive Summary

PGI currently supports these types of accelerator directives:

Parallel Directive
Kernels Directive
Loop Directive
Combined Directive
DataDirective
Enter Data and Exit Data Directives
Host Data Directive
Cache Directive
Declare Directive
Update Directive
Routine Directive
Wait Directive
Table 18 lists and briefly describes each of the accelerator directives that PGI currently supports.

For a complete description of each directive, refer to ' PGl Accelerator Directives in the PGI
Visual Fortran Reference Manual.

Table 18 PGl Accelerator Directive Summary Table

This directive... Accepts these clauses... Has this functionality...

Parallel Directive Defines the region of the program that should be compiled for

async [(int-expr)]) .
parallel execution on the accelerator device.

wait [(int-expr-list)]
num_gangs (int-expr)
num_workers(int-expr)
vector_length(int-expr)
if(condition)

reduction(operator : list)
copy (list)

copyin(list)

copyout(list)

create(list)

present(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyout(ist)
present_or_create(list)
deviceptr(list)

private(list)

firstprivate(list)

PVF User's Guide 109

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using an Accelerator

This directive... Accepts these clauses... Has this functionality...
Fortran Syntax
!Sacc parallel [clause [, clause]...]

structured block
!Sacc end parallel

Kernels Directive Defines the region of the program that should be compiled
into a sequence of kernels for execution on the accelerator

device.

async [(int-expr)]

wait [(int-expr-list)]

if(condition)

copy (list)

copyin(list)

copyout(list)

create(list)

present(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyout(/ist)
present_or_create(list)
deviceptr(list)

Fortran Syntax

!Sacc kernels [clause [, clause]...]
structured block
!Sacc end kernels

Data Directive Defines data, typically arrays, that should be allocated

in the device memory for the duration of the data region,
whether data should be copied from the host to the device
memory upon region entry, and copied from the device to
copyout(fist) host memory upon region exit.

create(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyoul(list)
present_or_create(list)

deviceptr(list)

if(condition)
copy (list)
copyin(list)

Fortran Syntax

!'Sacc data [clause [, clause]...]
structured block
!Sacc end data

Enter Data Directive Defines data, typically arrays, that should be allocated in the
device memory for the duration of the program or until an
exit data regdirective that deallocates the data, and
whether data should be copied from the host to the device
copyin(list) memory atthe enter data directive.

create(list)
present_or_copyin(list)

present_or_create(list)

if(condition)
async [(int-expr)]
wait [(int-expr-list)]

FortranSyntax

!Sacc enter data [clause [, clause]...]

PVF User's Guide 110

This directive...

Accepts these clauses...

Using an Accelerator

Has this functionality...

Exit Data Directive if(condition)

async [(int-expr)]
wait [(int-expr-list)]

Defines data, typically arrays, that should be allocated in the
device memory, and whether data should be copied from the
device to the host memory.

copyout(list)
delete(list)
Fortran Syntax
!Sacc exit data [clause [, clause]...]
Host_Data Directive use_device(st) Makes the address of the device data available on the host.
Fortran Syntax
!Sacc host data [clause [, clause]...]
structured block
!$acc end host data
Fortran Syntax
!Sacc loop [clause [,clause]...]
do loop
Combined Parallel Loop Any clause that is allowed on a Is a shortcut for specifying a loop directive nested
Directive parallel directive or a loop directive | immediately inside an accelerator parallel directive. The
is allowed on a combined parallel meaning is identical to explicitly specifying a parallel
loop directive. construct containing a loop directive.
Fortran Syntax

!Sacc parallel loop [clause [,
do loop

clause]...]

Combined Kernels Loop Any clause that is allowed on a Is a shortcut for specifying a loop directive nested
Directive kernels directive or a loop directive | immediately inside an accelerator kernels directive. The
is allowed on a combined kernels meaning is identical to explicitly specifying a kernels
loop directive. construct containing a loop directive.
Fortran Syntax
!Sacc kernels loop [clause [, clause]...]
do loop
Cache Directive Specifies array elements or subarrays that should be fetched
into the highest level of the cache for the body of a loop.
Must appear at the top of (inside of) the loop.
Fortran Syntax
!Sacc cache (list)
Declare Directive copy (ist) Specifies that an array or arrays are to be allocated in the
copyin(list) devige memory fgr the duration of the implicit data region of a
copyouty fist) function, subroutine, or program.

create(list)
present_or_copy (list)
present_or_copyin(list)
present_or_copyout(ist)
present_or_create(list)

PVF User's Guide

Specifieswhether the data values are to be transferred from
the host to the device memory upon entry to the implicit data
region, and from the device to the host memory upon exit
from the implicit data region.

Creates a visible device copy of the variable or array.

1M

Using an Accelerator

This directive... Accepts these clauses... Has this functionality...

deviceptr(list)
device_resident(list)

FortranSyntax
!Sacc declare [,declclause]...

Update Directive async [(int-expr)] Used during the lifetime of accelera?or data to update

wait [(int-expr)] all or part of a host memory array with values from the
. p corresponding array in device memory, or to update all

dewge-type [. or part of a device memory array with values from the
(device-type-list)] corresponding array in host memory.
if (audience)
self (fist)
host (list)
device(list)

Fortran Syntax

!Sacc update updateclause [,updateclause]...

Routine Directive gang Used to tell the compiler to compile a given procedure
worker for an accelerator as well as the host. In a file or routine
with a procedure call the rout ine directive tells the
vector implementation the attributes of the procedure when called
Seq on the accelerator.
Fortran Syntax
!'Sacc routine clause [,clause]...
or
!Sacc routine(name) clause [,clause]...
Wiait Directive if(condition) Specifies to wait until all operations on a specific device
device(st) async queue or all async queues are complete.
Fortran Syntax

!Sacc wait [(int-expr-list)] [clause [,clause]...]

10.10. Accelerator Directive Clauses

CFAI1JHHprovides an aphabetical listing and brief description of each clause that is applicable
for the various Accelerator directives. The table also indicates for which directives the clauseis
applicable.

Table 19 Directive Clauses Summary

Use this clause... In these directives... To do this...

async [(int-expr)] The parallel or kernels region or data operations may be processed

Parallel

asynchronously while the local thread continues with the code
Kernels . L

following the construct or directive.
Enter Data

PVF User's Guide 112

Using an Accelerator

Use this clause... In these directives... To do this...
Exit Data
Update
collapse (n) Loop Specifies how many tightly nested loops are associated with the loop
construct.
copy (list) Parallel Declares that the variables, arrays, or subarrays in the list have
Kernels values in the host memory that need to be copied to the accelerator
) memory, and are assigned values on the accelerator that need to be
Data Region copied back to the host.
Decl
eclare
copyin (list) Parallel Declares that the variables, arrays or subarrays in the list have values
Kemels in the host memory that need to be copied to the accelerator memory,
Data
Declare
Enter Data
copyout (list) Parallel Declares that the variables, arrays, or subarrays in the list are
Kernels assigned or contain values in the accelerator memory that need to be
Dat copied back to the host memory at the end of the accelerator region.
ata
Declare
Exit Data
create (list) Parallel Declares that the variables, arrays, or subarrays in the list are to
Kemels be allocated (created) in the device memory; but the values in the
local memory are not needed on the accelerator; and any values
Data computed and assigned on the accelerator are not needed back in
Declare local memory.
Enter Data
delete (list) Exit Data Deallocate arrays, subarrays or common blocks without copying
values back to local memory.
device (list) Update Copies the variables, arrays, or subarrays in the list argument from
host memory to the visible device copy of the variables, arrays, or
subarrays in device memory.
device_resident (list) Declare Specifies that the memory of the named variables should be allocated
in the accelerator device memory and not in the host memory.
deviceptr (list) Parallel Declares that the items in the list are device pointers, so the data
Kemels need not be allocated or moved between the host and device..
Data
Declare

firstprivate (list)

Parallel Region

Declares that a copy of each item on the list will be created for each
parallel gang, and that the copy will be initialized with the value of that
item on the host when the parallel construct is encountered.

gang [(gang-arg-list)]

Specifies that the iterations of the associate loop or loops are to be

Loo
Rou‘:ine executed in parallel by distributing the iterations among the gangs
created by the parallel construct.
host (list) Update Copies the visible device copies of the variables, arrays, or subarrays

in the list argument to the associated host memory locations. The
copy occurs after completion of the compute or data region.

PVF User's Guide

113

Use this clause...

In these directives...

Using an Accelerator

To do this...

if (condition)

When present, tells the compiler to generate two copies of the region

Parallel
Kemels - one for the accelerator, one for the host - and to generate code to
decide which copy to execute.
if (condition) Data Region Conditionally allocate memory on, and move data to and/or from the
device.
Enter Data
Exit Data
Update
independent Loop Tells the compiler that the iterations of this loop are data-independent
of each other, thus allowing the compiler to generate code to execute
the iterations in parallel, without synchronization.
num_gangs (int-expr) Parallel Defines the number of parallel gangs that will execute the region.
num_workers (int-expr) Parallel Defines the number of workers within each gang that will be active
after a gang transitions from worker-single mode to worker-partitioned
mode.
present (list) Parallel Tells the implementation that the items in the list are already present
Kernels in device memory.
Data
Declare
present_or_copy (list) Parallel Tells the implementation to test whether each of the items in the
Kemels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copy clause.
Data
Declare
present_or_copyin (list) Parallel Tells the implementation to test whether each of the items in the
Kernels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copyin clause.
Data
Enter Data
Declare
present_or_copyout (list) Parallel Tells the implementation to test whether each of the items in the
Kernels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copyout clause.
Data
Declare
present_or_create (list) Parallel Tells the implementation to test whether each of the items in the
Kemels list are already present in the accelerator memory. If the data is not
Dat present, the program behaves as with the create clause.
ata
Enter Data
Declare
private (list) Loop Specifies that a copy of each item in the list will be created for each
thread that executes one or more iterations of the associated loop or
loops.
private (list) Parallel Declares that a copy of each item on the list will be created for each

parallel gang.

PVF User's Guide

114

Using an Accelerator

Use this clause... In these directives... To do this...

reduction (operator: list) Loop For each variable in the list, a private copy is created for each thread

that executes iterations of the associated loop or loops and initialized
for the operator. At the end of the loop, the values for each thread are
combined using the reduction operator, and the result combined with

the value of the original variable and stored in the original variable.

reduction (operator: list) Parallel For each variable in the list, a private copy is created for each parallel
gang and initialized for the operator. At the end of the region, the
values for each gang are combined using the reduction operator, and
the result combined with the value of the original variable and stored
in the original variable.

self (list) Update Specifies that the items in the list are to be copied from the
accelerator device memory to the local memory. The se 1 £ clause
is a synonym for the ho s t clause.

seq Loop Tells the compiler to execute this loop sequentially on the accelerator.
There is no maximum number of iterations for a seq schedule.

use_device (list) Host_Data Tells the compiler to use the device address of any item in the list in
code within the construct.

vector [(length: int-expr)] Loop Tells the compiler to execute this loop in vector or SIMD mode on the
accelerator.

vector_length (int-expr) Parallel Defines the number of vector lanes that will be active after a worker

transitions from vector-single mode to vector-partitioned mode.

wait [(int-expr-list)] The compute, data or update operation may not be launched or

Parallel
executed until all operations enqueued up to this point by this
Kernels . . -
thread on the associated asynchronous device activity queues have
Enter Data completed.
Exit Data
Update
worker [([num:] int-expr)] | Loop Specifies that the iterations of the associated loop or loops are to be

executed in parallel by distributing the iterations among the multiple
workers within a single gang.

10.11. OpenAcc Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are
available for use by programmersto query the accelerator features and to control behavior of
accelerator-enabled programs at runtime.

In Fortran, none of the OpenACC runtime library routines may be called from a PURE or ELEMENTAL
procedure.

10.11.1. Runtime Library Definitions

There are separate runtime library files for Fortran.

PVF User's Guide 115

Using an Accelerator

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include filenamed accel 1ib.h
and in aFortran module named accel 1ib. Thesefiles define:

» Interfacesfor al routines in this section.
» Integer parameters to define integer kinds for arguments to those routines.
» Integer parameters to describe types of accelerators.

» Theinteger parameter accel version withavaue yyyymm where yyyy and mm are
the year and month designations of the version of the Accelerator programming model
supported. This value matches the value of the preprocessor variable ACCEL.

10.11.2. Runtime Library Routines

Table 20 lists and briefly describes the runtime library routines supported by PGI in addition to
the standard OpenACC runtine API routines.

Table 20 Accelerator Runtime Library Routines

This Runtime Library

Routine...

Does this...

acc_bytesalloc

Returns the total bytes allocated by data or compute regions.

acc_bytesin

Returns the total bytes copied in to the accelerator by data or compute regions.

acc_bytesout

Returns the total bytes copied out from the accelerator by data or compute regions.

acc_copyins

Returns the number of arrays copied in to the accelerator by data or compute regions.

acc_copyouts

Returns the number of arrays copied out from the accelerator by data or compute regions.

acc_disable_time

Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time

Tells the runtime to start profiling accelerator regions and kernels, if it is not already doing so.

acc_exec_time

Returns the number of microseconds spent on the accelerator executing kernels.

acc_frees

Returns the number of arrays freed or deallocated in data or compute regions.

acc_get_device

Returns the type of accelerator device used to run the next accelerator region, if one is
selected.

acc_get_device_num

Returns the number of the device being used to execute an accelerator region.

acc_get_free_memory

Returns the total available free memory on the attached accelerator device.

acc_get_memory

Returns the total memory on the attached accelerator device.

acc_get_num_devices

Returns the number of accelerator devices of the given type attached to the host.

acc_kernels

Returns the number of accelerator kernels launched since the start of the program.

acc_regions

Returns the number of accelerator regions entered since the start of the program.

acc_total_time

Returns the number of microseconds spent in accelerator compute regions and in moving data
for accelerator data regions.

PVF User's Guide

116

Using an Accelerator

10.12. Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section
defines the user-setable environment variables used to control behavior of accelerator-enabled
programs at execution. These environment variables must comply with these rules:

» The names of the environment variables must be upper case.

» Thevalues assigned environment variables are case insensitive and may have leading and
trailing white space.

» The behavior isimplementation-defined if the values of the environment variables change
after the program has started, even if the program itself modifies the val ues.

Table 21 lists and briefly describes the Accelerator environment variables that PGl supports.

Table 21 Accelerator Environment Variables

This environment variable... Does this...

ACC_DEVICE_TYPE Controls which accelerator device to use when executing accelerator regions, if the
program has been compiled to use more than one different type of device. The value
of this environment variable is implementation-defined, and currently may be the
string NVIDIA, RADEON, or HOST.

ACC_DEVICE_NUM Controls the default device number to use when executing accelerator regions. The
value of this environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

PGI_ACC_NOTIFY When set to an integer value, the value is used as a bit mask to print information
about kernel launches (value 1), data transfers (value 2), region entry/exit (value 4),
and wait operations or synchronizations with the device (value 8).

PGI_ACC_TIME Enables a lightweight profiler to measure data movement and accelerator kernel
execution time and print a summary at the end of program execution.

PGI_ACC_BUFFERSIZE For NVIDIA CUDA devices, this defines the size of the pinned buffer used to transfer
data between host and device.

PGI_ACC_CUDA_GANGLIMIT For NVIDIA CUDA devices, this defines the maximum number of gangs (CUDA
thread blocks) that will be launched by a kernel.

PGI_ACC_DEV_MEMORY For AMD Radeon devices, this defines the maximum size OpenCL buffer to allocate.
The maximum size may also be limited by the target device.

10.13. Applicable PVF Property Pages

The following property pages are applicable specifically when working with accelerators.
‘Fortran | Target Accelerators

Use the —ta option to enable recognition of Accelerator directives.
‘Fortran | Target Processors

Use the —tp option to specify the target host processor architecture.

PVF User's Guide 117

Using an Accelerator

‘Fortran | Diagnostics
Use the -Minfo option to see messages about the success or failure of the compiler in
tranglating the accelerator region into GPU kernels.

For more information about the many suboptions available with these options, refer to the
respective sections in the ‘ Fortran Property Pages' section of the PGI Visual Fortran Reference
Manual.

10.14. Applicable Command Line Options

The following command line options are applicabl e specifically when working with accelerators.
Each of these command line options are avail able through the property pages described in the
previous section: Environment Variables.
-ta
Use this option to enable recognition of the !'$Acc directivesin Fortran.
Use this option to specify the target host processor architecture.
—acc
Use this option to enable OpenACC directives. Y ou can use the —acc suboptions to specify
loop autoparallelization, how the compiler reports compute regions failures to accelerate, and
whether to issue awarning or an error for non-OpenACC accelerator directives.
—-Minfo or —-Minfo=accel
Use this option to see messages about the success or failure of the compiler in tranglating the
accelerator region into GPU kernels.

The —ta flag has the following accelerator-related suboptions:
nvidia
Select NVIDIA accelerator target. This option has a number of suboptions:

cc10, cc11, cc12, cc13, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, 2.0, 3.0, or 3.5 respectively; multiple

cc20, cc30, cc35 selections are valid.

cuda6.0 or 6.0 Specify the CUDA 6.0 version of the toolkit. This is the default.

cuda6.5 or 6.5 Specify the CUDA 6.5 version of the toolkit.

fastmath Use routines from the fast math library.

fermi Generate code for Fermi Architecture equivalent to NVIDIA compute capability 2.x.

[no]flushz control flush-to-zero mode for floating point computations in the GPU code generated for PGI
Accelerator model compute regions.

keep Keep the kernel files.

kepler Generate code for Kepler Architecture equivalent to NVIDIA compute capability 3.x.

maxregcountn Specify the maximum number of registers to use on the GPU.

Leaving this blank indicates no limit.

nofma Do not generate fused multiply-add instructions.

noL1 Prevent the use of L1 hardware data cache to cache global variables.

tesla Generate code for Tesla Architecture equivalent to NVIDIA compute capability 1.x.
time Link in a limited-profiling library, as described in Profiling Accelerator Kernels.

PVF User's Guide 118

Using an Accelerator

host
Select NO accelerator target. Generate PGl Unified Binary Code.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code
and embeds the kernelsin the object file.

10.15. Profiling Accelerator Kernels

This release supports the environment variable PGI_ACC_TIME. Setting this environment
variable to a nonzero value enables collection and printing of simple timing information about the
accelerator regions and generated kernels.

Accelerator Kernel Timing Data

bb04.£90
sl
15: region entered 1 times
time (us): total=1490738
init=1489138 region=1600
kernels=155 data=1445
w/0 init: total=1600 max=1600
min=1600 avg=1600
18: kernel launched 1 times
time (us) : total=155 max=155 min=155 avg=155

In this example, anumber of things are occurring:

» For each accelerator region, the file namebb04 . £90 and subroutine or function name s1 is
printed, with the line number of the accelerator region, which in the exampleis 15.

» Thelibrary counts how many times the region is entered (1 in the example) and the
microseconds spent in the region (in this example 1490738), which is split into
initialization time (in thisexample 14891 38) and execution time (in this example 1600).

» The execution timeis then divided into kernel execution time and data transfer time between
the host and GPU.

» For each kernel, the line number is given, (18 in the example), along with a count of kernel
launches, and the total, maximum, minimum, and average time spent in the kernel, all of
which are 155 in this example.

10.16. Related Accelerator Programming Tools

10.16.1. PGPROF pgcollect

The PGI profiler, PGPROF, has an Accelerator tab that displays profiling information provided
by the accelerator. Thisinformation is available in the file pgprof . out andis collected

by using pgcollect on an executable binary compiled for an accelerator target. For more
information on pgcollect, refer to the ‘ pgcollect Reference’ section of the PGPROF Profiler
Guide.

PVF User's Guide 119

http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgprof.pdf

Using an Accelerator

10.16.2. NVIDIA CUDA Profile

Y ou can use the NVIDIA CUDA Profiler with PGI-generated code for the NVIDIA
GPUs. Y ou may download the CUDA Profiler from the same website as the CUDA
software:www.nvidia.com/cuda

Documentation and support is provided by NVIDIA.

10.16.3. TAU - Tuning and Analysis Utility

Y ou can use the TAU (Tuning and Analysis Utility), version 2.18.1+, with PGI-generated
accelerator code. TAU instruments code at the function or loop level, and version 2.18.1
is enhanced with support to track performance in accelerator regions. TAU software and
documentation is available at this website: http://tau.uoregon.edu

10.17. Supported Intrinsics

Anintrinsic is afunction available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of theintrinsic function, it can better integrate it and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a
language interface to assembly instructions. In doing so, the compiler manages things that the
user would normally have to be concerned with, such as register names, register allocations, and
memory locations of data.

This section contains an overview of the Fortran intrinsics that the accel erator supports.

10.17.1. Supported Fortran Intrinsics Summary Table

Table 22 is an alphabetical summary of the supported Fortran intrinsics that the accelerator
supports. These functions are specific to Fortran 90/95 unless otherwise specified.

n For complete descriptions of these intrinsics, refer to ‘Fortran Intrinsics’ of the PGI Fortran Reference
Manual.

In most cases PGI provides support for al the data types for which the intrinsic is valid. When
support is available for only certain data types, the middle column of the table specifies which
ones, using the following codes:

| for integer S for single precision real C for single precision complex

D for double precision real Z for double precision complex

PVF User's Guide 120

www.nvidia.com/cuda
http://tau.uoregon.edu
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Table 22 Supported Fortran Intrinsics

This intrinsic Returns this value ...

Using an Accelerator

ABS 1,S,.D absolute value of the supplied argument.

ACOS arccosine of the specified value.

AINT truncation of the supplied value to a whole number.
ANINT nearest whole number to the supplied argument.
ASIN arcsine of the specified value.

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

COS SD cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE SD conversion of the value to double precision real.
DPROD double precision real product.

EXP SD exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.
[EOR result of a bit-by-bit logical exclusive OR on the arguments.
INT 1,S,D conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.
LOG SD natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

MOD remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.
REAL 1,S,.D conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN SD value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT SD square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

PVF User's Guide

121

Using an Accelerator

10.18. References related to Accelerators

» ISO/EC 1539-1:1997, Information Technology - Programming Languages - Fortran,
Geneva, 1997 (Fortran 95).

» American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).

» ISO/IEC 9899:1999, Information Technology - Programming Languages - C, Geneva, 1999
(C99).

» PGDBG Dubugger Manual, The Portland Group, Release 14.1, January, 2014. Available
online at http://www.pgroup.com/doc/pgdbg.pdf.

» PGPROF Profiler Manual, The Portland Group, Release 14.1, January, 2014. Available
online at http://www.pgroup.com/doc/pgprof.pdf.

» PGl Fortran Reference, The Portland Group, Release 14.1, January. Available online at
http://www.pgroup.com/doc/pgifortref. pdf

PVF User's Guide 122

http://www.pgroup.com/doc/pgdbg.pdf
http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgifortref.pdf

Chapter 11.
USING DIRECTIVES

It is often useful to be able to alter the effects of certain command line options or default behavior
of the compiler. Fortran directives provide pragmatic information that control the actions of the
compiler in a particular portion of a program without affecting the program asawhole. That is,
while a command line option affects the entire source file that is being compiled, directives apply,
or disable, the effects of acommand line option to selected subprograms or to selected loopsin
the source file, for example, to optimize a specific area of code. Use directives to tune selected
routines or loops.

11.1. PGl Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:

'pgiSg directive
'pgi$r directive
'pgi$l directive
'pgi$ directive

n If the input is in fixed format, the comment character must begin in column 1 and either * or C is allowed in
place of !.

The scope indicator controls the scope of the directive. Thisindicator occurs after the $. Some
directives ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:

° (global) indicates the directive applies to the end of the sourcefile.

r (routine) indicates the directive applies to the next subprogram.

| (loop) indicates the directive applies to the next loop, but not to any loop contained within the
loop body. Loop-scoped directives are only applied to DO loops.

blainr;icateﬁ that the default scope for the directive is applied.

PVF User's Guide 123

Using Directives

The body of the directive may immediately follow the scope indicator. Alternatively, any
number of blanks may precede the name of the directive. Any namesin the body of the directive,
including the directive name, may not contain embedded blanks. Blanks may surround any
specia characters, such asacommaor an equal sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and
the caseis not significant. Caseis significant for any variable names that appear in the body of
the directive if the command line option —-Mupcase is selected. For compatibility with other
vendors' directives, the prefix cpgi$ may be substituted with cdirs$ or cvds.

11.2. PGI Proprietary Optimization Directive Summary

The following table summarizes the supported Fortran directives. The following terms are useful
in understanding the table.

» Functionality isabrief summary of the way to use the directive. For a complete description,
refer to the ‘ Directives Reference’ section of the PGl Visual Fortran Reference Manual.

» Many of the directives can be preceded by NO. The default entry indicates the default for the
directive. N/A appears if adefault does not apply.

» The scope entry indicates the allowed scope indicators for each directive, with 1 for loop, r
for routine, and g for global. The default scope is surrounded by parentheses.

The ™" in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive until the end of the routine.

For globally-scoped directive
The scope includes the code following the directive until the end of the file rather than for the
entire file.

The name of a directive may also be prefixed with —IM.

For example, you can use the directive -Mbounds, which is equivalent to the directive bounds and
you can use —Mopt, which is equivalent to opt.

Table 23 Proprietary Optimization-Related Fortran Directive Summary

Directive Functionality Default Scope

altcode (noaltcode) Do/don’t generate alternate code for vectorized and parallelized altcode (hrg
loops.

assoc (noassoc) Do/don't perform associative transformations. assoc (hrg

bounds (nobounds) Do/don't perform array bounds checking. nobounds (ng*

cncall (nocncall) Loops are considered for parallelization, even if they contain calls | nocncall (hrg

to user-defined subroutines or functions, or if their loop counts do
not exceed usual thresholds.

concur (noconcur) Do/don't enable auto-concurrentization of loops. concur (hrg

depchk (nodepchk) Do/don't ignore potential data dependencies. depchk (hrg

PVF User's Guide 124

http://www.pgroup.com/resources/docs.htm

Using Directives

Directive Functionality Default Scope
eqvchk (noeqvchk) Do/don't check EQUIVALENCE s for data dependencies. eqvchk (hrg
invarif (noinvarif) Do/don’t remove invariant if constructs from loops. invarif (hrg
ivdep Ignore potential data dependencies. ivdep (Hrg
Istval (nolstval) Do/don’t compute last values. Istval (hrg
prefetch Control how prefetch instructions are emitted

opt Select optimization level. N/A Ny
safe_lastval Parallelize when loop contains a scalar used outside of loop. not enabled 0]

tp Generate PGl Unified Binary code optimized for specified targets. | N/A (Ng
unroll (nounroll) Do/don’t unroll loops. nounroll (Hrg
vector (novector) Do/don't perform vectorizations. vector (hrg*
vintr (novintr) Do/don't recognize vector intrinsics. vintr (hrg

11.3. Scope of Fortran Directives and Command-Line Options

During compilation the effect of adirective may be to either turn an option on, or turn an option
off. Directives apply to the section of code following the directive, corresponding to the specified
scope, which may include the following loop, the following routine, or the rest of the program.
This section presents several examples that show the effect of directives aswell as their scope.
Consider the following Fortran code:

integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
do i =1, n
do j =1, n
c(i,j) = a(i,J) + b(i,3)
enddo
enddo
enddo

When compiled with —-Mvect, both interior loops are interchanged with the outer loop.

$ pgfortran -Mvect dirvectl.f

Directives dter this behavior either globally or on aroutine or loop by loop basis. To assure that
vectorization is not applied, use the novector directive with global scope.

cpgi$g novector
integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
doi=1, n
do j =1, n
c(i,j) = a(i,3) + b(i,I)
enddo
enddo
enddo

end

PVF User's Guide 125

Using Directives

In this version, the compiler disables vectorization for the entire source file. Another use of the
directive scoping mechanism turns an option on or off locally, either for a specific procedure or
for a specific loop:

integer maxtime, time

parameter (n = 1000, maxtime = 10)

double precision a(n,n), b(n,n), c(n,n)
cpgi$l novector

do time = 1, maxtime
doi=1, n
do j =1, n
c(i,j) = a(i,J) + b(i,3)
enddo
enddo
enddo

Loop level scoping does not apply to nested loops. That is, the directive only applies to the
following loop. In this example, the directive turns off vector transformations for the top-

level loop. If the outer loop were atiming loop, thiswould be a practical use for aloop-scoped
directive.

11.4. Prefetch Directives and Pragmas

Today’s processors are so fast that it is difficult to bring data into them quickly enough to keep
them busy. Prefetch instructions can increase the speed of an application substantially by bringing
datainto cache so that it is available when the processor needsiit.

When vectorization is enabled using the -Mvect or —-Mprefetch compiler options, or an
aggregate option such as —fast that incorporates -Mvect, the PGl compilers selectively emit
instructions to explicitly prefetch data into the data cache prior to first use. Y ou can control how
these prefetch instructions are emitted by using prefetch directives.

For alist of processors that support prefetch instructions refer to the PGl Release Notes.

11.4.1. Prefetch Directive Syntax in Fortran
The syntax of a prefetch directive is asfollows:

cSmem prefetch <varl>[,<var2>[,...]]

where <varn>isany valid variable, member, or array element reference.

11.4.2. Prefetch Directive Format Requirements

The sentinel for prefetch directives is ¢ Smem, which is distinct from the cpgi $ sentinel used for
optimization directives. Any prefetch directives that use the cpgi $ sentinel are ignored by the PGI
compilers.

» The"c" must bein column 1.

» Either * or ! isalowed in place of c.

» Thescopeindicatorsg, r and | used with the cpgi $ sentinel are not supported.

» The directive name, including the directive prefix, may contain upper or lower case |etters
and is case insengitive (case is not significant).

PVF User's Guide 126

Using Directives

» If the command line option —Mupcase isused, any variable names that appear in the body
of the directive are case sensitive.

11.4.3. Sample Usage of Prefetch Directive

Prefetch Directive Use

This example uses prefetch directives to prefetch datain a matrix multiplication inner loop where
arow of one source matrix has been gathered into a contiguous vector.

real*8 a(m,n), b(n,p), c(m,p), arow(n)

do j =1, p

cSmem prefetch arow(l),b(1l,])

cSmem prefetch arow(5),b(5,7)

cSmem prefetch arow(9),b(9,])

do k =1, n, 4

cSmem prefetch arow(k+12),b(k+12,73)

c(i,j) = c(i,J) + arow(k) * b(k,J)
c(i,j) = c(i,3) + arow(k+l) * b(k+1l,7)
c(i,j) = c(i,J) + arow(k+2) * b(k+2,7)
c(i,j) = c(i,J) + arow(k+3) * b(k+3,7)
enddo

enddo

This pattern of prefetch directives the compiler emits prefetch instructions whereby elements of
arow and b are fetched into the data cache starting four iterations prior to first use. By varying
the prefetch distance in thisway, it is sometimes possible to reduce the effects of main memory
latency and improve performance.

11.5. IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specificsin ageneric call for
ambiguities.

11.5.1. IGNORE_TKR Directive Syntax

The syntax for the IGNORE_TKR directiveisthis:
!DIRS IGNORE TKR [[(<letter>) <dummy arg>] ...]

<letter>
isone or any combination of the following:

T - type K - kind R - rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules areignored for all dummy arguments in the procedure that contains the
directive.

PVF User's Guide 127

Using Directives

11.5.2. IGNORE_TKR Directive Format Requirements

The following rules apply to this directive:

» IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

» IGNORE_TKR may appear in the body of an interface block or in the body of a module
procedure, and may specify dummy argument names only.

» IGNORE_TKR may appear before or after the declarations of the dummy argumentsiit
specifies.

» If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

» If no dummy argument names are specified, IGNORE_TKR appliesto al dummy arguments
except those that are all ocatable objects, Fortran 90 pointers, or assumed-shape arrays.

11.5.3. Sample Usage of IGNORE_TKR Directive

Consider this subroutine fragment:

subroutine example (A,B,C,D)
IDIRS IGNORE TKR A, (R) B, (TK) C, (K) D

Table 24 indicates which rules are ignored for which dummy arguments in the preceding sample
subroutine fragment:

Table 24 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so al type, kind, and rank rules are ignored.

11.6. IDECS Directives

PGI Fortran compilers for Microsoft Windows support severa de-facto standard Fortran
directives that help with inter-language calling and importing and exporting routines to and from
DLLs.

11.6.1. IDEC$ Directive Syntax

These directives all take the form:
IDECS directive

PVF User's Guide 128

Using Directives

11.6.2. Format Requirements

Y ou must follow the following format requirements for the directive to be recognized in your
program:

>

The directive must begin in column 1 when the fileis fixed format or compiled with —
Mfixed.

The directive prefix ! DECS requires a space between the prefix and the directive keyword,
such asATTRIBUTES.

The ! must begin the prefix when compiling Fortran 90/95 free-form format.

The characters C or * can be used in place of ! in either form of the prefix when compiling
F77-style fixed-form format.

The directives are completely case insensitive.

11.6.3. Summary Table

The following table summarizes the supported ! DEC$ directives. For a compl ete description of
each directive, refer to the ‘' DEC$ Directives' section of the ‘ Directives and Pragmas Reference’
section in the PGI Visual Fortran Reference Manual.

Table 25 DEC$ Directives Summary Table

Directive Functionality

ALIAS Specifies an alternative name with which to resolve a routine.
ATTRIBUTES Lets you specify properties for data objects and procedures.
DECORATE Specifies that the name specified in the ALIAS directive should have the prefix and postfix

decorations performed on it that are associated with the calling conventions that are in effect. This
directive has no effect if ALIAS is not specified.

DISTRIBUTE Tells the compiler at what point within a loop to split into two loops.

PVF User's Guide 129

http://www.pgroup.com/resources/docs.htm

Chapter 12.
CREATING AND USING LIBRARIES

A library is acollection of functions or subprograms that are grouped for reference and ease of
linking. This section discusses issues related to PGI-supplied compiler libraries. Specificaly,
it addresses the creation of dynamically linked libraries, known as shared objects or shared
libraries, and math libraries.

This section does not duplicate material related to using libraries for inlining, described in Creating
an Inline Library or information related to runtime library routines available to OpenMP programmers,
described in Runtime Library Routines.

PGI provides libraries that export C interfaces by using Fortran modules. On Windows, PGI aso
provides additions to the supported library functionality for runtime functions included in DFLIB.

This section has examples that include the following options related to creating and using
libraries.

—-Bdynamic —-def<file> —implib <file> -Mmakeimplib
-Bstatic —dynamiclib -1 -0
-C -fpic —Mmakedll —shared

12.1. PGl Runtime Libraries on Windows

Both statically- and dynamically-linked library (DLL) versions are available with the PGI runtime
libraries on Windows. The static libraries are used by defaullt.

» You can use the dynamically-linked version of the runtime by specifying -Bdynamic at
both compile and link time.

» You can explicitly specify static linking, the default, by using -Bstatic a compileand
link time.

For details on why you might choose one type of linking over another type, refer to Creating and
Using Dynamic-Link Libraries on Windows.

PVF User's Guide 130

Creating and Using Libraries

12.2. Creating and Using Static Libraries on Windows

The Microsoft Library Manager (LIB.EXE) isthetool that istypically used to create and
manage a static library of object files on Windows. LIB is provided with the PGI compilers as
part of the Microsoft Open Tools. Refer to www.msdn2.com for a complete LIB reference -
search for LIB.EXE. For alist of available options, invoke L.IB with the / 2 switch.

For compatibility with legacy makefiles, PGl provides awrapper for LTB and LINK called ar.
Thisversion of ar iscompatible with Windows and object-file formats.

PGI aso provides ranlib asaplaceholder for legacy makefile support.

12.2.1. ar command

The ar command is alegacy archive wrapper that interprets legacy ar command line options
and translatestheseto LINK/LIB options. You can useit to create libraries of object files.

Syntax

The syntax for the ar command isthis:

ar [options] [archive] [object file].
Where:

» Thefirst argument must be acommand line switch, and the leading dash on the first option is
optional.

» Thesingle character options, such as -d and —v, may be combined into one option, such as
—dv.

Thus, ar dv,ar -dv, andar -d -v al meanthe samething.
» Thefirst non-switch argument must be the library name.
» Exactly oneof —-d, —r, —t, or —x must appear on the command line.

Options
The options available for the ar command are these:

_C
This switch isfor compatibility; it isignored.
—d
Deletes the named object files from the library.
—
Replaces in or adds the named object filesto the library.
—
Writes atable of contents of the library to standard out.
-V
Writes a verbose file-by-file description of the making of the new library to standard out.

PVF User's Guide 131

www.msdn2.com

Creating and Using Libraries

—X
Extracts the named files by copying them into the current directory.

12.2.2. ranlib command

The ranlib command is awrapper that allows use of legacy scripts and makefiles that use the
ranlib command. The command actually does nothing; it merely exists for compatibility.

Syntax
The syntax for the ran1ib command isthis:
ranlib [options] [archive]
Options
The options available for the ar command are these:
—help
Short help information is printed out.
-V

Version information is printed out.

12.3. Creating and Using Dynamic-Link Libraries on Windows

There are several differences between static- and dynamic-link libraries on Windows. Libraries
of either type are used when resolving external references for linking an executable, but the
process differs for each type of library. When linking with a static library, the code needed from
thelibrary isincorporated into the executable. When linking with aDLL, external references are
resolved using the DLL'simport library, not the DLL itself. The code in the DLL associated with
the external references does not become a part of the executable. The DLL isloaded when the
executable that needsit is run. For the DLL to be loaded in this manner, the DLL must bein your
path.

Static libraries and DLLs also handle global data differently. Global datain static librariesis
automatically accessible to other abjects linked into an executable. Global datain aDLL can only
be accessed from outside the DLL if the DLL exports the data and the image that uses the data
importsit.

The PGI Fortran compilers support the DEC$ ATTRIBUTES extensions DL.LIMPORT and
DLLEXPORT:

cDECS$ ATTRIBUTES DLLEXPORT :: object [,object] ...

cDECS ATTRIBUTES DLLIMPORT :: object [,object] ...

Herecisoneof C, ¢, !, or *. object isthe name of the subprogram or common block that is
exported or imported. Further, common block names are enclosed within slashes (/), as shown
here:

cDEC$ ATTRIBUTES DLLIMPORT :: intfunc
IDEC$ ATTRIBUTES DLLEXPORT :: /fdata/

For more information on these extensions, refer to | DEC$ Directives.

PVF User's Guide 132

Creating and Using Libraries

The examplesin this section further illustrate the use of these extensions.

TocreateaDLL in PVF, select File | New | Project..., then select PGI Visual Fortran, and create
anew Dynamic Library project.

To create aDLL from the command line, use the ~-Mmaked11 option.

The following switches apply to making and using DLLs with the PGI compilers:

—Bdynamic
Compilefor and link to the DLL version of the PGI runtime libraries. Thisflag is required
when linking with any DLL built by the PGI compilers. This flag corresponds to the /MD flag
used by Microsoft's c1 compilers.

When you use the PGI compiler flag -Bdynami c to create an executable that links to the
DLL form of the runtime, the executable built is smaller than one built without -Bdynamic.
The PGI runtime DLLs, however, must be available on the system where the executable is
run. Y ou must use the -Bdynami c flag when linking an executable against aDLL built by
the PGI compilers.

D C++ on Windows does not support —-Bdynamic.

—Bstatic
Compile for and link to the static version of the PGI runtime libraries. This flag corresponds to
the /MT flag used by Microsoft's c1 compilers.

On Windows, you must use-Bstatic for both compiling and linking.

—Mmakedll
Generate adynamic-link library or DLL. Implies -Bdynamic.

—Mmakeimplib
Generate an import library without generating a DLL. Use this flag when you want to generate
animport library for aDLL but are not yet ready to build the DLL itself. This situation
might arise, for example, when building DLLs with mutual imports, as shown in Build DLLs
Containing Mutual Imports: Fortran.

—o <file>
Passed to the linker. Name the DLL or import library <file>.

—def <file>
When used with -Mmaked11, thisflag is passed to the linker and a . def file named <file> is
generated for the DLL. The . de £ file contains the symbols exported by the DLL. Generating
a .def fileisnot required when building a DLL but can be a useful debugging tool if the
DLL does not contain the symbols that you expect it to contain.

When used with -Mmakeimplib, thisflag ispassed to 1ib whichrequiresa . def fileto
create an import library. The . def file can be empty if the list of symbols to export are passed
to 1ib on the command line or explicitly marked as DLLEXPORT in the source code.

—implib <file>
Passed to the colinker. Generate an import library named <file> for the DLL. A DLL’simport
library isthe interface used when linking an executabl e that depends on routinesinaDLL.

To use the PGI compilers to create an executable that links to the DLL form of the runtime,
use the compiler flag -Bdynami c. The executable built will be smaller than one built without
-Bdynami c; the PGI runtime DLLs, however, must be available on the system where the

PVF User's Guide 133

Creating and Using Libraries

executableisrun. The -Bdynami c flag must be used when an executable is linked against a
DLL built by the PGI compilers.

The following examples outline how to use -Bdynamic, -Mmakedll and -Mmakeimplib to
build and use DL Ls with the PGI compilers.

n C++ on Windows does not support —-Bdynamic.

12.3.1. Build a DLL: Fortran

This example buildsaDLL from asingle sourcefile, ocbjectl. f, which exports dataand a
subroutine using DLLEXPORT. The sourcefile, progl . f, uses DLLIMPORT to import the data
and subroutine from the DLL.

objectl.f

subroutine subl (i)

!DECS$ ATTRIBUTES DLLEXPORT :: subl
integer i

common /acommon/ adata

integer adata

IDEC$ ATTRIBUTES DLLEXPORT :: /acommon/
print *, "subl adata", adata
print *, "subl i ", i
adata = 1
end
progl.f

program progl

common /acommon/ adata

integer adata

external subl

!DEC$ ATTRIBUTES DLLIMPORT:: subl, /acommon/
adata = 11

call subl (12)

print *, "main adata", adata

end

1. Createthe DLL obj1.d11 anditsimport library obj1.11ib using the following series of
commands:

pgfortran -Bdynamic -c objectl.f
pgfortran -Mmakedll objectl.obj -o objl.dll

oe

o

2. Compile the main program:

)

% pgfortran -Bdynamic -o progl progl.f -defaultlib:objl

The -Bdynamic and -Mmaked11 switches cause the compiler to link against the PGI
runtime DLLs instead of the PGI runtime static libraries. The -Bdynami c switch isrequired
when linking against any PGI-compiled DLL, suchasobj1.d11. The-defaultlib: switch
specifiesthat obj1.11ib, the DLL’simport library, should be used to resolve imports.

PVF User's Guide 134

Creating and Using Libraries

3. Ensurethat obj1.d11 isinyour path, then run the executable prog1 to determineif the
DL L was successfully created and linked:

[)

% progl

subl adata 11
subl i 12
main adata 12

Should you wish to change obj1 . d11 without changing the subroutine or function

interfaces, no rebuilding of prog1 isnecessary. Just recreate obj1.d11 and the new
objl.dl1l isloaded at runtime.

12.3.2. Build DLLs Containing Mutual Imports: Fortran

In this example we build two DLLs when each DLL is dependent on the other, and use them to
build the main program.

In the following sourcefiles, object2. £95 makes calls to routines defined in object3.£95,
and vice versa. This situation of mutual imports requires two steps to build each DLL.

Tolink thefirst DLL, theimport library for the second DLL must be available. Usually an import
library is created when aDLL islinked. In this case, however, the second DLL cannot be linked
without the import library for the first DLL. When such circular imports exist, an import library
for one of the DLLs must be created in a separate step without creating the DLL. The PGI drivers
call the Microsoft 1ib tool to create import librariesin this situation.

Once the DLLs are built, we can use them to build the main program.

object2.£f95

subroutine func 2a

external func 3b

IDECS$ ATTRIBUTES DLLEXPORT :: func 2a

!DECS ATTRIBUTES DLLIMPORT :: func 3b
print*,"func 2a, calling a routine in obj3.dl11"

call func 3b() end subroutine

subroutine func 2b

IDECS ATTRIBUTES DLLEXPORT :: func_Zb
print*, "func 2b"

end subroutine

object3.£f95

subroutine func 3a
external func 2b
!DEC$ ATTRIBUTES DLLEXPORT :: func 3a
!DEC$ ATTRIBUTES DLLIMPORT :: func 2b
print*,"func 3a, calling a routine in obj2.dll"

call func 2b() end subroutine

subroutine func 3b

!DEC$ ATTRIBUTES DLLEXPORT :: func_3b
print*, "func 3b"

end subroutine

PVF User's Guide 135

Creating and Using Libraries

prog2.£95

program prog2

external func 2a
external func 3a

!DEC$ ATTRIBUTES DLLIMPORT :: func 2a
!DECS ATTRIBUTES DLLIMPORT :: func 3a

call func 2a()
call func_ 3a()

end program

1.

Use -Mmakeimplib with the PGI compilersto build an import library for the first DLL
without building the DLL itself.

pgfortran -Bdynamic -c object2.£95
% pgfortran -Mmakeimplib -o obj2.lib object2.obj

oo

Tip The —def=<def £1i1e> option can also be used with —-Mmakeimplib.Usea .def
file when you need to export additional symbols from the DLL. A . de £ file is not needed in this
example because all symbols are exported using DLLEXPORT.

. Usetheimport library, obj2.1ib, created in Step 1, to link the second DLL.

% pgfortran -Bdynamic -c object3.£95
% pgfortran -Mmakedll -o obj3.dll object3.obj -defaultlib:obj2

. Usetheimport library, obj 3. 1ib, created in Step 2, to link the first DLL.

% pgfortran -Mmakedll -o obj2.dll object2.obj -defaultlib:obj3

. Compile the main program and link against the import libraries for the two DLLSs.

% pgfortran -Bdynamic prog2.f95 -o prog2 -defaultlib:obj2 -defaultlib:obj3

. Execute prog?2 to ensure that the DLL s were create properly.

[

% prog2
func 2a, calling a routine in obj3.dll
func 3b
func 3a, calling a routine in obj2.dll
func 2b

12.3.3. Import a Fortran module from a DLL

In this example we import a Fortran module from aDLL. We use the source file de fmod . £90
to create aDLL containing a Fortran module. We then use the source file use _mod. £90 to
build a program that imports and uses the Fortran module from de fmod. £90.

PVF User's Guide

136

Creating and Using Libraries

defmod.f90

module testm
type a type
integer :: an_int
end type a type
type(a type) :: a, b
!DEC$ ATTRIBUTES DLLEXPORT :: a,b
contains
subroutine print a
IDEC$ ATTRIBUTES DLLEXPORT :: print_a
write (*,*) a%an_int
end subroutine
subroutine print b
IDEC$ ATTRIBUTES DLLEXPORT :: print_b
write (*,*) b%an int
end subroutine
end module

usemod.f90

use testm
a%an_int =
%an_int =
call print
call print b
end

1. Createthe DLL.

% pgf90 -Mmakedll -o defmod.dll defmod.£f90
Creating library defmod.lib and object defmod.exp

LN

2. Create the exe and link against the import library for the imported DLL.
% pgf90 -Bdynamic -o usemod usemod.f90 -defaultlib:defmod.lib

3. Run the exe to ensure that the module was imported from the DLL properly.

% usemod

N =

12.4. Using LIB3F

The PGI Fortran compilersinclude complete support for the de facto standard LIB3F library
routines on both Linux and Windows operating systems. See the PGI Fortran Language
Reference manual for acomplete list of available routines in the PGl implementation of LIB3F.

12.5. LAPACK, BLAS and FFTs

Pre-compiled versions of the public domain LAPACK and BLAS libraries are included

with the PGI compilers. The LAPACK library iscalled 1iblapack.a or on Windows,
liblapack.lib. The BLASIibraryiscalled 1ibblas.a or on Windows, 1ibblas.lib.
Theselibrariesareinstalled to SPGI\<target>\1ib, where <target> is replaced with the
appropriate target name (win32, winé4).

To use these libraries, smply link them in using the -1 option when linking your main program:
% pgfortran myprog.f -llapack -1lblas

PVF User's Guide 137

Creating and Using Libraries

Highly optimized assembly-coded versions of BLAS and certain FFT routines may be available
for your platform. In some cases, these are shipped with the PGI compilers. See the current
release notes for the PGl compilers you are using to determine if these optimized libraries exist,
where they can be downloaded (if necessary), and how to incorporate them into your installation
as the defaullt.

12.6. Linking with ScaLAPACK

The ScaLAPACK libraries are automatically installed with each MPI library version which
accompanies a PGl ingtallation. Y ou can link with the ScaLAPACK libraries by specifying —
Mscalapack on any of the PGl compiler command lines. For example:

[

% mpif90 myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the -Mscalapack switch
is specified. If you wish to use adifferent BLAS library, and still use the -Mscalapack switch,
then you can list the set of libraries explicitly on your link line. Alternately, you can copy your
BLASlibrary into $PGI/1inux86/14.10/1ib/libblas.a.

PVF User's Guide 138

Chapter 13.
USING ENVIRONMENT VARIABLES

Environment variables allow you to set and pass information that can alter the default behavior of
the PGI compilers and the executables which they generate. This section includes explanations of
the environment variables specific to PGl compilers. Other environment variables are referenced

and documented in other sections of this User’s Guide, the accompanying Reference Manual, the
PGDBG Debugger Guide and the PGPROF Profiler Manual.

» You use OpenMP environment variables to control the behavior of OpenMP programs.
For consistency related to the OpenM P environment, the details of the OpenM P-rel ated
environment variables are included in OpenMP section: Environment Variables.

» You can use environment variables to control the behavior of the PGDBG debugger or
PGPROF profiler. For adescription of environment variables that affect these tools, refer to
the PGDBG Debugger Manual and PGPROF Profiler Manual, respectively.

13.1. Setting Environment Variables

Before we look at the environment variables that you might use with the PGI compilers and tools,
let’stake alook at how to set environment variables. To illustrate how to set these variablesin
various environments, let’slook at how a user might initialize the shell environment prior to
using the PGI compilers and tools.

13.1.1. Setting Environment Variables on Windows

When you open the PVF Command Prompt, as described in Commands Submenu, the
environment is pre-initialized to use the PGl compilers and tools.

Y ou may want to use other environment variables, such as the OpenMP ones. This section
explains how to do that.

To set the environment for programs run from within PVF, whether or not they are run in the debugger, use
the environment properties described in the ‘Debugging Property Page’ section of the PGl Visual Fortran
Reference Manual.

PVF User's Guide 139

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

Suppose that your home directory isC : \ tmp. The following example shows how you might set
the temporary directory to your home directory, and then verify that it is set.

DOS> set TMPDIR=C:\tmp

DOS> echo $TMPDIR%
C:\tmp
DOS>

13.2. PGI-Related Environment Variables

For easy reference, the following table provides a quick listing of some OpenMP and al PGI
compiler-related environment variables. This section provides more detailed descriptions of
the environment variables specific to PGl compilers and the executables they generate. For
information specific to OpenM P environment variables, refer to Table 17 and to the complete
descriptionsin ‘ OpenM P Environment Variables' in the PGl Visual Fortran Reference Manual.

Table 26 PGl-Related Environment Variable Summary

Environment Variable Description

FLEXLM_BATCH

(Windows only) When set to 1, prevents interactive pop-ups from appearing by
sending all licensing errors and warnings to standard out rather than to a pop-up
window.

FORTRANOPT

Allows the user to specify that the PGI Fortran compilers user VAX 1/O conventions.

LM_LICENSE_FILE

Specifies the full path of the license file that is required for running the PGl software.
On Windows, LM LICENSE FILE does not need to be set.

MPSTKZ Increases the size of the stacks used by threads executing in parallel regions. The
value should be an integer <n> concatenated with M or m to specify stack sizes of n
megabytes.

MP_BIND Specifies whether to bind processes or threads executing in a parallel region to a
physical processor.

MP_BLIST WhenMP BINDis yes, this variable specifically defines the thread-CPU
relationship, overriding the default values.

MP_SPIN Specifies the number of times to check a semaphore before calling _sleep().

MP_WARN Allows you to eliminate certain default warning messages.

NCPUS Sets the number of processes or threads used in parallel regions.

NCPUS_MAX Limits the maximum number of processors or threads that can be used in a parallel

region.

NO_STOP_MESSAGE

If used, the execution of a plain STOP statement does not produce the message
FORTRAN STOP.

OMP_DYNAMIC

Currently has no effect. Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads. The default is FALSE.

OMP_MAX_ACTIVE_LEVELS

Specifies the maximum number of nested parallel regions.

OMP_NESTED

Currently has no effect. Enables (TRUE) or disables (F AL SE) nested parallelism.
The default is FALSE.

OMP_NUM_THREADS

Specifies the number of threads to use during execution of parallel regions. Default is
1.

PVF User's Guide

140

http://www.pgroup.com/resources/docs.htm

Using Environment Variables

Environment Variable Description

OMP_SCHEDULE

Specifies the type of iteration scheduling and, optionally, the chunk size to use for
omp for and omp parallel for loops that include the runtime schedule clause. The
default is STATIC with chunk size = 1.

OMP_STACKSIZE

Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY

Sets the behavior of idle threads, defining whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE. The defaultis ACTIVE.

PATH Determines which locations are searched for commands the user may type.

PGl Specifies, at compile-time, the root directory where the PGI compilers and tools are
installed.

PGI_CONTINUE If set, when a program compiled with—Mch k £ p st k is executed, the stack is

automatically cleaned up and execution then continues.

PGI_OBJSUFFIX

(Windows only) Allows you to control the suffix on generated object files.

PGI_STACK_USAGE

(Windows only) Allows you to explicitly set stack properties for your program.

PGI_TERM

Controls the stack traceback and just-in-time debugging functionality.

PGI_TERM_DEBUG

Overrides the default behavior when PGI _TERM is setto debug.

PGROUPD_LICENSE_FILE

Specifies the location of the PGl license. This variable is set in the registry
on Windows machines, and is specific to PGI products. On Windows,
PGROUPD LICENSE FILE does notneed to be set.

STATIC_RANDOM_SEED

Forces the seed returned by RANDOM _SEED to be constant.

TMP Sets the directory to use for temporary files created during execution of the PGI
compilers and tools; interchangeable with TMPDIR.
TMPDIR Sets the directory to use for temporary files created during execution of the PGI

compilers and tools.

13.3. PGI Environment Variables

Y ou use the environment variables listed in Table 26 to alter the default behavior of the PGI
compilers and the executables which they generate. This section provides more detailed
descriptions about the variables in this table that are not OpenM P environment variables.

13.3.1. FLEXLM_BATCH

By default, on Windows the license server creates interactive pop-up messages to issue warning
and errors. Y ou can use the environment variable FLEXLM BATCH to prevent interactive pop-up
windows. To do this, set the environment variable FLEXLM BATCH to 1.

The following csh example prevents interactive pop-up messages for licensing warnings and

errors:

% set FLEXLM BATCH = 1;

13.3.2. FORTRANOPT

FORTRANOPT allowsthe user to adjust the behavior of the PGI Fortran compilers.

PVF User's Guide

141

Using Environment Variables

» If FORTRANOPT exists and contains the value vax1i o, the record length in the open
statement is in units of 4-byte words, and the $ edit descriptor only has an effect for lines
beginning with a space or aplussign (+).

» If FORTRANOPT exists and containsthevalue format relaxed, anl/Oitem
corresponding to anumerical edit descriptor (such asF, E, |, and so on) is not required to be
atype implied by the descriptor.

» In anon-Windows environment, if FORTRANOPT exists and containsthevaluecrif, a
sequential formatted or list-directed record is allowed to be terminated with the character
sequence \ r\n (carriage return, newline). This approach is useful when reading records
from afile produced on a Window's system.

The following example causes the PGI Fortran compilersto use VAX /O conventions:
% setenv FORTRANOPT vaxio

13.3.3. LM_LICENSE_FILE

TheLM LICENSE FILE variable specifiesthe full path of the licensefilethat is required for
running the PGI software.

n LM LICENSE FILE is notrequired for PVF, but you can use it.

To set the environment variable LM LICENSE FILE to thefull path of the license key file, do
this:
1. Open the System Properties dialog: Sart | Control Panel | System.

2. Select the Advanced tab.
3. Click the Environment Variables button.

» If LM LICENSE FILE isnot aready an environment variable, create a new system
variable for it. Set its value to the full path, including the name of the license key file,
license.dat.

» If LM LICENSE FILE aready existsasan environment variable, append the path to
the license file to the variable’ s current value using a semi-colon to separate entries.

13.3.4. MPSTKZ

MPSTKZ increases the size of the stacks used by threads executing in parallel regions. Y ou
typically use this variable with programsthat utilize large amounts of thread-local storagein

the form of private variables or local variablesin functions or subroutines called within parallel
regions. The value should be an integer <n> concatenated with M or m to specify stack sizes of n
megabytes.

For example, the following setting specifies a stack size of 8 megabytes.

% setenv MPSTKZ 8M

13.3.5. MP_BIND

Youcanset MP_BIND to yes or y to bind processes or threads executing in a parallel region to
physical processor. Set it to no or n to disable such binding. The default isto not bind processes

PVF User's Guide 142

Using Environment Variables

to processors. This variable is an execution-time environment variable interpreted by the PGI
runtime support libraries. It does not affect the behavior of the PGI compilersin any way.

n The MP_BIND environment variable is not supported on all platforms.

% setenv MP BIND y

13.3.6. MP_BLIST

MP_ BLIST alowsyou to specifically define the thread-CPU relationship.

n This variable is only in effect when MP_BINDIs yes.

WhiletheMP BIND variable binds processors or threads to a physical processor, MP. BLIST
allows you to specifically define which thread is associated with which processor. The list defines
the processor-thread relationship order, beginning with thread 0. Thislist overrides the default
binding.

For example, the following setting for MP_ BLIST maps CPUs 3, 2, 1 and O to threads 0, 1, 2 and
3 respectively.

% setenv MP BLIST=3,2,1,0

13.3.7. MP_SPIN

When athread executing in a parallel region enters a barrier, it spins on a semaphore. Y ou can
useMP_SPIN to specify the number of timesit checks the semaphore before calling sleep ()
. These calls cause the thread to be re-scheduled, allowing other processesto run. The default
valueis 10000.

% setenv MP_SPIN 200

13.3.8. MP_WARN

MP_WARN allows you to eliminate certain default warning messages.

By default, awarning is printed to standard error if you execute an OpenMP or auto-parallelized
program with NCPUS or OMP_NUM_THREADS set to avalue larger than the number of physical
processors in the system.

For example, if you produce a parallelized executable a . exe and execute as follows on a system
with only one processor, you get a warning message.

> set OMP_NUM THREADS=2

> a.exe

Warning: OMP NUM THREADS or NCPUS (2) greater than available cpus (1)
FORTRAN STOP

Setting MP_ WARN to NO eliminates these warning messages.

PVF User's Guide 143

Using Environment Variables

13.3.9. NCPUS

Y ou can use the NCPUS environment variable to set the number of processes or threads used in
paralel regions. The default isto use only one process or thread, which is known as serial mode.

OMP_ NUM THREADS has the same functionality as NCPUS. For historical reasons, PGI supports
the environment variable NCPUS. If both OMP_NUM THREADS and NCPUS are set, the value of
OMP_ NUM THREADS takes precedence.

Setting NCPUS to avaue larger than the number of physical processors or coresin your system
can cause parallel programsto run very slowly.

13.3.10. NCPUS_MAX

You can usethe NCPUS MAX environment variable to limit the maximum number of processes
or threads used in a parallel program. Attempts to dynamically set the number of processes or
threads to a higher value, for example using set_omp_num_threads(), will cause the number of
processes or threads to be set at the value of NCPUS MAX rather than the value specified in the
function call.

13.3.11. NO_STOP_MESSAGE

If theNO_STOP MESSAGE Vvariable exists, the execution of aplain STOP statement does not
produce the message FORTRAN STOP. The default behavior of the PGI Fortran compilersisto
issue this message.

13.3.12. PATH

The PATH variable sets the directories that are searched for commands that the user types. When
using PGI products, it isimportant that you set your PATH to include the location of the PGI
products.

Within the PVF IDE, the PATH variable can be set using the Environment and MPI Debugging
properties on the ‘ Debugging Property Page' section of the PGl Visua Fortran Reference
Manual. The PVF Command Prompt, accessible from the PVF submenus of Sart | All Programs
| PGI Visual Fortran, opens with the PATH variable pre-configured for use of the PGI products.

Important If you invoke a generic Command Prompt using Start | All Programs | Accessories | Command
Prompt, then the environment is not pre-configured for PGI products.

13.3.13. PGl

The PGT environment variable specifies the root directory where the PGI compilers and tools are
installed. Thisvariable isrecognized at compile-time. If it isnot set, the default value depends on
your system as well aswhich compilers are installed:

PVF User's Guide 144

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

» On Windows, the default valueisC: \Program Files\PGI, whereC representsthe
system drive. If both 32- and 64-bit compilers are installed, the 32-bit compilersarein C:
\Program Files (x86)\PGI.

In most cases, if the PGI environment variable is not set, the PGI compilers and tools
dynamically determine the location of this root directory based on the instance of the compiler or
tool that was invoked.

13.3.14. PGI_CONTINUE

Yousetthe PGI CONTINUE variable to specify the actions to take before continuing with
execution. For example, if the PGI CONTINUE environment variableis set and then a program
that is compiled with -Mchk fpstk isexecuted, the stack is automatically cleaned up and
execution then continues. If PGI _CONTINUE issetto verbose, the stack is automatically
cleaned up, awarning message is printed, and then execution continues.

n There is a performance penalty associated with the stack cleanup.

13.3.15. PGI_OBJSUFFIX

You can set the PGI_OBJSUFFIX environment variable to generate object files that have a
specific suffix. For example, if you set PGI _OBJSUFFIX to . o, the object files have a suffix of
.o rather than . obj.

13.3.16. PGI_STACK_USAGE

(Windows only) The PGI STACK USAGE variable allows you to explicitly set stack properties
for your program. When the user compiles a program with the -Mchk stk option and sets the
PGI_STACK_USAGE environment variable to any value, the program displays the stack space
alocated and used after the program exits. Y ou might see something similar to the following
message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48K B of a 8180KB allocated stack. For more
information on the -Mchks tk option, refer to ‘—Mchkstk’ in the PGI Visual Fortran Reference
Manual.

13.3.17. PGI_TERM

The PGI_TERM environment variable controls the stack traceback and just-in-time debugging
functionality. The runtime libraries use the value of PGI TERM to determine what action to take
when a program abnormally terminates.

Thevalueof PGI_TERM is acomma-separated list of options. The commands for setting the
environment variable follow.

» Incsh:

% setenv PGI TERM option[,option...]

PVF User's Guide 145

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

» |nbash, sh, zsh, or ksh:

$ PGI_TERM=option[,option...]
$ export PGI_TERM

» Inthe Windows Command Prompt:
C:\> set PGI_TERM=option[,option...]

Table 27 lists the supported values for option. Following the table is a complete description of
each option that indicates specifically how you might apply the option.

By default, al of these options are disabled.
Table 27 Supported PGI_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)
[nojtrace Enables/disables stack traceback on error
[no]signal Enables/disables establishment of signal handlers for common signals that cause program termination
[no]abort Enables/disables calling the system termination routine abort()
[no]debug

This enables/disabl es just-in-time debugging. The default isnodebug.

When PGI_TERM is set to debug, the following command is invoked on error, unless you use
PGI_TERM DEBUG to override this default.
pgdbg -text -attach <pid>

<pid> isthe process D of the process being debugged.

The PGI_TERM_DEBUG environment variable may be set to override the default setting. For
more information, refer to PGI_TERM_DEBUG.

[no]trace

This enables/disables stack traceback on error.

[no]signal

This enables/disabl es establishing signal handlers for the most common signals that cause
program termination. The default isnosignal. Setting t race and debug automatically
enables signal. Specificaly setting nosignal allowsyou to override this behavior.

[no]abort

This enables/disables calling the system termination routine abort(). The default isnoabort.
When noabort isin effect the process terminates by calling _exit (127).

A few runtime errors just print an error message and call exit (127), regardless of the status
of PGI_TERM. These are mainly errors such as specifying an invalid environment variable value
where a traceback would not be useful.

PVF User's Guide 146

Using Environment Variables

The abort routine exits with the status of the exception received; for example, if the program
receives an access violation abort exits with status 0xC0000005.

For more information on why to use this variable, refer to Stack Traceback and JI'T Debugging.

13.3.18. PGI_TERM_DEBUG

The PGI_TERM DEBUG variable may be set to override the default behavior when PGI TERM
isset to debug.

Thevalueof PGI_TERM DEBUG should be set to the command line used to invoke the program.
For example:
gdb --quiet --pid %d

The first occurrence of $d inthe PGI TERM DEBUG string is replaced by the processid.
The program named inthe PGI TERM DEBUG string must be found on the current PATH or
specified with afull path name.

13.3.19. PGROUPD_LICENSE_FILE

You can usethe PGROUPD LICENSE FILE to specifiesthelocation of the PGI license. This
variable is set in the registry on Windows machines, and is specific to PGI products.

The system environment variable PGROUPD LICENSE FILE isnot required by PGI
products on Windows but you can use it to override the default location that is searched for the
license.dat file.

To use the system environment variable PGROUPD LICENSE FILE, setitto thefull path of
the license keysfile. To do this, follow these steps:

1. Open the System Properties dialog from Control Panel | System.
2. Select the‘Advanced’ tab.
3. Click the *Environment Variables button.

» If PGROUPD LICENSE FILE isnot already an environment variable, create a new
system variable for it. Set its value to the full path, including the name of thefile, for the
license keysfile.

» If PGROUPD LICENSE FILE aready exists asan environment variable, append the
path to the license file to the variabl€' s current value using a semi-colon to separate
entries.

13.3.20. STATIC_RANDOM_SEED

Youcanuse STATIC RANDOM SEED to force the seed returned by the Fortran 90/95
RANDOM SEED intrinsic to be constant. Thefirst call to RANDOM SEED without arguments
resets the random seed to a default value, then advances the seed by a variable amount based
on time. Subsequent callsto RANDOM SEED without arguments reset the random seed to the
same initial value asthe first call. Unless the time is exactly the same, each time a program
isrun adifferent random number sequence is generated. Setting the environment variable
STATIC RANDOM SEED to YES forcesthe seed returned by RANDOM SEED to be constant,
thereby generating the same sequence of random numbers at each execution of the program.

PVF User's Guide 147

Using Environment Variables

13.3.21. TMP

Y ou can use TMP to specify the directory to use for placement of any temporary files created
during execution of the PGl compilers and tools. This variable is interchangeable with TMPDIR.

13.3.22. TMPDIR

Y ou can use TMPDIR to specify the directory to use for placement of any temporary files created
during execution of the PGl compilers and tools.

13.4. Stack Traceback and JIT Debugging

When a programming error results in aruntime error message or an application exception, a
program will usually exit, perhaps with an error message. The PGI runtime library includes a
mechanism to override this default action and instead print a stack tracebackor start a debugger.

The stack traceback and just-in-time debugging functionality is controlled by an environment
variable, PGI TERM, described in PGI_TERM. The runtime libraries use the value of
PGI TERM to determine what action to take when a program abnormally terminates.

When the PGI runtime library detects an error or catchesasignal, it calls the routine
pgi stop here () prior to generating a stack traceback or starting the debugger. The
pgil stop here () routineisaconvenient spot to set a breakpoint when debugging a
program.

PVF User's Guide 148

Chapter 14.
DISTRIBUTING FILES - DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want to
distribute it to users who need to run it on avariety of systems. This section addresses how to
effectively distribute applications built using PGI compilers and tools. The application must be
installed in such away that it executes accurately on a system other than the one on which it was
built, and which may be configured differently.

14.1. Deploying Applications on Windows

Windows programs may be linked statically or dynamically.

» A statically linked program is completely self-contained, created by linking to static versions
of the PGI and Microsoft runtime libraries.

» A dynamically linked program depends on separate dynamically-linked libraries (DLLS) that
must be installed on a system for the application to run on that system.

Although it may be smpler to install a statically linked executable, there are advantagesto using
the DLL versions of the runtime, including:

» Executable binary file sizeissmaller.

» Multiple processes can use DLLs at once, saving Ssystem resources.

» New versions of the runtime can beinstalled and used by the application without rebuilding
the application.

Dynamically-linked Windows programs built with PGI compilers depend on dynamic runtime
library files (DLLS). These DLLs must be distributed with such programs to enable them to
execute on systems where the PGl compilers are not installed. These redistributable libraries
include both PGI runtime libraries and Microsoft runtime libraries.

14.1.1. PGI Redistributables

PGI redistributable directories contain all of the PGl Windows dynamically-linked libraries that
can be re-distributed by PGI 14.10 licensees under the terms of the End-User License Agreement
(EULA).

PVF User's Guide 149

Distributing Files - Deployment

14.1.2. Microsoft Redistributables

The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools
directory contains a subdirectory named redist. PGI licensees may redistribute the files
contained in this directory in accordance with the terms of the End-User License Agreement.

Microsoft supplies installation packages, vcredist x86.exe andvcredist x64.exe,
containing these runtime files. These files are available in the redi st directory.

14.2. Code Generation and Processor Architecture

The PGI compilers can generate much more efficient code if they know the specific x86
processor architecture on which the program will run. When preparing to deploy your application,
you should determine whether you want the application to run on the widest possible set of

x86 processors, or if you want to restrict the application to run on a specific processor or set of
processors. The restricted approach allows you to optimize performance for that set of processors.

Different processors have differences, some subtle, in hardware features, such asinstruction

sets and cache size. The compilers make architecture-specific decisions such asinstruction
selection, instruction scheduling, and vectorization, all of which can have a profound effect on the
performance of applications.

Processor-specific code generation is controlled by the —tp option, described in the section ‘—
tp <target> [,target...]’ of the PGl Visua Fortran Reference Manual. When an application is
compiled without any -tp options, the compiler generates code for the type of processor on
which the compiler isrun.

14.2.1. Generating Generic x86 Code

To generate generic x86 code, use one of the following forms of the-tp option on your
command line:
—-tp px ! generate code for any x86 cpu type

—-tp p6 ! generate code for Pentium 2 or greater

While both of these examples are good choices for portable execution, most users have Pentium 2
or greater CPUs.

14.2.2. Generating Code for a Specific Processor

Y ou can use the —tp option to request that the compiler generate code optimized for a specific
processor. The PGl Release Notes contains alist of supported processors.

14.3. Generating One Executable for Multiple Types of
Processors

PGI unified binaries provide alow-overhead method for a single program to run well on a
number of hardware platforms.

PVF User's Guide 150

http://www.pgroup.com/resources/docs.htm

Distributing Files - Deployment

All 64-bit PGI compilers for Windows can produce PGl Unified Binary programs that contain
code streams fully optimized and supported for both AMD64 and Intel EM64T processors using
the —tp target option. Y ou specify this option using PV F's Fortran | Target Processors property
page. For more information on this property page, refer to the ‘ PVF Properties’ section in the PGI
Visua Fortran Reference Manual.

The compilers generate and combine multiple binary code streams into one executable, where
each stream is optimized for a specific platform. At runtime, this one executable senses the
environment and dynamically selects the appropriate code stream.

Executable size is automatically controlled via unified binary culling. Only those functions and
subroutines where the target affects the generated code have unique binary images, resultingin a
code-size savings of 10-90% compared to generating full copies of code for each target.

Programs can use PGI Unified Binary technology even if all of the object files and libraries are
not compiled as unified binaries. Like any other object file, you can use PGl Unified Binary
object filesto create programs or libraries. No special start up code is needed; support islinked in
from the PGI libraries.

The -Mpf i option disables generation of PGl Unified Binary object files. Instead, the default
target auto-detect rules for the host are used to select the target processor.

14.3.1. PGI Unified Binary Command-line Switches

The PGI Unified Binary command-line switch is an extension of the target processor switch, -
tp, which may be applied to individual files during compilation using the PVF property pages
described in the ‘ PVF Properties’ section in the PGI Visual Fortran Reference Manual.

The target processor switch, -t p, accepts a comma-separated list of 64-bit targets and generates
code optimized for each listed target.

The following example generates optimized code for three targets:
-tp k8-64,p7-64,core2-64

To use multiple -tp options within a PVF project, specify the comma-separated —tp list on both
the Fortran | Command Line and the Linker | Command Line property pages, described in the
‘PVF Properties’ section in the PGl Visua Fortran Reference Manual.

A specid target switch, -tp x64,isthesameas—-tp k8-64, p7-64.

14.3.2. PGI Unified Binary Directives and Pragmas

PGI Unified binary directives may be applied to functions, subroutines, or whole files. The
directives and pragmas cause the compiler to generate PGl Unified Binary code optimized for one
or more targets. No special command line options are needed for these pragmas and directives to
take effect.

The syntax of the Fortran directiveis:
pgi$lglrl 1 pgi tp [target]...

where the scopeis g (global), r (routine) or blank. The default isr, routine.

PVF User's Guide 151

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Distributing Files - Deployment

For example, the following syntax indicates that the wholefile, represented by g, should be
optimized for both k8_64 and p7_64.

Pgis$g pgi tp k8 64 p7 64

PVF User's Guide 152

Chapter 15.
INTER-LANGUAGE CALLING

This section describes inter-language calling conventions for C, C++, and Fortran programs
using the PGI compilers. Fortran 2003 provides a mechanism to support the interoperability

with C. Thisincludesthe ISO_C Binding intrinsic module, binding labels, and the BIND
attribute. In the absence of this mechanism, the following sections describe how to call a Fortran
function or subroutine from a C or C++ program and how to call a C or C++ function from a
Fortran program. For information on calling assembly language programs, refer to the ‘* Runtime
Environment’” section of the PGI Visua Fortran Reference Manual.

This section provides examples that use the following options related to inter-language calling.
For more information on these options, refer to the ** Command-Line Options Reference’” section
of the PGI Visual Fortran Reference Manual.

-cC -Mnomain -Miface -Mupcase

15.1. Overview of Calling Conventions

This section includes information on the following topics:

Functions and subroutines in Fortran, C, and C++
Naming and case conversion conventions
Compatible data types

Argument passing and special return values
Arrays and indexes

Win32 calling conventions

vV Vv v v Vv

The sections | nter-language Calling Considerations through Example - C++ Calling Fortran
describe how to perform inter-language calling using the Win64 convention. Default Fortran
calling conventions for Win32 differ, although Win32 programs compiled using the -
Miface=unix Fortran command-line option use the Win64 convention rather than the default
Win32 conventions. All information in those sections pertaining to compatibility of arguments
applies to Win32 as well. For details on the symbol name and argument passing conventions used
on Win32 platforms, refer to Win32 Calling Conventions.

The concepts in this section apply equally to using inter-language calling in PVF. While al of the
examples given are shown as being compiled at the command line, they can also be used within

PVF User's Guide 153

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Inter-language Calling

PVF. The primary difference for you to note isthis: Visua Studio projects are limited to asingle
language. To mix languages, create a multi-project solution.

$(VSInstallDir) \PGI Visual Fortran\Samples\interlanguage\

n Tip For inter-language examples that are specific to PVF, look in the directory:

15.2. Inter-language Calling Considerations

In general, when argument data types and function return values agree, you cancal aC or C + +
function from Fortran aswell as call a Fortran function from C or C++. When data types for
arguments do not agree, you may need to develop custom mechanisms to handle them. For
example, the Fortran COMPLEX type has a matching type in C99 but does not have a matching
typein C89; however, it is gill possible to provide inter-language calls but there are no general
calling conventions for such cases.

» If a C++ function contains objects with constructors and destructors, calling such a function from
Fortran is not possible unless the initialization in the main program is performed from a C + + program
in which constructors and destructors are properly initialized.

» C++ member functions cannot be declared e xtern, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

15.3. Functions and Subroutines

Fortran, C, and C++ define functions and subroutines differently.

For aFortran program calling a C or C++ function, observe the following return value
convention:

» When aC or C++ function returns avalue, call it from Fortran as afunction.
» When aC or C++ function does not return avalue, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return asimilar type. Table 28,
Fortran and C/C++ Data Type Compatibility, lists compatible types. If the call isto a Fortran
subroutine, a Fortran CHARACTER function, or a Fortran COMPLEX function, call it from C/C++
as afunction that returns void. The exception to this convention is when a Fortran subroutine has
alternate returns; call such a subroutine from C/C++ as afunction returning int whosevaueis
the value of the integer expression specified in the alternate RETURN statement.

15.4. Upper and Lower Case Conventions, Underscores

By default on Linux, Win64, and OSX systems, al Fortran symbol names are converted to lower
case. C and C++ are case sensitive, so upper-case function names stay upper-case. When you
use inter-language calling, you can either name your C/C++ functions with lower-case names,

or invoke the Fortran compiler command with the option —-Mupcase, in which case it will not
convert symbol namesto lower-case.

PVF User's Guide 154

Inter-language Calling

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and OSX
systems, an underscore is appended to Fortran global names (names of functions, subroutines and
common blocks). This mechanism distinguishes Fortran name space from C/C++ name space.
Use these naming conventions:

» If you call a C/C++ function from Fortran, you should rename the C/C++ function by
appending an underscore.

» If you call aFortran function from C/C++, you should append an underscore to the Fortran
function name in the calling program.

15.5. Compatible Data Types

Table 28 shows compatible data types between Fortran and C/C++. Table 29, Fortran and C/
C++ Representation of the COMPLEX Type shows how the Fortran COMPLEX type may be
represented in C/C++.

Tip If you can make your function/subroutine parameters as well as your return values match types, you
should be able to use inter-language calling.

Table 28 Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) CI/C++ Type Size (bytes)
character x char x 1
character*n x char x[n] n
real x float x 4
real*4 x float x 4
real*8 x double x 8
double precision double x 8
integer x int x 4
integer*1 x signed char x 1
integer*2 x short x 2
integer*4 x int x 4
integer*8 x long long x 8
logical x int x 4
logical*1 x char x 1
logical*2 x short x 2
logical*4 int x 4
logical*8 long x 8

PVF User's Guide

155

Inter-language Calling

Table 29 Fortran and C/C++ Representation of the compLEx Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x; 8
complex’8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16

n For C/C++, the complex type implies C99 or later.

15.5.1. Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. For example, here is a Fortran common block:

INTEGER I

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:

extern struct {
int 1i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com ;

This same Fortran Common Block is represented in C++ with the following equivalent:

extern "C" struct {
int 1i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;
} com ;

n Tip For global or external data sharing, extern "C" is not required.

PVF User's Guide 156

Inter-language Calling

15.6. Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed,
rather than the argument itself. In C/C++, arguments are passed by value, except for strings and
arrays, which are passed by reference. Due to the flexibility provided in C/C++, you can work
around these differences. Solving the parameter passing differences generally involvesintelligent
use of the & and * operators in argument passing when C/C++ calls Fortran and in argument
declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the
string is also passed to a calling function.

On the following systems, the compiler places the length argument(s) at the end of the parameter
list, following the other formal arguments:

» OnLinux and Mac OS X systems

» On Win32 systems when using the UNIX calling convention on Windows, that is, using the
option -Mi face=unix

» On Win64 systems, except when using the option -Mi face=cref

15.6.1. Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to

pass by value using the $VAL function. If you enclose a Fortran parameter with $VAL (), the
parameter is passed by value. For example, the following call passes the integer i and the logical
bvar by value.

integer*1l i
logical*1l bvar
call cvalue (%VAL(i), S%VAL (bvar))

15.6.2. Character Return Values

Functions and Subroutines describes the general rules for return values for C/C++ and Fortran
inter-language calling. Thereis a special return value to consider. When a Fortran function
returns a character, two arguments need to be added at the beginning of the C/C++ calling
function’s argument list:

» The address of the return character or characters
» Thelength of the return character

The following exampleillustrates the extra parameters, tmp and 10, supplied by the caller:

PVF User's Guide 157

Inter-language Calling

Character Return Parameters

! Fortran function returns a character
CHARACTER* (*) FUNCTION CHF (C1,I)
CHARACTER* (*) C1
INTEGER I
END

/* C declaration of Fortran function */
extern void chf ();

char tmp[10];

char cl1[9];

int 1i;

chf (tmp, 10, cl, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example

CHARACTER*4 FUNCTION CHF (), the second extra parameter representing the length must
till be supplied, but is not used.

n The value of the character function is not automatically NULL-terminated.

15.6.3. Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning
of the C/C++ calling function’s argument list; this argument is the address of the complex return
value. COMPLEX Return Valuesillustrates the extra parameter, cp1x, supplied by the caller.

COMPLEX Return Values

COMPLEX FUNCTION CF (C, I)
INTEGER I

END

extern void cf ();

typedef struct {float real, imag;} cplx;
cplx cl;

int 1i;

cf (&cl, &i);

15.7. Array Indices

C/C++ arrays and Fortran arrays use different default initial array index values. By default, arrays
in C/C++ start at 0 and arrgaysin Fortran start at 1. If you adjust your array comparisons so that
a Fortran second element is compared to a C/C++ first element, and adjust similarly for other
elements, you should not have problems working with this difference. If thisis not satisfactory,
you can declare your Fortran arraysto start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses
column-major order and C/C++ uses row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns,
row and column indexes can simply be reversed. For arrays other than single dimensional arrays,
and square two-dimensional arrays, inter-language function mixing is not recommended.

PVF User's Guide 158

Inter-language Calling

15.8. Examples

This section contains examples that illustrate inter-language calling.

15.8.1. Example - Fortran Calling C

There are other solutions to calling C from Fortran than the one presented in this section. For example,
you canuse the iso ¢ binding intrinsic module which PGI does support. For more information on
this module and for examples of how to use it, search the web using the keyword iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program shown
in Fortran Main Program f2c_main.f. Notice that each argument is defined as a pointer, since
Fortran passes by reference. Also notice that the C function name uses all lower-case and a
trailing"_"

Fortran Main Program f2c_main.f

logical*1l booll

character letterl
integer*4 numintl, numint?2
real numfloatl

double precision numdoubl
integer*2 numshorl
external f2c func

call f2c func(booll, letterl, numintl, numint2, numfloatl, numdoubl, numshorl)

write(*, " (L2, A2, I5, I5, F6.1l, Fo.1l, I5)")
+ booll, letterl, numintl, numint2, numfloatl,numdoubl, numshorl

end

C function f2¢_func_

#define TRUE Oxff
#define FALSE 0
void f2c func (booll, letterl, numintl, numint2, numfloatl,\
numdoubl, numshorl, len letterl)
char *booll, *letterl;
int *numintl, *numint2;
float *numfloatl;
double *numdoubl;
short *numshorl;
int len letterl;

*booll = TRUE; *letterl

(1]
<.

*numintl = 11; *numint?2 -44;
*numfloatl = 39.6 ;

*numdoubl = 39.2;

*numshorl = 981;

}

Compile and execute the program £2¢_main. £ withthecal to f2c_func_ using the
following command lines:

$ pgcc -c f2c func.c
$ pgfortran f2c func.o f2c main.f

PVF User's Guide 159

Inter-language Calling

Executing the £2c_main.exe file should produce the following output:
T v 11 -44 39.6 39.2 981

15.8.2. Example - C Calling Fortran

The example C Main Program c2f_main.c shows a C main program that calls the Fortran
subroutine shown in Fortran Subroutine c2f_sub.f.

» Each call usesthe & operator to pass by reference.
» Thecall to the Fortran subroutine uses all lower-case and atrailing

C Main Program c2f_main.c

void main () {

char booll, letterl;

int numintl, numint2;

float numfloatl;

double numdoubl;

short numshorl;

extern void c2f func_ ();

c2f sub (&booll, &letterl, énumintl, énumint2, &numfloatl, &numdoubl, &numshorl, 1);
printf (" %s %c %d %d %3.1f %.0f %d\n",
booll?"TRUE" :"FALSE", letterl, numintl, numint2,
numfloatl, numdoubl, numshorl);

}

Fortran Subroutine c2f _sub.f

subroutine c2f func (booll, letterl, numintl, numint2,
+ numfloatl, numdoubl, numshorl)

logical*1l booll

character letterl

integer numintl, numint2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true.
letterl = "v"
numintl = 11
numint2 = -44

numdoubl = 902
numfloatl = 39.6
numshorl = 299
return

end

To compile this Fortran subroutine and C program, use the following commands.

$ pgcc -c c2f main.c
$ pgfortran -Mnomain c2f main.o c2 sub.f

Executing the resulting c2 fmain . exe file should produce the following output:
TRUE v 11 -44 39.6 902 299

15.8.3. Example - Fortran Calling C++

The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++ function
calls the C++ function shown in C++ function f2cp_func.C .

Notice:

PVF User's Guide 160

Inter-language Calling

» Each argument is defined as a pointer in the C++ function, since Fortran passes by reference.
» The C++ function name uses all lower-case and atrailing"_":

Fortran Main Program f2cp_main.f calling a C++ function

logical*1l booll
character letterl
integer*4 numintl, numint?2
real numfloatl
double precision numdoubl
integer*2 numshorl

external f2cpfunc

call f2cp func (booll, letterl, numintl,

+ numint2, numfloatl, numdoubl, numshorl)
write(*, " (L2, A2, I5, I5, F6.1, F6.1, I5)")
+ booll, letterl, numintl, numint2, numfloatl,
+ numdoubl, numshorl

end

C++ function f2cp_func.C

#define TRUE Oxff

#define FALSE 0

extern "C"

{

extern void f2cp func (
char *booll, *letterl,
int *numintl, *numint2,
float *numfloatl,
double *numdoubl,

short *numshortl,

int len letterl)

{

*booll = TRUE; *letterl = 'v';
*numintl = 11; *numint2 = -44;
*numfloatl = 39.6; *numdoubl = 39.2; *numshortl = 981;

}
}

Assuming the Fortran programisin afile fmain. f, and the C++ functionisin afile

cpfunc. C, create an executable, using the following command lines:

$ pgcpp -c¢ f2cp func.C
$ pgfortran f2cp func.o f2cp main.f -pgcpplibs

Executing the fmain . exe file should produce the following output:
T v 11 -44 39.6 39.2 981

15.8.4. Example - C++ Calling Fortran

Fortran Subroutine cp2f func.f shows a Fortran subroutine called by the C++ main program
shown in C++ main program cp2f_main.C. Notice that each call usesthe & operator to pass by
reference. Also notice that the call to the Fortran subroutine uses all lower-case and atrailing”_":

PVF User's Guide 161

Inter-language Calling

C++ main program cp2f_main.C

#include <iostream>
extern "C" { extern void cp2f func (char *,char *,int *,int *,
float *,double *,short *); }
main ()
{
char booll, letterl;
int numintl, numint2;
float numfloatl;
double numdoubl;
short numshorl;

cp2f func(&booll, &letterl, anumintl, &énumint2, &numfloatl, &numdoubl, &énumshorl) ;
cout << " booll = ";
booll?cout << "TRUE ":cout << "FALSE "; cout <<endl;

cout << " letterl = " << letterl <<endl;
cout << " numintl = " << numintl <<endl;
cout << " numint2 = " << numint2?2 <<endl;
cout << " numfloatl = " << numfloatl <<endl;
cout << " numdoubl = " << numdoubl <<endl;
cout << " numshorl = " << numshorl <<endl;

}
Fortran Subroutine cp2f_func.f

subroutine cp2f func (booll, letterl, numintl,
+ numint2, numfloatl, numdoubl, numshorl)
logical*1l booll

character letterl

integer numintl, numint2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true. ; letterl = "v"

numintl = 11 ; numint2 = -44

numdoubl = 902 ; numfloatl = 39.6 ; numshorl = 299
return

end

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgfortran -c cp2f func.f
$ pgcpp cp2f func.o cp2f main.C -pgf90libs

Executing this C++ main should produce the following output:

booll = TRUE
letterl = v
numintl 11
numint2 = -44
numfloatl = 39.6
numdoubl = 902
numshorl 299

You must explicitly link in the PGFORTRAN runtime support libraries when linking pgfortran-compiled
program units into C or C++ main programs. When linking pgf77-compiled program units into C or C++
main programs, you need only link in —1pgftnrtl.

PVF User's Guide 162

Inter-language Calling

15.9. Win32 Calling Conventions

A calling convention is a set of conventions that describe the manner in which a particular routine
is executed. A routine's calling conventions specify where parameters and function results are
passed. For a stack-based routine, the calling conventions determine the structure of the routine's
stack frame.

The calling convention for C/C++ isidentical between most compilers on Win32 and Win64.
However, Fortran calling conventions vary widely between legacy Win32 Fortran compilers and
Win64 Fortran compilers.

15.9.1. Win32 Fortran Calling Conventions

Four styles of calling conventions are supported using the PGI Fortran compilers for Win32:
Default, C, STDCALL, and UNIX.

» Default - Used in the absence of compilation flags or directives to alter the default.

» Cor STDCALL - Used if an appropriate compiler directiveis placed in a program unit
containing the call. The C and STDCALL conventions are typically used to call routines
coded in C or assembly language that depend on these conventions.

» UNIX - Used in any Fortran program unit compiled using the -Mi face=unix (or the
- Munix) compilation flag.

The following table outlines each of these calling conventions.

Table 30 Calling Conventions Supported by the PGI Fortran Compilers

Convention Default STDCALL c UNIX
Case of symbol name Upper Lower Lower Lower
Leading underscore Yes Yes Yes Yes
Trailing underscore No No No Yes
Argument byte count added Yes Yes No No
Arguments passed by reference Yes No* No* Yes
Character argument length passed After each char No No End of argument
argument list
First character of character string is No Yes Yes No
passed by value
varargs support No No Yes Yes
Caller cleans stack No No Yes Yes

* Except arrays, which are aways passed by reference even in the STDCALL and C conventions

While it is compatible with the Fortran implementations of Microsoft and several other vendors, the C
calling convention supported by the PGI Fortran compilers for Windows is not strictly compatible with the
C calling convention used by most C/C++ compilers. In particular, symbol names produced by PGI Fortran

PVF User's Guide 163

Inter-language Calling

compilers using the C convention are all lower case. The standard C convention is to preserve mixed-case
symbol names. You can cause any of the PGI Fortran compilers to preserve mixed-case symbol names
using the -Mupca se option, but be aware that this could have other ramifications on your program.

15.9.2. Symbol Name Construction and Calling Example

This section presents an example of the rules outlined in Calling Conventions Supported by the
PGI Fortran Compilers. In the pseudocode shown in the following examples, $addr refersto the
address of adataitem while $val refersto the value of that data item. Subroutine and function
names are converted into symbol names according to the rules outlined in Table 30.

Consider the following subroutine call, where aiis a double precision scalar, b isareal vector of
sizen, and nisan integer:
call work (‘ERR’, a, b, n)

» Default - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all upper case, and appending an @ sign followed by an integer indicating the
total number of bytes occupied by the argument list. Byte counts for character arguments
appear immediately following the corresponding argument in the argument list.

The following example is pseudocode for the preceding subroutine call using Default
conventions:
call WORK@20 (%addr (‘ERR’), 3, %addr(a), %addr (b), %addr (n))

» STDCALL - The symbol name for the subroutine is constructed by pre-pending an
underscore, converting to all lower case, and appending an @ sign followed by an integer
indicating the total number of bytes occupied by the argument list. Character strings are
truncated to the first character in the string, which is passed by value asthefirst bytein a4-
byte word. The following is an example of the pseudocode for the work subroutine call using
STDCALL conventions:

call work@20 (%val(‘E’), %val(a), %addr(b), 3%val(n))

Noticein this case that there are still 20 bytesin the argument list. However, rather than five
4-byte quantities as in the Default convention, there are three 4-byte quantities and one 8-
byte quantity (the double precision value of a).

» C - The symbol name for the subroutine is constructed by pre-pending an underscore and
converting to all lower case. Character strings are truncated to the first character in the string,
which is passed by value asthe first byte in a 4-byte word.

Thefollowing is an example of the pseudocode for the work subroutine call using C
conventions:
call work (%val(‘E’), %val(a), %addr(b), %val(n))

» UNIX - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all lower case, and appending an underscore. Byte counts for character strings
appear in sequence following the last argument in the argument list.

The following is an example of the pseudocode for the work subroutine call using UNIX
conventions:

call work (%addr(‘ERR’), %addr(a), %addr(b), %addr(n),3)

PVF User's Guide 164

Inter-language Calling

15.9.3. Using the Default Calling Convention

The Default calling convention is used if no directives are inserted to modify calling conventions
and if neither the -Mi face=unix (or -Munix) compilation flag is used. Refer to Symbol
Name Construction and Calling Example for a complete description of the Default calling
convention.

15.9.4. Using the STDCALL Calling Convention

Using the STDCALL calling convention requires the insertion of a compiler directive into the

declarations section of any Fortran program unit which callsthe STDCALL program unit. Y ou
cannot mix UNIX-style argument passing and STDCALL calling conventions within the same
file.

In the following example syntax for the directive, work isthe name of the subroutine to be called
using STDCALL conventions:
!DEC$ ATTRIBUTES STDCALL :: work

Y ou can list more than one subroutine, separating them by commas. Refer to Symbol Name
Construction and Calling Example for a complete description of the implementation of
STDCALL.

» The directive prefix IDEC$ requires a space between the prefix and the directive keyword
ATTRIBUTES.

» The ! must begin the prefix when compiling using Fortran 90 freeform format.

» The characters C or * can be used in place of ! in either form of the prefix when compiling with fixed-
form format.

» The directives are completely case insensitive.

15.9.5. Using the C Calling Convention

Using the C calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the C program unit. Y ou cannot mix UNIX-style
argument passing and C calling conventions within the samefile.

Syntax for the directive is as follows:
IDEC$ ATTRIBUTES C :: work

Where work isthe name of the subroutine to be called using C conventions. More than one
subroutine may be listed, separated by commas. Refer to Symbol Name Construction and Calling
Example for a complete description of the implementation of the C calling convention.

15.9.6. Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using
- Miface=unix or the -Munix compilation flag uses the UNIX convention.

PVF User's Guide 165

Inter-language Calling

15.9.7. Using the CREF Calling Convention

Using the CREF calling convention is straightforward. Any program unit compiled using
- Miface=cref compilation flag uses the CREF convention.

PVF User's Guide 166

Chapter 16.
PROGRAMMING CONSIDERATIONS FOR 64-BIT
ENVIRONMENTS

Y ou can use the PGI Fortran compilers on 64-bit Windows operating systems to create programs
that use 64-bit memory addresses. However, there are limitations to how this capability can be
applied. The object file format used on Windows limits the total cumulative size of code plus
static datato 2GB. This limit includes the code and statically declared datain the program and in
system and user object libraries. Dynamically allocated data objects can be larger than 2GB. This
section describes the specifics of how to use the PGI compilers to make use of 64-bit memory
addressing.

The 64-bit Windows environment maintains 32-bit compatibility, which means that 32-bit
applications can be developed and executed on the corresponding 64-bit operating system.

The 64-bit PGI compilers are 64-bit applications which cannot run on anything but 64-bit CPUs running 64-
bit Operating Systems.

This section describes how to use the following options related to 64-bit programming.

-i8 -tp

16.1. Data Types in the 64-Bit Environment

The size of some data types can be different in a 64-bit environment. This section describes the
major differences. For detailed information, refer to the ‘ Fortran, C, and C++ Data Types' section
of the PGI Visual Fortran Reference Manual.

16.1.1. Fortran Data Types

In Fortran, the default size of the INTEGER typeis 4 bytes. The -1 8 compiler option may be
used to make the default size of all INTEGER datain the program 8 bytes.

PVF User's Guide 167

http://www.pgroup.com/resources/docs.htm

Programming Considerations for 64-Bit Environments

16.2. Large Dynamically Allocated Data

Dynamically allocated data objects in programs compiled by the 64-bit PGI compilers can be
larger than 2GB. No special compiler options are required to enable this functionality. The size of

the allocation is only limited by the system.

16.3. Compiler Options for 64-bit Programming

The usual switches that apply to 64-bit programmers seeking to increase the data range of their
applications are in the following table.

Table 31 64-bit Compiler Options

Option

—-Mlargeaddressaware

Purpose

[Win64 only] Generates
code that allows for
addresses greater than
2GB, using RIP-relative
addressing.

Considerations

Use -Mlargeaddressaware=no for a direct addressing mechanism
that restricts the total addressable memory. This is not applicable if
the object file is placed in a DLL. Further, if an object file is compiled
with this option, it must also be used when linking.

-Mlarge_arrays

Perform all array-location-
to-address calculations
using 64-bit integer
arithmetic.

Slightly slower execution. Win64 does not support -Mlarge_arrays

for static objects larger than 2GB.

All INTEGER functions,
data, and constants

not explicitly declared
INTEGER*4 are assumed
to be INTEGER*8.

Users should take care to explicitly declare INTEGER functions as

INTEGER*4.

The following table summarizes the limits of these programming models under the specified
conditions. The compiler options you use vary by processor.

Table 32 Effects of Options on Memory and Array Sizes

Condition

Addr. Math

A

Max Size Gbytes

AS DS

32-bit linux86 programs 32 32 2 2 2
64-bit addr 64 32 2 2 2
Column Legend

A Address Type - size in bits of data used for address calculations, 32-bit or 64-bit.

| Index Arithmetic -bit-size of data used to index into arrays and other aggregate data structures. If 32-bit, total range of
any single data object is limited to 2GB.

AS Maximum Array Size- the maximum size in gigabytes of any single data object.

PVF User's Guide

168

Programming Considerations for 64-Bit Environments

DS - max size in gigabytes combined of all data objects in .bss

TS Maximum Total Size- max size in gigabytes, in aggregate, of all executable code and data objects in a running program.

16.4. Practical Limitations of Large Array Programming

The 64-bit addressing capability of the Linux86-64 and Win64 environments can cause
unexpected issues when data sizes are enlarged significantly. The following table describes the
most common occurrences of practical limitations of large array programming.

Table 33 64-Bit Limitations

array initialization

Initializing a large array with a data statement may result in very large assembly and object files,
where a line of assembler source is required for each element in the initialized array. Compilation and
linking can be very time consuming as well. To avoid this issue, consider initializing large arrays in a
loop at runtime rather than in a data statement.

stack space

Stack space can be a problem for data that is stack-based. In Win64, stack space can be increased by
using this link-time switch, where N is the desired stack size:—W1, —stack:N

limit stacksize new size ! in csh

ulimit -s new size ! in bash

page swapping

If your executable is much larger than the physical size of memory, page swapping can cause it to run
dramatically slower; it may even fail. This is not a compiler problem. Try smaller data sets to determine
whether or not a problem is due to page thrashing.

16.5. Large Array and Small Memory Model in Fortran

The following example uses large, dynamically-allocated arrays. The code is divided into amain
and subroutine so you could put the subroutine into a shared library. Dynamic allocation of large
arrays saves space in the size of executable and savestime initializing data. Further, the routines
can be compiled with 32-bit compilers, by just decreasing the parameter size.

PVF User's Guide

169

Programming Considerations for 64-Bit Environments

Large Array and Small Memory Model in Fortran

% cat mat allo.f90

o

program mat allo
integer 1, Jj
integer size, m, n
parameter (size=16000)
parameter (m=size,n=size)
double precision, allocatable::a(:,:),b(:,:),c(:,:)
allocate(a(m,n), b(m,n), c(m,n))
do i = 100, m, 1
do j = 100, n, 1

a(i,j) = 10000.0D0 * dble(i) + dble(j)
b(i,j) = 20000.0D0 * dble(i) + dble(j)
enddo
enddo
call mat add(a,b,c,m,n)
pril’lt *, "M :",m, ",N :",n
print *, "c(M,N) =", c(m,n)

end

subroutine mat add(a,b,c,m,n)
integer m, n, i, j
double precision a(m,n),b(m,n),c(m,n)
doi=1, m
do j =1, n
c(i,j) = a(i,j) + b(i,J)
enddo
enddo
return
end

% pgfortran -o mat allo mat allo.f90 -i8 -Mlarge arrays -mp -fast

PVF User's Guide

170

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Getting Started with PVF
	1.1. PVF on the Start Screen and Start Menu
	1.1.1. Shortcuts to Launch PVF
	1.1.2. Commands Submenu
	1.1.3. Profiler Submenu
	1.1.4. Documentation Submenu
	1.1.5. Licensing Submenu

	1.2. Introduction to PVF
	1.2.1. Visual Studio Settings
	1.2.2. Solutions and Projects

	1.3. Creating a Hello World Project
	1.4. Using PVF Help
	1.5. PVF Sample Projects
	1.6. Compatibility
	1.6.1. Win32 API Support (dfwin)
	1.6.2. Unix/Linux Portability Interfaces (dflib, dfport)
	1.6.3. Windows Applications and Graphical User Interfaces

	Build with PVF
	2.1. Creating a PVF Project
	2.1.1. PVF Project Types
	2.1.2. Creating a New Project

	2.2. PVF Solution Explorer
	2.3. Adding Files to a PVF Project
	2.3.1. Add a New File
	2.3.2. Add an Existing File

	2.4. Adding a New Project to a Solution
	2.5. Project Dependencies and Build Order
	2.6. Configurations
	2.7. Platforms
	2.8. Setting Global User Options
	2.9. Setting Configuration Options using Property Pages
	2.10. Property Pages
	2.11. Setting File Properties Using the Properties Window
	2.12. Setting Fixed Format
	2.13. Building a Project with PVF
	2.13.1. Order of PVF Build Operations

	2.14. Build Events and Custom Build Steps
	2.14.1. Build Events
	2.14.2. Custom Build Steps

	2.15. PVF Build Macros
	2.16. Static and Dynamic Linking
	2.17. VC# Interoperability
	2.18. VC++ Interoperability
	2.19. Linking PVF and VC++ Projects
	2.20. Common Link-time Errors
	2.21. Migrating an Existing Application to PVF
	2.22. Fortran Editing Features

	Debug with PVF
	3.1. Windows Used in Debugging
	3.1.1. Autos Window
	3.1.2. Breakpoints Window
	3.1.3. Call Stack Window
	3.1.4. Disassembly Window
	3.1.5. Immediate Window
	3.1.6. Locals Window
	3.1.7. Memory Window
	3.1.8. Modules Window
	3.1.9. Output Window
	3.1.10. Processes Window
	3.1.11. Registers Window
	3.1.12. Threads Window
	3.1.13. Watch Window

	3.2. Variable Rollover
	3.2.1. Scalar Variables
	3.2.2. Array Variables
	3.2.3. User-Defined Type Variables

	3.3. Debugging an MPI Application in PVF
	3.4. Attaching the PVF Debugger to a Running Application
	3.4.1. Attach to a Native Windows Application

	3.5. Using PVF to Debug a Standalone Executable
	3.5.1. Launch PGI Visual Fortran from a Native Windows Command Prompt
	3.5.2. Using PGI Visual Fortran After a Command Line Launch
	3.5.3. Tips on Launching PVF from the Command Line

	Using MPI in PVF
	4.1. MPI Overview
	4.2. System and Software Requirements
	4.3. Compile using MS-MPI
	4.4. Enable MPI Execution
	4.4.1. MPI Debugging Property Options

	4.5. Launch an MPI Application
	4.6. Debug an MPI Application
	4.7. Profile an MPI Application

	Getting Started with The Command Line Compilers
	5.1. Overview
	5.2. Creating an Example
	5.3. Invoking the Command-level PGI Compilers
	5.3.1. Command-line Syntax
	5.3.2. Command-line Options
	5.3.3. Fortran Directives

	5.4. Filename Conventions
	5.4.1. Input Files
	5.4.2. Output Files

	5.5. Fortran Data Types
	5.6. Parallel Programming Using the PGI Compilers
	5.6.1. Run SMP Parallel Programs

	5.7. Site-Specific Customization of the Compilers
	5.7.1. Use siterc Files
	5.7.2. Using User rc Files

	5.8. Common Development Tasks

	Use Command Line Options
	6.1. Command Line Option Overview
	6.1.1. Command-line Options Syntax
	6.1.2. Command-line Suboptions
	6.1.3. Command-line Conflicting Options

	6.2. Help with Command-line Options
	6.3. Getting Started with Performance
	6.3.1. Using –fast and –fastsse Options
	6.3.2. Other Performance-Related Options

	6.4. Targeting Multiple Systems — Using the –tp Option
	6.5. Frequently-used Options

	Optimizing and Parallelizing
	7.1. Overview of Optimization
	7.1.1. Local Optimization
	7.1.2. Global Optimization
	7.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization
	7.1.4. Interprocedural Analysis (IPA) and Optimization
	7.1.5. Function Inlining
	7.1.6. Profile-Feedback Optimization (PFO)

	7.2. Getting Started with Optimization
	7.2.1. –help
	7.2.2. –Minfo
	7.2.3. –Mneginfo
	7.2.4. –dryrun
	7.2.5. –v
	7.2.6. PGPROF

	7.3. Common Compiler Feedback Format (CCFF)
	7.4. Local and Global Optimization
	7.4.1. –O

	7.5. Loop Unrolling using –Munroll
	7.6. Vectorization using –Mvect
	7.6.1. Vectorization Sub-options
	7.6.2. Vectorization Example Using SIMD Instructions

	7.7. Auto-Parallelization using -Mconcur
	7.7.1. Auto-Parallelization Sub-options
	7.7.2. Loops That Fail to Parallelize

	7.8. Processor-Specific Optimization & the Unified Binary
	7.9. Interprocedural Analysis and Optimization using –Mipa
	7.9.1. Building a Program Without IPA – Single Step
	7.9.2. Building a Program Without IPA - Several Steps
	7.9.3. Building a Program Without IPA Using Make
	7.9.4. Building a Program with IPA
	7.9.5. Building a Program with IPA - Single Step
	7.9.6. Building a Program with IPA - Several Steps
	7.9.7. Building a Program with IPA Using Make
	7.9.8. Questions about IPA

	7.10. Profile-Feedback Optimization using –Mpfi/–Mpfo
	7.11. Default Optimization Levels
	7.12. Local Optimization Using Directives
	7.13. Execution Timing and Instruction Counting

	Using Function Inlining
	8.1. Invoking Function Inlining
	8.2. Using an Inline Library
	8.3. Creating an Inline Library
	8.3.1. Working with Inline Libraries
	8.3.2. Dependencies
	8.3.3. Updating Inline Libraries - Makefiles

	8.4. Error Detection during Inlining
	8.5. Examples
	8.6. Restrictions on Inlining

	Using OpenMP
	9.1. OpenMP Overview
	9.1.1. OpenMP Shared-Memory Parallel Programming Model
	9.1.2. Terminology
	9.1.3. OpenMP Example

	9.2. Task Overview
	9.3. Fortran Parallelization Directives
	9.4. Directive Recognition
	9.5. Directive Summary Table
	9.5.1. Directive Summary Table

	9.6. Directive Clauses
	9.7. Runtime Library Routines
	9.8. Environment Variables

	Using an Accelerator
	10.1. Overview
	10.1.1. Components
	10.1.2. Availability
	10.1.3. User-directed Accelerator Programming
	10.1.4. Features Not Covered or Implemented

	10.2. Terminology
	10.3. System Requirements
	10.4. Supported Processors and GPUs
	10.5. Installation and Licensing
	10.5.1. Enable Accelerator Compilation

	10.6. Execution Model
	10.6.1. Host Functions
	10.6.2. Levels of Parallelism

	10.7. Memory Model
	10.7.1. Separate Host and Accelerator Memory Considerations
	10.7.2. Accelerator Memory
	10.7.3. Cache Management

	10.8. Running an Accelerator Program
	10.9. Accelerator Directives
	10.9.1. Enable Accelerator Directives
	10.9.2. Format
	10.9.3. Free-Form Fortran Directives
	10.9.4. Fixed-Form Fortran Directives
	10.9.5. OpenACC Directive Summary

	10.10. Accelerator Directive Clauses
	10.11. OpenAcc Runtime Libraries
	10.11.1. Runtime Library Definitions
	10.11.2. Runtime Library Routines

	10.12. Environment Variables
	10.13. Applicable PVF Property Pages
	10.14. Applicable Command Line Options
	10.15. Profiling Accelerator Kernels
	10.16. Related Accelerator Programming Tools
	10.16.1. PGPROF pgcollect
	10.16.2. NVIDIA CUDA Profile
	10.16.3. TAU - Tuning and Analysis Utility

	10.17. Supported Intrinsics
	10.17.1. Supported Fortran Intrinsics Summary Table

	10.18. References related to Accelerators

	Using Directives
	11.1. PGI Proprietary Fortran Directives
	11.2. PGI Proprietary Optimization Directive Summary
	11.3. Scope of Fortran Directives and Command-Line Options
	11.4. Prefetch Directives and Pragmas
	11.4.1. Prefetch Directive Syntax in Fortran
	11.4.2. Prefetch Directive Format Requirements
	11.4.3. Sample Usage of Prefetch Directive

	11.5. IGNORE_TKR Directive
	11.5.1. IGNORE_TKR Directive Syntax
	11.5.2. IGNORE_TKR Directive Format Requirements
	11.5.3. Sample Usage of IGNORE_TKR Directive

	11.6. !DEC$ Directives
	11.6.1. !DEC$ Directive Syntax
	11.6.2. Format Requirements
	11.6.3. Summary Table

	Creating and Using Libraries
	12.1. PGI Runtime Libraries on Windows
	12.2. Creating and Using Static Libraries on Windows
	12.2.1. ar command
	Syntax
	Options

	12.2.2. ranlib command
	Syntax
	Options

	12.3. Creating and Using Dynamic-Link Libraries on Windows
	12.3.1. Build a DLL: Fortran
	12.3.2. Build DLLs Containing Mutual Imports: Fortran
	12.3.3. Import a Fortran module from a DLL

	12.4. Using LIB3F
	12.5. LAPACK, BLAS and FFTs
	12.6. Linking with ScaLAPACK

	Using Environment Variables
	13.1. Setting Environment Variables
	13.1.1. Setting Environment Variables on Windows

	13.2. PGI-Related Environment Variables
	13.3. PGI Environment Variables
	13.3.1. FLEXLM_BATCH
	13.3.2. FORTRANOPT
	13.3.3. LM_LICENSE_FILE
	13.3.4. MPSTKZ
	13.3.5. MP_BIND
	13.3.6. MP_BLIST
	13.3.7. MP_SPIN
	13.3.8. MP_WARN
	13.3.9. NCPUS
	13.3.10. NCPUS_MAX
	13.3.11. NO_STOP_MESSAGE
	13.3.12. PATH
	13.3.13. PGI
	13.3.14. PGI_CONTINUE
	13.3.15. PGI_OBJSUFFIX
	13.3.16. PGI_STACK_USAGE
	13.3.17. PGI_TERM
	13.3.18. PGI_TERM_DEBUG
	13.3.19. PGROUPD_LICENSE_FILE
	13.3.20. STATIC_RANDOM_SEED
	13.3.21. TMP
	13.3.22. TMPDIR

	13.4. Stack Traceback and JIT Debugging

	Distributing Files - Deployment
	14.1. Deploying Applications on Windows
	14.1.1. PGI Redistributables
	14.1.2. Microsoft Redistributables

	14.2. Code Generation and Processor Architecture
	14.2.1. Generating Generic x86 Code
	14.2.2. Generating Code for a Specific Processor

	14.3. Generating One Executable for Multiple Types of Processors
	14.3.1. PGI Unified Binary Command-line Switches
	14.3.2. PGI Unified Binary Directives and Pragmas

	Inter-language Calling
	15.1. Overview of Calling Conventions
	15.2. Inter-language Calling Considerations
	15.3. Functions and Subroutines
	15.4. Upper and Lower Case Conventions, Underscores
	15.5. Compatible Data Types
	15.5.1. Fortran Named Common Blocks

	15.6. Argument Passing and Return Values
	15.6.1. Passing by Value (%VAL)
	15.6.2. Character Return Values
	15.6.3. Complex Return Values

	15.7. Array Indices
	15.8. Examples
	15.8.1. Example - Fortran Calling C
	15.8.2. Example - C Calling Fortran
	15.8.3. Example - Fortran Calling C++
	15.8.4. Example - C++ Calling Fortran

	15.9. Win32 Calling Conventions
	15.9.1. Win32 Fortran Calling Conventions
	15.9.2. Symbol Name Construction and Calling Example
	15.9.3. Using the Default Calling Convention
	15.9.4. Using the STDCALL Calling Convention
	15.9.5. Using the C Calling Convention
	15.9.6. Using the UNIX Calling Convention
	15.9.7. Using the CREF Calling Convention

	Programming Considerations for 64-Bit Environments
	16.1. Data Types in the 64-Bit Environment
	16.1.1. Fortran Data Types

	16.2. Large Dynamically Allocated Data
	16.3. Compiler Options for 64-bit Programming
	16.4. Practical Limitations of Large Array Programming
	16.5. Large Array and Small Memory Model in Fortran

