

TABLE OF CONTENTS

Chapter 1.PVF ReleaS@ OVEIVIEW.......ccccririiiurescsuresisssesssssessssssessssssesssssssssssssessssssasssssesssssssassssssssssssssssesssssssssssssesssssssases 1
1.1, PrOQUCE OVEIVIEW........cvireciisetscieiee sttt sttt sttt s 8888ttt 1
7 T3 ST = U o o 3T 2
1.3, TErMS AN DEfINIIONS.cvieieriiiieici bbbt 2

Chapter 2.New and Modified FRAtUIES..........cuiririrerercrcissniseses s 3
2.1. What's New in RelEASE 2014.........o ittt 3
2.2. New and Modified CoOmMPIIEr OPLIONS........c.oiierericerireieiei ettt 5

2.2.1. REQUIrEA SUDOPLION.cucveiiiceeiseicie ettt sttt s st a s s et s s 5
2.2.2. ACCEIEIAIOr OPLIONS. ..ottt et bbb bbb bbbt s s s s a ettt baee 5
2.2.3. ReloCatable DEVICE COUE........cuviiieeieiieisicrst sttt s e 8
2.2.4, D MOGIfICAONS........cvevieireiiicte ettt bbbt bbb s bbb bbb bbbt bbb s st st e 8
2.3. New and Modified Fortran FUNCHONANILY...........cccoeurieriiireiesec e 8
2.3.1. CONGGUOUS POINTETS.cvieirieiseisieeiseiiesissi et s s bbb 8
2.4. New and Modified Runtime Library ROULINES...........cceuuiiiriinieiirceeire et 9
2.5. PGl Accelerator ENNGNCEMENLS. ..ot seiesssseeess ettt st sse st 9
2.5.1. OpENACC DIrECHVE SUMMAIY.......cceuiuieieriiieeisieriseeeieseiees s ee bbb bbbt 9
2.5.2. CUDA TOOIKIt VEISION.......ucviieiriiiieeseintieiseistiesetssies ettt ettt ettt ebentns 11
2.5.3. Fortran Derived Types i OPENACC........c.o ettt ns e 12

Chapter 3.Selecting an Alternate COMPIIET..........coc i s 14
3.1, FOr @ SINGIE PrOJECL.couceieceieeti bbb 14
3.2, FOP All PrOJECS.ucvueeereeereis sttt 14

Chapter 4.Distribution and DeploymeNnt............cocruriinininmn s 16
4.1. Application Deployment and RedistributabIes............c.cveiriniee e 16

4.1.1. PGl REISIIDULADIES.cvevieicieiieiiistee sttt 16
4.1.2. Microsoft RediStrIDULADIES..........c.ieurrier et 17

Chapter 5.Troubleshooting Tips and Known Limitations............cccouennennncssnnnssss s ssssessssssessssssessssssessanes 18
5.1, PVF IDE LIMIAHONS. ... cvttetetiiieictstieietssie ettt ettt ettt 18
5.2. PVF Debugging LiMItationS.......ccccevviiiiiicieieietetcsis sttt s et s 18
5.3. PGl COmMPIlEr LIMITAHONS.ceeeeeeieerieesseeies sttt sttt enseneen 19
5.4, CUDA FOrran TOOIKIE ISSUES.........curvrerruriieieirtieiietstie ettt 19
5.5, OPENACC ISSUES....eueeeeeeeeeerieeeereeeeeresee e et e sese e e sesee e sesseee e s ee e eseeeeee e e e aeEeeee e e ees e ee e s e e s e s e b esesee e et es e naesennnseens 19
5.8, COMTECHIONS. .. vttt 20

Chapter 6.Contact INfOrMAtioN...........ccccececieicinin s s p e e 21

PGl Visual Fortran Release Notes i

LIST OF TABLES

Table 1 —ta=tesla SUDOPLONSociiiiieiei e 6

Table 2 —ta=radeon SUDOPHONScceiiirieieire ettt 7

PGl Visual Fortran Release Notes iii

PGl Visual Fortran Release Notes

Chapter 1.
PVF RELEASE OVERVIEW

Welcome to Release 2014 of PGI Visual Fortran®, a set of Fortran compilers and devel opment
tools for 32-bit and 64-bit Windows integrated with Microsoft® Visual Studio.

This document describes the new features of the PVF IDE interface, differencesin the PVF 2014
compilers and tools from previous releases, and late-breaking information not included in the
standard product documentation.

PGI Visual Fortran (PVF®) is licensed using FL EX net, the flexible license management system
from Flexera Software®. Instructions for obtaining a permanent license are included in your order
confirmation. More information on licensing is available in the PVF Installation Guide for this
release.

1.1. Product Overview

PVF isintegrated with several versions of Microsoft Visual Studio. Currently, Visual Studio
2008, 2010, 2012, and 2013 are supported. Throughout this document, "PGI Visual Fortran"
refersto PVF integrated with any of the four supported versions of Visual Studio. Similarly,
"Microsoft Visual Studio” refersto Visual Studio 2008, VS 2010, VS 2012, and VS 2013. When
it is necessary to distinguish among the products, the document does so.

Single-user node-locked and multi-user network floating license options are available for both
products. When a node-locked license is used, one user at atime can use PVF on the single
system whereit isinstalled. When a network floating license is used, a system is selected as the
server and it controls the licensing, and users from any of the client machines connected to the
license server can use PVF. Thus multiple users can simultaneously use PVF, up to the maximum
number of users allowed by the license.

PVF provides a compl ete Fortran devel opment environment fully integrated with Microsoft
Visual Studio. It includes a custom Fortran Build Engine that automatically derives build
dependencies, Fortran extensions to the Visual Studio editor, a custom PGl Debug Engine
integrated with the Visual Studio debugger, PGI Fortran compilers, and PV F-specific property
pages to control the configuration of all of these.

Release 2014 of PGI Visua Fortran includes the following components:

» PGFORTRAN OpenMP and auto-parallelizing Fortran 2003 compiler.

PGl Visual Fortran Release Notes 1

PVF Release Overview

» PGF77 OpenMP and auto-parallelizing FORTRAN 77 compiler.

» PVF Visua Studio integration components.

» AMD Core Math Library (ACML), version 5.24.0 for Windows x64 and version 4.4.0 for
32-bit Windows.

» OpenACC and CUDA Fortran tools and libraries necessary to build executables for
Accelerator GPUs, when the user's license supports these optional features.

» PVF documentation.

If you do not already have Microsoft Visual Studio on your system, be sure to get the PVF
installation package that contains the Visual Studio 2013 Shell.

1.2. Microsoft Build Tools

PVF on al Windows systems includes Microsoft Open Tools. On some systems (Windows XP,
Windows Server 2003, Windows Server 2008), these files are all the additional tools and libraries
required to compile, link, and execute programs on Windows. On other systems (Windows 2008
R2, Windows 7, Windows 8, Windows 8.1, Windows Server 2012), these files are required in
addition to the files Microsoft provides in the Windows 8.1 SDK.

1.3. Terms and Definitions

This document contains a number of terms and definitions with which you may or may not be
familiar. If you encounter an unfamiliar term in these notes, please refer to the online glossary at
http://www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

AMD64

A 64-bit processor from AMD™ designed to be binary compatible with 32-bit x86 processors,
and incorporating new features such as additional registers and 64-bit addressing support

for improved performance and greatly increased memory range. This term includes the

AMD Athlon64™, AMD Opteron™, AMD Turion™, AMD Barcelona, AMD Shanghai, AMD
Istanbul, AMD Bulldozer, and AMD Piledriver processors.

Intel 64
A 64-bit | A32 processor with Extended Memory 64-bit Technology extensions designed to be
binary compatible with AM D64 processors. Thisincludes Intel Pentium 4, Intel Xeon, Intel

Core 2, Intel Core 2 Duo (Penryn), Intel Core (i3, i5, i7), both first generation (Nehalem) and
second generation (Sandy Bridge) processors, aswell as Ivy Bridge and Haswell processors.

PGl Visual Fortran Release Notes 2

http://www.pgroup.com/support/definitions.htm

Chapter 2.
NEW AND MODIFIED FEATURES

This section provides information about the new and modified features of Release 2014 of PGI
Visual Fortran.

2.1. What's New in Release 2014

14.4 Updates and Additions
» PGl Accelerator Features and Enhancements:
» Expanded OpenACC 2.0 Features

» Loop directive collapse clause on deeply nested loops
» Parallel directive firstprivate clause
» Fortran derived type member arraysin data clauses
» Partial support for Fortran atomic directives
» Fortran common block namesin OpenACC data clauses
» CUDA Fortran support for CUDA 5.5 batched cuBLAS routines
» Integrated CUDA 6.0 Toolkit
» PGI Multi-core Features and Enhancements:

» Support for new AV X2 instructions available on the latest Haswell CPUs from Intel
» Updated Windows assembler

14.2 and 14.3 Updates and Additions

» A number of problems are corrected in these releases. Refer to http://www.pgroup.com/
support/release tprs.htm for a complete and up-to-date table of technical problem reports,
TPRs, fixed in recent releases of PGl compilers and tools. This table contains a summary
description of each problem as well as the version in which it was fixed.

PGl Visual Fortran Release Notes

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm

New and Modified Features

14.1 Updates and Additions

>

PGl Visual Fortran Release Notes

PGI Visua Fortran fully integrated with Visual Studio 2013, supported on Windows 8.1,
including support for OpenACC and CUDA Fortran on NVIDIA Teda GPUs, and full native
OpenACC on AMD Radeon GPUs.

These Windows releases are supported in PGl 2014, but will be deprecated in PGI 2015.

» Windows XP

» Windows Server 2003

» Windows Server 2008

Updates to PGl OpenACC Fortran/C/C++ compilers, include:

» Support for CUDA 5.5 and NVIDIA Kepler K40 GPUs

» Support for AMD Radeon GPUs and APUs

» Native compilation for NVIDIA and AMD GPUs

» Ability within CUDA Fortran to generate dwarf information and debug on the host,
device, or both

» Additional OpenACC 2.0 features supported, including procedure calls (routine
directive), unstructured data lifetimes; create and device resident clauses for the Declare
directive; ability to call CUDA Fortran atomic functions on NVIDIA; and complete run-
time APl support.

» PGl Unified Binary for OpenACC programs across NVIDIA and AMD GPUs

For more information, refer to PGl Accelerator Enhancements.

Full Fortran 2003 and incremental Fortran 2008 features including long integers, recursive I/
O, type statement for intrinsic types, ISO_FORTRAN_ENV and ISO_C_BINDING module
updates as well as support for F2008 contiguous attribute and keyword.

For more information, refer to New or Modified Fortran Functionality.

LAPACK linear agebramath library for shared-memory vector and parallel processors,
version 3.4.2, supporting Level 3 BLACS (Basic Linear Algebra Communication
Subroutines) for use with PGl compilers. Thislibrary is provided in both 64-bit and 32-bit
versions for AMDG64 or Intel 64 CPU-based installations running Linux, OS X, or Windows.
Support for the latest Operating Systems including Windows 8.1.

The -ta and —acc flagsinclude additional options and functionality. The —tp flag
functionality is now primarily for processor selection.

For more information, refer to New or Modified Compiler Options.

A comprehensive suite of new and updated code examples and tutorials covering Fortran
2003, CUDA Fortran, CUDA-x86, OpenACC, OpenMP parallelization, auto-parallelization,
and MPI.

New and Modified Features

2.2. New and Modified Compiler Options

Release 2014 supports a number of new command line options as well as new keyword
suboptions for existing command line options.

2.2.1. Required Suboption

The default behavior of the OpenACC compilers has changed in 14.1 from previous releases. The
OpenACC compilers now issue a compile-time error if accelerator code generation fails. You can
control this behavior with the requi red suboption.

In previous releases, the compiler would issue a warning when accelerator code generation
failed. Then it would generate code to run the compute kernel on the host. This previous behavior
generates incorrect results if the compute kernels are inside a data region and the host and device
memory values are inconsi stent.

—acc=required, ~ta=tesla:required, and ~-ta=radeon:required arethe
defaults.

Y ou can enable the old behavior by using the norequi red suboption with either of the —ta or
—-acc flags.

2.2.2. Accelerator Options

The —ta=nvidia optionis deprecated in PGI 2014. Users are urged to change their build commands
and makefiles to use —ta=teslainplace of —~ta=nvidia.

The —acc option enables the recognition of OpenACC directives. In the absence of any explicit
—ta option, —acc implies-ta=tesla, host.
—ta Option

The -t a option defines the target accelerator and the type of code to generate. Thisflag isvalid
for Fortran, C, and C++ on supported platforms.

Syntax

-ta=tesla(:tesla suboptions),radeon (:radeon suboptions),host

There are three magjor suboptions:

tesla(:tesla suboptions)
radeon (:radeon_ suboptions)
host

Default

Thedefaultis—-ta=tesla, host.

PGl Visual Fortran Release Notes 5

New and Modified Features

Select Tesla Accelerator Target

Usethetesla (:tesla suboptions) option to select the Teslaaccelerator target and,
optionally, to define the type of code to generate.

In the following example, Tedais the accelerator target architecture and the accelerator generates
code for compute capability 3.0:
$ pgfortran -ta=tesla:cc30

The following table lists and briefly defines the suboptions for the -ta=tes1la flag.

Table 1 -ta=tesla Suboptions

Use this suboption... To indicate this...

cc10 Generate code for compute capability 1.0.

ccll Generate code for compute capability 1.1.

ccl12 Generate code for compute capability 1.2.

ccl3 Generate code for compute capability 1.3.

cclx Generate code for the lowest 1.x compute capability possible.
ccl+ Is equivalent to cc1x, cc2x, cc3x.

cc20 Generate code for compute capability 2.0.

cC2x Generate code for the lowest 2.x compute capability possible.
cc2+ Is equivalent to cc2x, cc3x.

cc30 Generate code for compute capability 3.0.

cc35 Generate code for compute capability 3.5.

cc3x Generate code for the lowest 3.x compute capability possible.
ccd+ Is equivalent to cc3x.

[no]debug Enable [disable] debug information generation in device code.
fastmath Use routines from the fast math library.

fermi Is equivalent to cc2x.

fermi+ Is equivalent to cc2+.

[no]flushz Enable[disable] flush-to-zero mode for floating point computations in the GPU code.
keep Keep the kernel files.

kepler Is equivalent to cc3x.

kepler+ Is equivalent to cc3+.

PGl Visual Fortran Release Notes 6

Use this suboption...

New and Modified Features

To indicate this...

llvm

Generate code using the llvm-based back-end.

maxregcount:n

Specify the maximum number of registers to use on the GPU.

nofma Do not generate fused multiply-add instructions.

noL1 Prevent the use of L1 hardware data cache to cache global variables.

pin Set default to pin host memory.

[nojrdc Generate [do not generate] relocatable device code.

[noJrequired Generate [do not generate] a compiler error if accelerator device code cannot be generated.

Select Radeon Accelerator Target

Usethe radeon (: radeon suboptions) option to select the Radeon accelerator target and,
optionaly, to define the type of code to generate.

In the following example, Radeon is the accelerator target architecture and the accel erator
generates code for Radeon Cape Verde architecture;

$ pgfortran -ta=radeon:capeverde

The following table lists and briefly defines the suboptions for the -ta=radeon flag.

Table 2 -ta=radeon Suboptions

Use this suboption...

To indicate this...

buffercount:n Set the maximum number of OpenCL buffers in which to allocate data.
capeverde Generate code for Radeon Cape Verde architecture.
keep Keep the kernel files.
llvm Generate code using the llvm-based back-end.
[noJrequired Generate [do not generate] a compiler error if accelerator device code cannot be generated.
spectre Generate code for Radeon Spectre architecture.
tahiti Generate code for Radeon Tahiti architecture.
Host Option

Usethe host option to generate code to execute OpenACC regions on the host.

The -ta=host flag has no suboptions.

PGl Visual Fortran Release Notes

New and Modified Features

Multiple Targets

Specifying more than one target, such as -ta=tesla, radeon generates code for multiple
targets. When host is one of the multiple targets, such as -ta=tesla, host, theresultis
generated code that can be run with or without an attached accelerator.

2.2.3. Relocatable Device Code

An rdc option isavailable for the —ta and -Mcuda flags that specifies to generate relocatable
device code. Starting in PGI 14.1 on Linux and in PGI 14.2 on Windows, the default code
generation and linking mode for NVIDIA-target OpenACC and CUDA Fortranis rdc,
relocatable device code.

Y ou can disable the default and enable the old behavior and non-rel ocatable code by specifying
any of thefollowing: —ta=tesla:nordc, -Mcuda=nordc, or by specifying any 1.x compute
capability or any Radeon target.

2.2.4. -tp Modifications

The —tp switch now truly indicates the target processor. In prior releases a user could use
the —tp flag to also indicate use of 32-bit or 64-bit code generation. For example, the -tp
shanghai-32 flag was equivalent to thetwo flags: -tp shanghai and -m32.

The -tp flag interacts with the -m32 and -m64 flagsto select atarget processor and 32-bit or
64-bit code generation. For example, specifying -tp shanghai -m32 compiles 32-bit code
that is optimized for the AMD Shanghai processor, while specifying -tp shanghai -m64
compiles 64-bit code.

Specifying —tp shanghai without a-m32 or -m64 flag compiles for a 32-bit target if the
PGI 32-bit compilers are on your path, and for a 64-hit target if the PGl 64-bit compilers are on
your path.

2.3. New and Modified Fortran Functionality

PVF 2014 contains additional Fortran functionality such as full Fortran 2003 and incremental
Fortran 2008 features including long integers, recursive 1/0, type statement for intrinsic types,
aswell asISO_FORTRAN_ENV and ISO_C BINDING module updates and support for F2008
contiguous attribute and keyword.

2.3.1. Contiguous Pointers

PGI 2014 supportsthe cont iguous éttributeaswell asthe is contiguous intrinsicinquiry
function.

contiguous Attribute

Here is an example of a declaration using the contiguous keyword:

real*4, contiguous, pointer, dimension(:,:) :: arrl ptr, arr2 ptr, arr3 ptr

PGl Visual Fortran Release Notes 8

New and Modified Features

It isthe responsibility of the programmer to assure proper assignment and use of contiguous
pointers. Contiguous pointers can result in improved performance, such as this example of using
contiguous pointers as the arguments to the matmul intrinsic function.

arr3 ptr = matmul (arrl ptr,arr2 ptr)

is_contiguous Intrinsic Inquiry Function

Theis contiguous () intrinsic function takes a pointer argument and returns a value of type
logical. It returnstrueif the pointer is associated with a contiguous array section, false otherwise.

2.4. New and Modified Runtime Library Routines

PGI 2014 supports new runtime library routines associated with the PGI Accelerator compilers.

For more information, refer to Using an Accelerator in the PGl Visua Fortran User's Guide.

2.5. PGl Accelerator Enhancements

2.5.1. OpenACC Directive Summary

PGI now supports the following OpenACC directives:

Parallel Construct

Defines the region of the program that should be compiled for parallel execution on the
accelerator device.

Kernels Construct

Defines the region of the program that should be compiled into a sequence of kernels for
execution on the accelerator device.

Data Directive

Defines data, typically arrays, that should be alocated in the device memory for the duration of
the data region, whether data should be copied from the host to the device memory upon region
entry, and copied from the device to host memory upon region exit.

Enter Data and Exit Data Directives

The Enter Data directive defines data, typically arrays, that should be allocated in the device
memory for the duration of the program or until an exit data directive that deallocates the data,
and whether data should be copied from the host to the device memory at the enter data directive.

The Exit Data directive defines data, typically arrays, that should be deallocated in the device
memory, and whether data should be copied from the device to the host memory.

PGl Visual Fortran Release Notes 9

New and Modified Features

Host_Data Construct

Makes the address of device data available on the host.

Loop Directive

Describes what type of parallelism to use to execute the loop and declare loop-private variables
and arrays and reduction operations. Appliesto aloop which must appear on the following line.

Combined Parallel and Loop Directive

Is a shortcut for specifying aloop directive nested immediately inside an accelerator parallel
directive. The meaning isidentical to explicitly specifying aparallel construct containing aloop
directive.

Combined Kernels and Loop Directive

Is a shortcut for specifying aloop directive nested immediately inside an accelerator kernels
directive. The meaning isidentical to explicitly specifying a kernels construct containing a loop
directive.

Cache Directive

Specifies array elements or subarrays that should be fetched into the highest level of the cache for
the body of aloop. Must appear at the top of (inside of) the loop.

Declare Directive

Specifiesthat an array or arrays are to be allocated in the device memory for the duration of the
implicit data region of afunction, subroutine, or program.

Specifies whether the data values are to be transferred from the host to the device memory upon
entry to the implicit data region, and from the device to the host memory upon exit from the
implicit data region.

Creates avisible device copy of the variable or array.

Update Directive

Used during the lifetime of accelerator data to update all or part of a host memory array with
values from the corresponding array in device memory, or to update all or part of adevice
memory array with values from the corresponding array in host memory.

Routine Directive

Used to tell the compiler to compile a given procedure for an accelerator as well asthe host. Ina
file or routine with a procedure call, the routine directive tells the implementation the attributes of
the procedure when called on the accelerator.

PGl Visual Fortran Release Notes 10

New and Modified Features

Wait Directive

Specifiesto wait until all operations on a specific device async queue or al async queues are
complete.

For more information on each of these directives and which clauses they accept, refer to the
Using an Accelerator section in the PGI Visual Fortran User's Guide.

2.5.2. CUDA Toolkit Version

The PGI Accelerator x64+accelerator compilers with OpenACC and CUDA Fortran compilers
support the CUDA 5.5 toolkit as the default. The compilers and tools also support the CUDA 6.0
Toolkit.

To specify the version of the CUDA Toolkit that is targeted by the compilers, use one of the
following properties:

For OpenACC Directives
Usethe property: Fortran | Target Accelerators | Tesla: CUDA Toolkit

When Target NVIDIA Teslais set to "Yes', you can specify the version of the CUDA Toolkit
targeted by the compilers.

Default: The compiler selectsthe default CUDA Toolkit version, which is 5.5 for this
release.

5. 5: Specifies use of toolkit version 5.5.
6. 0: Specifies use of toolkit version 6.0.

Selecting one of these propertiesis equivalent to adding the associated switch to the PVF
compilation and link lines:
-ta=teslal[:cuda5.5 | cuda6.0]

For CUDA Fortran Construct
Usethe property: Fortran | Language | CUDA Fortran Toolkit

When Enable CUDA Fortran is set to "Yes", you can specify the version of the CUDA Toolkit
targeted by the compilers.

Default: The compiler selects the default CUDA Toolkit version, which is 5.5 for this
release,

5. 5: Specifies use of toolkit version 5.5. Thisis the default.
6. 0: Specifies use of toolkit version 6.0.

Selecting one of these propertiesis equivalent to adding the associated switch to the PVF
compilation and link lines:
—-Mcuda [=cuda5.5 | cuda6.0]

PGl Visual Fortran Release Notes 1

New and Modified Features

2.5.3. Fortran Derived Types in OpenACC

Static and allocatable arrays of derived type have long been supported with the PGl Accelerator
compilers.

module mpoint

type point
real :: x, y, z
end type
type (point) :: base(1000)

end module

subroutine vecaddgpu(r, n)
use mpoint
type (point) :: r(:)
integer :: n
!Sacc parallel loop present (base) copyout (r(:))
do i=1, n
r(i)s%sx base (1) $x

H
-
s
=

11|

i sqgqrt (base (i) $y*base (i) %y + base (i) %z*base(i)%z)
r(i) %z 0
enddo

end subroutine

PGI 14.4 includes support for array members of derived types, including static arrays and
alocatable arrays within a derived type. In either case, the entire derived type must be placed in
device memory, by putting the derived type itself in an appropriate data clause. For this release,
the derived type variable itself must appear in adata clause, at least apresent clause, for any
compute construct that directly uses the derived type variable.

module mpoint

type point

real :: base(1000)

integer :: n

real, allocatable, dimension(:) :: x, y, z
end type
type (point) :: A

end module

subroutine vecaddgpu ()

integer :: i

!'Sacc parallel loop copyin(A) copyout (A%x,A%y,A%z)
doi=1, n

A%x (i) = AS%Sbase (i)

A%y (i) = sqgrt(A%base(i))

A%z (i) = 0

enddo

end subroutine

In this example, the derived type A is copied to the device, which copies the static array member
Asbase and the scalar A%n. The alocatable array members As$x, A%y and A%z are then copied
to the device. The derived type variable A should be copied before its alocatable array members,
either by placing the derived typein an earlier data clause, or by copying or creating it on the
devicein an enclosing data region or dynamic datalifetime. If the derived typeis not present

on the device when the alocatable array members are copied, the accesses to the allocatable
members, such asA%x (i), on the device will be invalid, because the hidden pointer and
descriptor values in the derived type variable will not get updated.

PGl Visual Fortran Release Notes 12

New and Modified Features

Be careful when copying derived types containing all ocatable members back to the host. On the
device, the allocatable members will get updated to point to device memory. If the whole derived
type gets copied back to the host, the allocatable members will be invalid on the host.

When creating or copying aderived type on the device, the whole derived typeis allocated.
There is no support for allocating a subset of a derived type, or only allocating space for asingle
member.

Derived types and allocatable members can be managed using dynamic data directives as well:

module mpoint
type point
integer :: n
real, dimension(:), allocatable :: x, vy, z
end type
contains
subroutine move to device(A)
type (point) :: A
!Sacc enter data copyin (A)
!'Sacc enter data create (A%x, A%y, A%z)
end subroutine

subroutine move off device(A)
type (point) :: A
!Sacc exit data copyout (A%x, A%y, A%z)
!Sacc exit data delete (R)
end subroutine
end module

subroutine vecaddgpu(A, base)
use mpoint

type (point) :: A

real :: base(:)

integer :: 1

!Sacc parallel loop present (A,base)
doi=1, n

A%x (i) = base (i)

A%y (i) = sqgrt(base (i))

A%z (i) = 0

enddo

end subroutine

Arrays of derived type, where the derived type contains all ocatable members, have not been
tested and should not be considered supported for this release. That important feature will be
included in an upcoming release.

PGl Visual Fortran Release Notes 13

Chapter 3.
SELECTING AN ALTERNATE COMPILER

Each release of PGI Visua Fortran contains two components — the newest release of PVF and
the newest release of the PGl compilers and tools that PV F targets.

When PVF isinstalled onto a system that contains a previous version of PVF, the previous
version of PVF isreplaced. The previous version of the PGl compilers and tools, however,
remains installed side-by-side with the new version of the PGI compilers and tools. By default,
the new version of PVF will use the new version of the compilers and tools. Previous versions of
the compilers and tools may be uninstalled using Control Panel | Add or Remove Programs.

There are two ways to use previous versions of the compilers:

» Useadifferent compiler release for asingle project.
» Useadifferent compiler release for all projects.

The method to use depends on the situation.

3.1. For a Single Project

To use adifferent compiler release for asingle project, you use the compiler flag -V <ver>to
target the compiler with version <ver>. This method is the recommended way to target a different
compiler release.

For example, -V 13.8 causes the compiler driver to invoke the 13.8 version of the PGI compilers
if these areinstalled.

To use this option within a PVF project, add it to the Additional options section of the Fortran
| Command Line and Linker | Command Line property pages.

3.2. For All Projects

Y ou can use a different compiler release for all projects.

TheTools | Options diaog within PVF contains entries that can be changed to use
aprevious version of the PGl compilers. Under Projects and Solutions | PVF

PGl Visual Fortran Release Notes 14

Selecting an Alternate Compiler

Directories, there are entries for Executable Directories, Include and Module Directories,
and Library Directories.

» For the x64 platform, each of these entriesincludes aline containing $ (PGIToolsDir).
To change the compilers used for the x64 platform, change each of the lines containing
$ (PGIToolsDir) tocontainthe pathtothedesired bin, include, and 1ib directories.
» For the 32-bit Windows platform, these entries include a line containing
$ (PGIToolsDir) on 32-bit Windows systemsor $ (PGIToolsDir32) on 64-bit
Windows systems. To change the compilers used for the 32-bit Windows platform, change
each of thelines containing $ (PGIToolsDir) or $ (PGIToolsDir32) tocontainthe
path to thedesired bin, include, and 1ib directories.

Warning: The debug engine in PVF 2014 is not compatible with previous releases. If you use Tools |
Options totarget a release prior to 2014, you cannot use PVF to debug. Instead, use the —V method
described earlier in this section to select an alternate compiler.

PGl Visual Fortran Release Notes 15

Chapter 4.
DISTRIBUTION AND DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want to
distribute it to users who need to run it on avariety of systems. This section addresses how to
effectively distribute applications built using PGl compilers and tools.

4.1. Application Deployment and Redistributables

Programs built with PGI compilers may depend on runtime library files. These library files must
be distributed with such programs to enable them to execute on systems where the PGl compilers
arenot installed. There are PGI redistributable files for all platforms. On Windows, PGl also
supplies Microsoft redistributable files.

4.1.1. PGl Redistributables

PGI Visual Fortran includes redistributable directories which contain al of the PGI dynamically
linked libraries that can be re-distributed by PV F 2014 licensees under the terms of the PGI
End-User License Agreement (EULA). For reference, a copy of the PGI EULA in PDF formis
included in the release.

The following paths for the redistributable directories assume 'C : ' is the system drive.
» On a32-bit Windows system, the redistributable directory is:

C:\Program Files\PGI\win32\14.4\REDIST
» On ab64-bit Windows system, there are two redistributable directories:

C:\Program Files\PGI\win64\14.4\REDIST
C:\Program Files (x86) \PGI\win32\14.4\REDIST

The redistributable directories contain the PGI runtime library DLLsfor all supported targets.
This enables users of the PGI compilers to create packages of executables and PGI runtime
libraries that execute successfully on ailmost any PGI-supported target system, subject to the
requirement that end-users of the executable have properly initialized their environment to use the
relevant version of the PGI DLLs.

PGl Visual Fortran Release Notes 16

Distribution and Deployment

4.1.2. Microsoft Redistributables

PGI Visual Fortran includes Microsoft Open Tools, the essential tools and libraries required to
compile, link, and execute programs on Windows. PVF 2014 installed on Windows 7, 8, 8.1,
and Server 2012 includes the latest version, version 12, of the Microsoft Open Tools. PVF 2014
installed on Windows XP, Server 2003, and Server 2008 includes the Microsoft Open Tools
version 10.

The Microsoft Open Tools directory contains a subdirectory named REDIST. PGl 2014
licensees may redistribute the files contained in this directory in accordance with the terms of the
associated license agreements.

On Windows, runtime libraries built for debugging (e.g. msvcrtdand 1 ibcmtd) are not included
with PGl Visual Fortran. When a program is linked with —g for debugging, the standard non-debug
versions of both the PGl runtime libraries and the Microsoft runtime libraries are always used. This
limitation does not affect debugging of application code.

PGl Visual Fortran Release Notes 17

Chapter 5.
TROUBLESHOOTING TIPS AND KNOWN
LIMITATIONS

This section contains information about known limitations, documentation errors, and
corrections. Wherever possible, awork-around is provided.

For up-to-date information about the state of the current release, visit the frequently asked
questions (FAQ) section on pgroup.com at www.pgroup.com/support/fag.htm

5.1. PVF IDE Limitations

Theissuesin this section are related to | DE limitations.

>

When moving a project from one drive to another, al . d files for the project should be
deleted and the whole project should be rebuilt. When moving a solution from one system to
another, also delete the solution's Visual Studio Solution User Optionsfile (. suo).

The Resources property pages are limited. Usethe Resources | Command Line
property page to pass arguments to the resource compiler. Resource compiler output must
be placed in the intermediate directory for build dependency checking to work properly on
resource files.

Dragging and dropping filesin the Solution Explorer that are currently open in the Editor
may result in afile becoming "orphaned." Close files before attempting to drag-and-drop
them.

5.2. PVF Debugging Limitations

The following limitations apply to PV F debugging:

>

Debugging of unified binariesis not fully supported. The names of some subprograms are
modified in the creation of the unified binary, and the PV F debug engine does not translate
these names back to the names used in the application source code. For more information on
debugging a unified binary, refer to www.pgroup.com/support/tool s.htm.

In some situations, using the Watch window may be unreliable for local variables. Calling a
function or subroutine from within the scope of the watched local variable may cause missed

PGl Visual Fortran Release Notes 18

www.pgroup.com/support/faq.htm
www.pgroup.com/support/tools.htm

Troubleshooting Tips and Known Limitations

events and/or false positive events. Local variables may be watched reliably if program scope
does not leave the scope of the watched variable.

» Rolling over Fortran arrays during a debug session is not supported when Visual Studioisin
Hex mode. Thislimitation a so affects Watch and Quick Watch windows.

Workaround: deselect Hex mode when rolling over arrays.

5.3. PGI Compiler Limitations

» Takeextracare when using -Mprof with PVF runtime library DLLs. To build an
executable for profiling, use of the static librariesis recommended. The static libraries are
used by default in the absence of -Bdynami c.

» Using -Mpfi and —-mp together is not supported. The -Mp£i flag disables —-mp at compile
time, which can cause runtime errorsin programs that depend on interpretation of OpenMP
directives or pragmas. Programs that do not depend on OpenMP processing for correctness
can still use profile feedback. Using the —Mp f o flag does not disable OpenM P processing.

» The-1i8 option can make programs incompatible with the ACML library; use of
any INTEGER* 8 array size argument can cause failures with these libraries. Visit
devel oper.amd.com to check for compatible ACML libraries.

» ACML ishuilt using the -fastsse compile/link option, which includes -

Mcache align. When linking with ACML on 32-bit Windows, all program units must
be compiled with -Mcache align, or an aggregate option such as -fastsse, which
incorporates -Mcache align. Thisprocessis not an issue on 64-bit targets where the
stack is 16-byte aligned by default. Y ou can use the lower-performance, but fully portable,
BLAS and LAPACK libraries on CPUs that do not support SSE instructions.

5.4. CUDA Fortran Toolkit Issues

The CUDA 5.5 Toolkit is set as the default in PGI 14.4. To use the CUDA 5.5 Toolkit, first
download the CUDA 5.5 driver from NVIDIA at www.nvidia.com/cuda.

Y ou can compile with the CUDA 6.0 Toolkit either by adding the -ta=tesla:cuda6.0
option to the command line or by adding set CUDAVERSION=6.0 tothesiterc file

pgaccelinfo printsthe driver version asthefirst line of output. For a 6.0 driver, it prints:
CUDA Driver Version 6000

5.5. OpenACC Issues

This section includes known limitations in PGI's support for OpenACC directives.

PGI plans to support these features in afuture release, though separate compilation and extern
variables for Radeon will be deferred until OpenCL 2.0 is released.

PGl Visual Fortran Release Notes 19

developer.amd.com
http://www.nvidia.com/cuda

Troubleshooting Tips and Known Limitations

ACC routine directive limitations

» The routine directive haslimited support on AMD Radeon. Separate compilation is not
supported on Radeon, and selecting —ta=radeon disables rdc for —~ta=tesla.

» Thebind clauseonthe routine directiveisnot supported.

» Thenohost clauseonthe routine directiveis not supported.

» Extern variables may not be used with acc routine procedures.

» Reductionsin procedureswith acc routine are not fully supported.
» Fortran assumed-shape arguments are not yet supported.

Clause Support Limitations

» Thewait clause on OpenACC directivesis not supported.
» Theasync clauseonthewait directiveisnot supported.
» Thedevice type clauseisnot supported on any directive.

5.6. Corrections

A number of problems are corrected in this release. Refer to www. pgroup.com/support/

release tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in
recent releases of the PGl compilers and tools. This table contains a summary description of each
problem as well asthe version in which it was fixed.

PGl Visual Fortran Release Notes 20

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm

Chapter 6.
CONTACT INFORMATION

Y ou can contact PGI at:

Two Centerpointe Drive, Suite 320
Lake Oswego, OR 97035 USA

Or electronically using any of the following means:

Fax: +1-503-682-2637

Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm

All technical support is by e-mail or submissions using an online form at:
http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

PGl Visual Fortran Release Notes 21

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

PGI Compilers and Tools | PVF-RN-144

	Table of Contents
	List of Tables
	PVF Release Overview
	1.1. Product Overview
	1.2. Microsoft Build Tools
	1.3. Terms and Definitions

	New and Modified Features
	2.1. What's New in Release 2014
	2.2. New and Modified Compiler Options
	2.2.1. Required Suboption
	2.2.2. Accelerator Options
	2.2.3. Relocatable Device Code
	2.2.4. –tp Modifications

	2.3. New and Modified Fortran Functionality
	2.3.1. Contiguous Pointers

	2.4. New and Modified Runtime Library Routines
	2.5. PGI Accelerator Enhancements
	2.5.1. OpenACC Directive Summary
	2.5.2. CUDA Toolkit Version
	2.5.3. Fortran Derived Types in OpenACC

	Selecting an Alternate Compiler
	3.1. For a Single Project
	3.2. For All Projects

	Distribution and Deployment
	4.1. Application Deployment and Redistributables
	4.1.1. PGI Redistributables
	4.1.2. Microsoft Redistributables

	Troubleshooting Tips and Known Limitations
	5.1. PVF IDE Limitations
	5.2. PVF Debugging Limitations
	5.3. PGI Compiler Limitations
	5.4. CUDA Fortran Toolkit Issues
	5.5. OpenACC Issues
	5.6. Corrections

	Contact Information

