[Compilers and Tools

=2

_,Z.

TABLE OF CONTENTS

o Y 2T T T xviii
AUGIENCE DESCIIPHON. ...ttt bbb bbbt bbb s e st bbb s s e n et e bt et s s xviii
Compatibility and Conformance t0 STaNAAGS............corriiiir e Xiii
OFGANIZALION.......cocvtcecveiet ettt s bbb bbb s et b et b s bbb st bbb s s bbbt bbb bbb bbb s bt nan XiX
Hardware and SOftware CONSIAINES.........c.ooierriirirrierees sttt XX
CONVEINTIONS.....cv.ceeseeiit ettt ettt bbb £ £ bbb e bbb bbbttt b et en b s XX
=T 10T XX
RElAtEA PUDIICATIONS........vieietiici ettt XXii

Chapter 1.Fortran Data TYPES.......ccuueeerereismmnsissssesese s sssss s s s s e s ss s s s ssssssssesese s s sssssnsssssssssnsssasasas 1
1.1, FOMIAN DAA TYPES .o ieiieiitsiiee ettt s s8££t r bbb 1

111, FOMIAN SCAIAIS. .. .evviiieicieiete ettt et 1
1.1.2. FORTRAN 77 Aggregate Data Type EXIENSIONS........ccoveiiiiriciniinieinerceinesee e 3
1.1.3. Fortran 90 Aggregate Data Types (DEMVEA TYPES).......curiurrrruierrieiiineieireieseiseissessstsse s sssssssessessssesssssssesns 4

Chapter 2.Command-Line Options REfEIENCE.........cocririiirrninnirinis s 5

2.1. PGl Compiler Option SUMMAIY........ccoieuiiiiiiiiscieiicte ettt eas sttt b bbbt bbbt nes 5
2.1.1. BUIld-Related PGl OPtONS.......ceeiieeceeiieerreieirieie sttt st ees et sese sttt es s e 5
2.1.2. PGI Debug-Related Compiler OPtiONS.........ccccriiiciiiieicis ettt sb st 7
2.1.3. PGI Optimization-Related Compiler OPtioNS........c.c.orurrirerricrreerreee st 8
2.1.4. PGI Linking and Runtime-Related Compiler OptionS...........cccveriieinicicniee e 8

2.2. Generic PGl COMPIIEr OPHONS.........cuoiieiriieeeirieieir ettt s bbbt 9
2.2, bbb bbbt bbbt 9

DEFAUIL. ..ottt 9
USBQE. ..ttt R AR Rt 9
[T=T o740 (1o] o TP 9
REIGLEA OPHONS......ceceeecee bbb 9
2.2.2. ..o bbb bbb 9
D) 1 TR 9
U= oL TSP 9
DTt o] o PSPPSR 9
T (=0 o o110 3 TR 10
R e oo 20T 10
DIEFAUIL. ... et 10
1= TSP 10
USBQE. .. ettt 10
[1=TTor 1010} o TP 10
REIGLEA OPHONS. ... et b bbb 1
2,24, —BAYNAMIC......etieitritiei ettt R bRttt 11
D) = 1 TSRS 1"
USBQE. ...ttt ettt sttt bbbt h et R bbb e R R R AR ARt A AR AR bbbt e e ARttt t st e e s 1"
DTt o] o TP 1"

PVF Reference Guide i

REIAIEA OPHONS. ...ttt s bbb s ettt e 11

2.2.5. mBSHAHIC. ...t R AR R Rttt 12
DBIAUIL. ... bR 12
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 12
DIBSCIIPHON. ... vttt bR 12
REIGIEA OPHONS......veviii et ettt a bbbt b e st ettt et n s 12

2.2.6. —BSHAHC_PGi. v eeereeeeeeeisciee R 12
DIBIAUIL. ...ttt 12
S0 ettt 12
DTt oo TR TROTTRRRPN 13
REIAIEA OPHONS. ... ettt ettt nne 13

A R o) 1117 o TS 13
1) 7 | TSP 13
0T o TP 13
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 13
REIAIEA OPHONS. ...ttt 14

2.2.8. =GRS AR ARt 14
I 7 RSP 14
USBGE 1+ ettt s AR R R SRR R E bR 14
DIBSCIIPHON. ...ttt 14
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 14

2.2.9. 0ottt bR bbb R bR eSS R b RS b RS R bR s bR n bt s bt n b s 14
DIBIAUIL. ...t bRt 14
USBQE.... ettt 14
DT Tof oo TR 14
REIAIEA OPHONS. ...ttt s bbb et en et n e 15

2,200, 2D bbb bbb bbb bbbttt 15
SYMEAX 1+ttt eE £ AR R £ AR R SRR RS eR R £ AR e Rk e ARttt r s 15
I 7 TR 15
USBGE 1.ttt R R R AR AR bR E bRt R et 15
DIBSCIIPHON. ...ttt 15
REIAIEA OPHONS.vvii sttt b bbb ettt a s 16

2. 200, —OIYIUN bbb bbb 16
DIBIAUIL. ... 16
USBQE.... ettt 16
DT Tof 010N 16
REIAIEA OPHONS. ...ttt e et s et e e e e ee et ennas 16

o 4 (o [o3PS 16
DIBFAUIE. ...ttt R R R s Rt e e n e n e 16
USBGE. ...ttt R bbb 16
DESCIIPHION. ...ttt et ettt bbb R bbb AR b e e s AR bbb bbb e e R bbbt benen s e e 16
REIALEA OPHONS......cvcicicee bbb bbb bbbt 16

At X TR OO ST OT P OTU ST OTUSTTOTOT 17

PVF Reference Guide i

USBQE.... ettt 17
T4 1o] 3T 17
REIGIEA OPHONS......vviiise ettt bbb bbb b b s st ettt et n s 17
2204, —F oAb bR bR bbb bbbt 17
DIBIAUIL. ...t R 17
USBQE. .. ettt 17
DTt o103 TR TTOTTRRRPN 17
REIALEA OPHONS ... et bbb bbbt 17
2. 2.1, ST bRttt 18
I 7 | TSRS 18
U0 1 TSR TTTTSTRTT 18
LS4 (1o] OSSP 18
REIAIEA OPHIONS .. .vuiiciiieciei ettt s b s bbb n bbbt snnes 18
T -1 (1T TSP SP 18
2207, —flAGCNECK. ...ttt 18
DBIAUIL. ...ttt bbbt 19
USBQE. .. ettt 19
DESCIIPHION. ...ttt et bbb bRt b A A e AR bbb bbbt ettt s n e s e 19
REIALEA OPHONS...... ettt 19
2,218, —HlAGS. v vreereeirei et R ARt 19
I 7 | TR 19
U0 1TSS 19
0TS0 1o} OO T TSP 19
T (=0 0110 3 TP 19
2,200, 0ttt R eSS R R R SRR bR R bR e bbbt ettt s 19
) 7 | TR 19
U= OSSO 20
DIBSCIIPHON. ...ttt 20
REIAIEA OPHONS.vvii et ettt a bbb bbb s ettt nen s 20
2.2.20. —gOPE ettt bbb E £ bbbt b bbb 20
DIBIAUIL. ...t 20
S0ttt 20
DT Tof o103 TP 20
REIAIEA OPHONS. ... ettt ettt s et ettt nnes 21
2.2.270. —NBIP. ettt bbbt 21
1) 7 | OSSP 21
0T o TR 21
DESCTIPHION. ...ttt e b bbb b s b bbb AR b s A AR bbb bbb e e R bbbttt n s s e s 21
REIAIEA OPHONS.... et bbbt 22
2.2.22. LR E SRR b R bbbttt nn 22
) 7 TR 22
1 CH USSP 22

PVF Reference Guide iv

LTSy (1o] OO U PSP 23
REIAIEA OPHONS .. .vuiiciiieciei ettt ettt s bbbt a e et n et s nnis 23
2.2.23. =12, =i, —i8....eeiieeeee et Rt 23
I 7 TP 23
USBGE 1.ttt R R R AR bR b bRt 24
DIBSCIIPHON. ...ttt 24
REIAIEA OPHONS.viii et b bR bbb bt s ettt n et s 24
2.2.24, —K<IlAG> ..ottt b bbbttt a et 24
DIBIAUIL. ... 24
SYNMEAX .1ttt R bR h SRR SRR 24
U0 1 TSR TTTTSTRTT 25
LS4 (1o] OSSP 25
REIAIEA OPHIONS .. .vuiiciiieciei ettt s b s bbb n bbbt snnes 25
2.2.25, wTKEEPINK. ...ttt bbbt bbbt s R b bbbt b s st ettt bt s 26
USBGE. ...ttt SRR 26
DESCTIPHION. ...ttt et b et bbb bbb b bR R e AR R bbb bbb s e Rt ettt b et n e s e s 26
REILEA OPHONS...... ettt 26
2.2.26. LR RS RS E et bbbttt s 26
I 7 OO STT 26
SYMEAX 11ttt ettt bbb bR A bbb R b bR bt A b bt b s bbbt b et bns 26
USBQE... ettt 26
DT o 010 TR 27
REIAIEA OPHIONS. ...ttt st et e e et en et 27
2.2.27. —IIOTAIY> ..ot 27
SYNEAX .11+ttt S SRS RS SER R 27
DIBSCIIPHION. ...t 27
REIGIEA OPHONS......vcviiiectce bbbttt bbbttt b b s s bbbt et n s 27
2.2.28. M.t bbbt bRt b R bRt bbbttt n bbbt b s 27
2.2.29. mIMleiiiceeee ettt bbb RS R bR bbbttt s 27
) 7 TP 28
USBE. 1. ettt ettt E bR AR bbbt 28
DIBSCIIPHON. ...ttt 28
REIAIEA OPHONS. ...ttt b bbbttt aen s 28
2.2.30. mMB2..c ettt bbb bR bbbt b ettt b s 28
U0 1= TSP 28
LS4 (1o] TSP 28
REIAIEA OPHIONS.....vuivciiiictsi ettt s s et b bbbttt nnes 28
2.2.30. mIMB4.....ooeeeceeiete ettt R R bR R bbbttt nn 28
USBGE. ...ttt R bbb 28
DESCIIPHION. ...ttt et ettt bbb R bbb AR b e e s AR bbb bbb e e R bbbt benen s e e 29
REIALEA OPHONS......cvcicicee bbb bbb bbbt 29
2.2.32. —IMSPGIIAG> ... vttt bbbttt 29

PVF Reference Guide v

) 7 | TSR S T 34
07 o TP 34
DESCIIPHION. ...ttt et bbb bbb bbb bbb s AR A bbb bbb s e Rt ettt b s n e s e s 34
REIGLEA OPHONS...... ettt bbbt 34
2.2.34. —mp[=all, align,bind,[NOJNUMA].........oiuiiriiieiriiereer e 34
) 7 TP 34
USBGE. 1. ettt ettt bbb R R R bbb bbb 35
DIBSCIIPHON. ...ttt 35
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 35
2.2.35. —NOSWITCNEITON.e.ceeieeeeeeiee ettt es e a et s e s st e s et et s e e en st esnnen 35
DIBIAUIL. ...t 35
USBQE.... ettt 36
0o 010 R TTSTRRRRP 36
REIGIEA OPHONS......ovii sttt ettt bbb a bbbt et b st ettt et n s 36
2.2.36. —ORIBVEIZ ..ottt e R bR R ettt R bt 36
DBIAUIL. ...ttt bbbt 36
SNBSS SRR R SRR 36
USBGE 1+ ettt s AR R R SRR R E bR 36
DIBSCIIPHON. ...ttt 36
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 38
2.2.37. —0.uiieietete ettt R e R SRR SRR bbb s R bR n Rttt n et n st ns 38
DIBIAUIL. ...t bRt 38
SYNMEAX .1ttt E SRS R RS 38
U0 1= TSP 38
REIAIEA OPHONS. ...ttt s bbb et en et n e 38
2.2.38. PGttt bbb bbb A S b RS b s b e A bbb bbbttt nt s 38
SYMEAX 1+ttt eE £ AR R £ AR R SRR RS eR R £ AR e Rk e ARttt r s 39
DIBSCIIPHON. ...ttt 39
REIAIEA OPHONS.vvii et ettt a bbb bbb s ettt nen s 40
2.2.39. —-PRUAANTIC. ... ettt b bR bbbt 41
DIBIAUIL. ...t 41
S0ttt 41
REIAIEA OPHONS. ...ttt b bbbttt aen s 41
2.2.40. —PGCHHIDS ...ttt 41
DIBIAUIL. ... bRt 41
USBQE.... ettt 41
LTS0S TSP 41
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 41
2,287, —POITTIDS. ...t 41
DBIAUIL. ...ttt bRt 41
USBQE. .. ettt 42
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 42

PVF Reference Guide Vi

REIAIEA OPHONS. ...ttt s bbb s ettt e 42

2,242, ~PGFOONDS. ... evreersiteeieiet sttt ettt 42
DBIAUIL. ... bR 42
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 42
DIBSCIIPHON. ... vttt bR 42
REIGIEA OPHONS......veviii et ettt a bbbt b e st ettt et n s 42

2,243, T4 AN =T8RSR R ARt n e 42
USBGE. 1. ettt ettt bbb R R R bbb bbb 42
DIBSCIIPHON. ...ttt 43
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 43

2244, —ICuoooeeeeiei ettt R R R R bR R bR bbbt ettt et s 43
RS ORI 43
1) 7 | TSP 43
U1 RTTTSTSTRRTT 43
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 43
REIAIEA OPHONS. ...ttt 43

224D, =S bR s bRt bbbt 43
I 7 RSP 44
USBGE 1+ ettt s AR R R SRR R E bR 44
DIBSCIIPHON. ...ttt 44
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 44

T 110 TSP 44
DIBIAUIL. ...t bRt 44
USBQE.... ettt 44
DT Tof oo TR 44
REIAIEA OPHONS. ...ttt s bbb et en et n e 44

2.2 47, =SHlBNE.....ocveiceceeice et R bR ARttt sttt 44
DIBFAUIE. ...ttt R SRR Rt 44
USBQE. .. ettt 45
DESCTIPHION. ...ttt et bbb s At R AR R bbb bbb st ettt s s e s e 45
REIALEA OPHONS...... et bbb 45

2,248, —SHACK.evtteeete et bR R bbbt 45
I 7 TS 45
YA 1.ttt ettt b bbb bR bbb bR b bR bt bR b st b b n bbbt bns 45
USBQE.... ettt 45
DT Tof 010N 45
REIAIEA OPHONS. ...ttt e et s et e e e e ee et ennas 46

2.2.49. —ta=tesla(tesla_suboptions),radeon(:;radeon_suboptions),N0st...........cccceueeiicriieniccsse e 46
DIBFAUIE. ...ttt R R R s Rt e e n e n e 46
USBGE. ...ttt R bbb 46
DESCIIPHION. ...ttt et ettt bbb R bbb AR b e e s AR bbb bbb e e R bbbt benen s e e 47
MUIEIPIE TAFGES. ... cv.ceircece ettt 48
REIOCALADIE DEVICE COUE.........iviieireiiieiieiseieiet ettt 49

PVF Reference Guide vii

LLVM/SPIR and Native GPU Code GENEIALION..........ccccviviieeeeerieeeeesse ettt sttt en st nanas 49

DWARF DebUgging FOMMALS.........cccuiieiiiiieieirtiei ettt 49
REIAIEA OPHONS .. .vuiiciiieciei ettt ettt s bbbt a e et n et s nnis 49
2.2.50. —HiMB..ttreteieieteee ettt s bR bbbttt 49
I 7 TP 50
USBGE 1.ttt R R R AR bR b bRt 50
DIBSCIIPHON. ...ttt 50
REIAIEA OPHONS.viii et b bR bbb bt s ettt n et s 50
2.2.51. D <EAFGEt>[IArGEL...] oo e 50
DIBIAUIL. ... 50
SYNMEAX .1ttt R bR h SRR SRR 51
U0 1 TSR TTTTSTRTT 51
LS4 (1o] OSSP 51
T (=0 o o110 3T 53
2.2.52. —[NOJACEDACK.cueueueieiiiiciccctcte ettt sttt s 53
I 7 | TP 53
1 - CH TSP 53
USBQE. .. ettt 53
DESCIIPHION. ...ttt et bbb bRt b A A e AR bbb bbbt ettt s n e s e 53
REIALEA OPHONS...... ettt 53
2.2.53. —Ueuiiieteee bR E £ RS R R R R RS R b R Rttt s 53
I 7 | TR 53
R3] OO TP 54
USBQE.... ettt 54
DT Tof oo TR 54
REIAIEA OPHONS. ...ttt s bbb et en et n e 54
2.2.54, U AR bbb bbbt 54
SYMEAX 1+ttt eE £ AR R £ AR R SRR RS eR R £ AR e Rk e ARttt r s 54
USBQE. .. ettt 54
DESCTIPHION. ...ttt et bbb s At R AR R bbb bbb st ettt s s e s e 54
REIALEA OPHONS...... et bbb 54
2.2.55. —V[relBaSE_NUMDEI ...ttt s ettt bbbttt n s s e 55
I 7 TS 55
U0 1= TSP ETTTTTRPPTN 55
TS0 1o] TSR 55
REIAIEA OPHONS.vviiiccce ettt R bbbttt ettt 55
2.2.5B. Vet R bR bR b AR bR bRttt 55
DIBIAUIL. ... 55
U= OSSR 56
DIBSCIIPHION. ...ttt bbb 56
REIGIEA OPHONS......vviiscctcc bbbttt s bbbttt s e bbbttt s 56
2.2.57. =W .ottt b bR bbb bbb bbb bbb bbbt 56
1 CH USSP 56

PVF Reference Guide viii

LTSy (1o] OO U PSP 56

T (=0 o 01103 TR 57
2,258, Wi E SRR 57

I 7 TP 57
USBGE 1.ttt R R R AR bR b bRt 57
DIBSCIIPHON. ...ttt 57
REIAIEA OPHONS.viii et b bR bbb bt s ettt n et s 57

2.3, —M OPIONS DY CAIBGOIY.....ceerieceeerieireeeiesei it bbb 57
2.3.1. Code GENEratioN CONITOIS.cvururierireiieetieieireet sttt ettt b s tenns 57
2.3.2. ENVIFONMENT CONEIOIS.....coeieeeiceesicie ettt sttt e s nnas 61
2.3.3. Fortran Language CONMIOIS...........ccccuiviueriieeiiecie ettt et sttt 63
2.3.4. INlNING CONMOIS......covuierieiseiieeieit et bbb 66
2.3.5. OptiMIZation CONIOIS........civeuiiiieieiice ettt a sttt en e s e 68
2.3.6. MiSCEIANEOUS CONMIOIS.ceeiceeiicieire ettt s bbb 77
Chapter 3.Directives REFEIENCE.. ... bbb 84
3.1. PGI Proprietary Fortran DireCtive SUMMAIY..........cvuririuriirieirienisinsesiessessessssssssssssssssssssssesssssssssssssssssssssssssssssees 84
3.1.1. altCOdE (NOAICOTR).cevrcecieieeeie et bbb 85
3.1.2. @SSOC (NMOBSSOC)....vrvuveeereeaeseeseeeseesesssseesesssseesesassessssassessasassessesassessssssessssassessssssesnssnssessssssesnssssesnssssesnssassesnnes 86
3.1.3. DOUNAS (NODOUNMAS)......c..cverieiieicieee ettt 86
314, CNCAIL (NOCNCAI.......ovveieiieiciee ettt bbbt 86

3. 1.5, CONCUE (NMOCOMCU).....cvuceereeaereeseeeseeseeesees et ses e ee s s bbbt 86
3.1.6. dePChK (NOEPCNK)......couiucviiiiieiiicte ettt b bbbttt a s ae b s 86
317, €QVCNK (NOBGVCNK). ...ttt 87
3.1.8. INVAIT (NOINVANIT)......cucveiicecice ettt e s bbb bbb n bbb bbb ne b s 87

T I 1Y - o O ET T RST T STT 87
3,110, ISIVAI (NOISIVAI......ceeeecee bbb 87
K o OO OO OSSO 87
302, PIEFELCN. ... bbbt 87
3113, SAE_IASIVAL ...veveveceie bbbttt 88

R S 1o TR 89
3,115, UNFOI (MOUNTON....cvtitiieitiee ettt bbb bbb 89
3116, VECHOT (MOVECION).....euceereeceesee ettt bbb 89
BT, VINET (NOVINI) .ttt ettt bbbt bbb s bbbt bbb st bbb bbb as 90
3.2. Prefetch DireCtives and Pragmas.........coeeiriciiirieineieeeineiseei ittt bbbt 90
3.3. IGNORE_TKR DiIFECHVE.cvucvutereeriererseieisee ettt bbb 90
3.3.1. IGNORE_TKR DIrECHVE SYNEAX.......coeviviieieiiieireiriieiseisee ittt 90
3.3.2. IGNORE_TKR Directive FOrmat REQUIFEMENTS..........c.ceurieeinisisiniessissie st ssssssssssssssessssssssssssssssesssnnns 90
3.3.3. Sample Usage of IGNORE_TKR DirECHVE.c.ccviiiriiriieiiirieneiste ettt 91
3.4, IDECAS DIFBCHVES......coucvecvecieciicieie ettt bbb st a s s sttt s e 91
34,1, ALIAS DIFECHVE. ... vvevveereeereiseeeereeseessseeeesss s s e st et s b s s bbb s b8 s bbb s 91
3.4.2. ATTRIBUTES DiIFECHVE. ...euveurereereereereireeeereisseseissesesseessssssssssssssssssssssssssssessessesssssessessessessssassssssssssssssssssssesnnes 92
3.4.3. DECORATE DIMECHVE.cuvuveieiicieieentinetseisetsesse bttt 93

PVF Reference Guide ix

3.4.4. DISTRIBUTE DIMECHVE.......ouveuriuceriieiriierreise st 93

Chapter 4.Run-time ENVIFONMENt..........ccoiiirrrcrcscss s s ss s se s s s snsnes 94
4.1, Win32 Programming MOGEL..........cveuiiieiiieisicierie ettt sb bbbt 94
4.1.1. FUNCHON CalliNg SEQUENCE........cuieicecerieieir ettt e e sttt 94
4.1.2. FUNCHON RETUM VAIUES........coeviecerieice ettt snen 97
4.1.3. ArQUMENT PASSING. ... eucevertietrieeeirt ettt sttt s bbbttt 98
4.2. Win64 Programming MOGEL...........cviuriiiiirieirerieree et 101
4.2.1. FUNCHON CalliNG SEQUENCE.cuevrieiieiriertieietssieiet sttt sttt eb st b sttt enr s 101
4.2.2. FUNCHON RETUM VAIUES........coieiieiecier ettt ettt 104
4.2.3. ArQUMENE PASSING......cviiiriiereieieieisisisisisisse ettt tes st ss e es ettt e s s st s s s s bbb e b e s s s s s e e e s e s et et eses s s sssssnsnnnsesesas 105
4.2.4. Win64 FOrran SUPPIEMENL...........coiieerireieierietss ettt es et enns 107
Chapter 5.PVF PrOPEIties.......ocriorereerecererresesssresessssessessssessessssessessssesssssssesssssssesssssssesssssssesssssssesssssssenssssssesssssssensessssease 113
5.1, GENETAl PrOPEITY PAGE... ..o ivieiiritiieieiriiei ettt bbb bbb 113
D11 GBNEIAL.....eii e 13

oI 7 O 111 o101 =T o OO P O TTST 113
5.1.3. INErMEAIAtE DIFECIOTY.......cvvieiieeieieire e 114
5.1.4. Extensions t0 Delete 0N ClEAN.........cccvieiiirieicirte sttt 114
5.1.5. CONfIGUIALION TYP.....ceerieieirteceeis ettt b 114
B.1.6. BUIIA LOG FilB.....ouvuirircieii ittt 114
B.1.7. BUII LOG LEVEL ...ttt sttt sttt 114
5.2. Debugging PrOPEIY PAGE.......c.oriiiriiiiiieirce et 114
5.2.1. DBDUGGING. ..ottt 114
5.2.2. Application COMMANG..........ccciiiiiiiiieiiets e b bbb bbb a bbb 114
5.2.3. APPlICAtION AMGUMENTS. ... ettt ettt sne st st rns e s nnas 115
5.2.4. ENVITONMENL. ..ottt bbb s 115
5.2.5. MErge ENVITONMENT........cviiiiitiieiitieiet ettt 115
5.2.6. ACCEIErator PrOfiliNG..........veueiuierireiirieirciseicesie s 115
5.2.7. IMPI DEDUGGING. .- e verreeeereetreneeeeresetsisescere st see st eee b seeee s eee s sesee e ses £ ees b e e s e b s b e b e bt ee b e s e e b b eeseteseneeas 115
5.2.8. WOTKING DIFECIOMY......ovuiuieirieieeiseisereietses sttt es bbb s s b8 s bbb 116
5.2.9. NUMDET Of PrOCESSES.cuevieiiiriieieieietstiet ettt bbb bbbt 116
5.2.10. WOTKING DIMBCIONY......cuivuieirceieeiciiie ettt 116
5.2.11. Additional ArgUMENLS: MPIEXEC.......cuvieruririeeirieieireets ettt eb bbbt bbb 116
5.2.12. LOCAHON OF MPIEXEC........cerrieieieieiee ettt 117
5.3. FOMran Property PAgES.........cciiieiiiiiiititcieieete sttt bbbttt aen et n e 117
5.4, FOMTAN | GENETALvieirieieceeet bbb bbb 117
5.4.1. Display Startup BaANNET..........cccoviuiiiiieice ettt 117
5.4.2. Additional INCIUAE DIFECIOMIES.........cuceiceereeieire ettt es et nneens 117
B.4.3. MOTUIE PaN......couiiiiriiicic st 118
544, ODJECE File NAME. ..ottt ettt bbbttt 118
5.4.5. Debug INformation FOMMAL...........c.oiriiiiiniiieesc e 118
5.4.8. OPHMIZATION.couiviiicieeice ettt e b bbb bbb a bbbttt bbbt tns 119
5.5, FOrtran | OptiMIZAtION.cuiiieieirieieise et 119
5.5, 1. OPHIMIZATION. ...ttt ettt e bbb bbb s bbbttt bbbt et tns 119

PVF Reference Guide X

5.5.2. Global OPtMIZALONS........ccivriveiircieieieii et sb bbbt bbb 119

5.5.3. VBCIOMZALION. ...ttt b st 119
LGRS 2T {11101 oo PP 120
5.5.5. USE Frame POINLET. ..ottt sttt e s bbb 120
5.5.6. LOOP UNTOIl COUNL.......vuiviiiiieieicieeetseise ettt bbbt 120
5.5.7. AULO-ParalleliZation...........c.ociieiriieere st 120
5.6. FOMIAN | ProprOCESSING. cuuceerieceiseirieseseisets e isess s bbbt 121
5.6.1. PreproCess SOUICE FilB........ccvieuiiiiiiiiiiieiicte ettt ettt st a bbb bbb 121
5.6.2. Additional INCIUAE DIFECIOMIES.........cueuireireeiercis ettt et es s 121
5.6.3. Ignore Standard INCIUAE Path............cccoiiueiciiiiceccs ettt 121
5.6.4. PreproCessor DEfINIHIONS..........ovururirirrcesces sttt 121
5.6.5. Undefine Preprocessor DEfiNItIONS...........cciieiiiciiicei et sss st 122
5.7. FOrtran | Code GENEIALION.........ciuiieireireeiriteeet ettt bbbt 122
5.7.1. RUNGME LIDTAIY...cviiecieiiets sttt st s b s nn b s 122
5.8, FOMraN | LANGUAGE. ... ieeeeeieeerineietre ettt ettt et b s st et s e ee st sneaenenas 123
5.8.1. FOMTAN DIAIBCL........cvieevsicieirieie sttt ettt b bbbttt 123
5.8.2. Treat Backslash @s CharaCter ... s 123
5.8.3. EXIENA LINE LENGHN.......iuiiiiiiiciciese ettt bbbt 123
5.8.4. ENable OPENMP DIFECHVES........c.cccueviecieiieecieecte sttt ettt bbbt bbb bbbt nas 123
5.8.5. Enable OPENACC DiFECHVES........cvu vttt bbbttt 124
5.8.6. OpenACC AUtOPArallEliZatioN............ccccueveiiicieicicei ettt bbb 124
5.8.7. OPENACC REQUITEA. ..o ettt sttt s st ess et sns ettt en e snnnas 124
5.8.8. OPENACC ROULINESE......viueveiiieieiiicisieie ittt ssss bbb bbb bbb bbbt s st s nais 124
5.8.9. OPENACC WAl......coeiceiee ettt ettt ses et ee et e s ettt ensneen 125
5.8.10. OpenACC COoNfOrMANCE LEVEL.......cocuivieeieiiictsisetce ettt sttt 125
5.8.11. OPENACC SYNC...ouvriviteriiieeesetsteeeseeseiee st ts bbb bbb 125
BUBLA2. IMPLe.coee ettt bR a et aen 125
5.8.13. ENADIE CUDA FOMIAN. ...ttt ettt 125
5.8.14. CUDA Fortran Register LIMt.............ccoeuiiririnieineniesesie sttt 126
5.8.15. CUDA Fortran Use Fused MUIIPIY-AAS.........ccoerieiririninincnieseeie s 126
5.8.16. CUDA Fortran Use Fast Math LIDFary.........cccocvrrrinnncsseseis e sneeens 127
5.8.17. CUDA FOMIaN DEDUG......vuvvvrerieereiieriseisieeseesseesseisessse st sse sttt ssss s ssesssssssssssssesnssassesnssssesnnes 127
5.8.18. CUDA Fortran Ling INfOrMatioN.ccerurrieericirreiceseeie ettt nnes 127
5.8.19. CUDA Fortran Use LLVM BacK ENG........ccccoriuririiiririiininieisceeiscse s essssseesssss s ssesssssssssnssnnns 127
5.8.20. CUDA FOIran UNFOIl.........couiimeeeriieirisiieisesee sttt sttt sess et ens s snsen 128
5.8.21. CUDA FOrtran FIUSD 10 ZETO.........cuiurieireirieieintie sttt 128
5.8.22. CUDA FOIran TOOIKIL.........c.ouiiueerireeeteeriscesseiceseseie sttt et sese e ees e ees st se e e ennas 128
5.8.23. CUDA Fortran Compute Capability...........ccceuierrieurrireiniiesssesisisssssses st ssssssssssesssssssssssssessssssesans 129
5.8.24. CUDA FOMIaN FEIMMI.......iuiuieriieeeieiecteer ettt ettt s sttt na et ennes 129
5.8.25. CUDA FOIran FEIMIit........ocuiieiiieiiiieisice ettt sttt s st s st st snnes 129
5.8.26. CUDA FOMAN KEPIET........cueiiecreieiicieieite ettt ettt e bbb bbbt bbb ae bbbt bbb nnbens 129
5.8.27. CUDA FOMran KEPIEI........coo ittt ettt 130
5.8.28. CUDA FOrtran KEEP BiNAIY.........couiiiiriieiiirieesse sttt ettt 130

PVF Reference Guide Xi

5.8.29. CUDA Fortran Keep KErMEl SOUICE.......coviuiuiiiicieiicteiieie ettt 130

5.8.30. CUDA FOrtran KEEP PTX ... ettt ses ettt 130
5.8.31. CUDA FOrtran KEEP PTXAS ...ttt ettt sttt st 130
5.8.32. CUDA Fortran Generate RDC..........couiurieiricieireicieiseeie ettt nnes 130
5.8.33. CUDA FOrtran EMUIGLION.........ccovreririeiriisreniiseissseeess st ssssesssssssss s s ssse s ssssssss s sssssssssssessssssessssssessssesesnes 131
5.8.34. CUDA FOrtran MadCONSE.........c.euierirriiirireiiinieissisiseissessse sttt ss sttt ssesssassessssssen 131
5.9. Fortran | Floating PNt OPLIONS. ..o s s 131
5.9.1. Floating Point EXCeption HaNAING...........courueiiuiriiiecen et 131
5.9.2. Floating POiNt CONSISIENCY.......c.iuiiueiiiriieireiseeiretste ettt 131
5.9.3. Flush Denormalized RESUMS 10 ZErO.........cviiuiiriiiiriiirte e 131
5.9.4. Treat Denormalized ValUES @S ZETO.........cviuiuriiieirieirreeie et ses ettt esse s esesssnees 132
5.9.5. IEEE AMIMELIC. ...t 132
5.10. Fortran | EXtErNal PrOCEAUES.........cc.cuieieiiericiieiet bbb s 132
5.10.1. Calling CONVENTION.........cuiiiiiieiiicieiicietsi sttt bbbttt b st s e 132
5.10.2. String LENGHh ArGUMENTS.cccvuiiieiriiiiiceiese ettt 132
5.10.3. Case Of EXIEMMAl NAMES........ccoirrieeeiiereeieis ettt b s ns bbb ensetes 133
511, FOMTAN | LIDFAMES..vucvvveerieiseiiesiseiets ettt s s bbbt 133
BA1.0L USE ACMLL.... et 133
D112, USE IMSL....e it 133
BLA1.30 USE ML 133
5.12. FOIran | TArgEt PrOCESSONS. vuieririeierireisieeiseesssseseessseeseessssesesssssesesssssessssssessssssse st sssssessssesssssssessesassesnssssesnnes 134
5121, AMD ALNION. ...ttt 134
5.12.2. AMD BaICRIONA........cccvrivieieriiieiieiseities it 134
5.12.3. AMD BUIIAOZET........oucviiieteieiettiee ettt bbbt 134
B.12.4. AMD ISEANDUL.....coovieccst bbb 134
5.12.5. AMD PHIEBAMVET. ... ovreteeeeseeseieietie ettt bbbttt 135
5.12.6. AMD SRENGNEL.........cuiurieiieiieriseicee ettt 135
BT, INHEI COME 2.ttt s bbbt 135
52.8. INTEI COME 17...uuiieeieiieeeisee ettt s et s ettt nnes 135
B12.9. INEEI PONIYN. ..ot 135
51210, INEEI PENLUM 4.ttt sttt et 135
5.12.11. Intel SANAY BIAGE. ... vttt 135
5.12.12. Generic X86 [WIN32 ONIY].......ouieirierierieircireics et 136
5.12.13. Generic X86-64 [X64 ONIY].........cceiireriiiriiieicteisicte ettt bbb s bbbt bbb 136
5.13. Fortran | TAarget ACCEIEIAIONS.cuovu ittt 136
5.13.1. Target NVIDIA TESIA.......cciieiieiiiit sttt s s b s 136
5.13.2. Tesla REGISTEr LMtcov it 137
5.13.3. Tesla Use FUuSed MURIPIY-AGAS.......cociiiriceiciscce s sas s ss s 137
5.13.4. Tesla Use Fast Math LIDrary.........ciieeieiisseses s 137
D135, TESIA LV, bbb 137
5.13.6. TeS1a NOGACN. ...t 137
5.13.7. Tesla Pin HOSt MEMOIY......c.iiiriiiiriciiirieircs et 137
5.13.8. TeSIa AULOCOIAPSE.viieeecect ettt et ettt bbbttt n s 138

PVF Reference Guide Xii

5.13.9. TESIA DEDUG. ..ottt b bbbttt s e e R s rennas 138

51310, TESIA LINEINTO. ... ettt sttt 138
513,11, TESIA UNTOML....eieiiei sttt bbbttt 138
5.13.12. TESIA REGUIFEM........cvviiiiiieeeee ettt ettt bbbttt b b s 139
5.13.13. TSI FIUSH 0 ZEF0.....vieieeriierece ettt et anns 139
5.13.14. Tesla GENEIAte RDC.........coiiiiiriieiiiriieieiscieetsste sttt ss sttt ss bbb st ss st 139
5.13.15. TeSla CUDA TOOIKIL.........ceueerieeriicieirieieisieisise sttt sas sttt ssnnes 139
5.13.16. Tesla Compute Capability...........cccurrrurieiiirinieirieieisse ettt entns 140
LTI T I 1= = T O O =Y T 140
5.13.18. TeSIa CC FOIMIt. ...ttt ettt bbbt 140
5.13.19. TESIA CC KOPIET ... ettt sttt s st ses et e st s nnnas 141
5.13.20. TESIA CC KEPIEIt.....oieceeiicee ettt bbb bbb bbb s bt nas 141
5.13.21. Tesla: KEeP KEMEI FlES........o ettt 141
5.13.22. Target AMD RAUEON.......ccuriieeiriiiericis sttt ss bbb a sttt s s st s 141
5.13.23. RAAEON CAPE VEIUE... ...ttt sttt 141
5.13.24. RAUEON SPECIE......eiiireiiiettie ettt bbbttt s 142
5.13.25. RAAEON TaNMi.....vvvieiieiiieieisiieieiseetet ettt ns 142
5.13.26. RAAEON HAWAII.......cuoviieiiciriricie sttt sttt nnnes 142
5.13.27. RA0EON BUET COUNL......coiiiieiieiiiriieicisieets sttt sttt 142
5.13.28. RAGEON KEEP......vrieiiiiieieitiete ittt bbbt 142
5.13.29. RAUEON LLVM.....oiiiiiieeirciii ettt st 142
5.13.30. RAAEON UNTOIL......coeiieeeieer sttt ettt en st nnnesesns 142
5.13.31. RAEON REQUIME.eeiiiieicicieie ettt ettt e et et b s s s s e nnnennnas 143
513,32, TAGEE HOSL......ee ettt bbbt 143
5.14. FOrran | DIAagNOSHCS.......cvivuiveiiieieiirctsiiste sttt sttt bbb bbbt s bt s bt snns 143
5141, WAMING LEVEL. ..ottt 143
5.14.2. GENEIAtE ASSEIMDIY. ..o vttt bbbt bbbttt 143
5.14.3. ANNOLAIE ASSEMDIY.....o. ettt 144
5.14.4. AcCelerator INFOrMALION..........covrriirrccericts sttt s s 144
5.14.5. CCFF INFOMMALION........cuiiiieiiriietscieiet sttt ettt bttt 144
5.14.6. Fortran Language INfOrMELION...........coiiuiiirrise s 144
5147, INNING INTOIMETION. ... cvtieicirieicite ettt bbbttt 144
LT TR | 10104017 (o TSR 144
5.14.9. Loop INtensity INFOrMALION..........ccccviiiiriieiicecc ettt 144
5.14.10. Loop Optimization INfOrMatoN.coverurirrcer et 144
5.14.11. LRE INFOMMALON.....c.ttevritiieisciiieieiseieieis ettt bbbt 145
5.14.12. OpenMP INFOMMELION.coouiieeereeeiei ettt et e s e 145
5.14.13. Optimization INFOrMALION...........cccoiericiriice et 145
5.14.14. Parallelization INFOrMALION...........oceuiierccr ettt 145
5.14.15. Unified Binary INfOrMALION...........coiiiiriire st 145
5.14.16. Vectorization INfOMMALION...........coieiiiriirieiscieeise sttt s s 145
5.15. LINE-LEVEI PrOfiliNG......ceveevieiieieisieiese sttt bbbt 145
5.15.1. FUNCHON-LEVEl PrOfiliNg.......cviiieieiiieeiseeetsee sttt 146

PVF Reference Guide Xiii

5.15.2. LiNE-LEVE ProfiliNg.......ccviiiriiicieisicieiiets ettt sttt st bbb 146

Bu15.3. MPLL. eSS 146
5.15.4. Suppress CCFF INfOrMALION.........cccoieiiieiiece it s s 146
5.15.5. Enable Limited DWARF........c.cciieiieeieee ettt es bbbttt 146
516, FOMaN | RUNIME. ...ttt bbbt 146
5.16.1. CheCk AITAY BOUNGS.......c.cveiiiriieiiisieiest ettt 146
5.16.2. CRECK POINEIS.......ceiiceetsieieiri ettt ettt bbb s sttt 147
B.18.3. CRECK STACK......uevrviriiiirieiiiei ettt 147
5.16.4. COMMANG LINE......ceieeeiieereeicr ettt et st nnet s 147
5.17. Fortran | COMMANG LINE..........ceiiiiieiicieiccteee ettt s bbb bbb bbbt naes 147
571, COMMEANG LN, ettt ettt ennis 147
5.18. LINKEr PIOPEIY PAgES.....coviieieeicieieisisisisiseeee ettt sttt sttt ettt e ettt b st s e e nnnenas 148
5.1, LINKET | GENETAL. ..ottt 148
5191, OULPUL FilB....voiree bbb 148
5.19.2. Additional LIDrary DIFECIOMES.cueurueerireerereeieirieeeire et ees st ses sttt 148
5.19.3. SEACK RESEIVE SIZE.... vttt ettt 149
5.19.4. StaCK COMMIL SIZE.......cooivieriiiirieiisieiscs et st 149
5.19.5. EXPOIT SYMBDOIS......c..coirieiiirieitei ettt 149
5,20, LINKET | INPUL. ..ttt 149
5.20.1. Additional DEPENABNCIES.........cveuerieieireiriieieiseiee ittt es bbbt ss bbb 149
5.21. LINKEr | COMMANG LINE.......uivieeerieireiieriseiieeise ettt 149
5.21.1. COMMEANG LN, ettt st ens s nnet s 150
5.22. LIbrarian ProPErtY PAQES........ccccuiiiiriiiiieriiiieieieisisiss sttt sess st sssse et ses s s s ssssesesese s s s s ssssssesesesesasssssssenns 150
5.23. LIDFAMaN | GENEIAL. ...ttt 150
B.23.1. OULPUL FilB....oovriisi bbb 150
5.23.2. Additional Library DIr€COMES........c.oveuriurieieriirieiiiisiieieis et 150
5.23.3. AQditional DEPENAENCIES.........cuueeerieieireiriieiretreieeei ittt ss s ss b ss b s bt ss et s et 151
5.24. Librarian | CommaNd LiNE........cc.cvieiririieieiieieiieisees ettt ettt bbbttt 151
Lo TR 00T 41101 To I TP 151
5.25. RESOUICES PrOPEITY PAGE.ottt 152
5.26. ReSOUICES | COMMANG LINE.......cuiiierieiieicisireieesei ettt 152
5.26.1. COMMANG LINE.....coevrieiiieisieieieietseie ettt ettt ettt sttt 152
5.27. BUild EVENS Property Page........c.ou ittt 152
D271, BUIIA EVENL......oiiiii bbb 152
LT 7 o] 111117 To I T TSR 152
LI TR 1= T 10 (o] o TR SPTTT 153
5.27 4. EXCIUAEd FrOM BUIlA.ceeeieceeeeeee ettt et ens s 153
5.28. Custom Build Step Property PAge.........cccviieieiccsissesiee sttt sse s sesnsns 153
5.28.1. Custom BUIld StEP | GENETAL........co it 153
5.28.2. COMMANG LINE......ouiieiiieiiiicieiri ettt bbbt s sttt esnse s s 153
5.28.3. DESCIIPHION.ottt ettt et e s bbbt b bbb s R bbb b et st s ettt et b 153
D284, OULPULS......ceeeeerceeieieie ettt ettt 153
5.28.5. AAditional DEPENAENCIES........c.ceviiiiiiiiceeiete sttt bbbttt a bbb 153

PVF Reference Guide Xiv

Chapter 6.PVF BUild MACIOS.........ccuuriumrrisessressessssessessssessessssesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssenses 155

Chapter 7.Fortran Module/Library Interfaces for WindOWS...........cocociurimeninnsninsnsnnensss s ssssssens 158
7.1 SOUICE FIBS.....vuvuisiiiei ettt bbb 158
N 0 1 - R oL SO 158
7.3. Using DFLIB, LIBM, @nd DFPORT.........ccoiitiiiriieitinireeieneieeeeseseeeesese e essss e sss st sse s s ssssssnnns 159

T30 DFLIB....c et 159
7.3.2. LIBM et 160
7.3.3. DFPORT ...ttt 161
7.4, USING the DFWIN MOTUIE........coivieiiiriieieirceee et 165
7.5. Supported Libraries and MOGUIES............ccceuiiriiiiceiee ettt bbb 166
5T = To LT o] /PSPPSR 166
T oo 111 TSRS 168
75,30 AfWDSE.....e et bbb 168
T.5 4. GIWINTY ..o 168
7.5.5. GUIB2.....c et 168
T.5.8. KBINEIBZ......o ittt ettt s e bbb R bbbttt 171
T.5.7. SNEIIBZ......e bR 178
T.5.8. USBI32.....ceeeee et bbb h s8R R R R SRR bR 179
75,0, WMV ...ttt e R bbb R Rt E bbbttt 183
7510, WSOCKB2......ceueeeeeieeeiei ettt bbbt 183

LT T oL T =T 185
8.1, DiIAGNOSHC MESSAGES........ervuceeriireeesetrtieeseireiees ettt eb et es b es bbb 185
8.2. Phase INVOCALION MESSAQES.......ccciuriririirireieieieietsisi sttt s ettt sttt st s r et e st s s s 186
8.3. Fortran Compiler ErOr MESSAES.c.vueiuriieieiitiei ettt 186

8.3.1. MESSAGE FOIMAL.......cocviuiiiieieeietee ettt n e 186
8.3.2. MBSSAGE LISL.....eiceiiieireiei et 186

8.4. Fortran RUN-tIME ETOr MESSAGES.cevu vttt 225
8.4.1. MESSAGE FOMAL..... .. ettt et sttt 225
8.4.2. MESSAFE LIST.....eiciiieieieieietree e 225
Chapter 9.Contact INfOrMAtioN...........cccccececieirniir s 228

PVF Reference Guide XV

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

PGl Compilers and COMMANGScceuiuriiriiiriieiireieiei et ses bbbt ens e en s XXi
Representation of FOMran Data TYPESc..eierirriiiriiiseiiseeesese sttt 1
Real Data TYPE RANGESc.vviieieieieiess sttt sttt ettt s s s e sen s esee 2
Scalar TYPE AlIGNMENTuieiviicictcectee ettt bbb bbb bbb bbb bbb bt n e bns 2
PGI Build-Related Compiler OPLIONScccviiviiiiieiicieisecte ettt bbb bbb 6
PGI Debug-Related COMPIEr OPHONSc.vuieririirierieisiisiesiss st 7
Optimization-Related PGl Compiler OPLiONScovirurrciericirreceenee et 8
Linking and Runtime-Related PGl Compiler OPtioNSoerrieernerrriesneies e esesens 8
Subgroups for —helP OPLIONcoiiiriree bbbt 22
—M OPHONS SUMMEY ...ttt bbbt 29
Optimization and -0, —g, —Mvect, and =MconCUr OPHONSccoierricceri e 37
IGNORE_TKR EXBMPIEooocirieriercereiseieiiseeseese ettt 91
REGISIEr AlIOCALION ...ttt sttt bbbttt 95
StANAArd SEACK FIAME ...ttt 95
Stack Contents for Functions Returning StrUCHUNION ..o 98
Integral and POINTEr AFGUMENLSc.ov ittt 98
Floating-pOiNt AFGUMENTScoiuiiieiiirieicieteices ettt bbbttt 99
Structure and UniON AFGUMENESc.ovririuriiriiereeietseeei ettt 99
REGISIEr AlIOCALIONcvcviicvicicieice et bbb bbbt bbbt b s et b s 102
Standard SEACK FramMe ... 102
Register Allocation for EXAMPIE A4c.oiriiecscee ettt 106
Win64 Fortran FUNAamental TYPESc.oieiiiiiceescenet ettt 107
Fortran and C/C++ Data Type CompatibIlitycocereuririiininereeseesee e 109
Fortran and C/C++ Representation of the COMPLEX TYPEcuvvveriririrrcesreceree e 110

PVF Reference Guide Xvi

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

A U o 1Yo (o 155

Fortran Data TYPE MaPPINGS ...cvevevevririiicieieeeietstsisi sttt s bbb bbb st ettt s s s s s e sasesenenesaen 158
DFLIB FUNCHON SUMMATY ...ttt ettt ssss sttt sttt nsnns 159
LIBIM FUNCHONS ...ttt 160
DFPORT FUNCHONSvvtvitisetctietssee ettt 161
DFWIN @dvapi32 FUNCHONSceierieieirieirneieir ettt st nnsssensnneen 166

PVF Reference Guide xvii

PREFACE

Thisguideis part of a set of manuals that describe how to use The Portland Group (PGI) Fortran
compilers and program development tools integrated with Microsoft Visual Studio. These

tools, combined with Visual Studio and assorted libraries, are collectively known as PGl Visual
Fortran®, or PVF®. Y ou can use PVF to edit, compile, debug, optimize, and profile serial and
parallel applications for x86 processor-based systems.

The PGI Visual Fortran Reference Manual is the reference companion to the PGI Visual Fortran
User’s Guide which provides operating instructions for both the Visual Studio integrated
development environment as well as command-level compilation and general information about
PGI’s compilers. Neither guide teaches the Fortran programming language.

Audience Description

This manual isintended for scientists and engineers using PGl Visua Fortran. To fully
understand this guide, you should be aware of the role of high-level languages, such as Fortran,
in the software development process; and you should have some level of understanding of
programming. PGl Visual Fortran is available on avariety of x86 or x64 hardware platforms and
variants of the Windows operating system. Y ou need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards

Y our system needs to be running a properly installed and configured version of this PGI product.
For information on installing PVF, refer to the Release Notes and I nstallation Guide included
with your software.

For further information, refer to the following:

» American National Sandard Programming Language FORTRAN, ANSI X3. -1978 (1978).
» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

» ISO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

PVF Reference Guide XViii

Preface

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» TheFortran 2003 Handbook, Adams et a, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» ISO/IEC 9899:2011, Information Technology - Programming Languages - C, Geneva, 2011
(C11).

» ISO/IEC 14882:2011, Information Technology - Programming Languages - C++, Geneva,
2011 (C++11).

Organization

Users typically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasksis key to using the PGl compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

To facilitate ease of use, this manual contains detailed reference information about specific
aspects of the compiler, such as the details of compiler options, directives, and more. This guide
contains these sections:

Fortran Data Types describes the data types that are supported by the PGI Fortran compilers.
Command-Line Options Reference provides a detailed description of each command-line option.
Directives Reference contains detailed descriptions of PGI’ s proprietary directives.

Run-time Environment describes the programming model supported for compiler code
generation, including register conventions and calling conventions for x86 and x64 processor-
based systems running a Windows operating system.

PV F Properties provides a description of Property Pages that PGI supports.
PVF Build Macros provides a description of the build macros that PVF supports.

Fortran Module/Library Interfaces for Windows provides a description of the Fortran module
library interfaces that PVF supports.

Messages provides alist of compiler error messages.

PVF Reference Guide XiX

www.openmp.org.

Preface

Hardware and Software Constraints

This guide describes versions of the PGI Visual Fortran that are intended for use on x86 and
X64 processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the rel ease notes delivered with the PGI
Visual Fortran.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
isused for filenames, directories, arguments, options, examples, and for |language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case iteml is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename ...
ellipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/IC++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, OS
X, and Windows operating systems on a variety of x86-compatible processors. There are awide
variety of releases and distributions of each of these types of operating systems.

Terms

A number of termsrelated to systems, processors, compilers and tools are used throughout this
guide. For example:

AMD64 license keys SSE Win32
AVX -mcmodel=small SSE1 Win64
DLL -mcmodel=medium SSE2 Windows

PVF Reference Guide

Preface

driver MPI SSE3 x64
dynamic library MPICH SSE4A and ABM x86
hyperthreading multi-core SSSE3 x87
Intel 64 NUMA static linking

large arrays shared library

For a complete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGI provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command
PGF77 ANSI FORTRAN 77 pgf77
PGFORTRAN ISO/ANSI Fortran 2003 pgfortran
PGPROF Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to The Portland Group’ s Fortran 2003
compiler, and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the
pgfortran command, and most source code examples are written in Fortran. Usage of the PGF77
compiler, whose features are a subset of PGFORTRAN, issimilar.

There are awide variety of x86-compatible processorsin use. All are supported by the PGI
compilers and tools. Most of these processors are forward-compatible, but not backward-
compatible, meaning that code compiled to target a given processor will not necessarily execute
correctly on a previous-generation processor.

A table listing the processor options that PGl supportsis available in the Release Notes. The table
also includes the features utilized by the PGI compilers that distinguish them from a compatibility
standpaint.

In this manual, the convention is to use "x86" to specify the group of processors that are "32-bit"
but not "64-bit." The convention isto use "x64" to specify the group of processors that are both
"32-bit" and "64-bit." x86 processor-based systems can run only 32-bit operating systems. x64
processor-based systems can run either 32-bit or 64-bit operating systems, and can execute all
32-hit x86 binariesin either case. x64 processors have additional registers and 64-bit addressing
capabilities that are utilized by the PGl compilers and tools when running on a 64-bit operating
system. The prefetch, SSE1, SSE2, SSES3, and AV X processor features further distinguish the
various processors. Where such distinctions are important with respect to a given compiler option
or feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that support
SSE1 and SSE2.

PVF Reference Guide XXi

http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm

Preface

Related Publications

The following documents contain additional information related to the x86 and x64 architectures,
and the compilers and tools available from The Portland Group.

>

PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

System V Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

System V Application Binary Interface X86-64 Architecture Processor Supplement, http://
Www.x86-64.0rg/abi.pdf.

Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

IBM VSFortran, IBM Corporation, Rev. GC26-4119.

PVF Reference Guide XXii

http://www.x86
http://www.x86

Chapter 1.
FORTRAN DATA TYPES

This section describes the scalar and aggregate data types recognized by the PGI Fortran
compilers, the format and alignment of each type in memory, and the range of values each type
can have on x86 or x64 processor-based systems running a 32-bit or 64-hit operating system.

1.1. Fortran Data Types

1.1.1. Fortran Scalars

A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. The
next table lists scalar data types, their size, format and range. BCEBGADB shows the range and
approximate precision for Fortran real data types. CHDCFDFB shows the alignment for different
scalar datatypes. The alignments apply to all scalars, whether they are independent or contained
in an array, a structure or a union.

Table 2 Representation of Fortran Data Types

Fortran Data Type Format Range
INTEGER 2's complement integer 210231
INTEGER*2 2's complement integer -32768 to 32767
INTEGER*4 2's complement integer 20 2%
INTEGER*8 2's complement integer 2810281
LOGICAL 32-bit value true or false
LOGICAL* 8-bit value true or false
LOGICAL*2 16-bit value true or false
LOGICAL*4 32-bit value true or false
LOGICAL*8 64-bit value true or false
BYTE 2's complement -128to 127
REAL Single-precision floating point 107 to 10%8"

PVF Reference Guide 1

Fortran Data Types

Fortran Data Type Format Range

REAL*4 Single-precision floating point 10 t0 10 38V
REAL*8 Double-precision floating point 1037 10 10 308()
DOUBLE PRECISION Double-precision floating point 1037 to 103"
COMPLEX Single-precision floating point 103 10 10% ()
DOUBLE COMPLEX Double-precision floating point 107 19 10%%8
COMPLEX*16 Double-precision floating point 107 to 10%%8("
CHARACTER*n Sequence of n bytes

D Approximate value

Thelogical constants . TRUE. and . FALSE . areall onesand all zeroes, respectively. Internally,
the value of alogical variableistrueif the least significant bit is one and false otherwise. When
the option —-Munixlogical isset, alogical variable with a non-zero value is true and with a
zerovalueisfalse.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 3 Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision
REAL 2% 4928 10" 0 10% 7-8
REAL*8 2102 4 91024 10°7 to 1038 (" 15-16

Table 4 Scalar Type Alignment

This Type... ...Is aligned on this size boundary
LOGICAL*1 1-byte
LOGICAL*2 2-byte
LOGICAL*4 4-byte
LOGICAL*8 8-byte
BYTE 1-byte
INTEGER*2 2-byte
INTEGER*4 4-byte
INTEGER*8 8-byte
REAL*4 4-byte
REAL*8 8-byte
COMPLEX*8 4-byte
COMPLEX*16 8-byte

PVF Reference Guide 2

Fortran Data Types

1.1.2. FORTRAN 77 Aggregate Data Type Extensions

The PGF77 compiler supports de facto standard extensionsto FORTRAN 77 that allow for
aggregate data types. An aggregate data type consists of one or more scalar data type objects. You
can declare the following aggregate data types:

» Anarray consists of one or more elements of a single data type placed in contiguous
locations from first to last.

» A structure can contain different data types. The members are allocated in the order they
appear in the definition but may not occupy contiguous locations.

» A unionisasinglelocation that can contain any of a specified set of scalar or aggregate
datatypes. A union can have only one value at atime. The data type of the union member to
which datais assigned determines the data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of
their members.

Array types
align according to the alignment of the array elements. For example, an array of INTEGER* 2
data aligns on a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In
the next example, the union aligns on a 4-byte boundary since the alignment of ¢, the most
restrictive element, is four.

STRUCTURE /astr/
UNION

MAP

INTEGER*2 a ! 2 bytes
END MAP

MAP

BYTE b ! 1 byte

END MAP

MAP

INTEGER*4 c ! 4 bytes
END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the
structure is called internal padding. Padding between the last member and the end of the spaceis
called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the
member’ s aignment. For example, since an INTEGER* 2 aligns on a 2-byte boundary, the offset
of an INTEGER*2 member from the beginning of a structure is amultiple of two bytes.

PVF Reference Guide 3

Fortran Data Types

1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

The Fortran 90 standard added formal support for aggregate data types. The TY PE statement
begins a derived type data specification or declares variables of a specified user-defined type. For
example, the following would define a derived type ATTENDEE:

TYPE ATTENDEE

CHARACTER (LEN=30) NAME

CHARACTER (LEN=30) ORGANIZATION

CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare avariable of type ATTENDEE and access the contents of such avariable,
code such as the following would be used:

TYPE (ATTENDEE) ATTLIST (100)

ATTLIST (1) $NAME = ‘JOHN DOE’

PVF Reference Guide

Chapter 2.
COMMAND-LINE OPTIONS REFERENCE

A command-line option allows you to specify specific behavior when a program is compiled and
linked. Compiler options perform avariety of functions, such as setting compiler characteristics,
describing the object code to be produced, controlling the diagnostic messages emitted, and
performing some preprocessor functions. Most options that are not explicitly set take the default
settings. This reference section describes the syntax and operation of each compiler option. For
easy reference, the options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks, refer to
the ‘Using Command Line Options’ section of the PGl Visual Fortran User Guide, which also
provides summary tables of the different options.

This section uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (])
separates the choices.

Horizontal ellipsesindicate that zero or more instances of the preceding item are valid.

2.1. PGI Compiler Option Summary

The following tables include all the PGl compiler options that are not language-specific. The
options are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this section.

2.1.1. Build-Related PGl Options

The options included in the following table pertain to the initial building of your program or
application.

PVF Reference Guide

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

Table 5 PGI Build-Related Compiler Options

Option Description

—# Display invocation information.

Tt Shows but does not execute the driver commands (same as the option —dryrun).

-acc Enable OpenACC directives.

—Bdynamic Compiles for and links to the shared object version of the PGI runtime libraries.

—Bstatic_pgi Compiles for and links to the static version of the PGI runtime libraries.

-C Stops after the assembly phase and saves the object code in filename.o.

-D<args> Defines a preprocessor macro.

—dryrun Shows but does not execute driver commands.

—drystdinc Displays the standard include directories and then exists the compiler.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

-F Stops after the preprocessing phase and saves the preprocessed file in filename.f.
This option is only valid for the PGI Fortran compilers.

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

—I<dirname> Adds a directory to the search path for #include files.

-i2, -i4 and -i8 —i2: Treat INTEGER variables as 2 bytes.
—i4: Treat INTEGER variables as 4 bytes.
-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER*8 operations.

—K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keepink If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-L<dirname> Specifies a directory to search for libraries.

—I<library> Loads a library.

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

—-module <moduledir> Save/search for module files in directory <moduledir>.

—mp[=all, align,bind,[noJnuma] Interpret and process user-inserted shared-memory parallel programming directives.

—noswitcherror Ignore unknown command line switches after printing an warning message.

-0 Names the object file.

—pc <val> (~tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point
calculations; must be used when compiling the main program. <val> may be one of
32, 64 or 80.

-pgf77libs Append PGF77 runtime libraries to the link line.

-pgf90libs Append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

PVF Reference Guide

Command-Line Options Reference

Option Description

-r4 and —r8 —r4: Interpret DOUBLE PRECISION variables as REAL.
—r8: Interpret REAL variables as DOUBLE PRECISION.

—rc file Specifies the name of the driver's startup file.

-S Stops after the compiling phase and saves the assembly—language code in
filename.s.

-show Display driver's configuration parameters after startup.

—silent Do not print warning messages.

—time Print execution times for the various compilation steps.

—u<symbol> Initializes the symbol table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

-U<symbol> Undefine a preprocessor macro.

-V[release_number] Displays the version messages and other information, or allows invocation of a
version of the compiler other than the default.

-V Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

2.1.2. PGI Debug-Related Compiler Options

The options included in the following table pertain to debugging your program or application.

Table 6 PGI Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-C Instrument the generated executable to perform array bounds checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

-g Includes debugging information in the object module.

—gopt Includes debugging information in the object module, but forces assembly code
generation identical to that obtained when —gopt is not present on the command
line.

—K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,

preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

PVF Reference Guide 7

Command-Line Options Reference

Option Description

—pc <val> (~tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point
calculations; must be used when compiling the main program. <val> may be one of
32, 64 or 80.

—[no]traceback Adds debug information for runtime traceback for use with the environment variable
PGI_ TERM.

2.1.3. PGI Optimization-Related Compiler Options

The options included in the following table pertain to optimizing your program or application

code.

Table 7 Optimization-Related PGI Compiler Options

Option

Description

—fast Generally optimal set of flags for targets that support SSE capability.
—fastsse Generally optimal set of flags for targets that include SSE/SSE2 capability.
-M<pgflag> Selects variations for code generation and optimization.

—mp[=all, align,bind,[noJnuma]

Interpret and process user-inserted shared-memory parallel programming directives.

-O<level>

Specifies code optimization level where <level>is 0, 1, 2, 3, or 4.

-pc <val>

(~tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point
calculations; must be used when compiling the main program. <val> may be one of
32, 64 or 80.

2.1.4. PGI Linking and Runtime-Related Compiler Options

The options included in the following table pertain to defining parameters related to linking and
running your program or application.

Table 8 Linking and Runtime-Related PGI Compiler Options

Option

Description

-Bdynamic Compiles for and links to the DLL version of the PGI runtime libraries.
—Bstatic_pgi Compiles for and links to the static version of the PGI runtime libraries.
-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice versa on input/
output of unformatted data
—i2, -4 and -i8 —i2: Treat INTEGER variables as 2 bytes.
—i4: Treat INTEGER variables as 4 bytes.
-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER*8 operations.
-K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.
-M<pgflag> Selects variations for code generation and optimization.

PVF Reference Guide

oo

Command-Line Options Reference

2.2. Generic PGl Compiler Options

The following descriptions are for al the PGI options. For easy reference, the options are
arranged in aphabetical order. For alist of options by tasks, refer to the tables in the beginning of
this section.

221.+#

Displays the invocations of the compiler, assembler and linker.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -# prog.f

Description

The —# option displays the invocations of the compiler, assembler and linker. These invocations
are command-lines created by the driver from your command-line input and the default value.

Related options

—Minfo[=option [,option,...]], —V[release_number], —v

2.2.2. Hith

Displays the invocations of the compiler, assembler and linker, but does not execute them.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -### myprog.f

Description

Use the —### option to display the invocations of the compiler, assembler and linker but not
to execute them. These invocations are command lines created by the compiler driver from
ther cfiles and the command-line options.

PVF Reference Guide 9

Command-Line Options Reference

Related options
—#, —dryrun, -Minfo[=option [,option,...]], —-V[release_number]

2.2.3.-acc

Enables OpenACC directives.

Default

The compiler enables OpenACC directives.

Syntax

—acc[=[nol]autopar| [no]required|strict|verystrict]

[noJautopar
Enable [default] loop autoparallelization within acc parallel. The default isto autopar, that is,
to enable loop autoparall€elization.

[no]required
Instructs the compiler to issue acompiler error if the compute regionsfail to accelerate. The
default isrequired.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator directive.

Usage

The following command-line requests that OpenACC directives be enabled and that the issue an
error for any non-OpenA CC accelerator directive.

$ pgfortran -acc=verystrict -g prog.f

Description

The —acc option enables OpenACC directives. Y ou can use the suboptions to specify loop
autoparallelization, how the compiler reports compute regions failures to accelerate, and whether
to issue awarning or an error for non-OpenACC accelerator directives.

Starting in PGI 14.1, you control the OpenACC compiler behavior related to accel erator code
generation faillures with therequ i redsuboption. The OpenACC compilers now issue a compile-
time error if accelerator code generation fails. In previous releases, the compiler would issue
awarning, then generate code to run the compute kernel on the host. This previous behavior
generates incorrect results if the compute kernels are inside a data region and the host and

device memory values are inconsistent. Y ou can enable the old behavior by using the -acc
norequiredswitch.

PVF Reference Guide 10

Command-Line Options Reference

Related options
—g, —ta=teda(tesla_suboptions),radeon(:radeon_suboptions),host

2.2.4. —-Bdynamic

Compilesfor and links to the shared object version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

On Windows, you can createthe DLLobj 1 .d11and itsimport libraryobj1.1ibusing the
following series of commands:
% pgfortran -Bdynamic -c objectl.f % pgfortran -Mmakedll objectl.obj -o objl.dll

Then compile the main program using this command:
$ pgfortran -# prog.f

For a complete example in Windows, refer to the example: ‘Build aDLL: Fortran’ in the
‘Creating and Using Libraries’ section of the PGl Compiler User’s Guide.
Description

Use this option to compile for and link to the shared object version of the PGI runtime libraries.
Thisflag isrequired when linking with any DLL built by the PGI compilers. For Windows, this
flag corresponds to the/MDflag used by Microsoft’s ¢l compilers.

n On Windows,—Bdynam3i cmust be used forbothcompiling and linking.

When you use the PGI compiler flag-Bdynami cto create an executable that links to the shared
object form of the runtime, the executable built is smaller than one built without-Bdynami c.
The PGI runtime shared object(s), however, must be available on the system where the executable
isrun. The-Bdynami cflag must be used when an executableis linked against a shared object
built by the PGI compilers.

n C++ on Windows does not support—-Bdynamic.

Related options
—Bstatic, -M makedl|

PVF Reference Guide 11

Command-Line Options Reference

2.2.5. —Bstatic

Compilesfor and links to the static version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:

)

% pgfortran -Bstatic -c objectl.f

Description

Y ou can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

n On Windows,—Bstat i cmust be used forbothcompiling and linking.

For more information on using static libraries on Windows, refer to * Creating and Using Static
Libraries on Windows' in the ‘ Creating and Using Libraries’ section of the PGI Compiler User’s
Guide.

Related options
—Bdynamic, —Bstatic_pgi

2.2.6. —Bstatic_pgi

Linux only.Compiles for and links to the static version of the PGI runtime libraries. Implies—
Mnorpath.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:

[

% pgfortran -Bstatic -c objectl.f

PVF Reference Guide 12

Command-Line Options Reference

Description

Y ou can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

OnLinux,—Bstatic pgiresultsin code that runs on most Linux systems without requiring a
Portability package.

For more information on using static libraries on Windows, refer to ‘ Creating and Using Static
Librarieson Windows' in the ‘Creating and Using Libraries’ section of the PGI Visual Fortran
User Guide.

Related options

—Bdynamic, —Bstatic

2.2.7. —byteswapio

Swaps the byte-order of data in unformatted Fortran data files on input/outpuit.

Default

The compiler does not byte-swap data on input/output.

Usage

The following command-line requests that byte-swapping be performed on input/outpuit.
$ pgfortran -byteswapio myprog.f

Description

Usethe-byteswapiooption to swap the byte-order of datain unformatted Fortran datafiles on
input/output. When this option is used, the order of bytesis swapped in both the data and record
control words; the latter occurs in unformatted sequential files.

Y ou can use this option to convert big-endian format data files produced by most RISC
workstations and high-end serversto the little-endian format used on x86 or x64 systems on the
fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access
files are the same on the systems. It further assumes that the | EEE representation is used for
floating-point numbers. In particular, the format of unformatted data files produced by PGI
Fortran compilersisidentical to the format used on Sun and SGI workstations; this format allows
you to read and write unformatted Fortran data files produced on those platforms from a program
compiled for an x86 or x64 platform using the-byteswapiooption.

PVF Reference Guide 13

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

Related options

None

2.28.-C

(Fortran only) Generates code to check array bounds.

Default

The compiler does not enable array bounds checking.

Usage

In this example, the compiler instruments the executable produced frommyprog . fto perform
array bounds checking at runtime:
$ pgfortran -C myprog.f

Description

Use this option to enable array bounds checking. If an array is an assumed size array, the bounds
checking only appliesto the lower bound. If an array bounds violation occurs during execution,
an error message describing the error is printed and the program terminates. The text of the error
message includes the name of the array, the location where the error occurred (the source file and
the line number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

Related options

—Mbounds, -M nobounds

2.29.—C

Halts the compilation process after the assembling phase and writes the object code to afile.

Default

The compiler produces an executable file and does not use the — option.

Usage

In this example, the compiler produces the object filemyprog . objin the current directory.
$ pgfortran -c myprog.f

Description

Use the — option to halt the compilation process after the assembling phase and write the object
codeto afile. If theinput fileisfilename. £, the output fileis.

PVF Reference Guide 14

Command-Line Options Reference

Related options
—-E, -Mkeepasm, -0, -S

2.2.10.-D

Creates a preprocessor macro with agiven value.

You can use the —D option more than once on a compiler command line. The number of active macro
definitions is limited only by available memory.

Syntax

-Dname [=value]

Where name is the symbolic name and value is either an integer value or a character string.

Default

If you define a macro name without specifying a value, the preprocessor assigns the string 1 to
the macro name.

Usage

In the following example, the macro PATHLENGTH has the value 256 until a subsequent
compilation. If the—D option isnot used, PATHLENGTH is set to 128.
S pgfortran -DPATHLENGTH=256 myprog.F

The sourcetext inmyprog. Fisthis:

#ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path

END
Description

Use the —D option to create a preprocessor macro with a given value. The value must be either an
integer or a character string.

Y ou can use macros with conditional compilation to select source text during preprocessing. A
macro defined in the compiler invocation remains in effect for each module on the command line,
unless you remove the macro with an #undef preprocessor directive or with the —U option. The
compiler processes all of the —U options in acommand line after processing the —D options.

To set thisoption in PVF, use the Fortran | Preprocessor | Preprocessor Definitions property,
described in ‘ Preprocessor Definitions'.

PVF Reference Guide 15

Command-Line Options Reference

Related options
.y

2.2.11. —dryrun

Displays the invocations of the compiler, assembler, and linker but does not execute them.

Default

The compiler does not display individual phase invocations.

Usage

The following command line requests verbose invocation information.
$ pgfortran -dryrun myprog.f

Description

Use the-dryrunoption to display the invocations of the compiler, assembler, and linker but not
have them executed. These invocations are command lines created by the compiler driver from
ther cfiles and the command-line supplied with-dryrun.

Related options
—Minfo[=option [,option,...]], —V[release_number], —###

2.2.12. —drystdinc

Displays the standard include directories and then exits the compiler.

Default

The compiler does not display standard include directories.

Usage

The following command line requests a display for the standard include directories.
$ pgfortran -drystdinc myprog.f

Description

Usethe-drystdincoption to display the standard include directories and then exit the
compiler.

Related options

None

PVF Reference Guide 16

Command-Line Options Reference

2.213.-E

Halts the compilation process after the preprocessing phase and displays the preprocessed output
on the standard output.

Default

The compiler produces an executablefile.

Usage

In the following example the compiler displays the preprocessedmyprog . fon the standard
output.
$ pgfortran -E myprog.f

Description

Use the —E option to halt the compilation process after the preprocessing phase and display the
preprocessed output on the standard output.

Related options
—C, —¢, "Mkeepasm, —o, —F, -S

2.214. -F

Stops compilation after the preprocessing phase.

Default

The compiler produces an executablefile.

Usage

In the following example the compiler produces the preprocessed filemyprog. fin the current
directory.
$ pgfortran -F myprog.F

Description

Use the — option to halt the compilation process after preprocessing and write the preprocessed
output to afile. If theinput fileis filename.F, thenthe output fileis filename. f.

Related options
—c, —E, -Mkeepasm, -0, -S

PVF Reference Guide 17

Command-Line Options Reference

2.2.15. —fast

Enables vectorization with SSE instructions, cache alignment, and flushz for 64-hbit targets.

Default

The compiler enables vectorization with SSE instructions, cache alignment, and flushz.

Usage

In the following example the compiler produces vector SSE code when targeting a 64-bit
machine.
$ pgfortran -fast vadd.f95

Description

When you use this option, a generally optimal set of optionsis chosen for targets that support
SSE capability. In addition, the appropriate-tpoption is automatically included to enable
generation of code optimized for the type of system on which compilation is performed. This
option enables vectorization with SSE instructions, cache alignment, and flushz.

Auto-selection of the appropriate—t poption means that programs built using the— f a st s seoption on a
given system are not necessarily backward-compatible with older systems.

n C/C++ compilers enable-Mautoinlinewith—-fast.

To set thisoption in PVF, use the Fortran | General | Optimization property, described in
‘Optimization’.

Related options

—O<level>, -Munroll[=option [,option...]], -Mnoframe, —M scalarsse, -M[no]vect[=option
[;option,...]], “Mcache_align, —tp <target>[,target...], — M[no]autoinline[=option[,option,...]]

2.2.16. —fastsse

Synonymous with —fast.

2.2.17. --flagcheck

Causes the compiler to check that flags are correct and then exit without any compilation
occuring.

PVF Reference Guide 18

Command-Line Options Reference

Default
The compiler begins a compile without the additional step to first validate that flags are correct.

Usage

In the following example the compiler checks that flags are correct, and then exits.
$ pgfortran --flagcheck myprog.f

Description

Use this option to make the compiler check that flags are correct and then exit. If flags are all
correct then the compiler returns a zero status. No compilation occurs.

Related options

None

2.2.18. —flags

Displays valid driver options on the standard outpui.

Default

The compiler does not display the driver options.

Usage

In the following exampl e the user requests information about the known switches.
$ pgfortran -flags

Description

Use this option to display driver options on the standard output. When you use this option with —
v, in addition to the valid options, the compiler lists options that are recognized and ignored.

Related options
Y

2.2.19. -g

Instructs the compiler to include symbolic debugging information in the object module.

Default

The compiler does not put debugging information into the object module.

PVF Reference Guide 19

Command-Line Options Reference

Usage

In the following example, the object filemyprog. ob7jcontains symbolic debugging
information.

$ pgfortran -c -g myprog.f

Description

Use the —g option to instruct the compiler to include symbolic debugging information in the
object module. Debuggers, such asPGDBG, require symbolic debugging information in the object
modul e to display and manipulate program variables and source code.

If you specify the-goption on the command-line, the compiler sets the optimization level to —
00 (zero), unless you specify the-ooption. For more information on the interaction between
the—-gand-ooptions, refer to the-0entry. Symbolic debugging may give confusing resultsif an
optimization level other than zero is selected.

n Including symbolic debugging information increases the size of the object module.

To set thisoption in PVF, use the Fortran | General | Debug Information Format property,
described in * Debug Information Format’ on page 377.

Related options

—O<level>, —gopt

2.2.20. —gopt

Instructs the compiler to include symbolic debugging information in the object file, and to
generate optimized code identical to that generated when —g is not specified.
Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object filemyprog. ob7 contains symbolic debugging
information.
$ pgfortran -c -gopt myprog.f

Description

Using-galters how optimized code is generated in ways that are intended to enable or improve
debugging of optimized code. The-goptoption instructs the compiler to include symbolic
debugging information in the object file, and to generate optimized code identical to that
generated when —g is not specified.

PVF Reference Guide 20

Command-Line Options Reference

To set thisoption in PVF, use the Fortran | General | Debug Information Format property
described in * Debug Information Format’.

Related options
-9, -M<pgflag>

2.2.21. -help

Used with no other options, —he 1p displays options recognized by the driver on the standard
output. When used in combination with one or more additional options, usage information for
those options is displayed to standard output.

Default

The compiler does not display usage information.

Usage

In the following example, usage information for-Min1 ineis printed to standard output.

$ pgcc -help -Minline

-Minline[=1lib:<inlib>|<func>|except:<func>| name:<func>|size:<n>|levels:<n>]
Enable function inlining lib:<extlib>Use extracted functions from extlib
<func>Inline function func except:<func>Do not inline function func
name:<func>Inline function func size:<n>Inline only functions smaller than n
levels:<n>Inline n levels of functions -Minline Inline all functions that were
extracted

In the following example, usage information for —help shows how groups of options can be listed
or examined according to function.

$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall |phase|prepro|suffix|switch|target|variable]

Description

Use the —help option to obtain information about available options and their syntax. Y ou can use
—help in one of three ways:

» Use-helpwith no parametersto obtain alist of all the available options with a brief one-line
description of each.

» Add aparameter to —help to restrict the output to information about a specific option. The
syntax for thisusageisthis:
-help <command line option>

» Add aparameter to —help to restrict the output to a specific set of options or to a building
process. The syntax for this usageisthis:
-help=<subgroup>

The following table lists and describes the subgroups available with —help.

PVF Reference Guide 21

Command-Line Options Reference

Table 9 Subgroups for —help Option

Use this —help option To get this information...

-help=asm A list of options specific to the assembly phase.

—help=debug A list of options related to debug information generation.

-help=groups Alist of available switch classifications.

-help=language A list of language-specific options.

—help=linker A list of options specific to link phase.

—help=opt A list of options specific to optimization phase.

—help=other A list of other options, such as ANSI conformance pointer aliasing for C.

—help=overall A list of options generic to any PGI compiler.

-help=phase Alist of build process phases and to which compiler they apply.

—help=prepro A list of options specific to the preprocessing phase.

-help=suffix Alist of known file suffixes and to which phases they apply.

—help=switch Alist of all known options; this is equivalent to usage of —help without any parameter.

-help=target A list of options specific to target processor.

-help=variable Alist of all variables and their current value. They can be redefined on the command line
using syntax VAR=VALUE.

Related options
—#, —#H#, —show, —V[release_number], —flags

2.2.22. -

Adds adirectory to the search path for files that are included using either the INCLUDE
statement or the preprocessor directive #include.

Default

The compiler searches only certain directories for included files.

Syntax

-Idirectory

Where directory isthe name of the directory added to the standard search path for include files.

PVF Reference Guide 22

Command-Line Options Reference

Usage

In the following example, the compiler first searches the directorymydi rand then searches the
default directories for include files.
$ pgfortran -Imydir

Description

Adds adirectory to the search path for files that are included using the INCLUDE statement or
the preprocessor directive #include. Use the - option to add a directory to the list of where to
search for the included files. The compiler searches the directory specified by the - option before
the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The
compiler uses two rulesto locate thefile:

» If thefile name specified in the INCLUDE statement includes a path name, the compiler
begins reading from thefile it specifies.
» If no path nameis provided in the INCLUDE statement, the compiler searches (in order):

1. Any directories specified using the - option (in the order specified)
2. Thedirectory containing the source file
3. Thecurrent directory

For example, the compiler appliesrule (1) to the following statements:

INCLUDE '/bob/include/filel' (absolute path name)
INCLUDE '../../filel' (relative path name)

and rule (2) to this statement:
INCLUDE 'filel'

To set thisoption in PVF, use the Fortran | General | Additional Include Directories property,
described in * Additional Include Directories’, or the Fortran | Preprocessor | Additional Include
Directories property, described in * Additional Include Directories'.

Related options
—Mnostdinc

2.2.23. -2, -4, I8
Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default
The compiler treats INTERGER and LOGICAL variables as four bytes.

PVF Reference Guide 23

Command-Line Options Reference

Usage

In the following example, using the —8 switch causes the integer variables to be treated as 64
bits.

$ pgfortran -i8 int.f

int . fisafunction similar to this:

int.f
print *, "Integer size:", bit size (i)
end

Description

Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
INTEGER* 8 values not only accupy 8 bytes of storage, but operations use 64 bits, instead of 32
bits.

» —i2: Treat INTEGER variables as 2 bytes.

» —i4: Treat INTEGER variables as 4 bytes.

» —i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTEGER*8
operations.

Related options

None.

2.2.24. K<flag>

Reguests that the compiler provide special compilation semantics with regard to conformance to
|EEE 754.
Default

The default is —-Knoieee and the compiler does not provide special compilation semantics.

Syntax
—K<flag>
Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754 standard. Some optimizations are
disabled, and on some systems a more accurate math library is linked if —Kieee is used during the link

step.

To set this option in PVF, use the Fortran | Floating Point Options | IEEE Arithmetic property, described in
‘IEEE Avrithmetic'.

noieee Default flag. Use the fastest available means to perform floating-point operations, link in faster non-IEEE
libraries if available, and disable underflow traps.

PVF Reference Guide 24

Command-Line Options Reference

trap=option Controls the behavior of the processor when floating-point exceptions occur.

[,option]... Possible options include:

fp

align (ignored)
inv
denorm
divz

ovf

unf

inexact

Usage

In the following example, the compiler performs floating-point operations in strict conformance
with the |EEE 754 standard

$ pgfortran -Kieee myprog.f
Description

Use —K to instruct the compiler to provide special compilation semantics.

—-Ktrap isonly processed by the compilers when compiling main functions or programs. The
options inv, denorm, divz, ovf, unf, and inexact correspond to the processor’ s exception
mask bits: invalid operation, denormalized operand, divide-by-zero, overflow, underflow, and
precision, respectively.

Normally, the processor’ s exception mask bits areon, meaning that floating-point exceptions
are masked — the processor recovers from the exceptions and continues. If a floating-point
exception occurs and its corresponding mask bit isoff, or "unmasked”, execution terminates with
an arithmetic exception (C's SIGFPE signd).

-Ktrap=fp isequivaentto -Ktrap=inv,divz, ovf.

To set thisoption in PVF, use the Fortran | Floating Point Options | Floating Point Exception
Handling property, described in ‘ Floating Point Exception Handling'.

The PGI compilers do not support exception-free execution for —-Kt rap=1inexact. The purpose
of this hardware support is for those who have specific uses for its execution, along with the appropriate
signal handlers for handling exceptions it produces. It is not designed for normal floating point operation
code support.

Related options

None

PVF Reference Guide 25

Command-Line Options Reference

2.2.25. --keeplnk

(Windows only.) Preserves the temporary file when the compiler generates a temporary indirect
filefor along linker command.
Usage

In the following example the compiler preserves each temporary file rather than deleting it.
$ pgfortran --keeplnk myprog.f

Description

If the compiler generates atemporary indirect file for along linker command, use this option to
instruct the compiler to preserve the temporary file instead of deleting it.

Related options

None

2.2.26. -L

Specifies adirectory to search for libraries.

Multiple —L options are valid. However, the position of multiple —L options is important relative to —| options
supplied.

Default

The compiler searches the standard library directory.

Syntax

-Ldirectory

Wheredirectoryisthe name of the library directory.

Usage

In the following example, the library directory is/ 1 iband the linker links in the standard libraries
required by PGFORTRAN from this directory.

$ pgfortran -L/lib myprog.f

In the following example, the library directory /1 i bis searched for the library filel ibx . aand
both the directories/ 1iband/1ibzare searched forliby. a.
$ pgfortran -L/1lib -1x -L/libz -ly myprog.f

PVF Reference Guide 26

Command-Line Options Reference

Description

Use the —L option to specify adirectory to search for libraries. Using —L allows you to add
directories to the search path for library files.

Related options

—

2.2.27. —I<library>

Instructs the linker to load the specified library. The linker searches <library>in addition to the
standard libraries.

n The linker searches the libraries specified with - in order of appearancebeforesearching the standard
libraries.

Syntax

-llibrary
Where library isthe name of the library to search.

Usage: In the following example, if the standard library directory is/ 1 ibthe linker loads the
library/1ib/1ibmylib. a, in addition to the standard libraries.
$ pgfortran myprog.f -lmylib

Description

Use this option to instruct the linker to load the specified library. The compiler prepends the
characters|ib to the library name and adds the .a extension following the library name. The linker
searches each library specified before searching the standard libraries.

Related options
L

2.2.28. -M

Generate make dependence lists. You can use -MD, £ilename (pgc++ only) to generate make
dependence lists and print them to the specified file.

2.2.29.-m

Displays alink map on the standard output.

PVF Reference Guide 27

Command-Line Options Reference

Default

The compiler does display the link map and does not use the —m option.

Usage

When the following example is executed on Windows, pgfortran creates alink map in thefile

myprog.map.
$ pgfortran -m myprog.f

Description
Use this option to display alink map.

» On Linux, the map iswrittento stdout.
» On Windows, the map iswritten to a . map file whose name depends on the executable. If
the executableismyprog. £, themap fileisinmyprog . map.

Related options

—C,—0,~U

2.2.30. -m32

Use the 32-bit compiler for the default processor type.

Usage

When the following example is executed on Windows, pgfortran uses the 32-hit compiler for the
default processor type.
$ pgfortran -m32 myprog.f

Description

Use this option to specify the 32-bit compiler as the default processor type.

Related options
—mo64

2.2.31. —-m64

Use the 64-bit compiler for the default processor type.

Usage

When the following example is executed on Windows, pgfortran uses the 64-hit compiler for the
default processor type.
$ pgfortran -mé64 myprog.f

PVF Reference Guide 28

Command-Line Options Reference

Description

Use this option to specify the 64-bit compiler as the default processor type.

Related options
—-m32

2.2.32. -M<pgflag>

Selects options for code generation. The options are divided into the following categories:

Code generation Fortran Language Controls Optimization
Environment C/C++ Language Controls Miscellaneous
Inlining

The following table lists and briefly describes the options alphabetically and includes afield
showing the category. For more details about the options as they relate to these categories, refer
to ‘—M Options by Category’ on page 113.

Table 10 —M Options Summary

poflag Description Category

allocatable=95|03 Controls whether to use Fortran 95 or Fortran 2003 semantics in Fortran Language
allocatable array assignments.

anno Annotate the assembly code with source code. Miscellaneous
[noJautoinline When a C/C++ function is declared with the inline keyword, inline it | Inlining

at-02.
[no]backslash Determines how the backslash character is treated in quoted strings. | Fortran Language
[no]bounds Specifies whether array bounds checking is enabled or disabled. Miscellaneous
byteswapio Swap byte-order (big-endian to little-endian or vice versa) during /O | Miscellaneous

of Fortran unformatted data.

cache_align Where possible, align data objects of size greater than or equal to 16 | Optimization
bytes on cache-line boundaries.

chkfpstk Check for internal consistency of the x87 FP stack in the prologue of | Miscellaneous
a function and after returning from a function or subroutine call (~tp
px/p5/p6/piii targets only).

chkptr Check for NULL pointers (pgf95, pgfortran only). Miscellaneous

PVF Reference Guide 29

Command-Line Options Reference

pgflag Description Category
chkstk Check the stack for available space upon entry to and before the Miscellaneous
start of a parallel region. Useful when many private variables are
declared.
concur Enable auto-concurrentization of loops. Multiple processors or cores | Optimization
will be used to execute parallelizable loops.
cpp Run the PGI cpp-like preprocessor without performing subsequent Miscellaneous
compilation steps.
cray Force Cray Fortran (CF77) compatibility. Optimization
cuda Enables Cuda Fortran. Fortran Language
[no]daz Do/don’t treat denormalized numbers as zero. Code Generation
[no]dclchk Determines whether all program variables must be declared. Fortran Language
[no]defaultunit Determines how the asterisk character ("*") is treated in relation to Fortran Language
standard input and standard output, regardless of the status of /0
units 5 and 6..
[no]depchk Checks for potential data dependencies. Optimization
[no]dse Enables [disables] dead store elimination phase for programs Optimization
making extensive use of function inlining.
[no]dlines Determines whether the compiler treats lines containing the letter Fortran Language
"D" in column one as executable statements.
dollar,char Specifies the character to which the compiler maps the dollar sign Fortran Language
code.
[no]dwarf Specifies not to add DWARF debug information. Code Generation
dwarf1 When used with —g, generate DWARF1 format debug information. Code Generation
dwarf2 When used with —g, generate DWARF2 format debug information. Code Generation
dwarf3 When used with —g, generate DWARF3 format debug information. Code Generation
extend Instructs the compiler to accept 132-column source code; otherwise | Fortran Language
it accepts 72-column code.
extract invokes the function extractor. Inlining
[no]f[=option] Perform certain floating point intrinsic functions using relaxed Optimization
precision.
fixed Instructs the compiler to assume F77-style fixed format source code | Fortran Language
(pgf95, pgfortran only).
PVF Reference Guide 30

Command-Line Options Reference

pgflag Description Category

[no]flushz Do/don’t set SSE flush-to-zero mode Code Generation

[nolfpapprox Specifies not to use low-precision fp approximation operations. Optimization

free Instructs the compiler to assume F90-style free format source code. | Fortran Language

func32 The compiler aligns all functions to 32-byte boundaries. Code Generation

geebug(s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding optimization and code Miscellaneous
generation to standard output as compilation proceeds.

inform Specifies the minimum level of error severity that the compiler Miscellaneous
displays.

inline Invokes the function inliner. Inlining

[noliomutex Determines whether critical sections are generated around Fortran I/ | Fortran Language
O calls.

[noipa Invokes interprocedural analysis and optimization. Optimization

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

largeaddressaware [Win64 only] Generates code that allows for addresses greater than | Code Generation

2GB, using RIP-relative addressing.

[no]large_arrays

Enables support for 64-bit indexing and single static data objects of
size larger than 2GB.

Code Generation

list Specifies whether the compiler creates a listing file. Miscellaneous

[no]loop32 Aligns [does not align] innermost loops on 32 byte boundaries with — | Code Generation
tp barcelona

[no]ire Enable [disable] loop-carried redundancy elimination. Optimization

maked|l Generate a dynamic link library (DLL).. Miscellaneous

makeimplib Passes the -def switch to the librarian without a deffile, when used Miscellaneous
without—-def :deffile.

mpi=option Link to MP! libraries: MPICH, SGlI, or Microsoft MP! libraries Code Generation

neginfo Instructs the compiler to produce information on why certain Miscellaneous
optimizations are not performed.

noframe Eliminates operations that set up a true stack frame pointer for Optimization
functions.

noi4 Determines how the compiler treats INTEGER variables. Optimization

PVF Reference Guide

3

Command-Line Options Reference

pgflag Description Category

nomain When the link step is called, don't include the object file that calls the | Code Generation
Fortran main program..

noopenmp When used in combination with the —mp option, the compiler ignores | Miscellaneous
OpenMP parallelization directives , but still processes SGl-style
parallelization directives.

nopgdlimain Do not link the module containing the default DllMain() into the DLL. | Miscellaneous

nosgimp When used in combination with the —mp option, the compiler ignores | Miscellaneous
SGl-style parallelization directives, but still processes OpenMP
directives.

nostdinc Instructs the compiler to not search the standard location for include | Environment
files. To set this option in PVF, use the Fortran | Preprocessor |
Ignore Standard Include Path property.

nostdlib Instructs the linker to not link in the standard libraries. Environment

[noJonetrip Determines whether each DO loop executes at least once. Language

novintr Disable idiom recognition and generation of calls to optimized vector | Optimization
functions.

pfi Instrument the generated code and link in libraries for dynamic Optimization
collection of profile and data information at runtime.

pre Read a pgfi.out trace file and use the information to enable or guide | Optimization
optimizations.

[no]pre Force [disable] generation of non-temporal moves and prefetching. | Code Generation

[no]prefetch Enable [disable] generation of prefetch instructions. Optimization

preprocess Perform cpp-like preprocessing on assembly language and Fortran | Miscellaneous
input source files.

prof Set profile options; function-level and line-level profiling are Code Generation
supported.

[no]r8 Determines whether the compiler promotes REAL variables and Optimization
constants to DOUBLE PRECISION.

[no]r8intrinsics Determines how the compiler treats the intrinsics CMPLX and REAL. | Optimization

[noJrecursive Allocate [do not allocate] local variables on the stack; this allows Code Generation

recursion. SAVEd, data-initialized, or namelist members are always
allocated statically, regardless of the setting of this switch.

PVF Reference Guide

32

poflag

[noJreentrant

Command-Line Options Reference

Description

Specifies whether the compiler avoids optimizations that can prevent
code from being reentrant.

Category

Code Generation

[noJref_externals

Do [do not] force references to names appearing in EXTERNAL
statements.

Code Generation

safe_lastval

In the case where a scalar is used after a loop, but is not defined
on every iteration of the loop, the compiler does not by default
parallelize the loop. However, this option tells the compiler it is safe
to parallelize the loop. For a given loop, the last value computed for
all scalars make it safe to parallelize the loop.

Code Generation

[no]save

Determines whether the compiler assumes that all local variables
are subject to the SAVE statement.

Fortran Language

[no]scalarsse

Do [do not] use SSE/SSE2 instructions to perform scalar floating-
point arithmetic.

Optimization

[no]second_underscore

Do [do not] add the second underscore to the name of a Fortran
global if its name already contains an underscore.

Code Generation

[no]signextend Do [do not] extend the sign bit, if it is set. Code Generation
[no]smart Do [do not] enable optional post-pass assembly optimizer. Optimization
[no]smartalloc[=huge| huge:<n>| | Add a call to the routine mallopt in the main routine. Supports large | Environment

identifiers..

hugebss] TLBs on Linux and Windows.
Tip To be effective, this switch must be specified
when compiling the file containing the Fortran, C,
or C++ main program.
standard Causes the compiler to flag source code that does not conform to Fortran Language
the ANSI standard.
[no]stride0 Do [do not] generate alternate code for a loop that contains an Code Generation
induction variable whose increment may be zero.
unix Uses UNIX calling and naming conventions for Fortran Code Generation
subprograms.
[noJunixlogical Determines how the compiler treats logical values.. Fortran Language
[noJunroll Controls loop unrolling. Optimization
[noJupcase Determines whether the compiler preserves uppercase letters in Fortran Language

PVF Reference Guide

33

Command-Line Options Reference

poflag Description Category

varargs Forces Fortran program units to assume calls are to C functions with | Code Generation
a varargs type interface.

[no]vect Do [do not] invoke the code vectorizer. Optimization

2.2.33. -module <moduledir>

Allows you to specify a particular directory in which generated intermediate. modfiles should be
placed.

Default

The compiler places. modfilesin the current working directory, and searches only in the current
working directory for pre-compiled intermediate. modfiles.

Usage

The following command line requests that any intermediate module file produced during
compilation ofmyprog . £be placed in the directorymymods; specifically, thefile. /mymods /
myprog.modis used.

$ pgfortran -module mymods myprog.f

Description

Use the-moduleoption to specify a particular directory in which generated intermediate .mod
files should be placed. If the-module <moduledir>optionispresent, and USE statements
are present in a compiled program unit, then<moduledir>is searched for . modintermediate
filespriorto a search in the default local directory.

To set thisoption in PVF, use the Fortran | Output | Module Path property, described in *Module
Path'’.

Related options

None

2.2.34. —mpJ[=all, align,bind,[no]numal]

Instructs the compiler to interpret user-inserted OpenM P shared-memory parallel programming
directives, and to generate an executable file which will utilize multiple processors in a shared-
memory parallel system.

Default

The compiler interprets user-inserted shared-memory parallel programming directiveswhen
linking. To disable this option, use the-nompoption when linking.

PVF Reference Guide 34

Command-Line Options Reference

Usage

The following command line requests processing of any shared-memory directives present
inmyprog. f:
$ pgfortran -mp myprog.f

Description

Use the-mpoption to instruct the compiler to interpret user-inserted OpenM P shared-memory
paralel programming directives and to generate an executable file which utilizes multiple
processors in a shared-memory parallel system.

The suboptions are one or more of the following:
align
Forces loop iterations to be allocated to OpenMP processes using an algorithm that maximizes
alignment of vector sub-sections in loops that are both parallelized and vectorized for SSE.
This alocation can improve performance in program units that include many such loops. It
can also result in load-balancing problems that significantly decrease performance in program
units with relatively short loops that contain alarge amount of work in each iteration. The
numa suboption uses libnuma on systems where it is available.
allcores
Instructs the compiler to target all available cores. Y ou specify this suboption at link time.
bind
Instructs the compiler to bind threads to cores. Y ou specify this suboption at link time.
[no]numa
Uses [does not use] libnuma on systems where it is available.

For a detailed description of this programming model and the associated directives, refer to
Section 9, ‘Using OpenMP' of the PGl Compiler User’s Guide.

To set thisoption in PVF, use the Fortran | Language | Enable OpenMP Directives property,
described in * Enable OpenMP Directives'.

Related options

—M concur[=option [,option,...]], -M[no]vect[=option [,option,...]]

2.2.35. —noswitcherror

Issues warnings instead of errors for unknown switches. Ignores unknown command line
switches after printing a warning message.

Default

The compiler prints an error message and then halts.

PVF Reference Guide 35

Command-Line Options Reference

Usage

In the following example, the compiler ignores unknown command line switches after printing a
warning message.

$ pgfortran -noswitcherror myprog.f

Description

Use this option to instruct the compiler to ignore unknown command line switches after printing
an warning message.

n Tip You can configure this behavior in thes i t e rcfile by adding;:set NOSWITCHERROR=1.

Related options

None

2.2.36. -O<level>

Invokes code optimization at the specified level.

Default

The compiler optimizes at level 2.

Syntax

-0 [level]

Where levd is an integer from 0 to 4.

Usage

In the following example, since no —O option is specified, the compiler sets the optimization to
level 1.

$ pgfortran myprog.f

In the following example, since no optimization level is specified and a—O option is specified,
the compiler sets the optimization to level 2.
$ pgfortran -O myprog.f

Description

Use this option to invoke code optimization.Using the PGI compiler commands with the —Olevel
option (the capital O isfor Optimize), you can specify any of the following optimization levels;

-00
Level zero specifies no optimization. A basic block is generated for each language statement.

PVF Reference Guide 36

Command-Line Options Reference

-01
Level one specifieslocal optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

-0
When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant mation. No SIMD vectorization
is enabled.

-02
Level two specifies global optimization. Thislevel performs all level-one local optimization
aswell as level-two global optimization described in —O. In addition, thislevel enables
more advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination.

-03
Level three specifies aggressive global optimization. This level performsall level-one
and level-two optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

-04
Level four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

To set this option (-O2 or —0O3) in PVF, use the Fortran | Optimization | Global Optimizations
property, described in ‘ Global Optimizations'.

The following table shows the interaction between the -0 option, —g option,-Mvect, and -
Mconcur options.

Table 11 Optimization and -0, —g, -Mvect, and -Mconcur Options

Optimize Option Debug Option -M Option Optimization Level
none none none 1

none none -Mvect 2

none none —-Mconcur 2

none -9 none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel < 2 none or —g —Mvect 2

—Olevel < 2 none or —g —Mconcur 2

Unoptimized code compiled using the option —00 can be significantly slower than code
generated at other optimization levels. Like the -Mvect option, the -Munrol1 option sets
the optimization level to level-2 if no -0 or —g options are supplied. The —gopt optionis

PVF Reference Guide 37

Command-Line Options Reference

recommended for generation of debug information with optimized code. For more information on
optimization, refer to the * Optimizing and Parallelizing’ section of the PGI Visual Fortran User's
Manual.

Related options
—g, —M<pgflag>, —gopt

2.2.37.-0

Names the executabl e file. Use the —0 option to specify the filename of the compiler object file.
The final output is the result of linking.
Default

The compiler creates executable filenames as needed. If you do not specify the —ooption, the
default filename is the linker output file with aname comprised of the base file name, such as
myprog, plusthe extension . exe, for example: myprog.exe.

Syntax

—o filename

Where filename is the name of the file for the compilation output. The filename must not have a
. £ extension.

Usage

In the following example, the executable fileisnyp . exeinstead of the
defaulta . outmyprog. exe.
$ pgfortran myprog.f -o myp

To set thisoption in PVF, use the Fortran | Output | Object File Name property, described in
‘Object File Name' on page 377.

Related options
—,-E,—F,-S

2.2.38. —pc

n This option is available only for ~tp px/p5/p6/piii targets.

Allows you to control the precision of operations performed using the x87 floating point unit, and
their representation on the x87 floating point stack.

PVF Reference Guide 38

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

Syntax

-pc { 32 | 64 | 80 }

Usage

$ pgfortran -pc 64 myprog.f

Description

The x87 architecture implements a floating-point stack using 8 80-bit registers. Each register
uses bits 0-63 as the significant, bits 64-78 for the exponent, and bit 79 is the sign bit. This 80-
bit real format is the default format, called theextended format. When values are loaded into the
floating point stack they are automatically converted into extended real format. The precision of
the floating point stack can be controlled, however, by setting the precision control bits (bits 8
and 9) of the floating control word appropriately. In thisway, you can explicitly set the precision
to standard | EEE double-precision using 64 hits, or to single precision using 32 hits.

According to Intel documentation, this only affects the x87 operations of add, subtract, multiply,
divide, and square root. In particular, it does not appear to affect the x87 transcendental
instructions.

The default precision is system dependent. To ater the precision in agiven program unit, the
main program must be compiled with the same —-pc option. The command line option -pc val
lets the programmer set the compiler’s precision preference.

Valid valuesfor va are:

32 single precision 64 double precision 80 extended precision

Extended Precision Option — Operations performed exclusively on the floating-point stack
using extended precision, without storing into or loading from memory, can cause problems
with accumulated values within the extra 16 bits of extended precision values. This can lead to
answers, when rounded, that do not match expected results.

For example, if the argument to sin isthe result of previous calculations performed on the
floating-point stack, then an 80-bit value used instead of a 64-bit value can result in slight
discrepancies. Results can even change sign due to the sin curve being too close to an x-intercept
value when evaluated. To maintain consistency in this case, you can assure that the compiler
generates code that calls afunction. According to the x86 ABI, afunction call must push its
arguments on the stack (in this way memory is guaranteed to be accessed, even if the argument is
an actual constant). Thus, even if the called function simply performs the inline expansion, using
the function call as awrapper to sin has the effect of trimming the argument precision down to
the expected size. Using the -Mnobui1tin option on the command line for C accomplishes this
task by resolving all math routinesin thelibrary 1 ibm, performing a function call of necessity.
The other method of generating afunction call for math routines, but one that may still produce
the inline instructions, is by using the -Kieee switch.

PVF Reference Guide 39

Command-Line Options Reference

A second exampl e illustrates the precision control problem using a section of code to determine
machine precision:

program find precision

w = 1.0

100 w=wtw

y=w+1l

Z=Y—W

if (z .gt. 0) goto 100
C now w is just big enough that | ((w+l)-w)-1] >= 1
print*,w

end

In this case, where the variables are implicitly real* 4, operations are performed on the floating-
point stack where optimization removes unnecessary |oads and stores from memory. The general
case of copy propagation being performed follows this pattern:
a = X

y =2.0 + a
Instead of storing x into a, then loading ato perform the addition, the value of x can be left on
the floating-point stack and added to 2.0. Thus, memory accesses in some cases can be avoided,
leaving answersin the extended real format. If copy propagation is disabled, stores of all left-
hand sides will be performed automatically and reloaded when needed. This will have the effect
of rounding any results to their declared sizes.

Thefind_precision program has a value of 1.8446744E+19 when executed using default
(extended) precision. If, however, -Kieee is set, the value becomes 1.6777216E+07 (single
precision.) This differenceis dueto the fact that -Kieee disables copy propagation, so al
intermediate results are stored into memory, then reloaded when needed. Copy propagation is
only disabled for floating-point operations, not integer. With this particular example, setting the -
pc switch will also adjust the resullt.

The -Kieee switch also has the effect of making function calls to perform al transcendental
operations. Except when the -Mnobuiltin switchissetin C, the function still produces the
x86 machine instruction for computation, and arguments are passed on the stack, which resultsin
amemory store and load.

Finally, -Kieee aso disables reciprocal division for constant divisors. That is, for alb with
unknown aand constant b, the expression is usually converted at compile time to a* (1/b), thus
turning an expensive divide into arelatively fast scalar multiplication. However, numerical
discrepancies can occur when this optimization is used.

Understanding and correctly using the -pc, -Mnobuiltin, and -Kieee switches should
enable you to produce the desired and expected precision for calculations which utilize floating-
point operations.

Related options
—K<flag>, Mnobuiltin

PVF Reference Guide 40

Command-Line Options Reference

2.2.39. --pedantic

Prints warnings from included <system header files>.

Default

The compiler prints the warnings from the included system header files.

Usage

In the following example, the compiler prints the warnings from the included system header files.
$ pgfortran --pedantic myprog.f

Related options

None.

2.2.40. —pgc++libs

Instructs the compiler to append C++ runtime libraries to the link line for programs built using
either PGF90 or PGF77.

Default

The C/C++ compilers do not append the C++ runtime libraries to the link line.

Usage

In the following example the C++ runtime libraries are linked with an object file compiled with
pof77.

$ pgf90 main.f90 mycpp.o -pgc++libs

Description

Use this option to instruct the compiler to append C++ runtime libraries to the link line for
programs built using either PGF90 or PGF77.

Related options
—pgf90libs, —pgf77libs

2.2.41. —pgf77libs

Instructs the compiler to append PGF77 runtime libraries to the link line.

Default
The C/C++ compilers do not append the PGF77 runtime libraries to the link line.

PVF Reference Guide 41

Command-Line Options Reference

Usage

In the following example a.c main program is linked with an object file compiled with pgf77.
$ pgcc main.c myf77.0 -pgf771libs

Description

Use this option to instruct the compiler to append PGF77 runtime libraries to the link line.

Related options
—pgc++libs, -pgf90libs

2.2.42. —pgf90libs

Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

Default

The C/C++ compilers do not append the PGF90/PGF95/PGFORTRAN runtime libraries to the
link line.

Usage

In the following example a.c main program is linked with an object file compiled with pgfortran.
$ pgcc main.c myf95.0 -pgf90libs

Description

Use this option to instruct the compiler to append PGF0/PGF95/PGFORTRAN runtime libraries
tothelink line.

Related options
—pgc++libs, 4pgf 77libs

2.2.43. —r4 and -8

Interprets DOUBLE PRECISION variables as REAL (—4), or interprets REAL variables as
DOUBLE PRECISION (—8).

Usage

In this example, the double precision variables are interpreted as REAL.
$ pgfortran -r4 myprog.f

PVF Reference Guide 42

Command-Line Options Reference

Description

Interpret DOUBLE PRECISION variables as REAL (—4) or REAL variables as DOUBLE
PRECISION (—8).

Related options

—2, -4, -8, -Mnor8

2.2.44. —rc

Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a
full pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path
of the currently executing driver). If afull pathname is supplied, that file is used for the driver
configuration file.

Syntax

-rc [path] filename

Where path is either arelative pathname, relative to the value of $DRIVER, or afull pathname
beginning with "/". Filename is the driver configuration file.

Default

The driver usesthe configuration file. pgirc.

Usage

In the following example, thefile.pgfortranrctest, relativeto/usr/pgi/linux86/
bin, the value of $DRIVER, isthe driver configuration file.
$ pgfortran -rc .pgfortranrctest myprog.f

Description

Use this option to specify the name of the driver startup configuration file. If the file or pathname
supplied is not afull pathname, the path for the configuration file loaded is relative to the
$DRIVER path - the path of the currently executing driver. If afull pathname is supplied, that file
is used for the driver configuration file.

Related options

—show

2.2.45. -S

Stops compilation after the compiling phase and writes the assembly-language output to afile.

PVF Reference Guide 43

Command-Line Options Reference

Default

The compiler does not produce a. sfile.

Usage

In this example, pgfortran produces the filemyprog. sin the current directory.
$ pgfortran -S myprog.f

Description

Use this option to stop compilation after the compiling phase and then write the assembly-
language output to afile. If theinput fileisfilename. £, then the output fileisfilename. s.

Related options
—c, —E, —F, -Mkeepasm, —0

2.2.46. —show

Produces driver help information describing the current driver configuration.

Default

The compiler does not show driver help information.

Usage

In the following example, the driver displays configuration information to the standard output
after processing the driver configuration file.
$ pgfortran -show myprog.f

Description

Use this option to produce driver help information describing the current driver configuration.

Related options
—V[release _number], —v, —###, —help, —rc

2.2.47. —silent

Do not print warning messages.

Default

The compiler prints warning messages.

PVF Reference Guide 44

Command-Line Options Reference

Usage

In the following example, the driver does not display warning messages.
$ pgfortran -silent myprog.f

Description

Use this option to suppress warning messages.

Related options

-v, —V[release_number], -w

2.2.48. —stack

(Windows only.) Allows you to explicitly set stack properties for your program.

Default

If —stack isnot specified, then the defaults are as followed:

Win32
Settingis-stack:2097152,2097152, which is approximately 2MB for reserved and
committed bytes.

Win6é4
No default setting

Syntax

-stack={ (reserved bytes) [, (committed bytes)] }{, [no]check }

Usage

The following example demonstrates how to reserve 524,288 stack bytes (512KB), commit
262,144 stack bytes for each routine (256K B), and disable the stack initialization code with the
nocheck argument.

$ pgfortran -stack=524288,262144,nocheck myprog.f

Description

Use this option to explicitly set stack properties for your program. The-stackoption takes one
or more arguments: (reserved bytes), (committed bytes), [no]check.
reserved bytes
Specifies the total stack bytes required in your program.
committed bytes
Specifies the number of stack bytes that the Operating System will allocate for each routinein
your program. This value must be less than or equal to the stackreserved bytesvalue.

Default for this argument is 4096 bytes.

PVF Reference Guide 45

Command-Line Options Reference

[no]check
Instructs the compiler to generate or not to generate stack initialization code upon entry of
each routine. Check is the default, so stack initialization code is generated.

Stack initialization code is required when aroutine's stack exceeds the committed bytes size.
When your committed bytesis equal to the reserved bytes or equal to the stack bytes required for
each routine, then you can turn off the stack initialization code using the -stack=nocheck
compiler option. If you do this, the compiler assumes that you are specifying enough committed
stack space; and therefore, your program does not have to manage its own stack size.

For more information on determining the amount of stack required by your program, refer to -
Mchkstk compiler option, described in ‘ Miscellaneous Controls'.

-stack=(reserved bytes), (committed bytes) arelinkeroptions.
-stack=[no] check is a compiler option.

If you specify —stack= (reserved bytes), (committed bytes) on your compile
line, it is only used during the link step of your build. Similarly, -stack=[no] check can be
specified on your link line, but it's only used during the compile step of your build.

Related options
—Mchkstk

2.2.49. —ta=tesla(tesla_suboptions),radeon(:radeon_suboptions),host

Defines the target accelerator and the type of code to generate. Thisflag isvalid for Fortran, C,
and C++ on supported platforms.

There are three major suboptions:

tesla(:tesla suboptions)
radeon (:radeon suboptions)
host

Default

The compiler uses-ta=tesla, host.

Usage

In the following example, teslais the accelerator target architecture and the accelerator generates
code for compute capability 3.0.
$ pgfortran -ta=tesla,cc30

PVF Reference Guide 46

Command-Line Options Reference

In the following example, radeon is the accelerator target architecture and the accelerator
generates code for Radeon Cape Verde architecture;

$ pgfortran -ta=radeon:capeverde

Description

Use this option to select the accelerator target and, optionally, to define the type of code to
genertate.

The —ta flag has the following options:

tesla
Select the tesla accelerator target. This option has the following tesla-suboptions:
cc20
Generate code for compute capability 2.0.
CCc2x
Generate code for the lowest 2.x compute capability possible.
cc2+
Is equivalent to cc2x, cc3x.
cc30
Generate code for compute capability 3.0.
cc35
Generate code for compute capability 3.5.
cc3x
Generate code for the lowest 3.x compute capability possible.
cc3+
Is equivalent to cc3x.
[noldebug
Enable[disable] debug information generation in device code.
fastmath
Use routines from the fast math library.
fermi
isequivalent to cc2x.
fermi+
isequivalent to cc2+.
[no]flushz
Enable[disable] flush-to-zero mode for floating point computations in the GPU code
generated forPGI Accelerator model compute regions.
keep
Keep the kernel files.
kepler
is equivalent to cc3x.
kepler+
isequivalent to cc3+.

PVF Reference Guide 47

Command-Line Options Reference

[lvm
Generate code using the llvm-based back-end.
[noldebug
Enablg[disable] GPU debug information generation.
[no]lineinfo
Enable[disable] GPU line information generation.
maxr egcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.
nofma
Do not generate fused multiply-add instructions.
noL 1
Prevents the use of L1 hardware data cache to cache global variables.
pin+
is equivalent to cc3+.
[nojrdc
Generate [do not generate] rel ocatable device code.
[no]required
Generate [do not generate] a compiler error if accelerator device code cannot be generated.
tesla
isequivalent to-ta=tesla, cc2+
radeon
Select AMD Radeon accelerator target. This option has the following radeon-suboptions:
buffercount:n
Set the maximum number of OpenCL buffersin which to alocate data. If specified, the
same value should be used for all object filesin the binary.
capeverde
Generate code for Radeon Cape Verde architecture.
keep
Keep the kernel files.
llvm
Generate code using the [lvm-based back-end.
tahiti
Generate code for Radeon Tahiti architecture.
host
Use the hostoption to generate code to execute OpenA CC regions on the host.

The -ta=host flag has no suboptions.

Multiple Targets

Specifying more than one target, such as -ta=tesla, radeon generates code for multiple
targets. When host is one of the multiple targets, such as -ta=tesla, host, theresultis
generated code that can be run with or without an attached accelerator.

PVF Reference Guide 48

Command-Line Options Reference

Relocatable Device Code

A rdc optionisavailable for the —-ta and —Mcuda flagsthat specifies to generate relocatable
device code. Starting in PGI 14.1, the default code generation and linking mode for NVIDIA-
target OpenACC and CUDA Fortran is rdc, relocatable device code.

Y ou can disable the default and enable the old behavior and non-rel ocatable code by specifying
any of thefollowing: —ta=tesla:nordc, -Mcuda=nordc, oOr specifying any radeon target.
LLVM/SPIR and Native GPU Code Generation

For accelerator code generation, PGl 2015 has two options.

» Inlegacy mode, which continues to be the default, PGI generates low-level CUDA C or
OpenCL code.

» Beginning in PGI 14.1, PGI can generate an LLVM-based intermediate representation. To
enable this code generation, use —ta=tesla:11vm on NVIDIA Tedahardware or -
ta=radeon:11vmon AMD Radeon hardware. —ta=tesla:11vmimpliesand requires
CUDA 5.5 or higher.

PGI’ s debugging capability for Teslausesthe LLVM back-end.

DWARF Debugging Formats

PGI 2015 has initial support for generating dwarf information in GPU code. To enable dwarf
generation, just asin host code, you use the —g option.

Dwarf generation requires use of the LLVM code generation capabilities. Further, it is possible
to generate dwarf information and debug on the host, device, or both. Further, for NVIDIA, the
LLVM code generation requires CUDA 5.5.

If you don't want —g to apply to both targets, PGI supports the debug and nodebug suboptions.
For example:

—acc —gimplies-ta=tesla,host —-00 —gonthehostand -g 11vm onthedevicewith
cudab.5.

—acc —ta=tesla:debug impliesdebug on the device; use llvm and cudab.5

-acc —g —-ta=tesla:nodebug impliesdebug on the host and no [lvm code generation

Related options
—H

2.2.50. -time

Print execution times for various compilation steps.

PVF Reference Guide 49

Command-Line Options Reference

Default

The compiler does not print execution times for compilation steps.

Usage

In the following example, pgfortran prints the execution times for the various compilation steps.
$ pgfortran -time myprog.f

Description

Use this option to print execution times for various compilation steps.

Related options
—#

2.2.51. —tp <target>[target...]

Sets the target processor.

Default

The PGI compilers produce code specifically targeted to the type of processor on which the
compilation is performed. In particular, the default isto use al supported instructions wherever
possible when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the
compilation is performed. Y ou can specify atarget processor to compile for a different processor
type, such asto select a more generic processor, allowing the code to run on more system types.
Specifying two or more target processors enables unified binary code generation, where two

or more versions of each function may be generated, each version optimized for the specific
instruction set available in each target processor.

Executables created on a given system without the - tp flag may not be usable on previous
generation systems. For example, executables created on an Intel Sandybridge processor may use
instructions that are not available on earlier Intel Nehalem or Intel P7 systems.

The -tp flag interacts with the -m32 / -m64 flags to select atarget processor and 32-bit or 64-
bit code generation. Specifying -tp shanghai -32 compiles 32-bit codethat is optimized
for the AMD Shanghai processor, while specifying -tp shanghai -64 compiles 64-bit
code. The-tp shanghai -32 flagiseqivalenttothetwo flags. -tp shanghai -m32.
Specifying -tp shanghai without a-m32 / -m64 flag compiles for a 32-hit target if the PGI
32-bit compilers are on your path, and for a 64-hit target if the PGI 64-bit compilers are on your
path.

PVF Reference Guide 50

Command-Line Options Reference

Syntax
The syntax for 64-bit and 32-bit targetsis similar, even though the target information varies.

Syntax for 64-bit targets:
-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Syntax for 32-bit targets:
-tp {k8-32 | p7-32 | core2-32}

Usage

In the following example, pgfortran sets the target processor to a 64-bit Intel Nehalem processor:
$ pgfortran -tp=nehalem-64 myprog.f

Description

Use this option to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the —tp option.
Thus, it is possible to create executables that are usable on previous generation systems.

To set thisoption in PVF, use the Fortran | Target Processors | Unified Binary Information
property, described in ‘Unified Binary Information’.

The following list contains the possible suboptions for —tp and the processors that each
suboption isintended to target. Options without a bit-length suffix use the current width
associated with the driver on your path.

barcelona
generate code for AMD Opteron/Quadcore and compatible processors. The
bulldozer
Generate either 32-bit or 64-bit code for AMD Bulldozer and compatible processors. 32- or
64-bit depends on the driver on your path.
core2
generate code for Intel Core 2 Duo and compatible processors.
haswell
generate code that is usable on any Haswell processor-based system.
istanbul
generate code that is usable on any Istanbul processor-based system.
k8
generate code hat is usable on any AMD64 and compatible processor.
k8-64e
generate 64-bit code for AMD Opteron Revision E, AMD Turion, and compatible processors.
nehalem
generate code that is usable on any Nehalem processor-based system.

PVF Reference Guide 51

Command-Line Options Reference

p7
generate code for Pentium 4 and compatible processors.
penryn
generate code for Intel Penryn Architecture and compatible processors.
piledriver
generate code that is usable on any Piledriver processor-based system.
pXx
generate code that is usable on any x86 processor-based system.
sandybridge
Generate either 32-bit or 64-bit code for Intel Sandy Bridge and compatible processors. 32- or
64-bit depends on the driver on your path.
shanghai
generate code that is usable on any AMD Shanghai processor-based system.
xX64
generate 64-bit unified binary code including full optimizations and support for both AMD
and Intel x64 processors.

Refer to the PGl Release Notes for a concise list of the features of these processors that
distinguish them as separate targets when using the PGI compilers and tools.

Using -tp to Generate a Unified Binary

Different processors have differences, some subtle, in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about such things as
instruction selection, instruction scheduling, and vectorization. Any of these decisions can
have significant effects on performance and compatibility. PGl unified binaries provide a low-
overhead means for a single program to run well on a number of hardware platforms.

Y ou can use the —tp option to produce PGl Unified Binary programs. The compilers generate,
and combine into one executable, multiple binary code streams, each optimized for a specific
platform. At runtime, this one executable senses the environment and dynamically selects the
appropriate code stream.

The target processor switch, —tp , accepts acomma-separated list of 64-bit targets and will
generate code optimized for each listed target. For example, the following switch generates
optimized code for three targets: k8-64, p7-64, and core2-64.

Syntax for optimizing for multiple targets:
——tp k8-64,p7-64,core2-64

The-tp k8-64 and -tp k8-64e optionsresult in generation of code supported on and
optimized for AMD x64 processors, whilethe —tp p7-64 option results in generation of code
that is supported on and optimized for Intel x64 processors. Performance of k8-64 or k8-64e code
executed on Intel x64 processors, or of p7-64 code executed on AMD x64 processors, can often
be significantly less than that obtained with a native binary.

PVF Reference Guide 52

Command-Line Options Reference

The special -tp x64 optionisequivalentto —-tp k8-64,p7-64 . Thisswitch produces PGI
Unified Binary programs containing code streams fully optimized and supported forbothAMD64
and Intel 64 processors.

For more information on unified binaries, refer to the section ' Processor-Specific Optimization
and the Unified Binary’ in the PGl Compiler User’s Guide.

Related options

All -M<pgflag> optionsthat control environments, as listed in Environment Controls

2.2.52. —[no]traceback

Adds debug informationfor runtime traceback for use with the environment variablePGI TERM.

Default
The compiler enables traceback for FORTRAN and disables traceback for C and C++.

Syntax
—traceback
Usage

In this example, pgfortran enables traceback for the program myprog. f.
$ pgfortran -traceback myprog.f

Description

Use this option to enable or disable runtime traceback information for use with the environment
variable PGI TERM.

Setting set TRACEBACK=0FF; insitercor .mypg*rc aso disablesdefault traceback.

Using ON instead of OFF enables default traceback.

Related options

None.

2.2.33.-U

Initializes the symbol-table with <symbol>, which is undefined for the linker. An undefined
symbol triggers loading of the first member of an archive library.

Default

The compiler does not use the —u option.

PVF Reference Guide 53

Command-Line Options Reference

Syntax

—usymbol

Where symbol is a symbolic name.

Usage

In this example, pgfortran initializes symbol-table with test.
$ pgfortran -utest myprog.f

Description

Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker.
An undefined symbol triggers|loading of the first member of an archive library.

Related options

—C, -0
2.2.54. -U

Undefines a preprocessor macro.
Syntax

-Usymbol

Where symbol is a symbolic name.

Usage

The following examples undefine the macro test.

$ pgfortran -Utest myprog.F
$ pgfortran -Dtest -Utest myprog.F

Description

Use this option to undefine a preprocessor macro. Y ou can also use the #undef pre-processor
directive to undefine macros.

To set thisoption in PVF, use the Fortran | Preprocessor | Undefine Preprocessor Definitions
property, described in ‘ Undefine Preprocessor Definitions'.

Related options
—D, Mnostddef

PVF Reference Guide 54

Command-Line Options Reference

2.2.55. -V[release_number]

Displays additional information, including version messages. Further, if arelease numberis
appended, the compiler driver attempts to compile using the specified release instead of the
default release.

n There can be no space between -V and release number.

Default

The compiler does not display version information and uses the rel ease specified by your path to
compile.

Usage

The following command-line shows the output using the-voption.

[

% pgfortran -V myprog.f

The following command-line causes pgcc to compile using the 5.2 release instead of the default
release.

)

% pgcc -V5.2 myprog.c

Description

Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using the
specified release instead of the default release.

The specified release must be co-installed with the default release, and must have arelease
number greater than or equal to 4.1, which was the first release that supported this functionality.

To set thisoption in PVF, use the Fortran | General | Display Startup Banner property, described
in ‘Display Startup Banner’.

Related options

—Minfo[=option [,option,...]], v

2.2.56. —v

Displays the invocations of the compiler, assembler, and linker.

Default

The compiler does not display individual phase invocations.

PVF Reference Guide 55

Command-Line Options Reference

Usage

In the following example you use —v to see the commands sent to compiler tools, assembler, and
linker.

$ pgfortran -v myprog.f90

Description

Use the —v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the W options
you specify on the compiler command-line.

Related options

—dryrun, -Minfo[=option [,option,...]], —V[release_number], “W

2.2.57.-W

Passes arguments to a specific phase.

Syntax

-W{0 | a | 1 },option[,option...]

You cannot have a space between the W and the single-letter pass identifier, between the identifier and
the comma, or between the comma and the option.

(the number zero) specifies the compiler.
a
specifies the assembler.

(lowercase letter 1) specifiesthe linker.

option
isastring that is passed to and interpreted by the compiler, assembler or linker. Options
separated by commas are passed as separate command line arguments.

Usage

In the following example the linker loads the text segment at addressOx £ £c00000and the data
segment at address 0xf£e00000.
$ pgfortran -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

Description

Use this option to pass arguments to a specific phase. Y ou can use the -W option to specify
options for the assembler, compiler, or linker.

PVF Reference Guide 56

Command-Line Options Reference

A given PGI compiler command invokes the compiler driver, which parses the command-line,
and generates the appropriate commands for the compiler, assembler, and linker.

Related options

—Minfo[=option [,option,...]], —V[release_number], —v

2.2.98. -w

Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example no warning messages are printed.

$ pgfortran -w myprog.f

Description

Use the —w option to not print warning messages. Sometimes the compiler issues many warning
in which you may have no interest. Y ou can use this option to not issue those warnings.
Related options

—silent

2.3. -M Options by Category

This section describes each of the options available with —M by the categories:

Code generation Fortran Language Controls Optimization Environment

C/C++ Language Controls Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not al, of the -M<pgflag>
options. For a complete aphabetical list of all the options, refer to Table 10. These options are
grouped according to categories and are listed with exact syntax, defaults, and notes concerning
similar or related options.

2.3.1. Code Generation Controls

This section describes the -M<pgflag> options that control code generation.
Default: For arguments that you do not specify, the default code generation controls are these:

nodaz norecursive nosecond_underscore

noflushz noreentrant nostride0

PVF Reference Guide 57

Command-Line Options Reference

largeaddressaware noref_externals signextend

Related options. -D, -, -L,-,-U
The following list provides the syntax for each—M<pgflag> option that controls code generation.
Each option has a description and, if appropriate, any related options.

—-Mdaz
Set |EEE denormalized input values to zero; there is a performance benefit but misleading
results can occur, such as when dividing asmall normalized number by a denormalized
number. To take effect, this option must be set for the main program.

To set thisoption in PVF, use the Fortran | Floating Point Options | Treat Denormalized
Values as Zero property, described in ‘ Treat Denormalized Values as Zero'.
—Mnodaz
Do not treat denormalized numbers as zero.
To take effect, this option must be set for the main program.
—Mnodwarf
Specifies not to add DWARF debug information.
To take effect, this option must be used in combination with —g.
—Mdwarfl
Generate DWARF1 format debug information.
To take effect, this option must be used in combination with —g.
—Mdwarf2
Generate DWARF2 format debug information.
To take effect, this option must be used in combination with —g.
—Mdwar£f3
Generate DWARF3 format debug information.
To take effect, this option must be used in combination with —g.
—M £flushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.
To take effect, this option must be set for the main program.
To set thisoption in PVF, use the Fortran | Floating Point Options | Flush Denormalized
Resultsto Zero property, described in ‘ Flush Denormalized Resultsto Zero' on page 391.

—Mnoflushz
Do not set SSE flush-to-zero mode; generate underflows. To take effect, this option must be set
for the main program.

—M func32
Align functions on 32-byte boundaries.

—M instrument[=functiong] linux86-64 only
Generate additional code to enable instrumentation of functions. The option —
Minstrument=functions isthesameas-Minstrument.

Implies -Minfo=ccff and -Mframe.

PVF Reference Guide 58

Command-Line Options Reference

—M1largeaddressaware=[Nn0]
[Win64 only] Generates code that alows for addresses greater than 2GB, using RIP-relative
addressing.

Use-Mlargeaddressaware=no for adirect addressing mechanism that restricts the total
addressable memory.

D Do notuse ~Mlargeaddressaware=no if the object file will be placed in a DLL.

If -Mlargeaddressaware=no isused to compile any object file, it must also be used
when linking.

—Mlarge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2GB in size.
This option is the default in the presence of -mcmode l=medium. It can be used separately
together with the default small memory model for certain 64-bit applications that manage their
OWN memory space.

For more information, refer to the * Programming Considerations for 64-Bit Environments
section of the PGI Visual Fortran User's Guide.

—Mnolarge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2GB in size.
When this option is placed after -mcmode 1=medium on the command line, it disables use of
64-bit indexing for applications that have no single data object larger than 2GB.

For more information, refer to the * Programming Considerations for 64-Bit Environments
section of the PGI Visual Fortran User's Guide.

—Mnomain
Instructs the compiler not to include the object file that calls the Fortran main program as
part of the link step. Thisoption is useful for linking programs in which the main program is
written in C/C++ and one or more subroutines are written in Fortran.

—Mmpi=option
-Mmp1i addsthe include and library options to the compile and link commands necessary to
build an MPI application using MPI header filesand libraries.

To use -Mmp1i, you must have aversion of MPI installed on your system.
This option tells the compiler to use the headers and libraries for the specified version of MPI.

PGI compilers and tools support Microsoft’ s implementation of MPI, MS-MPI on Windows
Server 2008 R2 and newer operating systems. Microsoft's HPC Pack 2012 MS-MPI with
Service Pack 1 isincluded in PGI products for these systems.

—Mmpi=msmpi - Select the default Microsoft MPI libraries on Windows.
For more information on these options, refer to the ‘Using MPI in PVF section of the PGI
Visua Fortran User's Guide.

—M [no]movnt
Instructs the compiler to generate nontempora move and prefetch instructions even in cases
where the compiler cannot determine statically at compile-time that these instructions will be
beneficial.

PVF Reference Guide 59

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

—M [no]pre
enables [disables] partia redundancy elimination.

—Mprof[=option[,option,...]]
Set performance profiling options. Use of these options causes the resulting executable to
create a performance profile that can be viewed and analyzed with the PGPROF performance
profiler. In the descriptions that follow, PGI-style profiling implies compiler-generated source
instrumentation. MPICH-style profiling implies the use of instrumented wrappers for MPI
library routines.

The option argument can be any of the following:

[no]ccff
Enable [disable] common compiler feedback format, CCFF, information.
dwarf
Add limited DWARF symbol information sufficient for most performance profilers.
func
Perform PGI-style function-level profiling.
lines
Perform PGI-style line-level profiling.
mpich
Perform MPICH-style profiling for MPICH v3. Implies —-Mmpi=mpich.
mpichl
This option has been deprecated. Y ou can till perform MPICH-style profiling for
MPICH-1, but you must first set the environment variable MPIDIR to the root of an
MPICH1 installation. Implies —-Mmpi=mpichl.
msmpi
Perform MPICH-style profiling for Microsoft MPI. Implies -Mmpi=msmpi.

For more information, refer to the *Using MS-MPI on Windows' section of the PGI Visual
Fortran User's Guide.

sgimpi
Perform MPICH-style profiling for SGI’sversion of MPI. Implies -Mmpi=sgimpi.

For more information, refer to the ‘Using MS-MPI on Windows' section of the PGl Visual
Fortran User's Guide.

To set thisoption in PVF, use the Fortran | General | Profiling property, described in ‘Line-
Level Profiling’ on page 407. To enable profiling you must also set the Linker | General |
Profiling property, described in ‘ Line-Level Profiling’ on page 407.

—Mrecursive

instructs the compiler to allow Fortran subprograms to be called recursively.
—Mnorecursive

Fortran subprograms may not be called recursively.
—Mref externals

force references to names appearing in EXTERNAL statements.
—Mnoref externals

do not force references to names appearing in EXTERNAL statements.
—Mreentrant

instructs the compiler to avoid optimizations that can prevent code from being reentrant.
—Mnoreentrant

instructs the compiler not to avoid optimizations that can prevent code from being reentrant.

PVF Reference Guide 60

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

—Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global symbol if its
name aready contains an underscore. This option is useful for maintaining compatibility with
object code compiled using g77, which uses this convention by default.

—Mnosecond underscore
instructs the compiler not to add a second underscore to the name of a Fortran global symbol if
its name already contains an underscore.

—Msafe lastval
When a scalar is used after aloop, but is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop. However, this option tells the compiler it's
safe to paralelize the loop. For agiven loop, the last value computed for all scalars makes it
safe to parallelize the loop.

—Msignextend
instructs the compiler to extend the sign bit that is set as aresult of converting an object of one
datatype to an object of alarger signed data type.

—Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting an object
of one data type to an object of alarger datatype.

—Mstack_arrays
places automatic arrays on the stack.

—Mnostack_arrays
allocates automatic arrays on the heap. -Mnostack arrays isthe default and what
traditionally has been the approach used.

—MstrideO
instructs the compiler to inhibit certain optimizations and to allow for stride O array references.
This option may degrade performance and should only be used if zero-stride induction
variables are possible.

—Mnostride0
instructs the compiler to perform certain optimizations and to disallow for stride O array
references.

—Munix
use UNIX symbol and parameter passing conventions for Fortran subprograms.

—Mvarargs
force Fortran program units to assume procedure cals are to C functions with avarargs-type
interface.

2.3.2. Environment Controls

This section describes the —-M <pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

The following list provides the syntax for each —-M<pgflag> option that controls environments.
Each option has a description and, if appropriate, alist of any related options.

PVF Reference Guide 61

Command-Line Options Reference

—Mnostartup
instructs the linker not to link in the standard startup routine that contains the entry point
(_start) for the program.

If you use the ~-Mnostartup option and do not supply an entry point, the linker issues the
following error message: Warning: cannot find entry symbol _start

—M [no] smartalloc [=huge | huge:<n>|hugebss|nohuge]
adds a call to the routine mallopt in the main routine. This option supports large TLBs
on Linux and Windows. This option must be used to compile the main routine to enable
optimized malloc routines.

The option arguments can be any of the following:

huge
Link in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of

TLB entries required to execute a program. This option is most effective on Barcelona and

Core 2 systems; older architectures do not have enough TLB entries for this option to be

beneficial. By itself, the huge suboption tries to allocate as many huge pages as required.
huge:<n>

Link the huge page runtime library and allocate n huge pages. Use this suboption to limit

the number of huge pages allocated to n.

Y ou can aso limit the pages allocated by using the environment variable
PGI HUGE PAGES.

hugebss
(64-bit only) Puts the BSS section in huge pages; attemptsto put a program'’s uninitialized
data section into huge pages.

n This flag dynamically links the library 1ibhugetlbfs pgievenif -Bstaticisused.

nohuge
Overrides aprevious —-Msmartalloc=huge sgtting.

Tip To be effective, this switch must be specified when compiling the file containing the Fortran, C, or C
++ main program.

—Mnostdinc
instructs the compiler to not search the standard location for include files. To set this option
in PVF, use the Fortran | Preprocessor | Ignore Standard Include Path property, described in
‘Ignore Standard Include Path’ on page 381.

—Mnostdlib
instructs the linker not to link in the standard libraries in the library directory 1 ib within the
standard directory. You can link in your own library with the - option or specify alibrary
directory with the —L option.

PVF Reference Guide 62

Command-Line Options Reference

2.3.3. Fortran Language Controls

This section describes the -M <pgflag> options that affect Fortran language interpretations by the
PGI Fortran compilers. These options are valid only for the Fortran compiler drivers.

Default: Before looking at al the options, let’ slook at the defaults. For arguments that you do
not specify, the defaults are as follows:

backslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each—-M<pgflag> option that affect Fortran language
interpretations. Each option has a description and, if appropriate, alist of any related options.

—Mallocatable=95|03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array
assignments. The default behavior is to use Fortran 95 semantics; the 03 option instructs the
compiler to use Fortran 2003 semantics.

—Mbackslash
instructs the compiler to treat the backslash as a normal character, and not as an escape
character in quoted strings.

—Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted strings (in
accordance with standard C usage).

—Mcuda
instructs the compiler to enable Cuda Fortran.

The following suboptions exist:

n If more than one option is on the command line, all the specified options occur.

cc20
Generate code for compute capability 2.0.
CCc2x
Generate code for the lowest 2.x compute capability possible.
cc2+
Is equivalent to cc2x, cc3x.
cc30
Generate code for compute capability 3.0.
cc35
Generate code for compute capability 3.5.
cc3x
Generate code for the lowest 3.x compute capability possible.
cc3+
Is equivalent to cc3x.
cuda6.5or 6.5
Sets the toolkit compatibility version to 6.5. Thisis the default.

PVF Reference Guide 63

Command-Line Options Reference

cuda7.0or 7.0
Specify the NVIDIA CUDA 7.0 version of the toolkit.

Compile with the CUDA 6.5 or CUDA 7.0 toolkit either by using the ~-Mcuda=6.5 or
-Mcuda=7. 0 option, or by adding set DEFCUDAVERSION=6.50rset
DEFCUDAVERSION=7. 0 tothe siterc file. This action generates binaries that may not
work on machines with an earlier CUDA driver.

pgaccelinfo prints the driver version as the first line of output.

Fora6.5driver: CUDA Driver Version 6050
Fora 7.0 driver. CUDA Driver Version 7000

emu
Enable Cuda Fortran emulation mode.

fastmath
Use routines from the fast math library.

fermi
isequivaent to -Mcuda, cc2x

[no]flushz
Enable[disable] flush-to-zero made for floating point computations in the GPU code
generated for CUDA Fortran kernels.

generaterdc

Generate relocatable device code
keepbin

Keep the generated binary (.bin) file for CUDA Fortran.
keepgpu

Keep the generated GPU code for CUDA Fortran.
keepptx

Keep the portable assembly (.ptx) file for the GPU code.
kepler

iseguivalent to -Mcuda, cc3x
[lvm

Generate code using the [lvm-based back-end.
[noldebug

Enable[disable] GPU debug information generation.
[no]lineinfo

Enable[disable] GPU line information generation.
maxr egcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.
nofma
Do not generate fused multiply-add instructions.
noL1
Prevent the use of L1 hardware data cache to cache global variables.
ptxinfo
Show PTXAS informational messages during compilation.
rdc
Enable CUDA Fortran separate compilation and linking of device routines, including
device routines in Fortran modules.

PVF Reference Guide 64

Command-Line Options Reference

To enable separate compilation and linking, include the command line option -
Mcuda=rdc on both the compile and the link steps.

—Mdclchk
instructs the compiler to require that all program variables be declared.
—Mnodclchk
instructs the compiler not to require that al program variables be declared.
—Mdefaultunit
instructs the compiler to treat "*" as a synonym for standard input for reading and standard
output for writing.
—Mnodefaultunit
instructs the compiler to treat "*" as a synonym for unit 5 on input and unit 6 on output.
—Mdlines
instructs the compiler to treat lines containing "D" in column 1 as executable statements
(ignoring the "D").
—Mnodlines
instructs the compiler not to treat lines containing "D" in column 1 as executabl e statements.
The compiler does not ignore the "D".
—Mdollar,char
char specifies the character to which the compiler maps the dollar sign. The compiler allows
the dollar sign in names.
—Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-column code.
—M fixed
instructs the compiler to assume input source files are in FORTRAN 77-style fixed form
format.
—Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform format.
—Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.
—Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran 1/O statements.
—Monetrip
instructs the compiler to force each DO loop to execute at least once.
—Mnoonetrip
instructs the compiler not to force each DO loop to execute at least once. This option is useful
for programs written for earlier versions of Fortran.
—Msave
instructs the compiler to assume that all local variables are subject to the SAVE statement.

This may allow older Fortran programsto run, but it can greatly reduce performance.

—Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE statement.
—Mstandard
instructs the compiler to flag non-ANSI-conforming source code.
—Munixlogical
directs the compiler to treat logical values astrueif the value is non-zero and false if the value
iszero (UNIX F77 convention.) When -Munixlogical isenabled, alogical value or test
that isnon-zerois . TRUE ., and avalue or test that iszero is . FALSE . . In addition, the value
of alogical expression is guaranteed to be one (1) when theresult is . TRUE . .

PVF Reference Guide 65

Command-Line Options Reference

—Mnounixlogical
directs the compiler to use the VMS convention for logical valuesfor true and false. Even
values are true and odd values are false.

—Mupcase
instructs the compiler to preserve uppercase lettersin identifiers.

With —-Mupcase, theidentifiers"X" and "x" are different. Keywords must be in lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase 0n one occasion and -Mnoupcase 0on ancther, you may get two different
executables - depending on whether the source contains uppercase | etters. The standard
libraries are compiled using the default -Mnoupcase .

—Mnoupcase
instructs the compiler to convert al identifiers to lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase 0n one occasion and -Mnoupcase 0h ancther, you may get two different
executables, depending on whether the source contains uppercase letters. The standard
libraries are compiled using —-Mnoupcase.

2.3.4. Inlining Controls

This section describes the -M <pgflag> options that control function inlining.

Usage: Before looking at all the options, let’slook at a couple examples. In the following
example, the compiler extracts functions that have 500 or fewer statements from the source file
myprog. f and savestheminthefileextract.il.

$ pgfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100
statementsin the source filemyprog. £.
$ pgfortran -Minline=size:100 myprog.f

Related options: —o, —-Mextract

The following list provides the syntax for each—-M<pgflag> option that controls function inlining.
Each option has a description and, if appropriate, alist of any related options.
—M [no]autoinline[=0ption[,option,...]]
instructs the compiler to inline [not to inline] a C/C++ function at —O2, where the option can
be any of these:
levels:n
instructs the compiler to perform n levels of inlining. The default number of levelsis 10.
maxsize:n
instructs the compiler not to inline functions of size > n. The default sizeis 100.
totalsize:n
instructs the compiler to stop inlining when the size equals n. The default sizeis 800.
—Mextract[=option[,option,...]]
Extracts functions from the file indicated on the command line and creates or appends to the
specified extract directory where option can be any of the following:
name:func
instructs the extractor to extract function func from the file.

PVF Reference Guide 66

Command-Line Options Reference

size:number
instructs the extractor to extract functions with number or fewer statements from the file.
lib:filename.ext
instructs the extractor to use directory filename.ext asthe extract directory, whichis
required to save and re-useinline libraries.

If you specify both name and size, the compiler extracts functions that match func, or that
have number or fewer statements. For examples of extracting functions, refer to the ‘Using
Function Inlining’ section of the PGI Visual Fortran User‘s Guide.
—Minline[=o0ption[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be any of
the following:
except:func
instructs the inliner to inline al eligible functions except func, a function in the source text.
Y ou can use a comma-separated list to specify multiple functions.
[name:]func
instructs the inliner to inline al functions in the source text that match func.

The function nhame should be a non-numeric string that does not contain a period. You
can aso useaname: prefix followed by the function name. If name : is specified, what
follows is always the name of afunction.

[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext. The
compiler assumesthat a filename.ext option containing aperiod isalibrary file.

Tip Create the library file using the —Mext ract option. You can alsouse a 1 il : prefix
followed by the library name.

» If 1ib: is specified, no period is necessary in the library name. Functions from the specified
library are inlined.

» If no library is specified, functions are extracted from a temporary library created during an
extract prepass.

levels:number
instructs the inliner to perform number levels of inlining.

The default number of function calling levelsis 1. Using alevel greater than one indicates
that function calls within inlined functions may be replaced with inlined code. This
approach allows the function inliner to automatically perform a sequence of inline and
extract processes.

[no]reshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes do not
match. The defaultis-Minline=noreshape, except with -Mconcur or -mp, where
thedefaultis—-Minline=reshape, =reshape.

[size:]Jnumber
instructs the inliner to inline functions with a statement count less than or equal to number,
the specified size. You can also usea size: prefix followed by anumber. If size: is
specified, what follows is aways taken as a number.

PVF Reference Guide 67

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

The size number need not exactly equal the number of statementsin a selected function;
the size parameter is merely arough guage.

If you specify both func and number, the compiler inlines functions that match the function
name or have number or fewer statements.

To set thisoption in PVF, use the Fortran | Optimization | Inlining property, described in
‘Inlining’.

For examples of inlining functions, refer to ‘ Using Function Inlining’ in the PGI Compiler
User’s Guide.

2.3.5. Optimization Controls

This section describes the -M <pgflag> options that control optimization.

Default: Before looking at al the options, let’slook at the defaults. For arguments that you do
not specify, the default optimization control options are as follows:

depchk noipa nounroll nor8
i4 nolre novect nor8intrinsics
nofprelaxed noprefetch

n If you do not supply an option to —Mvect, the compiler uses defaults that are dependent upon the target
system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions
enabled.

$ pgfortran -Mvect=sse -Mcache align myprog.f
Related options: —g, —-O

The following list provides the syntax for each .M <pgflag> option that controls optimization.
Each option has a description and, if appropriate, alist of any related options.

—Mcache_align
Align unconstrained objects of length greater than or equal to 16 bytes on cache-line
boundaries. An unconstrained object is a data object that is not a member of an aggregate
structure or common block. This option does not affect the alignment of allocatable or
automatic arrays.

To effect cache-line alignment of stack-based local variables, the main program or function
must be compiled with -Mcache align.

—M concur[=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -Mconcur is specified,
multiple processors will be used to execute |oops that the compiler determines to be
paralelizable.
option isone of the following:

allcores
Instructs the compiler to use all available cores. Use this option at link time.

PVF Reference Guide 68

Command-Line Options Reference

[no]altcode:n
Instructs the parallelizer to generate alternate serial code for parallelized loops.

» If altcode is specified without arguments, the parallelizer determines an appropriate
cutoff length and generates serial code to be executed whenever the loop count isless
than or equal to that length.

» If altcode:nis specified, the serial altcode is executed whenever the loop count is less
than or equal to n.

» If noaltcode is specified, the parallelized version of the loop is always executed
regardless of the loop count.

bind

Instructs the parallelizer to bind threads to cores. Use this option at link time.
cncall

Indicates that callsin parallel loops are safe to parallelize.

L oops containing calls are candidates for parallelization. Also, no minimum loop count
threshold must be satisfied before parallelization will occur, and last values of scalars are
assumed to be safe.

dist:block
Instructs the parallelizer to parallelize with block distribution, which is the default.
Contiguous blocks of iterations of a parallelizable |loop are assigned to the available
processors.

dist:cyclic
Instructs the parallelizer to parallelize with cyclic distribution. The outermost parallelizable
loop in any loop nest is paralelized. If aparallelized loop isinnermost, its iterations are
allocated to processors cyclically.

For example, if there are 3 processors executing aloop, processor 0 performs iterations O,
3, 6, etc.; processor 1 performsiterations 1, 4, 7, etc.; and processor 2 performsiterations 2,
5, 8, etc.
[no]inner most
Instructs the parallelizer to enable parallelization of innermost loops. The default is to not
parallelize innermost loops, sinceit is usually not profitable on dual-core processors.
Nnoassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result. The
NCPUS environment variable controls how many processors or cores are used to execute
parallelized loops.

To set thisoption in PVF, use the Fortran | Optimization | Auto-Parallelization property,
described in * Auto-Parallelization’ .

n This option applies only on shared-memory multi-processor (SMP) or multi-core processor-based
systems.

—M ecray[=option[,option,...]]
Force Cray Fortran (CF77) compatibility with respect to the listed options. Possible values of
option include:

PVF Reference Guide 69

Command-Line Options Reference

pointer
for purposes of optimization, it is assumed that pointer-based variables do not overlay the
storage of any other variable.
—Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.
—Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.
—Mdse
Enables adead store elimination phase that is useful for programs that rely on extensive use of
inline function calls for performance. Thisis disabled by default.
—Mnodse
Disables the dead store elimination phase. Thisis the default.
—M [no] fpapprox [=option]
Perform certain floating point operations using |ow-precision approximation.

-Mnofpapprox specifies not to use low-precision fp approximation operations.
By default -Mfpapprox isnot used.

If -Mfpapprox isused without suboptions, it defaults to use approximate div, sqrt, and
rsqrt. The available suboptions are these:
div
Approximate floating point division
sgrt
Approximate floating point square root
rsqrt
Approximate floating point reciprocal square root
—M [no] fpmisalign
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory
operands that are not aligned on 16-byte boundaries. The default is -Mnofpmisalign on al
processors.

—M [no] fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some intrinsic
functions. Can result in improved performance at the expense of numerical accuracy.

Applicable only with one of these options: —tp barcelona or—-tp barcelona-64or
newer processors.

To set thisoption in PVF, use the Fortran | Floating Point Options | Floating Point Consistency
property. For more information on this property, refer to ‘ Floating Point Consistency’.

The possible values for option are:
div
Perform divide using relaxed precision.
intrinsic
Enables use of relaxed precision intrinsics.
noor der
Do not allow expression reordering or factoring.

PVF Reference Guide 70

Command-Line Options Reference

order
Allow expression reordering, including factoring.
recip
Perform reciprocal using relaxed precision.
rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sgrt
Perform square root with relaxed precision.

With no options, —-Mfprelaxed generates relaxed precision code for those operations that
generate a significant performance improvement, depending on the target processor.

The default is—Mno fprelaxed which instructs the compiler to not use relaxed precision in
the calculation of intrinsic functions.

-Mi4
instructs the compiler to treat INTEGER variables as INTEGER* 4.

—M ipa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer. Note: -Mipais not compatible with parallel make
environments (e.g., pmake).

-Mipa implies—02, and the minimum optimization level that can be specified in combination
with -Mipa is—02.

For example, if you specify -Mipa -01 onthe command line, the optimization level is
automatically elevated to —O2 by the compiler driver. Typically, as recommended, you would
use -Mipa=fast.

Many of the following suboptions can be prefaced with no, which reverses or disables the
effect of the suboption if it’sincluded in an aggregate suboption such as -Mipa=fast. The
choices of option are:
[no]align
recognize when targets of a pointer dummy are aligned. The defaultisnoalign.
[nolarg
remove arguments replaced by const, ptr. The default isnoarg.
[no]cg
generate call graph information for viewing using the pgicg command-line utility. The
defaultisnocg.
[no]const
perform interprocedural constant propagation. The default is const.
except:<func>
used with inline to specify functions which should not be inlined. The default is
toinline al eigible functions according to internally defined heuristics. Valid only
immediately following the in1ine suboption.
[no]f90ptr
FO0/F95 pointer disambiguation across calls. The default isnof£90ptr.
fast
choose IPA options generally optimal for the target. To see settingsfor -Mipa=fast ona
given target, use —help.
force
force all objectsto re-compile regardliess of whether I1PA information has changed.

PVF Reference Guide 71

Command-Line Options Reference

[no]globals
optimize references to global variables. The defaultisnoglobals.
inlingl:n]
perform automatic function inlining. If the optional : n is provided, limit inlining to at most
n levels. IPA-based function inlining is performed from leaf routines upward.
ipofile
save IPA informationin an . ipo file rather than incorporating it into the object file.
jobg[:n]
recompile n jobsin parallel and print source file names as they are compiled.
[no]keepobj
keep the optimized object files, using file name mangling, to reduce re-compiletimein
subsequent builds. The default is keepobj.
[no]libc
optimize calls to certain standard C library routines. The defaultisnolibc.
[no]libinline
alow inlining of routines from libraries; implies -Mipa=inline. Thedefault is
nolibinline.
[no]libopt
allow recompiling and optimization of routines from libraries using IPA information. The
defaultisnolibopt.
[no]localarg
equivalent to arg plus externalization of local pointer targets. The default is
nolocalarg.
main:<func>
specify afunction to appear as aglobal entry point. May appear multiple times and it
disables linking.
reaggr egation
Enables IPA-guided structure reaggregation, which automatically attempts to reorder
elementsin astruct, or to split structs into substructs to improve memory locality and cache
utilization.
rsgrt
Perform reciprocal square root (1/sqrt) using relaxed precision.
[no]pfo
enable profile feedback information. The nopfo option isvalid only immediately
following the inline suboption. -Mipa=inline, nopfo tellsIPA toignore PFO
information when deciding what functions to inline, if PFO information is available.
[no]ptr
enable pointer disambiguation across procedure calls. The default isnoptr.
[no]pure
pure function detection. The default isnopure.
required
return an error condition if IPA isinhibited for any reason, rather than the default behavior
of linking without IPA optimization.
[no]reshape
enable [disable] Fortran inline with mismatched array shapes. Valid only immediately
following the in1ine suboption.

PVF Reference Guide 72

Command-Line Options Reference

safe:[<function>|<library>]
declares that the named function, or al functionsin the named library, are safe. A safe
procedure does not call back into the known procedures and does not change any known
global variables.

Without -Mipa=safe, any unknown procedures cause | PA to fail.

[no]safeall
declares that all unknown procedures are safe. The defaultisnosafeall. For more
information, refer to -Mipa=safe.
[no]shape
perform Fortran 90 array shape propagation. The default isnoshape.
summary
only collect IPA summary information when compiling. This option prevents IPA
optimization of thisfile, but allows optimization for other files linked with thisfile.
[no]vestigial
remove uncalled (vestigial) functions. The defaultisnovestigial.

If you use -Mipa=vestigial in combination with -Mipa=1ibopt with PGCC,
you may encounter unresolved references at link time. These unresolved references are a
result of erroneous removal of functions by the vestigial sub-optionto -Mipa. You
can work around this problem by listing specific sub-options to —Mipa, not including
vestigial.
—M [no] loop32
Align [do not align] innermost loops on 32-byte boundaries with —tp barcelona or newer
processor.

Small loops on barcelona may run fast if aligned on 32-byte boundaries; however, in practice,
most assemblers do not yet implement efficient padding causing some programs to run more
slowly with this default. Use -M1oop32 on systems with an assembler tuned for barcleona.
The default is -Mnoloop32.

—M1re[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the number of
arithmetic operations and memory references in loops. The available suboptions are:
array
treat individual array element references as candidates for possible loop-carried
redundancy elimination. The default is to eliminate only redundant expressions involving
two or more operands.
assoc
allow expression re-association. Specifying this suboption can increase opportunities for
loop-carried redundancy elimination but may alter numerical results.
Nnoassoc
disallow expression re-association.
—Mnolre
Disable loop-carried redundancy elimination.
—Mnoframe
Eliminate operations that set up atrue stack frame pointer for every function. With this option
enabled, you cannot perform atraceback on the generated code and you cannot access local
variables.

PVF Reference Guide 73

Command-Line Options Reference

To set thisoption in PVF, use the Fortran | Optimization | Use Frame Pointer property,
described in * Use Frame Pointer’.
—Mnoi4
instructs the compiler to treat INTEGER variables as INTEGER* 2.
—Mp£i[=indirect]
generate profile-feedback instrumentation; this includes extra code to collect run-time
statistics and dump them to atrace file for use in a subsequent compilation.

When you use the indirect option,-Mpfi=indirect savesindirect function call targets.

-Mpf i must also appear when the program is linked. When the resulting program is executed,
aprofile feedback tracefilepgfi . out isgenerated in the current working directory. For
more information, refer to —-Mpfo.

Compiling and linking with —Mp £ i adds significant runtime overhead to almost any executable. You
should use executables compiled with —Mp £ i only for execution of training runs.

—Mp£o[=indirect | nolayout]
Enable profile-feedback optimizations; requires the presence of apgfi . out profile-feedback
trace file in the current working directory. For more information, refer to -Mpfi.
indirect
enable indirect function call inlining
nolayout
disable dynamic code layout.
—Mpre
Enables partial redundancy elimination.
—Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported. Possible
values for option include:
d:m
set the fetch-ahead distance for prefetch instructions to m cache lines.
n:p
set the maximum number of prefetch instructions to generate for a given loop to p.
nta
use the prefetch instruction.
plain
use the prefetch instruction (default).
t0
use the prefetchtO instruction.
w
use the AMD-specific prefetchw instruction.
—Mnoprefetch
Disables generation of prefetch instructions.
—M [no] propcond
Enables or disables constant propagation from assertions derived from equality conditionals.

The default is enabled.

PVF Reference Guide 74

Command-Line Options Reference

—-Mzr8
The compiler promotes REAL variables and constants to DOUBLE PRECISION variables
and constants, respectively. DOUBLE PRECISION elements are 8 bytesin length.
—Mnor8
the compiler does not promote REAL variables and constants to DOUBLE PRECISION.
REAL variables will be single precision (4 bytesin length).
—Mr8intrinsics
the compiler treats the intrinsics CMPLX and REAL as DCMPLX and DBLE, respectively.
—Mnor8intrinsics
the compiler does not promote the intrinsics CMPLX and REAL to DCMPLX and DBLE,
respectively.
—Mscalarsse
Use SSE/SSE?2 instructions to perform scalar floating-point arithmetic. This option isvalid
onlyonoption-tp [p7 | k8-32 | k8-64] targets.
—Mnoscalarsse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87
instructions instead. This option isnot valid in combination with the -tp k8-64 option.
—Msmart
instructs the compiler driver to invoke a post-pass assembly optimization utility.
—Mnosmart
instructs the compiler not to invoke an AMD64-specific post-pass assembly optimization
utility.
—Munroll[=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each iteration. This
also sets the optimization level to 2 if the level is set to lessthan 2, or if no -0 or —g options
are supplied. The option is one of the following:
cm
instructs the compiler to completely unroll loops with a constant loop count less than or
equal to m, asupplied constant. If this value is not supplied, the m count is set to 4.
m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for loops
that have conditional statements. If n is not supplied, then the default valueis 4. The
default setting is not to enable -Munrol 1=m.
n:<n>
instructs the compiler to unroll single-block loops n times, aloop that is not completely
unrolled, or has a non-constant loop count. If n isnot supplied, the unroller computes the
number of times a candidate loop is unrolled.

To set thisoption in PVF, use the Fortran | Optimization | Loop Unroll Count property,
described in *Loop Unroll Count’.

—Mnounroll
instructs the compiler not to unroll loops.
-M [no] vect[=option [,option,...]]
enable [disable] the code vectorizer, where option is one of the following:
altcode
Instructs the vectorizer to generate alternate code (altcode) for vectorized loops when
appropriate. For each vectorized loop the compiler decides whether to generate altcode
and what type or types to generate, which may be any or al of: altcode without iteration
peeling, altcode with non-temporal stores and other data cache optimizations, and altcode

PVF Reference Guide 75

Command-Line Options Reference

based on array alignments cal culated dynamically at runtime. The compiler also determines
suitable loop count and array alignment conditionals for executing the altcode. This option
is enabled by default.

noaltcode
Instructs the vectorizer to disable alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change the
results of a computation due to roundoff error. A typical optimization isto change an
arithmetic operation to an arithmetic operation that is mathematically correct, but can be
computationally different, due to round-off error

noassoc
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache
size of n. The default is set per processor type, either using the —tp switch or auto-detected
from the host computer.

[no]gather
Instructs the vectorizer to vectorize loops containing indirect array references, such asthis
one:

sum = 0.d0
do k=d(j),d(j+1)-1

sum = sum + a(k)*b(c(k))
enddo

The default is gather.

partial
Instructs the vectorizer to enable partial 10op vectorization through innermost loop
distribution.

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of prefetch instructions.

[no]short
Instructs the vectorizer to enable [disable] short vector operations. -Mvect=short
enables generation of packed SSE instructions for short vector operations that arise from
scalar code outside of loops or within the body of aloop iteration.

[no]sizelimit
Instructs the vectorizer to generate vector code for all loops where possible regardless
of the number of statementsin the loop. This overrides a heuristic in the vectorizer that
ordinarily prevents vectorization of loops with a number of statements that exceeds a
certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length isless than or equal to
n. The vectorizer uses thisinformation to eliminate generation of the stripmine loop for
vectorized loops wherever possible. If the size nis omitted, the default is 100.

n No space is allowed on either side of the colon (:).

PVF Reference Guide 76

Command-Line Options Reference

[no]sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of SSE, SSE2, and prefetch instructions. The default is nosse.

[noJuniform
Instructs the vectorizer to perform the same optimizations in the vectorized and residual
loops.

n This option may affect the performance of the residual loop.

To set thisoption in PVF, use the Fortran | Optimization V ectorization property, described in
‘Vectorization'.
—Mnovect
instructs the compiler not to perform vectorization. Y ou can use this option to override a
previous instance of —-Mvect on the command-line, in particular for casesin which -Mvect
isincluded in an aggregate option such as -fastsse.
—Mvect=[option]
instructs the compiler to enable loop vectorization, where option is one of the following:
partial
Enable partial loop vectorization through innermost loop distribution.
[no]short
Enable [disable] short vector operations. Enables [disables] generation of packed SSE
instructions for short vector operations that arise from scalar code outside of loops or
within the body of aloop iteration.
simd[:{128|256}]
Specifies to vectorize using SIMD instructions and data, either 128 bits or 256 bits wide,
on processors where there is a choice.
tile
Enable tiling/blocking over multiple nested loops for more efficient cache utilization.
—Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized
vector functions.

2.3.6. Miscellaneous Controls

This section describes the —-M <pgflag> options that do not easily fit into one of the other
categories of -M<pgflag> options.

Default: Before looking at al the options, let’slook at the defaults. For arguments that you do
not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Related options: -m, -S, -V, —v

Usage: In the following example, the compiler includes Fortran source code with the assembly
code.

$ pgfortran -Manno -S myprog.f

PVF Reference Guide 77

Command-Line Options Reference

In the following example, the assembler does not delete the assembly filemyprog. s after the
assembly pass.
$ pgfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions with fewer
than approximately 20 source linesin the source filemyprog. f.
S pgfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler createsthe listing filemyprog.1st.
$ pgfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.
$ pgfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous —-M <pgflag> option. Each option
has a description and, if appropriate, alist of any related options.

—Manno
annotate the generated assembly code with source code. Implies —-Mkeepasm.

To set thisoption in PVF, use the Fortran | Output | Annotated ASM Listing property,
described in * Annotate Assembly’.

—Mbounds
enables array bounds checking.

» If an array is an assumed size array, the bounds checking only applies to the lower bound.

» If an array bounds violation occurs during execution, an error message describing the
error is printed and the program terminates. The text of the error message includes the
name of the array, the location where the error occurred (the source file and the line
number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

The following is a sample error message:

PGFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1l, upper bound=2, dimension=2

—Mnobounds
disables array bounds checking.

—Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran
unformatted datafiles.

—M chkfpstk (32-bit only)
instructs the compiler to check for internal consistency of the x87 floating-point stack in the
prologue of afunction and after returning from afunction or subroutine call. Floating-point
stack corruption may occur in many ways, one of which is Fortran code calling floating-point
functions as subroutines (i.e., with the CALL statement).

» IfthePGI CONTINUE environment variableis set upon execution of a program
compiled with -Mchk fpstk, the stack will be automatically cleaned up and execution
will continue. There is a performance penalty associated with the stack cleanup.

PVF Reference Guide 78

Command-Line Options Reference

» If PGI_CONTINUE isset to verbose, the stack will be automatically cleaned up and
execution will continue after printing the warning message.

n This switch is only valid for 32-bit. On 64-bit it is ignored.

—Mchkptr
instructs the compiler to check for pointers that are dereferenced whileinitialized to NULL.
—Mchkstk
instructs the compiler to check the stack for available space in the prologue of afunction
and before the start of aparalel region. Prints awarning message and aborts the program
gracefully if stack space isinsufficient.

This option is useful when many local and private variables are declared in an OpenMP
program.

If the user also setsthe PGI STACK USAGE environment variable to any value, then the
program displays the stack space allocated and used after the program exits. For example, you
might see something similar to the following message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48K B of a 8180KB allocated stack. This
information is useful when you want to explicitly set areserved and committed stack size for
your programs, such as using the —stack option on Windows.

For more information on the PGI STACK USAGE, refer to ‘PGI_STACK_USAGE' inthe
PGI Compiler User’s Guide.

—M epp[=0ption [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation steps.
This option is useful for generating dependence information to be included in makefiles.

Only one of the m, md, mm or mmd options can be present; if multiple of these options are listed, the
last one listed is accepted and the others are ignored.

The option is one or more of the following:

m
print makefile dependencies to stdoui.
md
print makefile dependenciesto £ilename . d, where filename is the root name of the
input file being processed, ignoring system include files.
mm
print makefile dependencies to stdout, ignoring system include files.
mmd
print makefile dependenciesto £ilename . d, where filename is the root name of the
input file being processed, ignoring system include files.
[no]comment
do [do not] retain comments in output.
[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.

PVF Reference Guide 79

Command-Line Options Reference

-Mdill
This Windows-only flag has been deprecated. Refer to -Bdynami c. Thisflag was used to
link with the DLL versions of the runtime libraries, and it was required when linking with
any DLL built by any of The Portland Group compilers. This option implied -D_DLL, which
defines the preprocessor symbol _DLL.
—Mgeccbug|[s]
instructs the compiler to match the behavior of certain gcc bugs.
—Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:
unix
(Win32 only) uses UNIX calling conventions, no trailing underscores.
cref
uses CREF calling conventions, no trailing underscores.
mixed_str_len_arg
places the lengths of character argumentsimmediately after their corresponding argument.
Has affect only with the CREF calling convention.
nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has affect only
with the CREF calling convention.
—Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the
following:
all
instructs the compiler to produce al available -Minfo information. Implies a number of
suboptions:

—Mneginfo=accel,inline, ipa, loop, lre, mp, opt, par, vect

accel
instructs the compiler to enable accel erator information.

ccff
instructs the compiler to append common compiler feedback format information, such as
optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.

intensity
instructs the compiler to provide informational messages about the intensity of the loop.
Specify <n> to get messages on nested loops.

» For floating point loops, intensity is defined as the number of floating point operations
divided by the number of floating point loads and stores.

» For integer loops, the loop intensity is defined as the total number of integer arithmetic
operations, which may include updates of loop counts and addresses, divided by the
total number of integer loads and stores.

» By default, the messagesjust apply to innermost loops.

ipa
instructs the compiler to display information about interprocedural optimizations.

PVF Reference Guide 80

Command-Line Options Reference

loop
instructs the compiler to display information about loops, such as information on
vectorization.
Ire
instructs the compiler to enable L RE, loop-carried redundancy elimination, information.
mp
instructs the compiler to display information about parallelization.
opt
instructs the compiler to display information about optimization.
par
instructs the compiler to enable parallelizer information.
pfo
instructs the compiler to enable profile feedback information.
time
instructs the compiler to display compilation statistics.
unroll
instructs the compiler to display information about loop unrolling.
vect
instructs the compiler to enable vectorizer information.
—Minform=level
instructs the compiler to display error messages at the specified and higher levels, where
level isone of thefollowing:
fatal
instructs the compiler to display fatal error messages.
[no]file
instructs the compiler to print or not print source file names as they are compiled. The
default isto print the names. -Minform=file.
inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).
severe
instructs the compiler to display severe and fatal error messages.
warn
instructs the compiler to display warning, severe and fatal error messages.

To set thisoption in PVF, use the Fortran | Diagnostics | Warning Level property, described in
‘Warning Level’.

—Minstrumentation=option
specifiesthe level of instrumentation calls generated. Thisoption implies -Minfo=ccff, -
Mframe.

option isone of the following:

level

specifiesthe level of instrumentation calls generated.
function (default)

generates instrumentation calls for entry and exit to functions.

PVF Reference Guide 81

Command-Line Options Reference

Just after function entry and just before function exit, the following profiling functions are
called with the address of the current function and its call site. (Ilinux86-64 only).

void cyg profile func enter (void *this fn, void *call site);
void cyg profile func exit (void *this fn, void *call site);

In these calls, the first argument is the address of the start of the current function.

To set thisoption in PVF, use the Fortran | Diagnostics | Warning Level property, described in
‘Warning Level’.

—Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the
assembler deletes this file when it is finished. The assembly file has the same filename as the
sourcefile, but with a.s extension.

To set thisoption in PVF, use the Fortran | Output | Assembler Output property, described in
‘Generate Assembly’.
—Mlist
instructs the compiler to create alisting file. Thelisting fileis filename. 1st, wherethe
name of the sourcefileis filename. f.
—Mmakedll
generate adynamic link library (DLL).
—Mmakeimplib
generate an import library for aDLL without creating the DLL. When used without -
def:deffile, passes the switch —de £ to the librarian without a deffile.
—Mnames=lowercase | uppercase
specifies the case for the names of Fortran externals.

» |owercase - Use lowercase for Fortran externals.
» uppercase - Use uppercase for Fortran externals.

—Mneginfo[=option [,option,...]1]

instructs the compiler to produce information on standard error, where option is one of the

following:

all
instructs the compiler to produce al available information on why various optimizations
are not performed.

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to the
object file.

concur
instructs the compiler to produce al available information on why loops are not
automatically parallelized. In particular, if aloop is not parallelized due to potential data
dependence, the variable(s) that cause the potential dependence are listed in the messages
that you see when using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

PVF Reference Guide 82

Command-Line Options Reference

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.
ipa
instructs the compiler to display information about interprocedural optimizations.
loop
instructs the compiler to display information about loops, such as information on
vectorization.
Ire
instructs the compiler to enable L RE, loop-carried redundancy elimination, information.
mp
instructs the compiler to display information about parallelization.
opt
instructs the compiler to display information about optimization.
par
instructs the compiler to enable parallelizer information.
pfo
instructs the compiler to enable profile feedback information.
vect
instructs the compiler to enable vectorizer information.
—Mnolist
the compiler does not create alisting file. Thisis the default.
—Mnoopenmp
when used in combination with the —mp option, the compiler ignores OpenMP parallelization
directives or pragmas, but still processes SGI-style parallelization directives or pragmas.
—Mnosgimp
when used in combination with the —mp option, the compiler ignores SGI-style parallelization
directives, but still processes OpenMP parallelization directives or pragmas.
—Mnopgdllmain
(Windows only) do nat link the module containing the default DIIMain() into the DLL. This
flag applies to building DLLs with the PGFORTRAN compilers. If you want to replace the
default DIIMain() routine with a custom DIIMain(), use this flag and add the object containing
the custom DIIMain() to thelink line. The latest version of the default DIIMain() used by
PGFORTRAN isincluded in the Release Notes for each rel ease. The PGFORTRAN-specific
code in this routine must be incorporated into the custom version of DIIMain() to ensure the
appropriate function of your DLL.
—Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran input source
files.

To set thisoption in PVF, use the Fortran | Preprocessor | Preprocess Source File property,
described in * Preprocessor Definitions'.

—Mwritable strings
stores string constants in the writable data segment.

n Options —X's and —X st include -Mwritable_strings.

PVF Reference Guide 83

Chapter 3.
DIRECTIVES REFERENCE

PGI Fortran compilers support proprietary directives. These directives override corresponding
command-line options. For usage information such as the scope and related command-line
options, refer to the PGI Compiler User’s Guide.

This section contains detailed descriptions of PGI’ s proprietary directives.

3.1. PGl Proprietary Fortran Directive Summary

Directives (Fortran comments) may be supplied by the user in a source file to provide information
to the compiler. Directives alter the effects of certain command line options or default behavior

of the compiler. They provide pragmatic information that control the actions of the compiler

in a particular portion of a program without affecting the program as awhole. That is, while a
command line option affects the entire source file that is being compiled, directives apply, or
disable, the effects of a command line option to selected subprograms or to selected loopsin

the source file, for example, to optimize a specific area of code. Use directives to tune selected
routines or loops.

The Fortran directives may have any of the following forms:

'lpgiSg directive

'pgi$r directive

'pgi$l directive

'pgi$ directive

where the scope indicator follows the $ and is either g (global), r (routine), or | (loop). This
indicator controls the scope of the directive, though some directives ignore the scope indicator.

n If the input is in fixed format, the comment character, !, * or C, must begin in column 1.

Directives override corresponding command-line options. For usage information such as the
scope and related command-line options, refer to the the Using Directives and Pragmas section of
the PGI Visual Fortran User's Manual.

PVF Reference Guide 84

http://www.pgroup.com/resources/docs.htm

Directives Reference

3.1.1. altcode (noaltcode)

The altcode directive instructs the compiler to generate aternate code for vectorized or
parallelized loops.

Thenoaltcode directive disables generation of alternate code.

Scope: This directive affects the compiler only when —-Mvect=sse or -Mconcur isenabled
on the command line.

cpgi$ altcode
Enables alternate code (altcode) generation for vectorized loops. For each loop the compiler
decides whether to generate altcode and what type(s) to generate, which may be any or all
of : altcode without iteration peeling, altcode with non-temporal stores and other data cache
optimizations, and altcode based on array alignments cal culated dynamically at runtime. The
compiler also determines suitable loop count and array alignment conditions for executing the
alternate code.

cpgi$ altcode alignment
For avectorized loop, if possible, generates an aternate vectorized loop containing additional
aligned moves which is executed if aruntime array alignment test is passed.

cpgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the loop
count isless than or equal to n. If nisomitted or nis 0, the compiler determines a suitable
value of n for each loop.

cpgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each auto-
parallelized reduction loop, generate an alternate serial loop to be executed if the loop count is
less than or equal to n. If nis omitted or nis 0, the compiler determines a suitable value of n
for each loop.

cpgi$ altcode [(n)] nontemporal
For avectorized loop, if possible, generates an alternate vectorized |oop containing non-
temporal stores and other cache optimizations to be executed if the loop count is greater than
n. If nisomitted or nis 1, the compiler determines a suitable value of n for each loop. The
alternate code is optimized for the case when the data referenced in the loop does not al fit in
level 2 cache.

cpgi$ altcode [(n)] nopeel
For a vectorized loop where iteration peeling is performed by default, if possible, generates an
alternate vectorized loop without iteration peeling to be executed if the loop count is less than
or equa to n. If nisomitted or nis 1, the compiler determines a suitable value of n for each
loop, and in some cases it may decide not to generate an alternate unpeeled loop.

cpgi$ altcode [(n)] vector
For each vectorized loop, generates an aternate scalar loop to be executed if the loop count is
less than or equal to n. If nisomitted or nis 1, the compiler determines a suitable value of n
for each loop.

PVF Reference Guide 85

Directives Reference

cpgi$ noaltcode
Sets the loop count thresholds for parall€elization of al innermost loops to 0, and disables
alternate code generation for vectorized loops.

3.1.2. assoc (noassoc)

This directive toggles the effects of the -Mvect=noassoc command-line option, an
optimization —M control.

Scope: This directive affects the compiler only when -Mvect=sse isenabled on the command
line.

By default, when scalar reductions are present the vectorizer may change the order of operations,
such as dot product, so that it can generate better code. Such transformations may change

the result of the computation due to roundoff error. The noassoc directive disables these
transformations.

3.1.3. bounds (nobounds)

This directive aters the effects of the -Mbounds command line option. This directive enables
the checking of array bounds when subscripted array references are performed. By default, array
bounds checking is not performed.

3.1.4. cncall (nocncall)

This directive indicates that |oops within the specified scope are considered for parallelization,
even if they contain callsto user-defined subroutines or functions. A nocncall directive cancels
the effect of a previous cncall.

3.1.5. concur (noconcur)

This directive aters the effects of the -Mconcur command-line option. The directive instructs
the auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive affects the compiler only when —-Mconcur is enabled on the command
line.

If concur is specified, the compiler uses multiple processors to execute |oops which the
auto-parallelizer determines to be parallelizable. The noconcur directive disables these
transformations; however, use of concur overrides previous noconcur statements.

3.1.6. depchk (nodepchk)

This directive aters the effects of the -Mdepchk command line option. When potential data
dependencies exist, the compiler, by default, assumes that there is a data dependence that in

turn may inhibit certain optimizations or vectorizations. nodepchk directs the compiler to ignore
unknown data dependencies.

PVF Reference Guide 86

Directives Reference

3.1.7. eqvchk (noeqvchk)

The egvchk directive specifies to check dependencies between EQUIV ALENCE associated
elements. When examining data dependencies, noegvchk directs the compiler to ignore any
dependencies between variables appearing in EQUIVALENCE statements.

3.1.8. invarif (noinvarif)

This directive has no corresponding command-line option. Normally, the compiler removes
certain invariant if constructs from within aloop and places them outside of the loop. The
directive noinvarif directs the compiler not to move such constructs. The directive invarif toggles
aprevious noinvarif.

3.1.9. ivdep

The ivdep directive assists the compiler's dependence analysis and is equivalent to the directive
nodepchk.

3.1.10. Istval (nolstval)

This directive has no corresponding command-line option. The compiler determines whether
the last values for loop iteration control variables and promoted scalars need to be computed.

In certain cases, the compiler must assume that the last values of these variables are needed and
therefore computes their last values. The directive nolstval directs the compiler not to compute
the last values for those cases.

3.1.11. opt

The opt directive overrides the value specified by the ~On command line option.
The syntax of thisdirectiveis:
cpgi$<scope> opt=<level>

where the optional <scope>isr or g and <level> is an integer constant representing the
optimization level to be used when compiling a subprogram (routine scope) or all subprogramsin
afile (global scope).

3.1.12. prefetch

The prefetch directive the compiler emits prefetch instructions whereby elements are fetched
into the data cache prior to first use. By varying the prefetch distance, it is sometimes possible to
reduce the effects of main memory latency and improve performance.

The syntax of thisdirectiveis:

cSmem prefetch <varl>[,<var2>[,...]]

where <varn>isany valid variable, member, or array element reference.

PVF Reference Guide 87

Directives Reference

3.1.13. safe_lastval

During paral€lization, scalars within loops need to be privatized. Problems are possible if a scalar
is accessed outside the loop. If you know that a scalar is assigned on the last iteration of the loop,
making it safe to parallelize the loop, you use the safe_lastval directive to let the compiler know
the loop is safeto parallelize.

For example, use the following pragmato tell the compiler that for a given loop the last value
computed for all scalars make it safe to parallelize the loop:
cpgisl safe lastval

The command-line option-Msafe lastval providesthe sameinformation for all loops within
the routines being compiled, essentially providing global scope.

In the following example, the value of t may not be computed on the last iteration of the loop.

do i =1, N
if(£(x(i)) > 5.0) then
t = x(1)
endif
enddo
v = t

If ascalar assigned within aloop is used outside the loop, we normally save the last value of the
scalar. Essentially the value of the scalar on the "last iteration” is saved, in this case when i=N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult

to determine on what iteration t islast assigned, without resorting to costly critical sections.
Analysis allows the compiler to determine if a scalar is assigned on every iteration, thus the loop
issafe to parallelizeif the scalar is used later. An exampleloop is:

do i =1, N
if(x(i) > 0.0) then
t 2.0

1]

else
t = 3.0

endif

y(i) =t
endaé'
v =t
where t isassigned on every iteration of the loop. However, there are cases where a scalar may
be privatizable. If it is used after the loop, it is unsafe to parallelize. Examine this loop:
do i =1,N

if(x(i) > 0.0) then
t = x(1)
y(i) =t
endif
enddo
v = t

PVF Reference Guide 88

Directives Reference

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may
not be able to detect on which iteration of the parallelized loop t is assigned last.

The compiler detects these cases. When a scalar is used after the loop, but is not defined on every
iteration of the loop, parallelization does not occur.

3.1.14.tp

Y ou use the directive tp to specify one or more processor targets for which to generate code.
cpgi$ tp [target]...

The tp directive can only be applied at the routine or global level. For more information about these levels,
refer to the PGI Visual Fortran User’s Manual.

Refer to —tp <target>[,target...] for alist of targets that can be used as parametersto the tp
directive.

3.1.15. unroll (nounroll)

The unroll directive enables loop unrolling while nounroll disables loop unrolling.

n The unroll directive has no effect on vectorized loops.

The directive takes arguments ¢, n and m.

» ¢ gpecifiesthat ¢ complete unrolling should be turned on or off.
» n specifies single block loop unrolling.
» m specifies multi-block loop unrolling.

In addition, a constant may be specified for the ¢, n and m arguments.

» cv setsthe threshold to which ¢ unrolling applies. v is a constant; and aloop whose constant
loop count is less than or equal to (<=) v is completely unrolled.
cpgi$ unroll = c:v

» n:vunrollssingle block loops v times.
cpgi$ unroll = n:v

» m:v unrolls single block loops v times.

cpgi$ unroll = m:v

The directives unroll and nounroll only apply if-Munrol1 is selected on the command line.

3.1.16. vector (novector)

The directive novector disables vectorization. The directive vector re-enables vectorization after
aprevious novector directive. The directives vector and novector only apply if -Mvect has been
selected on the command line.

PVF Reference Guide 89

http://www.pgroup.com/resources/docs.htm

Directives Reference

3.1.17. vintr (novintr)

The directive novintr directs the vectorizer to disable recognition of vector intrinsics. The
directive vintr is re-enables recognition of vector intrinsics after a previous novintr directive. The
directives vintr and novintr only apply if -Mvect has been selected on the command line.

3.2. Prefetch Directives and Pragmas

Prefetch instructions can increase the speed of an application substantially by bringing datainto
cache so that it is available when the processor needs it. The PGI prefetch directive takes the
form:

The syntax of a prefetch directive in Fortran is as follows:

cSmem prefetch <varl>[,<var2>[,...]]
where <varn>isany valid variable, member, or array element reference.

For examples on how to use the prefetch directive, refer to the Prefetch Directives section of the
PGI Visual Fortran User's Manual.

3.3. IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specificsin ageneric call for
ambiguities.

3.3.1. IGNORE_TKR Directive Syntax

The syntax for the IGNORE_TKR directiveisthis:
!DIRS IGNORE TKR [[(<letter>) <dummy arg>] ...]

<letter>
isone or any combination of the following:

T - type K - kind R - rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules areignored for al dummy arguments in the procedure that contains the
directive.

3.3.2. IGNORE_TKR Directive Format Requirements

The following rules apply to this directive:

PVF Reference Guide 90

http://www.pgroup.com/resources/docs.htm

Directives Reference

» IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

» IGNORE_TKR may appear in the body of an interface block or in the body of a module
procedure, and may specify dummy argument names only.

» |IGNORE_TKR may appear before or after the declarations of the dummy arguments it
specifies.

» If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

» If no dummy argument names are specified, IGNORE_TKR appliesto all dummy arguments
except those that are allocatable objects, Fortran 90 pointers, or assumed-shape arrays.

3.3.3. Sample Usage of IGNORE_TKR Directive

Consider this subroutine fragment:

subroutine example (A,B,C,D)
IDIRS IGNORE TKR A, (R) B, (TK) C, (K) D

Table 12 indicates which rules are ignored for which dummy arguments in the preceding sample
subroutine fragment:

Table 12 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so al type, kind, and rank rules are ignored.

3.4. IDEC\$ Directives

PGI Fortran compilers for Microsoft Windows support directives that help with inter-language
calling and importing and exporting routines to and from DLLs. These directives all take the
form:

IDECS$ directive

For specific format requirements, refer to the section ‘' DEC$ Directives' in the PGI Compiler
User's Guide.

3.4.1. ALIAS Directive

This directive specifies an alternative name with which to resolve aroutine.

The syntax for the ALIAS directiveis either of the following:

!DECS$ ALIAS routine name , external name
!DEC$ ALIAS routine name : external name

PVF Reference Guide 91

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Directives Reference

Inthissyntax, external name isused asthe external name for the specified
routine name.

If external name isanidentifier name, the name (in uppercase) is used as the external name
for the specified routine name. If external name isacharacter constant, it isused as-is;
the string is not changed to uppercase, nor are blanks removed.

Y ou can also supply an alias for aroutine using the ATTRIBUTES directive, described in the
next section:
!DEC$ ATTIRIBUTES ALIAS : 'alias name' :: routine name

This directive specifies an alternative name with which to resolve aroutine, asillustrated in the
following code fragment that provides external names for three routines. In this fragment, the
external namefor subl isnamel, for sub2 isname?2, and for sub3 iSname3.

subroutine sub

IDEC$ alias subl , 'namel'
IDEC$ alias sub2 : 'name2'
!DECS$ attributes alias : 'name3' :: sub3

3.4.2. ATTRIBUTES Directive

This directive lets you specify properties for data objects and procedures.

The syntax for the ATTRIBUTES directiveisthis:
!DEC$ ATTRIBUTES <list>

where <list> is one of the following:

ALIAS: 'alias_name' :: routine_name
Specifies an alternative name with which to resolve rout ine name.
C :: routine_name
Specifiesthat the routine routine name will have its arguments passed by value. When a
routine marked C is called, arguments, except arrays, are sent by value. For characters, only
the first character is passed. The standard Fortran calling convention is pass by reference.
DLLEXPORT :: name
Specifiesthat name is being exported fromaDLL.
DLLIMPORT :: name
Specifiesthat name isbeing imported fromaDLL.
NOMIXED_STR_LEN_ARG
Specifies that hidden lengths are placed in sequential order at the end of the list.

This attribute only applies to routines that are compiled with —Mi face=cref orthat use the
default Windows calling conventions.

REFERENCE :: name
Specifies that the argument name is being passed by reference. Often this attribute is used
in conjunction with STDCATLTL, where STDCALL refersto an entire routine; then individual
arguments are modified with REFERENCE.

STDCALL :: routine name
Specifiesthat routine routine name will have its arguments passed by value. When a
routine marked STDCALTL is called, arguments (except arrays and characters) will be sent by
value. The standard Fortran calling convention is pass by reference.

PVF Reference Guide 92

Directives Reference

VALUE :: name
Specifies that the argument 'name’ is being passed by value.

3.4.3. DECORATE Directive

The DECORATE directive specifies that the name specified in the ALIAS directive should have
the prefix and postfix decorations performed on it that are associated with the calling conventions
that are in effect. These declarations are the same ones performed on the name when ALIAS s
not specified.

The syntax for the DECORATE directiveisthis:
!DEC$ DECORATE

n When ALIAS is not specified, this directive has no effect.

3.4.4. DISTRIBUTE Directive

This directiveis front-end based, and tells the compiler at what point within aloop to split into
two loops.

The syntax for the DISTRIBUTE directive is either of the following:

!DECS$ DISTRIBUTE POINT
!DECS DISTRIBUTEPOINT

Example:

subroutine dist(a,b,n)
integer 1
integer n
integer a(*)
integer b (*)
do i = 1,n
a(i) = a(i)+2
IDECS DISTRIBUTE POINT
b(i) = b(i)*4
enddo
end subroutine

PVF Reference Guide 93

Chapter 4.
RUN-TIME ENVIRONMENT

This section describes the programming model supported for compiler code generation, including
register conventions and calling conventions for x86 and x64 processor-based systems running a
Windows operating system.

In this section we sometimes refer to word, halfword, and double word. The equivalent byte information is
word (4 byte), halfword (2 byte), and double word (8 byte).

4.1. Win32 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects
of an x86 processor running a Win32 operating system. These standards must be followed to
guarantee that compilers, application programs, and operating systems written by different
people and organizations will work together. The conventions supported by the Fortran compiler
implement the application binary interface (ABI) as defined in the System V Application Binary
Interface: Intel Processor Supplement and the System V Application Binary Interface, listed in
the FIX REF HERE

4.1.1. Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The 32-bit x86 Architecture
provides a number of registers. All the integer registers and all the floating-point registers are
availableto all proceduresin arunning program.

PVF Reference Guide 94

Run-time Environment

Table 13 Register Allocation

Type Name Purpose
General Yoeax integer return value
%edx dividend register (for divide operations)
%ecx count register (shift and string operations)
%ebx local register variable
%ebp optional stack frame pointer
%esi local register variable
%edi local register variable
%esp stack pointer
Floating-point %st(0) floating-point stack top, return value
%st(1) floating-point next to stack top
%st(...)
%st(7) floating-point stack bottom

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. The next table shows the stack frame organization.

Table 14 Standard Stack Frame

Position Contents Frame

4n+8 (%ebp) argument word n previous
argument words 1 to n-1

8 (%ebp) argument word 0

4 (%ebp) return address

0 (%ebp) caller's %ebp current

-4 (%ebp) n bytes of local

-n (%ebp) variables and temps

Key points concerning the stack frame include:

» Thestack is kept double word aligned.

» Argument words are pushed onto the stack in reverse order so the rightmost argument in C
call syntax has the highest address. A dummy word may be pushed ahead of the rightmost

PVF Reference Guide 95

Run-time Environment

argument in order to preserve doubleword alignment. All incoming arguments appear on the
stack, residing in the stack frame of the caller.

» Anargument’ssizeisincreased, if necessary, to make it amultiple of words. This may
require tail padding, depending on the size of the argument.

All registers on an x86 system are visible to both a calling and a called function. Registers %oebp,
%ebx, %edi, %esi, and %esp are non-volatile across function calls. Therefore, afunction must
preserve theseregisters’ valuesfor its caller. Remaining registers are volatile (scratch). If a
calling function wants to preserve such aregister value across a function call, it must save its
value explicitly.

Some registers have assigned roles in the standard calling sequence:

%esp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s
bottom-most, valid word. At all times, the stack pointer must be kept word-aligned.

% ebp
The frame pointer holds a base address for the current stack frame. Consequently, afunction
has registers pointing to both ends of its frame. Incoming arguments reside in the previous
frame, referenced as positive offsets from %ebp, while local variablesreside in the current
frame, referenced as negative offsets from %ebp. A function must preserve this register value
foritscaler.

% eax
Integral and pointer return values appear in %eax. A function that returns a structure or union
value places the address of the result in %eax. Otherwise, thisis a scratch register.

%es, %edi
These local registers have no specified role in the standard calling sequence. Functions must
preserve their values for the caller.

% ecx, % edx
Scratch registers have no specified role in the standard calling sequence. Functions do not
have to preserve their values for the caller.

%st(0)
Floating-point return values appear on the top of the floating point register stack; thereisno
difference in the representation of single or double-precision valuesin floating point registers.
If the function does not return a floating point value, then the stack must be empty.

%st(1) - %st(7)
Floating point scratch registers have no specified role in the standard calling sequence. These
registers must be empty before entry and upon exit from a function.

EFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The
direction flag must be set to the "forward" (i.e., zero) direction before entry and upon exit
from afunction. Other user flags have no specified role in the standard calling sequence and
are not reserved.

PVF Reference Guide 96

Run-time Environment

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception
masking. Thisregister isinitialized at process initialization time and its value must be
preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if asignal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their
values.

4 1.2. Function Return Values

Functions Returning No Value

Functions that do not return a value are also called procedures or void functions. These functions
put no particular value in any register.

Functions Returning Scalars

» A function that returns an integral or pointer value placesits result in register %eax.

» A function that returns along long integer value placesits result in the registers %edx and
%eax. The most significant word is placed in %edx and the least significant word is placed in
%oeax.

» A floating-point return value appears on the top of the floating point stack. The caller must
then remove the value from the floating point stack, even if it does not use the value. Failure
of either side to meet its obligations |eads to undefined program behavior. The standard
calling sequence does not include any method to detect such failures nor to detect return
value type mismatches. Therefore, the user must declare all functions properly. Thereisno
differencein the representation of single-, double- or extended-precision values in floating-
point registers.

» A call instruction pushes the address of the next instruction (the return address) onto
the stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function that returns a scalar or
no value must preserve the caller's registers. Additionally, the called function must remove
the return address from the stack, leaving the stack pointer (%esp) with the value it had
before the call instruction was executed.

Functions Returning Structures or Unions

If afunction returns a structure or union, then the caller provides space for the return value and
places its address on the stack as argument word zero. In effect, this address becomes a hidden
first argument.

A function that returns a structure or union also sets %eax to the value of the original address of
the caller's area before it returns. Thus, when the caller receives control again, the address of the

PVF Reference Guide 97

Run-time Environment

returned object resides in register %eax and can be used to access the object. Both the calling and
the called functions must cooperate to pass the return value successfully:

» Thecalling function must supply space for the return value and pass its address in the stack
frame;

» Thecalled function must use the address from the frame and copy the return value to the
object so supplied;

» The caled function must remove this address from the stack before returning.

Failure of either side to meet its obligation leads to undefined program behavior. The standard
function calling sequence does not include any method to detect such failures nor to detect
structure and union type mismatches. Therefore, you must declare the function properly.

The following table illustrates the stack contents when the function receives control, after the call
instruction, and when the calling function again receives control, after the ret instruction.

Table 15 Stack Contents for Functions Returning struct/union

Position After Call After Return Position
4n+8 (%esp) argument word n argument word n 4n-4 (%esp)
8 (%esp) argument word 1 argument word 1 0 (%esp)

4 (%esp) value address undefined

0 (%esp) return address

The following sections of this section describe where arguments appear on the stack. The
examplesin this section are written asif the function prologue is used.

4.1.3. Argument Passing

Integral and Pointer Arguments

As mentioned, afunction receives all its arguments through the stack; the last argument is
pushed first. In the standard calling sequence, the first argument is at offset 8(%ebp), the second
argument is at offset 12(%ebp), as previously shown in Table 15. Functions pass al integer-
valued arguments as words, expanding or padding signed or unsigned bytes and halfwords as
needed.

Table 16 Integral and Pointer Arguments

Argument Stack Address
g(1, 2, 3, (void *)0); 1 8 (%ebp)
2 12 (%ebp)

PVF Reference Guide 98

Run-time Environment

Argument Stack Address
3 16 (%ebp)
(void *) 0 20 (%ebp)

Floating-Point Arguments

The stack also holds floating-point arguments: single-precision values use one word and double-

precision use two. The following example uses only double-precision arguments.

Table 17 Floating-point Arguments

Call Argument Stack Address
h(1.414, 1, 2.998¢10); word 0, 1.414 8 (%ebp)

word 1, 1.414 12 (%ebp)

1 16 (%ebp)

word 0 2.998e10 20 (%ebp)

word 1, 2.998e10 24 (%ebp)

Structure and Union Arguments

Structures and unions can have byte, halfword, or word alignment, depending on the constituents.
An argument’ s size isincreased, if necessary, to make it a multiple of words. This size increase
may require tail padding, depending on the size of the argument. Structure and union arguments
are pushed onto the stack in the same manner asintegral arguments. This process provides call-
by-value semantics, letting the called function modify its arguments without affecting the calling
function’s object. In the following example, the argument, s, is a structure consisting of more than
2 words.

Table 18 Structure and Union Arguments

Call Argument Stack Address
i(1,); 1 8 (%ebp)

word 0, s 12 (%ebp)

word 1, s 16 (%ebp)

PVF Reference Guide 99

Run-time Environment

Implementing a Stack

In general, compilers and programmers must maintain a software stack. Register %esp is the
stack pointer. Register %esp is set by the operating system for the application when the program
is started. The stack must be a grow-down stack.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space
on the stack at run-time (e.g. alloca). Some languages can also return values from aroutine
alocated on stack space below the original top-of-stack pointer. Such aroutine prevents the
calling function from using %esp-relative addressing to get at values on the stack. If the compiler
does not call routines that leave %esp in an altered state when they return, aframe pointer is not
needed and is not used if the compiler option —-Mno frame is specified.

Although not required, the stack should be kept aligned on 8-byte boundaries so that 8-byte locals
are favorably aligned with respect to performance. PGI's compilers allocate stack space for each
routine in multiples of 8 bytes.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language

uses a special method to access variable-count parameters. The stdarg.h and varargs.h
files define several functions to access these parameters. A C routine with variable parameters
must usethe va_start macro to set up adata structure before the parameters can be used. The
va_arg macro must be used to access the successive parameters.

C Parameter Conversion

In C, for acalled prototyped function, the parameter type in the called function must match

the argument type in the calling function. If the called function is not prototyped, the calling
convention uses the types of the arguments but promotes char or short to int, and unsigned char

or unsigned short to unsigned int and promotes float to double, unless you usethe -Msingle
option. For more information on the —-Msingle option, refer to —-M Options by Category. If the
called function is prototyped, the unused bits of aregister containing a char or short parameter are
undefined and the called function must extend the sign of the unused bits when needed.

Calling Assembly Language Programs

The following example shows a C program calling an assembly-language routine sum_ 3.

PVF Reference Guide 100

Run-time Environment

C Program Calling an Assembly-language Routine

/* File: testmain.c */ main () {
long 1 paral = 0x3£800000;
float f para2 = 1.0;
double d para3 = 0.5;
float f return;
extern float sum 3 (long paral, float para2, double para3);
f return = sum 3 (1 paral,f para2, d para3);
printf ("Parameter one, type long = %08x\n",l paral);
printf ("Parameter two, type float = $f\n",f para2);
printf ("Parameter three, type double = %g\n",d para3);
printf ("The sum after conversion = %f\n",f return); }

File: sum 3.s
Computes (paral + para2) + para3
.text
.align 4
.long .ENl-sum 3+0xc8000000
.align 16
.globl sum 3
sum_3:
pushl %ebp
movl %esp, $ebp
subl $8, %esp
..EN1:
fildl 8 (%
fadds 12 (%e
faddl 16 (%e
fstps -4 (%e
flds -4 (%ebp
addl $8, %esp
leave
ret
.type sum 3, @function
.size sum 3, .-sum 3

ebp)
Sebp)
P)
P)
)

4.2. Win64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects

of an x64 processor running a Win64 operating system. These standards must be followed to
guarantee that compilers, application programs, and operating systems written by different

people and organizations will work together. The conventions supported by the Fortran compiler
implement the application binary interface (ABI) as defined in the AMDG64 Software Conventions
document.

4.2.1. Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

Table 19 defines the standard for register alocation. The 64-bit AMD64 and Intel 64
architectures provide a number of registers. All the general purpose registers, XMM registers, and
x87 registers are global to all proceduresin arunning program.

PVF Reference Guide 101

Run-time Environment

Table 19 Register Allocation

Type Name Purpose
General %orax return value register
%Yorbx callee-saved
%rex pass 1st argument to functions
Yordx pass 2nd argument to functions
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%rsi callee-saved
Yordi callee-saved
%r8 pass 3rd argument to functions
%r9 pass 4th argument to functions
%r10-%r11 temporary registers; used in syscall/sysret instructions
%r12-r15 callee-saved registers
XMM %xmm0 pass 1st floating point argument; return value register
%oxmm1 pass 2nd floating point argument
%xmm2 pass 3rd floating point argument
%xmm3 pass 4th floating point argument
%oxmmé4-%xmmb temporary registers
%xmm6-%xmm15 callee-saved registers

In addition to the registers, each function has aframe on the run-time stack. This stack grows
downward from high addresses. Table 20 shows the stack frame organization.

Table 20 Standard Stack Frame

Position Contents Frame
8n-120 (%rbp) argument eightbyte n previous
-80 (%rbp) argument eightbyte 5

-88 (%rbp) %r9 home

-96 (%rbp) %r8 home

PVF Reference Guide 102

Run-time Environment

Position Contents Frame
-104 (%rbp) %rdx home

-112 (%rbp) %rcx home

-120 (%rbp) return address current
-128 (%rbp) caller's %rbp

0 (%rsp) variable size

Key points concerning the stack frame:

» The parameter area at the bottom of the stack must contain enough space to hold al the
parameters needed by any function call. Space must be set aside for the four register
parameters to be "homed" to the stack even if there are less than four register parameters
used in agiven call.

» Sixteen-byte alignment of the stack is required except within afunction’s prolog and within
leaf functions.

All registers on an x64 system are global and thus visible to both a calling and a called function.
Registers %rbx, %rsp, %rbp, %rsi, %rdi, %rl12, %rl3, %rl4, and %rl5 are non-volatile.
Therefore, a called function must preserve these registers values for its caller. Remaining
registers are scratch. If a calling function wantsto preserve such aregister value across afunction
call, it must save avaueinitslocal stack frame.

Registers are used in the standard calling sequence. Thefirst four arguments are passed in
registers. Integral and pointer arguments are passed in these general purpose registers (listed

in order): %rcx, %rdx, %r8, %r9. Floating point arguments are passed in the first four XMM
registers: %xmmao, %xmml, %xmm2, %xmm3. Registers are assigned using the argument’s
ordinal position in the argument list. For example, if afunction’sfirst argument is an integral
type and its second argument is a floating-point type, the first argument will be passed in the first
general purpose register (%rcx) and the second argument will be passed in the second XMM
register (Yoxmmbl); the first XMM register and second general purpose register are ignored.
Arguments after the first four are passed on the stack.

Integral and pointer type return values are returned in %rax. Floating point return values are
returned in %oxmma0.

Additional registers with assigned rolesin the standard calling sequence:

%rsp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s
bottom-most, valid word. The stack pointer should point to a 16-byte aligned area unlessin the
prolog or aleaf function.

PVF Reference Guide 103

Run-time Environment

%rbp
The frame pointer, if used, can provide away to reference the previous frames on the stack.
Details are implementation dependent. A function must preserve this register value for its
caller.

MXCSR
The flags register MXCSR contains the system flags, such as the direction flag and the
carry flag. The six status flags (MXCSR[0:5]) are volatile; the remainder of the register is
nonvolatile.

x87 - Floating Point Control Word (FPCSR)
The control word contains the floating-point flags, such as the rounding mode and exception
masking. Thisregister isinitialized at process initialization time and its value must be
preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if asignal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their
values.

4.2.2. Function Return Values

Functions Returning Scalars or No Value

» A function that returns an integral or pointer value that fitsin 64 bits placesitsresult in
Yorax.

» A function that returns a floating point value that fitsin the XMM registers returns this value
in %xmmoO.

» A function that returns avalue in memory viathe stack places the address of this memory
(passed to the function as a"hidden"” first argument in %rcx) in %rax.

» Functions that return no value (also called procedures or void functions) put no particular
valuein any register.

» A call instruction pushes the address of the next instruction (the return address) onto
the stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function that returns a scalar
or no value must preserve the caller's registers as previously described. Further, the called
function must remove the return address from the stack, leaving the stack pointer (%rsp) with
the value it had before the call instruction was executed.

Functions Returning Structures or Unions

A function can use either registers or the stack to return a structure or union. The size and type of
the structure or union determine how it isreturned. A structure or union isreturned in memory if
itislarger than 8 bytesor if itssizeis 3, 5, 6, or 7 bytes. A structure or union is returned in %rax
if itssizeis1, 2, 4, or 8 bytes.

PVF Reference Guide 104

Run-time Environment

If astructure or union is to be returned in memory, the caller provides space for the return value
and passes its address to the function as a"hidden” first argument in %rcx. This address will also
be returned in %rax.

4.2.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the
sequence %orex, %ordx, %or8, %r9. After thislist of registers has been exhausted, all remaining
integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register of the
seguence %oxmmO0, %oxmml, Yoxmm2, Y%oxmm3. After thislist of registers has been exhausted, al
remaining XMM floating-point arguments are passed to the function viathe stack.

Array, Structure, and Union Arguments
Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were integers
of the same size. Structures and unions of other sizes will be passed as a pointer to atemporary,
alocated by the caller, and whose value contains the value of the argument. The caller-allocated
temporary memory used for arguments of aggregate type must be 16-byte aligned.

Passing Arguments on the Stack

Registers are assigned using the argument’ s ordinal position in the argument list. For example, if
afunction’sfirst argument is an integral type and its second argument is a floating-point type, the
first argument will be passed in the first general purpose register (%rcx) and the second argument
will be passed in the second XMM register (%oxmmo1); the first XMM register and second general
purpose register areignored. Arguments after the first four are passed on the stack; they are
pushed on the stack in reverse order, with the last argument pushed first.

Parameter Passing

Table 21 shows the register allocation and stack frame offsets for the function declaration and call
shown in the following example.

typedef struct {
int i; float f£f;
}
structl; int i; float f; double d; long 1l; long long 11; structl sl;
extern void
func (int i, float £, structl sl, double d, long long 11, long 1);
func (i, £, sl1l, 4, 11, 1);

PVF Reference Guide 105

Run-time Environment

Table 21 Register Allocation for Example A-4

General Purpose Registers Floating Point Registers Stack Frame Offset
%rex: i %xmmO0: <ignored> 32:1

%rdx: <ignored> %xmm1: f 40:1

%r8: s1.i, s1.f %xmm2: <ignored>

%r9: <ignored> %xmm3: d

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer,
register %rsp, is set by the operating system for the application when the program is started. The
stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space
on the stack at run-time (e.g. alloca). Some languages can also return values from aroutine
alocated on stack space below the original top-of-stack pointer. Such aroutine prevents the
calling function from using %rsp-rel ative addressing to get at values on the stack. If the compiler
does not call routines that leave %rsp in an altered state when they return, aframe pointer is not
needed and is not used if the compiler option —-Mno frame is specified.

The stack must always be 16-byte aligned except within the prolog and within leaf functions.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language

uses a special method to access variable-count parameters. The stdarg.h and varargs.h
files define several functions to access these parameters. A C routine with variable parameters
must usethe va_start macro to set up adata structure before the parameters can be used. The
va_arg macro must be used to access the successive parameters.

For unprototyped functions or functions that use varargs, floating-point arguments passed in
registers must be passed in both an XMM register and its corresponding general purpose register.

C Parameter Conversion

In C, for acalled prototyped function, the parameter type in the called function must match the
argument type in the calling function.

» If the called function is not prototyped, the calling convention uses the types of the
arguments but promotes char or short to int, and unsigned char or unsigned short to unsigned
int and promotes float to double, unless you use the -Msingle option.

For more information on the -Msingle option, refer to —M Options by Category.

PVF Reference Guide 106

Run-time Environment

» If the called function is prototyped, the unused bits of aregister containing a char or short

parameter are undefined and the called function must extend the sign of the unused bits when

needed.

Calling Assembly Language Programs

C Program Calling an Assembly-language Routine

/* File: testmain.c */

main () {
long 1 paral = 0x3£f800000;
float f para2 = 1.0;
double d para3 = 0.5;
float f return;
extern float sum 3 (long paral, float para2, double para3);
f return = sum 3 (1 paral,f para2, d para3);

printf ("Parameter one, type long = %08x\n",l1 paral);
printf ("Parameter two, type float = $f\n",f para2);
printf ("Parameter three, type double = %g\n",d para3);
printf ("The sum after conversion = %$f\n",f return);

File: sum 3.s
Computes (paral + para2) + para3
.text

.align 16

.globl sum 3

sum 3:

pushg %rbp

leaqg 128 (%rsp), %rbp
cvtsi2ss %ecx, %xmmO
addss %xmml, %xmmO
cvtss2sd $xmm0O, $%$xmmO
addsd %$xmm2, %xmmO
cvtsd2ss %$xmm0O, %SxmmO
popq srbp

ret

.type sum 3, @function
.size sum 3, .-sum 3

4.2.4. Win64 Fortran Supplement

Sections A3.4.1 through A3.4.4 of the AMDG64 Software Conventions for Win64 define the
Fortran supplement. The register usage conventions set forth in that document remain the same
for Fortran.

+ e

Fortran Fundamental Types

Table 22 Win64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)
INTEGER 4 4
INTEGER*1 1 1
INTEGER*2 2 2
INTEGER*4 4 4

PVF Reference Guide

107

Run-time Environment

Fortran Type Size (bytes) Alignment (bytes)
INTEGER*8 8 8
LOGICAL 4 4
LOGICAL*1 1 1
LOGICAL*2 2 2
LOGICAL*4 4 4
LOGICAL*8 8 8
BYTE 1 1
CHARACTER*n n 1
REAL 4 4
REAL*4 4 4
REAL*8 8 8
DOUBLE PRECISION 8 8
COMPLEX 8 4
COMPLEX*8 8 4
COMPLEX*16 16 8
DOUBLE COMPLEX 16 8

A logical constant is one of:

» . TRUE.
» .FALSE.

Thelogical constants .TRUE. and .FALSE. are defined to be the four-byte value 1 and O
respectively. A logical expression is defined to be . TRUE. if itsleast significant bitis 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Fortran Naming Conventions

By default, al globally visible Fortran symbol names (subroutines, functions, common blocks)
are converted to lower-case. In addition, an underscore is appended to Fortran global names to
distinguish the Fortran name space from the C/C++ name space.

PVF Reference Guide 108

Run-time Environment

Fortran Argument Passing and Return Conventions

Arguments are passed by reference, meaning the address of the argument is passed rather than the
argument itself. In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing
the length of the CHARACTER argument is also passed to the function. This length argument
isafour-byte integer passed by value, and is passed at the end of the parameter list following
the other formal arguments. A length argument is passed for each CHARACTER argument; the
length arguments are passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area created

by the caller for the return value; the second additional argument is the length of the return
value. If a Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF (), the second extra parameter representing the length of the
return value must still be supplied.

A Fortran complex function returnsits value in memory. The caller provides space for the return
value and passes the address of this storage asif it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The
alternate return function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters
and return values match types. If a C/C++ function returns avalue, call it from Fortran asa
function, otherwise, call it as a subroutine. If a Fortran function has type CHARACTER or
COMPLEX, cdll it from C/C++ as avoid function. If a Fortran subroutine has aternate returns,
call it from C/C++ as afunction returning int; the value of such a subroutine isthe value of the
integer expression specified in the alternate RETURN statement. If a Fortran subroutine does not
contain alternate returns, call it from C/C++ as avoid function.

Table 23 provides the C/C++ data type corresponding to each Fortran data type.

Table 23 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4

PVF Reference Guide 109

Run-time Environment

Fortran Type C/C++ Type Size (bytes)
REAL*8 x double x 8
DOUBLE PRECISION x double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1
INTEGER*2 x short x 2
INTEGER*4 x int x 4
INTEGER*8 x long long x 8
LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long long x 8

The PGI Compiler User’s Guide contains a table that provides the Fortran and C/C++
representation of the COMPLEX type.

Table 24 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x; 8
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16

n For C/C++, the complex type implies C99 or later.

PVF Reference Guide 110

Run-time Environment

Arrays

For anumber of reasons inter-language function mixing is not recommended for arrays other than
single dimensional arrays and square two-dimensional arrays.

» C/C++ arrays and Fortran arrays use different default initial array index values. By defaullt,
C/C++ arrays start at 0 and Fortran arrays start at 1. However, aFortran array can be
declared to start at zero.

» Fortran and C/C++ arrays use different storage methods. Fortran uses column-major order
and C/C++ use row-magjor order. For one-dimensional arrays, this poses no problems. For
two-dimensional arrays, where there are an equal number of rows and columns, row and
column indexes can simply be reversed.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. Here is an example.

Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

cCoOMMON /COM/ i, J, ¢, cd, d

C equivaent:

extern struct {
int i;
int 3
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;
} com ;
C++ equivalent:
extern "C" struct {
int i;
int 3
struct {float real, imag;} c;
struct {double real, imag;} cd;

double d;
} com_;

n The compiler-provided name of the BLANK COMMON block is implementation-specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward
as calling other types of Fortran functions. Additional arguments must be passed to the Fortran

PVF Reference Guide 111

Run-time Environment

function by the C/C++ caller. A Fortran COMPLEX function returnsits value in memory; the
first argument passed to the function must contain the address of the storage for thisvalue. A
Fortran CHARACTER function adds two arguments to the beginning of its argument list. The
following example of calling a Fortran CHARACTER function from C/C++ illustrates these
caller-provided extra parameters:

CHARACTER* (*) FUNCTION CHF(C1l, I)
CHARACTER* (*) C1

INTEGER I

END

extern void chf ();

char tmp[10];

char c1[9];

int i;

chf (tmp, 10, cl, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the
length of c1.

PVF Reference Guide 112

Chapter 5.
PVF PROPERTIES

There are a number of property pages that are available in a PV F project. These property pages
are grouped into categories that you can access from the Property Page dialog. Further, each

of PVF' s property pages contains one or more properties, or configuration options. The set of
categories and property pages available vary, depending on the type of project.

The propertiesin a PV F project are divided into the following categories:

> General > Librarian

» Debugging » Resources

» Fortran > Build Events

» Linker » Custom Build Step

This section contains descriptions of each of PVF's property pages, and detailed descriptions of
the properties, organized as you would see them in the Property Page dialog: by category and

property page.

Tip The Fortran, Linker, and Librarian categories contain a Command Line property page where you can
see the command line derived from the properties in that category. Options that are not supported by the
PVF property pages can be added to the command line from this property page by entering them in the
Additional Options field.

5.1. General Property Page

This section contains the properties that are included on the General property page.

5.1.1. General

5.1.2. Output Directory

Use this property to specify arelative path to the output file directory. This directory iswhere the
project’ s output files are built.

PVF Reference Guide 113

PVF Properties

5.1.3. Intermediate Directory

Use this property to specify arelative path to the intermediate file directory. This directory is
where the intermediate files (i.e., object files) are created when the project is built.

5.1.4. Extensions to Delete on Clean

Use this property to specify which filesin the intermediate directory should be deleted when
the project is cleaned or before it isrebuilt. This property uses a semi-colon-delimited wildcard
specification for the files.

5.1.5. Configuration Type

Use this property to change the output type that the project produces.

When you create a project, you specify the type of output that the project produces: executable,
static library, or dynamic library. If you want to change the output type, use this property to do
0.

5.1.6. Build Log File

Use this property to specify the build log file that is produced when the project is built.

5.1.7. Build Log Level

Use this property to specify the level of detail to beincluded in the build log file.

Any setting above Default can produce large amounts of output and may potentially slow down the building
of your project.

5.2. Debugging Property Page

This section contains the properties that are included on the Debugging property page.

5.2.1. Debugging

5.2.2. Application Command

Use this property to specify the application to execute when you select Start Debugging or Sart
Without Debugging from the Debug menu.

» If the Startup Project in your solution is a PVF project that builds an executable, thereis
probably no need to change this property.

PVF Reference Guide 114

PVF Properties

» If the Startup Project in your solution is a PVF project that buildsaDLL or static library, you
must use the Command property to specify an application to execute when you run (with or
without debugging).

To use the PVF debug engine, the Startup Project must be a PVF project. If, for example, your main
executable is built by a Visual C++ project that links against a PVF project, you would designate the PVF
project as the Startup Project; and in its Debugging | Application Command property, you would specify the
path to the executable built by the Visual C++ project.

Tip The Startup Project is the project listed in boldface in the solution explorer. You can change the Startup
Project by right-clicking on any project in the solution explorer and selecting Set as Startup Project from the
context menu.

5.2.3. Application Arguments

Use this property to pass command line arguments to the application when it is run or debugged.

5.2.4. Environment

Use this property to specify any environment variables to set for the application when it runs. One
common use of this property isto augment the PATH environment variable. For example, if the
application requires DLLsto run but the general environment is not set to find these, the path to
these DLLs could be added to the PATH environment variable.

For more information on PATH, refer to the PGl Visual Fortran User's Manual.

If the Merge Environment property is set to Yes, then the contents of the Environment property
are merged with the existing environment when the application is run or debugged.

5.2.5. Merge Environment

Use this property to merge the environment variables in the Environment property with the
existing environment when the application is run or debugged. To do this, set the Merge
Environment property to Yes.

5.2.6. Accelerator Profiling

Use this property to generate accelerator profiling information at runtime. To do this, set the
Accelerator Profiling property to Yes.

Setting this property to Yes setsthe PGI_ACC_TIME environment variableto 1.

5.2.7. MPI Debugging

Use this property to enable MPI debugging and select local MPI debugging.

PVF Reference Guide 115

http://www.pgroup.com/resources/docs.htm

PVF Properties

The value selected for this property determines which properties are displayed following it on the
Debugging property page.

Important If you change the value of this property and the displayed properties do not change, be sure to
click Apply in the property page dialog box.

» When MPI Debugging is set to Disabled, the application is run or debugged in serial mode.

» When MPI Debugging is set to Local, the application is run or debugged using mpiexec.
All processes launched are local to the system on which the application isrun.

5.2.8. Working Directory

[Serial]

Use this property to specify the application's working directory when it is run or debugged
serialy. By default, the working directory is set to the solution directory.

This property is displayed when the MPI Debugging property is set to Disabled.

5.2.9. Number of Processes

[Local MPI]

Use this property to specify the number of MPI processes to use when the application is run or
debugged. The number of processesis passed to mpiexec using the —-n option.

This property is displayed when the MPI Debugging property is set to Local.

5.2.10. Working Directory

[Local MPI]

Use this property to specify the application's working directory when it is run or debugged using
local MPI. By default, the working directory is set to the solution directory.

This property is displayed when the MPI Debugging property is set to Local.

5.2.11. Additional Arguments: mpiexec

[Local MPI]

Use this property to specify additional arguments to be passed to mpiexec when the application
isrun or debugged.

This property is displayed when the MPI Debugging property is set to Local.

PVF Reference Guide 116

PVF Properties

5.2.12. Location of mpiexec

[Local MPI]

Use this property to override the default path to mpiexec as specified in the system PATH
variable.

This property is displayed when the MPI Debugging property is set to Local.

5.3. Fortran Property Pages

This section contains the property pages that are included in the Fortran category. This category is
further divided into the following property pages, displayed in the following order:

> General » Language » Target Accelerators
> Optimization > Floating Point Options » Diagnostics

> Preprocessing » External Procedures > Profiling

» Code Generation > » Command Line

Target Processors

The following sections describe the properties available on each property page.

5.4. Fortran | General

The following properties are available from the Fortran | General property page.

5.4.1. Display Startup Banner

Use this property to determine whether to display the compiler’s startup banner during
compilation.

Changing the property to Yes adds the -V switch to the compilation line, which causes the
compiler to display the startup banner during compilation.

For more information on -V, refer to -V |[release_number].

5.4.2. Additional Include Directories

Use this property to add one or more directories to the compiler’ sinclude path.

For every path that is added to this property, PVF adds - I <path> to the compilation line.
There are two waysto add directories to this property:

» Typetheinformation directly into the property page box.

Use asemi-colon (‘;") to separate each directory.
» Click thedlipsis(‘...") button in the property page box to open the Additional Include
Directories dialog box.

PVF Reference Guide 117

PVF Properties

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

n This property is also available from the Fortran | Preprocessing Property page.

5.4.3. Module Path

Use this property to specify the location of module (. mod) files.

For every directory that is added to this property, PVF adds -module <dir> tothe
compilation line, causing the compiler to search each listed directory for modules during
compilation.

The first directory in the list is also the module output directory, which is where PVF puts all module files
created when the project is built.

There are two ways to add directories to this property:
» Typetheinformation directly into the property page box.

Use asemi-colon (‘;") to separate each path.
» Clickthedlipsis(*...") button in the property page box to open the Module Path dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate entries;
the semi-colons are added automatically when the box is closed.

5.4.4. Object File Name

Use of this property depends on whether it isbeing applied to afile or a project:

» Filelevel: Usethis property to set the name of the object file. Setting the name adds the —o
switch to the compilation line.

For more information on —o, refer to —o.
» Project level: Usethis property to set the location of the object files created by a build.

To change the default location for the object files, specify a different directory name for this
property.

n You must append a backslash (\) to the directory path or the value of this property will be interpreted
as afile.

5.4.5. Debug Information Format

Use this property to specify whether the compiler should generate debug information and if so, in
what format.

» Therichest debugging experience is obtained when this option is set to "Full Debug
Information (—g).’

PVF Reference Guide 118

PVF Properties

» If you are debugging a project built with optimizations, you may want to select "Full Debug
Information with Full Optimization (—gopt)." This selection prevents the generation of debug
information from affecting optimizations.

For more information on —g, refer to —g. For more information on —gopt, refer to —gopt.

5.4.6. Optimization

Use this property to select the overall code optimization.
This property can be set to one of the following values:

» No Optimization - the default value for Debug configurations.
» Maximize Speed - the default value for Release Configurations.
» Maximize Speed Acrossthe Whole Program

n This property is also available from the Fortran | Optimization Property page.

5.5. Fortran | Optimization

The following properties are available from the Fortran | Optimization property page.

5.5.1. Optimization
Use this property to select the overall code optimization.
This property can be set to one of the following values:

» No Optimization - the default value for Debug configurations.
» Maximize Speed - the default value for Release Configurations.
» Maximize Speed Acrossthe Whole Program

n This property is also available from the Fortran | General Property page.

5.5.2. Global Optimizations

Use this property to set the compiler’s global optimization level.
Setting this property adds one of the —0O options to the compilation line.

For more information on -0, refer to —O<level>.

5.5.3. Vectorization

Use this property to specify the type of vectorization to perform.

The PVF compilers use the -Mvect options to vectorize code that is vectorizable. Select the
appropriate vectorization from these options:

PVF Reference Guide 119

PVF Properties

» Default: Accepts the default vectorization.

» Enable Vectorization: Enables vectorization by adding the -Mvect switch to the PVF
compilation and link lines.

» Vectorize using SSE instructions: Enables vectorization using SSE instructions by adding
the -Mvect=sse switch to the PVF compilation line.

» Vectorizeusing SIMD instructions. Enables vectorization using SIMD instructions and
data, by adding the -Mvect=simd switch to the PVF compilation line.

» Vectorize using 128-bit SIMD instructions: Enables vectorization using SIMD 128-bit
instructions and data, by adding the -Mvect=simd: 128 switch to the PVF compilation
line.

» Vectorize using 256-bit SIMD instructions: Enables vectorization using SIMD 256-bit
instructions and data, by adding the -Mvect=simd: 256 switch to the PVF compilation
line.

For more information on —-Mvect, refer to Optimization Controls.

5.5.4. Inlining

Use this property to enableinlining of certain subprograms.
Setting this property to Ye s addsthe -Minline switch to the compilation command line.

For more information on —-Min1ine, refer to -Minline[=option[,option,...]].

5.5.5. Use Frame Pointer

Use this property to specify whether to generate code that uses a frame pointer.

Setting this property to Yes addsthe -Mf rame switch to the compilation command line and
PVF compilers generate code that uses aframe pointer.

Setting this property to No, the default, adds the -Mno f rame switch to the compilation
command line and PVF compilers generate code that does not use frame pointers.

For more information on —Mf rame, refer to Optimization Controls.

5.5.6. Loop Unroll Count

Use this property to select the appropriate value for unrolling.

Loop unrolling isacommon optimization. This property allows you to specify unrolling by two
or four. Using this option adds the -Munro11 option to the compilation line.

For more information on -Munro1l1, refer to Optimization Controls.

5.5.7. Auto-Parallelization

Use this property to auto-parallelize code that is parallelizable. Using this option adds the -
Mconcur option to the compilation line.

For more information on —-Mconcur, refer to Optimization Controls.

PVF Reference Guide 120

PVF Properties

5.6. Fortran | Preprocessing

The following properties are avail able from the Fortran | Preprocessing Property page.

5.6.1. Preprocess Source File

Use this property to specify whether the compiler should preprocess source files.
Setting this property to Ye s addsthe -Mpreprocess switch to the compilation command line.

For more information on —-Mpreprocess, refer to Miscellaneous Controls.

5.6.2. Additional Include Directories

Use this property to add one or more directories to the compiler’ sinclude path.

For every path that is added to this property, PVF adds —-I<path> to the compilation line.
There are two waysto add directories to this property:

» Typetheinformation directly into the property page box.

Use asemi-colon (‘;’) to separate each directory.
» Click thedlipsis(‘...") button in the property page box to open the Additional Include
Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

For more information on —T<path>, refer to—I.

n This property is also available from the Fortran | General Property page.

5.6.3. Ignore Standard Include Path

Use this property to specify whether the preprocessor should ignore the standard include path.
Setting this property to Ye s adds the -Mnostdinc switch to the compilation command line.

For more information on —Mnostdinc, refer to Environment Controls.

5.6.4. Preprocessor Definitions

Use this property to add one or more preprocessor definitions to compilation.

For every definition that is added to this property, PVF adds -D<definition> tothe
compilation line.

There are two ways to add definitions to this property:
» Typetheinformation directly into the property page box.

PVF Reference Guide 121

PVF Properties

Use asemi-colon (‘;") to separate each definition.

For example, DEF1 ; DEF2=2 defines DEF1, and defines DEF2 and initializesit to 2.
» Click thedllipsis(*...") button in the property page box to open the Preprocessor Definitions
dialog box.

Enter each definition on its own line in this box. Do not use semi-colons to separate
definitions; the semi-colons are added automatically when the box is closed.

For more information on -D<definition>, refer to-D.

5.6.5. Undefine Preprocessor Definitions

Use this property to undefine one or more preprocessor definitions.

For every definition that is added to this property, PVF adds -U<definition> tothe
compilation line.

There are two ways to add definitions to this property:
» Typetheinformation directly into the property page box.
Use asemi-colon (‘;") to separate each definition.

For example, DEF1 ; DEF2 undefines DEF1 and DEF2.

» Click thedlipsis(‘...") button in the property page box to open the Undefine Preprocessor
Definitions dialog box.

Enter each definition on its own line in this box. Do not use semi-colons to separate
definitions; the semi-colons are added automatically when the box is closed.

For more information on —-U<definition>, refer to—-U.

5.7. Fortran | Code Generation

The following properties are available from the Fortran | Code Generation property page.

5.7.1. Runtime Library

Use this property to specify the type of runtime libraries to use during linking.
Default: Depends on the project:
» For executable and static library projects. multi-threaded static libraries.

Using this option adds the -Bstatic option to the compilation line. This choice
corresponds to Microsoft’'s /MT compilation option.

For more information on -Bstatic, refer to —Bstatic.
» For dynamic-link library projects: multi-threaded DLL libraries.

Using this option adds the -Bdynami c option to the compilation line. This choice
corresponds to Microsoft’s /MD compilation option.

PVF Reference Guide 122

PVF Properties

For more information on —-Bdynami c, refer to —Bdynamic.

It is important to keep the type of runtime libraries consistent within a solution. PVF projects that build
DLLs should link to the multi-threaded DLL runtime, and projects that link to these PVF DLLs should also
use the multi-threaded DLL runtime.

5.8. Fortran | Language

The following properties are avail able from the Fortran | Language property page.

5.8.1. Fortran Dialect

Use this property to select the Fortran dialect to use during compilation.

PV F supports two Fortran language dialects. Fortran 95 and FORTRAN 77. The dialect
determines which PGI compiler driver is used during compilation.

» Default: Thedialect is set to Fortran 95, even for fixed-format . £ files, and the pgfortran
driver is used.

» Fortran 77: Usethe pgf77 driver. Y ou can select the FORTRAN 77 diaect at the project or
filelevel.

5.8.2. Treat Backslash as Character

Use this property to specify how the compilers should treat the backslash (\) character.
Default: PVF treats the backslash (\) as aregular character.

This default action is equivalent to adding the -Mbacks1ash switch to compilation.

If you want the backslash character to be treated as an escape character, which is how C and C++
compilers handle backslashes, set this property to No.

For more information on -Mbackslash, refer to Fortran Language Controls.

5.8.3. Extend Line Length

Use this property to extend the line length for fixed-format Fortran files to 132 characters.

Fixed-format Fortran files limit the accepted line length to 72 characters. To extend the line
length for these types of filesto 132 characters, set this property to Ye s, which adds the -
Mextend switch to the PVF compilation line.

For more information on -Mextend, refer to Fortran Language Controls.

5.8.4. Enable OpenMP Directives

Use this property to enable OpenMP 3.0 directives.
Setting this property to Ye s adds the -mp switch to the PVF compilation and link lines.

PVF Reference Guide 123

PVF Properties

For more information on —mp, refer to —mp[=all, align,bind,[no]numa].

5.8.5. Enable OpenACC Directives

Use this property to enable OpenACC directives.

Setting this property to Yes addsthe —acc switch to the PVF compilation and link lines and
activates access to these additional properties:

OpenACC Autoparallelization
OpenACC Required
OpenACC Routineseq
OpenACC Wait

OpenACC Conformance Level
OpenACC Sync

For more information on —acc, refer to —acc.

5.8.6. OpenACC Autoparallelization

When Enable OpenACC Directivesis set to Ye s, use this property to control loop
autoparallelization within acc parallel.

» Default: Allowsthe compiler to control loop autoparallelization within acc parallel. This
selection adds no additional sub-optionsto -acc.

» Yes: Directsthe compiler to enable loop autoparalldlization within an OpenACC parallel
region (-acc=autopar).

» No: Directs the compiler to disable loop autoparallelization within an OpenAcc parallel
region (—acc=noautopar).

5.8.7. OpenACC Required

When Enable OpenACC Directivesis set to Yes, use this property to control the compiler’s
behavior when it is unable to accelerate a compute region.

» Default: Usethe compiler defaults for handling instances where compute regions cannot be
accelerated. This selection adds no additional sub-optionsto -acc.

» Yes: Directs the compiler to stop compilation with an error when it cannot accelerate a
computeregion (-acc=required).

» No: Directsthe compiler to issue warnings when it cannot accelerate a compute region;
compilation does not stop but accelerator kernels are not generated (-acc=norequired).

5.8.8. OpenACC Routineseq

When Enable OpenACC Directivesis set to Yess, use this property to compile every routine for
the device.

» Default: Uses compiler defaults handling compile every routine for the device. This
selection adds no additional sub-optionsto —acc.

PVF Reference Guide 124

PVF Properties

» Yes: Enables compiling every routine for the device by adding —acc=routineseq switch
to the PVF compilation and link lines.

» No: Disables compiling every routine for the device by adding —~acc=noroutineseq
switch to the PVF compilation and link lines.

5.8.9. OpenACC Wait

When Enable OpenACC Directivesis set to Yes, use this property to wait for each device kernel
to finish.

» Default: Uses compiler defaults handling wait for each device kernel to finish. This selection
adds no additional sub-optionsto -acc.

» Yes Enableswait for each device kernel to finish by adding -acc=wai t switch to the PVF
compilation and link lines.

» No: Disableswait for each device kernel to finish by adding —acc=nowait switch to the
PVF compilation and link lines.

5.8.10. OpenACC Conformance Level

When Enable OpenACC Directivesis set to Yes, use this property to leverage the compiler’s
detection of extensions to standard OpenACC directives.

» Default: When non-OpenACC accelerator directives are found, they are ignored..
» Strict: Add -~acc=strict tothe PVF compilation and link lines. The compiler emits a
warning when a non-OpenA CC accelerator directive is found.

» Very Strict: Add —acc=strict tothe PVF compilation and link lines. The compiler stops
with an error when a non-OpenACC accelerator directive is found.

5.8.11. OpenACC Sync

When Enable OpenACC Directivesis set to Ye s, use this property to ignore async clauses.
Setting this property to Yes addsthe —acc=sync switch to the PVF compilation and link lines.

5.8.12. MPI

Use this property to enable compilation and linking using the Microsoft MPI headers and
libraries.

Setting this property toMicrosoft MPI addsthe -Mmpi=msmpi switch to the PVF
compilation and link lines.

5.8.13. Enable CUDA Fortran

Use this property to enable CUDA Fortran.

Setting this property to Yes addsthe —-Mcuda switch to the PVF compilation and link lines and
activates access to these additional properties:

CUDA Fortran Register Limit
CUDA Fortran Use Fused Multiply-Adds

PVF Reference Guide 125

PVF Properties

CUDA Fortran Use Fast Math Library
CUDA Fortran Debug

CUDA Fortran Line Information
CUDA Fortran Use LLVM Back End
CUDA Fortran Unrall

CUDA Fortran Flush to Zero

CUDA Fortran Toolkit

CUDA Fortran Compute Capability
CUDA Fortran Keep Binary

CUDA Fortran Keep Kernel Source
CUDA Fortran Keep PTX

CUDA Fortran Keep PTXAS

CUDA Fortran Generate RDC
CUDA Fortran Emulation

CUDA Fortran Madconst

n Important If you select Ye s and the additional properties do not appear, click Apply in the Property page
dialog.

For more information on —Mcuda, refer to Optimization Controls.

5.8.14. CUDA Fortran Register Limit

When Enable CUDA Fortran is set to Yes, use this property to specify the number of registersto
use on the GPU.

Setting this property to an integer value, n, adds the -Mcuda=maxregcount : n switch to the
PVF compilation and link lines.

L eaving this property blank indicates no limit to the number of registers to use on the GPU.

For more information on —Mcuda, refer to Optimization Controls.

5.8.15. CUDA Fortran Use Fused Multiply-Adds

When Enable CUDA Fortran is set to Yes, use this property to control the generation of fused
multiply-add (FMA) instructions.

» Default: Allows the compiler to control generation of FMA instructions. This selection adds
no additional sub-optionsto -Mcuda.

» Yes: Enables generation of FMA instructions by adding -Mcuda=fma switch to the PVF
compilation and link lines.

» No: Disables generation of FMA instructions by adding -Mcuda=nofma switch to the PVF
compilation and link lines.

For more information on —Mcuda, refer to Optimization Controls.

PVF Reference Guide 126

PVF Properties

5.8.16. CUDA Fortran Use Fast Math Library

When Enable CUDA Fortran is set to Yes, use this property to use routines from the fast math
library.

Setting this property to Ye s addsthe -Mcuda=fastmath switch to compilation and linking.

For more information on —Mcuda, refer to Optimization Controls.

5.8.17. CUDA Fortran Debug

When Enable CUDA Fortran is set to Yes, use this property to control generatation of GPU
debug information.

» Default: Allowsthe compiler to control generatation of GPU debug information. This
selection adds no additional sub-optionsto —-Mcuda.

» Yes: Enables generatation of GPU debug information by adding the -Mcuda=debug switch
to the PVF compilation and link lines.

» No: Disables generatation of GPU debug information by adding the -Mcuda=nodebug
switch to the PVF compilation and link lines.

For more information on —-Mcuda, refer to Optimization Controls.

5.8.18. CUDA Fortran Line Information

When Enable CUDA Fortran is set to Yes, use this property to control generatation of GPU line
information.

» Default: Allowsthe compiler to control generatation of GPU line information. This selection
adds no additional sub-optionsto -Mcuda.

» Yes Enables generatation of GPU line information by adding the -Mcuda=1ineinfo
switch to the PVF compilation and link lines.

» No: Disables generatation of GPU line information by adding the -Mcuda=nolineinfo
switch to the PVF compilation and link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.19. CUDA Fortran Use LLVM Back End

When Enable CUDA Fortran is set to Yes, use this property to control using LLVM back end.

» Default: Allows the compiler to control using LLVM back end. This selection adds no
additional sub-optionsto —-Mcuda.

» Yes: UseLLVM back end by adding the -Mcuda=11vm switch to the PVF compilation and
link lines.

» No: Use CUDA C back end by adding the -Mcuda=no11vm switch to the PVF compilation
and link lines.

For more information on —Mcuda, refer to Optimization Controls.

PVF Reference Guide 127

PVF Properties

5.8.20. CUDA Fortran Unroll

When Enable CUDA Fortranis set to Yes, use this property to control automatic inner loop
unrolling.

» Default: Allows the compiler to control automatic inner loop unrolling. This selection adds
no additional sub-optionsto -Mcuda.

» Yes: Enables automatic inner loop unrolling by adding the -Mcuda=unrol1 switch to the
PVF compilation and link lines.

» No: Disables automatic inner loop unrolling by adding the -Mcuda=nounrol1 switch to
the PVF compilation and link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.21. CUDA Fortran Flush to Zero

When Enable CUDA Fortran is set to Yes, use this property to control flush-to-zero mode for
floating point computations on in GPU code generated for CUDA Fortran kernels.

» Default: Acceptsthe default handling of floating point computations in the GPU code
generated for CUDA Fortran kernels.

» Yes: Enables flush-to-zero mode by adding the -Mcuda=f1ushz switch to the PVF
compilation and link lines.

» No: Disables flush-to-zero mode by adding the -Mcuda=noflushz switch tothe PVF
compilation and link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.22. CUDA Fortran Toolkit

When Enable CUDA Fortran is set to Yes, use this property to specify the version of the CUDA
toolkit that is targeted by the compilers.

» Default: The compiler selects the default CUDA toolkit version.

» 6.5 Use the default version 6.5 of the CUDA toolkit. This selection adds the —
Mcuda=cudaé . 5 switch to the PVF compilation and link lines.

» 7.0: Useversion 7.0 of the CUDA toolkit. This selection adds the -Mcuda=cuda7.0
switch to the PVF compilation and link lines.

pgaccelinfo prints the driver version as the first line of output.

Fora6.5driver. CUDA Driver Version 6050
Fora7.0driver; CUDA Driver Version 7000

For more information on —-Mcuda, refer to Fortran Language Controls.

PVF Reference Guide 128

PVF Properties

5.8.23. CUDA Fortran Compute Capability

When Enable CUDA Fortran is set to Yes, use this property to either automatically generate code
compatible with al applicable compute capabilities, or to direct the compiler to use a manually-
selected set.

Select either Automatic or Manual.

» Automatic: Let the compiler generate code for all applicable compute capabilities. Thisis
the default.

» Manual: Choose one or more compute capabilities to target. The compiler generates code
for each capability specified.

If you select Manual, then you can select any or all of the following compute capabilities
that are described in the next sections.

CUDA Fortran Fermi
CUDA Fortran Fermi+
CUDA Fortran Kepler
CUDA Fortran Kepler+

n Important If you select Manua 1 and the additional properties do not appear, click Apply in the Property
page dialog.

For more information on —Mcuda, refer to Optimization Controls.

5.8.24. CUDA Fortran Fermi

When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set to
Manual, use this property to generate code for the Fermi architecture.

Setting this property to Ye s addsthe -Mcuda=fermi switch to the PVF compilation and link
lines.

5.8.25. CUDA Fortran Fermi+

When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set to
Manual, usethis property to generate code for Fermi architecture and above.

Setting this property to Ye s addsthe -Mcuda=fermi+ switch to the PVF compilation and link
lines.

5.8.26. CUDA Fortran Kepler

When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set to
Manual, usethis property to generate code for the Kepler architecture.

Setting this property to Ye s addsthe -Mcuda=kepler switch to the PVF compilation and link
lines.

PVF Reference Guide 129

PVF Properties

5.8.27. CUDA Fortran Kepler+

When Enable CUDA Fortran is set to Yes and CUDA Fortran Compute Capability is set to
Manual, usethis property to generate code for Kepler architecture and above.

Setting this property to Yes addsthe -Mcuda=kepler+ switch to the PVF compilation and
link lines.

5.8.28. CUDA Fortran Keep Binary

Use this property to keep the CUDA binary (.bin) file.

Setting this property to Yes addsthe -Mcuda=keepbin switch to the PVF compilation and
link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.29. CUDA Fortran Keep Kernel Source

When Enable CUDA Fortran is set to Yes, use this property to keep the kernel source files.

Setting this property to Ye s addsthe -Mcuda=keepgpu switch to the PVF compilation and
link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.30. CUDA Fortran Keep PTX

When Enable CUDA Fortran is set to Yes, use this property to keep the portable assembly (.ptx)
file for the GPU code.

Setting this property to Yes addsthe -Mcuda=keepptx switch to the PVF compilation and
link lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.31. CUDA Fortran Keep PTXAS

Use this property to show PTXAS informational messages during compilation.

Setting this property to Ye s addsthe -Mcuda=ptxinfo switch to the PVF compilation and
link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.8.32. CUDA Fortran Generate RDC

Use this property to generate rel ocatable device code (-Mcuda=rdc).

Setting this property to Ye s addsthe -Mcuda=rdc switch to the PVF compilation and link
lines.

For more information on —Mcuda, refer to Optimization Controls.

PVF Reference Guide 130

PVF Properties

5.8.33. CUDA Fortran Emulation

When Enable CUDA Fortran is set to Yes, use this property to enable CUDA Fortran emulation
mode.

Setting this property to Ye s adds the -Mcuda=emu switch to the PVF compilation and link
lines.

For more information on —Mcuda, refer to Optimization Controls.

5.8.34. CUDA Fortran Madconst

When Enable CUDA Fortran is set to Yes, use this property to control putting module array
descriptorsin CUDA constant memory.

Setting this property to Ye s addsthe -Mcuda=madconst switch to the PVF compilation and
link lines.

For more information on -Mcuda, refer to Optimization Controls.

5.9. Fortran | Floating Point Options

The following properties are available from the Fortran | Floating Point Options property page.

9.9.1. Floating Point Exception Handling
Use this property to enable floating point exceptions.
Setting this property to Y es adds the -Kt rap=~£p option to compilation.

For more information on -Ktrap, refer to -K<flag>.

5.9.2. Floating Point Consistency
Use this property to enable relaxed floating point accuracy in favor of speed.
Setting this property to Yes addsthe -Mfprelaxed option to compilation.

For more information on —-Mfprelaxed, refer to Optimization Controls.

5.9.3. Flush Denormalized Results to Zero

Use this property to specify how to handle denormalized floating point results.

» Default: Accepts the default handling of denormalized floating point results.
» Yes: Enables SSE flush-to-zero mode using the —-Mf 1ushz compilation option.
» No: Disables SSE flush-to-zero mode using the —-Mno f 1ushz compilation option.

For moreinformation on -M[no] £1lushz, refer to Code Generation Controls.

PVF Reference Guide 131

PVF Properties

5.9.4. Treat Denormalized Values as Zero

Use this property to specify how to treat denormalized floating point values.

» Default: Accept the default treatment of denormalized floating point values.

» Yes Enable the treatment of denormalized floating point values as zero using the -Mdaz
compilation option.

» No: Disable the treatment of denormalized floating point values as zero using the -Mnodaz
compilation option.

For more information on -M [no] daz, refer to Code Generation Controls.

5.9.5. IEEE Arithmetic

Use this option to specify |EEE floating point arithmetic.

» Default: Accept the default floating point arithmetic.
» Yes Enable |EEE floating point arithmetic using the —-Kieee compilation option.
» No: Disable |EEE floating point arithmetic using the -Knoieee compilation option.

For more information on —-K [no] ieee, refer to K<flag>.

5.10. Fortran | External Procedures

The following properties are available from the Fortran | External Procedures property page.

5.10.1. Calling Convention

Use this property to specify an alternate Fortran calling convention.

» Default: Accept the default calling convention.

» C By Reference: Usethe CREF calling convention. Adds -Mi face=cref to compilation.
On both Win32 and x64 platforms, no trailing underscores are used with this option. On
the x64 platform, this option also causes Fortran externals to be uppercase and lengths of
character arguments to be put at the end of the argument list.

» Unix: [Win32 platform only] Use the Unix calling convention. Adds —-Mi face=unix to
compilation. No trailing underscores are used with this option.

For more information on —Mi face, refer to Miscellaneous Controls,

5.10.2. String Length Arguments
Use this property to change where string length arguments are placed in the argument list.

» Default: Usethe calling convention's default placement for passing string length arguments.

» After Every String Argument: Lengths of character arguments are placed immediately
after their corresponding argument. This option adds -Mi face=mixed str len argto
compilation.

PVF Reference Guide 132

PVF Properties

» After All Arguments: Places lengths of character arguments at the end of the argument list.
Thisoption adds -Miface=nomixed str len arg tothecompilation.

The After Every String Argument and After All Arguments options only have an effect when using the C By
Reference calling convention.

For more information on —M1i face, refer to Miscellaneous Controls.

5.10.3. Case of External Names

Use this property to specify the case used for Fortran external names.

» Default: Usethe calling convention's default case for external names.
» Lower Case Make Fortran external names lower case. This option adds —
Mnames=1owercase to the compilation.

» Upper Case: Make Fortran external names upper case. This option adds -
Mnames=uppercase to the compilation.

The Lower Case and Upper Case options only have an effect when using the C By Reference calling
convention.

5.11. Fortran | Libraries

The Fortran | Libraries property page contains properties that make it easier to use third-party
libraries. To use these libraries, however, the appropriate binaries, suchas . 1ib and . d11 files,
must be installed on your system.

5.11.1. Use ACML

Use this property to build for and link against the AMD Core Math Library (ACML). PGI
productsinclude a version of the ACML.

» Yes: Usethe AMD Core Math Library when building and linking programs.
» No: Do not usethe AMD Core Math Library when building and linking programs.

5.11.2. Use IMSL

Use this property to build for and link against the Rogue Wave IMSL numerical libraries, which
are available from Rogue Wave Software.

» Yes: Usethe Rogue Wave IMSL numerical libraries when building and linking programs.
» No: Do not use the Rogue Wave IMSL numerical libraries when building and linking
programs.

5.11.3. Use MKL

Use this property to build for and link against the Intel Math Kernel Library (MKL), whichis
available from Intel.

PVF Reference Guide 133

PVF Properties

» Yes: UsetheIntel Math Kernel Library when building and linking programs.
» No: Do not use the Intel Math Kernel Library when building and linking programs.

5.12. Fortran | Target Processors

The properties that are available from the Fortran | Target Processors property page depend on
the platform you are using. The platform selection box in the center of the Property Pages dialog
indicates the platform: x64 or Win32.

x64 Platform
You can target multiple processors for optimization on the x64 platform.

Win32 Platform
You can target only one processor at a time for optimization on the Win32 platform. If you select Ye s
for more than one processor, a compiler error occurs.

The Target Processors properties add the —tp=<target> option to compilation. For more
information on the —tp switch referenced throughout the following descriptions, refer to —tp [p7|
k8-32|k8-64].

5.12.1. AMD Athlon
Use this property to optimize for AMD Athlon64, AMD Opteron and compatible processors.

X64: Setting this property to Yes addsthe —tp=k8-64 switch to compilation.
Win32: Setting this property to Yes adds the -tp=k8-32 switch to compilation.

5.12.2. AMD Barcelona

Use this property to optimize for AMD Opteron/Quadcore and compatible processors.
X64: Setting this property to Yes addsthe —-tp=barcelona-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=barcelona-32 switch to compilation.

5.12.3. AMD Bulldozer

Use this property to optimize for AMD Bulldozer and compatible processors.
X64: Setting this property to Yes addsthe —-tp=bulldozer-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=bulldozer-32 switch to compilation.

5.12.4. AMD Istanbul

Use this property to optimize for AMD Istanbul processor-based systems.
X64: Setting this property to Yes addsthe —-tp=1istanbul-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=istanbul-32 switch to compilation.

PVF Reference Guide 134

PVF Properties

5.12.5. AMD Piledriver

Use this property to optimize for AMD Piledriver processor-based systems.
X64: Setting this property to Yes addsthe —-tp=piledriver-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=piledriver-32 switch to compilation.

5.12.6. AMD Shanghai

Use this property to optimize for AMD Shanghai processor-based systems.
X64: Setting this property to Yes addsthe —~tp=shanghai-64 switch to compilation.
Win32: Setting this property to Yes addsthe —tp=shanghai-32 switch to compilation.

5.12.7. Intel Core 2

Use this property to optimize for Intel Core 2 Duo and compatible processors.
X64: Setting this property to Yes addsthe —-tp=core2-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=core2-32 switch to compilation.

5.12.8. Intel Core i7

Use this property to optimize for Intel Corei7 (Nehalem) processor-based systems.
X64: Setting this property to Yes addsthe —~tp=nehalem-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=nehalem-32 switch to compilation.

5.12.9. Intel Penryn

Use this property to optimize for Intel Penryn architecture and compatible processors.
X64: Setting this property to Yes addsthe —tp=penryn-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=penryn-32 switch to compilation.

5.12.10. Intel Pentium 4

Use this property to optimize for Intel Pentium 4 and compatible processors.

Win32: Setting this property to Yes addsthe -tp=p7-32 switch to compilation.

5.12.11. Intel Sandy Bridge

Use this property to optimize for Intel Sandy Bridge architecture and compatible processors.
X64: Setting this property to Yes addsthe -tp=sandybridge-64 switch to compilation.
Win32: Setting this property to Yes addsthe -tp=sandybridge-32 switch to compilation.

PVF Reference Guide 135

PVF Properties

5.12.12. Generic x86 [Win32 only]

Use this property to optimize for any x86 processor-based system.

x64: N/A

Win32: Setting this property to Yes addsthe -tp=px-32 switch to compilation.

9.12.13. Generic x86-64 [x64 only]

Use this property to optimize for any x86-64 processor-based system.
X64: Setting this property to Yes adds the —tp=px-64 switch to compilation.
Win32: N/A

5.13. Fortran | Target Accelerators

The following properties are available from the Fortran | Target Accelerators property page.

For more information about the PGI’ s accelerator compilers or on the optionsin this section, refer
to the PGI Visua Fortran User's Manual.

5.13.1. Target NVIDIA Tesla

Use this property to select NVIDIA Tedlatargets.

Setting this property to Yes addsthe —~ta=tesla switch to the PVF compilation and link lines
and activates access to these additional properties:

Tesla Register Limit

Tesla Use Fused Multiply-Adds
TeslaUse Fast Math Library
TeslaLLVM

Tesla Noattach

TeslaPin Host Memory
Tesla Autocollapse
TeslaDebug

TedlaLineinfo

TeslaUnrall

TeslaRequired

TeslaFlush to Zero

Tesla CUDA Toolkit

Tesla Compute Capability
Tesla: Keep Kernel Files

Important If you change the value of this property and the displayed properties do not change, be sure to
click Apply in the property page dialog box.

PVF Reference Guide 136

http://www.pgroup.com/resources/docs.htm

PVF Properties

5.13.2. Tesla Register Limit

Use this property to specify the number of registers to use on the GPU.

Setting this property to an integer value, n, addsthe -ta=tesla:maxregcount :n switchto
the PVF compilation and link lines.

Leaving this property blank indicates no limit to the number of registersto use on the GPU.

5.13.3. Tesla Use Fused Multiply-Adds

When Target NVIDIA Tedlais set to Yes, use this property to control the generation of fused
multiply-add (FMA) instructions.

» Default: Allows the compiler to control generation of FMA instructions. This selection adds
no additional sub-optionsto —-ta=tesla.

» Yes: Enables generation of FMA instructions by adding -ta=tesla: fma tothe PVF
compilation and link lines.

» No: Disables generation of FMA instructions by adding -ta=tesla:nofma tothe PVF
compilation and link lines.

5.13.4. Tesla Use Fast Math Library

When Target NVIDIA Tedlais set to Yes, use this property to use routines from the fast math
library.

Setting this property to Yes addsthe -ta=tesla: fastmath switch to the PVF compilation
and link lines.

5.13.5. Tesla LLVM

When Target NVIDIA Tedlais set to Yes, use this property to control using of LLVM back end.

Setting this property to Yes addsthe ~ta=tesla:11vm switch to the PVF compilation and
link lines.

5.13.6. Tesla Noattach

When Target NVIDIA Teslais set to Yes, use this property to prevent attaching to existing
CUDA context.

Setting this property to Yes addsthe -ta=tesla:noattach switch to the PVF compilation
and link lines.

5.13.7. Tesla Pin Host Memory

When Target NVIDIA Teslais set to Yes, use this property to set default to pin host memory.

Setting this property to Yes addsthe —ta=tesla:pin switch to the PVF compilation and link
lines.

PVF Reference Guide 137

PVF Properties

5.13.8. Tesla Autocollapse

When Target NVIDIA Tedlais set to Yes, use this property to automatically collapse tightly
nested loops.

» Default: Allows the compiler to control automatic collapse of tightly nested loops. This
select adds no additional sub-optionsto —-ta=tesla.

» Yes Enables automatic collapse of tightly nested loops by adding the -
ta=tesla:autocollapse switchto the PVF compilation and link lines.

» No: Disables automatic collapse of tightly nested loops by adding the -
ta=tesla:noautocollapse switch tothe PVF compilation and link lines.

5.13.9. Tesla Debug

When Target NVIDIA Teslais set to Yes, use this property to control generation of GPU debug
information.

» Default: Allows the compiler to control generation of GPU debug information. This select
adds no additional sub-optionsto -ta=tesla.

» Yes Enables generation of GPU debug information by adding the —-ta=tesla:debug
switch to the PVF compilation and link lines.

» No: Disables generation of GPU debug information by adding the -ta=tesla:nodebug
switch to the PVF compilation and link lines.

5.13.10. Tesla Lineinfo

When Target NVIDIA Tedlais set to Yes, use this property to control generation of GPU line
information.

» Default: Allows the compiler to control generation of GPU line information. This select adds
no additional sub-optionsto —~ta=tesla.

» Yes: Enables generation of GPU line information by adding the -ta=tesla:1lineinfo
switch to the PVF compilation and link lines.

» No: Disables generation of GPU line information by adding the -
ta=tesla:nolineinfo switchtothe PVF compilation and link lines.

5.13.11. Tesla Unroll

When Target NVIDIA Teslais set to Yes, use this property to control automatic inner loop
unrolling.

» Default: Allows the compiler to control automatic inner loop unrolling. This select adds no
additional sub-optionsto -ta=tesla.

» Yes: Enablesautomatic inner loop unrolling by adding the —ta=tesla:unroll switchto
the PVF compilation and link lines.

» No: Disables automatic inner loop unrolling by adding the —-ta=tesla:nounroll switch
to the PVF compilation and link lines.

PVF Reference Guide 138

PVF Properties

5.13.12. Tesla Required

When Target NVIDIA Tedais set to Yes, use this property to direct the compiler to issue error if
the compute regions fail to accelerate.

» Default: Uses the compiler defaults for handling instances where compute regions cannot be
accelerated. This select adds no additional sub-optionsto —-ta=tesla.

» Yes: Directs the compiler to stop compilation with an error when it cannot accelerate a
compute region by adding the -ta=tesla:required switch to the PVF compilation and
link lines.

» No: Directs the compiler to issue warnings when it cannot accelerate a compute region by
adding the -ta=tesla:norequired switch to the PVF compilation and link lines.
Compilation does not stop but accelerator kernels are not generated.

5.13.13. Tesla Flush to Zero

When Target NVIDIA Teslais set to Yes, use this property to control flush-to-zero mode for
floating point computations in the GPU code generated for PGl Accelerator model compute
regions.

» Default: Accepts the default handling of floating point computations in the GPU code
generated for CUDA Fortran kernels.

» Yes: Enables flush-to-zero mode by adding the -ta=tesla: flushz switchtothe PVF
compilation and link lines.

» No: Disables flush-to-zero mode by adding the -ta=tesla:noflushz switchto the PVF
compilation and link lines.

5.13.14. Tesla Generate RDC

When Target NVIDIA Teslais set to Yes, use this property to control generation of relocatable
device code.

» Default: Acceptsthe compiler’s default generation of relocatable device code.

» Yes: Directsthe compiler to generate rel ocatable device code by adding -ta=tesla:rdc
switch to the PVF compilation and link lines.

» No: Prevents the compiler from generating rel ocatable device code by adding -
ta=tesla:nordc switch to the PVF compilation and link lines.

5.13.15. Tesla CUDA Toolkit

When Target NVIDIA Tedaisset to Yes, use this property to specify the version of the NVIDIA
CUDA toolkit that is targeted by the compilers:

» Default: The compiler selects the default CUDA toolkit version.
» 6.5: Usethe default version 6.5 of the CUDA toolkit. This selection adds the -
ta=tesla:cudaé6.5 switchto the PVF compilation and link lines.

PVF Reference Guide 139

PVF Properties

» 7.0: Useversion 7.0 of the CUDA toolkit. This selection addsthe -ta=tesla:cuda7.0
switch to the PVF compilation and link lines.

pgaccelinfo prints the driver version as the first line of output.

Fora6.5driver; CUDA Driver Version 6050
Fora7.0driver. CUDA Driver Version 7000

5.13.16. Tesla Compute Capability

When Target NVIDIA Tedlais set to Yes, use this property to either automatically generate code
compatible with al applicable compute capabilities, or to direct the compiler to use a manually-
selected set.

Select either Automatic or Manual.

» Automatic: Let the compiler generate code for all applicable compute capabilities. Thisis
the default.

» Manual: Choose one or more compute capabilities to target. The compiler generates code
for each capability specified.

If you select Manual, then you can select any or all of the following compute capabilities
that are described in the next sections.

Teda CC Fermi
Teda CC Fermi+
TeslaCC Kepler
TeslaCC Kepler+

n Important If you select Manua 1 and the additional properties do not appear, click Apply in the Property
page dialog.

5.13.17. Tesla CC Fermi

When Target NVIDIA Tedais set to Yes and Tesla Compute Capability is set to Manual, use
this property to generate code for the Fermi Architecture.

Setting this property to Yes addsthe -ta=tesla: fermi switch to the PVF compilation and
link lines.

5.13.18. Tesla CC Fermi+

When Target NVIDIA Tedais set to Yes and Tesla Compute Capability is set to Manual, use
this property to generate code for Fermi Architecture and above.

Setting this property to Yes addsthe ~ta=tesla: fermi+ switch to the PVF compilation and
link lines.

PVF Reference Guide 140

PVF Properties

5.13.19. Tesla CC Kepler

When Target NVIDIA Tedlais set to Yes and Tesla Compute Capability is set to Manual, use
this property to generate code for Kepler Architecture.

Setting this property to Yes addsthe ~ta=tesla: kepler switchto the PVF compilation and
link lines.

5.13.20. Tesla CC Kepler+

When Target NVIDIA Tedais set to Yes and Tesla Compute Capability is set to Manual, use
this property to generate code for Kepler Architecture and above

Setting this property to Yes addsthe —~ta=tesla:cc30 switch to the PVF compilation and
link lines.

5.13.21. Tesla: Keep Kernel Files

When Target NVIDIA Teslais set to Yes, use this property to keep kernd files.

Setting this property to Yes addsthe -ta=tesla: keep switch to the PVF compilation and
link lines.

5.13.22. Target AMD Radeon

Use this property to select AMD Radeon targets.

Setting this property to Ye s addsthe —ta=radeon switch to the PVF compilation and link lines
and activates access to these additional properties:

Radeon Cape Verde
Radeon Spectre
Radeon Tahiti
Radeon Hawaii
Radeon Buffer Count
Radeon Keep
Radeon LLVM
Radeon Unrall
Radeon Required

Important If you change the value of this property and the displayed properties do not change, be sure to
click Apply in the property page dialog box.

5.13.23. Radeon Cape Verde

When Target AMD Radeon is set to Yes, usethis property to compile for Radeon Cape Verde
architecture.

PVF Reference Guide 141

PVF Properties

Setting this property to Yes addsthe -ta=radeon: capeverde switch to the PVF
compilation and link lines.

5.13.24. Radeon Spectre

When Target AMD Radeon is set to Yes, use this property to compile for Radeon Spectre
architecture.

Setting this property to Yes addsthe —ta=radeon: spectre switch to the PVF compilation
and link lines.

5.13.25. Radeon Tahiti

When Target AMD Radeon is set to Yes, use this property to compile for Radeon Tahiti
architecture.

Setting this property to Yes addsthe —ta=radeon: tahiti switch to the PVF compilation
and link lines.

5.13.26. Radeon Hawaii

When Target AMD Radeon is set to Yes, use this property to compile for Radeon Hawaii
architecture.

Setting this property to Yes addsthe —ta=radeon:hawaii switch to the PVF compilation
and link lines.

5.13.27. Radeon Buffer Count

When Target AMD Radeon is set to Yes, use this property to specify the maximum number of
device buffers used by an OpenCL kernel.

Setting this property to Yes addsthe -ta=radeon:buffercount : n switch, wherenisthe
number you have entered for this property, to the PVF compilation and link lines.

5.13.28. Radeon Keep

When Target AMD Radeon is set to Yes, use this property to keep kernel source files.

Setting this property to Yes addsthe -ta=radeon: keep switch to the PVF compilation and
link lines.

5.13.29. Radeon LLVM

When Target AMD Radeon is set to Yes, use this property to use LLVM back end.

Setting this property to Yes addsthe -ta=radeon: 11vm switch to the PVF compilation and
link lines.

5.13.30. Radeon Unroll

When AMD Radeon is set to Yes, use this property to control automatic inner loop unrolling.

PVF Reference Guide 142

PVF Properties

» Default: Allowsthe compiler to control automatic inner loop unrolling. This select adds no
additional sub-optionsto -~ta=radeon.

» Yes: Enables automatic inner loop unrolling by adding the —-ta=radeon:unroll switch
to the PVF compilation and link lines.

» No: Disables automatic inner loop unrolling by adding the -ta=radeon:nounroll
switch to the PVF compilation and link lines.

5.13.31. Radeon Required

When AMD Radeon is set to Yes, use this property to direct the compiler to issue error if the
compute regions fail to accelerate.

» Default: Uses the compiler defaults for handling instances where compute regions cannot be
accelerated. This select adds no additional sub-optionsto —ta=radeon.

» Yes: Directsthe compiler to stop compilation with an error when it cannot accelerate a
compute region by adding the -ta=radeon: required switch to the PVF compilation
and link lines.

» No: Directs the compiler to issue warnings when it cannot accelerate a compute region by
adding the -ta=radeon:norequired switch to the PVF compilation and link lines.
Compilation does not stop but accelerator kernels are not generated.

5.13.32. Target Host

Use this property to generate code just for the host if no accelerator is selected. Otherwise,
generate PGl Unified Binary Code for host and accelerator.

Setting this property to Ye s addsthe —ta=host switch to the PVF compilation and link lines.

5.14. Fortran | Diagnostics

The following properties are available from the Fortran | Diagnostics property page. These
properties allow you to add switches to the compilation line that control the amount and type of
information that the compiler provides.

For more information on the options referenced in these pages, refer to Miscellaneous Controls
and specifically to the -Min fo option.

5.14.1. Warning Level

Use this property to select the level of diagnostic reporting you want the compiler to use.

There are several levels of the -Min form option available through this property. For more
information on this option, refer to Miscellaneous Contrals.

5.14.2. Generate Assembly
Use this property to generate an assembly file for each compiled sourcefile.

Setting this property to Yes adds the -Mkeepasm switch to the compilation line.

PVF Reference Guide 143

PVF Properties

For more information on —-Mkeepasm, refer to Miscellaneous Controls.

5.14.3. Annotate Assembly

Use this property to generate assembly files and to annotate the assembly with source code.
Setting this property to Ye s adds the -Manno switch to the compilation line.

For more information on —Manno, refer to Miscellaneous Controls.

5.14 4. Accelerator Information

Use this property to generate information about accelerator regions.

Setting this property to Ye s addsthe -Minfo=accel switch to the compilation line.

5.14.5. CCFF Information

Use this property to append common compiler feedback format (CCFF) information to object
files.

Setting this property to Ye s addsthe -Minfo=ccf £ switch to the compilation line.

5.14.6. Fortran Language Information

Use this property to generate information about Fortran language features.

Setting this property to Ye s addsthe -Minfo=ftn switch to the compilation line.

5.14.7. Inlining Information

Use this property to generate information about inlining.

Setting this property to Ye s addsthe -Minfo=inline switch to the compilation line.

5.14.8. IPA Information

Use this property to generate information about interprocedural analysis (IPA) optimizations.

Setting this property to Ye s addsthe -Minfo=1ipa switch to the compilation line.

5.14.9. Loop Intensity Information

Use this property to generate compute intensity information about loops.

Setting this property to Yes addsthe -Minfo=intensity switch to the compilation line.

5.14.10. Loop Optimization Information

Use this property to generate information about |oop optimizations.

Setting this property to Ye s addsthe -Minfo=1oop switch to the compilation line.

PVF Reference Guide 144

PVF Properties

5.14.11. LRE Information

Use this property to generate information about |oop-carried redundancy (LRE) éimination.

Setting this property to Ye s addsthe -Minfo=1re switch to the compilation line.

5.14.12. OpenMP Information

Use this property to generate information about OpenMP.
Setting this property to Ye s addsthe —-Minfo=mp switch to the compilation line.

5.14.13. Optimization Information

Use this property to generate information about general optimizations.

Setting this property to Ye s addsthe -Minfo=opt switch to the compilation line.

5.14.14. Parallelization Information

Use this property to generate information about parallel optimizations.

Setting this property to Ye s addsthe —-Minfo=par switch to the compilation line.

5.14.15. Unified Binary Information

Use this property to generate information specific to the PGl Unified Binary.

Setting this property to Yes addsthe -Minfo=unified switch to the compilation line.

5.14.16. Vectorization Information

Use this property to generate vectorization information.

Setting this property to Yes addsthe -Minfo=vect switch to the compilation line.

5.13. Line-Level Profiling

The following properties are avail able from the Line-Level Profiling Property page so arun can
be profiled with the PGI profiler, PGPROF.

Once your application is built, running it generates one or more pgprof . out files.

PGPROF isincluded with PVF. Y ou launch it from the Start menu via Start | All Programs |
PGI Visual Fortran | Profiler | PGPROF Performance Profiler or from the Start screen using the
PGPROF icon.

For specific PGPROF documentation, launch PGPROF and open the documentation available
from the PGPROF Help menu.

For more information on the —-Mpro £ option, refer to Code Generation Controls.

PVF Reference Guide 145

PVF Properties

5.15.1. Function-Level Profiling

Use this property to generate code instrumented for function-leve profiling.
Setting this property to Ye s addsthe -Mprof=func switch to the compiling and linking lines.

For more information on —Mprof=func, refer to Code Generation Controls.

5.15.2. Line-Level Profiling

Use this property to generate code instrumented for line-level profiling.
Setting this property to Ye s addsthe -Mprof=1ines switch to the compiling and linking lines.

For more information on —-Mprof=1ines, refer to Code Generation Controls.

5.15.3. MPI

Use this property to access profiled MPI communication libraries.
n You must use this property in conjunction with function-level or line-level profiling. Be certain to set one of

these properties to Yes.

Setting this property to Microsoft MPI addsthe -Mprof=msmpi switch tothe PVF
compiling and linking lines.

5.15.4. Suppress CCFF Information

Use this property to suppress profiling's default generation of CCFF information.

Setting this property to Yes addsthe -Mprof=noccff switch to the compiling and linking
lines.

5.15.5. Enable Limited DWARF

Use this property to generate limited DWARF information which can be used with performance
profilers.

Setting this property to Ye s addsthe -Mprof=dwar f switch to the compiling and linking lines.

5.16. Fortran | Runtime

The following properties are available from the Fortran | Runtime property page to alow the
application to make additional checks at runtime.

5.16.1. Check Array Bounds

Use this property to enable array bounds checking at runtime.

Setting this property to Yes adds the -Mbounds switch to the compilation line.

PVF Reference Guide 146

PVF Properties

Setting this property to No adds no option to the compilation line, and thereis no array bounds
checking at runtime. No is the default.

5.16.2. Check Pointers

Use this property to perform runtime checks for pointers that are dereferenced while initialized to
null.

Setting this property to Yes addsthe -Mchkpt r switch to the compilation line.

Setting this property to No adds no option to the compilation line, and there is no runtime check
for pointers that are dereferenced while initialized to null. No is the default.

5.16.3. Check Stack

Use this property to perform runtime stack checks for available space in the prologue of a
function and before the start of a parallel region.

Setting this property to Ye s addsthe -Mchkstk switch to the compilation line.

Setting this property to No adds no option to the compilation line, and there are no runtime stack
checks. No isthe default.

5.16.4. Command Line

This property page contains two boxes.

» Thefirst box, titled All options, is aread-only description of what the compilation line will
be. This description is based on the values of the properties set in the Fortran property pages.

» The second box, titled Additional options, allows you to specify any other options that you
want the compiler to use. Use this box when the option you need is not avail able through any
of the Fortran property pages.

For more information on all the compiler options that are available, refer to Command-Line
Options Reference.

5.17. Fortran | Command Line

The following properties are available from the Fortran | Command Line property page.

5.17.1. Command Line

This property page contains two boxes.

» Thefirst box, titled All options, is aread-only description of what the compilation line will
be. This description is based on the values of the properties set in the Fortran property pages.

» The second box, titled Additional options, allows you to specify any other options that you
want the compiler to use. Use this box when the option you need is not available through any
of the Fortran property pages.

PVF Reference Guide 147

PVF Properties

For more information on all the compiler options that are available, refer to Command-Line
Options Reference.

5.18. Linker Property Pages

This section contains the property pages that are included in the Linker category. The Linker
property page category is available for projects that build an executable or adynamically linked
library (DLL).

5.19. Linker | General

The following properties are available from the Linker | General property page.

5.19.1. Output File

Use this property to override the default output file name.

Providing the file name and the file' s extension is equivalent to using the —o switch.

n You must provide the file’s extension.

For more information on —o, refer to —o.

5.19.2. Additional Library Directories

Use this property to add one or more directories to the library search path.

For every directory path that is added to this property, PVF adds /LIBPATH: [dir] tothelink
line.

There are two ways to add directories to this property:
» Typetheinformation directly into the property page box.

Use asemi-colon (*;’) to separate each directory.
» Click thedlipsis(*...") button in the property page box to open the Additional Library
Directories dialog box.

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

Tip To add directories, use this property. To add libraries, use the Additional Dependencies property on the
Linker | Input Property page.

PVF Reference Guide 148

PVF Properties

5.19.3. Stack Reserve Size

Use this property to specify the total number of bytes for stack allocation in virtual memory.
Use decimal notation. This property is equivalent to the -stack=reserve option. Leave this
property blank to direct the linker to choose a default size for the stack.

5.19.4. Stack Commit Size

Use this property to specify the total number of bytes for stack allocation in physical memory.
Use decimal notation. This property isequivalent to the -stack=reserve, commit option.
Commit Szeisused only if asizeis also specified for Stack Reserve.

5.19.5. Export Symbols

Use this property to specify whether the DLL will export symbols. This property isonly visible
for DLL project types.

5.20. Linker | Input

The following properties are available from the Linker | Input property page.

5.20.1. Additional Dependencies

Use this property to specify additional dependencies, such as libraries, to the link line.
There are two ways to add libraries to this property:

» Typetheinformation directly into the property page box.
Use spaces, not semi-colons, to separate multiple libraries. If the name of a library contains a space,
use double quotes around that library name.

» Click thedlipsis(‘...") button in the property page box to open the Additional Dependencies
dialog box.

Enter each library on itsown line in this box.

If you enter two libraries on the same line in this box, PVF interprets these as a single library whose
name contains spaces.

Tip When you close this dialog box, review the contents of the property to make sure that any spaces or
double quotes automatically added by PVF are appropriate for your project.

5.21. Linker | Command Line

The following properties are available from the Linker | Command Line property page.

PVF Reference Guide 149

PVF Properties

5.21.1. Command Line

This property page contains two boxes.

» Thefirst box, titled All options, is aread-only description of what the link line will be. This
value is based on the values of the properties set in the Linker property pages.

» The second box, titled Additional options alows you to specify options that you want the
linker to use. Use this box when the option you need is not available through any of the
Linker property pages.

For more information on all the compiler options that are available, refer to Command-Line
Options Reference.

5.22. Librarian Property Pages

This section contains the property pages that are included in the Librarian category. The Librarian
property pages are available for projects that build static libraries.

5.23. Librarian | General

The following properties are avail able from the Librarian | General property page.

5.23.1. Output File

Use this property to override the default output file name.

Providing the file name and the file' s extension is equivalent to using the —o switch.

n You must provide the file’s extension.

For more information on —o, refer to —o.

5.23.2. Additional Library Directories

Use this property to add one or more directories to the library search path.

For every directory path that is added to this property, PVF adds /LIBPATH : <dir> to thelink
line.

There are two waysto add directories to this property:
» Typetheinformation directly into the property page box.

Use asemi-colon (‘;’) to separate each directory.
» Click thedlipsis(‘...") button in the property page box to open the Additional Library
Directories dialog box.

PVF Reference Guide 150

PVF Properties

Enter each directory on its own line in this box. Do not use semi-colons to separate
directories; the semi-colons are added automatically when the box is closed.

n Tip To add directories, use this property. To add libraries, use the Additional Dependencies property.

5.23.3. Additional Dependencies

Use this property to specify additional dependencies, such as libraries, to the link line.

There are two ways to add libraries to this property:
» Typetheinformation directly into the property page box.

Use spaces, not semi-colons, to separate multiple libraries. If the name of a library contains a space,
use double quotes around that library name.

» Clickthedlipsis(*...") button in the property page box to open the Additional Dependencies
dialog box.

Enter each library on itsown line in this box.

If you enter two libraries on the same line in this box, PVF interprets these as a single library whose
name contains spaces.

Tip When you close this dialog box, review the contents of the property to make sure that any spaces or
double quotes automatically added by PVF are appropriate for your project.

5.24. Librarian | Command Line

The following properties are available from the Librarian | Command Line property page.

5.24.1. Command Line

This property page contains two boxes.

» Thefirst box, titled All options, is aread-only description of what the link line will be. This
value is based on the values of the properties set in the Librarian property pages.

» The second box, titled Additional options, allows you to specify options that you want the
librarian to use, even though these options are not available through any of the Librarian
property pages.

For more information on all the compiler options that are available, refer to Command-Line
Options Reference.

PVF Reference Guide 151

PVF Properties

5.25. Resources Property Page

This section contains the property pages that are included in the Resources category.

5.26. Resources | Command Line

The following properties are available from the Resources | Command Line property page.

5.26.1. Command Line

Use this property to add options to the Resource compiler’s command line.

PVF' s support of resourcesis somewhat limited at this time and the property pagesin this
category reflect that. To add options to the Resource compiler’s command line, use the Additional
options box on this property page.

5.27. Build Events Property Page

This section contains the property pages that are included in the Build Events category. Build
events include three types of events: Pre-Build, Pre-Link, and Post-Build.

The Build Events property pages provide an opportunity to specify actions, in addition to
compiling and linking, that you want to have happen during the process of a build.

5.27.1. Build Event

The name of the build event describes when the event will be fired.

» ThePre-Build Event isrun before abuild starts.
» ThePre-Link Event isrun after compilation but before linking.
» The Post-Build Event isrun after the build completes.

n Build events will not be run if a project is up-to-date.

The properties for abuild event are the same for all three types of build events.

5.27.2. Command Line

Use this property to specify the command line that the build tool will run.

This property is at the core of the build event. For example, to add a time stamp to a build, you
coulduse time /t asthebuildevent’scommand line.

PVF Reference Guide 152

PVF Properties

5.27.3. Description

Use this property to provide feedback to the Output window. The contents of the Description
property is echoed to the Output window when this event isfired.

5.27.4. Excluded From Build

Use this property to specify whether this build event should be excluded from the build for the
current configuration.

5.28. Custom Build Step Property Page

This section contains the property pages that are included in the Custom Build Step category.

Y ou can define a custom build step either for a project or for an individual file. Custom build
steps can only be defined for files that are not Fortran or resource files.

5.28.1. Custom Build Step | General

The following properties are available from the Custom Build Step | General property page.

5.28.2. Command Line

Use this property to specify the command line that the build tool will run. This property is at the
core of the custom build step.

5.28.3. Description

Use this property to provide feedback to the Output window. The contents of the Description
property is echoed to the Output window when the custom build step runs.

5.28.4. Outputs

Use this property to specify the files generated by the custom build step.

Use semi-colons (‘;) to separate multiple output files.

When a custom build step is specified at the file-level, this property must be non-empty or the custom build
step will be skipped.

5.28.5. Additional Dependencies

Use this property to specify any additional input files to use for the custom build.

n The custom build step is run when an additional dependency is out of date.

PVF Reference Guide 153

PVF Properties

There are two ways to add filesto this property:
» Typetheinformation directly into the property page box.

Use asemi-colon (*;’) to separate each directory.

» Click thedlipsis(*...") button in the property page box to open the Additional Dependencies
dialog box.

Enter each file on its own line in this box. Do not use semi-colons to separate directories; the
semi-colons are added automatically when the box is closed.

PVF Reference Guide 154

Chapter 6.
PVF BUILD MACROS

PVF implements a subset of the build macros supported by Visual C++ along with afew PVF-
specific macros. The macro names are not case-sensitive, and they should be usable in any string
field in a property page. Unless otherwise noted, macros that evaluate to directory names end
with atrailing backslash ('\").

In genera theseitems can only be changed if there is an associated PVF project or file property.
For example, $ (VCInstallDir) cannot be changed, while $ (IntDir) can be changed by
modifying the Genera | Intermediate Directory property.

Table 25 lists the build macros that PVF supports:

Table 25 PVF Build Macros

Macro Name Description

$(Configuration) The name of the current project configuration (for example, "Debug").
$(ConfigurationName) The name of the current project configuration (for example, "Debug").
$(ConfigurationType) The type of the current project configuration - one of the following:
‘Application’
‘StaticLibrary’
‘DynamicLibrary’
$(DevEnvDir) The installation directory of Visual Studio.
$(InputDir) The directory of the input file. If the project is the input, then this macro is equivalent to
$(ProjectDir).
$(InputExt) The file extension of the input file, including the *." before the file extension. If the project is the
input, then this macro is equivalent to $(ProjectExt).
$(InputFileName) The file name of the input file. If the project is the input, then this macro is equivalent to
$(ProjectFileName).
$(InputName) The base name of the input file. If the project is the input, then this macro is equivalent to
$(ProjectName).
$(InputPath) The full path name of the input file. If the project is the input, then this macro is equivalent to
$(ProjectPath).

PVF Reference Guide 155

PVF Build Macros

Macro Name Description

$(IntDir) The path to the directory for intermediate files, relative to the project directory, as set by the
Intermediate Directory property.
$(OpenToolsDir) [PVF only]. The location of the Open Tools installation directory, including files needed for
building Microsoft Windows applications for both 32-bit and 64-bit environments.
$(OutDir) The path to the directory for output files, relative to the project directory, as set by the Output
Directory property.
$(OutputPath) The path to the directory for output files, relative to the project directory, as set by the Output
Directory property.
$(OutputType) The type of the current project output - one of the following:
‘exe’
‘staticlibrary’
library’
$(PGITools32Dir) [PVF only]. The location of the active PGI toolset for 32-bit targets. This directory is the parent
ofbin, 1ib, and include directories containing executables, libraries, and include
files for the PGI development environment.
$(PGIToolsDir) [PVF only]. The location of the active PGl toolset for 64-bit targets. This directory is the parent
ofbin, 1ib, and include directories containing executables, libraries, and include
files for the PGI development environment.
$(Platform) The name of the current project platform (for example, "x64").
$(PlatformArchitecture) The name of the current project platform architecture.
For Win32: 32
For x64: 64
$(PlatformName) The name of the current project platform (for example, "x64").
$(PlatformShortName) The description of the architecture ABI for the current project platform.

For Win32: x86
For x64: amd64

$(ProjectDir)

The directory of the project.

$(ProjectExt)

The file extension of the project file, including the *." before the file extension.

$(ProjectFileName)

The file name of the project file.

$(ProjectName)

The base name of the project.

$(ProjectPath)

The full path name of the project.

$(SolutionDir)

The directory of the solution.

$(SolutionExt)

The file extension of the solution file, including the *.” before the file extension.

$(SolutionFileName)

The file name of the solution file.

$(SolutionName)

The base name of the solution.

(
(
(
(
(
(
(
(
(
(
(
(

$(SolutionPath) The full path name of the solution.
$(TargetDir) The directory of the primary output file of the build.
$(TargetExt) The file extension of the primary output file of the build, including the ‘" before the file

extension.

PVF Reference Guide

156

PVF Build Macros

Macro Name Description

$(TargetFileName)

The file name of the primary output file of the build.

$(TargetPath)

The full path name of the primary output file of the build.

$(VClnstallDir)

The Visual C++ installation directory. If Visual C++ is not installed, this macro may evaluate to
a directory that does not exist.

$(VSinstallDir)

The Visual Studio installation directory.

$(WinSDKDir)

[PVF only] The location of the Windows 8.1 SDK installation directory, including files needed
for building Microsoft Windows applications for both 32-bit and 64-bit environments.

PVF Reference Guide

157

Chapter 7.
FORTRAN MODULE/LIBRARY INTERFACES FOR

WINDOWS

PGI Visual Fortran provides access to a number of libraries that export C interfaces by using
Fortran modules. PV F uses this mechanism to support the Win32 API and Unix/Linux portability
libraries. This section describes the Fortran module library interfaces that PV F supports,
describing each property available.

7.1. Source Files

All routines described in this section have their prototypes and interfaces described in source files
that are included in the PGl Windows compiler installation. The location of these files depends
on your operating system version, either win32 or win64, and the PGI release version that you
have installed. These files are typically located in this directory:

C:/Program Files/PGI/{win32,win64}/[release version]/src

For example, if you have installed the x64 version of the 15.10 release, ook for your filesin this
location:

C:/Program Files/PGI/win64/15.10/src

7.2. Data Types

Because the Win32 API and Portability interfaces resolve to C language libraries, it is important
to understand how the data types compare within the two languages. Here is a table summarizing
how C types correspond with Fortran types for some of the more common data types:

Table 26 Fortran Data Type Mappings

Windows Data Type Fortran Data Type
BOOL LOGICAL(4)
BYTE BYTE

PVF Reference Guide 158

Fortran Module/Library Interfaces for Windows

Windows Data Type Fortran Data Type

CHAR CHARACTER
SHORT, WORD INTEGER(2)
DWORD, INT, LONG INTEGER(4)
LONG LONG INTEGER(8)
FLOAT REAL(4)
DOUBLE REAL(8)

x86 Pointers INTEGER(4)
x64 Pointers INTEGER(8)

For more information on data types, refer to Fortran Data Types.

7.3. Using DFLIB, LIBM, and DFPORT

PVF includes Fortran module interfacesto libraries supporting some standard C library, C math
library, and Unix/Linux system call functionality. These functions are provided by the DFLIB,
LIBM, and DFPORT modules. To utilize these modules, add the appropriate USE statement:
use dflib

use libm

use dfport

7.3.1. DFLIB

Table 27 lists the functions that DFLIB includes. Inthetable [Generic] refersto ageneric
routine. To view the prototype and interfaces, ook in the location described in Source Files.

Table 27 DFLIB Function Summary

Routine Result Description

commitqq LOGICAL*4 Executes any pending write operations for the file associated with the specified
unit to the file’s physical device.

delfilesqq INTEGER*4 Deletes the specified files in a specified directory.

findfileqq INTEGER*4 Searches for a file in the directories specified in the PATH environment variable.

fullpathqq INTEGER*4 Returns the full path for a specified file or directory.

getdat INTEGER*2,*4,*8 [Generic] Returns the date.

getdrivedirqq INTEGER*4 Returns the current drive and directory path.

getenvqq INTEGER*4 Returns a value from the current environment.

geffileinfoqq INTEGER*4 Returns information about files with names that match the specified string.

geffileinfoqqi8 INTEGER*4 Returns information about files with names that match the specified string.

gettim INTEGER*2,*4,*8 [Generic] Returns the time.

PVF Reference Guide 159

Fortran Module/Library Interfaces for Windows

Routine Result Description

makedirqq INTEGER*4 Creates a new directory.

packtimeqq INTEGER*4 Packs the time and date values for use by seffiletimeqq

renamefileqq LOGICAL*4 Renames the specified file.

runqq INTEGER*2 Calls another program and waits for it to execute.

setenvqq LOGICAL*4 Sets the values of an existing environment variable or adds a new one.

setfileaccessqq LOGICAL*4 Sets the file access mode for the specified file.

setfiletimeqq LOGICAL*4 Sets the modification time for the specified file.

signalqq INTEGER*8 Controls signal handling.

sleepqq None Delays execution of the program for a specified time.

splitpathqq LOGICAL*4 Breaks a full path into components.

systemqq LOGICAL*4 Executes a command by passing a command string to the operating system'’s

command interpreter.

unpacktimeqq Multiple INTEGERS | Unpacks a file’s packed time and date value into its component parts.

7.3.2. LIBM

A Fortran module called 1ibm is available to declare interfaces to many of the routinesin the
standard C math library.Table 28 lists the LIBM routines that are available. To view the prototype
and interfaces, look in the location described in Source Files.

Some 1 1ibm routine names conflict with Fortran intrinsics. These routines are not listed in this
table because they resolve to Fortran intrinsics.

asin acos atan2 cos cosh
exp log log10 sin sinh
sqrt tan tanh

You can also use 1 ibm routines in CUDA Fortran global and device subprograms, in CUF
kernels, and in OpenACC compute regions. When targeting NVIDIA devices, the 1 ibm routines
translate to the corresponding 1 ibm device routine.

Table 28 LIBM Functions

acosf erfc frexp log1p remquo
acosh erff frexpf log1pf remquof
acoshf erfcf ilog log2 rint
asinf expf ilogbf log2f rintf
asinh exp10 Idexp logb scalbn
asinhf exp10f Idexpf logbf scalbnf
atan2f exp2 lgamma logf scalbin
atanh exp2f lgammaf modf scalbinf

PVF Reference Guide 160

Fortran Module/Library Interfaces for Windows

atanhf expf lIrint modff sinf

cbrt expm1 lIrintf nearbyint sinhf
cbrtf expm1f Irint nearbyintf sqrtf

ceil floor Irint nextafter tanf

ceilf floorf liround nextafterf tanhf
copysign fma llroundf pow tgamma
copysignf fmaf Iround powf tgammaf
cosf fmax [roundf remainder trunc
coshf fmaxf log10f remainderf truncf
erf fminf

7.3.3. DFPORT

Table 29 lists the functions that DEFPORT includes. Inthetable [Generic] refersto ageneric
routine. To view the prototype and interfaces, ook in the location described in Source Files.

Table 29 DFPORT Functions

Routine Result Description

abort None Immediately terminates the program. If the operating system supports a core
dump, abort produces one that can be used for debugging.

access INTEGER*4 Determines access mode or existence of a file.

alarm INTEGER*4 Executes a routine after a specified time.

besj0 REAL*4 Computes the BESSEL function of the first kind of order 0 of X, where X is
real.

bes;j1 REAL*4 Computes the BESSEL function of the first kind of order 1 of X, where X is
real.

besjn REAL*4 Computes the BESSEL function of the first kind of order N of X, where N is an
integer and X is real.

besy0 REAL*4 Computes the BESSEL function of the second kind of order 0 of X, where X is
real.

besy1 REAL*4 Computes the BESSEL function of the second kind of order 1 of X, where X is
real.

besyn REAL*4 Computes the BESSEL function of the second kind of order N of X, where N
is an integer and X is real.

chdir INTEGER*4 Changes the current directory to the directory specified. Returns 0 if
successful.

chmod INTEGER*4 Changes the mode of a file by setting the access permissions of the specified
file to the specified mode. Returns 0 if successful.

ctime STRING(24) Converts and returns the specified time and date as a string.

date STRING Returns the date as a character string: dd-mm-yy.

PVF Reference Guide

161

Fortran Module/Library Interfaces for Windows

Routine Result Description

dbesj0 REAL*8 Computes the double-precision BESSEL function of the first kind of order 0 of
X, where X is a double-precision argument.

dbes;j1 REAL*8 Computes the double-precision BESSEL function of the first kind of order 1 of
X, where X is a double-precision argument.

dbesjn REAL*8 Computes the double-precision BESSEL function of the first kind of order N of
X, where N is an integer and X is a double-precision argument.

dbesy0 REAL*8 Computes the double-precision BESSEL function of the second kind of order
0 of X, where X, where X is a double-precision argument.

dbesy1 REAL*8 Computes the double-precision BESSEL function of the second kind of order
1 of X, where X, where X is a double-precision argument.

dbesyn REAL*8 Computes the double-precision BESSEL function of the second kind of order
N of X, where N is an integer and X, where X is a double-precision argument.

derf REAL*8 Computes the double-precision error function of X, where X is a double-
precision argument.

derfc REAL*8 Computes the complementary double-precision error function of X, where X is
a double-precision argument.

dffrac REAL*8 Returns fractional accuracy of a REAL*8 floating-point value.

dflmax REAL*8 Returns the maximum positive REAL*8 floating-point value.

dflmin REAL*8 Returns the minimum positive REAL*8 floating-point value.

drandm REAL*8 Generates a REAL*8 random number.

dsecnds REAL*8 Returns the number of real time seconds since midnight minus the supplied
argument value.

dtime REAL*4 Returns the elapsed user and system time in seconds since the last call to
dtime.

erf REAL*4 Computes the error function of X, where X is Real.

erfc REAL Computes the complementary error function of X, where X is Real.

etime REAL*4 Returns the elapsed time in seconds since the start of program execution.

exit None Immediately terminates the program and passes a status to the parent
process.

fdate STRING Returns the current date and time as an ASCII string.

ffrac REAL*4 Returns the fractional accuracy of a REAL*4 floating-point value.

fgetc INTEGER*4 Gets a character or word from an input stream. Returns the next byte or and
integer

flmax REAL*4 Returns the maximum positive REAL*4 lue.

flush None Writes the output to a logical unit.

fputc INTEGER*4 Writes a character or word from an input stream to a logical unit. Returns 0 if
successful or an error.

free None Frees memory previously allocated by MALLOC(). Intended for users
compiling legacy code. Use DEALLOCATE for newer code.

fseek INTEGER*4 Repositions the file pointer associated with the specified file. Returns 0 if
successful, 1 otherwise.

PVF Reference Guide 162

Fortran Module/Library Interfaces for Windows

Routine Result Description

fseek64 INTEGER*4 Repositions the file pointer associated with the specified stream. Returns 0 if
successful, 1 otherwise.

fstat INTEGER*4 Returns file status information about the referenced open file or shared
memory object.

fstat64 INTEGER*4 Returns information in a 64-bit structure about the referenced open file or
shared memory object.

ftell INTEGER*4 Returns the current value of the file pointer associated with the specified
stream.

ftell64 INTEGER*8 Returns the current value of the file pointer associated with the specified
stream.

gerror STRING Writes system error messages.

getarg STRING Returns the list of parameters that were passed to the current process when it
was started.

getc INTEGER*4 Retrieves the character at the front of the specified character list, or -1 if
empty

getewd INTEGER*4 Retrieves the pathname of the current working directory or null if fails.

getenv Returns the value of the specified environment variable(s).

getfd INTEGER*4 Returns the file descriptor associated with a Fortran logical unit.

getgid INTEGER*4 Returns the numerical group ID of the curreni process.

getlog STRING Stores the user’s login name in NAME. If the login name is not found, then
NAME is filled with blanks.

getpid INTEGER*4 Returns the process numerical identifier of the current process.

getuid INTEGER*4 Returns the numerical user ID of the current process.

gmtime INTEGER*4 Converts and returns the date and time formats to GM (Greenwich) time as
month, day, and so on.

iargc INTEGER*4 Returns an integer representing the number of arguments for the last program
entered on the command line.

idate INTEGER*4 Returns the date in numerical form, day, month, year.

iermo INTEGER*4 Returns the system error number for the last error.

inmax INTEGER*4 Returns the maximum positive integer value.

ioinit None Establishes the properties of file I/O for files opened after the call to ioinit,
such as whether to recognize carriage control, how to treat blanks and zeros,
and whether to open files at the beginning or end of the file.

irand1 INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

irand2 INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

irandm INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

isatty LOGICAL Finds the name of a terminal port. Returns TRUE if the specified unit is a

terminal.

PVF Reference Guide

163

Fortran Module/Library Interfaces for Windows

Routine Result Description
itime numerical form of Fills and returns TARRAY with numerical values at the current local time,
time with elements 1,2,and 3 of TARRY being the hour (1-24), minute (1-60) and

seconds (1-60).

kill INTEGER*4 Sends the specified signal to the specified process or group of processes.
Returns 0 if successful, -1 otherwise

link INTEGER*4 Creates an additional directory entry for the specified existing file.

Inbink INTEGER*4 Returns the position of the last non-blank string character in the specified
string.

loc INTEGER*4 Returns the address of an object.

long INTEGER*4 Converts INTEGER*2 to INTEGER*4

Istat INTEGER*4 Obtains information about the referenced open file or shared memory object
in a large-file enables programming environment.

Istat64 INTEGER*4 Obtains information in a 64-bit structure about the referenced open file or
shared memory object in a large-file enables programming environment.

Itime Array of Converts the system time from seconds into TARRAY, which contains GMT

INTEGER*4 for the current local time zone.

malloc INTEGER*8 Allocates SIZE byes of dynamic memory, returning the address of the
allocated memory. Intended for users compiling legacy code. Use ALLOCATE
for newer code.

mclock INTEGER*4 Returns time accounting information about the current process and its child
processes in 1/100 or second units of measure. The returned value is the
sum of the current process’s user time and system time of all child processes.

outstr INTEGER*4 Outputs the value of the specified character to the standard output file.

perror None Writes a message to standard error output that describes the last error
encountered by a system call or library subroutine.

putc INTEGER*4 Puts the specified character at the end of the character list.

putenv INTEGER*4 Sets the value of the specified environment variable or creates a new
environment variable.

gsort INTEGER*4 Uses quick-sort algorithm to sort a table of data.

rand1 REAL*4 Provides a method for generating a random number that can be used as the
starting point for the rand procedure.

rand2 REAL*4 Provides a random value between 0 and 1, which is generated using the
specified seed value, and computed for each returned row when used in the
select list.

random REAL*4 Uses a non-linear additive feedback random-number generator to return
pseudo-random numbers in the range of 0 to (231-1)

rename INTEGER*4 Renames the specified directory or file

rindex INTEGER*4 Returns the index of the last occurrence of a specific string of characters in a
specified string.

rtc REAL*8 Returns the real-time clock value expressed as a number of clock ticks.

secnds REAL*4 Gets the time in seconds from the real-time system clock. If the value is zero,

the time in seconds from midnight is used.

PVF Reference Guide

164

Fortran Module/Library Interfaces for Windows

Routine Result Description

short INTEGER*2 Converts INTEGER*4 to INTEGER*2.

signal INTEGER*4 Specifies the action to take upon delivery of a signal.

sleep None Puts the calling kernel thread to sleep, requiring it to wait for a wakeup to
be issued to continue to run. Provided for compatibility with older code and
should not be used with new code.

srand1 None Sets the seed for the pseudo-random number generation that rand1 provides.

srand2 None Sets the seed for the pseudo-random number generation that rand2 provides.

stat INTEGER*4 Obtains information about the specified file.

stat64 INTEGER*4 Obtains information in a 64-bit structure about the specified file.

stime INTEGER*4 Sets the current value of the specified parameter for the system-wide timer.

symink INTEGER*4 Creates a symbolic link with the specified name to the specified file.

system INTEGER*4 Runs a shell command.

time INTEGER*4 Returns the time in seconds since January 1, 1970.

timef REAL*8 Returns the elapsed time in milliseconds since the first call to timef.

times INTEGER*4 Fills the specified structure with time-accounting information.

ttynam STRING(100) Either gets the path name of the terminal or determines if the device is a
terminal.

unlink INTEGER*4 Removes the specified directory entry, and decreases the link count of the file
referenced by the link.

wait INTEGER*4 Suspends the calling thread until the process receives a signal that is not
blocked or ignored, or until the calling process’ child processes stop or
terminate.

7.4. Using the DFWIN module

The DFWIN module includes all the modules needed to access the Win32 API. Y ou can use
modul es supporting specific portions of the Win32 API separately, but DFWIN isthe only module
you need to use the Fortran interfaces to the Win32 API. To use this module, add the following
line to your Fortran code.

use dfwin

To utilize any of the Win32 API interfaces, you can add a Fortran use statement for the specific
library or module that includesit. For example, to use user32.lib, add the following Fortran use
Statement:

use user32

Function calls made through the module interfaces ultimately resolve to C Language interfaces,
so some accommodation for inter-language calling conventions must be made in the Fortran
application. These accommodations include:

» On x64 platforms, pointers and pointer types such as HANDLE, HINSTANCE, WPARAM, and
HWND must be treated as 8-byte quantities (INTEGER (8)). On x86 (32-bit) platforms, these
are 4-byte quantities (INTEGER (4)).

PVF Reference Guide 165

Fortran Module/Library Interfaces for Windows

» Ingeneral, C makes calls by value while Fortran makes calls by reference.

» When doing Windows devel opment one must sometimes provide callback functions for
message processing, dialog processing, etc. These routines are called by the Windows
system when events are processed. To provide the expected function signature for a
callback function, the user may need to use the STDCALL attribute directive (! DEC$S
ATTRIBUTE: : STDCALL) in the declaration.

7.5. Supported Libraries and Modules

The following tables provide lists of the functionsin each library or module that PGI supportsin

DEFWIN.

For information on the interfaces associated with these functions, refer to the files located here:
C:\Program Files\PGI\win64\15.10\src

or

C:\Program Files (x86)\PGI\win32\15.10\src

7.5.1. advapi32

The following table lists the functions that advapi 32 includes:

Table 30 DFWIN advapi32 Functions

AccessCheckAndAuditAlarm
AccessCheckByTypeAndAuditAlarm
AccessCheckByTypeResultListAndAuditAlarm
AddAccessAllowedAce
AddAccessAllowedObjectAce
AddAccessDeniedAceEx

AddAce

AddAuditAccessAceEx
AdjustTokenGroups
AllocateAndInitializeSid
AreAllAccessesGranted
BackupEventLog

ClearEventLog

CloseEventLog

CopysSid
CreatePrivateObjectSecurityEx
CreateProcessAsUser

CreateProcessWithTokenW

PVF Reference Guide

AccessCheckByType
AccessCheckByTypeResultList
AccessCheckByTypeResultListAndAuditAlarmByHandle
AddAccessAllowedAceEx

AddAccessDeniedAce

AddAccessDeniedObjectAce

AddAuditAccessAce

AddAuditAccessObjectAce

AdjustTokenPrivileges

AllocateLocallyUniqueld

AreAnyAccessesGranted

CheckTokenMembership

CloseEncryptedFileRaw
ConvertToAutolnheritPrivateObjectSecurity
CreatePrivateObjectSecurity
CreatePrivateObjectSecurityWithMultiplelnheritance
CreateProcessWithLogonW

CreateRestrictedToken

166

CreateWellknownSid
DeleteAce
DestroyPrivateObjectSecurity
DuplicateTokenEx
EqualDomainSid

EqualSid

FindFirstFreeAce

GetAce

GetCurrentHwProfile
GetFileSecurity
GetLengthSid
GetOldestEventLogRecord
GetSecurityDescriptorControl
GetSecurityDescriptorGroup
GetSecurityDescriptorOwner
GetSecurityDescriptorSacl
GetSidLengthRequired
GetSidSubAuthorityCount
GetUserName
ImpersonateAnonymousToken
ImpersonateNamedPipeClient
InitializeAcl

InitializeSid
IsTokenRestricted

IsValidAcl

IsValidSid

LogonUser
LookupAccountName
LookupPrivilegeDisplayName
LookupPrivilegeValue
MakeAbsoluteSD2
MapGenericMask
ObjectCloseAuditAlarm
ObjectOpenAuditAlarm
OpenBackupEventLog
OpenEventLog
OpenThreadToken

PrivilegedServiceAuditAlarm

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

DecryptFile
DeregisterEventSource
Duplicate Token

EncryptFile

EqualPrefixSid
FileEncryptionStatus
FreeSid

GetAclinformation
GetEventLoglnformation
GetKernelObjectSecurity
GetNumberOfEventLogRecords
GetPrivateObjectSecurity
GetSecurityDescriptorDacl
GetSecurityDescriptorLength
GetSecurityDescriptorRMControl
GetSidldentifierAuthority
GetSidSubAuthority
GetTokenInformation
GetWindowsAccountDomainSid
ImpersonateLoggedOnUser
ImpersonateSelf

Initialize SecurityDescriptor
IsTextUnicode
IsTokenUntrusted
IsValidSecurityDescriptor
IsWellKnownSid
LogonUserEx
LookupAccountSid
LookupPrivilegeName
MakeAbsoluteSD
MakeSelfRelativeSD
NotifyChangeEventLog
ObjectDeleteAuditAlarm
ObjectPrivilegeAuditAlarm
OpenEncryptedFileRaw
OpenProcessToken
PrivilegeCheck
ReadEncryptedFileRaw

167

ReadEventLog

ReportEvent
SetAclinformation
SetKernelObjectSecurity
SetPrivateObjectSecurityEx
SetSecurityDescriptorDacl
SetSecurityDescriptorOwner
SetSecurityDescriptorSacl

SetTokenInformation

7.5.2. comdig32

Fortran Module/Library Interfaces for Windows

RegisterEventSource
RevertToSelf

SetFileSecurity
SetPrivateObjectSecurity
SetSecurityDescriptorControl
SetSecurityDescriptorGroup
SetSecurityDescriptorRMControl
SetThreadToken
WriteEncryptedFileRaw

The following table lists the functions that comd1g32 includes:

AfxReplaceText ChooseColor ChooseFont
CommbDIgExtendedError FindText GetFileTitle
GetOpenFileName GetSaveFileName PageSetupDlg
PrintDlg PrintDIgEx ReplaceText
7.5.3. dfwbase

These are the functions that dfwbase includes:

chartoint LoByte MakeWord
chartoreal LoWord MakeWparam
CopyMemory LoWord64 Palettelndex
GetBlueValue MakelntAtom PaletteRGB
GetGreenValue MakelntResource PrimaryLangID
GetRedValue MakeLangID RGB
HiByte MakeLCID RtlCopyMemory
HiWord MakeLong SortIDFromLCID
HiWord64 MakeLParam SubLangID
inttochar MakeLResult

7.5.4. dfwinty

These are the functionsthat dfwinty includes:

dwNumberOfFunctionKeys

7.5.5. gdi32

These are the functions that gdi 32 includes:

PVF Reference Guide

rdFunction

168

AbortDoc
AddFontResource
AngleArc

ArcTo

CancelDC

Chord

CloseMetaFile
CombineRgn
CopyMetaFile
CreateBrushindirect
CreateCompatibleDC
CreateDIBPatternBrush
CreateDiscardableBitmap
CreateEnhMetaFile
CreateFontindirectEx
CreatelC
CreatePatternBrush
CreatePolygonRgn
CreateRectRgnIndirect
CreateSolidBrush
DeleteEnhMetaFile
DescribePixelFormat
DrawEscape
EndPage
EnumFontFamilies
EnumICMProfiles
EqualRgn
ExtCreatePen
ExtFloodFill

FillPath

FlattenPath
GdiComment
GdiSetBatchLimit
GetBitmapBits
GetBkMode
GetCharABCWidthsA
GetCharABCWidthsW
GetCharWidth32

PVF Reference Guide

AbortPath
AddFontResourceEx
AnimatePalette
BeginPath
CheckColorsinGamut
CloseEnhMetaFile
ColorCorrectPalette
CombineTransform
CreateBitmap
CreateColorSpace
CreateDC
CreateDIBPatternBrushPt
CreateEllipticRgn
CreateFont
CreateHalftonePalette
CreateMetaFile
CreatePen
CreatePolyPolygonRgn
CreateRoundRectRgn
DeleteColorSpace
DeleteMetaFile
DeviceCapabilities
Ellipse

EndPath
EnumFontFamiliesEx
EnumMetaFile

Escape
ExtCreateRegion
ExtSelectClipRgn
FillRgn

FloodFill

GdiFlush
GetArcDirection
GetBitmapDimensionEx
GetBoundsRect
GetCharABCWidthsFloat
GetCharacterPlacement

GetCharWidthFloat

AddFontMemResourceEx
AlphaBlend

Arc

BitBIt
ChoosePixelFormat
CloseFigure
ColorMatchToTarget
CopyEnhMetaFile
CreateBitmaplndirect
CreateCompatibleBitmap
CreateDIBitmap
CreateDIBSection
CreateEllipticRgnIndirect
CreateFontindirect
CreateHatchBrush
CreatePalette
CreatePenindirect
CreateRectRgn
CreateScalableFontResource
DeleteDC

DeleteObject

DPtoLP

EndDoc
EnumEnhMetaFile
EnumFonts
EnumObjects
ExcludeClipRect
ExtEscape

ExtTextOut
FixBrushOrgEx
FrameRgn
GdiGetBatchLimit
GetAspectRatioFilterEx
GetBkColor
GetBrushOrgEx
GetCharABCWidths|
GetCharWidth
GetCharWidthl

Fortran Module/Library Interfaces for Windows

169

GetClipBox
GetColorSpace
GetDCBrushColor
GetDeviceCaps
GetDIBits
GetEnhMetaFileDescriptionA
GetEnhMetaFilePaletteEntries
GetFontLanguagelnfo
GetGlyphOutline
GetICMProfileW
GetLogColorSpace
GetMetaFileBitsEx
GetNearestColor
GetObjectType
GetPath
GetPolyFillMode
GetRegionData
GetStockObject
GetSystemPaletteUse
GetTextCharset
GetTextExtentExPoint
GetTextExtentPoint32
GetTextMetrics
GetWindowEXtEx
GetWorldTransform
InvertRgn

LPtoDP

MoveToEx
OffsetViewportOrgEx
PatBIt
PlayEnhMetaFile
PlayMetaFileRecord
PolyBezierTo

Polyline

PolyPolyline

PtVisible
RectinRegion

RemoveFontResource

PVF Reference Guide

GetClipRgn
GetCurrentObject
GetDCOrgEx
GetDeviceGammaRamp
GetEnhMetaFile
GetEnhMetaFileDescriptionW
GetEnhMetaFilePixelFormat
GetFontUnicodeRanges
GetGraphicsMode
GetKerningPairs
GetMapMode
GetMetaRgn
GetNearestPalettelndex
GetOutlineTextMetrics
GetPixel
GetRandomRgn
GetRgnBox
GetStretchBltMode
GetTextAlign
GetTextCharsetinfo
GetTextExtentExPointl
GetTextExtentPointl
GetViewportExtEx
GetWindowOrgEx
GradientFill

LineDD

MaskBIt

OffsetClipRgn
OffsetWindowOrgEx
PathToRegion
PlayEnhMetaFileRecord
PlgBIt

PolyDraw

PolylineTo

PolyTextOut
RealizePalette
RectVisible

RemoveFontResourceEx

GetColorAdjustment
GetCurrentPositionEx
GetDCPenColor
GetDIBColorTable
GetEnhMetaFileBits
GetEnhMetaFileHeader
GetFontData
GetGlyphindices
GetICMProfileA
GetLayout
GetMetaFile
GetMiterLimit
GetObject
GetPaletteEntries
GetPixelFormat
GetRasterizerCaps
GetROP2
GetSystemPaletteEntries
GetTextCharacterExtra
GetTextColor
GetTextExtentPoint
GetTextFace
GetViewportOrgEx
GetWinMetaFileBits
IntersectClipRect
LineTo
ModifyWorldTransform
OffsetRgn

PaintRgn

Pie

PlayMetaFile
PolyBezier

Polygon

PolyPolygon
PtinRegion

Rectangle
RemoveFontMemResourceEx

ResetDC

Fortran Module/Library Interfaces for Windows

170

ResizePalette

SaveDC

SelectClipPath
SelectPalette
SetBitmapBits
SetBkMode
SetColorAdjustment
SetDCPenColor
SetDIBits
SetGraphicsMode
SetLayout
SetMetaFileBitsEx
SetPaletteEntries
SetPixelV

SetROP2

SetTextAlign
SetTextJustification
SetWindowExtEx
SetWorldTransform
StretchBIt

SwapBuffers
TranslateCharsetinfo
UpdateColors
wglCreateContext
wglDescribeLayerPlane
wglGetLayerPaletteEntries
wglRealizeLayerPalette
wglSwapLayerBuffers

wglUseFontOutlines

7.5.6. kernel32

RestoreDC
ScaleViewportExtEx
SelectClipRgn
SetAbortProc
SetBitmapDimensionEx
SetBoundsRect
SetColorSpace
SetDeviceGammaRamp
SetDIBitsToDevice
SetlCMMode
SetMapMode
SetMetaRgn

SetPixel
SetPolyFillMode
SetStretchBltMode
SetTextCharacterExtra
SetViewportExtEx
SetWindowOrgEx
StartDoc

StretchDIBits

TextOut

TransparentBIt
UpdatelCMRegKey
wglCreateLayerContext
wglGetCurrentContext
wglGetProcAddress
wglSetLayerPaletteEntries
wglSwapMultipleBuffers
WidenPath

These are the functions that kernel 32 includes:

ActivateActCtx
AddConsoleAlias
AddVectoredContinueHandler
AllocateUserPhysicalPages
AreFileApisANSI

AttachConsole

PVF Reference Guide

AddAtom
AddRefActCtx

Fortran Module/Library Interfaces for Windows

RoundRect
ScaleWindowExtEx
SelectObject
SetArcDirection
SetBkColor
SetBrushOrgEx
SetDCBrushColor
SetDIBColorTable
SetEnhMetaFileBits
SetICMProfile
SetMapperFlags
SetMiterLimit
SetPixelFormat
SetRectRgn
SetSystemPaletteUse
SetTextColor
SetViewportOrgEx
SetWinMetaFileBits
StartPage
StrokeAndFillPath

UnrealizeObject
wglCopyContext
wglDeleteContext
wglGetCurrentDC
wglMakeCurrent
wglShareLists

wglUseFontBitmaps

AddVectoredExceptionHandler

AllocConsole

AssignProcessToJobObject

BackupRead

171

BackupSeek

Beep
BindloCompletionCallback
BuildCommDCBAndTimeouts
CancelDeviceWakeupRequest
CancelTimerQueueTimer
CheckNameLegalDOS8Dot3
ClearCommBreak
CloseHandle
CompareFileTime
ContinueDebugEvent
ConvertThreadToFiber
CopyFile

CreateActCtx
CreateDirectory

CreateEvent

CreateFiberEx
CreateFileMapping
CreateloCompletionPort
CreateJobSet
CreateMemoryResourceNotification
CreateNamedPipe
CreateProcess
CreateSemaphore
CreateThread
CreateTimerQueueTimer
DeactivateActCtx
DebugActiveProcessStop
DebugBreakProcess
DecodePointer
DefineDosDevice
DeleteCriticalSection
DeleteFile
DeleteTimerQueueEx
DeleteVolumeMountPoint
DisableThreadLibraryCalls
DnsHostnameToComputerName

DuplicateHandle

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

BackupWrite
BeginUpdateResource
BuildCommDCB
CallNamedPipe
Cancello

CancelWaitableTimer

CheckRemoteDebuggerPresent

ClearCommError
CommConfigDialog
ConnectNamedPipe
ConvertFiberToThread
ConvertThreadToFiberEx
CopyFileEx
CreateConsoleScreenBuffer
CreateDirectoryEx
CreateFiber

CreateFile
CreateHardLink
CreateJobObject
CreateMailslot
CreateMutex

CreatePipe
CreateRemoteThread
CreateTapePartition
CreateTimerQueue
CreateWaitableTimer
DebugActiveProcess
DebugBreak
DebugSetProcessKillOnExit
DecodeSystemPointer
DeleteAtom

DeleteFiber
DeleteTimerQueue
DeleteTimerQueueTimer
DeviceloControl
DisconnectNamedPipe
DosDateTimeToFileTime

EncodePointer

172

EncodeSystemPointer
EnterCriticalSection
EnumResourceNames
EnumSystemFirmwareTables
EscapeCommFunction
ExitThread

FatalAppExit
FileTimeToDosDateTime
FileTimeToSystemTime
FillConsoleQutputCharacter
FindActCtxSectionString
FindClose
FindFirstChangeNotification
FindFirstFileEx
FindFirstVolumeMountPoint
FindNextFile
FindNextVolumeMountPoint
FindResourceEx
FindVolumeMountPointClose
FlsFree

FlsSetValue
FlushFileBuffers
FlushViewOfFile
FreeConsole

FreeLibrary

FreeResource
GenerateConsoleCtrlEvent
GetBinaryType
GetCommConfig
GetCommModemStatus
GetCommState
GetCompressedFileSize
GetConsoleAlias
GetConsoleAliasesLength
GetConsoleAliasExesLength
GetConsoleCursorinfo
GetConsoleFontSize

GetConsoleOutputCP

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

EndUpdateResource
EnumResourceLanguages
EnumResourceTypes
EraseTape

ExitProcess
ExpandEnvironmentStrings
FatalExit
FileTimeToLocalFileTime
FillConsoleQutputAttribute
FindActCtxSectionGuid
FindAtom
FindCloseChangeNotification
FindFirstFile
FindFirstVolume
FindNextChangeNotification
FindNextVolume
FindResource
FindVolumeClose

FisAlloc

FlsGetValue
FlushConsolelnputBuffer
FlushInstructionCache
FormatMessage
FreeEnvironmentStrings
FreeLibraryAndExitThread
FreeUserPhysicalPages
GetAtomName
GetCommandLine
GetCommMask
GetCommProperties
GetCommTimeouts
GetComputerName
GetConsoleAliases
GetConsoleAliasExes
GetConsoleCP
GetConsoleDisplayMode
GetConsoleMode

GetConsoleProcessList

173

GetConsoleScreenBufferinfo
GetConsoleTitle
GetCurrentActCtx
GetCurrentDirectory
GetCurrentProcessld
GetCurrentThread
GetDefaultCommConfig
GetDiskFreeSpace
GetDIIDirectory
GetEnvironmentStrings
GetExitCodeProcess
GetFileAttributes
GetFilelnformationByHandle
GetFileSizeEx

GetFileType
GetFullPathName
GetLargePageMinimum
GetlLastError
GetLogicalDrives
GetLogicalProcessorinformation
GetMailslotinfo
GetModuleHandle
GetNamedPipeHandleState
GetNativeSysteminfo
GetNumaHighestNodeNumber
GetNumaProcessorNode
GetNumberOfConsoleMouseButtons
GetPriorityClass
GetPrivateProfileSection
GetPrivateProfileString
GetProcAddress
GetProcessHandleCount
GetProcessHeaps
GetProcessldOfThread
GetProcessPriorityBoost
GetProcessTimes
GetProcessWorkingSetSize
GetProfilelnt

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

GetConsoleSelectioninfo
GetConsoleWindow
GetCurrentConsoleFont
GetCurrentProcess
GetCurrentProcessorNumber
GetCurrentThreadld
GetDevicePowerState
GetDiskFreeSpaceEx
GetDriveType
GetEnvironmentVariable
GetExitCodeThread
GetFileAttributesEx

GetFileSize

GetFileTime
GetFirmwareEnvironmentVariable
GetHandlelnformation
GetLargestConsoleWindowSize
GetLocalTime
GetLogicalDriveStrings
GetLongPathName
GetModuleFileName
GetModuleHandleEx
GetNamedPipelnfo
GetNumaAvailableMemoryNode
GetNumaNodeProcessorMask
GetNumberOfConsolelnputEvents
GetOverlappedResult
GetPrivateProfileInt
GetPrivateProfileSectionNames
GetPrivateProfileStruct
GetProcessAffinityMask
GetProcessHeap

GetProcessld
GetProcessloCounters
GetProcessShutdownParameters
GetProcessVersion
GetProcessWorkingSetSizeEx
GetProfileSection

174

GetProfileString
GetShortPathName
GetVolumePathName
GetWindowsDirectory
GlobalAddAtom
GlobalCompact
GlobalFindAtom
GlobalFlags
GlobalGetAtomName
GlobalLock
GlobalMemoryStatusEx
GlobalSize

GlobalUnlock

GlobalWire

HeapCompact
HeapDestroy

HeapLock

HeapReAlloc

HeapSize

HeapValidate
InitAtomTable
InitializeCriticalSectionAndSpinCount
InterlockedCompareExchange
InterlockedDecrement
InterlockedExchangeAdd
InterlockedIncrement
InterlockedPushEntrySList
IsBadHugeReadPtr
IsBadReadPtr
IsBadWritePtr
IsProcessinJob
IsSystemResumeAutomatic
LoadLibrary

LoadModule

LocalAlloc
LocalFileTimeToFileTime
LocalFree

LocalLock

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

GetQueuedCompletionStatus

GetVolumeNameForVolumeMountPoint

GetVolumePathNamesForVolumeName

GetWriteWatch
GlobalAlloc
GlobalDeleteAtom
GlobalFix

GlobalFree
GlobalHandle
GlobalMemoryStatus
GlobalReAlloc
GlobalUnfix
GlobalUnWire
HeapAlloc
HeapCreate

HeapFree
HeapQueryInformation
HeapSetinformation
HeapUnlock
HeapWalk
InitializeCriticalSection
InitializeSListHead
InterlockedCompareExchange64
InterlockedExchange
InterlockedFlushSList
InterlockedPopEntrySList
IsBadCodePtr
IsBadHugeWritePtr
IsBadStringPtr
IsDebuggerPresent
IsProcessorFeaturePresent
LeaveCriticalSection
LoadLibraryEx
LoadResource
LocalCompact
LocalFlags
LocalHandle

LocalReAlloc

175

LocalShrink

LocalUnlock

LockFileEx

Istrcat

Istrcmpi

Istrcpyn
MapUserPhysicalPages
MapViewOfFile

MoveFile
MoveFileWithProgress
NeedCurrentDirectoryForExePath
OpenFile

OpenJobObject

OpenProcess

OpenThread
OutputDebugString
PeekNamedPipe

PrepareTape

PulseEvent

QueryActCtxW
QueryDosDevice
QueryMemoryResourceNotification
QueryPerformanceFrequency
QueueUserWorkltem
ReadConsole
ReadConsoleQutput
ReadConsoleOutputCharacter
ReadFile

ReadFileScatter
RegisterWaitForSingleObject
ReleaseActCtx
ReleaseSemaphore
RemoveVectoredContinueHandler
ReOpenFile
RequestDeviceWakeup
ResetEvent

RestoreLastError

ScrollConsoleScreenBuffer

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

LocalSize

LockFile

LockResource

Istrcmp

Istrcpy

Istrlen
MapUserPhysicalPagesScatter
MapViewOfFileEx

MoveFileEx

MulDiv

OpenEvent

OpenFileMapping

OpenMutex

OpenSemaphore
OpenWaitableTimer
PeekConsolelnput
PostQueuedCompletionStatus
ProcessldToSessionld
PurgeComm
QueryDepthSList
QuerylnformationJobObject
QueryPerformanceCounter
QueueUserAPC
RaiseException
ReadConsolelnput
ReadConsoleOutputAttribute
ReadDirectoryChangesW
ReadFileEx
ReadProcessMemory
RegisterWaitForSingleObjectEx
ReleaseMutex
RemoveDirectory
RemoveVectoredExceptionHandler
ReplaceFile
RequestWakeupLatency
ResetWriteWatch
ResumeThread

SearchPath

176

SetCommBreak
SetCommMask
SetCommTimeouts
SetComputerNameEx
SetConsoleCP
SetConsoleCursorinfo
SetConsoleMode
SetConsoleScreenBufferSize
SetConsoleTitle
SetCriticalSectionSpinCount
SetDefaultCommConfig
SetEndOfFile
SetEnvironmentVariable
SetEvent
SetFileApisTOOEM
SetFilePointer
SetFileShortName
SetFileValidData
SetHandleCount
SetInformationJobObject
SetlLocalTime
SetMessageWaitingIndicator
SetPriorityClass
SetProcessPriorityBoost
SetProcessWorkingSetSize
SetStdHandle
SetSystemTimeAdjustment
SetTapePosition
SetThreadContext
SetThreadldealProcessor
SetThreadPriorityBoost
SetTimerQueueTimer
SetUnhandledExceptionFilter
SetVolumeLabel
SetWaitableTimer
SizeofResource

SleepEx

SwitchToFiber

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

SetCommConfig
SetCommState
SetComputerName
SetConsoleActiveScreenBuffer
SetConsoleCtriHandler
SetConsoleCursorPosition
SetConsoleQutputCP
SetConsoleTextAttribute
SetConsoleWindowInfo
SetCurrentDirectory
SetDlIDirectory
SetEnvironmentStrings
SetErrorMode
SetFileApisToANSI
SetFileAttributes
SetFilePointerEx

SetFileTime
SetFirmwareEnvironmentVariable
SetHandlelnformation
SetLastError

SetMailslotinfo
SetNamedPipeHandleState
SetProcessAffinityMask
SetProcessShutdownParameters
SetProcessWorkingSetSizeEx
SetSystemTime
SetTapeParameters
SetThreadAffinityMask
SetThreadExecutionState
SetThreadPriority
SetThreadStackGuarantee
SetTimeZonelnformation
SetupComm
SetVolumeMountPoint
SignalObjectAndWait

Sleep

SuspendThread
SwitchToThread

177

SystemTimeToFileTime
TerminateJobObject
TerminateThread

TIsFree

TlsSetValue
TransmitCommChar
TzSpecificLocalTimeToSystemTime
UnlockFile
UnmapViewOfFile
UnregisterWaitEx
VerifyVersionlnfo
VirtualAllocEx
VirtualFreeEx
VirtualProtect
VirtualQuery
VirtualUnlock
WaitForDebugEvent
WaitForMultipleObjectsEx
WaitForSingleObjectEx
WinExec
Wow64EnableWow64FsRedirection
WriteConsole
WriteConsoleOutput
WriteConsoleOutputCharacter
WriteFileEx
WritePrivateProfileSection
WritePrivateProfileStruct
WriteProfileSection
WriteTapemark
ZombifyActCtx

_hwrite

_lcreat

_lopen

_lwrite

7.5.7. shell32

These are the functions that she1132 includes:

DoEnvironmentSubst

PVF Reference Guide

Fortran Module/Library Interfaces for Windows

SystemTimeToTzSpecificLocalTime
TerminateProcess

TlsAlloc

TlsGetValue
TransactNamedPipe
TryEnterCriticalSection
UnhandledExceptionFilter
UnlockFileEx

UnregisterWait

UpdateResource

VirtualAlloc

VirtualFree

VirtualLock

VirtualProtectEx

VirtualQueryEx

WaitCommEvent
WaitForMultipleObjects
WaitForSingleObject
WaitNamedPipe
Wow64DisableWow64FsRedirection
Wow64RevertWow64FsRedirection
WriteConsolelnput
WriteConsoleOutputAttribute
WriteFile

WriteFileGather
WritePrivateProfileString
WriteProcessMemory
WriteProfileString
WTSGetActiveConsoleSessionld
_hread

_Iclose

_liseek

_lread

ShellExecuteEx

178

DragAcceptFiles
DragFinish
DragQueryFile
DragQueryPoint
Duplicatelcon
ExtractAssociatedicon
Extracticon
ExtractlconEx
FindExecutable
IsSLFNDrive
SHAppBarMessage
SHCreateProcessAsUserWW
ShellAbout

ShellExecute

7.5.8. user32

Fortran Module/Library Interfaces for Windows

Shell_Notifylcon
SHEmptyRecycleBin
SHFileOperation
SHFreeNameMappings
SHGetDiskFreeSpaceEx
SHGetFileInfo
SHGetNewLinkInfo
SHinvokePrinterCommand
SHisFileAvailableOffline
SHLoadNonloadedIconOverlayldentifiers
SHQueryRecycleBin
SHSetLocalizedName

WinExecError

These are the functions that user32 includes:

ActivateKeyboardLayout
AllowSetForegroundWindow
AppendMenu
BeginDeferWindowPos
BroadcastSystemMessage
CallNextHookEx
ChangeClipboardChain
ChangeMenu

CharNext

CharPrevEx

CharUpper
CheckMenultem
ChildWindowFromPoint
ClipCursor

CloseWindow

CopyCursor

CopyRect

CreateCaret
CreateDialoglndirectParam
CreatelconFromResource
CreateMDIWindow

PVF Reference Guide

AdjustWindowRect
AnimateWindow
ArrangelconicWindows
BeginPaint
BroadcastSystemMessageEx
CallWindowProc
ChangeDisplaySettings
CharLower

CharNextEx

CharToOem

CharUpperBuff
CheckMenuRadioltem
ChildWindowFromPointEx
CloseClipboard
CloseWindowsStation
Copylcon
CountClipboardFormats
CreateCursor
CreateDialogParam
CreatelconFromResourceEx

CreateMenu

AdjustWindowRectEx
AnyPopup
AttachThreadInput
BringWindowToTop
CallMsgFilter
CascadeWindows
ChangeDisplaySettingsEx
CharLowerBuff
CharPrev
CharToOemBuff
CheckDlgButton
CheckRadioButton
ClientToScreen
CloseDesktop
CopyAcceleratorTable
Copylmage
CreateAcceleratorTable
CreateDesktop
Createlcon
CreatelconIndirect

CreatePopupMenu

179

CreateWindow
DeferWindowPos
DefRawlnputProc

DeregisterShellHookWindow

DestroyCursor
DestroyWindow
DialogBoxParam2
DigDirList
DigDirSelectEx
DrawAnimatedRects
DrawFocusRect
DrawlconlIndirect
DrawText
EnableMenultem
EndDeferWindowPos
EndPaint
EnumClipboardFormats
EnumDisplayDevices
EnumDisplaySettingsEx
EnumThreadWindows
EqualRect

FillRect

FlashWindow
GetActiveWindow
GetAsyncKeyState
GetCaretPos
GetClassLong
GetClassWord
GetClipboardFormatName
GetClipboardViewer
GetCursor

GetDC
GetDialogBaseUnits
GetDlgltemint
GetFocus
GetGUIThreadInfo
GetKBCodePage
GetKeyboardLayoutName

PVF Reference Guide

CreateWindowEx
DefFrameProc
DefWindowProc
DestroyAcceleratorTable
Destroylcon
DialogBoxIndirectParam
DisableProcessWindowsGhosting
DigDirListComboBox
DragDetect
DrawCaption
DrawFrameControl
DrawMenuBar
DrawTextEx
EnableScrollBar
EndDialog

EndTask
EnumDesktops
EnumDisplayMonitors
EnumProps
EnumWindows
ExcludeUpdateRgn
FindWindow
FlashWindowEx
GetAltTablnfo
GetCapture
GetClassInfo
GetClassLongPtr
GetClientRect
GetClipboardOwner
GetClipCursor
GetCursorinfo
GetDCEXx

GetDIgCtrlID
GetDlgltemText
GetForegroundWindow
GetlconInfo
GetKeyboardLayout
GetKeyboardState

CreateWindowStation
DefMDIChildProc
DeleteMenu
DestroyCaret
DestroyMenu
DialogBoxParam1
DispatchMessage
DIgDirSelectComboBoxEx
DragObject

DrawEdge

Drawlcon

DrawState
EmptyClipboard
EnableWindow
EndMenu
EnumChildWindows
EnumDesktopWindows
EnumDisplaySettings
EnumPropsEx
EnumWindowStations
ExitWindowsEx
FindWindowEx
FrameRect
GetAncestor
GetCaretBlinkTime
GetClassInfoEx
GetClassName
GetClipboardData
GetClipboardSequenceNumber
GetComboBoxInfo
GetCursorPos
GetDesktopWindow
GetDlgltem
GetDoubleClickTime
GetGuiResources
GetlnputState
GetKeyboardLayoutList
GetKeyboardType

Fortran Module/Library Interfaces for Windows

180

GetKeyNameText
GetLastInputinfo
GetMenu
GetMenuContextHelpld
GetMenultemCount
GetMenultemRect
GetMessage
GetMessageTime
GetNextDIgGroupltem
GetParent
GetProcessWindowStation
GetRawlInputBuffer
GetRawlnputDeviceList
GetScrollinfo
GetShellWindow
GetSysColorBrush
GetTabbedTextExtent
GetTopWindow
GetUserObjectinformation
GetWindowContextHelpld
GetWindowLong
GetWindowPlacement
GetWindowRgnBox
GetWindowThreadProcessld
HideCaret
InSendMessage
InsertMenultem
InvalidateRect
IsCharAlpha

IsCharUpper
IsDialogMessage
IsHungAppWindow
IsRectEmpty
[sWindowUnicode
IsWow64Message
KillTimer

LoadCursor1

Loadlcon1

PVF Reference Guide

GetKeyState
GetLayeredWindowAttributes
GetMenuBarlnfo
GetMenuDefaultitem
GetMenultemID
GetMenuState
GetMessageExtralnfo
GetMonitorInfo
GetNextDIgTabltem
GetPriorityClipboardFormat
GetProp

GetRawlnputData

GetRegisteredRawInputDevices

GetScrollPos
GetSubMenu
GetSystemMenu
GetThreadDesktop
GetUpdateRect
GetUserObjectSecurity
GetWindowDC
GetWindowLongPtr
GetWindowRect
GetWindowText
GetWindowWord
HiliteMenultem
InSendMessageEx
InternalGetWindowText
InvalidateRgn
IsCharAlphaNumeric
IsChild
IsDIgButtonChecked
Islconic

IsWindow
IsWindowVisible
IsZoomed
LoadAccelerators
LoadCursor2

Loadlcon2

GetLastActivePopup
GetListBoxInfo

GetMenuCheckMarkDimensions

GetMenulnfo
GetMenulteminfo
GetMenuString
GetMessagePos
GetMouseMovePointsEx
GetOpenClipboardWindow
GetProcessDefaultLayout
GetQueueStatus
GetRawlInputDevicelnfo
GetScrollBarlnfo
GetScrollRange
GetSysColor
GetSystemMetrics
GetTitleBarlnfo
GetUpdateRgn
GetWindow
GetWindowInfo
GetWindowModuleFileName
GetWindowRgn
GetWindowTextLength
GrayString

InflateRect

InsertMenu

IntersectRect

InvertRect

IsCharLower
IsClipboardFormatAvailable
IsGUIThread

IsMenu

IsWindowEnabled
IsWinEventHookInstalled
keybd_event

LoadBitmap
LoadCursorFromFile

LoadImage

Fortran Module/Library Interfaces for Windows

181

LoadKeyboardLayout
LoadMenulndirect
LockWindowUpdate
LookuplconldFromDirectoryEx
MapVirtualKey
MenultemFromPoint
MessageBoxEx
ModifyMenu2
MonitorFromWindow
MsgWaitForMultipleObjects
OemKeyScan

OffsetRect

Openlcon

PaintDesktop
PostQuitMessage
PrivateExtracticons
RealGetWindowClass
RegisterClassEx
RegisterHotKey
RegisterWindowMessage
RemoveMenu
ScreenToClient
ScrollWindowEx
SendMessage
SendNotifyMessage
SetCaretBlinkTime
SetClassLongPtr
SetClipboardViewer
SetDebugErrorLevel
SetDoubleClickTime
SetKeyboardState
SetMenu

SetMenulnfo
SetMessageExtralnfo
SetProcessDefaultLayout
SetRect

SetScrollPos

SetSystemCursor

PVF Reference Guide

LoadMenu1

LoadString
LockWorkStation
LRESULT
MapVirtualKeyEx
MessageBeep
MessageBoxIndirect
MonitorFromPoint
mouse_event
MsgWaitForMultipleObjectsEx
OemToChar
OpenClipboard
OpenlnputDesktop
PeekMessage
PostThreadMessage
PtinRect

RedrawWindow
RegisterClipboardFormat
RegisterRawInputDevices
ReleaseCapture
RemoveProp

ScrollDC
SendDlgltemMessage
SendMessageCallback
SetActiveWindow
SetCaretPos
SetClassWord

SetCursor

SetDIgltemint

SetFocus
SetlLastErrorEx
SetMenuContextHelpld
SetMenultemBitmaps
SetMessageQueue
SetProcessWindowStation
SetRectEmpty
SetScrollRange
SetThreadDesktop

Fortran Module/Library Interfaces for Windows

LoadMenu2
LockSetForegroundWindow
LookuplconldFromDirectory
MapDialogRect
MapWindowPoints
MessageBox

ModifyMenu1
MonitorFromRect
MoveWindow
NotifyWinEvent
OemToCharBuff
OpenDesktop
OpenWindowStation
PostMessage

PrintWindow
RealChildWindowFromPoint
RegisterClass
RegisterDeviceNotification
RegisterShellHookWindow
ReleaseDC

ReplyMessage
ScrollWindow

SendInput
SendMessageTimeout
SetCapture

SetClassLong
SetClipboardData
SetCursorPos
SetDIgltemText
SetForegroundWindow
SetLayeredWindowAttributes
SetMenuDefaultitem
SetMenulteminfo
SetParent

SetProp

SetScrollinfo

SetSysColors

SetTimer

SetUserObjectinformation
SetWindowLong
SetWindowPos
SetWindowsHookEx
SetWinEventHook
ShowOwnedPopups
ShowWindowAsync
SwitchDesktop
TabbedTextOut

ToAsCiiEx
TrackMouseEvent
TranslateAccelerator
UnhookWindowsHook
UnionRect
UnregisterDeviceNotification
UpdateLayeredWindowlIndirect
ValidateRect

VkKeyScanEx
WindowFromDC

wsprintf

7.5.9. winver

SetUserObjectSecurity
SetWindowLongPtr
SetWindowRgn
SetWindowText
ShowCaret
ShowScrollBar
SubtractRect
SwitchToThisWindow
TileWindows
ToUnicode
TrackPopupMenu
TranslateMDISysAccel
UnhookWindowsHookEx
UnloadKeyboardLayout
UnregisterHotKey
UpdateWindow
ValidateRgn
WaitForlnputldle
WindowFromPoint

wvsprintf

These are the functions that winwver includes:

GetFileVersioninfo

GetFileVersionInfoSize

7.5.10. wsock32

VerFindFile

VerlnstallFile

These are the functions that wsock32 includes:

accept
closesocket
getpeername
getprotobynumber
getsockname
htons

ioctlsocket

ntohs

send

PVF Reference Guide

AcceptEx
connect
gethostname
getservbyname
getsockopt
inet_addr

listen

recv

sendto

SetWindowContextHelpld
SetWindowPlacement
SetWindowsHook
SetWindowWord
ShowCursor
ShowWindow
SwapMouseButton
SystemParametersinfo
ToAscii

ToUnicodeEx
TrackPopupMenuEx
TranslateMessage
UnhookWinEvent
UnregisterClass
UpdateLayeredWindow
UserHandleGrantAccess
VkKeyScan
WaitMessage

WinHelp

VerLanguageName

VerQueryValue

bind
GetAcceptExSockaddrs
getprotobyname
getservbyport

htonl

inet_ntoa

ntohl

select

setsockopt

Fortran Module/Library Interfaces for Windows

183

shutdown
WSAAsyncGetHostByName
WSAAsyncGetServByName
WSACancelAsyncRequest
WSAGetLastError
WSASetBlockingHook

PVF Reference Guide

socket
WSAAsyncGetProtoByName
WSAAsyncGetServByPort
WSACancelBlockingCall
WSAIsBlocking
WSASetLastError

Fortran Module/Library Interfaces for Windows

TransmitFile
WSAAsyncGetProtoByNumber
WSAAsyncSelect
WSACleanup

WSARecvEx

WSAStartup

184

Chapter 8.
MESSAGES

This section describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler
always displays any error messages, along with the erroneous source line, on the screen. If you
specify the -M11i st option, the compiler places any error messagesin the listing file. Y ou can
also use the —v option to display more information about the compiler, assembler, and linker
invocations and about the host system. For more information on the -M11i st and —v options,
refer to ‘Using Command Line Options’ in the PGI Compiler User’s Guide.

8.1. Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information includes information such as syntax errors. Semantic information includes
information such as unreachable code.

Y ou can specify that the compiler displays error messages at a certain level with the -Minform
option.

The compiler messages refer to a severity level, a message number, and the line number where
the error occurs.

The compiler can also display internal error messages on standard error. |If your compilation
produces any internal errors, contact The Portland Group’ s technical reporting service by sending
e-mail to trs@pgroup.com.

If you usethelisting file option —M1 1 st, the compiler places diagnostic messages after the
source linesin thelisting file, in the following format:

PGFTN-etype-enum-message (filename: line)

Where:
etype
is acharacter signifying the severity level
enum
isthe error number
message
isthe error message

PVF Reference Guide 185

Messages

filename
isthe source filename
line
is the line number where the compiler detected an error.

8.2. Phase Invocation Messages

Y ou can display compiler, assembler, and linker phase invocations by using the —v command
line option. For further information about this option, refer to the * Using Command Line Options
section of the PGI Visual Fortran User Guide.

8.3. Fortran Compiler Error Messages

This section presents the error messages generated by the PGF77, PGF95, and PGFORTRAN
compilers. The compilers display error messages in the program listing and on standard output.
They can aso display internal error messages on standard error.

8.3.1. Message Format

Each message is numbered. Each message also lists the line and column number where the error
occurs. A dollar sign ($) in amessage represents information that is specific to each occurrence of

the message.

8.3.2. Message List

Error message severities:

[

informative
w

warning
S

severe error
F

fatal error
\%

variable

V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error — athough it may be
possible for auser error to cause an internal error. The severity may vary; if it isinformative or
warning, correct object code was probably generated, but it is not safe to rely on this. Regardless
of the severity or cause, internal errors should be reported to trs@pgroup.com.

FO01l Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after
them.

PVF Reference Guide 186

http://www.pgroup.com/resources/docs.htm

Messages

F002 Unable to open source input file: $

Source file name is misspelled, fileis not in current working directory, or file is read protected.
FO03 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 $ S

Generic message for file errors.

FOO05 Unable to open temporary file

Compiler uses directory specified by the environment variables STMP or STMPDIR inwhich
to create temporary files. If neither of these directoriesis available on the node on which the
compiler is being used, this error will occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler
directives.

FO07 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other non-
recoverable problem related to the size of the subprogram. If this error occurs at opt 2, reducing
the opt level to 1 may work around the problem. Moving the subprogram being compiled to its
own source file may eliminate the problem. If this error occurs while compiling a subprogram of
fewer than 2000 statements it should be reported to the compiler maintenance group as a possible
compiler problem.

FO08 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on
the command line.

FO09 Unable to open assembly file

Probably, user does not have write permission for the current working directory.
F010 File write error occurred $

Probably, file systemisfull.

S011 Unrecognized command line switch: $

Refer to PGI Compiler User’s Guide for list of allowed compiler switches.
S012 Value required for command line switch: $

Certain switches require an immediately following value, such as"-opt 2".

S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $
Too short an abbreviation was used for one of the switches.

WO01l5 Hexadecimal or octal constant truncated to fit data type

PVF Reference Guide 187

Messages

I0l16 Identifier, $, truncated to 63 chars
Anidentifier may be at most 63 charactersin length; characters after the 63rd are ignored.
S017 Unable to open include file: $

File ismissing, read protected, or maximum include depth (10) exceeded. Remember that the file
name should be enclosed in quotes.

S018 Illegal label $ $

Used for labd 'field' errorsor illegal values. E.g., in fixed source form, the label field (first five
characters) of the indicated line contains a non-numeric character.

S019 Illegally placed continuation line

A continuation line does not follow an initia line, or more than 99 continuation lines were
specified.

S020 Unrecognized compiler directive

Refer to user’s manual for list of allowed compiler directives.

S021 Label field of continuation line is not blank
Thefirst five characters of a continuation line must be blank.

S022 Unexpected end of file - missing END statement

S023 Syntax error - unbalanced $
Unbalanced parentheses or brackets.
W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough to
contain al of the characters in the constant. This type conversion occurs when the constant is
used in an arithmetic expression or is assigned to a non-character variable. The character or
hollerith constant is truncated on theright, that is, if 4 characters are needed then the first 4 are
used and the remaining characters are discarded.

W025 TIllegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not alegal Fortran character
(charactersinside of character or Hollerith constants cannot cause this error). As ageneral rule,
all non-printing characters are treated as white space characters (blanks and tabs); no error
message is generated when this occurs. If for some reason, a non-printing character is not treated
as awhite space character, its hex representation is printed in the form dd where each d is a hex
digit.

S026 Unmatched quote

S027 Illegal integer constant: $

Integer constant istoo large for 32 bit word.

5028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

PVF Reference Guide 188

Messages

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits0..9 and
letters A..F or a..f; any other character in a hexadecimal constant isillegal. An octal constant
consists of digits 0..7; any other digit or character in an octal constant isillegal. A binary constant
consists of digits 0 or 1; any other digit or character in abinary constant isillegal.

S030 Explicit shape must be specified for $

S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that isa
member of the set of allowed values for this particular data type.

W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g.
DIMENSION A(10)*4).

S033 Illegal use of constant $

A constant was used in aniillegal context, such as on the left side of an assignment statement or as
the target of adatainitialization statement.

S034 Syntax error at or near $

I035 Predefined intrinsic $ loses intrinsic property

Anintrinsic name was used in a manner inconsistent with the language definition for that
intrinsic. The compiler, based on the context, will treat the name as a variable or an external
function.

S036 Illegal implicit character range
First character must alphabetically precede second.
S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.

S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in atype statement; thisis required when the IMPLICIT
NONE statement occurs in the subprogram.

W039 Symbol, $, appears illegally in a SAVE statement $
Anidentifier appearing in a SAVE statement must be alocal variable or array.
S040 Illegal common variable $

Indicated identifier isadummy variable, is aready in acommon block, or has previously been
defined to be something other than a variable or array.

W041 Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified

on a PROGRAM statement. It can also occur if adummy argument name occursin aDATA,
COMMON, SAVE, or EQUIVALENCE statement. A program statement must have an empty
argument list.

PVF Reference Guide 189

Messages

S042 $ is a duplicate dummy argument

S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of
the same symbol. This can happen for a number of reasons. The message attempts to indicate the
situation that occurred.

intrinsic - An attempt was made to redefine an intrinsic function. A symbol that represents an
intrinsic function may be redefined if that symbol has not been previously verified to be an
intrinsic function. For example, theintrinsic sin can be defined to be an integer array. If a
symbol is verified to be an intrinsic function viathe INTRINSIC statement or viaan intrinsic
function reference then it must be referred to as an intrinsic function for the remainder of the
program unit.

symbol - An attempt was made to redefine a symbol that was previously defined. An example
of thisisto declare a symbol to be a PARAMETER which was previously declared to be a
subprogram argument.

S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previoudy declared asan ENTRY .

S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsi stent with the data type of the
current function. For example, the function returns type character and an entry point returns type
complex.

S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the
other data types. Suppose, we want to declare arrays ARRAY A and ARRAY B to have 8 elements
each having an element length of 4 bytes. The differenceisthat ARRAYA is character and
ARRAYB isinteger. The declarations would be CHARACTER ARRAYA(8)*4 and INTEGER
ARRAY B*4(8).

S047 More than seven dimensions specified for array

5048 Illegal use of "*’ in declaration of array $
An asterisk may be used only as the upper bound of the last dimension.
S049 Illegal use of ’'*’ in non-subroutine subprogram

The alternate return specifier '*’ islegal only in the subroutine statement. Programs, functions,
and block data are not allowed to have alternate return specifiers.

S050 Assumed size array, $, is not a dummy argument

o

S051 Unrecognized built-in % function

The allowable built-in functions are %V AL, %REF, %L OC, and %FILL. One was encountered
that did not match one of these alowed forms.

S052 Illegal argument to $VAL or $LOC

PVF Reference Guide 190

Messages

S053 SREF or %VAL not legal in this context

The built-in functions %REF and %V AL can only be used as actual parametersin procedure
cals.

W054 Implicit character $ used in a previous implicit statement

Animplicit character has been given an implied data type more than once. The implied data type
for theimplicit character is changed anyway.

WO055 Multiple implicit none statements
The IMPLICIT NONE statement can occur only once in a subprogram.
W056 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will
produce a warning message for IMPLICIT statements.

S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.
S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not
optimal for variables of its datatype. This can occur when INTEGER and CHARACTER data are
equivalenced, for instance.

I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop
The indicated variableis referenced whereiit is not an active implied DO index variable.

S065 Repeat factor less than zero
S066 Too few data constants in initialization statement
5067 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range 0 through
255

PVF Reference Guide 191

Messages

A CHARACTER* 1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant isin the range 0 through 255.

5069 Illegal implied DO expression
The only operations allowed within an implied DO expression are integer +, -, *, and /.
S070 Incorrect sequence of statements $

The statement order isincorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.

S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be avariable, array reference, or vector
reference. The assignment operation may be by way of an assignment statement, a data statement,
or the index variable of an implied DO-loop. The compiler has determined that the identifier used
asthe destination is not a storage location. The error message attempts to indicate the type of
entity used.

entry point - An assignment to an entry point that was not a function procedure was attempted.

external procedure - An assignment to an external procedure or a Fortran intrinsic name
was attempted. If the identifier isthe name of an entry point that is not a function, an externa
procedure.

S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ S

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of afixed datatype.

S075 Subscript, substring, or argument illegal in this context
for $

This can happen if you try to doubly index an array such as ra(2)(3). This also appliesto substring
and function references.

S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$
S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

PVF Reference Guide 192

Messages

S083 Vector expression used where scalar expression required

A vector expression was used in anillegal context. For example, iscalar = iarray,
where ascalar is assigned the value of an array. Also, character and record references are not
vectorizable.

S084 Illegal use of symbol $ $
This message is used for many different errors.

S085 Incorrect number of arguments to statement function $
S086 Dummy argument to statement function must be a variable
S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $
A function may not call itself.
S089 TIllegal use of symbol, $, with character length = *

Symbols of type CHARACTER* (*) must be dummy variables and must not be used as statement
function dummy parameters and statement function names. Also, adummy variable of type
CHARACTER*(*) cannot be used as afunction.

S090 Hollerith constant more than 4 characters
In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within 1/O statements,
must not consist of a concatenation involving a passed length character variable.

W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other
datatype. The compiler generates code to convert the expression into the required type.

S094 Variable $ is of wrong data type $
Theindicated variable is used in a context which requires a variable of some other datatype.
S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other
datatype.

S096 Illegal complex comparison

Thereations.LT., .GT., .GE., and .LE. are not allowed for complex values.

S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.

S098 Divide by zero

PVF Reference Guide 193

Messages

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted
I/0 statements, and as parameters to subprograms. They may not appear, for example, in
expressions. Also, records with differing structure types may not be assigned to one another.

S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector illegally. For
example, the assignment of a character constant string to a character array. Records, too, cannot
be promoted to vectors.

S101 Vector operation not allowed on $
Record and character typed entities may only be referenced as scalar quantities.
S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double
precision scalar expression.

S103 Type conversion of subscript expression for $
The data type of a subscript expression must be integer. If it isnot, it is converted.
S104 Illegal control structure $

This message isissued for a number of errorsinvolving IF-THEN statements, DO loops, and
directives. Y ou may see one of the following messages:

PGF90-5-0104-T1legal control structure - unterminated PARALLEL
directive

PGF90-5-0104-I1legal control structure - unterminated block IF

If the line number specified isthe last line (END statement) of the subprogram, the error

is probably an unterminated DO loop or IF-THEN statement. If the message contains
unterminated PARALLEL directive,itislikely youare missing therequired ! Somp
end parallel directive.

5105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement.

S106 DO index variable must be a scalar variable

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.

S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $
A NAMELIST group can only consist of arrays and scalars.

I109 Overflow in $ constant $, constant truncated at left

PVF Reference Guide 194

Messages

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits
produces an overflow. The constant is truncated at |eft (e.g. ' 1234567890abcdef1’ x will be
' 234567890abcdef1’ x).

I110 <reserved message number>

I111 Underflow of real or double precision constant
I112 Overflow of real or double precision constant
S113 Label $ is referenced but never defined

S114 Cannot initialize $

W1l5 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition
The statement may not appear in a STRUCTURE or derived type definition.

5118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $
Data type of indicated symbol specified more than once.

I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, alogical expression can consist of only logical elements of type integer
or logical. Real datawould beinvalid.

I122 Character string truncated

Character string or Hollerith constant appearing in aDATA statement or PARAMETER
statement has been truncated to fit the declared size of the corresponding identifier.

W123 Hollerith length specification too big, reduced

The length specifier field of ahollerith constant specified more characters than were present in
the character field of the hollerith constant. The length specifier was reduced to agree with the
number of characters present.

S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.

I125 Dummy procedure $ not declared EXTERNAL

PVF Reference Guide 195

Messages

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram
namein a CALL statement, or is called as afunction, and is therefore assumed to be a dummy
procedure. This message can result from afailure to declare adummy array.

I126 Name $ is not an intrinsic function
I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

Aninteger constant will be truncated when assigned to data types smaller than 32-bits, such asa
BYTE.

I129 Floating point overflow. Check constants and constant
expressions

I130 Floating point underflow. Check constants and constant
expressions

I131 Integer overflow. Check floating point expressions cast to
integer

I132 Floating pt. invalid oprnd. Check constants and constant
expressions

I133 Divide by 0.0. Check constants and constant expressions
S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.

W136 Field-namelist not allowed

Thefield-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.

W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.

S140 Variable $ is not a RECORD
S141 RECORD required on left of $
S142 $ is not a member of this RECORD

S143 $ requires initializer

PVF Reference Guide 196

Messages

W144 NEED ERROR MESSAGE $ $
Thisis used as atemporary message for compiler development.
W1l45 SFILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It isonly
valid when used within a STRUCTURE multiline statement even though it isignored.

S146 Expression must be character type
S147 Character expression not allowed in this context

5148 Reference to $ required

An aggregate reference to a record was expected during statement compilation but another data
type was found instead.

S149 Record where arithmetic value required
An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or member $ not allowed in
this context

A structure, record, or member reference was found in a context which is not supported.
S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP -
ENDM AP declaration contains no members.

S152 All dimension specifiers must be ’:’

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor
S155 $§ 3

S156 Number of colons and triplets must be equal in ALIGN $ with
$

S157 Illegal subscript use of ALIGN dummy $ - S

S158 Alternate return not specified in SUBROUTINE or ENTRY

An dternate return can only be used if alternate return specifiers appeared in the SUBROUTINE
or ENTRY statements.

S159 Alternate return illegal in FUNCTION subprogram
An dternate return cannot be used in a FUNCTION.

S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

PVF Reference Guide 197

Messages

W162 Not equal test of loop control variable $ replaced with < or
> test.

5163 <reserved message number>

S164 Overlapping data initializations of $
An attempt was made to data initialize a variable or array element already initialized.
S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only
when an assembly file is the output of the compiler.

S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable
only when an assembly file is the output of the compiler.

I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its sizeis not identical.
The maximum size is chosen. The message is applicable only when an assembly file is the output
of the compiler.

S168 Incompatible size of common block $

A common block occurs in more than one subprogram of a source file and isinitialized in one
subprogram. Itsinitialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.

W169 Multiple data initializations of common block $

A common block isinitialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly fileis the output of the
compiler.

W170 PGI Fortran extension: $ $
Use of anonstandard feature. A description of the featureis provided.

W171 PGI Fortran extension: nonstandard statement type $

W172 PGI Fortran extension: numeric initialization of CHARACTER $
A CHARACTER*1 variable or array element was initialized with a numeric value.

W173 PGI Fortran extension: nonstandard use of data type length
specifier

W174 PGI Fortran extension: type declaration contains data

initialization

W175 PGI Fortran extension: IMPLICIT range contains nonalpha
characters

PVF Reference Guide 198

Messages

W1l76 PGI Fortran extension: nonstandard operator $

W177 PGI Fortran extension: nonstandard use of keyword argument $
W178 <reserved message number>

W179 PGI Fortran extension: use of structure field reference $
W180 PGI Fortran extension: nonstandard form of constant

W181 PGI Fortran extension: & alternate return

W182 PGI Fortran extension: mixed non-character and character
elements in COMMON $

W183 PGI Fortran extension: mixed non-character and character
EQUIVALENCE (S,5)

W184 Mixed type elements (numeric and/or character types) in
COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE (S$,$)
S186 Argument missing for formal argument $

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual
argument to array dummy argument

S190 Argument number $ to $: non-conformable arrays

S191 Argument number $ to $ cannot be an assumed-size array
S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)
W194 INTENT (IN) argument cannot be defined - $

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS
statement

PVF Reference Guide 199

Messages

Anillega qualifier was found or avalue was specified for a qualifier which does not expect a
value. In either case, the qualifier for which the error occurred isindicated in the error message.

S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference
A memory reference occurred whose address does not meet its data alignment requirement.

S200 Missing UNIT/FILE specifier
S201 Illegal I/0 specifier - S
S202 Repeated I/0 specifier - $
S203 FORMAT statement has no label

5204 $ s

Miscellaneous I/O error.

5205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.

5206 Repeat count is zero

5207 Integer constant expected in edit descriptor
5208 Period expected in edit descriptor

5209 Illegal edit descriptor

5210 Exponent width not used in the Ew.dEe or Gw.dEe edit
descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist 1/0 cannot be performed with internal, unformatted, formatted, and list-directed 1/0.
Also, I/O lists must not be present.

S213 $ is not a NAMELIST group name
5214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/0 item or
specifier

An assumed size array was used as an item to be read or written or as an |/O specifier (i.e.,, FMT
= array-name). In these contexts the size of the array must be known.

S216 STRUCTURE/UNION cannot be used as an I/0 item

PVF Reference Guide 200

Messages

S217 ENCODE/DECODE buffer must be a variable, array, or array
element

S218 Statement labeled $ $
5219 <reserved message number>
5220 Redefining predefined macro $

S221 #elif after #else

A preprocessor #elif directive was found after a#else directive; only #endif isallowed in this
context.

S222 #else after #else

A preprocessor #else directive was found after a#else directive; only #endif isalowed in this
context.

S223 #if-directives too deeply nested
Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).
S224 Actual parameters too long for $

Thetotal length of the parametersin a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parameters in the macro’s definition.

F226 Can’t find include file $
The indicated include file could not be opened.
S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed
(currently 2048).

5228 EOF in comment

The end of afile was encountered while processing a comment.

S229 EOF in macro call to $

The end of afile was encountered while processing a call to the indicated macro.
S230 EOF in string

The end of afile was encountered while processing a quoted string.

S231 Formal parameters too long for $

Thetotal length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

5232 Identifier too long

PVF Reference Guide 201

Messages

The length of an identifier exceeded the maximum allowed (currently 2048).

5233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a# sign was not an identifier.

W235 Illegal macro name

A macro name was not an identifier.

S236 Illegal number $

The indicated number contained a syntax error.

F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W238 Missing #endif

End of file was encountered before a required #endif directive was found.

W239 Missing argument list for $

A call of the indicated macro had no argument list.

5240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W241 Redefinition of symbol $

The indicated macro name was redefined.

1242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.
F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W245 Syntax error in #define, missing blank after name or arglist
There was no space or tab between a macro name or argument list and the macro’ s definition.
S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S247 Syntax error in #include

The #include directive was not correctly formed.

W248 Syntax error in #line

A #line directive was not correctly formed.

PVF Reference Guide 202

Messages

W249 Syntax error in #module

A #module directive was not correctly formed.

W250 Syntax error in #undef

A #undef directive was not correctly formed.

W251 Token after #ifdef must be identifier
The #ifdef directive was not followed by an identifier.

W252 Token after #ifndef must be identifier
The #ifndef directive was not followed by an identifier.

S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).

S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).

F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be
recursive.

W256 Undefined directive $

The identifier following a# was not a directive name.

F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and 0 values areillegal for aposition in afile.
S257 EOF in #include directive

End of file was encountered while processing a#include directive.

S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #dlif directive.

S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.

S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterminated string or character constant

PVF Reference Guide 203

Messages

A newline with no preceding backslash was found in a quoted string.
1264 Possible nested comment
The characters /* were found within a comment.

5265 <reserved message number>
5266 <reserved message number>
5267 <reserved message number>
W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch
This message may be severe if the compilation has gone too far to undo the inlining process.

F270 Missing -exlib option

W271 Can’t inline $ - wrong number of arguments

1272 Argument of inlined function not used

5273 Inline library not specified on command line (-inlib switch)
F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined
subprogram

I277 Inlining of function $ may result in recursion
5278 <reserved message number>

W279 Possible use of $ before definition in $

The optimizer has detected the possibility that a variable is used before it has been assigned a
value. The names of the variable and the function in which the use occurred are listed. The line
number, if specified, isthe line number of the basic block containing the use of the variable.

W280 Syntax error in directive $
Messages 280-300 reserved for directives handling

W281 Directive ignored - $ $
S300 Too few data constants in initialization of derived type $

S301 $ must be TEMPLATE or PROCESSOR

PVF Reference Guide 204

Messages

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$
S305 $ cannot be named, $

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO,
or arithmetic IF

S309 Incorrect name, $, specified in END statement

S310 $ S
Generic message for MODULE errors.

W31l Non-replicated mapping for $ array, $, ignored

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is

not an asterisk

The call passes alabel to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the aternate return.

I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.
I316 IPA: routine $, $ INTENT (IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.
I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.

I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.

I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.

I320 IPA: routine $, $ common blocks optimized

This many mapped common blocks were optimized by interprocedural analysis.

PVF Reference Guide 205

I321

Messages

IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either

because they were declared differently in different routines, or they did not appear in the main

program.

I322

Interprocedural analysisis building the call graph and propagating information with the named

IPA: analyzing main program $

main program.

I323

IPA: collecting information for $

Interprocedural analysisis saving information for the current subprogram for subsequent analysis

and propagation.

W324 IPA file $ appears to be out of date

IPA file $ is for wrong subprogram: $

W325

W326 Unable
1327 IPA: S
1328 IPA: S
1329 IPA: S
I330 IPA: S
I331 IPA: S
1332 IPA: S
1333 IPA: S
1334 IPA: S
1335 IPA: S
verified
1336 IPA: S
verified
1337 IPA: S
1338 IPA: $

to open file $ to propagate IPA information to $
subprograms analyzed

dummy arguments replaced by constants

INTENT (IN) dummy arguments should be INTENT (INOUT)
dummy arguments changed to INTENT (IN)

inherited array alignments replaced

transcriptive distribution formats replaced
transcriptive distribution targets replaced
descriptive/prescriptive array alignments verified

descriptive/prescriptive distribution formats

descriptive/prescriptive distribution targets

common blocks optimized

common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

PVF Reference Guide

206

Messages

S341 Unable to create file $ while analyzing IPA information
S342 Unable to open file $ while analyzing IPA information
S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysisfailed due to atable overflowing its maximum size.

W346 Subprogram $ appears twice

The subprogram appears twice in the same source file; IPA will ignore the first appearance.
F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, Or —
ipapropagate options, requiresthe -ipalib option to specify the library directory.

W348 Common /$/ $ has different distribution target

The array was declared in acommon block with a different distribution target in another
subprogram.

W349 Common /$/ $ has different distribution format

The array was declared in acommon block with a different distribution format in another
subprogram.

W350 Common /$/ $ has different alignment
The array was declared in acommon block with a different alignment in another subprogram.
W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.

W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.

W353 Subprogram $ is missing

A call to asubroutine or function with this name appears, but it could not be found or analyzed.
I354 Subprogram $ is not called

No callsto the given subroutine or function appear anywhere in the program.

W355 Missing argument in call to $

A nonoptional argument ismissing in a call to the given subprogram.

I356 Array section analysis incomplete

PVF Reference Guide 207

Messages

Interprocedural analysis for array section arguments isincomplete; some information may not be
available for optimization.

I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be
available for optimization.

W358 Dummy argument $ is EXTERNAL, but actual is not subprogram
The call statement passes a scalar or array to adummy argument that is declared EXTERNAL.
W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as afunction.

W360 FUNCTION $ passed to FUNCTION dummy argument $ with
different result type

The call statement passes a function argument to a function dummy argument, but the dummy has
adifferent result type.

W361 FUNCTION $ passed to SUBROUTINE dummy argument $

The call statement passes a function name to adummy argument that is used as a subroutine.
W362 Argument $ has a different type than dummy argument $
Thetype of the actual argument is different than the type of the corresponding dummy argument.
W363 Dummy argument $ is a POINTER but actual argument $ is not
The dummy argument is a pointer, so the actual argument must be also.

W364 Array or array expression passed to scalar dummy argument $
The actual argument is an array, but the dummy argument is ascalar variable.

W365 Scalar or scalar expression passed to array dummy argument $
The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

Aninternal error occurred during interprocedural analysis; please report this to the compiler
maintenance group. If user errors were reported when collecting IPA information or during 1PA
analysis, correcting them may avoid this error.

I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array
to sequential storage. The most common causeis passing an ALLOCATABLE array or array
expression to a dummy argument that is declared with explicit bounds. Declaring the dummy
argument as assumed shape, with bounds (:,:,:), will remove this warning.

W368 Array-valued expression passed to scalar dummy argument $
The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

W369 Dummy argument $ has different rank than actual argument

PVF Reference Guide 208

Messages

The actual argument is an array or array-valued expression with a different rank than the dummy
argument.

W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.

W371 Dummy argument $ is INTENT (IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the argument
may be modified; the INTENT(IN) declaration should be changed.

W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a dummy
argument with non- inherited alignment.

I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution format to a
dummy argument with prescriptive or descriptive distribution format.

I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution target to a
dummy argument with prescriptive or descriptive distribution target.

I375 Distribution format mismatch between $ and $
Usually this arises when the actual and dummy arguments are distributed in different dimensions.
I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its template than
does the dummy argument.

I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its template
than does the dummy argument.

I378 Distribution target mismatch between $ and $
This may arise when the actual and dummy arguments have different distribution target sizes.
I379 Alignment of $ is too complex

The alignment specification of the array istoo complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of I1PA.

I380 Distribution format of $ is too complex

The distribution format specification of the array istoo complex for interprocedural analysisto
verify or propagate; the program will work correctly, but without the benefit of IPA.

I381 Distribution target of $ is too complex

The distribution target specification of the array istoo complex for interprocedural analysisto
verify or propagate; the program will work correctly, but without the benefit of IPA.

PVF Reference Guide 209

Messages

I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole
program.

I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be
replaced by constants.

I384 IPA: $ dummy arguments changed to INTENT (IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).

W385 IPA: $ INTENT(IN) dummy arguments should be INTENT (INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were
declared as INTENT(IN) but should be INTENT(INOUT).

I386 IPA: $ array alignments propagated

Interprocedural analysis has found this many array dummy arguments that could have the
inherited array alignment replaced by a descriptive alignment.

I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many
array dummy arguments match the alignments of the actual argument.

I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution format replaced by a descriptive format.

I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of
this many array dummy arguments match the formats of the actual argument.

I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution target replaced by a descriptive target.

I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this
many array dummy arguments match the targets of the actual argument.

I392 IPA: $ common blocks optimized
Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be optimized, either
because the common block was not declared in the main program, or because it was declared
differently in different subprograms.

I394 IPA: $ replaced by constant value

PVF Reference Guide 210

Messages

The dummy argument was replaced by a constant as per interprocedural analysis.

I395 IPA: $ changed to INTENT (IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.

I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural analysis.
I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural analysis.
I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural analysis.
I399 IPA: common block $ not optimized

The given common block was not optimized by interprocedural analysis either because it was not
declared in the main program, or because it was declared differently in different subprograms.

E400 IPA: dummy argument $ is an asterisk, but actual argument is
not a label

The subprogram expects an alternate return label for this argument.

E401 Actual argument $ is a subprogram, but Dummy argument $ is
not declared EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar
variable or array.

E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are
declared with the HPF SEQUENCE attribute.

E404 Sequential array section of $ in argument $ is not
contiguous

When passing an array section to aformal argument that has the HPF SEQUENCE attribute, the
actual argument must be awhole array with the HPF SEQUENCE attribute, or an array section of
such an array where the section is a contiguous sequence of elements.

E405 Array expression argument $ may not be passed to sequential
dummy argument $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a
whole array with the HPF SEQUENCE attribute or a contiguous array section of such an array,
unless an INTERFACE block is used.

E406 Actual argument $ and formal argument $ have different
character lengths

PVF Reference Guide 211

Messages

The actual and formal array character arguments have different character lengths, which is
allowed only if both character arrays are declared with the HPF SEQUENCE attribute, unless an
INTERFACE block is used.

W407 Argument $ has a different character length than dummy
argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.

W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data
subprogram.

W409 More than one main program in IPA directory: $ and $

Thereis more than one main program analyzed in the | PA directory shown. The first one found is
used.

W410 No main program found; IPA analysis fails.

The main program must appear in the |PA directory for analysis to proceed.

W41l Formal argument $ is DYNAMIC but actual argument is an
expression

W412 Formal argument $ is DYNAMIC but actual argument $ is not

I413 Formal argument $ has two reaching distributions and may be
a candidate for cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased because the
same variable is passed in both argument positions; or one formal argument and a global or
COMMON variable may be aliased, because the global or COMMON variable is passed as an
actual argument. If either dliasis assigned in the subroutine, unexpected results may occur; this
message alerts the user that this situation is disallowed by the Fortran standard.

F415 IPA fails: incorrect IPA file

Interprocedural analysis savesitsinformation in special 1PA filesin the specified |PA directory.
One of these files has been renamed or corrupted. This can arise when there are two files with the
same prefix, suchasa.hpf and a. £90.

E416 Argument $ has the SEQUENCE attribute, but the dummy
parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must
have the SEQUENCE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTINE but should be a
FUNCTION

PVF Reference Guide 212

Messages

E418 Interface block for $ is a FUNCTION but should be a
SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result type
W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine
E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

E424 Equivalence using substring or vector triplets is not
allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments
E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to
complete

W432 Illegal type conversion $
E433 Subprogram $ called within INDEPENDENT loop not LOCAL
W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as 'real a(-1)’, or an upper
bound less than the lower bound, as'real a(4:2)’.

W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.

E438 $ $ not supported on this platform

PVF Reference Guide 213

Messages

This construct is not supported by the compiler for thistarget.

S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE
statement or WHERE block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host
- S8

S443 EQUIVALENCE of derived types not supported on this host - $
S444 Derived type in EQUIVALENCE statement must have SEQUENCE

attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type
must have the SEQUENCE attribute, but does not.

E445 Array bounds must be integer $ $
The expressions in the array bounds must be integer.
S446 Argument number $ to $: rank mismatch

The number of dimensionsin the array or array expression does not match the number of
dimensions in the dummy argument.

S447 Argument number $ to $ must be a subroutine or function name
S448 Argument number $ to $ must be a subroutine name

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not
supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO
-$S
S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association
can appear inaMODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a member
array section - $

PVF Reference Guide 214

Messages

A reference like A(:)%B(:), where’ A’ isaderived type array and B’ isamember array, is not
allowed; a section subscript may appear after 'A’ or after 'B’, but not both.

S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

5458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot
have the POINTER attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $
S465 Functions returning a POINTER require an explicit interface
S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE
attribute

W468 Argument to ISO C BINDING intrinsic must have TARGET
attribute set

W469 Character argument to C LOC intrinsic must have length of
one

W470 Accelerator feature license not found; accelerator features
disabled

W471 CUDA Fortran feature license not found; CUDA Fortran
features disabled

E472 A Scalar element of a nonsequential array cannot be passed
to a dummy array argument - $

A subroutine or function call may not pass an element of an array, like'A(N)', to adummy array
argument if the array 'A' is not sequential. If the array is sequential, then Fortran sequence and
storage association rules will treat the dummy argument as a new array equivalenced to the actual
argument starting at the element passed. If the array is not sequential, then Fortran sequence and
storage association rules do not apply.

PVF Reference Guide 215

Messages

W473 $ must have the PURE attribute

F474 This type EXTRINSIC is not yet implemented - $

Contact PGI to ask when this EXTRINSIC type will be implemented.

E475 A dummy argument may not be distributed in a PURE interface
-9

A dummy argument to a routine defined with a PURE interface may not have the DISTRIBUTE
attribute.

E476 A dummy argument may only be aligned with another dummy in a
PURE interface - $

E477 The device array section actual argument was not stride-1 in
the leading dimension - $

A device (device, shared, or constant attribute) array passed as an array section to an assumed-
shape dummy argument must be stride-1 in the leading dimension.

E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to adummy argument with the Accelerator
REFLECTED attribute must be a symbal that has a visible device copy. Expressions are not
allowed.

E479 The dummy argument $ is REFLECTED; the actual argument $
must have a visible device copy

If adummy argument has the Accelerator REFLECTED attribute, the actual argument must be
asymbol with avisible device copy. This may be because the symbol appeared in aMIRROR,
REFLECTED, COPYIN, COPYOUT, COPY or LOCAL declarative Accelerator directive, or
because it appeared in a COPYIN, COPYOUT, COPY or LOCAL clause for an Accelerator
DATA REGION or REGION surrounding the procedure call.

E480 Argument $ is passed to dummy argument $, which is
REFLECTED; the actual argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the actual
argument must be copied to atemporary array. This may occur if the dummy argument is not
assumed-shape, and so must be contiguous in memory, or if the actual argument isnot stride-1 in
the leftmost (first) dimension. In these cases, the REFLECTED argument is not supported.

F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a dummy
argument to the subprogram.

482 COMMON /$/ is declared differently in two subprograms - $

The COMMON block name was declared with different distribution or alignment for one or more
members in two different subprograms.

E483 Storage association due to EQUIVALENCE ($,$) causes HPF
alignments and distributions to be ignored

PVF Reference Guide 216

Messages

An EQUIVALENCE statement causes Fortran storage association between entriesin this
COMMON block. The storage association overrides the HPF alignments and distributions for the
COMMON block members.

E484 Datatype conflict in EQUIVALENCE between two distributed or
aligned COMMON block members: $ and $

Two distributed COMMON block members that appear in a COMMON block must have the
same datatype.

E485 Datatype conflict in EQUIVALENCE between a distributed or
aligned COMMON block member and another: $ and $

A distributed COMMON block member may not be EQUIVALENCEd with another COMMON
member.

E486 The dummy argument $ is REFLECTED; an array element cannot
be passed to a REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy
argument.

E487 Index variable $ does not appear in a subscript on the left
hand side of the FORALL assignment

InaFORALL statement, each index variable in the FORALL must appear in some subscript of
the left hand side of the FORALL assignment. Otherwise, the FORALL will assign the same |eft
hand side elements for different values of that index.

I489 An ALLOCATE of a POINTER with transcriptive or inherited
distribution causes replication - $

When an array with the POINTER attribute and with a distribution that is transcriptive or
inherited is allocated, the alignment and distribution are ignored and the array pointer is treated as
replicated, since there is no symbol from which to inherit a distribution.

E488 The function call in the FORALL does not have the PURE
attribute - $

InaFORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise, they
cannot be called in paralel.

E490 An array section of $ is passed to the REFLECTED argument $,
which is not supported

When an actual argument is an array section, the dummy argument must not have the
REFLECTED attribute.

W491 EXTRINSIC(S) subprograms require an explicit interface - $

An EXTRINSIC subprogram with the LOCAL or SERIAL attributes require an explicit interface,
either through an INTERFACE black, or by being in the same MODULE asthe caller, or being
inaMODULE that is referenced with a USE statement.

E492 DYNAMIC distribution is only supported in HPF GLOBAL
subprograms - $

PVF Reference Guide 217

Messages

Variableswith DY NAMIC distribution are not supported in EXTRINSIC(F77_LOCAL),
EXTRINSIC(F77_SERIAL), EXTRINSIC(FO0_LOCAL), EXTRINSIC(F90_SERIAL),
EXTRINSIC(HPF_LOCAL) or EXTRINSIC(HPF_SERIAL) subprograms.

E493 $ arrays may not be aligned with ALLOCATABLE arrays - S

Static local arrays, common arrays, and dummy argument arrays may not be aligned with arrays
that have the ALLOCATABLE attribute, since the allocatable alignee may not be allocated.

E494 COMMON arrays may not be aligned with dummy argument arrays
- S
An array ina COMMON block may not specify an alignment with adummy argument array.

W495 The SHADOW directive for CYCLIC distributed dimensions is
ignored - $

A shadow boundary specified for array dimensions that are distributed with the CYCLIC
distribution is ignored.

I496 A $ of an unused template is eliminated

The HPF executable REDISTRIBUTE or REALIGN directive appeared specifying an HPF
TEMPLATE that is not used; the REDISTRIBUTE or REALIGN is eliminated.

E497 EXTRINSIC (F77 LOCAL) does not support distributed symbols of
this datatype - $

This HPF implementation does not support distributed symbols of character or derived typein
EXTRINSIC(F77_LOCAL) subprograms.

E498 Alignment cycle involving two or more arguments - $

This dummy argument appears in an HPF ALIGN directive specifying alignment to another
dummy argument that is then aligned to this argument, or aligned to another dummy argument
that is eventually aligned to this argument.

W499 The descriptive distribution or alignment for this dummy
argument is treated as prescriptive - $

Even though the distribution or alignment for this dummy argument was specified as descriptive,
it istreated as prescriptive.

E500 MODULE $ uses (directly or indirectly) MODULE $, which
causes a USE cycle

If MODULE A has a USE statement for MODULE B, we say that MODULE A directly uses
MODULE B. If MODULE B has a USE statement for MODULE C, we say that MODULE A
indirectly uses MODULE C. If MODULE C then has a USE statement for MODULE A, then
MODULE A indirectly usesitself, which isa USE cycle, and is not alowed.

E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be between 1
and the rank of the array or expression being transformed.

E505 DIM argument out of range for this reduction - $

PVF Reference Guide 218

Messages

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1 and the
rank of the expression being reduced.

E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with the
POINTER attribute.

E507 The arguments to MOVE ALLOC must be ALLOCATABLE - $
The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE attribute.

E508 The array objects in a call to an elemental function are not
conformable - $

When calling an elemental function, the arguments must be scalars or conformable arrays or array
expressions.

E509 Variables in a PURE subprogram may not have the SAVE
attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot save state in
aSAVEd variable.

E510 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching
ENDWHERE. The body of the WHERE construct can only contain assignment statements.

E511 The WHERE mask expression and the array assignment do not
conform

The assignment under control of a WHERE mask must have the same shape as the WHERE
mask.

E512 The WHERE mask is not an array expression
The WHERE mask expression must be alogical array expression.

E513 The alignment or distribution target may not be a private
variable - $

ThisisaHPF_CRAFT restriction.
E514 The alignment extends beyond the bounds of the template - $

When aligning to atemplate, the entire array must align to template elements that lie within the
bounds of the template.

E515 Static variable aligned with allocatable symbol - $

A nonallocatable symbol cannot be aligned to an allocatable symbol.

E516 PURE subprograms may not have distributed variables - $
Distributed arrays are not allowed in PURE subprograms.

E517 Variables in HPF LOCAL subprograms may not be distributed -
$

Distributed arrays are not allowed in HPF_L OCAL subprograms.

PVF Reference Guide 219

Messages

W518 Function result could not be distributed; replicating - $
The compiler will replicate the function result.

E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.

E520 Host MODULE data cannot be used in a DEVICE or GLOBAL
subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.

E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram
unless compiling for compute capability >= 2.0 - §

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE
except the MODULE containing the subprogram, unless they are being compiled for compute
capability 2.0 or higher. This feature requires the unified memory system provided in compute
capability 2.0.

E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram
unless compiling with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE
except the MODULE containing the subprogram, unless they are being compiled for compute
capability 2.0 or higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.

W523 MODULE data used in a DEVICE or GLOBAL subprogram forces
compute capability >= 2.0 only - $

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when
compiled for compute capability 2.0 or gresater.

E524 Dependency in assignment causes allocation of a temporary
which is not supported in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which requires
alocation of temporary storage to produce a correct result. Dynamic allocation of memory is not
supported in subprograms that run on the device.

E525 Array reshaping is not supported for device subprogram
calls: argument $ to subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy argument is not
supported in global or device subprograms. Thiswould require arun-time test and a possible run-
time copy to a dynamically allocated temporary array.

W526 SHARED attribute ignored on dummy argument $
The SHARED attribute has no meaning when applied to a dummy argument.

E527 Argument number $ requires allocation of a temporary which
is not supported in DEVICE or GLOBAL subprograms

PVF Reference Guide 220

Messages

Evaluation of the specified argument requires allocation of temporary storage for the result to
be passed to the subprogram being called. Dynamic allocation of memory is not supported in
subprograms that run on the device.

E528 Argument number $ to $: device attribute mismatch
Device attributes of the actual and formal arguments are not the same.

E529 PRINT and WRITE statements in device subprograms are only
supported when compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statementsin CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.

E530 PRINT and WRITE statements in device subprograms are only
supported with compute capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statementsin CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.

W531 PGI extension to OpenACC: $
This program isusing a PGl extension to OpenACC.
W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program isusing a PGl extension to
OpenACC.

E533 Clause $ not allowed in $ directive
This clause is not allowed on the specified directive.

E534 A loop scheduling directive may not appear within a KERNEL
loop

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL,
VECTOR, WORKER or GANG, may not appear inside aloop that has an accelerator loop
directive with the KERNEL clause. This clauseis not allowed on the specified directive.

E535 Undeclared symbol $ used in directive
Symbols used in OpenA CC directives must be declared.
S901 #elif after #else

A preprocessor #elif directive was found after a#else directive; only #endif is allowed in this
context.

S902 #else after #else

A preprocessor #else directive was found after a#else directive; only #endif is allowed in this
context.

W905 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parameters in the macro's definition.

F906 Can't find include file $

PVF Reference Guide 221

Messages

The indicated include file could not be opened.

5908 EOFin comment

The end of afile was encountered while processing a comment.

S909 EOFin macro call to $

The end of afile was encountered while processing a call to the indicated macro.
5912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
W914 Illegal directive name

The sequence of characters following a# sign was not an identifier.

W915 Illegal macro name

A macro name was not an identifier.

W918 Missing #endif

End of file was encountered before a required #endif directive was found.
W919 Missing argument list for $

A call of the indicated macro had no argument list.

5920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W921 Redefinition of symbol $

The indicated macro name was redefined.

1922 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.
F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S924 Syntax error in #define, formal $ not identifier
A formal parameter that was not an identifier was used in a macro definition.
S926 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S927 Syntax error in #include

The #include directive was not correctly formed.

W928 Syntax error in #line

A #line directive was not correctly formed.

WO929 Syntax error in #module

A #module directive was not correctly formed.

PVF Reference Guide 222

Messages

W930 Syntax error in #undef

A #undef directive was not correctly formed.

W931 Token after #ifdef must be identifier
The #ifdef directive was not followed by an identifier.

W932 Token after #ifndef must be identifier
The #ifndef directive was not followed by an identifier.

S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).

S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).

5935 Illegal context for VA ARGS

W936 Undefined directive $

The identifier following a# was not a directive name.

S937 EOFin #include directive

End of file was encountered while processing a#include directive.

S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #dlif directive.

S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
W941 Illegal token in directive, $

A directive token contains aillegal character.

S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S943 Unterminated string or character constant

A newline with no preceding backdash was found in a quoted string.

I944 Possible nested comment

The characters /* were found within a comment.

1945 Redefining predefined macro $

1946 Undefining predefined macro $

PVF Reference Guide 223

Messages

W947 Can't redefine predefined macro $
W948 Can't undefine predefined macro $

F949 #error -- $
User defined preprocessor error message.

W950 #ident not followed by quoted string

WO951 Extraneous tokens ignored following # directive
F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

5954 TIllegal number in directive

5955 TIllegal token in #if expression

S956 Missing > in #include

W957 Arguments in macro $ are not unique

S959 ## directive occurs at beginning or end of macro definition
S960 $ is not an argument

W961 No macro replacement within a character constant
W962 Macro replacement within a character constant
W964 Macro replacement within a string literal

F965 Recursive include file $

W966 Null argument to macro
Argument to macro isanull value.

F967 #warning -- $

User defined preprocessor warning message.
$969 Pragma $

Pragma operator errors.

PVF Reference Guide 224

Messages

8.4. Fortran Run-time Error Messages

This section presents the error messages generated by the run-time system. The run-time system
displays error messages on standard output.

8.4.1. Message Format

The messages are numbered but have no severity indicators because they all terminate program
execution.

8.4.2. Message List

Here are the run-time error messages:
201 illegal value for specifier

Animproper specifier value has been passed to an 1/O run-time routine. Example: within an
OPEN statement, form="unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an OPEN
statement, form="unformatted’, blank="null".

203 record length must be specified

A recl specifier required for an I/O run-time routine has not been passed. Example: within an
OPEN statement, access="direct' has been passed, but the record length has not been specified
(recl=specifier).

204 illegal use of a readonly file
Self explanatory. Check file and directory modes for readonly status.
205 'SCRATCH' and 'SAVE'/'KEEP' both specified

In an OPEN statement, afile disposition conflict has occurred. Example: within an OPEN
statement, status="scratch’ and dispose='keep' have both been passed.

206 attempt to open a named file as 'SCRATCH'
207 file is already connected to another unit
208 'NEW' specified for file that already exists
209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/0. The most probable
cause of fixed buffer overflow is exceeding the maximum number of simultaneously open file
units.

PVF Reference Guide 225

Messages

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.
215 formatted/unformatted file conflict
Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record
For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string
A run-time encoded format contains alexical or syntax error.

222 unbalanced parentheses in format string
223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format
An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format
An unexpected Fortran edit descriptor (FED) was found in arun-time format item.

228 end of file reached without finding group
229 end of file reached while processing group

230 scale factor out of range -128 to 127
Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion
233 too many constants to initialize group item

234 invalid edit descriptor

Aninvalid edit descriptor has been found in aformat statement.

235 edit descriptor does not match item type

Data types specified by 1/0 list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

PVF Reference Guide 226

Messages

237 quad precision type unsupported

238 tab value out of range
A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor
250 error in format - number missing after '.', '-', or '+'
251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)
254 illegal repeat count in format

255 illegal asynchronous I/0O operation

256 POS can only be specified for a 'STREAM' file

257 POS value must be positive

258 NEWUNIT requires FILE or STATUS=SCRATCH

PVF Reference Guide 227

Chapter 9.
CONTACT INFORMATION

Y ou can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637

Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm

All technical support is by e-mail or submissions using an online form at:
http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

PVF Reference Guide 228

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
©2013-2015 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Fortran Data Types
	1.1. Fortran Data Types
	1.1.1. Fortran Scalars
	1.1.2. FORTRAN 77 Aggregate Data Type Extensions
	1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

	Command-Line Options Reference
	2.1. PGI Compiler Option Summary
	2.1.1. Build-Related PGI Options
	2.1.2. PGI Debug-Related Compiler Options
	2.1.3. PGI Optimization-Related Compiler Options
	2.1.4. PGI Linking and Runtime-Related Compiler Options

	2.2. Generic PGI Compiler Options
	2.2.1. –#
	Default
	Usage
	Description
	Related options

	2.2.2. –###
	Default
	Usage
	Description
	Related options

	2.2.3. –acc
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.4. –Bdynamic
	Default
	Usage
	Description
	Related options

	2.2.5. –Bstatic
	Default
	Usage
	Description
	Related options

	2.2.6. –Bstatic_pgi
	Default
	Usage
	Description
	Related options

	2.2.7. –byteswapio
	Default
	Usage
	Description
	Related options

	2.2.8. –C
	Default
	Usage
	Description
	Related options

	2.2.9. –c
	Default
	Usage
	Description
	Related options

	2.2.10. –D
	Syntax
	Default
	Usage
	Description
	Related options

	2.2.11. –dryrun
	Default
	Usage
	Description
	Related options

	2.2.12. –drystdinc
	Default
	Usage
	Description
	Related options

	2.2.13. –E
	Default
	Usage
	Description
	Related options

	2.2.14. –F
	Default
	Usage
	Description
	Related options

	2.2.15. –fast
	Default
	Usage
	Description
	Related options

	2.2.16. –fastsse
	2.2.17. --flagcheck
	Default
	Usage
	Description
	Related options

	2.2.18. –flags
	Default
	Usage
	Description
	Related options

	2.2.19. –g
	Default
	Usage
	Description
	Related options

	2.2.20. –gopt
	Default
	Usage
	Description
	Related options

	2.2.21. –help
	Default
	Usage
	Description
	Related options

	2.2.22. –I
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.23. –i2, –i4, –i8
	Default
	Usage
	Description
	Related options

	2.2.24. –K<flag>
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.25. --keeplnk
	Usage
	Description
	Related options

	2.2.26. –L
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.27. –l<library>
	Syntax
	Description
	Related options

	2.2.28. –M
	2.2.29. –m
	Default
	Usage
	Description
	Related options

	2.2.30. –m32
	Usage
	Description
	Related options

	2.2.31. –m64
	Usage
	Description
	Related options

	2.2.32. –M<pgflag>
	2.2.33. –module <moduledir>
	Default
	Usage
	Description
	Related options

	2.2.34. –mp[=all, align,bind,[no]numa]
	Default
	Usage
	Description
	Related options

	2.2.35. –noswitcherror
	Default
	Usage
	Description
	Related options

	2.2.36. –O<level>
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.37. –o
	Default
	Syntax
	Usage
	Related options

	2.2.38. –pc
	Syntax
	Usage
	Description
	Related options

	2.2.39. --pedantic
	Default
	Usage
	Related options

	2.2.40. –pgc++libs
	Default
	Usage
	Description
	Related options

	2.2.41. –pgf77libs
	Default
	Usage
	Description
	Related options

	2.2.42. –pgf90libs
	Default
	Usage
	Description
	Related options

	2.2.43. –r4 and –r8
	Usage
	Description
	Related options

	2.2.44. –rc
	Syntax
	Default
	Usage
	Description
	Related options

	2.2.45. –S
	Default
	Usage
	Description
	Related options

	2.2.46. –show
	Default
	Usage
	Description
	Related options

	2.2.47. –silent
	Default
	Usage
	Description
	Related options

	2.2.48. –stack
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.49. –ta=tesla(tesla_suboptions),radeon(:radeon_suboptions),host
	Default
	Usage
	Description
	Multiple Targets
	Relocatable Device Code
	LLVM/SPIR and Native GPU Code Generation
	DWARF Debugging Formats
	Related options

	2.2.50. –time
	Default
	Usage
	Description
	Related options

	2.2.51. –tp <target>[,target...]
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.52. –[no]traceback
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.53. –u
	Default
	Syntax
	Usage
	Description
	Related options

	2.2.54. –U
	Syntax
	Usage
	Description
	Related options

	2.2.55. –V[release_number]
	Default
	Usage
	Description
	Related options

	2.2.56. –v
	Default
	Usage
	Description
	Related options

	2.2.57. –W
	Syntax
	Usage
	Description
	Related options

	2.2.58. –w
	Default
	Usage
	Description
	Related options

	2.3. –M Options by Category
	2.3.1. Code Generation Controls
	2.3.2. Environment Controls
	2.3.3. Fortran Language Controls
	2.3.4. Inlining Controls
	2.3.5. Optimization Controls
	2.3.6. Miscellaneous Controls

	Directives Reference
	3.1. PGI Proprietary Fortran Directive Summary
	3.1.1. altcode (noaltcode)
	3.1.2. assoc (noassoc)
	3.1.3. bounds (nobounds)
	3.1.4. cncall (nocncall)
	3.1.5. concur (noconcur)
	3.1.6. depchk (nodepchk)
	3.1.7. eqvchk (noeqvchk)
	3.1.8. invarif (noinvarif)
	3.1.9. ivdep
	3.1.10. lstval (nolstval)
	3.1.11. opt
	3.1.12. prefetch
	3.1.13. safe_lastval
	3.1.14. tp
	3.1.15. unroll (nounroll)
	3.1.16. vector (novector)
	3.1.17. vintr (novintr)

	3.2. Prefetch Directives and Pragmas
	3.3. IGNORE_TKR Directive
	3.3.1. IGNORE_TKR Directive Syntax
	3.3.2. IGNORE_TKR Directive Format Requirements
	3.3.3. Sample Usage of IGNORE_TKR Directive

	3.4. !DEC\$ Directives
	3.4.1. ALIAS Directive
	3.4.2. ATTRIBUTES Directive
	3.4.3. DECORATE Directive
	3.4.4. DISTRIBUTE Directive

	Run-time Environment
	4.1. Win32 Programming Model
	4.1.1. Function Calling Sequence
	4.1.2. Function Return Values
	4.1.3. Argument Passing

	4.2. Win64 Programming Model
	4.2.1. Function Calling Sequence
	4.2.2. Function Return Values
	4.2.3. Argument Passing
	4.2.4. Win64 Fortran Supplement

	PVF Properties
	5.1. General Property Page
	5.1.1. General
	5.1.2. Output Directory
	5.1.3. Intermediate Directory
	5.1.4. Extensions to Delete on Clean
	5.1.5. Configuration Type
	5.1.6. Build Log File
	5.1.7. Build Log Level

	5.2. Debugging Property Page
	5.2.1. Debugging
	5.2.2. Application Command
	5.2.3. Application Arguments
	5.2.4. Environment
	5.2.5. Merge Environment
	5.2.6. Accelerator Profiling
	5.2.7. MPI Debugging
	5.2.8. Working Directory
	5.2.9. Number of Processes
	5.2.10. Working Directory
	5.2.11. Additional Arguments: mpiexec
	5.2.12. Location of mpiexec

	5.3. Fortran Property Pages
	5.4. Fortran | General
	5.4.1. Display Startup Banner
	5.4.2. Additional Include Directories
	5.4.3. Module Path
	5.4.4. Object File Name
	5.4.5. Debug Information Format
	5.4.6. Optimization

	5.5. Fortran | Optimization
	5.5.1. Optimization
	5.5.2. Global Optimizations
	5.5.3. Vectorization
	5.5.4. Inlining
	5.5.5. Use Frame Pointer
	5.5.6. Loop Unroll Count
	5.5.7. Auto-Parallelization

	5.6. Fortran | Preprocessing
	5.6.1. Preprocess Source File
	5.6.2. Additional Include Directories
	5.6.3. Ignore Standard Include Path
	5.6.4. Preprocessor Definitions
	5.6.5. Undefine Preprocessor Definitions

	5.7. Fortran | Code Generation
	5.7.1. Runtime Library

	5.8. Fortran | Language
	5.8.1. Fortran Dialect
	5.8.2. Treat Backslash as Character
	5.8.3. Extend Line Length
	5.8.4. Enable OpenMP Directives
	5.8.5. Enable OpenACC Directives
	5.8.6. OpenACC Autoparallelization
	5.8.7. OpenACC Required
	5.8.8. OpenACC Routineseq
	5.8.9. OpenACC Wait
	5.8.10. OpenACC Conformance Level
	5.8.11. OpenACC Sync
	5.8.12. MPI
	5.8.13. Enable CUDA Fortran
	5.8.14. CUDA Fortran Register Limit
	5.8.15. CUDA Fortran Use Fused Multiply-Adds
	5.8.16. CUDA Fortran Use Fast Math Library
	5.8.17. CUDA Fortran Debug
	5.8.18. CUDA Fortran Line Information
	5.8.19. CUDA Fortran Use LLVM Back End
	5.8.20. CUDA Fortran Unroll
	5.8.21. CUDA Fortran Flush to Zero
	5.8.22. CUDA Fortran Toolkit
	5.8.23. CUDA Fortran Compute Capability
	5.8.24. CUDA Fortran Fermi
	5.8.25. CUDA Fortran Fermi+
	5.8.26. CUDA Fortran Kepler
	5.8.27. CUDA Fortran Kepler+
	5.8.28. CUDA Fortran Keep Binary
	5.8.29. CUDA Fortran Keep Kernel Source
	5.8.30. CUDA Fortran Keep PTX
	5.8.31. CUDA Fortran Keep PTXAS
	5.8.32. CUDA Fortran Generate RDC
	5.8.33. CUDA Fortran Emulation
	5.8.34. CUDA Fortran Madconst

	5.9. Fortran | Floating Point Options
	5.9.1. Floating Point Exception Handling
	5.9.2. Floating Point Consistency
	5.9.3. Flush Denormalized Results to Zero
	5.9.4. Treat Denormalized Values as Zero
	5.9.5. IEEE Arithmetic

	5.10. Fortran | External Procedures
	5.10.1. Calling Convention
	5.10.2. String Length Arguments
	5.10.3. Case of External Names

	5.11. Fortran | Libraries
	5.11.1. Use ACML
	5.11.2. Use IMSL
	5.11.3. Use MKL

	5.12. Fortran | Target Processors
	5.12.1. AMD Athlon
	5.12.2. AMD Barcelona
	5.12.3. AMD Bulldozer
	5.12.4. AMD Istanbul
	5.12.5. AMD Piledriver
	5.12.6. AMD Shanghai
	5.12.7. Intel Core 2
	5.12.8. Intel Core i7
	5.12.9. Intel Penryn
	5.12.10. Intel Pentium 4
	5.12.11. Intel Sandy Bridge
	5.12.12. Generic x86 [Win32 only]
	5.12.13. Generic x86-64 [x64 only]

	5.13. Fortran | Target Accelerators
	5.13.1. Target NVIDIA Tesla
	5.13.2. Tesla Register Limit
	5.13.3. Tesla Use Fused Multiply-Adds
	5.13.4. Tesla Use Fast Math Library
	5.13.5. Tesla LLVM
	5.13.6. Tesla Noattach
	5.13.7. Tesla Pin Host Memory
	5.13.8. Tesla Autocollapse
	5.13.9. Tesla Debug
	5.13.10. Tesla Lineinfo
	5.13.11. Tesla Unroll
	5.13.12. Tesla Required
	5.13.13. Tesla Flush to Zero
	5.13.14. Tesla Generate RDC
	5.13.15. Tesla CUDA Toolkit
	5.13.16. Tesla Compute Capability
	5.13.17. Tesla CC Fermi
	5.13.18. Tesla CC Fermi+
	5.13.19. Tesla CC Kepler
	5.13.20. Tesla CC Kepler+
	5.13.21. Tesla: Keep Kernel Files
	5.13.22. Target AMD Radeon
	5.13.23. Radeon Cape Verde
	5.13.24. Radeon Spectre
	5.13.25. Radeon Tahiti
	5.13.26. Radeon Hawaii
	5.13.27. Radeon Buffer Count
	5.13.28. Radeon Keep
	5.13.29. Radeon LLVM
	5.13.30. Radeon Unroll
	5.13.31. Radeon Required
	5.13.32. Target Host

	5.14. Fortran | Diagnostics
	5.14.1. Warning Level
	5.14.2. Generate Assembly
	5.14.3. Annotate Assembly
	5.14.4. Accelerator Information
	5.14.5. CCFF Information
	5.14.6. Fortran Language Information
	5.14.7. Inlining Information
	5.14.8. IPA Information
	5.14.9. Loop Intensity Information
	5.14.10. Loop Optimization Information
	5.14.11. LRE Information
	5.14.12. OpenMP Information
	5.14.13. Optimization Information
	5.14.14. Parallelization Information
	5.14.15. Unified Binary Information
	5.14.16. Vectorization Information

	5.15. Line-Level Profiling
	5.15.1. Function-Level Profiling
	5.15.2. Line-Level Profiling
	5.15.3. MPI
	5.15.4. Suppress CCFF Information
	5.15.5. Enable Limited DWARF

	5.16. Fortran | Runtime
	5.16.1. Check Array Bounds
	5.16.2. Check Pointers
	5.16.3. Check Stack
	5.16.4. Command Line

	5.17. Fortran | Command Line
	5.17.1. Command Line

	5.18. Linker Property Pages
	5.19. Linker | General
	5.19.1. Output File
	5.19.2. Additional Library Directories
	5.19.3. Stack Reserve Size
	5.19.4. Stack Commit Size
	5.19.5. Export Symbols

	5.20. Linker | Input
	5.20.1. Additional Dependencies

	5.21. Linker | Command Line
	5.21.1. Command Line

	5.22. Librarian Property Pages
	5.23. Librarian | General
	5.23.1. Output File
	5.23.2. Additional Library Directories
	5.23.3. Additional Dependencies

	5.24. Librarian | Command Line
	5.24.1. Command Line

	5.25. Resources Property Page
	5.26. Resources | Command Line
	5.26.1. Command Line

	5.27. Build Events Property Page
	5.27.1. Build Event
	5.27.2. Command Line
	5.27.3. Description
	5.27.4. Excluded From Build

	5.28. Custom Build Step Property Page
	5.28.1. Custom Build Step | General
	5.28.2. Command Line
	5.28.3. Description
	5.28.4. Outputs
	5.28.5. Additional Dependencies

	PVF Build Macros
	Fortran Module/Library Interfaces for Windows
	7.1. Source Files
	7.2. Data Types
	7.3. Using DFLIB, LIBM, and DFPORT
	7.3.1. DFLIB
	7.3.2. LIBM
	7.3.3. DFPORT

	7.4. Using the DFWIN module
	7.5. Supported Libraries and Modules
	7.5.1. advapi32
	7.5.2. comdlg32
	7.5.3. dfwbase
	7.5.4. dfwinty
	7.5.5. gdi32
	7.5.6. kernel32
	7.5.7. shell32
	7.5.8. user32
	7.5.9. winver
	7.5.10. wsock32

	Messages
	8.1. Diagnostic Messages
	8.2. Phase Invocation Messages
	8.3. Fortran Compiler Error Messages
	8.3.1. Message Format
	8.3.2. Message List

	8.4. Fortran Run-time Error Messages
	8.4.1. Message Format
	8.4.2. Message List

	Contact Information

