[Compilers and Tools

=2

_,Z.

TABLE OF CONTENTS

o Y 2T T T XXiv
AUGIENCE DESCIIPHON. ... vttt ettt ettt b bt e e a bbbt s s s e st e b bt s s XXiv
Compatibility and Conformance t0 STaNAArGS............coeriiir e XXiV
OFGANIZALION. ..ottt ettt bbb e s bbb bbb bbb bbbt bbbttt XXV
Hardware and SOftware CONSITAINES...........v ettt ettt XXVi
CONVENTIONS.cvo vtttk bbbt XXVi
REIAtEA PUDIICAHIONS. ...ttt ettt ne st nns et esnnas Xxvii

Chapter 1.Language OVEIVIEW........c.cccururemesssressessssesessssessessssessssssssssessssesssssssesss s s sss s 1
1.1. Elements of @ Fortran Program URiL.............c.ooec sttt 1

111, FOMran SEAEMENES.......cciiiece ettt bbbt 1
1.1.2. FIEE @Nd FIXEU SOUCE.......cuieiriiiieisciii ettt 1
1.1.3. SEAIEMENT OFUBIING. ... et bbbt 2
1.2. The FOrran CharaCter SEL.........ccveiirieicirieeete sttt 3
1.3, Free FOrM FOMATING.c.euiriereei ettt 4
1.4, FIXEA FOMMAMING. ...ttt et bbb s e bbbt a s ettt s s s s 4
1,41, COlUMN FOMMAING. ...ttt 5
1.4.2. Fixed FOrmMat LaDEl FIBIG. ...ttt 5
1.4.3. Fixed Format ContinUation FIEl..............ov ittt 5
1.4.4. Fixed Format Statement FIeld.........cooiirecec e e 5
1.4.5. Fixed Format Debug StatemeNts.........c.ciiiiriicic 6
1.4.6. TAD FOMMATING......c.oieiiieieiieirercr e 6
1.4.7. Fixed Input File FOrMAt SUMMAIY........coiuiiriiirieiiisiirieisse sttt ss s s 6
1.5. InClude FOMran SOUMCE FIlES........iiieriicrice ettt 7
1.6. Components Of FOrran StatEMENLS............ccccuiiviiiicieice et 7
1.6.1. SYMDONC NAMES......coiieiieice bbb 7
I =0 (=TS TSR TTTRRP 8
1,71, FOMMING EXPrESSIONS.covrieuireirieesetieeeseietes ettt bbb 8
1.7.2. EXPression PreCeaENCE RUIES..........cciuiuiiiieieiit ittt 8
1.7.3. ArtMELIC EXPIESSIONS.cveeiieeireeieis ettt sttt ses st sna st s et snnnas 9
1.7.4. Relational EXPrESSIONS.....c.cviviiiiieecereeieisieisisisese ettt sttt se e st s et ettt st e e s st s s es s e e e sene 11
1.7.5. LOGICAI EXPIESSIONS.vuivueieiieeieieieesetrttee ettt bbbt bbbttt 11
1.7.68. CharaCter EXPIrESSIONS......c.cuivuiieiircreiiretnissetsisssessssssstss et st sa st s s st bbb s s b st s st s et s s et s st s snsesenas 12
1.7.7. Character CONCAENALION.c.c. ettt es ettt 12
1.8. SYMDONC NAME SCOPE......cuirieiieiciriieiiir ettt bbb 12
1.9, ASSIGNMENT STAIEMENES......cvivieicieieies ettt 13
1.9.1. Arithmetic ASSIGNMENL. ..o b 13
1.9.2. LOGICAI ASSIGNMENL.......eiieiiriiietrieter ettt bbbttt 13
1.9.3. CharaCter ASSIGNMENT..........c ittt bbbt bbbt 14
110, LISHNG CONMIOIS.....cuiiiviitcteiicte ettt ettt b bbb bbb bbb s bbb bbb sttt s st b s 14
111, OPENMP DiFECHVES. ...ttt ettt es ettt s ettt et enset e 15

PGI Fortran Reference Guide i

Chapter 2.FOrtran Data TYPES........oerrremenmsremessssessesss s s s s s s s 16

2.0, INUNSIC DA TYPES.evcviieiceseiei ettt bbb 16
2.0, KING PATAMELEL........cviiiieicireeste ettt bbb 16
2.1.2. Number of Bytes SPECIfICAtION.ceuriieeeieiere et 17

2.2, CONSEANTS......cviteteteieiii ettt et b bbb b bbb bbb bbbt bbb bR R bbb b bbb sttt et et ettt 19
2.2.1. INTEGET CONSIANES......vvveiicieiee ettt 19
2.2.2. Binary, Octal and Hexadecimal CONSIANTS...........ccoviruriirniicercee et 19
2.2.3. REAI CONSLANES.coiviviitiieiiete sttt bbb bbb s e b b s bbb bbb st bbb s et b s et s 20
2.2.4. Double PreCision CONSIANES...........cccuiuiuiiiicieiiecccctcie ettt bbbt bbb 20
2.2.5. COMPIEX CONSIANES.......oucveviiriicietcte ettt b bbb bbbttt s bbbt et na 21
2.2.6. Double COMPIEX CONSLANES.c.ovrrrerieeeirieieireees sttt ees e se s es s e 21
2.2.7. LOGICAI CONSIANTS.ocviiviiiiie ittt s bbb bbb bbb bbb nas 21
2.2.8. CharaCter CONSIANES.........c.viiiccecicte ettt bbbttt bbbt bbb s s s 22
2.2.9. Parameter CONSIANTS.......ccvviuriieieerie ettt 22

2.3, SHUCKUIE CONSIIUCIONS. ..ottt bbbttt bbbt bbb s bbbt b s s s 22

2.4, DEMVEA TYPES.....viiireetieietstiei ettt ettt ettt bbb bbb 24

2.5. Deferred TYPE ParamMELETS........cveuiuriieiriiseieietseiet sttt sttt sttt ettt st s 25
2.5, TYPEA AlIOCAHION. ..ottt 25

2.6, AITAYS. ...ttt ettt et bR £ R E AR R R AR £t R b S E bbbt 25
2.6.1. Array Declaration EIEBMENL..........coiiiiriiirie bbbt 26
2.6.2. DEfErred SNAPE AITAYS........cviviviieiiieieiete ettt b sttt a bbb bbb bbb s bbb s b 26
TR S 1000 o] TP 26
2.6.4. CharaCter SUDSIIING........cociiiiiiieceicts ettt et a bbbt s bbb st s naas 27
2.6.5. Array CONSIIUCION SYNEAX........eviierieiiieieiieiei ettt 27

2.7. Fortran POINErS @nd TargelS..........oveeururiiiirisiriieieeree ettt se ettt s sttt s bbb s s s s serenis 28

2.8. Fortran Binary, Octal and Hexadecimal CONSIANS.........c..ocururiirireicre e 28
2.8.1. Octal and Hexadecimal Constants - Alternate FOMMS.........coovivniierieers e 28

2.9, HOIETiIN CONSIANTS........cuivcvevcicicceeecc e bbb bbbt b bbb s bbbt b s s s 29

210, SHUCKUIES ..ottt ettt et b bbbt e s e bbb b bbb ee s s b b e b e bbb s s s e sn s et et et et bbb snnanaesetis
2.10.1. Records
2.10.2. UNION and MAP DECIAratiOnS............ccoueueveriririiiiieieieiciereiete ettt ss sttt be bbbt sn s besenans 32
2.10.3. Data INHAlIZAtHON.c.cveveviisiciciecccce ettt bbbt 33

211, POINIEI VATADIES........coiiececectctee ettt bbb bbb bbbt b bt st bbb bnas 34
2110, RESHICHONS......cececvttciesi ettt b bbb bt e r bbb a et s e e neaetenes 35
2.11.2. POINTET ASSIGNMENT. ..ottt bbb 35

Chapter 3.FOrtran STat@MENES...........oceovererensrrerener e sss s ss s s s sesse s s sse s s s s s s sessessssessens 36

3.1, Statement FOMMAt OVEIVIEW.............oiiecicieieicicciseeee ettt bbbt ettt et bbbt st ettt b s en s n s senis 36
3.1.1. Definition of Statement-related TEMMS.........cviiiriiire et 36
3.1.2. 0rigin Of SAEEMENT........cviieiieee bbb 36
31,3, List-related NOTALION.cocviiceccce ettt bbbt ettt bbbt s s st nas 37

3.2. Fortran Statement SUMMANY TaDIE..........ccoviiririiriree st 37

3 3L ACCEPT ..t R bbb AR AR bR bRttt 42
- (=Y 1o TP T T TTSTRPRO 42

PGI Fortran Reference Guide iii

EXAMPIES ...ttt R AR E et RSt ne e s et 42
NON-Character FOrMat-SPECITIET........cvivivicieiirictcce et bbbt 42
SE AlSD ...ttt R bR RS E e R AR R £ AR e SR RR R AR e R R s At s et esna e ennis 42
3L, ARRAY ...ttt b1 b s bR AR bR AR bR R AR b bbbt en 43
CMPF ettt 8RR R R R R R R 43
YN 1ttt E R h £ E R bR bR bbbt 43
)T ol oo 3T TTTTTRPP 43
EXMPIE ...t 43
S AlSO....eeiiiiiettie ettt 44
K TR = 2 I =TT 44
F77 @XEBNSION.cveeeeeie et s bbbt 44
SYNEAX. .ttt bbb E bbb bbbt en s 44
)T o 0o T TTSTT 44
EXAMIPIE. ..o bbb b bbbt A R b bbb bbb st ettt et nen e 44
318, DECODE........coooi ittt ettt ettt ettt bbb bbb bbb bbb bbb 44
F77 @XEBNSION.eieeeeeiee ettt s bbb bR E bR bbbttt 44
31 - SO OO OO O O POO PR ORPT PR 44
NON-Character FOMMAt-SPECITIEN.........ccviiuiieiiecte ettt bbbt bbb aes 45
ST o TSR 45
3.7. DOUBLE COMPLEX ...t ttitiettietieietssieisetssieeetssse ettt ses sttt ettt ettt ettt et en et n st entns 45
= T o PR 45
31 OO P TP 46
SYNEAX EXEBNSION. ...ttt 46
DT o 0o TP 46
EXAMPIES ...ttt f SRR R R E A SRS e et n s 46
SE AlSD....e.eeieeiieeieit ettt et E et RS e R AR e AR bt b R b nnis 46
3.8. DOUBLE PRECISION......coituiiitrisieieriseesiesissesssssseessssssesssss s s st s ssssssssssssasssssssssssssssasssssssassessssassssssessesnsassesnsns 46
F 0.ttt bbb R b SRR bR RS R R bR R Rt b st et 47
L1 - SO OU TR ORSTRORTO 47
SYNEAX EXEBNSION. ...ttt 47
)T ol oo 3T TTTTTRPP 47
EXMPIE ..o bbb 47
3.9, ENCODE.......ccooieteieetseie ettt ettt bbb 47
= T o o OO POPTTTRTT 47
1= OO P TR 48
NoN-Character FOMMAt-SPECITIEN. ..o ettt ettt sna et nnen 48
S AlSO.. .ttt 48
310, END MAP......oooeeeiieiiteiseietes ettt s8££ AR R R Rt 48
- (=T T PP TS U SSSTTSSTT 48
31 - SO PP ORPTT ORI 49
DIBSCIIPHON. ...ttt bbb 49
EXAMIPIE. ..o b bR e AR A bbb bbb s bbbttt n s 49

PGI Fortran Reference Guide iv

=) TS o OO POV 49
16 PP P 49
DESCIIPHION. . .cv vttt b bbbt bbb R bbbt e R b s e AR R bbb b bbb n Rttt bt nan e 49
312, END UNION....citiceeiiecieiseete sttt st st ettt 49
F77 @XEBNSION. ...ttt s8R ARttt 49
YN 1ttt E R h £ E R bR bR bbbt 49
)T ol oo 3T TTTTTRPP 49
343 INCLUDE ... ettt s8££ e e st et ens et e e 50
F77 @XEBNSION. ...ttt bbb bR Rttt 50
SYNEAX .1ttt E R h R E R R bbb bbbt 50
oy 1] 0] TP 50
B4, MAP. ..ottt RS R R R R ARt 51
FTT @XIBNSION. ... oottt 51
SYNMEAX. 11ttt E bbbt 51
DIBSCIIPHION. ... bbb 51
EXAMIPIE. ..o A bR E b e R AR bbb bbb s e bbbttt n s e 51
315, POINTER (CraY)..evveeeeeiieeriisisineseeeisesesesssastsessesesese st sessssssssessssss s st s sssssssssassssssssessesesssssssssssssessnssesnssesesassesesnes 52
F77 @XEBNSION. ...ttt s8££ bR e AR bbbt 52
YN 1ttt f bR bR bR bR bbbt 52
1] 0] LY TPTTRPP 53
][40 0 PP 53
318, PROTEGCTED......coetttitieiiestieittsese ittt ees s st 5 b8 s bbbttt 53
F 2003ttt e AR £ AR AR RR SRS A £ R R AR AR SRR R e R s AR s A s e et een R s nneen 53
1 OO P TP 53
LTS 40 (1o} USSR 54
EXAMPIES. ... 54
317 RECORD.......coitiieitietieieteese sttt ettt s st s8££+ R s R bbbt 54
= 1o TP 54
L1 - SO OU TR ORSTRORTO 54
DIBSCIIPHON. ...ttt bbb 55
EXAMIPIE. ..o et A et A AR bbb bbb s ettt et n s 55
3.18. REDIMENSION......ccctiiiietreeteies ettt ettt es et ne e s et s s b e e et ee st s e e 55
F77 @XEBNSION. ... vttt e bbb bR bbb bbbt 55
SYNEAX .1ttt R E R bbb bbbttt 55
ey 1] o)L TP 56
T 1 TR 1 TP 56
BT bR R R RS R R R R R R AR R b 56
SYNMEAX .1ttt E R E R bbb R bbbt 56
AEINAIE RETURN......ooiiiiii ettt ettt e ettt s e 56
EXAMIPIE. ..o b bR E bR R bbb b bbb s b E ettt n s e 56
3.20. STRUGCTURE......coeitttetstieieirists ettt et s sse ettt e et en s s 57
F77 VAX EXEBNSION. ...ttt ettt s b s R b bbbt 57

PGI Fortran Reference Guide v

LTS 40 (1o} ST ST 57
B2, UNION . bbb 58
=) TS OO PSP O ST EUU T TT 58
YN 1ttt E R bR bbbttt 59
DESCTIPHION. ...ttt b bbb bbb bR A bbb R s s R AR bbb bbb ettt b s s 59
322, VOLATILE. ...ttt ettt 60
F77 extension (STAIEMENL).......ccoiiiirierceece bbb 60
F2003 (QHIDUE). ... e e ceeeeereeeereereereese sttt ettt 60
MBI 11ttt ettt h bbb bbb AR bR b E bR bbb bbb s bbb s b 60
VOIALIIE ABFIDULE. ...ttt ettt ettt en 60
VOIBLIIE SEAIEMENL........eieieceircec bbb 60
DTS4 (1o} OO TTTT 60
Volatile AHMDULE EXAMPIE........ciieiiiceeiie ettt bbbt nen 60
Volatile Statement EXAMPIE.coirree ettt ettt 61
323, WWAIT ettt 61
F2003.....ceeeeeeeeeee sttt b b 61
31 - SO OO OO O O POO PR ORPT PR 61
DESCTIPHION. ...ttt ettt bbbt bbb s e R A bbb R R s AR b bbb bbb st bbbt nen e 62
EXAMPIES. ...ttt bbb R SRR 62
LT B o 4 Ty BV)T 63
4.0, AITAY TYPES. oottt eb bbb s8££ R 63
4.1.1. EXPlCIE SNAPE AITAYS.....ovviveiiecteieieie ittt ettt e bbb e b bbb bbbt s st s st an s tnn 64
4.1.2. ASSUMEA SNAPE ATTAYS. .. covrieriieerieiieeeeeiee ettt es bbb bbb bbb bbb 64
4.1.3. DEfErred SNAPE AITAYS......civeveiiriieiiiieteieie sttt et bbb s st b bbbttt b s et sen 64
414, ASSUMEA SIZE ATTAYS. ... cevreeieeerieriteesetstiee ettt bbb s bbb s bbb 64
4.2, AITAY SPECITICALION. ..ottt bbbttt 64
4.2.1. EXPlICIE SNAPE AITAYS......ceieeeieeeeieeieiee ettt s ettt bbbt enneeen 64
4.2.2. ASSUMEA SNAPE ATTAYS. .. covrieeresieiieiseireieeseeseseeeeses et es et et es et s bbb s st s b s bbbt 65
4.2.3. DEFEITEU ShAPE AITAYS......oivrieiieerieriseiseiesseeeessseeeesss e sss s es s es st s b s s s b s et s b s b s 65
4.2.4. ASSUMEA SIZE ATTAYS. ... coerieeeeerierieeesetreieesetses ettt eb s eb s b s b st b 888 s b st 65
4.3, AIray SUDSCIIPES @NG ACCESS. ... vuieeeriiiiniieistiessetssies ettt sstes ettt s bbbttt s bt s bt s et es et enbensebs 65
4.3.1. Array Sections and SUDSCHPE THPIELS.........coueeriiic e 65
4.3.2. Array Sections and VECOr SUDSCIIPLS........ccvviueviiiieiictceecsi sttt naes 66
4.4, ATAY CONSITUCIOTS. ..ottt bbbt 66
Chapter 5.INput and OUEPUL.........cocerirercereresse s 67
5.1, File ACCESS MEINOUS. ...ttt es et eee et e e enneeen 67
5.1.1. Standard PreconneCted UNILS..........cvceeecriiiciiesssses et 68
5.2. Opening and ClOSING FIIES.........cururiirrieeeseeiereeis sttt bbbt 68
5.2.1. DIFECE ACCESS FlES......vuiieiicirieicie ettt sttt as bbbt snnas 68
B.2.2. ClOSING @ Fil..uvuiviuiirieiiieiitsiieiite ettt sttt s bbb 69
5.3. Data Transfer StatEMENTS.........cciiieicriccn st 71
5.4, Unformatted Data TraNSTET........cciuiririiirieisits sttt st 71

PGI Fortran Reference Guide Vi

5.5. FOrmatted Data TraANSTEN.........c.cuieieii ittt ettt bbb as et sttt ettt st b tenens 72

5.5.1. Implied DO List INput OUEPUL LISt........ovieeeeiericee et en 72
5.5.2. FOrmat SPECITICALIONS......civiieiiiiiericte sttt bbbttt e 72
5.5.2.1. A Format Control — Character Data............cocerieiuriercirrce et 73
5.5.2.2. B Format Control — BiNary Data..........cccrueuiriririririsecse e 74
5.5.2.3. D Format Control — Real Double Precision Data with EXponent...........ccccccueceviceiiecreicesceeeeee e 74
5.5.2.4. d Format Control — Decimal SPECIfIEN.........c.cciieiiiririirceere e 75
5.5.2.5. E Format Control — Real Single Precision Data with EXponent...........cccocovrneninnsninnsinnnescesencenns 75
5.5.2.8. EN FOrMat CONIOL.... ...ttt sttt 75
5.5.2.7. ES FOMMAt CONIIOL.......vuivieiriiiieieisiisiesets sttt ss s 76
5.5.2.8. F Format Control - Real Single Precision Data.............coereriinieriiiesese e 76
5.5.2.9. G FOMMAL CONMOL ..ottt bbbttt 76
5.5.2.10. | Format Control — INtEGEr DAta..........cvueeiuieriiriiec e 76
5.5.2.11. L Format Control — LOgiCal Data...........cccerieuiiiiriieiiesssicss ettt ss s sssess s 77
5.5.2.12. QuOte FOrMAat CONIIOL. ..ottt 77
5.5.2.13. BN Format Control — Blank CONtrOL...........cccvueirriiisirieesieissseseet s sss s 77
5.5.2.14. H Format Control — Hollerith CONIOL...........ccoueuiiriririscsissese s 77
5.5.2.15. O Format Control OCtal VAIUES........ccrviereririericirsecrs st sses 78
5.5.2.16. P Format Specifier — Scale CONrOL...........cccoviuiviiieiiiceceece ettt 78
5.5.2.17. Q Format Control - QUANTIEY...........crieriiuriiiriec e 79
5.5.2.18. r Format Control - ROUNGING.........c.ccviiueiicieiece ettt s 79
5.5.2.19. S Format Control = Sign CONOL........c.euiuiimiuieriirirencise e 79
5.5.2.20. T, TL and X Format Controls — Spaces and Tab CONtrolS...........ccccovueuerveeeiicrenecnsse e 79
5.5.2.21. Z Format Control Hexadecimal ValUES..........ccurirururiierirceeneees et 80
5.5.2.22. Slash Format Control / — End of RECOM.........eviuriiriiiririsceeise s 80
5.5.2.23. The : Format Specifier — Format Termination.............cceurieriirnicncesreessees e 81
5.5.2.24. 8 FOrMAt CONOL.........ooivieciciiicieie ettt eenens 81
5.5.3. Variable FOrmMat EXPrESSIONS.......cciviiiiiiiicicietetets sttt bbbt b bbb 81
5.6. Non-advancing INPUt @nd OULPUL..........c.cveuierireiiirieiie bbb 81
5.7, List-direCted fOrmMatling........oveveuriuriiiiesiecis et 82
B.7.1. LISt-AIrECEA INPUL.....eoctiieecie et 82
5.7.2. LISt-0ireCted OUIPUL.......cvitiiiieeee ettt bbbttt s s 83
5.7.3. Commas in EXIEMAl FIEIA..........ovieeeceece ettt 84
5.7.4. Character ENCOdiNG FOMMAL.........coccuiiiiieiics ettt bbb bbb 84
5.8, NGMEIIST GrOUPS.ceeeeeeeerieees ettt e s ettt st ne et eens 84
5.8.1. NAMELISE INPULL......eeeeecccctee ettt bttt e s a s s bbb 84
5.8.2. NAMEIST OULPUL. ...ttt es sttt b s ns e 85
5.9. RECUISIVE INPUYOULIDUL.......cveviictcies ettt sttt 85
5.10. Input and Output of IEEE Infinities and NaNS...........cccoeriiiiiiiccee et 85
5101, OUIPUE FOMMAL. ...t 86
5.10.2. INPUL FOMMAL........ooccectcccee ettt bbbttt s s bbbttt s 86
Chapter 6.FOrtran INtriNSICS. ..o s s p s st 87
B.1. INMTNSICS SUPPO.......oieiteiiectietcte ettt ettt et bbb bbb b s bbb bbb s bbb bbbt st 87

PGI Fortran Reference Guide vii

6.1.1. Fortran 90/95 Bit Manipulation Functions and SUBIOUEINES...........cccceeiieeiiiieiees s 88

6.1.2. Elemental Character and Logical FUNCHONS. ..o 89
6.1.3. Fortran 90/95 Vector/MatriX FUNCHONS. ..o s 90
6.1.4. Fortran 90/95 Array RedUCHON FUNCHONS..........ccciviiirieiieiniieisisse et 90
6.1.5. Fortran 90/95 String CONSrUCHON FUNCHONS.........ciiuiiiiiiieir e 91
6.1.6. Fortran 90/95 Array Construction/Manipulation FUNCHONS..........ccccevirieiniinieienieesce e, 91
6.1.7. Fortran 90/95 General INQUIrY FUNCHONS.........c.euiiriiirieieirie et 92
6.1.8. Fortran 90/95 Numeric INQUINy FUNCHONS........c.ccvieiiinieieirce st 92
6.1.9. Fortran 90/95 Array INQUIrY FUNCHONS.........couiuiiiiici e 93
6.1.10. Fortran 90/95 SUDIOULINES.........c.euiiieiieiriieiieistieie sttt 93
6.1.11. Fortran 90/95 Transfer FUNCHONS.coiuiiiiiececee bbb 94
6.1.12. ArthMETIC FUNCHONS.......cociiiicic e 94
6.1.13. Fortran 2003 and 2008 FUNCHONS.........c..ciuriieiririeireice et 97
B.1.14. MISCEllAaNEOUS FUNCHONS......ccucvuiiririereiscieii ettt 98
B.2. ACOSD......oeeeieie ettt RS £E e RERE e e 98
OO TS 98
Y NMOPSIS. 11t tvevutteieteee ettt ettt ettt R bR E RS e n bbbttt s 98
ATGUIMENTS. ...ttt s bbb s bbb bbbttt 99
REIUIM VAIUE. ...ttt bbb 99
8.3 AND ...ttt E R AR n et 99
F77 @XEBNSION. ...ttt bbb bR ettt 99
SYNMOPSIS. ...ttt R R b s bbb 99
o 1041] 3PP 99
RETUM VIUE. ...ttt s s b e et e et et e s een et en s s 99
B4, ASIND. ...ttt 99
OO OSSOSO 99
SYNMOPSIS. ...ttt ettt E RS e bbbt 99
ATGUIMENLE. ..ttt es ettt et ee s £ 2R b4t ee 8 b 42 E e £ A ee s b e R b s At e et ee s 99
RETUMN VAIUE......coo et 99
B8.5. ASSOCIATED.......oueuueiuiriieieeie et eese bbb bbb 100
F 0. ettt f £ RS R AR E bRt 100
Y NMIOPSIS. 111t etattesetseee sttt ettt E Rt 100
ATGUIMENTS. ...ttt E bbbt 100
REIUM VEIUE.......eoee bbbttt 100
B.8. ATANZD........ooeeice ettt ettt ettt s et s £ 8282 E e AR R £ R R bRt 100
BT bR 100
SYNMOPSIS. 11ttt etes ettt E R bbb 100
ATGUIMENES. ..ottt ettt sttt s st s e ee s s st E e b e st st n Rttt 100
REIUM VAIUE....... ettt ettt st 101
B.7. ATAND.......ooeeieee ettt ettt s8££ttt 101
e OO OO RRTOO 101
SYNMOPSIS. .t tteeretseeees ettt E AR E AR R Rt 101
ATGUIMENLE. ...ttt s8££ bbbt b Rttt 101

PGI Fortran Reference Guide viii

= (01 AT 10T TR 101

B.8. COMPL.......o vttt ettt s eb st b st 101
FTT @XIBNSION......c.oceireiiet ettt bbb bbbt 101
RS0 05T 101
ATGUIMENTS. ...ttt E bbbt 101
REIUIN VAIUE.......ooiccc ettt bbb bbb bbb e bbbt et bbbt sn e nenetan 101

B.9. CONUG.......otiiieiciet ettt bbbt bbb b8 s bbb R bR bbbttt 102
T RS R R 102
SYNMOPSIS. 1.t vreereer ettt E AR 102
o 10411 | OO PR TTRRPPTRTTTOT 102
REIUIN VAIUE........oiicecte ettt ettt bbb e e a bbbt b b e e bbbt et bbb s snannebebena 102

B.10. COSD.....ou ittt ettt bR R bbbttt 102
T ettt RS RS Rt 102
R3] 01T TP 102
ATGUIMEBNLE. ..ttt s £ e 8 b4 E £ e e b a2 b e e £ e E e e Rt e et s e nn e 102
REIUMN VAIUE........oe ettt e et et s s s e nnnnsetas 102

8.1, DIM..oeeieieet ettt ettt ettt AR RS bR bbbttt 102
T et R SRR R AR AR bR bbbt 103
Y NMIOPSIS. 111ttt ettt ettt R R R AR Rt 103
ATGUIMENTS. ...ttt E bbb 103
REIUMN VAIUE........iiiccccc ettt bbbt s bbb a bbb bbb e bt b s e e snnenetas 103

B.12. ININT ettt b ettt b et s b s et £ et E b £ bRt b et bt E ettt 103
F77 @XEBNSION.ottt bbb bbb bbbttt 103
SYNMOPSIS. vttt ettt E bbb 103
o 1041 3PS 103
REIUIN VAIUE.......ooiecccecc et bbbt s e e bbb bbb s e e e bbb e b et bbb s s e nenebetan 103

B.13. INTB..o ettt b bbb bbb bbb bbbt bbbt 103
F77 BXEBNSION.cvvttieieeee ettt b bbb bbb e e s bbb bbb s s e bbbt e bbbt e s e a e bbbt b 103
SYNMOPSIS. c.v.ttreeretr ettt R AR R bR 103
ATGUIMEBNES. ...ttt 8 bR R bbbt 104
REIUM VEIUE......ceiee ettt ettt n e 104

B.14. IZEXT ..ottt bbb 8RR R ARt 104
F77 BXIBNSION. ..ottt ettt bbbttt b bbbt es e et b et e bbb bbb e s bbb bbbt s s s e e anbe bbb bnas 104
SYNMOPSIS. ...ttt ettt bbb bbb bbb a b s bR b SR bbb R bbb bRt st bbbt 104
ATGUIMENTS. ...t bbb 104
REIUM VEIUE........ooe bbb bbbt 104

815, JINT .ottt ettt 104
FTT @XIBNSION.....ce.ceeseiiiets ittt bbb bbbt 104
SYNMOPSIS. 11ttt ettt R bbb 104
ATGUIMENES. ...ttt bbb 104
REIUIN VAIUE........oiicccctce ettt s s a bbbt b s ee bbb e bbb b s s sn s e nebetan 104

B.18. UNINT ..ottt s bbb s s s bbb bbbttt 105
- (=Y 1o OO TP TP 105

PGI Fortran Reference Guide ix

R3] 0T OPTPPTTPRR 105

ATGUIMENTS. ...t bbb 105
RETUMN VAIUE......cooe s 105
B.17. KNINT ..ttt st s s s s 105
= T TR 105
Y NMIOPSIS. 111t vuttesetsete ettt E R RS R R AR Rt 105
ATGUIMENTS. ...t E 18R 105
REIUM VEIUE.......oe bbb bbbttt 105
B.18. LEADZ.......ooieeeeietsiteetstt ettt s st bR R AR bbbt 106
F2003... .ottt £ £ R R R bR 106
SYNMOPSIS. 11ttt ettt ettt E R bbb 106
o 1041 3T 106
RETUM VAUt ete e e e t e e e e e s e sttt ee et enn e 106
T4 010} 3OS 106
EXAMIPIES. ...t a bbb bbb ARt bbbt b s s s e s R bbbt et b s n st 106
8.1, LSHIFT .ottt ettt bt bbb b bbb a bR bbb bbb b bbb 106
F77 @XEBNSION. ...ttt bbb bbb bR et b bbbt 106
SYNMOPSIS. vt treeretee sttt E AR R bbb 106
ATGUIMEBNES. ...ttt s R bRt Rttt 107
REIUM VaIUE......eiee sttt n e 107
B.20. OR...eeet ettt E bR E bbbttt es 107
= T o PP TRRR 107
RS0 0T OTT PR PRRRO 107
ATGUIMENTS. ...t 107
REIUIM VEIUB.......eo bbb bbbt 107
B.21. RSHIFT ...ttt ettt £ bbb E et n bt n bbbttt 107
- (=T T PSPPSR 107
RS0 0TSPTSRO 107
ATGUIMENTS. ...ttt 107
REIUM VEIUE....... bbbttt 108
B.22. SHIFT ..ottt ettt ettt ettt bbbt et bbb bbb s bR bttt bbbttt 108
FT7 @XEBNSION. ...ttt bbb bbb bbbt 108
SYNMOPSIS. .11t etreesee ettt E AR 108
ATGUMENES. ...ttt ettt bbb e e s s bbb s s e e e s s R bbb bbb s e ARt bbb s s s e s Rttt st 108
REIUM VEIUE.......eoeee ettt ettt en e 108
B.23. SIND...... ettt ettt s bR E SRR 108
T ettt RS RS Rt 108
R3] 01T TP 108
AATGUIMEBNLE. ..ttt e E £ s e E £ 428 b 45 e b ee e b e £ b e b £ E s ee s b b e b s e s bt e ne b s 108
REIUMN VAIUE........oeee ettt s st s bbb s s ee e nnsesntas 108
B.24. TAND.....co ittt ettt ettt s bR AR R R SRRttt 109
T e bR A R R AR bR bbb bbbt 109
Y NMOPSIS. 111 vtatteietsete ettt R R R AR R 109

PGI Fortran Reference Guide X

o 10 41T | OO TR 109

RETUM VAIUE....... ettt E bbbttt s et 109
B.25. XOR....oetttei ettt 109
F77 @XEBNSION. ...ttt ettt s s R e n st s bttt 109
SYNMOPSIS. c.v. vttt ettt E AR Rt R e 109
ATGUIMEBNES. ...ttt s s bbb bR E bR bbbkt 109
REIUM VEIUE......ceiee ettt ettt n e 109
B.26. ZEXToeiieeeieeieestineeseisei ettt 109
= T TP TRTRT 109
SYNMOPSIS. ...ttt ettt bbb bbb bbb st R bbb AR b bbb Rt bbb bbbt 110
ATGUIMENTS. ...ttt bbb 110
RETUMN VAIUB......cooee e 110
B6.27. INEHNSIC MOTUIES. ... ettt ee ettt s st ennnen 110
6.27.1. Module IEEE_ARITHMETIC........coiiiiirireirireer et 110
6.27.2. IEEE_ARITHMETIC DErVEA TYPES.....ceeereeerreeereeeereeseeseiseeseisessessesssssssssesessssesssssesssssessessessesssssessassassasenns 110
6.27.3. IEEE_ARITHMETIC INQUINY FUNCHONS. ..ottt ettt 11
6.27.4. IEEE_ARITHMETIC Elemental FUNCHONS.........ccovviriurieriiiiinisissisiessis e 112
6.27.5. IEEE_ARITHMETIC Non-Elemental SUDIOULINES..........cceveveiiiiiieeetceceeecse ettt 114
6.27.6. IEEE_ARITHMETIC Transformational FUNCHON...........ccoiiririininescesess s 114
6.28. Module I[EEE_EXCEPTIONS.........coiureeeeireisireeseieessessesseesesessesssssessssss e sses st essessessessesssssssssssssssssessessessessnns 114
6.28.1. IEEE_EXCEPTIONS DErVEA TYPES. ..o cvuvrriiiiiniieineisiseiseiesseies e 114
6.28.2. IEEE_EXCEPTIONS INQUINY FUNCHONS........ccoumiiieereiriecieicieiin ettt 115
6.28.3. IEEE_EXCEPTIONS Subroutines FUNCHONS. ..ot 115
8.29. IEEE_FEATURES.........coteieeeeeie ettt ettt s8££ttt 117
6.29.1. IEEE_FEATURES DEIVEA TYPE.....cvucvuivreriiiiieiniessissiseissiseiseses e 117
6.29.2. IEEE_FEATURES Named CONSIANS.......c.cvoiuiureieeirieieireeie ettt esans 117
6.30. MOAUIE 1SO_C_DINGING......ciiririeeiiircieirieis ettt sttt ettt 118
6.31. MOAUIE ISO_FOMIAN_BNV....... ettt ettt 118
Chapter 7.0bject Oriented Programming.........ocrmensmsssness s s st sessssss s sessssssses 119
A 12127 =T OSSOSO 119
7.2, POIYMOIPNIC ENHHIES. ..ottt 120
7.2.1. Unlimited PolymorphiC ENLIHES.........ccviuriierci et 121
7.2.2. Typed Allocation for Polymorphic Variables............cocieiniseceeeseeeiee e 122
7.2.3. Sourced Allocation for Polymorphic VariabIES.............cccvireueiicieiiesiecicseee et 122
7.2.4. Procedure POIYMOIPRISITL.......c.vuiuieieiiiiiseitiis ittt bbb 122
7.2.5. Procedure Polymorphism with Type-Bound ProCeAUIES........cccvviviiiceceeiesissseseeeeee s 123
7.2.6. Inheritance and Type-Bound ProCEAUES............ccvruieiriiieircis e 127
7.2.7. ProCEAUrE OVEITIAING. ... iveviieetieicieiietsisese ettt st b bbbt b st et s et s st enas 127
7.2.8. Functions as Type-Bound PrOCEAUIES..........cciruriieuriieeeireeieese ettt 129
7.3, INfOrMALION HIGING.cveerieiieice bbbt 129
7.3.1. TYPE OVEIOAING. ...vvviviririerireietseseietses ettt st st s s s bbb bbbt 131
7.4, Data POIYMOIPRISI. ..o bbb 132
7.4.1. Pointer PolymorphiC Variables...........c et 132

PGI Fortran Reference Guide Xi

7.4.2. Allocatable PolymorphiC VariablEs............ccvvcueieriirriieeceee s 133

7.4.3. SOUMCEA AIOCAHION. ... ettt s ettt ea ettt 134
7.4.4. Unlimited PolymorphiC ODJECES.........civiiiieiieisicicss ettt nnen 135
7.4.5. Abstract Types and Deferred BiNdiNGS........c.ocerrerrirrrirneein et 140
7.5, IEEE MOGUIBS. ..ottt bbb bbb bbb s b a bbbt 143
7.6, INEFINSIC FUNCHONS. ..ottt bbbttt 143
Chapter 8.0penMP Directives fOr FOtran..........cvvnnincnsnissssnessssessss s s s sessssssssssessssssens 144
8.1, OPENMP OVEIVIEW.......ceviecviisitetsicte ettt b ettt st b se bbb bbb st bbb s bbbt bbb s st n s seeas 144
8.1.1. OpenMP Shared-Memory Parallel Programming MOGEL...........cccrririinieriniiirineneseeseees s 144

T A =Y 3111 o] oo 2T 145
8.1.3. OPENMP EXGMPIE.....cooiieieriiieieieteriet ettt s es sttt ne st 146
8.2, TASK OVEIVIEW........cvireceesciieeis ettt sttt 147
TR TR - T OO 147
8.3.1. Task Characteristics and ACHVIHIES.........eveurieriirieeire e 147
8.3.2. Task SChedUIING POINES.........c.cceiiiieiiiieieei et 148
8.3.3. TASK CONSITUCE.......cvveeieiicieisicie ettt ettt b st 148
8.4. Parallelization DIFECHVES..........ceiiiueireeeieireiets sttt bbbttt 149
8.5. DireCtive RECOGNITION........ceoviiiiiieieieeei sttt 150
8.6, DIFECHVE ClAUSES.vvvuetireirciriieietste sttt ettt ettt bbbt s bbbt bbbttt b et n bt 150
8.8.1. COLLAPSE (1N)..r1evutvevietsiessetistesessstes et sstes s ss s b st bt b st b st s bttt st bbb s bt s b en s bt n st 153
8.6.2. COPYIN ([IS)...vurvereeeeeereeeenisetssietet sttt ettt ettt s 153
8.6.3. COPYPRIVATE(lISt).....cvveevrevreesserssiessessssesessssessessssessessssessessssessessssessessssesssssssessessssessessssessessnsessessssessessssessasans 154
B.8.4. DEFAULT ..ottt ettt 154
8.6.5. FIRSTPRIVATE(lIST).....vvvevreeiieiieesietseissetsete ettt sttt ettt sttt s st s st ssesnsns 154
BL8.6. TF().eurrereeeeieieteee ettt bbb 154
8.6.7. LASTPRIVATE(IISE).....vevrrvireiieeiseiiesieisissis et sssssssse st e ssss st ss st ss sttt s 155
B.8.8. NOWAIT ...ttt bbbt bbb bbb bbb bbb bbb bbbttt 155
8.6.9. NUM_THREADS ..ottt ettt ettt ettt bttt b sttt n st s 155
8.6.10. ORDERED..........cco ettt sttt bbbttt bbb bbbttt b st b et 155
B.8.11. PRIVATE ..ottt s e 155
8.6.12. REDUCTION.......couitiiiiieiitieiete ettt ettt sttt sttt b ettt bbbt ns 156
8.8.13. SCHEDULE........co ettt bbb bbb 156
8.8.14. SHARED.........cocoeiitiiieietsie ettt bttt eb bbb bbb bbbttt 157
B.8.15. UNTIED........coiiiieieieieie sttt ettt ettt ns 157
8.7. DireCtive SUMMAIY TaDIE.......cuii et 157
871, ATOMIC..... oottt bbbt 158
SYNEAX. 1ttt 158
07 o TSRS 159
8.7.2. BARRIER ..ottt bbbttt bbbttt 159
YN 1ttt R R R R R ARt 159
USBGE 1.t eee ettt bbbt E R E R AR AR £ £ AR AR R £ R bR E R bbbttt 159
8.7.3. CRITICAL ... END CRITICAL.....coctiriieiiteietietsse ettt sttt sttt st 159
- CH OSSO 159

PGI Fortran Reference Guide Xii

Example of Critical...End CritiCal dir€CHVE.........ccvrureeir ettt 160
8.7.4. CABDOACROSS........ociierieiiseiss ettt sttt bbb 160
1= GO PSP 160
0 0T3PPSR 161
USBGE 1.ttt eee ettt ettt bbb R £ R AR AR bR E bbbttt 161
8.7.5. DOL..EEND DO....ooviiiciiieictseie sttt sttt sttt bbbt bttt ettt 161
ClAUSES: ..t vvere ittt s s RS ERRRRRRRR e ER e rnEnne 162
0T oo PT TP TPPTOROOON 162
oy 1] 0] LY TSP 162
LI o3PS 162
B.7.6. FLUSH. ...ttt bbbt 163
SYNEAX. 11ttt e 163
07 o TSR 163
8.7.7. MASTER ... END MASTER.......cotiiirieiitriese sttt sttt 163
YNttt R R R R R 164
USBGE 1.ttt eee ettt es et E R AR R AR £ AR AR R bR e bbbttt 164
EXAMPIES. ... 164
8.7.8. ORDERED........coctetetiieiietstiei ettt stttk 164
SYNMEAX 1ttt R R R Rt 164
USBQE... ettt ettt sttt bbbt R AR bbb s e AR R R R AR R et s AR AR bbb s e e R Rttt et st e e e 164
8.7.9. PARALLEL ... END PARALLEL.......coitrietieisiieieietese ettt ettt ettt en s 165
R3¢ O P TP RPN 165
CIAUSES. ... ettt ettt sttt et e s s e e e e e 2R R £ e e RS E R R £ R RS A SRR e R R AR A e e e s Rt enne e s e eees 165
U= oL TSP 165
= 0 11 OO TP 166
ClAUSE USBGE.rcvueeereeciiseescie sttt es bbb s 166
8.7.10. PARALLEL DO.....oitiieicieieiieist ettt bbbttt 166
YNttt R R R R R 167
ClAUSES. ... vttt s et s8R 8RR AR R e 167
USBQE. .. ettt bR E bbbt 167
8.7.11. PARALLEL SECTIONS........cootiitiriieitietieississe sttt ettt sttt b sttt ettt nnsansenas 167
SYNMEAX .1ttt R R R 167
ClAUSES. ... vttt ettt b8 s8R R Rt 167
USBQE. .. ettt bbb bbb 168
8.7.12. PARALLEL WORKSHARE........c.cittitirtieieintieistseie sttt sttt bbbttt ssansenas 168
SYNEAX. 1ttt 168
ClAUSES........cereereee bbb 168
U= OSSPSR 169
8.7.13. SECTIONS ... END SECTIONS........coeriieirireieiri ettt sss et ses sttt sssenns 169
1TSS 169
0 0T3PPSR 169
USBGE 1+ et eee ittt ettt s bR SRR R £ AR R bR E bbbttt ne et 169

PGI Fortran Reference Guide Xiii

SYNEAX. 11ttt e 170
ClAUSES. ... vttt R R R R 170
U= TSP 170
EXAMPIES. ...t 170
L7185, TASK ettt SRR AR bR 170
SYNMEAX .1ttt R R R AR 170
ClAUSES. ... vt creisctes sttt R R ARt 171
0T oSO OTOOPTOTUPOROOON 171
RESHIICHONS. ...t bbb bbbt 172
87168, TASKWAIT ..ottt ettt ettt ettt sttt b bbbttt s bbbt s bt b s 172
R3] b OO T TP PR 172

O T3PS 172
07 o TSR 172
RESHIICHONS. ...ttt R Rt ne e 172
8.7.17. THREADPRIVATE........ooetiiiteiieiite ettt a s s bbb bbb bbbt 172
SYNEAX 1ttt AR R AR 173
USBQE. .. ettt E bbbt 173
RESHICHONS. ...t e s bbbt 173
8.7.18. WORKSHARE ... END WORKSHARE..........cccoitiitiititiiteieissie sttt ssss s sse s ss s 173
Y MEAX 1+ttt bbb bbb a bbb h bR b b s A b a b bbb bbbttt s tns 173
USBQE. .. ettt bbbt 173
8.8. RUNIME Library ROULINES.........cceeieiii ittt s nnnenas 174
8.9. OpenMP Environment Vari@bles.............crururierieiercee ettt 178
8.9.1. OMP_DYNAMIC........ccoeeieeeieicteteiset ettt eb bbbttt ettt 179
8.9.2. OMP_MAX_ACTIVE_LEVELS......c.coeiiiieieirtieiseissieietssseie sttt st st ss st ss st sse st ssssnes 179
8.9.3. OMP_NESTED........ceiiiiteititcteteiet ettt ettt b bbbttt bbb bt s bbbt n s 179
8.9.4. OMP_NUM_THREADS.........ooteiiteiieirieeteisstetee et ss s sss bt s sttt 179
8.9.5. OMP_PROC_BIND........ccstuiiritiitiieiiisistssse e ssssestsss bbb bbb bbbttt 179
8.9.6. OMP_SCHEDULE........co ittt bbbt 179
8.9.7. OMP_STACKSIZE..........coooeieiieieiiisse ettt st ss bbbt s bt 180
8.9.8. OMP_THREAD_LIMIT.....ottitieiierireiiesissieessseessessseesass st sssessss s ssss s sssss s sssssssssssssssssassssssessssassesnsassesas 180
8.9.9. OMP_WAIT_POLICY ...ttt sttt s s st s bbb 180
Chapter 9.3F Functions and VAX Subroutines............ccornmnnnssssssssssssssssssssssssssssssens 182
LI T T o 4TSRS 182
0010, DO ..t 182
SYNMOPSIS. 1.ttt bbb 183
Dot 0] o] PP 183
LI T T TSROSO 183
SYNMOPSIS. 1.ttt 183

[T=TTor 10110 o RPN 183
LSRG T T ST 183
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 183

PGI Fortran Reference Guide Xiv

Do 0o TR 184

9.1.4. BESSEl TUNCHONS.... ...ttt ettt ettt 184
R3] TR 184
LT o3 TP 185
SYNMOPSIS. v vvreertce sttt R R AR 185
DESCIIPHION. ...ttt bbbt b b bR ARt bbb e R bbbt nen e e e s 185
LI 0o T 4o TSRS 185
Y NMOPSIS. 11t vvureiretce sttt R AR 185
DIBSCIIPHON. ...ttt 185
0.7 ClIME. bR bbbttt 185
SYNMOPSIS. c1v- vttt 185
Do 1o TSR TTTTRTRRRP 185
0.1.8. ALB...u ettt RS R s R Rttt 185
R3] TP 185
DESCIIPHION. ...ttt et bbb bbbt b bbb s e ARt bbb b s bbbttt s s e e s 186
9.1.9. EITOT TUNCHONS. ... covtieieiicieit ettt b st n bbb enas 186
Y NMOPSIS. 11t vt vartisetttts ettt R ARt 186
LS TR LR 30T =T 186
Y NMOPSIS. 11t vvreeese ittt R R R ARt 186
DIBSCIIPHON. ...ttt bbbttt 186
L b T () TSP SP PSSRSO 186
SYNMOPSIS. vttt sttt R AR 186
DT 1o PR 186
Lo 1 (- TP 187
RS0 0TSPTSRO 187
LTSy (1o} OO PU TSRS 187
00113, GBIC. vttt RS n R 187
7] 01T 187
DIBSCIIPHON. ...ttt bbb bbbt 187
0104, FIUSN. o bbb 187
SYNMOPSIS. c.v. v treeretce sttt R £ 187
DT ot oo 3PP RRTTRTRRPP 187
Lo 1 T (o PO PP TR 187
SYNMOPSIS. ...ttt ettt ettt bbb bbb s bR bbb bbb bbb a bbb bbbt ens 187
TS0 (1o} PRSP TRTTSR 188
0. 0.18. FDULC ettt bbb 188
SYNMOPSIS. 1.ttt bbb 188
LT 4010} 3OS RTRPTR 188
L T YOO 188
SYNMOPSIS. 1.ttt 188
DESCIIPHION. ...ttt bbb R bbb AR R bbb b s e Rt ettt bt n s e e s 188
0.1.18. SBEK....vuvviecviiet ettt bbb bbbttt 188
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 188

PGI Fortran Reference Guide XV

Do 0o TR 188

0119, FBIL. ettt 189
R3] TR 189
DESCIIPHION. . ..v vttt bbb h bbb b b s R bbbt bbb st ettt bt n s e s 189

01,20, GITOT.vereeeeeseeeeee et es et es e s s s8R 8RR R 189
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 189
DIBSCIIPHON. ...ttt E bbbt 189

01,27, GBEAIG. .ttt R bbbttt 189
SYNMOPSIS. vttt 189
DESCTIPHION. ...ttt b bbb R R R AR AR ARt s e e ARt ettt s s e e s 189

0.0.22. HAIGC...vvreveeeseteiees ettt ettt eb et bbb bbb bbb bR bbb bbbt 190

LT X T o (o RPN 190
SYNMOPSIS. vttt bbb 190
LT 4010} 3PP 190

01,24 GEICWA. ...ttt R AR R R bttt ne et en 190
SYNMOPSIS. 1.ttt R AR AR 190
DESCIIPHION. ...ttt et b bbb e bbb R bR ARt bbb s e Rt bbbt et n s e e s 190

01125, GBIV, bbb bbbt 190
Y NMOPSIS. 11t vvreeese ittt R R R ARt 190
DIBSCIIPHON. ...ttt bbbttt 190

01,26, GOLGIA. ...ttt 191
SYNMOPSIS. vttt sttt R AR 191
DT 1o PR 191

0027 GBHOG. ...ttt 191
RS0 0TSPTSRO 191
LTSy (1o} OO PU TSRS 191

0.1.28. GOIPIG. ... vttt bR R R RS R R 191
7] 01T 191
DIBSCIIPHON. ...ttt bbb bbbt 191

01229, GOUUIG. ...ttt bbb 191
SYNMOPSIS. c.v. v treeretce sttt R £ 191
DT ot oo 3PP RRTTRTRRPP 191

0.1.30. GIMEME... ettt bbbttt 192
SYNMOPSIS. ...ttt ettt ettt bbb bbb s bR bbb bbb bbb a bbb bbbt ens 192
TS0 (1o} PRSP TRTTSR 192

0.1.30. NOSINM. ..ottt 192
SYNMOPSIS. 1.ttt bbb 192
LT 4010} 3OS RTRPTR 192

0.1.32, HUAEE. .ottt ettt E bbbt 192
SYNMOPSIS. 1.ttt 192
DESCIIPHION. ...ttt bbb R bbb AR R bbb b s e Rt ettt bt n s e e s 192

LSRG TR 1T o TSP 192
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 192

PGI Fortran Reference Guide Xvi

Do 0o TR 193

LS 7 1o o1 TP 193
R3] TR 193
DESCIIPHION. . ..v vttt bbb h bbb b b s R bbbt bbb st ettt bt n s e s 193

0.1.35, HSALY....cvurvrsceeteic it b bbb bRttt a s aen 193
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 193
DIBSCIIPHON. ...ttt E bbbt 193

0.1.38. TNttt ettt bbbt 193
SYNMOPSIS. vttt 193
DESCTIPHION. ...ttt b bbb R R R AR AR ARt s e e ARt ettt s s e e s 193

0137, Killu. vttt et ettt 193
RS0 T T SRR 194
LS4 0 (1o} OO STTTTTR 194

0.0.38. TINK. vt R R AR 194
SYNMOPSIS. vttt 194
DIBSCIIPHION. ...ttt bbb 194

01,39, INDINK .ottt R R s 194
SYNMOPSIS. 1.t treertce sttt R AR 194
DESCIIPHION. ...ttt bbb bbb bR ARt bt bbb s a bbbt nen s e s 194

01140, JOC. .. ettt ettt ettt ettt et bbb A AR bbbttt 194
SYNMOPSIS. ...ttt ettt ettt bbb bbb h bR bR A bbb b bbb Rt bbbt tens 194
IS4 0] (1o} PR STRTSR 194

01147, THIME ettt bbbt 195
SYNMOPSIS. vttt 195
DT 0o TP 195

91142, MAMIOC. ...ttt et f e R AR E e Rk E ettt en 195
Y NMOPSIS. c1v. vttt R AR R 195
DESCIIPHION. ...ttt ettt bbbt b b bbb ARttt bbb s bbbttt n s e e s 195

911143, MNCIOCK. ...ttt R ettt nnes 195
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 195
DIBSCIIPHON. ...ttt bbbt 195

0. 1.44 . MIVDIES. ...ttt Rt 195
SYNMOPSIS. vttt R R R 195
DS CTIPHION. ...ttt st bbb R R AR R AR bbb s e ARttt s s e e s 196

LI T TV O 196
R3] 0T TP 196
TS0 (1o} PSR 196

LI LT 0= (o TSP 196
SYNMOPSIS. vttt bbb 196
DIBSCIIPHION. ...ttt bbb 196

LI o (o O R P U ST URRPPTPRTRTTN 196
SYNMOPSIS. ...ttt R R R AR 196
DESCIIPHION. ...ttt bbb bbb bR a Rt beb bbb e Rt ettt nen e s 196

PGI Fortran Reference Guide xvii

0148, PULBNV ...ttt R AR ARttt ARt a et b 196

SYNMOPSIS. vttt bbb 197
LTS 41010} 3PP 197
0,149, QSO ettt h bbb bbb bbb bR e AR bbbt bbb s Rt ettt s 197
SYNMOPSIS. v vvreertce sttt R R AR 197
DESCIIPHION. ...ttt bbbt b b bR ARt bbb e R bbbt nen e e e s 197
LS TR o R =T o B T T TR = [o T 197
Y NMOPSIS. 11t vvureiretce sttt R AR 197
DIBSCIIPHON. ...ttt 198
9.1.51. random, Irandm, AraNAM. ..o bbb bbb 198
SYNMOPSIS. c1v- vttt 198
Do 1o TSR TTTTRTRRRP 198
0.0.52, TANGE. ... ettt bbb 198
R3] TP 198
DESCIIPHION. ...ttt et bbb bbbt b bbb s e ARt bbb b s bbbttt s s e e s 198
0.1.53. TENAME. ...ttt ettt ettt e e RS e RS bRt e bbbt nnes 199
Y NMOPSIS. 11t vt vartisetttts ettt R ARt 199
DIBSCIIPHON. ...ttt bbbttt 199
01,54, TINABX. ettt bbb R R R bR R bbbt 199
SYNMOPSIS. c.v. v evreertce sttt AR 199
DESCTIPHION. ...ttt ettt bbb bR R AR R AR R bbb s e e Rttt s e e s 199
0.1.55. SECNAS, USECNAS.cueeiieeeteteeeee et ettt sttt e e e sese sttt eae s st st st et esese e sessssesebeaeasssssesetesesesesesessasesesensassensates 199
RS0 TP 199
LS4 (1o] OO TTRTSR 200
0.1.58. SBIVDUT ..o bbb 200
SYNMOPSIS. vttt 200
DIBSCIIPHION. ...ttt bbb 200
0157, SBIVDUBE ... R 201
SYNMOPSIS. c1v. v vreertee sttt R R AR 201
DESCTIPHION. ...ttt b bbbt bR ARt bbb e et bbbt s s s e e s 201
0.1.58. SIGNAL...... et 201
Y NMOPSIS. 11t vvureesettte sttt R AR 201
DIBSCIIPHON. ...ttt bbbt 202
0.1.50. SIEP... ittt bbb E AR Rttt R AR b bRttt r et r s 202
SYNMOPSIS. vt tateretet sttt bbb 202
Do 1o TR 202
9.1.60. stat, Istat, fstat, fSIAtB4..............oeeeieeeeeeeeeeee ettt ettt et 202
R3] 0T TP 202
DESCTIPHION. ...ttt ettt b bbb bbb bt s e e R bbbt bbb e Rt bbbt rn s e e s 202
LI 3 O 11T TP 203
Y NMOPSIS. 11ttt vurtesetti sttt R ARt 203
DIBSCIIPHON. ...ttt bbbt 203
01,82, SYMINK.....e ettt Rttt 203

PGI Fortran Reference Guide XViii

RS0 0TSRRI 203

=T Tot o] o] OSSP P U TRTTSR 203

L8 LT T - 4P 203
7] 05T 203
DESCIIPHION. 1.ttt 203
0.1.84. HIMI ittt b bR R RS E AR 203
SYNMOPSIS. c.v. v vreertce sttt R AR 204

[T=T Yo7 11110 o TP 204

L0 1< T (4TRSS 204
SYNMOPSIS....vuivviicte ittt ettt bbb bbb s b et b SRR bbb bbb b a bbb bbb tns 204
DTt o] o OO STRSR 204

LT LT 11 0= TP 204
SYNMOPSIS. vttt bbb 204
DTSt 0] o] TP 204
0187 UNINK .ttt ettt b bR R R R e 204
SYNMOPSIS. 1.ttt R AR AR 204

[T=TTor 110110 o TR 204
0,188, WALcvucvescveeetct ettt bbbt bR bR bR bR bRt R bbb en 205
Y NMOPSIS. 11t vvreeese ittt R R R ARt 205
DBSCIIPHION. ...ttt bbb s8R R 205
9.2, VAX SYSIEM SUDIOULINES.c.cviieviiecteiiieis ettt bbb bbb b s 205
9.2.1. BUIIEIN FUNCHONS. ..ottt ettt ettt et 205
DOLOC(BIG). v rvervreeereiseesesee ettt ss etttk bbbt 205
DOREF(Q)..... vttt ettt ettt ettt bbbt 205
DOVAL(Q). ... v vttt ettt 205
9.2.2. VAXIVMS SyStem SUDIOULINES..........cuieireirieisienieieseeeieiseineesesee s s 205
DATEottt ettt s bbb b1 b s b s Sb A 1A bbb a bbbt aen 206

E KT et eE e R e E Rttt 206
GETARG.....c..cutictitie ettt bbb bbb a1t a bR bRt a bbb a s 206
TARGC....... ettt ettt bbb R bbbttt 206
IDATEottt ettt b bbbttt bbb bRt E AR bR bRt b bt bbbttt nt s 206
MVBITS. .ottt b b8 bbb 207
RAN . .ottt bbbt b bR R R RSt bbbt 207
SECNDS.....c ettt bbb R Rttt 208
TIME. .ottt ettt R bbbt 208
Chapter 10.Interoperability With C..........cccorirrmrenrnerensrsessssess s ssesssssssesssssssens 209
OIS T 404 = (o £SO 209
10.2. Interoperability With C POINTET TYPES......c.cvivririieiriceriets st 209
10,20, Gl P0IBT et bbbt bbb bbbttt b s e bbbt et bt n s e rn 209
F2003... .ottt bbb bR bR bR bbb bR bbbt bt 209
1TSS 210
7L 210
DESCIIPHION. ...ttt bbbt bbbt R Rt b et bbbt et ee 210

PGI Fortran Reference Guide XiX

10.2.2. C_f_PIOCPOINEET. ...ttt ettt st b e bbbt 211
F2003... .ottt R £ Rt 211
1= GO PSP 211
/LSOO 211
[1=TTor 10110 o OO RPN 211
EXAMPIE. ... R AR R 212

10.2.3. C_BSSOCIALE. ... ettt bbb bbb 212
F2003... .ottt sttt SR RS ettt 212
SYNEAX 1ttt ettt bbb s bbb A A b AR b SRR b st bbbttt a b 212
7L T OO 212
D=1 o711 (1o] o TP 212
REIUM VIUE....... ettt ettt 212
EXAMPIE. ...t R bRt R et bR s et neas 212

10.3. Interoperability Of DEMIVEA TYPES. ..ot 213
Chapter 11.Contact INfOrmMation...........coccurernnmnnins s s p st 214

PGI Fortran Reference Guide XX

LIST OF FIGURES

Figure 1 Order Of SEAIEMENTSviie bbb 2

PGI Fortran Reference Guide XXi

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

FOMIAN CRETACIETScvieie i bbbt 3
C Language Character ESCape SEQUENCEScvviuierirririiniieieiriseiees ettt 3
Fixed Format Record POSitions and FIeldScooeiiciciceeee et 5
Fortran Operator PrECEABNCEcccviiviieiicieiicte ettt bbbttt 8
ALNMELIC OPEIATOTScucvveiicvciicte ettt et bbb bbb bbbttt st b s st s 10
Arithmetic OPErator PrECEABNCEceviveeeceeieeceee ettt ettt sttt a bbb ense s 10
R Lo 0= I O] =T = (o] - OO T 11
Logical EXPreSSion OPEIALOrSc.c.ieererreeriieeeireseieesesetseseseesesesseseseesesessesesesesessesssssssessssessssssssessesssssnssesessssssnsns 1"
Fortran INtriNSIC DAta TYPES ...cuevucviieeieireieieireieiei sttt bbbt bbbt eb et 16
Data Types KiNd PArameters ..ottt 17
Data TYPE EXIENSIONSuvviviiecieiiici sttt bbbttt bt 17
Data TYPE RANKS ...ttt et a bbbttt a st e e st bbb 18
Examples 0of REaI CONSIANEScciueiiiiieiciectc ettt bbbttt 20
Examples of Double Precision CONSIANESc.c.cucieiuiueiieciciccce ettt 21
Statement SUMMANY TaDIE ..o 37
OPEN SPECIfIEIS ... veeeeeeeirieeeireseieiseet s ses ettt ee s e e st s et s st e e s st eesesessnnens 69
Format Character Controls for @ PrINLET ..o 73
Format Character Controls for ROUNAING PHNEEE ..o 79
List DIreCted INPUL VAIUEScvevviiieecccce ettt 82
Default List Directed Output FOrMattingcceeiieiiiiiiiice ettt 83
|[EEE_ARITHMETIC DENVEA TYPES ..vuvvivrieereirierireiirsiseesissisessssssetsssssssssssssssssssssssssssssssesssssssessssssesssssssessssnses 111
IEEE_ARITHMETIC INQUIrY FUNCHONSceeicieiieee ettt 112
I[EEE_ARITHMETIC Elemental FUNCHONScoiiuiiiiiricre e 112
I[EEE_ARITHMETIC Non-Elemental SUBFOULINES ..ot 114

PGI Fortran Reference Guide XXii

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

Table 34

Table 35

Table 36

IEEE_EXCEPTIONS DEriVEd TYPESourvuiiriiirrieneiesieiiesresseieei st 115

IEEE_EXCEPTIONS INQUIrY FUNCHONScocviiivciicieiicts ettt b sttt 115
[EEE_EXCEPTIONS Elemental SUDIOULINESccovuieieiirieriineineiseiei et 116
IEEE_EXCEPTIONS Elemental SUDTOULINEScccuieiirimiiiieiiiieeneiee et 116
IEEE_FEATURES Named CONSLANESc.ocevrivriieiiiriieieireieei sttt 117
is0_fortran_env Named CONSLANES ..o 118
Fortran 2003 FUNCLONS @NA PrOCEAUIESc.cueviuiieieircieiieereiee ettt 143
Directive Clauses SUMMArY TADIEcoiuririiirieire e 151
Initialization of REDUCTION Variablesceiiiiiiiiininnincnc st 156
Directive SUMMANY TADIE ..ot bbbt bbb 157
Runtime Library ROUINES SUMMATYcceiiiiriiiiiieieisencie ettt 174
OpenMP-related Environment Variable Summary Table ..o 178

PGI Fortran Reference Guide XXili

PREFACE

This manual describes the Portland Group's implementation of the FORTRAN 77, Fortran 90/95,
and Fortran 2003 languages. Collectively, The Portland Group compilers that implement these
languages are referred to as the PGI Fortran compilers. This manual is part of a set of documents
describing the Fortran language and the compilation tools available from The Portland Group. It
presents the Fortran language statements, intrinsics, and extension directives.

Two Compilers represent the PGI Fortran compiler products. Fortran 77 (pgf77) is one of them.
paf90, pgfas, and pgfortran are the same compiler that has evolved from Fortran 90 to Fortran
2003 standards. The older names are supported so that makefiles that were written using pgfo0/
pgf95, will still work. All three names refer to the same one compiler that supports the Fortran
2003 language standard.

The Portland Group’s Fortran compilation system includes a compilation driver, multiple Fortran
compilers, associated runtime support and mathematical libraries, and associated software
development tools for debugging and profiling the performance of Fortran programs. Depending
on the target system, The Portland Group’ s Fortran software devel opment tools may also include
an assembler or alinker. Y ou can use these tools to create, debug, optimize and profile your
Fortran programs. Related Publications lists other manuals in the PGI documentation set.

Audience Description

This manual isintended for people who are porting or writing Fortran programs using the PGI
Fortran compilers. To use Fortran you should be aware of the role of Fortran and of source-
level programsin the software development process and you should have some knowledge of
aparticular system or workstation cluster. To use the PGI Fortran compilers, you need to be
familiar with the Fortran language FORTRANT77, Fortran 90/95, or F2003 as well as the basic
commands available on your host system.

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77 and PGFORTAN, run on avariety of x86 and OpenPOWER
processor-based host systems. The PGF77 compiler, supported on x86 only, accepts an enhanced
version of FORTRAN 77 that conformsto the ANSI standard for FORTRAN 77 and includes
various extensions from VAX/VMS Fortran, IBM/V S Fortran, and MIL-STD-1753. The

PGI Fortran Reference Guide XXiv

Preface

PGFORTRAN compiler accepts a similarly enhanced version of the ANSI standard for Fortran
90/95/2003.

For further information on the Fortran language, you can also refer to the following:

» American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/EC 1539 : 1991, Information technology — Programming L anguages — Fortran, Geneva,
1991 (Fortran 90).

» ISO/EC 1539 : 1997, Information technology — Programming L anguages — Fortran, Geneva,
1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Fortran 2003 Handbook, The Complete Syntax, Features and Procedures, Adams et al,
Springer; 1st Edition. 2008.

» OpenMP Fortran Application Program Interface, Version 3.1, July 2011, http://
WWW.openmp.org.

» Programmingin VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-41109.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

This guide is divided into the following sections and appendices:
Language Overview, provides an introduction to the Fortran language.

Fortran Data Types, describes the data types supported by PGl Fortran compilers and provides
examples using various data types. It also contains information on memory allocation and
alignment issue.

Fortran Statements, briefly describes each Fortran statement that the PGI Fortran compilers
accept. Longer descriptions are available for PGl extensions.

Fortran Arrays, describes special characteristics of arrays in Fortran 90/95.

Input and Output, describes the input, output, and format statements that allow programsto
transfer data to or from files.

Fortran Intrinsics, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
compilers.

Object Oriented Programming, provides a high-level overview of procedures, functions, and
attributes from Fortran 2003 that facilitate an object-oriented approach to programming.

OpenMP Directives for Fortran, lists the language extensions that the PGI Fortran compilers
support.

PGI Fortran Reference Guide XXV

http://www.openmp.org.
http://www.openmp.org.

Preface

Functions and VAX Subroutines, describes the functions and subroutines in the Fortran runtime
library and discusses the VAX/VMS system subroutines and the built-in functions supported by
the PGI Fortran compilers.

Interoperability with C, describes the pointer types and enumerators available for Fortran
interoperability with C.

Hardware and Software Constraints

The PGI compilers operate on avariety of host systems and produce object code for a variety of
target systems. Details concerning environment-specific values and defaults and host-specific
features or limitations are presented in the PGl Compiler User’s Guide, the man pages for each
compiler in agiven installation, and in the release notes and installation instructions included
with all PGI compilers and tools software products.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item?2 or item3.
filename....
élipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, macOS and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER

PGI Fortran Reference Guide XXVi

http://www.pgroup.com/resources/docs.htm

Preface

processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGl 2016 and will no longer be available as of the PGl
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

Related Publications

The following documents contain additional information related to compilers and tools available
from The Portland Group, Inc.

>

The PGI Compiler User's Guide and the PGI Visual Fortran User’s Guide describe the
general features and usage guidelines for all PGI compilers, and describesin detail various
available compiler options in a user's guide format.

Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the
statements, data types, input/output format specifiers, and additional reference material that
defines ANSI/ISO Fortran 95.

Fortran 2003 Handbook, from Springer, provides the complete syntax, features and
procedures for Fortran 2003.

System V Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc, (available from Prentice Hall, Inc.)

American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September,
1984).

IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

PGI Fortran Reference Guide XXVii

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Preface

PGI Fortran Reference Guide XXviii

Chapter 1.
LANGUAGE OVERVIEW

This section describes the basic elements of the Fortran language, the format of Fortran
statements, and the types of expressions and assignments accepted by the PGl Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language
code, binary object code or binary executables in conjunction with the assembler, linker and
libraries on the target system. The input language must be extended FORTRAN 77 as specified in
this reference manual. The PGFORTRAN compiler functions similarly for Fortran 90/95/2003.

This section is not an introduction to the overall capabilities of Fortran. Rather, it is an overview
of the syntax requirements of programs used with the PGI Fortran compilers. The Fortran 2003
Handbook, provides the complete syntax, features and procedures for Fortran 2003.

1.1. Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or
PROGRAM program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every
program unit consists of statements and optionally comments beginning with a program unit
statement, either a SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an
END statement (BLOCK DATA and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM
statement.

1.1.1. Fortran Statements

Statements are either executable statements or nonexecutabl e specification statements.

Each statement consists of asingle line or source record, possibly followed by one or more
continuation lines. Multiple statements may appear on asingle lineif they are separated by a
semicolon (;). Comments may appear on any line following a comment character (!).

1.1.2. Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form.

PGI Fortran Reference Guide 1

>

Language Overview

Fixed sour ce form uses the traditional Fortran approach where specific column positions are
reserved for labels, continuation characters, and statements and blank characters are ignored.
The PGF77 compiler supports only fixed source form. The PGF77 compiler also supports a
lessrestrictive variety of fixed source form called tab source form.

» Usethe compiler option -Mf i xed.
» Usethe suffix .f

Free sour ce for m introduced with Fortran 90 places few restrictions on source formatting;
the context of an element, as well as the position of blanks, or tabs, separate logical tokens.
Y ou can select free source form as an option to PGFORTRAN in one of these ways.

» Usethe compiler option -Mfreeform.
» Useeither the suffix .f90, the suffix .f95, or the suffix .f03.

1.1.3. Statement Ordering

Fortran statements and constructs must conform to ordering requirements imposed by the
language definition. Figure 1 illustrates these requirements. Vertical lines separate statements
and constructs that can be interspersed. Horizontal lines separate statements that must not be
interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows;

>

>

DATA statements can be freely interspersed with PARAMETER statements and other
specification statements.

NAMELIST statements are supported and have the same order requirements as FORMAT
and ENTRY statements.

The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1 Order of Statements

OPTIONS Statement
Comments PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements
and USE Statements
INCLUDE IMPORT Statements
Statements IMPLICIT NONE Statements
NAMELIST,
FORMAT IMPLICIT Statements PARAMETER
Other Specifications
and ENTRY Data Statements P
Statements Statement Function Definition
EXECUTABLE Statements
CONTAINS Statement

Internal Subprograms or Module

END Statement

PGI Fortran Reference Guide

Language Overview

1.2. The Fortran Character Set

Table 1, Fortran Characters, hows the set of Fortran characters. Character variables and constants
can use any ASCII character. The value of the command-line option —Mupcase determines if

the compiler distinguishes between case (upper and lower) in identifiers. By default, without

the -Mupcase option selected, the compiler does not distinguish between upper and lower case
charactersin identifiers (upper and lower case are always significant in character constants).

Table 1 Fortran Characters

Character Description Character Description
, Comma A-Z, a-z Alphabetic
Colon <space> Space character
; Semicolon = Equals
_ Underscore character + Plus
< Less than - Minus
> Greater than ¥ Asterisk
? Question mark / Slash
% Percent (Left parenthesis
" Quotation mark) Right parenthesis
$ Currency symbol [Left bracket
Decimal point] Right bracket
! Exclamation mark <CR> Carriage return
0-9 Numeric <TAB> Tabulation character

Table 2, C Language Character Escape Sequences, shows C language character escape sequences
that the PGI Fortran compilers recognize in character string constants when —-Mbackslash ison
the command line. These values depend on the command-line option -Mbackslash.

Table 2 C Language Character Escape Sequences

Character Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

PGI Fortran Reference Guide 3

Language Overview

Character Description

\0 null

\ apostrophe (does not terminate a string)

\" double quotes (does not terminate a string)

\ \

\x X, where x is any other character

\ddd character with the given octal representation.

1.3. Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a
blank or series of blanks or tabs and the context of atoken specify the token type. The following
rules apply to free form formatting:

» Upto 132 characters are valid per line, and the compiler option -Mextend does not apply.

» A single Fortran line may contain multiple statements, with the ; (semicolon) separating
multiple statements on asingle line.

» Freeformat labels are valid at the start of aline.

» Thelabel must be separated from the remaining statements on the line by at least one
blank or a<TAB>.

» Labelsconsist of anumeric field drawn from digits O to 9.

» Thelabel cannot be more than 5 characters.

» Either ablank line, or the ! character following a Fortran line indicates a comment. The
Fortran text does not contain any of the characters after the!.

» The& character at the end of aline means the following line represents a continuation line.

» If acontinuation line starts with the & character, then the characters following the & are
the start of the continuation line.

» If the continuation line does not start with a &, then all characters on the line are part of
the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple
statements on asingle line. Free format labels are valid at the start of aline, aslong as the label
is separated from the remaining statements on the line by at least one blank or a<TAB>. Labels
consist of anumeric field drawn from digits 0 to 9. The label cannot be more than 5 characters.

1.4. Fixed Formatting

This section describes the two types of fixed formatting that PGl Fortran compilers support:
column formatting and tab formatting.

PGI Fortran Reference Guide 4

Language Overview

1.4.1. Column Formatting

When using column formatting a Fortran record consists of a sequence of up to 72 or 132 ASCI|I
characters, the last being <CR>. Table 3 shows the fixed layout.

n For column formatting of 132 characters, you must specify ~-Mextend.

Table 3 Fixed Format Record Positions and Fields

Position Field

1-5 Label field
6 Continuation field
7-72 or 7-132 Statement field

Characters on aline beyond position 72, or position 132 if -Mextend is specified, areignored. In
addition, any characters following an exclamation (!) character are considered comments and are
thus disregarded during compilation.

1.4.2. Fixed Format Label Field

The label field holds up to five characters. Further, each label must be unique in its program unit.

» ThecharactersC, D, *, or ! inthefirst character position of alabel field indicate a comment
line.
» When anumeric field drawn from digits 0 to 9 is placed in the label field, thefield isalabel.

» A linewith no label, and with five space characters or a<TAB> in the label field, isan
unlabeled statement.

» Continuation lines must not be labeled.
» A program to only jump to labels that are on executable statements.

1.4.3. Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. Thisfield
isignored in comment lines. It isinvalid if the labdl field is not five spaces. A value of 0,
<gpace> or <TAB> indicates the first line of a statement. Any other value indicates a subsequent,
continuation line to the preceding statement.

1.4.4. Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or
<TAB> and terminated by <CR>.

Within the statement field, tabs, spaces, comments and any characters found beyond the 72nd
character, or position 132 if -Mextend is specified, are ignored. As stated earlier, any characters
following an exclamation (!) character are considered comments.

PGI Fortran Reference Guide 5

Language Overview

1.4.5. Fixed Format Debug Statements

Theletter D in column 1 using fixed formatting designates the statement on the specified line
is a debugging statement. The compiler treats the debugging statement as a comment, ignoring
it, unless the command line option -Md1ines is set during compilation. If -Mdlines iS Set,
the compiler acts asif the line starting with D were a Fortran statement and compilesthe line
according to the standard rules.

1.4.6. Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form.
A tab formatted source file is made up of alabd field, an optional continuation indicator and a
statement field. The label field isterminated by atab character. The label cannot be more than 5
characters.

A continuation lineisindicated by atab character followed immediately by anon-zero digit. The
statement field starts after a continuation indicator, when one is present. Again, any characters
found beyond the 72nd character, or position 132 if —-Mextend is specified, are ignored.

1.4.7. Fixed Input File Format Summary
For fixed input file format, the following is true:
» Tab-Format lines are supported.

» A tabin columns 1-6 ends the statement label field and begins an optional continuation
indicator field.

» If anon-zero digit follows the tab character, the continuation field exists and indicates a
continuation field.

» I anything other than anon-zero digit follows the tab character, the statement body
begins with that character and extends to the end of the source statement.

This does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit.

» Thetab character isignored if it occursin aline except in Hollerith or character
constants.

» Input lines may be of varying lengths.

» If there are fewer than 72 characters, the line is padded with blanks.

» Characters after the 72nd are ignored unless the -Mextend option is used on the
command line.

n The —-Mextend option extends the statement field to position 132.

When the -Mextend option is used, the input line is padded with blanks if it is fewer
than 132 characters; characters after the 132nd are ignored.

» Blank lines are dlowed at the end of a program unit.

PGI Fortran Reference Guide 6

Language Overview

» The number of continuation lines allowed is extended to 1000 lines.

1.5. Include Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. To do this, use the INCLUDE statement which takes the form:

INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE fileis compiled to replace the INCLUDE statement, and on completion of that
source thefile is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several program units. For example the following
statement includes the file MY FILE.DEF.

INCLUDE "MYFILE.DEF"
Nested includes are alowed, up to a PGl Fortran defined limit of 20.

Recursive includes are not allowed. That is, if afileincludes afile, that file may not also include
the samefile.

1.6. Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its el ements combined
with operators. Hence the basic building block of a statement is an element.

An element takes one of the following forms:

» A constant represents a fixed value.

» A variable represents a value which may change during program execution.

» Anarray isagroup of values that can be referred to as awhole, as a section, or separately.
The separate values are known as the elements of the array. The array has a symbolic name.

» A function reference or subroutine reference is the name of a function or subroutine followed
by an argument list. The reference causes the code specified at function/subroutine definition
to be executed and if a function, the result is substituted for the function reference.

1.6.1. Symbolic Names

Symbolic names identify different entitiesin Fortran source code. A symbolic name isastring
of letters and digits, which must start with aletter and be terminated by a character not in the
symbolic names set (for example a <space> or a<TAB> character). Underscore (_) characters
may appear within symbolic names. Only the first 63 charactersidentify the symbolic name.

Here several examples of symbolic names:

NUM
CRAS
numericabcdefghijklmnopgrstuvwxyz

PGI Fortran Reference Guide 7

Language Overview

The last exampleisidentified by itsfirst 63 characters and is equivalent to:

numericabcdefghijklmnopgrstuvwx
Some examples of invalid symbolic name include:
80 Invalid because it begins with a number

FIVE.4 Invalid because it contains a period, an invalid
character for a symbolic name.

1.7. Expressions

Each dataitem, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary
or unary operators, so that the expression itself yields avalue. A Fortran expression may be any
of the following:

» Ascalar expression » A specification expression
> An array expression > Aninitialization expression
» Aconstant expression » Mixed array and scalar expressions

1.7.1. Forming Expressions

Expressions fall into one of four classes. arithmetic, relational, logical or character, each class
described later in this section.

An expression is formed like this:

expr binary-operator expr or unary-operator expr

where expr isformed as an expression or as an element.

For example, these are simple expressions whose components are elements. The first expression
involves a binary operator and the other two are unary operators.

A+B =C +D

1.7.2. Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in Table 6. When no guidance is given to the compiler it imposes a set
of precedence rulesto identify each expression uniquely. Table 4 shows the operator precedence
rulesfor expressions.

Table 4 Fortran Operator Precedence

Operator Evaluated

Unary defined Highest
** N/A
*or/ N/A

PGI Fortran Reference Guide 8

Language Overview

Operator Evaluated

Unary + or - N/A

Binary + or — N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same precedence
Relational operators <, <=, >, >= Same precedence
Relational operators .EQ., .NE., .LT. Same precedence
.NOT. N/A

.AND. N/A

.OR. N/A

.NEQV. and .EQV. N/A

Binary defined Lowest

For example, the following two expressions are equivalent. If we set A to 16, B to 4, and C to 2,
both expressions equal 8.

A/B*C such as 16 / 4 * 2

(A/B) *C such as (16 /4) * 2

Another example of equivalent expressions are these:
A*B+B**C LEQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

((((A*B)+(B**C)) .EQ. (X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

1.7.3. Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators.

Arithmetic Elements

An arithmetic element may be:

> an arithmetic expression > anarray element
> avariable » afunction reference
» aconstant » afield of a structure

n A value should be associated with a variable or array element before it is used in an expression.

Arithmetic Operators

The arithmetic operators specify a computation to be performed on the elements. Theresultisa
numeric result. Table 5 shows the arithmetic operators.

PGI Fortran Reference Guide 9

Language Overview

Table 5 Arithmetic Operators

Operator Function

> Exponentiation

* Multiplication

/ Division

+ Addition or unary plus
Subtraction or unary minus

Arithmetic Operator Precedence

Arithmetic expressions are evaluated in an order determined by a precedence associated with
each operator. Table 6 shows the precedence of each arithmetic operator.

Table 6 Arithmetic Operator Precedence

Operator Precedence

** First
*and/ Second
+and - Third

Thisfollowing example is resolved into the arithmetic expressions (A) + (B * C) rather than (A +
B) * (C).

A+ B *C
Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed
to be evaluated first. For example, in the following expression the computer firsts adds A and B,
and then multiplies that sum by C.

(A + B) * C

Arithmetic Expression Types

Thetype of an arithmetic expression depends on the type of elementsin the expression:

INTEGER
if it contains only integer elements.
REAL
if it contains only real and integer elements.
DOUBLE PRECISION
if it contains only double precision, rea and integer elements.

PGI Fortran Reference Guide 10

Language Overview

COMPLEX
if any element is complex. Any element which needs conversion to complex will be converted
by taking the real part from the original value and setting the imaginary part to zero.
DOUBLE COMPLEX
if any element is double complex.

The Data Type Ranks table provides more information about these expressions.

1.7.4. Relational Expressions

A relational expression is composed of two arithmetic expressions separated by arelationa
operator. The value of the expression istrue or false (TRUE. or .FALSE.) depending on the value
of the expressions and the nature of the operator. Table 7 shows the relational operators.

Table 7 Relational Operators

Operator Relationship

< Less than

<= Less than or equal to
== Equal to

= Not equal to

> Greater than

>= Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The
relationship is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is |less than the value of LAST, then the result istrue,
otherwiseit isfalse.

1.7.5. Logical Expressions

A logical expression is composed of two relational or logical expressions separated by alogical
operator. Each logical expression yields the value true or false (TRUE. or .FALSE.). Table 8
shows the logical operators.

Table 8 Logical Expression Operators

Operator Relationship

AND. True if both expressions are true.

.OR. True if either expression or both is true.

PGI Fortran Reference Guide 11

Language Overview

Operator Relationship

.NOT. This is a unary operator; it is true if the expression is false, otherwise it is false.
.NEQV. False if both expressions have the same logical value

XOR. Same as .NEQV.

EQV. True if both expressions have the same logical value

In the following example, TEST will be . TRUE. if Aisgreater than B or | isnot equal to J+17.
TEST = A .GT. B .OR. I .NE. J+17

1.7.6. Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Itslength is
the number of charactersin the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab &'
'A@HJi2'
'var[1,12]"

1.7.7. Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions
using the concatenation operator //. The following table shows several examples of concatenation.

Expression Value

‘ABC//YZ' "ABCYZ"
JOHN 7/SMITH' "JOHN SMITH"
J7/JAMES //JOY' "J JAMES JOY"

1.8. Symbolic Name Scope

Fortran 90/95/2003 scoping is expanded from the traditional FORTRAN 77 capabilities which
provide a scoping mechanism using subroutines, main programs, and COMMONSs. Fortran
90/95/2003 adds the MODULE statement. Modules provide an expanded alternative to the use of
both COMMONSs and INCLUDE statements. Modules allow data and functions to be packaged
and defined as a unit, incorporating data hiding and using a scope that is determined with the
USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONSs are global to those modules that
reference them. They must refer to unigque objects, not only during compilation, but also in the
link stage.

The scope of names other than these islocal to the module in which they occur, and any reference
to the name in a different module will imply anew local declaration. This includes the arithmetic
function statement.

PGI Fortran Reference Guide 12

Language Overview

1.9. Assignment Statements

A Fortran assignment statement can be any of the following:

» Anintrinsic assignment statement
A statement label assignment

An array assignment

A masked array assignment

A pointer assignment

» A defined assignment

v v VY

v

1.9.1. Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression
where object is one of the following:

» Variable

» Function name (within afunction body)
Subroutine argument

Array element

Field of astructure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type if
necessary.

v v VY

In the case of:

complex = real expression

the implication isthat the real part of the complex number becomes the result of the expression
and the imaginary part becomes zero. The same appliesif the expression is double precision,
except that the expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A= (P+Q) * (T/V)
B=R**T**2

1.9.2. Logical Assignment

Thelogical assignment statement has the following form:

object = logical-expression
where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

v

v

v

v

PGI Fortran Reference Guide 13

Language Overview

» A field of astructure
The type of object must be logical.

In the following example, FLAG takesthe logical value .TRUE. if P+Q is greater than R;
otherwise FLAG hasthelogical value .FALSE.

FLAG=(P+Q) .GT. R

1.9.3. Character Assignment

The form of a character assignment is:

object = character expression

where object must be of type character, and is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

Character substring

» Afield of astructure

vV v v VY

v

In addition, these rules apply:

» None of the character positions being defined in abject can be referenced in the character
expression.

» Only such characters as are necessary for the assignment to object need to be defined in the
character expression.

» The character expression and object can have different lengths.

» When object is longer than the character expression, trailing blanks are added to the
object.

» If object is shorter than the character expression the right-hand characters of the
character expression are truncated as necessary.

In the following example, all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'
PLOT (3:8) = 'PLANTS'
TEXT (I,K+1) (2:B-1) = TITLE//X

1.10. Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing
process:
%LIST
Turns on the listing process beginning at the following source code line.
%NOLIST
Turns off the listing process (including the %NOLIST lineitself).

PGI Fortran Reference Guide 14

Language Overview

%EJECT
Causes anew listing page to be started.

These directives have an effect only when the —M1 1 st option is used. All of the directives must begin in
column one.

1.11. OpenMP Directives

OpenMP directives in a Fortran program provide information that alows the PGF77 and
PGFORTRAN compilersto generate executable programs that use multiple threads and
processors on a shared-memory parallel (SMP) computer system. An OpenM P directive may
have any of the following forms:

!'SOMP directive

CSOMP directive

*SOMP directive

For acomplete list and specifications of OpenM P directives supported by the PGF77 and
PGFORTRAN compilers, along with descriptions of the related OpenMP runtime library
routines, refer to OpenM P.

PGI Fortran Reference Guide 15

Chapter 2.
FORTRAN DATA TYPES

Every Fortran element and expression has a data type. The data type of an element may be
implicit in its definition or explicitly attached to the element in a declaration statement. This
section describes the Fortran data types and constants that are supported by the PGI Fortran
compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types
provided by the language are intrinsic types. Types specified by the programmer and built from
the intrinsic data types are called derived types.

2.1. Intrinsic Data Types

Fortran provides six different intrinsic data types, listed in Table 9 and Table 11 show variations
and different KIND of intrinsic data types supported by the PGI Fortran compilers.

Table 9 Fortran Intrinsic Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number, taking up two numeric storage units
and whose precision is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. Fortran provides two precisions for
COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

2.1.1. Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND
parameter follows a data type specifier and specifies size or type of the supported data type. A
KIND specification overrides the length attribute that the statement implies and assigns a specific

PGI Fortran Reference Guide 16

Fortran Data Types

length to the item, regardless of the compiler's command-line options. A KIND is defined for a
datatype by a PARAMETER statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:

INTEGER (SHORT) :: L

REAL (HIGH) B

REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:

INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Table 10 Data Types Kind Parameters

Type Kind Size
INTEGER SHORT 1 byte
INTEGER LONG 4 bytes
REAL HIGH 8 bytes

2.1.2. Number of Bytes Specification

The PGI Fortran compilers support alength specifier for some data types. The datatype can be
followed by a data type length specifier of the form *s, where sis one of the supported lengths
for the data type. Such a specification overrides the length attribute that the statement implies and
assigns a specific length to the specified item, regardless of the compiler options. For example,
REAL*8 isequivalent to DOUBLE PRECISION. Table 11 shows the lengths of data types, their
meanings, and their sizes.

Table 11 Data Type Extensions

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
LOGICAL*8 LOGICAL 8 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
INTEGER*8 INTEGER 8 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes

PGI Fortran Reference Guide 17

Fortran Data Types

Type Meaning Size
COMPLEX*8 COMPLEX 8 bytes
COMPLEX (Kind=4)

COMPLEX*16 DOUBLE COMPLEX 16 bytes
COMPLEX (Kind=8)

The BYTE typeistreated as a signed one-byte integer and is equivalent to INTEGER* 1.

n Assigning a value too big for the data type to which it is assigned is an undefined operation.

A specifier is alowed after a CHARACTER function name even if the CHARACTER type
word has a specifier. In the following example, the function size specification C*8 overrides the
CHARACTER*4 specification.

CHARACTER*4 FUNCTION C*8 (VARI1)

Logical dataitems can be used with any operation where asimilar sized integer dataitem is
permissible and vice versa. The logical dataitem istreated as an integer or the integer dataitemis
treated as alogical of the same size and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array
subscripts, in computed GOTOs, in array bounds and in aternate returns. The floating point data
item is converted to an integer.

The datatype of the result of an arithmetic expression corresponds to the type of its data. The
type of an expression is determined by the rank of its elements. Table 12 shows the ranks of the
various data types, from lowest to highest.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 12 Data Type Ranks

Data Type Rank

LOGICAL 1 (lowest)
LOGICAL*8 2
INTEGER*2 3
INTEGER*4 4
INTEGER*8 5
REAL*4 6
7
8
9

REAL*8 (Double precision)
COMPLEX*8 (Complex)

COMPLEX*16 (Double complex) (highest)

PGI Fortran Reference Guide 18

Fortran Data Types

The data type of avalue produced by an operation on two arithmetic elements of different
datatypesisthe data type of the highest-ranked element in the operation. The exception

to thisrule is that an operation involving a COMPLEX*8 element and a REAL*8 element
produces a COMPLEX* 16 result. In this operation, the COMPLEX* 8 element is converted to
a COMPLEX*16 element, which consists of two REAL* 8 elements, before the operation is
performed.

In most cases, alogical expression will have a LOGICAL*4 result. In cases where the hardware
supports LOGICAL*8 and if the expression is LOGICAL* 8, the result may be LOGICAL*8.

2.2. Constants

A constant is an unchanging value that can be determined at compile time. It takes aform
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER
and REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an
arithmetic assignment statement, is supported. These constants assume a data type that conforms
to the context in which they appear.

2.2.1. Integer Constants

The form of adecimal integer constant is:
[s]dld2...dn [_ kind-parameter]

where s isan optional sign and di isadigit in therange 0to 9. The optiona _kind@parameter
is aFortran 90/95/2003 feature supported by PGFORTRAN, and specifies a supported kind. The
value of an integer constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 (-2°%) to 2147483647
(2- 1) inclusive. Integer constants assume a data type of INTEGER* 4 and have a 32-bit storage
requirement.

The -1 8 compilation option causes all data of type INTEGER to be promoted to an 8 byte
INTEGER. The —i8 option does not override an explicit data type extension size specifier, such
as INTEGER*4. The range, data type and storage requirement change if the -8 flag is specified,
although thisflag is not supported on all x86 targets. With the —8 flag, the range for integer
constants is -2%° to (2% - 1)), and in this case the value of an integer constant must be within

the range -9223372036854775808 to 9223372036854775807. If the constant does not fit in an
INTEGER*4 range, the datatype is INTEGER* 8 and the storage requirement is 64 bits.

Here are several examples of integer constants:

+2
-36

437
-36_SHORT
369 12

2.2.2. Binary, Octal and Hexadecimal Constants

The PGI compilers and Fortran 90/95/2003 support various types of constants in addition to
decimal constants. Fortran allows unsigned binary, octal, or hexadecimal constantsin DATA

PGI Fortran Reference Guide 19

Fortran Data Types

statements. PGl compilers support these constantsin DATA statements, and additionally, support
some of these constants outside of DATA statements. For more information on support of these
constants, refer to Fortran Binary, Octal, and Hexadecimal Constants.

2.2.3. Real Constants

Rea constants have two forms, scaled and unscaled. An unscaled real constant consists of a
signed or unsigned decimal number (a number with adecimal point). A scaled real constant takes
the same form as an unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [kind-parameter]
Edigit [kind-parameter]
E-digits [_kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The
first two forms above are equivalent, that is, a scaling factor without a sign is assumed to be
positive. Table 13 shows several real constants.

Table 13 Examples of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant
-.003_LOW signed unscaled constant with kind LOW
-1.0 signed unscaled single precision constant
6.1E2_LOW is equivalent to 610.0 with kind LOW
+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH
6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

2.2.4. Double Precision Constants

A double precision constant has the same form as a scaled REAL constant except that the E is
replaced by D and the kind parameter is not permitted. For example:

D+digits

Ddigit

D-digits

Table 14 shows several double precision constants.

PGI Fortran Reference Guide 20

Fortran Data Types

Table 14 Examples of Double Precision Constants

Constant Value

6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0
-3.5D-1 is equivalent to -0.35
+4D4 is equivalent to 40000

2.2.5. Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded
by parentheses. The first real number isthe real part and the second real number is the imaginary
part. Together these values represent a complex number. Integer values supplied as parameters
for aCOMPLEX constant are converted to REAL numbers. Here are several examples:

(18,-4)
(3:5,=305)
(6.1E2,+2.3E3)

2.2.6. Double Complex Constants

A complex constant is held as two double constants separated by a comma and surrounded by
parentheses. Thefirst doubleisthereal part and the second double is the imaginary part. Together
these values represent a complex number. Here is an example:

(6.1D2,+2.3D3)

2.2.7. Logical Constants

A logical constant is one of:
.TRUE. [kind-parameter]

.FALSE.[_ kind-parameter]

Thelogical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1
and O respectively. A logical expression is defined to be .TRUE. if itsleast significant bitis 1
and .FALSE. otherwise,

The option —-Munixlogical defines alogical expression to be TRUE if its value is non-zero, and
FALSE otherwise; also, theinternal value of .TRUE. is set to one. This option is not available on
all target systems.

Here are several examples:

.TRUE.
.FALSE.
.TRUE. BIT

The abbreviations .T. and .F. can be used in place of .TRUE. and .FALSE. in datainitialization
statements and in NAMELIST inpuit.

PGI Fortran Reference Guide 21

Fortran Data Types

2.2.8. Character Constants

A string in the Cor C++ languages is defined by a starting location in memory. The end of the
string is the character prior to the first occurence of aC NULL character, and the length of the
string can be derived from the location of the C NULL character. Fortran does not have a string
datatype. Character constants are sequences of characters and are defined by the starting location
in memory, and alength.

Character constants may be delimited using either an apostrophe (') or adouble quote (). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use
double quotes or two apostrophes together to include an apostrophe as part of an expression. If
acharacter constant begins with one variety of quote mark, the other may be embedded within

it without using the repeated quote or backslash escape. Within character constants, blanks are
significant. For further information on the use of the backslash character, refer to -Moackslash
information in the User’s Guide.

A character constant is one of:

[kind-parameter] "[characters]"

[kind-parameter] '[characters]'

Here are several examples of character constants.

'abc'

'abc !

Iabl ICI
"Test Word"
GREEK_"p"

A zero length character constant iswrittenas™ or "".

If a character constant is used in a numeric context, for example as the expression on the right
side of an arithmetic assignment statement, it istreated as a Hollerith constant. The rules for
typing and sizing character constants used in a numeric context are described in Hollerith
Constants.

2.2.9. Parameter Constants

The PARAMETER statement permits named constants to be defined. For more details on
defining constants, refer to the description of the PARAMETER statement in Fortran Statements.

2.3. Structure Constructors

A structure constructor looks like afunction call. It is a mechanism whose purpose is to specify a
value of aderived type or of atype aiasthat describes a derived type. The constructor specifies a
sequence of values for the components of the type.

» If acomponent is of derived type, an embedded structure constructor is required to specify
the value of that component.

» If acomponent is an array, an embedded array constructor is required to specify the values
for that component.

PGI Fortran Reference Guide 22

Fortran Data Types

Syntax

A structure constructor is the name of the type followed by a sequence of component valuesin
parentheses. The format for a structure_constructor is one of the following:
type name (expr list)

type alias name (expr list)

Structure Constructor Enhancements

In Fortran 2003, there are three significant enhancements to structure constructors that make
structure constructors more like built-in generic functions that can be overridden when necessary.

» Component names can be used as keywords, the same way that dummy argument names can
be used as argument keywords

» Values can be omitted for components that have default initialization.

» Type names can be the same as generic function names; references are resolved by choosing
asuitable function (if the syntax matches the function's argument list) and treating as a
structure constructor only if no function matches the actual arguments

Structure Constructor Rules
The following rules apply to structure constructors:

» A structure constructor must not appear before that type is defined.

» There must be avaluein the expression list for each component unless that component has
default initialization.

» The expressions must agree in number and order with the components of the derived type.
Values may be converted to agreein type, kind, length, and, in some cases, rank, with the
components.

» The structure constructor for a private type or a public type with private components is not
available outside the module in which the type is defined.

» If the valuesin a structure constructor are constants, you can use the structure constructor to
specify a named constant.

» If acomponent is an explicit-shape array, such as a nonpointer array or a nonallocatable
array, the array constructor for it in the expression list must be the same shape as the
component.

» If acomponent is a pointer, the value for it in the expression list must evaluate to an
alowable target for the pointer. A constant is not an allowable target.

» A constant expression cannot be constructed for a type with a pointer component because a
constant is not an allowable target in a pointer assignment statement.

» If acomponent hasthe ALLOCATABLE attribute, its value in the expression list must have
the samerank if it isan array or must be scalar if it is scalar. The value must be one of the
following:

» A call tothe NULL() intrinsic command without any arguments. The allocatable
component receives a‘ not currently allocated’ status.

PGI Fortran Reference Guide 23

Fortran Data Types

» A variablethat hasthe ALLOCATABLE attribute. The allocatable component receives
the variable's allocation status and, if allocated, shape and value.

» Anexpression. The allocatable component receives the ‘ currently alocated’ status and
the same value and shape of the expression.

2.4. Derived Types

Unlike the intrinsic types that are defined by the language, you must define derived types. A
derived type is atype made up of components whose typeis either intrinsic or another derived
type. These types have the same functionality as the intrinsic types; for example, variables of
these types can be declared, passed as procedure arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to declare objects of the
type. A derived-type definition also specifies components of the type, of which there must be at
least one. A component can be either an intrinsic or derived type.

The TYPE and END TY PE keywords define a derived type. The definition of avariable of the
new typeiscalled a TY PE statement.

Syntax

For derived type definition:

derived type stmt
[data component part]
end type stmt

For a derived type statement:

TYPE [[, type attr spec list] ::] type name

Example

The following derived type declaration defines the type PERSON and the array CUSTOMER of
type PERSON:

! Declare a structure to define a person derived type
TYPE PERSON

INTEGER ID

LOGICAL LIVING

CHARACTER (LEN=20) FIRST, LAST, MIDDLE

INTEGER AGE
END TYPE PERSON
TYPE (PERSON) CUSTOMER (10)

A derived type statement consists of the statements between the TY PE and END TY PE
statements. In the previous example, the derived-type statement for PERSON consists of all the
statements between TY PE PERSON and END TY PE PERSON.

Notice in this example that CUSTOMER is avariable of type PERSON. Use of parenthesesin
the TY PE statement indicate a reference to the derived type PERSON rather than declaration of a
derived type.

PGI Fortran Reference Guide 24

Fortran Data Types

The % character accesses the components of a derived type. For example, to assign the value
12345 asthe ID of the first customer, you might use the following statement:
CUSTOMER (1) $ID = 12345

2.5. Deferred Type Parameters

A deferred type parameter is atype parameter that has no defined value until it is given one.
In Fortran 2003, deferred type parameters are available both for CHARACTER length and for
parameterized derived types.

A variable with a deferred type parameter must have the ALLOCATABLE or POINTER
attribute. The value of a deferred type parameter depends on this attribute:

» For an allocatable variable, the value of a deferred type parameter is determined by
alocation - either by atyped allocation, or by an intrinsic assignment with automatic
reallocation.

» For apointer, the value of a deferred type parameter is the value of the type parameter of its
target.

2.5.1. Typed Allocation

A length type parameter that is deferred has no defined value until it is given one by the
ALLOCATE statement or by pointer assignment. There are a couple rules that apply with typed
allocation and deferred type parameters:

» If the length parameters of an item being allocated is assumed, it must be specified as an
asterisk (*) in the type-spec of the ALLOCATE statement.

» Since there can only be one type-spec in an ALLOCATE statement, it must be suitable for all
the items being allocated. For example, if any of the allocatable itemsis a dummy argument,
then they must al be dummy arguments.

2.6. Arrays

Arraysin Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There
are severa differences between Fortran 2003 and traditional FORTRAN 77 arrays.

n Fortran 2003 supports all FORTRAN 77 array semantics.

An array isagroup of consecutive, contiguous storage |ocations associated with a symbolic
name which isthe array name. Each individual element of storage, called the array element,

is referenced by the array name modified by alist of subscripts. Arrays are declared with type
declaration statements, DIMENSION statements and COMMON statements; they are not defined
by implicit reference. These declarations will introduce an array name and establish the number
of dimensions and the bounds and size of each dimension. If asymbol, modified by alist of
subscripts is not defined as an array, then it will be assumed to be a FUNCTION reference with
an argument list.

PGI Fortran Reference Guide 25

Fortran Data Types

Fortran 2003 arrays are ‘ objects’ and operations and expressions involving arrays may apply to
every element of the array in an unspecified order. For example, in the following code, where A
and B are arrays of the same shape (conformable arrays), the following expression adds six to
every element of B and assigns the results to the corresponding elements of A:

A =B+ 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections
of arrays may be used and passed as well. Arrays of derived type are aso valid. In addition,
allocatable arrays may be created with deferred shapes (number of dimensions is specified at
declaration, but the actual bounds and size of each dimension are determined when the array is
allocated while the program is running).

2.6.1. Array Declaration Element

An array declaration has the following form:
name ([1lb:]Jub[, [1b:Jub]...)

where name is the symbolic hame of the array, 1b is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater
than or equal to the lower bound Ib. The values 1b and ub may be negative. The bound 1b is
takento be 1 if it is not specified. The difference (ub-1b+1) specifies the number of elementsin
that dimension. The number of 1b, ub pairs specifies the rank of the array. Assuming the array is
of adatatype that requires N bytes per element, the total amount of storage of the array is:

N* (ub-1b+1) * (ub-1b+1) *...

The dimension specifiers of an array subroutine argument may themselves be subroutine
arguments or members of COMMON.

2.6.2. Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executabl e statement.
Deferred-shape arrays are declared with arank, but with no bounds information. They

assume their shape when either an ALLOCATE statement or a REDIMENSION statement is
encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:
REAL A(:, :)

2.6.3. Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript
list has the following form:

name (sub [, sub]...)
where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower
and upper bounds. Arrays are stored as alinear sequence of valuesin memory and are held such
that the first element isin the first store location and the last element isin the last store location.
In amulti-dimensional array the first subscript varies more rapidly than the second, the second
more rapidly than the third, and so on (column major order).

PGI Fortran Reference Guide 26

Fortran Data Types

2.6.4. Character Substring

A character substring is a contiguous portion of a character variable and is of type character.
A character substring can be referenced, assigned values and named. It can take either of the
following forms:

character variable name (x1:x2)

character:arrayiname(subscripts)(xl:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-
hand one. These are known as substring expressions. In substring expressions x1 must be both
greater than or equal to 1 and less than x2 and x2 must be less than or equal to the length of the
character variable or array element.

For example, the following expression indicates the charactersin positions 2 to 4 of character
variable J.

J(2:4)

This next expression indicates charactersin positions 1 to 4 of array element K(3,5).
K(3,5) (1:4)

A substring expression can be any valid integer expression and may contain array elements or
function references.

2.6.5. Array Constructor Syntax

In Fortran 2003, array constructors may be bracketed with [] instead of (/ /). In addition, array
constructors may contain atype specification that explicitedly specifies the type and type
parameters of the array. These constructors begin with atype specification followed by adouble
colon (), asillustrated in the examples later in this section. The general format for this type
specification isthis:

(/ type-spec :: ac-value-list /)

If the t ype-spec is absent in the array specification, Fortran 95 rules apply; and all items must have the
same type and type parameters.

The type-spec syntax is useful for a number of reasons, such as these:

» It simplifies zero-sized constructors.
» It provides assignment conversions that eliminate the need for usersto pad all charactersin
an array to the same length.

» It makes some constructors easiers, such as allowing users to specify either real or integer
valuesin acomplex array.

Examples

[character (len=12) : : ‘crimson’, ‘cream’, ‘purple’, ‘gold’]
[complex(kind(0d0) ;; 1, (0,1), 3.3333d0]

[matrix (kind=kind (0,0), n=5, m=7) :] !zero-sized array

[Logical ::] ! Zero-sized logical array

[Double Precision :: 17.5, 0, 0.1d0] ! Conversions

PGI Fortran Reference Guide 27

Fortran Data Types

2.7. Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with atype and arank;

they do not actually represent avalue, however, but represent a value's address. Fortran 2003 has

a specific assignment operator, =>, for use in pointer assignments.

2.8. Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for binary, octal, and hexadecimal
numbers: the standard Fortran 2003 representation and the PGl extension representation. In
addition, PGI supports an alternate representation, described in the next section.

Fortran supports binary, octal and hexadecimal constantsin DATA statements.

Binary Constants

The form of abinary constant is:

B'blb2...bn'
B"blb2...bn"

wherebi iseither 0 or 1., such as B’01001001’

Octal Constants

The form of an octal constant is:

O'clc2...cn'
O"clc2...cn"

where ci isin therange O through 7. such as O’ 043672’

Hexadecimal Constants

The form of a hexadecimal constant is;

Z'ala2...an'
zZ"ala2...an"

where ai isin therange O through 9 or aletter in the range A through F or athrough f (case
mixing is allowed), such as Z' 8473Abc58' or "BF40289cd" X .

2.8.1. Octal and Hexadecimal Constants - Alternate Forms

The PGFORTRAN compiler supports additional extensions. Thisis an alternate form for octal
constants, outside of DATA statements. The form for an octal constant is:

'clc2...cn'0O
where ci isadigitintherangeOto 7.

The form of a hexadecimal constant is:

'ala2...an'X

PGI Fortran Reference Guide

28

Fortran Data Types

"ala2...an"X

where ai isadigitintherange 0 to 9 or aletter intherange A to F or ato f (case mixing is
allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octa and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded
on the left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

» A constant is always either 32 or 64 bitsin size and is typeless. Sign-extension and type-
conversion are never performed. All binary operations are performed on 32-bit or 64-bit
quantities. Thisimpliesthat the rules to follow are only concerned with mixing 32-bit and
64-bit data.

» When aconstant is used with an arithmetic binary operator (including the assignment
operator) and the other operand is typed, the constant assumes the type and size of the other
operand.

» When aconstant isused in arelational expression such as.EQ., its size is chosen from the
operand having the largest size. Thisimplies that 64-bit comparisons are possible.

» When aconstant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bitsin size;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

» When aconstant is used as an actual argument in any other context, no data type is assumed;
however, alength of four bytesis always used. If necessary, truncation on the left occurs.

» When a specific 32-bit or 64-bit datatypeis required, that type is assumed for the constant.
Array subscripting is an example.

» When aconstant is used in a context other than those mentioned above, an INTEGER* 4 data
typeis assumed. Logical expressions and binary arithmetic operations with other untyped
constants are exampl es.

» When the required data type for a constant implies that the length needed is more than the
number of digits specified, the leftmost digits have avalue of zero. When the required data
type for a constant implies that the length needed is less than the number of digits specified,
the constant is truncated on the left. Truncation of nonzero digitsis allowed.

In the following example, the constant | (of type INTEGER*4) and the constant J (of type
INTEGER*2) are assigned hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) has the hex value x4000012345678954 after its second assignment:

'1234'X ! Leftmost Pad with zero

'1234567'X ! Truncate Leftmost 3 hex digits

dble ('40000123456789%ab'X)
NEQV (D, 'ff'X) ! 64-bit Exclusive Or

OogH

2.9. Hollerith Constants

The form of aHollerith constant is:

nHclc2...cn

where n specifies the positive number of charactersin the constant and cannot exceed 2000
characters.

PGI Fortran Reference Guide 29

Fortran Data Types

A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith
constants are untyped arrays of INTEGER*4. The last word of the array is padded on the right
with blanks if necessary. Hollerith constants cannot assume a character data type and cannot be
used where a character value is expected.

The data type of aHollerith constant used in a numeric expression is determined by the following
rules:

» Sign-extension is never performed.

» The byte size of the Hollerith constant is determined by its context and is not strictly limited
to 32 or 64 bhits like hexadecimal and octal constants.

» When the constant is used with a binary operator (including the assignment operator), the
datatype of the constant assumes the data type of the other operand.

» When a specific data typeis required, that type is assumed for the constant. When an integer
or logical isrequired, INTEGER*4 and LOGICAL*4 are assumed. When afloat is required,
REAL*4 is assumed (array subscripting is an example of the use of arequired data type).

» When aconstant is used as an argument to certain generic functions (AND, OR, EQV,
NEQV, SHIFT, and COMPL), a 32-bit operation is performed if no argument islarger than
32 bits; otherwise, a 64-bit operation is performed. The size of the result corresponds to the
chosen operation.

» When aconstant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER* 4 array. Character constants are passed by descriptor only.

» When aconstant is used in any other context, a 32-bit INTEGER*4 array typeis assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces
are appended to the constant on the right. When the length of the constant is greater than the
length implied by the data type, the constant is truncated on the right.

2.10. Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the
following form:

STRUCTURE [/structure name/] [field namelist]
field declaration
[field declaration]

[field declaration]
END STRUCTURE

Where:

structure_name
isunique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
isalist of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

PGI Fortran Reference Guide 30

Fortran Data Types

The following rules apply:

» Field names within the same declaration nesting level must be unique.

» Aninner structure declaration can include field names used in an outer structure declaration
without conflict.

» Records use periods to separate fields, so it is not legal to use relational operators (for
example, .EQ., .XOR.), logica constants (.TRUE. or .FALSE.), or logical expressions
(\AAND., .NOT., .OR.) asfield names in structure declarations.

» Fieldswithin structures conform to machine-dependent alignment requirements, that is,
fieldsin a structure are aligned as required by hardware.

» A structure's storage requirements are machine-dependent.
» Alignment of fields provides a C-like "struct" building capability and allows convenient
inter-language communications.
» Because explicit padding of recordsis not necessary, the compiler recognizes the %FILL
intrinsic, but performs no action in response to it.
» Datainitialization can occur for the individual fields.

2.10.1. Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the
following form:

RECORD /structure name/record namelist
[, /structure name/record namelist]

[, /structure name/record namelist]

where:

structure_name
isthe name of a previously declared structure.
record namelist
isalist of one or more variable or array names separated by commas.

Y ou create memory storage for arecord by specifying a structure name in the RECORD
statement. Y ou define the field valuesin arecord either by defining them in the structure
declaration or by assigning them with executable code.

Y ou can access individual fieldsin arecord by combining the parent record name, a period (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolvesto a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted 1/0
statements, and as parameters to subprograms.

The following example shows RECORD and STRUCTURE usage.

STRUCTURE /person/

! Declare a structure defining a person

! Person has id, names, age, and may or not be living
INTEGER id

LOGICAL living

PGI Fortran Reference Guide 31

Fortran Data Types

CHARACTER*5 first, last, middle
INTEGER age
END STRUCTURE

! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /person/ population (2), me

me.age = 34 ! Assign values for the variable me
me.living = .TRUE. ! to some of the fields.
me.first = 'Steve'

me.id = 542124822

population(l) .last = 'Jones' ! Assign the "last" field of

! element 1 of array population.
population(2) = me ! Assign all values of record

! "me" to the record population (2)

2.10.2. UNION and MAP Declarations

A UNION declaration, a DEC extension to FORTRAN 77, is amulti-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure.

Declaring and Defining Fields

Each group of fields within a UNION declaration is declared by a MAP declaration, with one or
more fields per MAP declaration.

Y ou use union declarations when you want to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined.
Then, when afield in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration.

Format

The format of aUNION statement isillustrated in the following example:

UNION
map declaration
[map declaration]

iﬁép_declaration]
END UNION
The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

[field declaration]
END MAP

PGI Fortran Reference Guide 32

Fortran Data Types

wherefield_declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration of a
typed data field within a union.

With respect to UNION and MAP statements, the following is true:

» Datacan beinitidized in field declaration statements in union declarations.

n It is illegal to initialize multiple map declarations in a single union.

» Field alignment within multiple map declarationsis performed as previously defined in
structure declarations.

» Thesize of the shared areafor a union declaration is the size of the largest map defined for
that union.

» Thesize of amap isthe sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the C language requires one to associate a name with
each "map" (union). Fortran field names must be unique within the same declaration nesting level
of maps.

The following example shows RECORD, STRUCTURE, MAP and UNION usage. The size of
each element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest
MAP, in this case, the employee map (24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map.
UNION

MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary ! Salary

CHARACTER*8 empdate ! Employment date

END MAP

MAP ! Structure for a customer
INTEGER*4 acct cust ! 4-digit account
REAL*4 credit amt ! credit amount
CHARACTER*8 due date ! due date

END MAP

MAP ! Structure for a supplier
INTEGER*4 acct supp ! supply account

REAL*4 debit amt ! debit amount

BYTE num items ! number of items

BYTE items (12) ! items supplied

END MAP

END UNION

END STRUCTURE
RECORD /account/ recarr (1000)

2.10.3. Data Initialization

Datainitialization is allowed within data type declaration statements. Thisis an extension to the
Fortran language. Datais initialized by placing values bounded by slashes immediately following

PGI Fortran Reference Guide 33

Fortran Data Types

the symbolic name (variable or array) to beinitialized. Initialization of fields within structure
declarationsis allowed, but initialization of unnamed fields and recordsis not.

Hollerith, octal and hexadecimal constants can be used to initialize datain both data type
declarationsand in DATA statements. Truncation and padding occur for constants that differ in
size from the declared dataitem (as specified in the discussion of constants).

2.11. Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran
90/95 POINTER specification statement or attribute, declares a scalar variable to be a pointer
variable of datatype INTEGER, and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:
POINTER (pl, v1) [, (p2, v2) ...]

vl and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

pland p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, datatype, etc.). A reference to a pointer-based variable appears in Fortran statements
like anormal variable reference (for example, alocal variable, a COMMON block variable,
or adummy variable). When the based variableis referenced, the address to which it refersis
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

» By assigning the value of the LOC function.
» By assigning avalue defined in terms of another pointer variable.

» By dynamically allocating a memory areafor the based variable. If a pointer-based variable
isdynamically allocated, it may also be freed.

The following code illustrates the use of pointers:

REAL XC(10)

COMMON IC, XC

POINTER (P, I)

POINTER (Q, X(5))

P LOC (IC)

0 ! IC gets O

LOC (XC)

P + 20 ! same as LOC (XC(6))

(1) = 0 ! XC(6) gets O

LLOCATE (X) ! Q locates an allocated memory area

I
P
Q
X
A

PGI Fortran Reference Guide 34

Fortran Data Types

2.11.1. Restrictions

The following restrictions apply to the POINTER statement:

» No storageis allocated when a pointer-based variable is declared.

» If apointer-based variable is referenced, its pointer variable is assumed to be defined.

» A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

» A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram.

If a pointer-based variableis an adjustable array, it is assumed that the variablesin the
dimension declarators are defined with an integer value at the time the SUBROUTINE or
FUNCTION iscalled.

For avariable which appears in a pointer-based variabl€'s adjustable declarator, modifying
its value during the execution of the SUBROUTINE or FUNCTION does not modify the
bounds of the dimensions of the pointer-based array.

» A pointer-based variable is assumed not to overlap with another pointer-based variable.

2.11.2. Pointer Assignment

Fortran 2003 extends pointer assignment for arrays alowing lower bounds and possibly upper
bounds to be specified.

Syntax:
p(0:,0:) => a
The lower bounds may be any scalar integer expressions when upper bounds are specified.

Further, remapping of the elements of atarget array is permitted, as shown in this example:
p(lim,1:2*m) => a(l:2*m)

Description
The following is true for pointer assignments involving arrays:

» Thebounds may be any scalar integer expressions.

» Theassignment isin array-element order and the target array must be large enough.

» When remapping occurs, the target must be rank-one; otherwise, the ranks of the pointer and
target must be the same.
a => Db(l:10:2)

» Length type parameters of the pointer may be deferred, that is, declared with a colon.

» Pointer assignment gives these the values of the corresponding parameters of the target.

» All other type parameters of the pointer must have the same values as the corresponding type
parameters of the target.

PGI Fortran Reference Guide 35

Chapter 3.
FORTRAN STATEMENTS

This section describes each of the Fortran statements supported by the PGI Fortran compilers.
Each description includes a brief summary of the statement, a syntax description, a complete
description and an example. The statements are listed in aphabetical order. The first section lists
terms that are used throughout the section.

3.1. Statement Format Overview

This section lists terms that are used throughout the section and provides information on how

to interpret the information in the statement descriptions. This section only provides detailed
descriptions for statements that are extensions of the standard Fortran language definitions. For
details on the standard statements, refer to the Fortran language specifications readily available on
theinternet. The 0rigin columnin the tablesin this section provides the Fortran language origin
of the statement; for example F95 indicates the statement is from Fortran 95.

3.1.1. Definition of Statement-related Terms

character scalar memory reference
is acharacter variable, a character array element, or a character member of a structure or
derived type.

integer scalar memory reference
isan integer variable, an integer array element, or an integer member of a structure or derived
type.

logical scalar memory reference
isalogical variable, alogical array element, or alogical member of a structure or derived
type.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better replacement in
Fortran 95.

3.1.2. Origin of Statement

At the top of each reference pageis abrief description of the statement followed by a header
that indicates the origin of the statement. The following list describes the meaning of the origin
header.

PGI Fortran Reference Guide 36

Fortran Statements

Fr7
FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

FO0/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from its
original FORTRAN 77 definition and is supported by the PGF95 compiler.

F2003
The statement is new for Fortran 2003.

CMF
The statement is Connection Machine Fortran, a SIMD language that strongly influenced High
Performance Fortran.

3.1.3. List-related Notation

Severa statements allow lists of a specific type of data. For example, the ALLOCATABLE
statement allows alist in which each element of a deferred-array-spec. The notation used in
statementsis this:

» Within the statement, the notation is foo-1ist, suchasdeferred-array-spec-list.
» When the list elements have a specific format that is defined, the referenceisjust to that
element, such asdeferred-array-spec.

Asin Fortran, the list is a set of comma-separated values.

3.2. Fortran Statement Summary Table

This section contains an alphabetical listing with a brief one-line description of the Fortran
statements that PGl supports.Later in this section there is more detailed description of the
statements that are extensions to the standard Fortran definitions.

Table 15 Statement Summary Table

Statement Origin Description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank but deferred shape is available for a future
ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-based variable that
appears in the statements; declares storage for deferred-shape arrays.

ARRAY CMF Defines the number of dimensions in an array that may be defined, and the number of
elements and bounds in each dimension. [Not in PVF]

ASSIGN F77 [Obsolescent]. Assigns a statement label to a variable.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an expression for the

duration of a block.

ASYNCHRONOUS Fr77 Warns the compiler that incorrect results might occur for optimizations involving
movement of code across wait statements or statements that cause wait operations.

PGI Fortran Reference Guide 37

Fortran Statements

Statement Origin Description

BACKSPACE F77 Positions the file connected to the specified unit to before the preceding record.

BLOCK DATA Fr77 Introduces a number of non-executable statements that initialize data values in
COMMON tables

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name of a variable to a
1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
character data type, overriding the implied data typing.

CLOSE Fr7 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-sequential; can be
either a static or dynamic form.

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type, overriding implied data typing.

CONTAINS F90 Precedes a subprogram, a function or subroutine and indicates the presence of the
subroutine or function definition inside a main program, external subprogram, or module
subprogram.

F2003 In F2003 a contains statement can also appear in a derived type right before any
type bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

DEALLOCATE F77 Causes the memory allocated for each pointer-based variable or allocatable array that
appears in the statement to be deallocated (freed); also deallocates storage for deferred-
shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from character form to internal form, according to format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of elements in each
dimension.

DO (lterative) Fo0 Introduces an iterative loop and specifies the loop control index and parameters.

DO WHILE F77 Introduces a logical do loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double complex data type, overriding implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double precision data type, overriding implied data typing.

ELSE F77 Begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

ELSE WHERE Fo0 The portion of the WHERE ELSE WHERE construct that permits conditional masked

assignments to the elements of an array or to a scalar, zero-dimensional array.

PGI Fortran Reference Guide

38

Fortran Statements

Statement Origin Description

ENCODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from internal to character form, according to format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an Associate block.

END DO F77 Terminates a DO or DO WHILE loop.

END FILE Fr7 Writes an endfile record to the files.

END IF Fr7 Terminates an |F ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same start address.

EXIT F90 Interrupts a DO construct execution and continues with the next statement after the loop.

EXTERNAL Fr7 Identifies a symbolic name as an external or dummy procedure which can then be used
as an actual argument.

FINAL F2003 Specifies a Final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign values to the
elements of an array.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION Fr7 Introduces a program unit; all the statements that follow apply to the function itself.

GENERIC F2003 Specifies a generic type bound procedure inside a derived type.

GOTO (Assigned) F77 [Obsolescent]. Transfers control so that the statement identified by the statement label is
executed next.

GOTO (Computed) F77 Transfers control to one of a list of labels according to the value of an expression.

GOTO (Unconditional) F77 Unconditionally transfers control to the statement with the label label, which must be
declared within the code of the program unit containing the GOTO statement and must
be unique within that program unit.

IF (Arithmetic) F77 [Obsolescent]. Transfers control to one of three labeled statements, depending on the
value of the arithmetic expression.

IF (Block) Fr7 Consists of a series of statements that are conditionally executed.

IF (Logical) Fr77 Executes or does not execute a statement based on the value of a logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial letter, overriding
implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

PGI Fortran Reference Guide

39

Fortran Statements

Statement Origin Description

INQUIRE F77 Inquires about the current properties of a particular file or the current connections of a
particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name of a variable to an
integer data type, overriding implied data types.

INTENT F90 Specifies intended use of a dummy argument, but may not be used in a main program's
specification statement.

INTERFACE Fo0 Makes an implicit procedure an explicit procedure where the dummy parameters and
procedure type are known to the calling module; Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be used as an actual
argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields within a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90/95 module program unit. A module defines a
host environment of scope of the module, and may contain subprograms that are in the
same scoping unit.

NAMELIST F90 Allows the definition of namelist groups for namelist-directed 1/0.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a unit, creates a file that
is preconnected, or changes certain specifiers of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that may be omitted or that are optional.

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

PAUSE F77 [Obsolescent]. Stops the program's execution.

POINTER F90 Provides a means for declaring pointers.

POINTER (Cray) F77 ext Declares a scalar variable to be a pointer variable (of type INTEGER), and another
variable to be its pointer-based variable.

PRINT F77 Transfers data to the standard output device from the items specified in the output list
and format specification.

PRIVATE F90 Specifies entities defined in a module are not accessible outside of the module.
Private can also appear inside a derived type to disallow access to its data
components outside the defining module.

F2003 In F2003, a Private statement may appear after the type’'s contains statement to
disallow access to type bound procedures outside the defining module.

PROCEDURE F2003 Specifies a type bound procedure, procedure pointer, module procedure, dummy
procedure, intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for the linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the module in which it was
declared.

PUBLIC Fo0 Specifies entities defined in a module are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no side effects.

PGI Fortran Reference Guide

40

Fortran Statements

Statement Origin Description

READ F90 Transfers data from the standard input device to the items specified in the input and
format specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine may call itself recursively.

REDIMENSION F77 ext Dynamically defines the bounds of a deferred-shape array.

RETURN F77 Causes a return to the statement following a CALL when used in a subroutine, and
returns to the relevant arithmetic expression when used in a function.

REWIND Fr7 Positions the file at its beginning. The statement has no effect if the file is already
positioned at the start or if the file is connected but does not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END statementin a
subroutine or function has been executed.

SELECT CASE F90 Begins a CASE construct.

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the dynamic type
of a polymorphic entity and to gain access to dynamic parts. The alternative code is
selected using the type 1s statement for a specific dynamic type, or the class
is statement for a specific type and all its type extensions. Use the optional c1ass
default statement to specify all other dynamic types that don’'t match a specified
type isorclass is statement. Like the CASE construct, the code consists of a
number of blocks and at most one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage associated with
the derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements.

STOP F77 Stops the program's execution and precludes any further execution of the program.

STRUCTURE F77 Vax | A VAX extension to FORTRAN 77 that defines an aggregate data type.

ext

SUBROUTINE Fr77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type may be the object of a pointer variable (e.g., pointed to by a
pointer variable). Types that do not have the TARGET attribute cannot be the target of a
pointer variable.

THEN Fr7 Part of a block IF statement, surrounds a series of statements that are conditionally
executed.

TYPE F90 Begins a derived type data specification or declares variables of a specified user-defined
type.

F2003 Use the optional EXTENDS statement with TYPE to indicate a type extension in F2003.

UNION F77 Vax | A multi-statement declaration defining a data area that can be shared intermittently

ext during program execution by one or more fields or groups of fields.

USE F90 Gives a program unit access to the public entities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks that it identifies.

wait F2003 Performs a wait operation for specified pending asynchronous data transfer operations.

PGI Fortran Reference Guide

41

Fortran Statements

Statement Origin Description

WHERE F90 Permits masked assignments to the elements of an array or to a scalar, zero dimensional
array.

WRITE F90 Transfers data to the standard output device from the items specified in the output list
and format specification.

3.3. ACCEPT

The ACCEPT statement has the same syntax asthe PRINT statement and causes formatted input
to be read on standard input. ACCEPT isidentical to the READ statement with a unit specifier of
asterisk (*).

F77 extension

Syntax

ACCEPT f [,iolist]
ACCEPT namelist

f
format-specifier, a* indicates list directed input.
iolist
isalist of variablesto beinput.
namelist
is the name of anamelist specified with the NAMELIST statement.

Examples

ACCEPT *, IA, ZA
ACCEPT 99, I, J, K
ACCEPT SUM

99 FORMAT (I2, I4, 1I3)

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treats it as if the contents were character. In the following
example, sum istreated as aformat descriptor. The code in the first column is roughly equivalent
to that in the second column.

real sum character*4 ch
sum = 4h () ch = "()"
accept sum accept ch
See Also

READ, PRINT

PGI Fortran Reference Guide 42

Fortran Statements

3.4. ARRAY

The ARRAY attribute defines the number of dimensionsin an array that may be defined and the
number of elements and boundsin each dimension. [Not in PVF]

CMF

Syntax

ARRAY [::] array-name (array-spec) [, array-name (array-spec)]

array-name
is the symbolic name of an array.

array-spec
isavalid array specification, either explicit-shape, assumed-shape, deferred-shape, or assumed
size (refer to Fortran Arrays, for details on array specifications).

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as
an array, and in this case the declarator can use expressions formed from integer variables and
constants to establish the dimensions (adjustable arrays).

These integer variables must be either arguments or declared in COMMON; they cannot be local. Further,
in this case, the function of ARRAY statement is merely to supply a mapping of the argument to the
subroutine code, and not to allocate storage.

Thetyping of the array in an ARRAY statement is defined by the initial letter of the array name
in the same way as variable names, unless overridden by an IMPLICIT or type declaration
statement. Arrays may appear in type declaration and COMMON statements but the array name
can appear in only one array declaration.

Example
REAL, ARRAY (3:10):: ARRAY ONE
INTEGER, ARRAY (3,-2:2):: ARRAY TWO

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the
upper bound of 10.

ARRAY_TWO as amatrix of two dimensions having fifteen elements. The first dimension has
three e ements and the second has five with bounds from -2 to 2.

PGI Fortran Reference Guide 43

Fortran Statements

See Also
ALLOCATE, DEALLOCATE

3.5.BYTE

The BY TE statement establishes the data type of avariable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides data typing implied by theinitial letter of a symbolic
name.

F77 extension

Syntax
BYTE name [/clist/], ...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).
clist
isalist of constants that initialize the data, asin aDATA statement.
Description
Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BY TE declaration statements must not be labeled.

Example

BYTE TB3, SEC, STORE (5,5)

3.6. DECODE

The DECODE statement transfers data between variables or arraysin internal storage and
trandates that data from character form to internal form, according to format specifiers. Similar
results can be accomplished using internal files with formatted sequential READ statements.

F77 extension

Syntax

DECODE (c, f, b [,IOSTAT= ios] [,ERR= errs]) [list]

PGI Fortran Reference Guide 44

Fortran Statements

isan integer expression specifying the number of bytes involved in translation.

is the format-specifier.

b
isascalar or array reference for the buffer area containing formatted data (characters).

ios
isan integer scalar memory reference which is the input/output status specifier: if thisis
specified ios becomes defined with zero if no error condition exists or a positive integer when
thereisan error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in
the same program unit. If an error condition occurs execution continues with the statement
specified by errs.

list
isalist of input items.

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treats it as if the contents were character. In the following
example, sum istreated as aformat descriptor:

real sum
sum = 4h ()
accept sum

The preceding code segment is roughly equivalent to this:

character*4 ch
ch = "'()"'
accept ch

See Also
READ, PRINT,

3.7. DOUBLE COMPLEX

The DOUBLE COMPLEX statement establishes the data type of avariable by explicitly
attaching the name of avariable to a double complex data type. This overrides the data typing
implied by theinitial letter of a symbolic name.

F77 extension

PGI Fortran Reference Guide 45

Fortran Statements

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form,
and the PGI extended form. This section describes both syntax forms.

DOUBLE COMPLEX [, attribute-list ::] entity-list
attribute-list

isthelist of attributes for the double complex variable.
entity-list

isthelist of defined entities.

Syntax Extension

DOUBLE COMPLEX name [/clist/] [,name] [/clist/]...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
isalist of constants that initialize the data, asin aDATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The datatype
of asymbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of atype overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of aDOUBLE COMPLEX variableis 16 bytes. With the -r8 option, the default
size of aDOUBLE COMPLEX variable is also 16 bytes.

Examples

DOUBLE COMPLEX CURRENT, NEXT

See Also
COMPLEX

3.8. DOUBLE PRECISION

The DOUBLE PRECISION statement establishes the data type of avariable by explicitly
attaching the name of avariable to a double precision data type. This overrides the data typing
implied by the initial letter of a symbolic name.

PGI Fortran Reference Guide 46

Fortran Statements

F90

Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based
form, and the PGI extended form. This section describes both syntax forms.

DOUBLE PRECISION [, attribute-list ::] entity-list
attribute-list

isthelist of attributes for the double precision variable.
entity-list

isthelist of defined entities.

Syntax Extension
DOUBLE PRECISION name [/clist/] [,name] [/clist/]...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
isalist of constants that initialize the data, asin a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of asymbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of atype overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of aDOUBLE PRECISION variable is 8 bytes, with or without the -r8 option.

Example

DOUBLE PRECISION PLONG

3.9. ENCODE

The ENCODE statement transfers data between variables or arraysin internal storage and
translates that data from internal to character form, according to format specifiers. Similar results
can be accomplished using internal files with formatted sequential WRITE statements.

F77 extension

PGI Fortran Reference Guide 47

Fortran Statements

Syntax
ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs]) [list]

c
is an integer expression specifying the number of bytesinvolved in translation.

is the format-specifier.

b
isascalar or array reference for the buffer area receiving formatted data (characters).

ios
isan integer scalar memory reference which is the input/output status specifier: if thisis
included, ios becomes defined with zero if no error condition exists or a positive integer when
thereis an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in the
same program. If an error condition occurs execution continues with the statement specified
by errs.

list
alist of output items.

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treatsit asif the contents were character. For example, below
sum is treated as a format descriptor:

real sum
sum = 4h ()
accept sum

and is roughly equivalent to

character*4 ch
ch = "'()"'
accept ch

See Also

READ, PRINT

3.10. END MAP

The END MAP statement terminates a M AP declaration.

F77 extension

PGI Fortran Reference Guide 48

Syntax

END MAP

Description

For more information, refer to the M AP statement.

Example

MAP ! Structure for a customer
INTEGER*4 acct cust

REAL*4 credit amt
CHARACTER*8 due date

END MAP

3.11. END STRUCTURE

The END STRUCTURE statement terminates a STRUCTURE declaration.

F77 extension

Syntax

END STRUCTURE

Description

For more information, refer to the STRUCTURE statement.

3.12. END UNION

The END UNION statement terminates a UNION declaration.

F77 extension

Syntax

END UNION

Description

For more information, refer to the UNION statement.

PGI Fortran Reference Guide

Fortran Statements

49

Fortran Statements

3.13. INCLUDE

The INCLUDE statement directs the compiler to start reading from another file.

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text libraries or the
module_name pathname qualifier that exists in the VAX/VMS version of the INCLUDE statement.

F77 extension

Syntax

INCLUDE 'filename [/[NO]JLIST]'
INCLUDE "filename [/[NOJLIST]"

The following rules apply to the INCLUDE statement:

» TheINCLUDE statement may be nested to adepth of 20 and can appear anywhere within a
program unit as long as Fortran's statement-ordering restrictions are not violated.

» Youcanusethe qualifiers/LIST and /NOLIST to control whether the includefileis
expanded in thelisting file (if generated).

There is no support for VAX/VMS text libraries or the module_name pathname qualifier that exists in
the VAX/VMS version of the INCLUDE statement.

» Either single or double quotes may be used.

» If thefina component of the file pathnameis/LIST or INOLIST, the compiler assumesitisa
qualifier, unless an additional qualifier is supplied.
» Thefilename and the /LIST or INOLIST qualifier may be separated by blanks.

The compiler searches for the include file in the following directories:

» Each - directory specified on the command-line.

» Thedirectory containing the file that contains the INCLUDE statement (the current working
directory.)

» Thestandard include area.

Example
INCLUDE '/mypath/list /list'

Thislineincludes afile named /mypath/list and expands it in the listing file, if alisting fileis
used.

PGI Fortran Reference Guide 50

Fortran Statements

3.14. MAP

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of
fieldsis defined by a separate map declaration. For more information on field alignment, refer to
Structures.

F77 extension

Syntax

MAP
field declaration
[field declaration]

.[field_declaration]
END MAP
field_declaration
isastructure declaration or RECORD statement contained within a union declaration, aunion
declaration contained within a union declaration, or the declaration of atyped datafield within
aunion.

Description

Data can be initialized in field declaration statements in union declarations. However, it isillegal
to initialize multiple map declarationsin asingle union.

The size of the shared areafor a union declaration is the size of the largest map defined for that
union. The size of amap is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarationsis similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Example

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plusthe size of the largest MAP
(the employee map at 24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map
UNION

MAP ! Structure for an employee

PGI Fortran Reference Guide 51

Fortran Statements

CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items
BYTE items (12) ! Items supplied
END MAP
END UNION
END STRUCTURE
RECORD /account/ recarr (1000)

3.15. POINTER (Cray)

The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a
pointer variable (of type INTEGER), and another variable to be its pointer-based variable.

F77 extension

Syntax
POINTER (pl, v1) [, (p2, v2) ...]

vland v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

pland p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, datatype, etc.). A reference to a pointer-based variable appears in Fortran statements
like anormal variable reference (for example, alocal variable, a COMMON block variable,
or adummy variable). When the based variableis referenced, the address to which it refersis
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

» By assigning the value of the LOC function.
» By assigning avalue defined in terms of another pointer variable.

PGI Fortran Reference Guide 52

Fortran Statements

» By dynamically allocating a memory areafor the based variable. If a pointer-based variable
isdynamically allocated, it may also be freed.

Example

REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))

P = LOC(IC)

I =20 ! IC gets 0

P = LOC (XC)

QO =P + 20 same as LOC (XC(6))
X(1l) =0 XC(6) gets O

|
g

ALLOCATE (X) ! Q locates a dynamically
! allocated memory area

Restrictions
The following restrictions apply to the POINTER statement:

» No storage is allocated when a pointer-based variable is declared.
» If apointer-based variable is referenced, its pointer variable is assumed to be defined.

» A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

» A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram. If a pointer-based variable is an adjustable array, it is assumed that the
variables in the dimension declarator(s) are defined with an integer value at the time
the SUBROUTINE or FUNCTION iscalled. For avariable which appears in a pointer-
based variable's adjustable declarator, modifying its value during the execution of the
SUBROUTINE or FUNCTION does not modify the bounds of the dimensions of the pointer-
based array.

» A pointer-based variable is assumed not to overlap with another pointer-based variable.

3.16. PROTECTED

The PROTECTED statement protects a module variable against modification from outside the
module in which it was declared.

F2003

Syntax

PROTECTED [::], name [, name]

PGI Fortran Reference Guide 53

Fortran Statements

Description

Variables with the PROTECTED attribute may only be modified within the defining module.
Ouitside of that module they are not allowed to appear in any variable definition context, that is,
on the left-hand-side of an assignment statement.

This statement alows the values of variables of amodule to be generally available without
relinquishing control over their modification.

Examples

Inthe following module, thecm 2 inchand in 2 cm variables are protected so that they
cannot be changed outside the CONVERT_FORMULA module. The PROTECTED attribute
allows users of this module to read the measurements in either centimeters or inches, but the
variables can only be changed viathe provided subroutines which ensure that both values agree.

MODULE COVERT FORMULA
REAL, PROTECTED :: in 2 cm = 2.54, cm 2 in = 0.39
CONTAINS
SUBROUTINE set metric(new_value cm)

END SUBROUTINE
SUBROUTINE set english(new value in)

END SUBROUTINE
END MODULE

3.17.RECORD

The RECORD statement, a VA X Fortran extension, defines a user-defined aggregate data item.

F77 extension

Syntax
RECORD /structure name/record namelist [,/structure name/record namelist]

.[, }structure_name/record_namelist]
END RECORD
structure_name
is the name of a previously declared structure.
record_namelist
isalist of one or more variable or array names separated by commas.

PGI Fortran Reference Guide 54

Fortran Statements

Description

Y ou create memory storage for arecord by specifying a structure name in the RECORD
statement. Y ou define the field valuesin arecord either by defining them in the structure
declaration or by assigning them with executable code.

Y ou can access individual fieldsin arecord by combining the parent record name, aperiod (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed dataitem (for example, INTEGER), while an
aggregate reference means a reference that resolvesto a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted |/O
statements, and as parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example

STRUCTURE /PERSON/ ! Declare a structure defining a person
INTEGER ID

LOGICAL LIVING

CHARACTER*5 FIRST, LAST, MIDDLE

INTEGER AGE
END STRUCTURE

! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /PERSON/ POPULATION(2), ME

ME.AGE = 34 ! Assign values for the variable me

ME.LIVING = .TRUE. ! to some of the fields.
ME.FIRST = 'Steve'

ME.ID = 542124822

POPULATION (1) .LAST = 'Jones'

! Assign the "LAST" field of

! element 1 of array population.
POPULATION (2) = ME ! Assign all the values of record

|

"ME" to the record population (2)

3.18. REDIMENSION

The REDIMENSION statement, a PGF77 extension to FORTRAN 77, dynamically definesthe
bounds of a deferred-shape array. After aREDIMENSION statement, the bounds of the array
become those supplied in the statement, until another such statement is encountered.

F77 extension

Syntax

REDIMENSION name ([lb:Jubl[, [lb:]Jub]l...) [,name([lb:]Jub[, [1lb:Jub]l...)]...

PGI Fortran Reference Guide 55

Fortran Statements

Where:

name
is the symbolic name of an array.

[Ib:]ub
isadimension declarator specifying the bounds for a dimension (the lower bound Ib and the
upper bound ub). Ib and ub must be integers with ub greater than Ib. The lower bound 1b is
optional; if it isnot specified, it is assumed to be 1. The number of dimension declarations
must be the same as the number of dimensionsin the array.

Example

REAL A(:, :)

POINTER (P, A)

P = malloc(1l2 * 10 * 4)
REDIMENSION A (12, 10)
A(3, 4) = 33.

3.19. RETURN

The RETURN statement causes areturn to the statement following a CALL whenusedin a
subroutine, and returns to the relevant arithmetic expression when used in a function.

F77

Syntax

RETURN

Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use
the CA SE statement where possible in new or updated code. The alternate RETURN statement
takes the following form:

RETURN expression

expression
expression is converted to integer if necessary (expression may be of type integer or real). If
the value of expression is greater than or equal to 1 and less than or equal to the number of
asterisks in the SUBROUTINE or subroutine ENTRY statement then the value of expression
identifies the nth asterisk in the actual argument list and control isreturned to that statement.

Example
SUBROUTINE FIX (A,B,*,*,C)
40 IF (T) 50, 60, 70
50 RETURN
60 RETURN 1
70 RETURN 2

PGI Fortran Reference Guide 56

Fortran Statements

END
PROGRAM FIXIT
CALL FIX (X, Y, *100, *200, S)

WRITE(*,5) X, S ! Arrive here if (T) < O
STOP

100 WRITE (*, 10) X, Y ! Arrive here if (T) = 0
STOP

200 WRITE (*,20) Y, S ! Arrive here if (T) > 0

3.20. STRUCTURE

The STRUCTURE statement, aVAX extension to FORTRAN 77, defines an aggregate data type.

F77 VAX extension

Syntax

STRUCTURE [/structure name/][field namelist]
field declaration
[field declaration]

.[field_declaration]

END STRUCTURE

structure_name
isunique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
isalist of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

Description

Fields within structures conform to machine-dependent alignment requirements. Alignment of
fields also provides a C-like "struct” building capability and allows convenient inter-language
communications. Note that aligning of structure fieldsis not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.
Also, because records use periods to separate fields, it is not legal to use relational operators
(for example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions
(\AAND., .NOT., .OR.) asfield names in structure declarations.

Fieldsin astructure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit

PGI Fortran Reference Guide 57

Fortran Statements

padding of recordsis not necessary, the compiler recognizes the %FILL intrinsic, but performs no
action in response toit.

Datainitialization can occur for the individual fields.
The UNION and MAP statements are supported.

The following is an example of record and structure usage.
STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map

UNION

MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number

REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items
BYTE items (12) ! Ttems supplied
END MAP
END UNION
END STRUCTURE
RECORD /account/ recarr (1000)

3.21. UNION

A UNION declaration, a DEC extension to FORTRAN 77, is amulti-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure. Each group of fields within a union declaration is declared by a map declaration, with
one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to aternately
contain two or more groups of fields. Whenever one of the fields declared by a union declaration
isreferenced in a program, that field and any other fieldsin its map declaration become defined.
Then, when afield in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration. The format of a UNION statement is as follows:

F77 extension

PGI Fortran Reference Guide 58

Fortran Statements

Syntax

UNION
map declaration
[map declaration]

[map declaration]
END UNION
The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

i%ield_declaration]
END MAP
field_declaration
where field declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration
of atyped data field within aunion.

Description

Data can beinitialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in asingle union.

The size of the shared areafor a union declaration is the size of the largest map defined for that
union. The size of amap is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Thefollowing is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP

(the employee map at 24 bytes).
STRUCTURE /account/
INTEGER typetag ! Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer

INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items

PGI Fortran Reference Guide 59

Fortran Statements

BYTE items (12) ! Ttems supplied
END MAP

END UNION

END STRUCTURE

RECORD /account/ recarr (1000)

3.22. VOLATILE

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks
that it identifies. The VOLATILE attribute, added in Fortran 2003, is used in atype declaration
Statement.

F77 extension (statement)

F2003 (attribute)

Syntax

Volatile Attribute

datatype, volatile :: var name
OR

datatype :: var name

volatile :: var name

Volatile Statement

VOLATILE nitem [, nitem ...]
nitem

isthe name of avariable, an array, or acommon block enclosed in slashes.
Description

Being volatile indicates to the compiler that, at any time, the variable might change or be
examined from outside the Fortran program. The impact on the programmer is that anytime
avolatile variable is referenced, the value must be loaded from memory. Furthermore, any
assignment to the volatile variable must be written to memory.

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable isinherited by any direct or indirect equivalences, as shown in the example.

Volatile Attribute Example

The following example declares both the integer variable xyz and the real variable abc to be
voldtile.

PGI Fortran Reference Guide 60

Fortran Statements

integer, volatile :: xyz
real :: abc
volatile :: abc

Volatile Statement Example

COMMON /COM/ C1, C2

VOLATILE /COM/, DIR ! /COM/ and DIR are volatile
EQUIVALENCE (DIR, X) ! X is volatile
EQUIVALENCE (X, Y) 'Y is volatile

3.23. WAIT

Performs await operation for specified pending asynchronous data transfer operations.

F2003

Syntax

WAIT (wait specs list)

wait specs list canincludeany of the following specifiers:

UNIT =] file-unit-number
A file-unit-number must be specified. If the optional characters UNIT= are omitted, the file-
unit-number isthe first item in the wait-spec-list.

END = label

label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

END= specifier has no effect if the pending data transfer operation is not a READ.
EOR = label

label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing
READ.

ERR = label
label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

ID =scalar_in_var
scalar in var istheidentifier of apending datatransfer operation for the specified unit.

» If the ID= specifier appears, await operation for the specified data transfer operation is
performed.

» If the ID= specifier is omitted, wait operations for al pending data transfers for the
specified unit are performed.

PGI Fortran Reference Guide 61

Fortran Statements

IOM SG = iomsg-var
iomsg-var isan|/O message variable.
IOSTAT =scalar-int-var
scalar in var istheidentifier of apending datatransfer operation for the specified unit.

For more information on IOSTAT, ERR=, EOR=, END=, and |OM SG=, refer to the READ and
WRITE statements.

Description

This statement performs await operation for specified pending asynchronous data transfer
operations.

The CLOSE, INQUIRE, and file positioning statements may also perform wait operations.

Execution of aWAIT statement specifying a unit that does not exist, has no file connected to

it, or that was not opened for asynchronous input/output is permitted, provided that the WAIT
statement has no 1D= specifier. Thistype of WAIT statement does not cause an error or end-of-
file condition to occur.

n No specifier shall appear more than once in a given wait-spec-list.

Examples

INTEGER SCORE (30)
CHARACTER GRADE (30)
WHERE (SCORE > 60)
GRADE = 'P'

ELSE WHERE

GRADE = 'F'

END WHERE

PGI Fortran Reference Guide

62

Chapter 4.
FORTRAN ARRAYS

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, arrays may be very
different from arraysin older versions of Fortran. Arrays can have values assigned as awhole
without specifying operations on individual array elements, and array sections can be accessed.
Also, allocatable arrays that are created dynamically are available as part of the Fortran 90/95
standard. This section describes some of the features of Fortran 90/95 arrays.

The following exampleillustrates valid array operations.

REAL(10,10) A,B,C

A 12 !Assign 12 to all elements of A

B 3 !Assign 3 to all elements of B

C A + B !Add each element of A to each of B

4.1. Array Types

Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays, deferred-shape
arrays and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid

in amain program. Assumed shape arrays and assumed size arrays are only valid for arrays used
as dummy arguments. Deferred shape arrays, where the storage for the array is allocated during
execution, must be declared with either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’sdimension is the
number of elementsin the dimension. The array rank is the number of dimensionsin the array, up
to amaximum of seven. The shape is the vector representing the extents for all dimensions. The
sizeisthe product of the extents. For some types of arrays, al of these properties are determined
when the array is declared. For other types of arrays, some of these properties are determined
when the array is allocated or when a procedure using the array is entered. For arrays that are
dummy arguments, there are several special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated until an
allocate statement is executed when the program is running. Allocatable arrays provide Fortran
90/95 programs with dynamic storage. Allocatable arrays are declared with arank specified
with the":" character rather than with explicit extents, and they are given the ALLOCATABLE
attribute.

PGI Fortran Reference Guide 63

Fortran Arrays

4.1.1. Explicit Shape Arrays

Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each dimension

is declared with an explicit value. There are two special cases of explicit arrays. In aprocedure,
an explicit array whose bounds are passed in from the calling program is called an automatic-
array. The second special case, also found in aprocedure, isthat of an adjustable-array whichisa
dummy array where the bounds are passed from the calling program.

4.1.2. Assumed Shape Arrays

An assumed shape array isadummy array whose bounds are determined from the actual
array. Intrinsics called from the called program can determine sizes of the extentsin the called
program’s dummy array.

4.1.3. Deferred Shape Arrays

A deferred shape array is an array that is declared, but not with an explicit shape. Upon
declaration, the array's type, its kind, and its rank (number of dimensions) are determined.
Deferred shape arrays are of two varieties, allocatable arrays and array pointers.

4.1.4. Assumed Size Arrays

An assumed size array is adummy array whose size is determined from the corresponding array
in the calling program. The array’ s rank and extents may not be declared the same as the original
array, but itstotal size (number of elements) is the same as the actual array. Thisform of array
should not need to be used in new Fortran programs.

4.2. Array Specification

Arrays may be specified in either of two types of data type specification statements, attribute-
oriented specifications or entity-oriented specifications. Arrays may also optionaly have

data assigned to them when they are declared. This section covers the basic form of entity-
based declarations for the various types of arrays. Note that all the details of array passing for
procedures are not covered here; refer to The Fortran 95 Handbook for complete details on the
use of arrays as dummy arguments.

4.2.1. Explicit Shape Arrays

Explicit shape arrays are defined with a specified rank, each dimension must have an upper
bound specified, and alower bound may be specified. Each bound is explicitly defined with a
specification of the form:

[lower-bound:] upper-bound

An array has amaximum of seven dimensions. The following are valid explicit array
declarations:

INTEGER NUM1 (1,2, 3) ! Three dimensions
INTEGER NUM2 (-12:6,100:1000) ! Two dimensions with lower & upper bounds
INTEGER NUM3(0,12,12,12) ! Array of size O

PGI Fortran Reference Guide 64

Fortran Arrays

INTEGER NUM3 (M:N,P:Q,L, 99) ! Array with 4 dimensions

4.2.2. Assumed Shape Arrays

An assumed shape array is aways a dummy argument. An assumed shape array hasa
specification of the form:

[lower-bound] :

The number of colons (:) determines the array’ s rank. An assumed shape array cannot be an
ALLOCATABLE or POINTER array.

4.2.3. Deferred Shape Arrays

An deferred shape array is an array pointer or an allocatable array. A deferred shape array has a
specification that determines the array's rank and has the following form for each dimension:

For example:

INTEGER, POINTER :: NUMI(:,:,:,:)
INTEGER, ALLOCATABLE :: NUM2 (:)

4.2.4. Assumed Size Arrays

An assumed size array is a dummy argument with an assumed size. The array’ s rank and bounds
are specified with a declaration that has the following form:

[explicit-shape-spec-list ,][lower-bound:]*
For example:

SUBROUTINE YSUMI (M, B,C)

INTEGER M

REAL, DIMENSION(M,4,5,*) :: B,C

4.3. Array Subscripts and Access

There are avariety of waysto access an array in whole or in part. Arrays can be accessed, used,
and assigned to as whole arrays, as elements, or as sections. Array elements are the basic access
method.

In the following example, the value of 5 is assigned to element 3,1 of NUMB.

INTEGER, DIMENSION(3,11) :: NUMB
NUMB (3,1) = 5

The following statement assigns the value 5 to al elements of NUMB.

The array NUMB may also be accessed as an entire array:
NUMB=5

4.3.1. Array Sections and Subscript Triplets

Another possibility for accessing array elementsisthe array section. An array sectionis an array
accessed by a subscript that represents a subset of the entire array's elements and is not an array
element. An array section resulting from applying a subscript list may have a different rank than

PGI Fortran Reference Guide 65

Fortran Arrays

the original array. An array section's subscript list consists of subscripts, subscript triplets, and/or
vector subscripts.

The following example uses a subscript triplet and a subscript, assigning the value 6 to
all elements of NUMB with the second dimension of value 3 (NUMB(1,3), NUMB(2,3),
NUMB(3,3)).

NUMB (:, 3) =6

The following array section uses the array subscript triplet and a subscript to access three
elements of the original array. This array section could also be assigned to arank one array with
three elements, as shown here:

INTEGER (3,11) NUMB

INTEGER (3) NUMC

NUMB(:,3) = 6

NUMC = NUMB(:,3)

In this example, NUMC isrank 1 and NUMB isrank 2. This assignment, using the subscript 3,
illustrates how NUMC, and the array section of NUMB, has a shape that is of adifferent rank
than the original array.

The general form for an array's dimension with a vector subscript triplet is:
[subscript] : [subscript] [:stride]
The first subscript is the lower bound for the array section, the second is the upper bound and the

third isthe stride. The stride is by default one. If all values except the : are omitted, then all the
values for the specified dimensions are included in the array section.

In the following example, using the NUMB previoudy defined, the statement has a stride of 2,
and assigns the value 7 to the elements NUMB(1,3) and NUMB(3,3).

NUMB(1:3:2,3) = 7

4.3.2. Array Sections and Vector Subscripts

V ector-valued subscripts specify an array section by supplying a set of values defined in aone
dimensional array (vector) for adimension or several dimensions of an array section.

In the following example, the array section uses the vectors | and Jto assign the value 7 to each
of the elements: NUMB(2,1), NUMB(2,2), NUMB(3,1), and NUMB(3,2).

INTEGER J(2), I(2)
INTEGER NUMB (3, 6)

I = (/1,2/)
J = (/2,3/)
NUMB (J,I) = 7

4.4. Array Constructors

An array constructor can be used to assign values to an array. Array constructors form one-
dimensional vectors to supply valuesto aone-dimensional array, or one dimensional vectors and
the RESHAPE function to supply values to arrays with more than one dimension.

Array constructors can use aform of implied DO similar to that in aDATA statement. For

example:
INTEGER DIMENSION (4) :: K = (/1,2,7,11/)
INTEGER DIMENSION (20) :: J = (/(I,I=1,40,2)/)

PGI Fortran Reference Guide 66

Chapter 5.
INPUT AND OUTPUT

Input, output, and format statements provide the means for transferring data to or from files. Data
istransferred as records to or from files. A record is a sequence of data which may be values or
characters and afile is a sequence of such records. A file may be internal, that is, held in memory,
or external such asthose held on disk. To access an external file aformal connection must be
made between a unit, for example adisk file, and the required file. An external unit must be
identified either by a positive integer expression, the value of which indicates a unit, or by an
asterisk (*) which identifies a standard input or output device.

This section describes the types of input and output available and provides examples of input,
output and format statements. There are four types of input/output used to transfer data to or from
files: unformatted, formatted, list directed, and namelist.

» unformatted datais transferred between the item(s) in the input/output list (iolist) and the
current record in the file. Exactly one record may be read or written.

» formatted datais edited to conform to a format specification, and the edited datais
transferred between the item or itemsin theiolist, and the file. One or more records may be
read or written. Non-advancing formatted data transfers are a variety of formatted I/O where
aportion of adatarecord is transferred with each input/output statement.

» list directed input/output is an abbreviated form of formatted input/output that does not use
aformat specification. Depending on the type of the dataitem or dataitemsin theiolist,
datais transferred to or from the file, using a default, and not necessarily accurate format
specification.

» namelist input/output is a specia type of formatted data transfer; datais transferred between
anamed group (namelist group) of dataitems and one or more recordsin afile.

5.1. File Access Methods

Y ou can access files using one of two methods, sequential access, or direct access (random
access). The access method is determined by the specifiers supplied when the file is opened using
the OPEN statement. Sequential access files are accessed one after the other, and are written in
the same manner. Direct access files are accessed by specifying a record number for input, and by
writing to the currently specified record on output.

PGI Fortran Reference Guide 67

Input and Output

Files may contain one of two types of records, fixed length records or variable length records.
To specify the size of the fixed length recordsin afile, use the RECL specifier with the OPEN
statement. RECL sets the record length in bytes.

The units depend on the value of the FORTRANOPT environment variable. If the value is vaxio,
then the record length isin units of 32-bit words. If FORTRANOPT is not defined, or itsvalueis
something other than vaxio, then the record length is always in units of bytes.

RECL can only be used when accessis direct.

A record in avariable length formatted file is terminated with \n. A record in avariable length
unformatted file is preceded and followed by aword indicating the length of the record.

5.1.1. Standard Preconnected Units

Certain input and output units are predefined, depending on the value of compiler options.

The PGI Fortran compilers -Mdefaul tunit option tellsthe compiler to treat "*" asa

synonym for standard input for reading and standard output for writing. When the option is -
Mnodefaul tunit, the compiler treats"*" as asynonym for unit 5 on input and unit 6 on output.

5.2. Opening and Closing Files

The OPEN statement establishes a connection to afile. OPEN allows you to do any of the
following

v

Connect an existing file to a unit.

Create and connect afile to a unit.

Create afile that is preconnected.

Establish the access method and record format for a connection.

OPEN has the form:
OPEN (list)

v v VY

where list contains a unit specifier of the form:
[UNIT=] u

where u, an integer, is the external unit specifier.

In addition list may contain one of each of the specifiers shown in Table 16.

5.2.1. Direct Access Files

If afileis connected for direct access using OPEN with ACCESS='DIRECT", the record length
must be specified using RECL =. Further, one of each of the other specifiers may also be used.

Any file opened for direct access must be viafixed length records.
In the following example:

» A new file, book.dat, iscreated and connected to unit 12 for direct formatted i nput/output
with arecord length of 98 characters.

» Blank values are ignored in numeric val ues.

PGI Fortran Reference Guide 68

Input and Output

» If an error condition exists when the OPEN statement is executed, the variable E1 is assigned
some positive value, and then execution continues with the statement labeled 20.

» If no error condition pertains, E1 is assigned the value 0 and execution continues with the
statement following the OPEN statement.

OPEN (12, IOSTAT=E1,ERR=20, FILE="book.dat"', BLANK='NULL',
+ACCESS="DIRECT',RECL=98, FORM="'FORMATTED', STATUS="NEW")

5.2.2. Closing a File

Close a unit by specifying the CLOSE statement from within any program unit. If the unit
specified does not exist or has no file connected to it, the CLOSE statement has no effect.

Provided thefileis still in existence, it may be reconnected to the same or a different unit after the
execution of a CLOSE statement. An implicit CLOSE is executed when a program stops.

The CLOSE statement terminates the connection of the specified file to a unit.

CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs]
[, STATUS= sta] [,DISPOSE= sta] [,DISP= stal])

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in the
following table. In addition, CLOSE allows the DISPOSE or DISP specifier which can take
astatus value stawhich is a character string, where case is insignificant, specifying the file
status (the same keywords are used for the DISP and DISPOSE status). Status can be KEEP
or DELETE. KEEP cannot be specified for afile whose dispose status is SCRATCH. When
KEEP is specified (for afile that exists) the file continues to exist after the CLOSE statement,
conversely DELETE deletes the file after the CLOSE statement. The default valueis KEEP
unlessthefile statusis SCRATCH.

Table 16 OPEN Specifiers

Specifier Description

ACCESS=acc Where acc is a character string specifying the access method for file connection as
DIRECT (random access) or SEQUENTIAL. The default is SEQUENTIAL.

ACTION=act Where act is a character string specifying the allowed actions for the file and is one of
READ, WRITE, or READWRITE.

ASYNCHRONOUS=async Where async is a character expression specifying whether to allow asynchronous data
transfer on this file connection. One of 'YES' or ‘NO’ is allowed.

BLANK=bInk Where bink is a character string which takes the value NULL or ZERO: NULL causes

all blank characters in numeric formatted input fields to be ignored with the exception of
an all-blank field which has a value of zero. ZERO causes all blanks other than leading
blanks to be treated as zeros. The default is NULL. This specifier must only be used when
a file is connected for formatted input/output.

CONVERT=char_expr Where char_expr is a character string that allows byte-swapping 1/0 to be performed on
specific logical units, and is one of following: BIG_ENDIAN, LITTLE_ENDIAN, or NATIVE.

Previously, byte-swappingl/O was only enabled by the command-line option, -
byteswapio, and was applied to all unformatted 1/O operations which appeared in the
files compiled using -byteswapio.

Thevalue 'BIG_ENDIAN' is specifies to convert big-endian format data files produced by
most RISC workstations and high-end servers to the little-endian format used on Intel
Architecture systems on-the-fly during file reads/writes. This value assumes that the

PGI Fortran Reference Guide 69

Specifier

Input and Output

Description

record layouts of unformatted sequential access and direct access files are the same on
the systems.

For the values 'LITTLE_ENDIAN'and 'NATIVE", byte-swapping is not performed during file
reads/writes since the little-endian format is used on Intel Architecture.

DECIMAL= scalar_char

Specify the default decimal edit mode for the unit. When the edit mode is point, decimal
points appear in both input and output. The options are COMMA, where commas rather
than decimal points appear in both input and output, and POINT, where decimal points

appear in both input and output.

DELIM=del

Specify the delimiter for character constants written by a list-directed or namelist-formatted
statement. The options are APOSTROPHE, QUOTE, and NONE.

ENCODING= specifier

An encoding specifier which indicates the desired encoding of the file,
such as one of the following:

UTF-8 specifies the file is connected for UTF-8 I/O or that the
processor can detect this format in some way.

A processor-dependent value indicates the file is in another known
format, such as UTF-16LE.

ERR=errs

An error specifier which takes the form of a statement label of an executable statement
in the same program. If an error condition occurs, execution continues with the statement
specified by errs.2

FILE=fin

Where fin is a character string defining the file name to be connected to the specified unit.

FORM=fm

Where fm is a character string specifying whether the file is being connected for
FORMATTED, UNFORMATTED, or BINARY output. The default is FORMATTED. For
an unformatted file whose form is BINARY, the file is viewed as a byte-stream file, such
as a file created by fwrite() calls in a C program; the data in the file is not organized into
records.

IOSTAT=ios

Input/output status specifier where ios is an integer scalar memory reference. If this is
included in list, ios becomes defined with 0 if no error exists or a positive integer when
there is an error condition.

If IOSTAT and ERR are not present, the program terminates if an error occurs.

PAD=padding

Specifies whether or not to use blank padding for input items. The padding values are
YES and NO. The value NO requires that the input record and the input list format
specification match.

POSITION=pos

Specifies the position of an opened file. ASIS indicates the file position remains
unchanged. REWIND indicates the file is to be rewound, and APPEND indicates the file is
to positioned just before an end-of-file record, or at its terminal point.

RECL=rl

Where rl is an integer which defines the record length in a file connected for direct access
and is the number of characters when formatted input/output is specified. This specifier
must only be given when a file is connected for direct access.

Round=specifier

Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS, PLUS,
PROCESSOR_DEFINED, or UNDEFINED.

PGI Fortran Reference Guide

70

Input and Output

Specifier Description

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD, SCRATCH,
REPLACE or UNKNOWN. When OLD or NEW is specified a file specifier must be given.
SCRATCH must not be used with a named file. The default is UNKNOWN.

SIGN=specifier Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS, PLUS,
PROCESSOR_DEFINED, or UNDEFINED.

A unit may be the subject of a CLOSE statement from within any module. If the unit specified
does not exist or has no file connected to it, the use of the CLOSE statement has no effect.
Provided thefileis still in existence it may be reconnected to the same or a different unit after
the execution of a CLOSE statement. Note that an implicit CLOSE is executed when a program
stops.

In the following example the file on UNIT 6 is closed and deleted.
CLOSE (UNIT=6, STATUS='DELETE")

5.3. Data Transfer Statements

Once a unit is connected, either using a preconnection, or by executing an OPEN statement, data
transfer statements may be used. The available datatransfer statements include: READ, WRITE,
and PRINT. The general form for these data transfer statementsis shown in Chapter 3 Fortran
Statements; refer to that section for details on the READ, WRITE and PRINT statements and
their valid 1/0 control specifiers.

5.4. Unformatted Data Transfer

Unformatted data transfer allows data to be transferred between the current record and the items
specified in an input/output list. Use OPEN to open afile for unformatted output:
OPEN (2, FILE='new.dat', FORM='UNFORMATTED')

The unit specified must be an externa unit.

After dataistransferred, the fileis positioned after the last record read or written, if thereisno
error condition or end-of-file condition set.

n Unformatted data transfer cannot be carried out if the file is connected for formatted input/output.

The following example shows an unformatted input statement:
READ (2, ERR=50) A, B
» On output to afile connected for direct access, the output list must not specify more values

than can fit into arecord. If the values specified do not fill the record the rest of the record is
undefined.

» Oninput, the file must be positioned so that the record read is either an unformatted record or
an endfile record.

PGI Fortran Reference Guide 71

Input and Output

» The number of values required by the input list in the input statement must be less than or
equal to the number of valuesin the record being read. The type of each valuein the record
must agree with that of the corresponding entity in the input list. However one complex
value may correspond to two real list entities or vice versa. If the input list item is of type
CHARACTER, itslength must be the same as that of the character value

» Intheevent of an error condition, the position of the file isindeterminate.

5.5. Formatted Data Transfer

During formatted data transfer, datais edited to conform to aformat specification, and the edited
datais transferred between the items specified in the input or output statement’ siolist and the
file; the current record is read or written and, possibly, so are additional records. On input, the
file must be positioned so that the record read is either a formatted record or an endfile record.
Formatted data transfer is prohibited if the file is connected for unformatted input/output.

For variable length record formatted input, each newline character isinterpreted as arecord
separator. On output, the 1/0 system writes a newline at the end of each record. If a program
writes a newline itself, the single record containing the newline will appear as two records when
read or backspaced over. The maximum allowed length of arecord in avariable length record
formatted file is 2000 characters.

5.5.1. Implied DO List Input Output List

Animplied DO list takes the form

(iolist,do-var=varl,var2,var3)

wheretheitemsiniolist are either items permissible in an input/output list or another implied

DO list. The value do-var isan INTEGER, REAL or DOUBLE PRECISION variable and varl,
var2 and var3 are arithmetic expressions of type INTEGER, REAL or DOUBLE PRECISION.
Generaly, do-var, varl, var2 and var3 are of type INTEGER. Should iolist occur in an input
statement, the do-var cannot be used as an item iniolist. If var3 and the preceding comma are
omitted, the increment takes the value 1. The list items are specified once for each iteration of the
DO loop with the DO-variable being substituted as appropriate.

In the following example OXO, C(7), C(8) and C(9) are each set to 0.0. TEMP, D(1) and D(2) are
set to 10.0.

REAL C(6),D(6)
DATA 0OXO, (C(I),I=7,9),TEMP, (D(J),J=1,2)/4%*0.0,3*10.0/

The following two statements have the same effect.
READ *,A,B, (R(I),I=1,4),S

READ *,A,B,R(1),R(2),R(3),R(4),S

5.5.2. Format Specifications

Format requirements may be given either in an explicit FORMAT statement or alternatively, as
fields within an input/output statement (as values in character variables, arrays or other character
expressions within the input/output statement).

PGI Fortran Reference Guide 72

Input and Output

When aformat identifier in aformatted input/output statement is a character array name or other
character expression, the leftmost characters must be defined with character data that constitute a
format specification when the statement is executed. A character format specification is enclosed
in parentheses. Blanks may precede the left parenthesis. Character data may follow the right-
hand parenthesis and has no effect on the format specification. When a character array name is
used as aformat identifier, the length of the format specification can exceed the length of the
first element of the array; a character array format specification is considered to be an ordered
concatenation of all the array elements. When a character array element is used as a format
identifier the length must not exceed that of the element used.

The FORMAT statement has the form:

FORMAT (list-of-format-requirements)
The list of format requirements can be any of the following, separated by commas:

» Repeatable editor commands which may or may not be preceded by an integer constant
which defines the number of repeats.

» Non-repeatable editor commands.

» A format specification list enclosed in parentheses, optionally preceded by an integer
constant which defines the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next item in the
input/output list used. If an input/output list contains at least one item, there must be at least one
repeatable edit code in the format specification. An empty format specification FORMAT() can
only be used if no list items are specified. In such a case, one input record is skipped or an output
record containing no characters is written. Unless the edit code or the format list is preceded

by arepeat specification, aformat specification isinterpreted from left to right. When a repeat
specification is used, the appropriate item is repeated the required number of times.

Each repeatabl e edit code has a corresponding item in theiolist; however when alist item is of
type complex two edit codes of F, E, D or G arerequired. Theedit codesP, X, T, TL, TR, S, SP,
SS, H, BN, BZ, /, : and apostrophe act directly on the record and have no corresponding item in
the input/output list.

Thefileis positioned after the last character read or written when the edit codes |, F, E, D, G, L,
A, H or apostrophe are processed. If the specified unit is a printer then the first character of the
record is used to control the vertical spacing as shown in the following table:

Table 17 Format Character Controls for a Printer

Character Vertical Spacing

Blank One line

0 Two lines

1 To first line on next page

+ No advance

5.5.2.1. A Format Control — Character Data

The A specifier transfers characters. The A specifier has the form:
Aw

PGI Fortran Reference Guide 73

Input and Output

When the optional width field, w, is not specified, the width is determined by the size of the data
item.

On output, if | isthe length of the character item and w is the field width, then the following rules
apply:

» If w>1, output with w-I blanks before the character.

» If w </, output leftmost w characters.

Oninput, if | isthe length of the character 1/0 item and w is the field width, then the following
rules apply:

» If w>1, rightmost | characters from the input filed.

» If w<lI, leftmost w characters from the input filed and followed by | —w blanks.

Y ou can also use the A format specifier to process data types other than CHARACTER. For types
other than CHARACTER, the number of characters supplied for input/output equalsthe sizein
bytes of the data allocated to the data type. For example, an INTEGER* 4 value is represented
with 4 characters and a LOGICAL* 2 is represented with 2 characters.

The following shows a simple example that reads twvo CHARACTER arrays from the file
data.src:

CHARACTER STR1*8, STR2*12
OPEN (2, FILE='data.src')
READ (2, 10) STR1l, STR2
10 FORMAT (A8, Al2)

5.5.2.2. B Format Control — Binary Data

The B field descriptor transfers binary values and can be used with any integer datatype. The edit
descriptor has the form:
Bw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) binary charactersonly (0 or 1).
Anall blank field istreated as avalue of zero. If the value of the external field exceeds the range
of the corresponding list element, an error occurs.

On output, the B field descriptor transfers the binary values of the corresponding 1/0 list element,
right-justified, to an external field that isw characters long.

» If the value to be transmitted does not fill the field, leading spaces are inserted.

» If thevalueistoo large for the field, the entire field is filled with asterisks.

» If mispresent, the externa field consists of at least m digits, and is zero-filled on the left if
necessary.

» If miszero, and theinternal representation is zero, the external field is blank-filled.

5.5.2.3. D Format Control — Real Double Precision Data with Exponent

The D specifier transfersreal values for double precision data with a representation for an
exponent. The form of the D specifier is:
Dw.d

where w isthe field width and d the number of digitsin the fractional part.

PGI Fortran Reference Guide 74

Input and Output

For input, the same conditions apply as for the F specifier described later in this section.

For output, the scale factor k controls the decimal normalization. The scale factor k is the current
scale factor specified by the most recent P format control.

» If one hasn't been specified, the default is zero (0).

» If -d < k<=0, the output file contains leading zeros and d-|k| significant digits after the
decimal point.

» If 0< k< d+2, there are exactly |k| significant digitsto the left of the decimal point and d-k
+1 significant digits to the right of the decimal point.

» Other values of k are not allowed.

For example:
DOUBLE PRECISION VALl VALl = 141.8835 WRITE(*, 20) VALl 20 FORMAT (D10.4)

produces the following:
0.1418D+03

5.5.2.4. d Format Control — Decimal specifier

The dc and dp descriptors, representing decimal comma and decimal point edit modes,
respectively, are valid in format processing, such asin aFORMAT statement.

The specific edit mode takes effect immediately when encountered in formatting, and staysin
effect until either another descriptor is encountered or until the end of the statement.

5.5.2.5. E Format Control — Real Single Precision Data with Exponent

The E specifier transfers real values for single precision data with an exponent. The E format
specifier has two basic forms:

Ew.d
Ew.dEe

where w isthe field width, d the number of digitsin the fractional part and e the number of digits
to be printed in the exponent part.

For input the same conditions apply as for F editing.

For output the scale factor controls the decimal normalization asin the D specifier.

5.5.2.6. EN Format Control

The EN specifier transfers real values using engineering notation.
ENw.d
ENw.dEe

where w isthe field width, d the number of digitsin the fractional part and e the number of digits
to be printed in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3 and the
absolute value of the significand is 1000 > |significand | 1. Thisformat is the same asthe E
format descriptor, except for restrictions on the size of the exponent and the significand.

PGI Fortran Reference Guide 75

Input and Output

5.5.2.7. ES Format Control

The ES specifier transfersreal valuesin scientific notation. The ES format specifier has two basic
forms:

ESw.d
ESw.dEe

where w isthe field width, d the number of digitsin the fractional part and e the number of digits
to be printed in the exponent part.

For output, the scale factor controls the decimal normalization asin the D specifier.

On output, the number is presented in scientific notation, where the absolute value of the
significand is 10> | significand | 1.

5.5.2.8. F Format Control - Real Single Precision Data

The F specifier transfers real values. The form of the F specifier is:
Fw.d

where w isthe field width and d is the number of digitsin the fractional part.

Oninput, if the field does not contain adecimal digit or an exponent, right-hand d digits, with
leading zeros, are interpreted as being the fractional part.

On output, aleading zero is only produced to the left of the decimal point if the value isless than
one.

5.5.2.9. G Format Control

The G format specifier provides generalized editing of real data. The G format has two basic
forms:

Gw.d

Gw.dEe

The specifier transfers real values; it acts like the F format control on input and depending on the
value' s magnitude, like E or F on output. The magnitude of the data determines the output format.
For details on the actual format used, based on the magnitude, refer to the ANSI FORTRAN
Standard (Section 13.5.9.2.3 G Editing).

5.5.2.10. | Format Control — Integer Data

The | format specifier transfers integer values. The | format specifier has two basic forms:

Iw
Iw.m

where w is the field width and m is the minimum filed width on output, including leading zeros.
If present, m must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only. An all
blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the | format descriptor transfers the decimal values of the corresponding 1/0 list
element, right-justified, to an external field that isw characters long.

PGI Fortran Reference Guide 76

Input and Output

» If the value to be transmitted does not fill the field, leading spaces are inserted.

» If thevalueistoo large for the field, the entire field is filled with asterisks.

» If mispresent, the external field consists of at least m digits, and is zero-filled on the left if
necessary.

» If miszero, and theinternal representation is zero, the external field is blank-filled.

9.5.2.11. L Format Control — Logical Data

The L format control transferslogical data of field width w:
Lw

On input, the list item will become defined with alogical value; the field consists of optional
blanks, followed by an optional decimal point followed by T or F. The values . TRUE.
or .FALSE. may also appear in the input field

The output field consists of w-1 blanks followed by T or F as appropriate.

5.5.2.12. Quote Format Control

Quote editing prints a character constant. The format specifier writes the characters enclosed
between the quotes and cannot be used on input. The field width isthat of the characters
contained within quotes (you can also use apostrophes to enclose the character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).

For example:

WRITE (*, 101)

101 FORMAT ('Print an apostrophe '' and end.')
Produces:

Print an apostrophe ' and end.

Similarly, you can use quotes, for example:

WRITE (*, 102)
102 FORMAT ("Print a line with a "" and end.")

Produces:

Print a line with a " and end.

5.5.2.13. BN Format Control — Blank Control

The BN and BZ formats control blank spacing. BN causes al embedded blanks except |eading
blanksin numeric input to be ignored, which has the effect of right-justifying the remainder of the
field. Note that afield of al blanks has the value zero. Only input statementsand I, F, E, D and G
editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input
statementsand I, F, E, D and G editing are affected.

5.5.2.14. H Format Control — Hollerith Control

The H format control writes the n characters following the H in the format specification and
cannot be used on input.

PGI Fortran Reference Guide 77

Input and Output

The basic form of this format specification is:

nHclcn. ..

where nisthe number of charactersto print and c1 through cn are the characters to print.

5.5.2.15. O Format Control Octal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with an
integer datatype. They have the form:

Ow[.m] and Zw/[.m]
where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters
only. Anall blank field is treated as a value of zero. If the value of the external field exceeds the
range of the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively,
of the corresponding 1/0 list element, right-justified, to an external field that isw characterslong.

» If the value to be transmitted does not fill the field, leading spaces are inserted.

» If thevaueistoo large for the field, the entire field is filled with asterisks.

» If mispresent, the external field consists of at least m digits, and is zero-filled on the left if
necessary.

» If miszero, and the internal representation is zero, the external field is blank-filled.

9.5.2.16. P Format Specifier — Scale Control

The P format specifier is the scale factor format.
kP

This specifier is applied as follows.

» WithF, E, D and G editing on input and F editing on output, the external number equals the
internal number multiplied by 10**k .

» If thereisan exponent in the field on input, editing with F, E, D and G the scale factor has no
effect.

» Onoutput with E and D editing, the basic real constant part of the number is multiplied by
10**k and the exponent reduced by k.

» On output with G editing, the effect of the scale factor is suspended unless the size of the
datum to be edited is outside the range permitted for F editing.

» Onoutput if E editing isrequired, the scale factor has the same effect as with E output
editing.

The following example uses a scale factor.

DIMENSION A (6)
DO 10 I = 1,6 10

A(I) = 25.
TYPE 100,A 100
FORMAT (' ',F8.2,2PF8.2,F8.2)

This example produces this output:

PGI Fortran Reference Guide 78

Input and Output

25.00 2500.00 2500.00 2500.00 2500.00 2500.00

n The effect of the scale factor continues until another scale factor is used.

5.5.2.17. Q Format Control - Quantity

The Q edit descriptor calculates the number of characters remaining in the input record and stores
that value in the next /O list item. On output, the Q descriptor skips the next 1/0 item.

5.5.2.18. r Format Control - Rounding

The rounding edit descriptors are valid in format processing, such asin aREAD or WRITE
statement. The specific rounding mode takes effect immediately when encountered, and stays
in effect until either another descriptor is encountered or until the end of the READ and WRITE
statement. The following table lists the edit descriptors associated with rounding.

Table 18 Format Character Controls for Rounding Printer

This descriptor Indicates this type of rounding
rc round compatible

rd round down

m round nearest

Y round as processor_defined

ru round up

rz round zero

Both nearest and compatible refer to closest representable value. If these are equidistant,
then the rounding is processor-dependent for nearest and the value away from zero for
compatible.

5.5.2.19. S Format Control — Sign Control

The Sformat specifier restores the default processing for writing a plus; the default is SS
processing.

SP forces the processor to write a plusin any position where an optional plusisfound in numeric
output fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plusisfound in
numeric output fields, this only affects output statements.

5.5.2.20. T, TL and X Format Controls — Spaces and Tab Controls

The T specifier controls which portion of arecord in aniolist value isread from or written to a
file. The general form, which specifies that the nth value is to be written to or from arecord, is as
follows:

Tn

PGI Fortran Reference Guide 79

Input and Output

The TL form specifies the relative position to the left of the data to be read or written, and
specifies that the nth character to the |eft of the current position is to be written to or from the
record. If the current position is less than or equal to n, the transmission will begin at position one
of the record.

TLn

The TR form specifies the relative position to the right of the data to be read or written, and
specifies that the nth character to the right of the current position is to be written to or from the
record.

TRn

The X control specifies a number of characters to skip forward, and that the next character to be
written to or from is n characters forward from the current position.
nX

The following example uses the X format specifier:

NPAGE = 19
WRITE (6, 90) NPAGE
90 FORMAT ('l1PAGE NUMBER ,I2, 16X, 'SALES REPORT, Cont.')

produces:
PAGE NUMBER 19 SALES REPORT, Cont.

The following example shows use of the T format specifier:

PRINT 25
25 FORMAT (T41,'COLUMN 2',T21, 'COLUMN 1')

produces:
COLUMN 1 COLUMN 2

5.5.2.21. Z Format Control Hexadecimal Values

The O and Z field descriptors transfer octal or hexadecimal values and can be used with any
integer datatype. They have the form:

Ow[.m] and Zw/[.m]
where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters
only. An al-blank field is treated as a value of zero. If the value of the external field exceeds the
range of the corresponding list e ement, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively,
of the corresponding 1/0 list element, right-justified, to an external field that isw characterslong.

» If the value to be transmitted does not fill the field, leading spaces are inserted.
» If thevalueistoo large for the field, the entire field is filled with asterisks.

» If mispresent, the external field consists of at least m digits, and is zero-filled on the left if
necessary.
» If miszero, and the internal representation is zero, the external field is blank-filled.

5.5.2.22. Slash Format Control / - End of Record
The dlash (/) control indicates the end of data transfer on the current record.

PGI Fortran Reference Guide 80

Input and Output

On input from afile connected for sequentia access, the rest of the current record is skipped and
thefile positioned at the start of the next record.

On output a new record is created which becomes the last and current record.

» For an internal file connected for direct access, the record is filled with blank characters.
» For adirect accessfile, the record number isincreased by one and the file is positioned at the
start of the record.

n Multiple slashes are permitted, thus multiple records are skipped.

9.5.2.23. The : Format Specifier — Format Termination

The () control terminates format control if there are no more items in the input/output list. It has
no effect if there are any items left in the list.

5.5.2.24. $ Format Control

The $ field descriptor alows the programmer to control carriage control conventions on output. It
isignored on input. For example, on terminal output, it can be used for prompting.

The form of the $ field descriptor is:
$

5.5.3. Variable Format Expressions

Variable format expressions, <expr>, are supported in pgf77 extension only. They provide a
means for substituting runtime expressions for the field width, other parameters for the field and
edit descriptorsin aFORMAT statement (except for the H field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are
encountered in the scan of aformat. If the value of a variable used in the expression changes
during the execution of the 1/O statement, the new value is used the next time the format item
containing the expression is processed.

5.6. Non-advancing Input and Output

Non-advancing input/output is character-oriented and applies to sequential access formatted
externa files. Thefile position is after the last character read or written and not automatically
advanced to the next record.

For non-advancing input/output, use the ADVANCE=NO' specifier. Two other specifiers apply
to non-advancing 10: EOR applies when end of record is detected and SIZE returns the number
of characters read.

PGI Fortran Reference Guide 81

Input and Output

5.7. List-directed formatting

List-directed formatting is an abbreviated form of input/output that does not require the use of a
format specification. The type of the data determines how avalue is read/written. On output, it is
not always accurate enough for certain ranges of values. The charactersin alist-directed record
constitute a sequence of values which cannot contain embedded blanks except those permitted
within a character string.

To use list-directed input/output formatting, specify a* for the list of format requirements, as
illustrated in the following example that uses list-directed output:
READ(1, *) VAL1l, VAL2

5.7.1. List-directed input

The form of the value being input must be acceptable for the type of item in the iolist. Blanks
must not be used as zeros nor be embedded in constants except in a character constant or within a
type complex form contained in parentheses.

Table 19 List Directed Input Values

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no fractional part unless a decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses as shown: (real part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A character constant can be continued on as
many records as required. Blanks, slashes and commas can be used.

A null value has no effect on the definition status of the corresponding iolist item. A null value
cannot represent just one part of a complex constant but may represent the entire complex
constant. A slash encountered as a value separator stops the execution of that input statement after
the assignment of the previous value. If there are further itemsin thelist, they are treated asiif
they are null values.

Commas may be used to separate the input values. If there are consecutive commas, or if the first
non-blank character of arecord isacomma, the input value isanull value. Input values may also
be repeated.

In the following example of list-directed formatting, assume that A and K are defined as follows
and all other variables are undefined.

A= -1.5

K= 125

Suppose that you have an input file the contains the following record, where the / terminates the
input and consecutive commas indicate anull:

10,-14,25.2,-76,313,,29/

PGI Fortran Reference Guide 82

Input and Output

Further suppose that you use the following statement to read in the list from the input file:
READ * I, J, X, Y, Z, A, C, K

The variables are assigned the following values by the list-directed input/output mechanism:
=10 J=-14 X=25.2 Y=-76.0
Z=313.0 A=-15 C=29 K=125

In the example the value for A does not change because the input record is null.Input is

terminated with the/ so no input is read for K, so the program assumes null and K retainsits
previous value.

5.7.2. List-directed output

List directed input/output is an abbreviated form of formatted input/output that does not require
the use of aformat specification. Depending on the type of the dataitem or dataitemsin the
iolist, dataistransferred to or from the file, using a default, and not necessarily accurate format
specification. The data type of each item appearing in the iolist is formatted according to the rules
in the following table:

Table 20 Default List Directed Output Formatting

Data Type Default Formatting

BYTE 15
INTEGER*2 17
INTEGER*4 112
INTEGER*8 124
LOGICAL*1 15 (L2)
Note that this format is applied when the option —Munixlogical is selected when
compiling.
LOGICAL*2 L2
LOGICAL*4 L2
LOGICAL*8 L2
REAL*4 G15.7e2
REAL*8 G25.16e3
COMPLEX*8 (G15.7€2, G15.7¢2)
COMPLEX*16 (G25.16e3, G25.16€3)
CHAR *n An

The length of arecord is less than 80 characters; if the output of an item would cause the length to
exceed 80 characters, anew record is created.

The following rules and guidelines apply when using list-directed output:

» New records may begin as necessary.
» Logica output constantsare T for true and F for false.

PGI Fortran Reference Guide 83

Input and Output

» Complex constants are contained within parentheses with the real and imaginary parts
separated by a comma.

» Character constants are not delimited by apostrophes and have each interna apostrophe (if
any are present) represented externally by one apostrophe.

» Each output record begins with a blank character to provide carriage control when the record
is printed.

» A typelessvalue output with list-directed 1/0 is output in hexadecimal form by default. There
isno other octal or hexadecimal capability with list-directed 1/0O.

5.7.3. Commas in External Field

Use of the commain an external field eliminates the need to "count spaces' to have data match
format edit descriptors. The use of acommato terminate an input field and thus avoid padding
thefield isfully supported.

5.7.4. Character Encoding Format

Users can specify input/output encoding using the encoding= specifier onthe OPEN
statement. Further, the use of this specifier with the INQUIRE statement returns the encoding of
thefile:

UTF-8 specifiesthefileis connected for UTF-8 I/O or that the processor can detect this
format in some way.

UNKNOWN specifies the processor cannot detect the format.

A processor-dependent value indicates the file is in another known format, such as
UTF-16LE.

5.8. Namelist Groups

The NAMELIST statement allows for the definition of namelist groups. A namelist group allows
for aspecia type of formatted input/output, where datais transferred between a named group of
dataitems defined in aNAMELIST statement and one or more recordsin afile.

The general form of anamelist statement is:
NAMELIST /group-name/ namelist [[,] /group-name/ namelist]...
where:

group-name
is the name of the namelist group.

namelist
isthelist of variablesin the namelist group.

5.8.1. Namelist Input

Namelist input is accomplished using a READ statement by specifying a namelist group as the
input item. The following statement shows the format:

READ ([unit=] u, [NML=] namelist-group [,control-information])

One or more records are processed which define the input for itemsin the namelist group.

PGI Fortran Reference Guide 84

Input and Output

The records are logically viewed as follows:

Sgroup-name item=value [,item=value].... $ [END]

The following rules describe these input records:

The start or end delimiter ($) may be an ampersand (&).
The start delimiter must begin in column 2 of arecord.
The group-name beginsimmediately after the start delimiter.

The spaces or tabs may not appear within the group-name, within any item, or within any
constants.

» Thevalue may be constants as are allowed for list directed input, or they may be alist of
constants separated by commas (,). A list of itemsis used to assign consecutive valuesto
consecutive elements of an array.

» Spaces or tabs may precede the item, the = and the constants.
» Array items may be subscripted.
» Character items may have substrings.

5.8.2. Namelist Output

Namelist output is accomplished using a READ statement by specifying a namelist group as the
output item. The following statement shows the format:

WRITE ([unit=] u, [NML=] namelist-group [,control-information])

v v VY

v

The records output are logically viewed as follows:

Sgroup-name
item = value
$ [END]

The following rules describe these output records:

» Onerecord is output per value.

» Multiple values are separated by acomma(,).

» Values are formatted according to the rules of the list-directed write. Exception: character
items are delimited by an apostrophe (').

» An apostrophe () or aquote (") in the value is represented by two consecutive apostrophes or
quotes.

5.9. Recursive Input/Output

Recursive Input/Output allows you to execute an input/output statement while another input/
output statement is being execution. This capability is available under these conditions:

» Externa files, such asachild datatransfer statement invoking derived type input/output

» Internd files, such asinput/output to/from an internal file where that statement does not
modify any interna file other than its own.

5.10. Input and Output of IEEE Infinities and NaNs

In Fortran 2003, input and output of IEEE infinities and NaNs is specified.

PGI Fortran Reference Guide 85

Input and Output

All edit descriptors for reals treat these values in the same way; only the field width is required.

5.10.1. Output Format

Output for infinities and NaNs is right-justified within the output field. For list-directed output the
output field is the minimum size to hold the result. The format isthis:

For minus infinity

For plus infinity

For a Nan

5.10.2. Input Format

-Infinity
-Inf

Infinity
Inf
+Infinity
+Inf

NaN, optionally followed by non-blank characters in parenthesis

Input for infinities and NaNs is similar to the output except that case is not significant.

The format isthis:
For minus infinity

For plus infinity

For a Nan

PGI Fortran Reference Guide

-Infinity
-Inf

Infinity
Inf
+Infinity
+Inf

NaN, optionally followed by non-blank characters in parenthesis
When no non-blank character is present, the NaN is a quiet NaN.

86

Chapter 6.
FORTRAN INTRINSICS

Anintrinsic is afunction available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of theintrinsic function, it can better integrate it and optimize it for the situation.

This section liststhe FORTRAN 77 and Fortran 90/95 intrinsics and subroutines and Fortran
2003 intrinsic modules. The Fortran processor, rather than the user or athird party, providesthe
intrinsic functions and intrinsic modules.

For details on the standard intrinsics, refer to the Fortran language specifications readily available
on theinternet. The 0rigin columnin the tablesin this section provides the Fortran language
origin of the statement; for example, F95 indicates the statement is from Fortran 95.

6.1. Intrinsics Support

The tablesin this section contain the FORTRAN 77, Fortran 90/95 and Fortran 2003 intrinsics
that are supported. At the top of each reference pageisabrief description of the statement
followed by aheader that indicates the origin of the statement. The following list describes the
meaning of the origin abbreviations.

F77
FORTRAN 77 intrinsics that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

FO0/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from
itsoriginal FORTRAN 77 definition and is supported by the PGF95 and PGFORTRAN
compilers.

F2003
The statement is new for Fortran 2003.

The functionsin the following table are specific to Fortran 90/95 unless otherwise specified.

PGI Fortran Reference Guide 87

Fortran Intrinsics

6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines

Generic Num.
Name Purpose Args Argument Type Result Type
AND Performs a logical AND on 2 ANY type except CHAR or COMPLEX
corresponding bits of the arguments.
BIT_SIZE Return the number of bits (the precision) | 1 INTEGER INTEGER
of the integer argument.
BTEST Tests the binary value of a bit in 2 INTEGER, INTEGER LOGICAL
a specified position of an integer
argument.
IAND Perform a bit-by-bit logical AND on the 2 INTEGER, INTEGER (of same kind) INTEGER
arguments.
IBCLR Clears one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER
IBITS Extracts a sequence of bits. 3 INTEGER, INTEGER >=0, INTEGER
INTEGER >=0
IBSET Sets one bit to one. 2 INTEGER, INTEGER >=0 INTEGER
I[EOR Perform a bit-by-bit logical exclusive OR | 2 INTEGER, INTEGER (of same kind) INTEGER
on the arguments.
IOR Perform a bit-by-bit logical OR on the 2 INTEGER, INTEGER (of same kind) INTEGER
arguments.
ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER
ISHFTC Perform a circular shift of the rightmost | 2or3 | INTEGER, INTEGER INTEGER
bs. INTEGER, INTEGER, INTEGER
LSHIFT Perform a logical shift to the left. 2 INTEGER, INTEGER INTEGER
MVBITS Copies bit sequence 5 INTEGER(IN), INTEGER(IN), none
INTEGER(IN), INTEGER(INOUT),
INTEGER(IN)
NOT Perform a bit-by-bit logical complement | 2 INTEGER INTEGER
on the argument.
OR Performs a logical OR on each bit of the | 2 ANY type except CHAR or COMPLEX
arguments.
POPCNT Return the number of one bits. 1 INTEGER or bits INTEGER
(F2008)
POPPAR Return the bitwise parity. 1 INTEGER or bits INTEGER
(F2008)
RSHIFT Perform a logical shift to the right. 2 INTEGER, INTEGER INTEGER
SHIFT Perform a logical shift. 2 Any type except CHAR or COMPLEX,
INTEGER
XOR Performs a logical exclusive OR on each | 2 INTEGER, INTEGER INTEGER
bit of the arguments.
ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER
PGl Fortran Reference Guide 88

6.1.2. Elemental Character and Logical Functions

Fortran Intrinsics

Generic Num.
Name Purpose Args Argument Type Result Type
ACHAR Return character in specified ASCII | 1 INTEGER CHARACTER
collating position.
ADJUSTL Left adjust string 1 CHARACTER CHARACTER
ADJUSTR Right adjust string 1 CHARACTER CHARACTER
CHAR (f77) Return character with specified 1 LOGICAL*1 CHARACTER
ASCll value. INTEGER CHARACTER
IACHAR Return position of character in 1 CHARACTER INTEGER
ASCII collating sequence.
ICHAR Return position of character in the 1 CHARACTER INTEGER
character set's collating sequence.
INDEX Return starting position of substring | 2 CHARACTER, CHARACTER INTEGER
within first string 3 CHARACTER, CHARACTER, LOGICAL | INTEGER
LEN Returns the length of string 1 CHARACTER INTEGER
LEN_TRIM Returns the length of the supplied 1 CHARACTER INTEGER
string minus the number of trailing
blanks.
LGE Test the supplied strings to 2 CHARACTER, CHARACTER LOGICAL
determine if the first string is
lexically greater than or equal to the
second.
LGT Test the supplied strings to 2 CHARACTER, CHARACTER LOGICAL
determine if the first string is
lexically greater than the second.
LLE Test the supplied strings to 2 CHARACTER, CHARACTER LOGICAL
determine if the first string is
lexically less than or equal to the
second.
LLT Test the supplied strings to 2 CHARACTER, CHARACTER LOGICAL
determine if the first string is
lexically less than the second.
LOGICAL Logical conversion 1 LOGICAL LOGICAL
2 LOGICAL, INTEGER LOGICAL
SCAN Scan string for characters in set 2 CHARACTER, CHARACTER INTEGER
3 CHARACTER, CHARACTER, LOGICAL | INTEGER
VERIFY Determine if string contains all 2 CHARACTER, CHARACTER INTEGER
characters in set 3 CHARACTER, CHARACTER, LOGICAL

PGI Fortran Reference Guide

89

6.1.3. Fortran 90/95 Vector/Matrix Functions

Fortran Intrinsics

Num.
Generic Name Purpose Args Argument Type Result Type
DOT_PRODUCT Perform dot product on two vectors | 2 NONCHAR*K, NONCHAR*K NONCHAR*K
MATMUL Perform matrix multiply on two 2 NONCHAR*K, NONCHAR*K NONCHAR*K
matrices

6.1.4. Fortran 90/95 Array Reduction Functions

Generic
Name Purpose Argument Type Result Type
ALL Determine if all array values are true | 1 LOGICAL LOGICAL
2 LOGICAL, INTEGER LOGICAL
ANY Determine if any array value is true | 1 LOGICAL LOGICAL
2 LOGICAL, INTEGER LOGICAL
COUNT Count true values in array 1 LOGICAL INTEGER
2 LOGICAL, INTEGER INTEGER
MAXLOC Determine position of array element | 1 INTEGER INTEGER
with maximum value 2 INTEGER, LOGICAL
2 INTEGER, INTEGER
3 INTEGER, INTEGER, LOGICAL
1 REAL
2 REAL, LOGICAL
2 REAL, INTEGER
3 REAL, INTEGER, LOGICAL
MAXVAL Determine maximum value of array | 1 INTEGER INTEGER
elements 2 INTEGER, LOGICAL INTEGER
2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
MINLOC Determine position of array element | 1 INTEGER INTEGER
with minimum value 9 INTEGER, LOGICAL
2 INTEGER, INTEGER
3 INTEGER, INTEGER, LOGICAL
1 REAL

PGI Fortran Reference Guide

90

Fortran Intrinsics

Generic Num.
Name Purpose Args Argument Type Result Type
2 REAL, LOGICAL
2 REAL, INTEGER
3 REAL, INTEGER, LOGICAL
MINVAL Determine minimum value of array | 1 INTEGER INTEGER
elements 2 INTEGER, LOGICAL INTEGER
2 INTEGER, INTEGER INTEGER
3 INTEGER, INTEGER, LOGICAL INTEGER
1 REAL REAL
2 REAL, LOGICAL REAL
2 REAL, INTEGER REAL
3 REAL, INTEGER, LOGICAL REAL
PRODUCT Calculate the product of the 1 NUMERIC NUMERIC
elements of an array 9 NUMERIC, LOGICAL
2 NUMERIC, INTEGER
3 NUMERIC, INTEGER, LOGICAL
SUM Calculate the sum of the elements | 1 NUMERIC NUMERIC
of an array 2 NUMERIC, LOGICAL
2 NUMERIC, INTEGER
3 NUMERIC, INTEGER, LOGICAL
6.1.5. Fortran 90/95 String Construction Functions
Generic
Name Purpose Num. Args Argument Type Result Type
REPEAT Concatenate copies of a 2 CHARACTER, INTEGER CHARACTER
string
TRIM Remove trailing blanks from | 1 CHARACTER CHARACTER

a string

6.1.6. Fortran 90/95 Array Construction/Manipulation Functions

Generic Num.
Name Purpose Args Argument Type Result Type
CSHIFT Perform circular shift on array 2 ARRAY, INTEGER ARRAY

3 ARRAY, INTEGER, INTEGER ARRAY
EOSHIFT Perform end-off shift on array 2 ARRAY, INTEGER ARRAY

3 ARRAY, INTEGER, any ARRAY

3 ARRAY, INTEGER, INTEGER ARRAY

4 ARRAY, INTEGER, any, INTEGER ARRAY

PGI Fortran Reference Guide

Fortran Intrinsics

Generic Num.
Name Purpose Args Argument Type Result Type
MERGE Merge two arguments based on 3 any, any, LOGICAL any
logical mask The second argument must be of the
same type as the first argument.
PACK Pack array into rank-one array 2 ARRAY, LOGICAL ARRAY
3 ARRAY, LOGICAL, VECTOR
RESHAPE Change the shape of an array 2 ARRAY, INTEGER ARRAY
3 ARRAY, INTEGER, ARRAY
3 ARRAY, INTEGER, INTEGER
4 ARRAY, INTEGER, ARRAY, INTEGER
SPREAD Replicates an array by adding a 3 any, INTEGER, INTEGER ARRAY
dimension
TRANSPOSE Transpose an array of rank two 1 ARRAY ARRAY
UNPACK Unpack a rank-one array into an 3 VECTOR, LOGICAL, ARRAY ARRAY
array of multiple dimensions

6.1.7. Fortran 90/95 General Inquiry Functions

Number of
Generic Name Purpose Args Argument Type Result Type
ASSOCIATED Determine association status 12 POINTER, POINTER,..., POINTER, | LOGICAL
TARGET LOGICAL
KIND Determine argument's kind 1 any intrinsic type INTEGER
PRESENT Determine presence of optional | 1 any LOGICAL
argument

6.1.8. Fortran 90/95 Numeric Inquiry Functions

Number of

Generic Name Purpose Args Argument Type Result Type

DIGITS Determine number of 1 INTEGER INTEGER
significant digits 1 REAL

EPSILON Smallest representable 1 REAL REAL
number

HUGE Largest representable 1 INTEGER INTEGER
number 1 REAL REAL

MAXEXPONENT Value of maximum 1 REAL INTEGER
exponent

MINEXPONENT Value of minimum 1 REAL INTEGER
exponent

PRECISION Decimal precision 1 REAL INTEGER

PGI Fortran Reference Guide 92

Fortran Intrinsics

Number of
Generic Name Purpose Args Argument Type Result Type
1 COMPLEX INTEGER
RADIX Base of model 1 INTEGER INTEGER
1 REAL INTEGER
RANGE Decimal exponentrange | 1 INTEGER INTEGER
1 REAL INTEGER
1 COMPLEX INTEGER
SELECTED_INT_KIND Kind type titlemeter in 1 INTEGER INTEGER
range
SELECTED_REAL_KIND Kind type titlemeter in 1 INTEGER INTEGER
range 2 INTEGER, INTEGER INTEGER
TINY Smallest representable 1 REAL REAL
positive number

6.1.9. Fortran 90/95 Array Inquiry Functions

Number of
Generic Name Purpose Args Argument Type Result Type
ALLOCATED Determine if array is allocated 1 ARRAY LOGICAL
LBOUND Determine lower bounds 1 ARRAY INTEGER

2 ARRAY, INTEGER
SHAPE Determine shape 1 any INTEGER
SIZE Determine number of elements 1 ARRAY INTEGER

2 ARRAY, INTEGER
UBOUND Determine upper bounds 1 ARRAY INTEGER

2 ARRAY, INTEGER

6.1.10. Fortran 90/95 Subroutines

Number of
Generic Name Purpose Args Argument Type
CPU_TIME Returns processor time 1 REAL (OUT)
DATE_AND_TIME Returns date and time 4 (optional) DATE (CHARACTER, OUT)
TIME (CHARACTER, OUT)
ZONE (CHARACTER, OUT)
VALUES (INTEGER, OUT)
RANDOM_NUMBER Generate pseudo-random | 1 REAL (OUT)
numbers
RANDOM_SEED Set or query pseudo- 0
random number generator] SIZE (INTEGER, OUT)

PGI Fortran Reference Guide

93

Fortran Intrinsics

Number of
Generic Name Purpose Args Argument Type

1 PUT (INTEGER ARRAY, IN)

1 GET (INTEGER ARRAY, OUT)
SYSTEM_CLOCK Query real time clock 3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL, OUT)
COUNT_MAX (INTEGER, OUT)

6.1.11. Fortran 90/95 Transfer Functions

Number of
Generic Name Purpose Args Argument Type Result Type
TRANSFER Change type but maintain bit | 2 any, any any*
representation
3 any, any, INTEGER

*Must be of the same type as the second argument

6.1.12. Arithmetic Functions

Generic Num.
Name Purpose Args Argument Type Result Type
ABS Return absolute value of the 1 INTEGER INTEGER
supplied argument. REAL REAL
COMPLEX COMPLEX
ACOS Return the arccosine (in radians) of | 1 REAL REAL
the specified value
ACOSD Return the arccosine (in degrees) of | 1 REAL REAL
the specified value
AIMAG Return the value of the imaginary 1 COMPLEX REAL
part of a complex number.
AINT Truncate the supplied value to a 2 REAL, INTEGER REAL
whole number.
AND Performs a logical AND on 2 ANY type except CHAR or COMPLEX
corresponding bits of the arguments.
ANINT Return the nearest whole numberto | 2 REAL, INTEGER REAL
the supplied argument.
ASIN Return the arcsine (in radians) of the | 1 REAL REAL
specified value
ASIND Return the arcsine (in degrees) of 1 REAL REAL
the specified value
ATAN Return the arctangent (in radians) of | 1 REAL REAL
the specified value
ATAN2 Return the arctangent (in radians) of | 2 REAL, REAL REAL
the specified pair of values.

PGI Fortran Reference Guide 94

Fortran Intrinsics

Generic Num.
Name Purpose Args Argument Type Result Type
ATAN2D Return the arctangent (in degrees) | 1 REAL, REAL REAL
of the specified pair of values
ATAND Return the arctangent (in degrees) | 1 REAL REAL
of the specified value
CEILING Return the least integer greater 2 REAL, KIND INTEGER
than or equal to the supplied real
argument.
CMPLX Convert the supplied argument or 2 INTEGER, REAL, or COMPLEX; COMPLEX
arguments to complex type. 3 INTEGER, REAL, or COMPLEX;
INTEGER, REAL, or COMPLEX;
INTEGER or REAL
KIND
COMPL Performs a logical complement on 1 ANY, except CHAR or COMPLEX
the argument.
COoS Return the cosine (in radians) of the | 1 REAL REAL
specified value COMPLEX
COSD Return the cosine (in degrees) of the | 1 REAL REAL
specified value COMPLEX
COSH Return the hyperbolic cosine of the | 1 REAL REAL
specified value
DBLE Convert to double precision real. INTEGER, REAL, or COMPLEX REAL
DCMPLX Convert the supplied argument or 1 INTEGER, REAL, or COMPLEX DOUBLE
arguments to double complex type. 9 INTEGER, REAL COMPLEX
DPROD Double precision real product. 2 REAL, REAL REAL
(double
precision)
EQV Performs a logical exclusive NOR 2 ANY except CHAR or COMPLEX
on the arguments.
EXP Exponential function. 1 REAL REAL
COMPLEX COMPLEX
EXPONENT Return the exponent part of a real 1 REAL INTEGER
number.
FLOOR Return the greatest integer less 1 REAL REAL
than or equal to the supplied real 9 REAL, KIND KIND
argument.
FRACTION Return the fractional part of a real 1 REAL INTEGER
number.
[INT Converts a value to a short integer 1 INTEGER, REAL, or COMPLEX INTEGER

type.

PGI Fortran Reference Guide

95

Fortran Intrinsics

Generic Num.
Name Purpose Args Argument Type Result Type
ININT Returns the nearest short integerto | 1 REAL INTEGER
the real argument.
INT Converts a value to integer type. 1 INTEGER, REAL, or COMPLEX INTEGER
2 INTEGER, REAL, or COMPLEX;
KIND
INT8 Converts a real value to a long 1 REAL INTEGER
integer type.
IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER
JINT Converts a value to an integer type. | 1 INTEGER, REAL, or COMPLEX INTEGER
JNINT Returns the nearest integer to the 1 REAL INTEGER
real argument.
KNINT Returns the nearest integer to the 1 REAL INTEGER (long)
real argument.
LOG Returns the natural logarithm. 1 REAL or COMPLEX REAL
LOG10 Returns the common logarithm. 1 REAL REAL
MAX Return the maximum value of the 20r INTEGER or REAL Same as
supplied arguments. more (all of same kind) Argument Type
MIN Return the minimum value of the 2o0r INTEGER or REAL Same as
supplied arguments. more (all of same kind) Argument Type
MOD Find the remainder. 20r INTEGER or REAL, Same as
more INTEGER or REAL Argument Type
(all of same kind)
MODULO Return the modulo value of the 2o0r INTEGER or REAL, Same as
arguments. more INTEGER or REAL Argument Type
(all of same kind)
NEAREST Returns the nearest different 2 REAL, non-zero REAL REAL
machine representable number in a
given direction.
NEQV Performs a logical exclusive ORon | 2 ANY except CHAR or COMPLEX
the arguments.
NINT Converts a value to integer type. 1 REAL INTEGER
2 REAL, KIND
REAL Convert the argument to real. 1 IINTEGER, REAL, or COMPLEX REAL
2 INTEGER, REAL, or COMPLEX;
KIND
RRSPACING | Return the reciprocal of the relative | 1 REAL REAL

spacing of model numbers near the
argument value.

PGI Fortran Reference Guide

96

Fortran Intrinsics

Generic Num.

Name Purpose Args Argument Type Result Type

SET_EXPONENTReturns the model number whose 2 REAL, INTEGER REAL
fractional part is the fractional part of
the model representation of the first
argument and whose exponent part
is the second argument.

SIGN Return the absolute value of A times | 2 INTEGER or REAL, Same as
the sign of B. INTEGER or REAL Argument

(of same kind)

SIN Return the sine (in radians) of the 1 REAL REAL
specified value COMPLEX

SIND Return the sine (in degrees) of the 1 REAL REAL
specified value COMPLEX

SINH Return the hyperbolic sine of the 1 REAL REAL
specified value

SPACING Return the relative spacing of model | 1 REAL REAL
numbers near the argument value.

SQRT Return the square root of the 1 REAL REAL
argument. COMPLEX COMPLEX

TAN Return the tangent (in radians) of 1 REAL REAL
the specified value

TAND Return the tangent (in degrees) of 1 REAL REAL
the specified value

TANH Return the hyperbolic tangent of the | 1 REAL REAL
specified value

6.1.13. Fortran 2003 and 2008 Functions

Generic Name

Purpose

COMMAND_
ARGUMENT_COUNT

Returns a scalar of type default
integer that is equal to the
number of arguments passed
on the command line when

the containing program was
invoked. If there were no
command arguments passed,
the result is 0.

Num.
Args

Argument Type

Result Type
INTEGER

EXTENDS_TYPE_OF

Determines whether the
dynamic type of A is an
extension type of the dynamic
type of B.

2 Objects of extensible type

LOGICAL
SCALAR

GET_COMMAND_
ARGUMENT

PGI Fortran Reference Guide

Returns the specified command
line argument of the command
that invoked the program.

1to4 INTEGER

plus optionally:

A command
argument

97

Fortran Intrinsics

Num.
Generic Name Purpose Args Argument Type Result Type
CHAR, INTEGER, INTEGER

GET_COMMAND Returns the entire command 0to3 CHAR, INTEGER, INTEGER A command line
line that was used to invoke the
program.

GET_ENVIRONMENT Returns the value of the 1t05 CHAR, CHAR, INTEGER,

_VARIABLE specified environment variable. INTEGER, LOGICAL

IS_IOSTAT_END Test whether a variable has the | 1 INTEGER LOGICAL
value of the I/O status: ‘end of
file'.

IS_IOSTAT_EOR Test whether a variable has the | 1 INTEGER LOGICAL
value of the I/O status: ‘end of
record’.

LEADZ (F2008) Counts the number of leading 1 INTEGER or bits INTEGER
zero bits.

MOVE_ALLOC Moves an allocation from one 2 Any type and rank none
allocatable object to another.

NEW_LINE Return the newline character. 1 CHARACTER CHARACTER

SAME_TYPE_AS Determines whether the 2 Objects of extensible type LOGICAL
dynamic type of A is the same SCALAR
as the dynamic type of B.

SCALE Return the value X * bi where 2 REAL, INTEGER REAL

b is the base of the number
system in use for X.

6.1.14. Miscellaneous Functions

Generic Num.
Name Purpose Args Argument Type Result Type
LOC Return address of argument 1 NUMERIC INTEGER
NULL Assign disassociated status 0 POINTER
POINTER
1 POINTER

6.2. ACOSD

Return the arccosine (in degrees) of the specified value.

F77

Synopsis

ACOSD (X)

PGI Fortran Reference Guide

98

Arguments

The argument X must be area value.

Return Value

The real value representing the arccosine in degrees.

6.3. AND

Performs alogical AND on corresponding bits of the arguments.
F77 extension

Synopsis

AND (M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

Thereturn value istypeless.

6.4. ASIND

Return the arcsine (in degrees) of the specified value.

F77

Synopsis

ASIND (X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

The real value representing the arcsine in degrees.

PGI Fortran Reference Guide

Fortran Intrinsics

99

Fortran Intrinsics

6.5. ASSOCIATED

Determines the association status of the supplied argument or determines if the supplied pointer is
associated with the supplied target.

F90

Synopsis
ASSOCIATED (POINTER [, TARGET])

Arguments

The POINTER argument is a pointer of any type. The optional argument TARGET is a pointer or
atarget. If it isa pointer it must not be undefined.

Return Value

If TARGET is not supplied the function returns logical true if POINTER is associated with a
target and false otherwise.

If TARGET ispresent and is atarget, then the function returnstrue if POINTER is associated
with TARGET and false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and TARGET
are associated with the same target and fal se otherwise.

6.6. ATAN2D

Return the arctangent (in degrees) of the specified value.

F77

Synopsis

ATAN2D (Y, X)

Arguments

The arguments X and Y must be of typereal.

PGI Fortran Reference Guide 100

Fortran Intrinsics

Return Value

A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. Theresult is
the principal value of the nonzero complex number (X,Y).

6.7. ATAND

Return the arctangent (in degrees) of the specified value.

F77

Synopsis

ATAND (X)

Argument

The argument X must be of type real.

Return Value

The real value representing the arctangent in degrees.

6.8. COMPL

Performs alogical complement on the argument.

F77 extension

Synopsis

COMPL (M)

Arguments

The argument M may be of any type except for character and complex.

Return Value

Thereturn value istypeless.

PGI Fortran Reference Guide 101

6.9. CONJG

Return the conjugate of the supplied complex number.

F77

Synopsis

CONJG (Z)

Argument

The argument Z is a complex humber.

Return Value

A value of the same type and kind as the argument.

6.10. COSD

Return the cosine (in degrees) of the specified value.

F77

Synopsis

COSD (X)

Argument

The argument X must be of type real or complex.

Return Value

Fortran Intrinsics

A real value of the same kind as the argument. The return value for areal argument isin degrees,

or if complex, thereal partisavaluein degrees.

6.11. DIM

Returns the difference X-Y if the value is positive, otherwise it returns 0.

PGI Fortran Reference Guide

102

Fortran Intrinsics

F77
Synopsis
DIM (X, Y)

Arguments

X must be of type integer or real. Y must be of the same type and kind as X.

Return Value

Theresult isthe same type and kind as X with the value X-Y if X>Y, otherwise zero.

6.12. ININT

Returns the nearest short integer to the real argument.
F77 extension

Synopsis

ININT (A)

Arguments

The argument A must be areal.

Return Value
A short integer with value (A +.5* SIGN(A)).

6.13. INT8

Convertsareal value to along integer type.

F77 extension

Synopsis

INT8 (A)

PGI Fortran Reference Guide 103

Arguments
The argument A is of typereal.

Return Value

The long integer value of the supplied argument.

6.14. IZEXT

Zero-extend the argument.

F77 extension

Synopsis

IZEXT (A)

Arguments

The argument A is of typelogical or integer.

Return Value

A zero-extended short integer of the argument.

6.15. JINT

Convertsavalue to an integer type.
F77 extension

Synopsis

JINT (A)

Arguments

The argument A is of typeinteger, real, or complex.

Return Value

The integer value of the supplied argument.

PGI Fortran Reference Guide

Fortran Intrinsics

104

Fortran Intrinsics

» For area number, if the absolute value of thereal islessthan 1, the return valueisO.
» If the absolute value is greater than 1, the result is the largest integer that does not exceed the

real value.

» If argument is a complex number, the return value is the result of applying the real

conversion to the real part of the complex number.

6.16. JNINT

Returns the nearest integer to the real argument.

F77 extension

Synopsis

JNINT (A)

Arguments

The argument A must be areal.

Return Value
Aninteger with value (A +.5* SIGN(A)).

6.17. KNINT

Returns the nearest integer to the real argument.

F77 extension

Synopsis

KNINT ()

Arguments

The argument A must be areal.

Return Value
A long integer with value (A + .5* SIGN(A)).

PGI Fortran Reference Guide

105

6.18. LEADZ

Counts the number of leading zero bits.

F2003

Synopsis

LEADZ (I)

Arguments

| is of type integer or hits.

Return Value
Theresult is one of the following:

» If dl of thebitsof | are zero: BIT SIZE (1).
» If at least one of the bitsof | isnot zero: BIT SIZE (1) - 1 - k.

k isthe position of the leftmost 1 bitin I.

Description

LEADZ isan elemental function that returns the number of leading zero bits.

Examples

The following example returns the value 2.
LEADZ (B’001101000")

The following example returns the value 31 if BIT SIZE (1) has the value 32.

LEADZ (1)

6.19. LSHIFT

Perform alogical shift to the | eft.

F77 extension

Synopsis

LSHIFT (I, SHIFT)

PGI Fortran Reference Guide

Fortran Intrinsics

106

Fortran Intrinsics

Arguments
| and SHIFT are integer values.

Return Value

A value of the same type and kind as the argument I. It is the value of the argument | logically
shifted left by SHIFT bits.

6.20. OR

Performs alogical OR on each bit of the arguments.

F77 extension

Synopsis

OR (M, N)

Arguments

The arguments M and N may be of any type except for character and complex.

Return Value

Thereturn value is typeless.

6.21. RSHIFT

Perform alogical shift to the right.
F77 extension

Synopsis

RSHIFT (I, SHIFT)

Arguments
| and SHIFT are integer values.

PGI Fortran Reference Guide 107

Fortran Intrinsics

Return Value

A value of the same type and kind as the argument 1. It is the value of the argument | logically
shifted right by SHIFT bits.

6.22. SHIFT

Perform alogical shift.

F77 extension

Synopsis

RSHIFT (I, SHIFT)

Arguments

The argument | may be of any type except character or complex. The argument SHIFT is of type
integer.

Return Value

Thereturn value istypeless. If SHIFT is positive, theresult is | logically shifted left by SHIFT
bits. If SHIFT is negative, theresult is| logically shifted right by SHIFT bits.

6.23. SIND

Return the value in degrees of the sine of the argument.

F77
Synopsis
SIND (X)

Argument

The argument X must be of type real or complex.

Return Value

A value that has the sametype as X and is expressed in degrees.

PGI Fortran Reference Guide 108

6.24. TAND

Return the tangent of the specified value.

F77

Synopsis

TAND (X)

Argument

The argument X must be of type real and have absolute value <= 1.

Return Value

A real value of the same KIND as the argument.

6.25. XOR

Performs alogical exclusive OR on each hit of the arguments.
F77 extension

Synopsis

XOR (M, N)

Arguments

The arguments M and N must be of integer type.

Return Value

An integer.

6.26. ZEXT

Zero-extend the argument.

F77 extension

PGI Fortran Reference Guide

Fortran Intrinsics

109

Fortran Intrinsics

Synopsis

ZEXT (A)

Arguments

The argument A is of typelogical or integer.

Return Value

An integer.

6.27. Intrinsic Modules

Like anintrinsic function, the Fortran processor provides the intrinsic module. It is possible for
aprogram to use an intrinsic module and a user-defined modul e of the same name, though they
cannot both be referenced from the same scope.

» To use auser-defined module rather than an intrinsic module, specify the keyword non-
intrinsic in the USE statement:
USE, non-intrinsic :: iso_ fortran env

» Tousean intrinsic module rather than a user-defined one, specify the keyword intrinsic in
the USE statement:

USE, intrinsic :: iso fortran env

If both a user-defined and intrinsic module of the same name are available and locatable by the compiler,
a USE statement without either of the keywords previously described accesses the user-defined module. If
the compiler cannot locate the user-defined module, it accessed the intrinsic module and does not issue a
warning.

6.27.1. Module IEEE_ARITHMETIC

The ieee arithmetic intrinsic module provides access to two derived types, named constants
of these types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module ieee exceptions, so
all the features of ieee exceptions are included. For information of this module, refer to Module
IEEE_EXCEPTIONS.

6.27.2. IEEE_ARITHMETIC Derived Types

The ieee arithmetic intrinsic module provides access to these two derived types:
ieee class_type andieee_round_type.
ieee class type

Identifies a class of floating point values.

PGI Fortran Reference Guide 110

Fortran Intrinsics

ieee round_type
I dentifies a particular round mode.

For both of these types, the following are true:

» The components are private.
» Theonly operations defined are == and /=.
» Thereturn valueis of type default logical.

If the operator is ==, for two values of one of the derived types, this operator returnstrue if
the values are the same; false, otherwise.

If the operator is /=, for two values of one of the derived types, this operator returns true if
the values are different; false, otherwise.

» Intrinsic assignment is available.

Table 21 provides a quick overview of the values that each derived type can take.

Table 21 [EEE_ARITHMETIC Derived Types

This derived type... Must have one of these values...

ieee_class_type ieee_signaling_nan
ieee_quiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_positive_zero
ieee_positive_denormal
ieee_positive_normal
ieee_positive_inf

ieee_other_value (Fortran 2003 only)

ieee_round_type ieee_nearest -
ieee_to_zero
ieee_up
ieee_down

ieee_other (for modes other than IEEE ones)

6.27.3. IEEE_ARITHMETIC Inquiry Functions

The ieee arithmetic intrinsic module supports a number of inquiry functions. Table 22
providesalist and brief description of what it meansif the inquiry function returns . true. Inall
cases, if the condition for returning . t rue . isnot met, the function returns . false..

PGI Fortran Reference Guide 111

Table 22 |EEE_ARITHMETIC Inquiry Functions

This inquiry function...

Returns .true. if ...

When optional arg. x is absent

Fortran Intrinsics

When optional arg. x is present

ieee_support_datatype([x])

The processor supports IEEE arithmetic for
all reals

The processor supports IEEE arithmetic for
all reals of the same kind type parameter as
the real argument x.

ieee_support_denormal([x])

The processor supports IEEE denomalized
numbers for all reals

The processor supports IEEE denomalized
numbers for reals of the same kind type
parameter as the real argument x.

ieee_support_divide([x])

The processor supports divide with the
accuracy specified by IEEE standard for all
reals

The processor supports divide with the
accuracy specified by IEEE standard for
reals of the same kind type parameter as
the real argument x.

ieee_support_inf([x])

The processor supports the IEEE infinity
facility for all reals

The processor supports the IEEE infinity
facility for reals of the same kind type
parameter as the real argument x.

ieee_support_nan([x])

The processor supports the IEEE Not-A-
Number facility for all reals

The processor supports the IEEE Not-A-
Number facility for reals of the same kind
type parameter as the real argument x.

ieee_support_rounding
(round_value[,x])

For a round_value of ieee_round_type,
the processor supports the rounding mode
numbers for all reals

For a round_value of ieee_round_type,
the processor supports the rounding mode
numbers for reals of the same kind type
parameter as the real argument x.

ieee_support_sqrt([x])

The processor implements the IEEE square
root for all reals

The processor implements the IEEE
square root for reals of the same kind type
parameter as the real argument x.

ieee_support_standard([x])

The processor supports all IEEE facilities for
all reals

The processor supports all IEEE facilities
for reals of the same kind type parameter as
the real argument x.

ieee_support_underflow_ control

()

(Fortran 2003 only) The processor supports
control of the underflow mode for all reals

(Fortran 2003 only) The processor supports
control of the underflow mode for reals of
the same kind type parameter as the real
argument x.

6.27.4. IEEE_ARITHMETIC Elemental Functions

The ieee arithmetic intrinsic module supports a number of elemental functions. Table 23
provides alist and brief description of the return value. In al casesinvolving areturn value of
true or false, if the condition for returning . t rue . isnot met, the subroutine returns . false..

Table 23

|IEEE_ARITHMETIC Elemental Functions

Does this...

This elemental function...

ieee_class(x) Returns the |EEE class of the real argument x.

ieee_copy_sign(x,y) Returns a real with the same type parameter as the real argument x, holding the value of x

with the sign of .

PGI Fortran Reference Guide 112

Fortran Intrinsics

This elemental function... Does this...

ieee_is_finite(x) Returns . true. if ieee_class (x) has one of these values:
ieee negative normal

ieee_negative_ denormal

ieee negative zero

ieee_positive_ zero

ieee positive denormal

ieee_positive normal

ieee_is_nan(x) Returns . true. if the value of x is an IEEE NaN.

ieee_is_negative(x) Returns . true. if ieee _class (x) asone of these values:
ieee_negative normal

ieee negative denormal

ieee_negative_zero

ieee negative inf

ieee_is_normal(x) Returns . true. if ieee class (x) has one of these values:
ieee_negative normal

ieee negative zero

ieee_positive_ zero

ieee positive normal

ieee_is_logb(x) Returns a real with the same type parameter as the argument x.

If x is neither zero, infinity, nor NaN, the value of the result is the unbiased
exponent of X exponent (x) -1.

Ifxis0and ieee support inf (x) is true, the result is -infinity.

Ifxis0and ieee support inf (x) isnottrue, the resultis ~huge (x).

ieee_next_after(x,y) Returns a real with the same type parameter as the argument x.
If x ==y, the result is x.

Otherwise, the result is the neighbor of x in the direction of y.

ieee_rem(x,y) Returns a real with the same type parameter of whichever argument has the greater precision.

ieee_rint(x,y) Returns a real with the same type parameter as x, and whose value is that of x rounded to an
integer value according to the current rounding mode.

ieee_scalb(x,i) Returns a real with the same type parameter as x, and whose value is 2'x.
If 2'x is too large, ieee overflow signals.

If 2'x is too small, ieee underflow signals.

ieee_unordered(x,y) Returns . true. if x or y or both are a NaN.

ieee_value(x,class) Returns a real with the same type parameter as x and a value specified by c1ass.

PGI Fortran Reference Guide 113

Fortran Intrinsics

6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines

Theieee arithmetic intrinsic module supports anumber of elemental functions. Table 24
provides alist and brief description of what it means if the inquiry function returns .true. In all
cases, if the condition for returning .true. is not met, the function returns .false.

In these subroutines, the argument round value isascaar of type ieee round type and
the argument gradual isascaar of type default 1ogical.

Table 24 |EEE_ARITHMETIC Non-Elemental Subroutines

This non-elemental subroutine... Does this...

ieee_get_rounding_mode(round_value) Returns the floating-point rounding mode.

If one of the IEEE modes is in operation, the value is one of these:
ieee nearest
ieee to_zero
ieee up

ieee down

Otherwise, the value is ieee positive normal

ieee_get_underflow_mode(gradual) Returns . t rue. if gradual underflow is in effect-point rounding
mode.Otherwise, it returns . false.

ieee_set_rounding_mode(round_value) Specifies the rounding mode to be set.

ieee_set_underflow_mode(gradual) Sets gradual underflow in effect if the value is . true. ; otherwise,

gradual underflow ceases to be in effect.

6.27.6. IEEE_ARITHMETIC Transformational Function

Theieee arithmetic intrinsic modulesupports ieee selected real kind([p]
[, r]) atransformational function that is permitted in an initialization expression.

Thisresult of this function is the kind value of areal x for which
ieee support datatype (x) iStrue.

6.28. Module IEEE_EXCEPTIONS

The ieee exceptions intrinsic module provides support for overflow and divide-by-zero
flags in the scoping unit for all available kinds of reals and complex data. It also determines the
level of support for other exceptions.

This module contains two derived types, named constants of these types, and a collection of
generic procedures.

6.28.1. IEEE_EXCEPTIONS Derived Types

» ieee flag_type - Identifies a particular exception flag.
» ieee status type - Savesthe current floating-point status.

PGI Fortran Reference Guide 114

Fortran Intrinsics

For both of these types, the following are true:

» The components are private.
» No operations are defined for these types.
» Only intrinsic assignment is available.

Table 25 provides a quick overview of the values that each derived type can take.

Table 25 |EEE_EXCEPTIONS Derived Types

This derived type... Must have one of these values...

ieee_flag_type For named constants:

ieee overflow

ieee underflow

ieee divide by zero
ieee inexact

ieee invalid

ieee_status_type Includes the values of all supported flags as well as current rounding mode.

6.28.2. [IEEE_EXCEPTIONS Inquiry Functions

The ieee exceptions intrinsic module supports two inquiry functions, both of which are
pure:

» ieee support_flag(flag [,x])
» ieee support_halting(flag)

For both functions, the argument flag must be of type type (ieee flag type).

Table 26 provides alist and brief description of what it means if the inquiry function returns
.true.l nall cases, if the condition for returning .true. is not met, the function returns
.false..

Table 26 IEEE_EXCEPTIONS Inquiry Functions

This inquiry function... Returns .true. if ...

ieee_support_flag(flag [,x]) The processor supports the exception £1ag for all reals. If the optional argument x is
present, then it returns . t rue . if the processor supports the exception £1ag for all
reals of the same kind type parameter as the real argument x.

ieee_support_halting(flag) The processor supports the ability to change the mode by ca11
ieee set halting(flag).

6.28.3. IEEE_EXCEPTIONS Subroutines Functions

The ieee exceptions intrinsic module supports elemental and non-elemental subroutines.

In al these subroutines;

» flagisof typetype (ieee flag type)

PGI Fortran Reference Guide 115

Fortran Intrinsics

» halting isof type default logical
» flag value isof typedefault logical
» status valueifistypetype (ieee status type).

Elemental Subroutines

Table 27 provides alist and brief description of what it means if the inquiry function returns
.true. Inadl cases, if the condition for returning .true. is not met, the function returns
.false..

Table 27 |EEE_EXCEPTIONS Elemental Subroutines

This elemental subroutine... Does this...

ieee_get_flag(flag, flag_value) If the value of flag is ieee_invalid, ieee overflow,
ieee divide by zero,ieee underflow,Or ieee inexact and the

corresponding exception flag is signaling, f1ag_valueis true.

ieee_get_halting_mode(flag, halting) | The value flag must have one of the values: ieee invalid, ieee overflow,
ieee divide by zero,ieee underflow,Of ieee inexact.Ifthe

exception specified causes halting, haltingis true.

Non-Elemental Subroutines

The ieee exceptions intrinsic module supports non-elemental subroutines for flags and
halting mode as well as for floating-point status.

Table 28 provides alist and brief description of these subroutines.

Table 28 |EEE_EXCEPTIONS Elemental Subroutines

This non-elemental subroutine... Does this...

ieee_set_flag(flag, flag_value) If the value retumed by ieee support haltingis true, each £1lag specified is
set to be signalling if the corresponding f1ag_value is true and is set to be quiet
ifitis false.

ieee_set_halting_mode(flag, halting) Each exception specified by £1ag causes halting if the corresponding value of
haltingis true. If value is false, it does not cause halting.

ieee_get_status(status_value) Returns the floating-point status, including all the exception flags, the rounding mode,
and the halting mode.

ieee_set_status(status_value) Resets the floating-point status, including all the exception flags, the rounding mode,

and the halting mode to the previous invocation of ieee get status.

PGI Fortran Reference Guide 116

Fortran Intrinsics

6.29. [EEE_FEATURES

The ieee features intrinsic module supports specification of essential I1EEE features. It
provides access to one derived type and a collection of named constants of this type, each of
which corresponds to an |EEE feature. The named constants affect the manner in which codeis
compiled in the scoping units.

6.29.1. IEEE_FEATURES Derived Type

The ieee features intrinsic module provides access to the derived type:
ieee features type. Thistypeidentifiesaparticular feature. It may only take values that
are those of named constants defined in the module.

While permitted, there is no purpose in declaring data of type ieee features type.The
components of thistype are private, no operation is defined for it, and only intrinsic assignment is
availablefor it.

6.29.2. IEEE_FEATURES Named Constants

Table 29 lists a complete set of named constants available for the ieee features intrinsic
module and provides the effect of their accessibility:

Table 29 |EEE_FEATURES Named Constants

This named constant...

Requires the scoping unit to support ...

ieee_datatype

ieee ARITHMETIC for atleast one kind of real.

ieee_denormal

Denormalized numbers for at least one kind of real.

ieee_divide

|IEEE divide for at least one kind of real.

ieee_halting

Control of halting for each flag supported.

ieee_inexact_flag

Inexact exception for at least one kind of real.

ieee_inf

Infinity and -infinity for at least one kind of real.

ieee_invalid_flag

Invalid exception for at least one kind of real.

ieee_nan

NaNs for at least one kind of real.

ieee_rounding

Control of the rounding mode for all four rounding modes on at least one kind of real.

ieee_sqrt

|IEEE square root for at least one kind of real.

ieee_underflow_flag

Underflow exception for at least one kind of real.

Some features may slow execution on some processorts. Therefore, if ieee exceptions is accessed
but ieee features is not, the processor can support a selected subset of the features.

PGI Fortran Reference Guide

Fortran Intrinsics

6.30. Module iso_c_binding

Theiso ¢ binding intrinsic module provides access to named constants of type default
integer that represent kind type parameters of data representations compatible with C types.

» A positive value indicates that the Fortran type and kind type parameter interoperate with the
corresponding C type.

» A negative value indicates alack of support.

6.31. Module iso_fortran_env

Theiso fortran env intrinsic module providesinformation about the Fortran environment
through named constants. The following table provides the constants and a brief description of
the information provided. Each named constant is a default integer scalar.

Table 30 iso_fortran_env Named Constants

This Named Constant... Provides this Fortran environment information...

character_storage_size The size, in bits, of a character storage unit

error_unit The unit number for a preconnected output unit suitable for reporting errors.

file_storage_size The size, in bits, of a file storage unit.

input_unit The unit number for the preconnected external unit used for input.

iostat_end The value returned by IOSTAT= that indicates an end-of-file condition occurs during
execution of a READ statement.

iostat_eor The value returned by IOSTAT= that indicates an end-of-record condition occurs during
execution of a READ statement.

numeric_storage_size The size, in bits, of a numeric storage unit.

output_unit The unit number for the preconnected external unit used for output.

These special unit numbers may be negative, though they are never -1, since -1 isreserved for
another purpose.

The error-unit may be the same as output-unit.

PGI Fortran Reference Guide 118

Chapter 7.
OBJECT ORIENTED PROGRAMMING

Object-oriented programming, OOP, describes an approach to programming where a program
isviewed as a collection of interacting, but mostly independent software components. These
software components, known as objects, are typically implemented as an entity that encapsul ates
both data and procedures. Object-oriented programming focuses on the data structures; that is,
focus is on the objects on which the program operates rather than the procedures. In languages
designed to be object-oriented, there are classes, containing both data and modules, that operate
on that data. In Fortran, modules may contain data, but there is no notion of separate instances of
amodule. However, in Fortran 2003, there are type extensions and type-bound procedures that
support an object-oriented approach. To have ‘class-like' behavior, you can combine a module,
which contains the methods that operate on the ‘class’, with a derived type containing the data.

PGI Fortran compilers contain procedures, functions, and attributes from Fortran 2003 that
facilitate an object-oriented approach to programming. Some of the object-oriented features
include classes, type extensions, polymorphic entities, typed allocation, sourced allocation,
inheritance association, as well as object-oriented intrinsics. This section provides a high-level
overview of these features.

Tip
For specific information on how to use these extensions and for examples, refer to one of the many reports
and texts available, such as these:

> Object-Oriented Programming in Fortran 2003, PGI Insider, February 2011

> The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures by Adams, J.C.,
Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T

» Fortran 95/2003 explained by Metcalf,m., Reid, J., and Cohen, M.

7.1. Inheritance

Inheritance allows code reusability through an implied inheritance link in which leaf objects,
known as children, reuse components from their parent and ancestor objects.

For example, the following code shows how a sgquare type inherits components from rectangle
which inherits components from shape.

PGI Fortran Reference Guide 119

Object Oriented Programming

Inheritance of Shape Components

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
end type shape
type, EXTENDS (shape) :: rectangle
integer :: length
integer :: width
end type rectangle
type, EXTENDS (rectangle) :: square

end type square

The programmer indicates the inheritance relationship with the EXTENDS keyword followed

by the name of the parent type in parentheses. A type that EXTENDS another type is known as a
type extension (e.g., rectangle is atype extension of shape, square is atype extension of rectangle
and shape). A type without any EXTENDS keyword is known as a base type (e.g., shapeisabase

type).

A type extension inherits all of the components of its parent (and ancestor) types. A type
extension can also define additional components as well. For example, rectangle has alength

and width component in addition to the color, filled, X, and y components that were inherited
from shape. The sguare type, on the other hand, inherits al of the components from rectangle and
shape, but does not define any components specific to square objects. The following example
shows how to access the color component of square:

type (square) :: sg ! declare sg as a square object
sg%color ! access color component for sq
sg%rectangle%color ! access color component for sg

!

sg%reactangle%$shape%color access color component for sg

There are three different ways for accessing the color component for sg. A type extension
includes an implicit component with the same name and type as its parent type. This approach
is handy when the programmer wants to operate on components specific to a parent type. It also
helps illustrate an important relationship between the child and parent types.

We often say the child and parent types have a"is a' relationship. In the shape example, "a square
isarectangle’, "arectangle is a shape", "asquareis a shape", and "a shape is a base type". This
relationship also appliesto the typeitself: "ashapeis a shape', "arectangleisa rectangle”, and "a

square isa square’”.

The"isa" relationship does not imply the converse. A rectangle is a shape, but a shapeisnot a
rectangle since there are components found in rectangle that are not found in shape. Furthermore,
arectangle is not a square because square has a component not found in rectangle; the implicit
rectangle parent component.

7.2. Polymorphic Entities

Polymorphism permits code reusability in the Object-Oriented Programming paradigm because
the programmer can write procedures and data structures that can operate on a variety of data

PGI Fortran Reference Guide 120

Object Oriented Programming

types and values. The programmer does not have to reinvent the wheel for every datatype a
procedure or a data structure will encounter.

The"isa" relationship might help you visualize how polymorphic variables interact with
type extensions. A polymorphic variable is a variable whose data types may vary at run time.
Polymorphic entities must be a pointer or allocatable variable or adummy data object.

There are two basic types of polymorphism:

procedur e polymor phism
Procedure polymorphism deals with procedures that can operate on a variety of datatypes and
values.

data polymor phism
Data polymorphism deals with program variables that can store and operate on a variety of
datatypes and values. Y ou see later that the dynamic type of these variables changes when we
assign atarget to a polymorphic pointer variable or when we use typed or sourced allocation
with a polymorphic allocatable variable.

To declare a polymorphic variable, use the c1ass keyword.
Polymorphic Variables

In this example, the sh object can be a pointer to a shape or any of its type extensions. So, it can
be a pointer to a shape, arectangle, a square, or any future type extension of shape. Aslong as the
type of the pointer target "isa' shape, sh can point to it.

class (shape), pointer :: sh

This second example shows how to declare a pointer p that may point to any object whose typeis
in the class of types or extensions of the type type (point)

type point
real :: x,Vy
end type point
class (point), pointer :: p

7.2.1. Unlimited Polymorphic Entities

Unlimited polymorphic entities allow the user to have a pointer that may refer to objects of any
type, including non-extensible or intrinsic types. Y ou can use unlimited polymorphic objects
to create heterogeneous data structures, such as alist object that links together a variety of data
types. Further, you can use abstract typesto dictate requirements for type extensions and how
they interact with polymorphic variables.

Unlimited polymorphic entities can only be used as an actual argument, as the pointer or target in a pointer
assignment, or as the selector in a SELECT TYPE statement.

To declare an unlimited polymorphic variable, use the * asthe c1ass specifier. The following
example shows how to declare up as an unlimited polymorphic pointer and associate it with a
real target.

class (*), pointer :: up
real, target :: x,

up => x

PGI Fortran Reference Guide 121

Object Oriented Programming

7.2.2. Typed Allocation for Polymorphic Variables

The ALLOCATE statement allows the user to specify the type of polymorphic variables. It
allocates storage for each allocatable array, pointer object, or pointer-based variable that appears
in the statements; declares storage for deferred-shape arrays.

7.2.3. Sourced Allocation for Polymorphic Variables

Sourced allocation defines the type, type parameters, and value of avariable by using the type,
type parameters and value of another variable or expression. This type of allocation produces a
‘clone’ of the source expression. To do this, use the ALLOCATE statement, specifying the source
of the values through the source= clause of that statement.

7.2.4. Procedure Polymorphism

Procedure polymorphism occurs when a procedure, such as afunction or a subroutine, can take a
variety of datatypes as arguments. In F2003, this procedure is one that has one or more dummy
arguments declared with the CLASS keyword.

In the following example, the setColor subroutine takes two arguments, sh and color. The
sh dummy argument is polymorphic, based on the usage of class (shape).

subroutine setColor (sh, color)

class (shape) :: sh
integer :: color
sh%color = color

end subroutine setColor

The setColor subroutine takes two arguments, sh and color. The sh dummy argument is
polymorphic, based on the usage of class (shape) .

The subroutine can operate on objects that satisfy the "isa" shape relationship. So, setColor

can be called with a shape, rectangle, square, or any future type extension of shape. However,

by default, only those components found in the declared type of an object are accessible. For
example, shape is the declared type of sh. Therefore, you can only access the shape components,
by default, for sh in setColor (i.e., sh%color, sh%filled, sh%x, sh%y).

If aprogrammer needs to access the components of the dynamic type of an object, the F2003
SELECT TY PE construct is useful. The following example illustrates how a SELECT TYPE
construct can access the components of a dynamic type of an object.

SELECT TYPE construct

subroutine initialize(sh, color, filled, x, y, length, width)
! initialize shape objects

class (shape) :: sh
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length
integer, optional :: width

sh%color = color
sh%filled = filled
sh%x = x

sh%y = vy

PGI Fortran Reference Guide 122

Object Oriented Programming

select type (sh)
type is (shape)
! no further initialization required
class is (rectangle)
! rectangle or square specific initializations

if (present (length)) then
sh%length = length

else
sh%length = 0

endif

if (present (width)) then
sh%width = width
else
sh$width = 0
endif
class default
! give error for unexpected/unsupported type
stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize
The preceding example illustrates an initialization procedure for our shape example. It takes
one shape argument, sh, and aset of initial values for the components of sh. Two optional
arguments, length and width, are specified when we want to initialize a rectangle or a square

object.

SELECT TYPE Construct Type Checks

The SELECT TY PE construct allows us to perform atype check on an object. There are two
styles of type checks that we can perform.

» Thefirst type check is called "typeis". Thistypetest is satisfied if the dynamic type of the
object is the same as the type specified in parentheses following the "typeis" keyword.

» Thesecond type check iscalled "classis'. Thistypetest is satisfied if the dynamic type
of the object is the same or an extension of the specified type in parentheses following the
"classis' keyword.

In the example, if the type of sh isrectangle or square, then it initializes the length and width
fields. If the dynamic type of sh isnot a shape, rectangle, or square, then it executes the "class
default" branch. This branch may also get executed if the shape type is extended without updating
the initialize subroutine.

With the addition of a"class default" branch, the t ype is (shape) branch is needed, even
though it does not perform any additional assignments. Otherwise, this example would
incorrectly print an error message when sh is of type shape.

7.2.5. Procedure Polymorphism with Type-Bound Procedures

Derived typesin F2003 are considered objects because they encapsul ate data as well as
procedures. Procedures encapsulated in a derived type are called type-bound procedures. The
following example illustrates how to add a type-bound procedure to shape:

type shape
integer :: color
logical :: filled
integer :: x

PGI Fortran Reference Guide 123

Object Oriented Programming

integer :: y
contains
procedure :: initialize
end type shape

F2003 added a contains keyword to its derived types to separate atype's data definitions from
its procedures. Anything that appears after the contains keyword in a derived type must be a
type-bound procedure declaration.

Syntax of type-bound procedure declaration:

PROCEDURE [(interface-name)] [[,binding-attr-list]::] binding-name[=>
procedure-name]

At the minimum, atype-bound procedure is declared with the PROCEDURE keyword followed

withabinding-name.

Thebinding-name isthe name of the type-bound procedure.
Thefirst optionis interface-name.
Thebinding-attr-1list optionisalist of binding-attributes.

» PASS and NOPASS attributes allow the procedure to specify to which argument, if any, the
invoking object is passed. For example, pass (x) passesit to dummy argument x, while
nopass indicates not to passit at al.

» NON_OVERRIDABLE attribute specifies that the type-bound procedure cannot be
overridden during type extension.

» PRIVATE and PUBLIC attributes determine where the type-bound procedures can be
referenced. The default ispub1i c, which allows the procedures to be referenced anywhere
in the program having that type of variable. If the procedureisprivate, it can only be
referenced from within the module in which it is defined.

» DEFERRED aretype bound procedures that are declared in an abstract type, as described
in Abstract Types and Deferred Bindings, and must be defined in all of its non-abstract type
extensions.

Theprocedure-name option isthe name of the underlying procedure that implements the type-
bound procedure. This option is required if the name of the underlying procedure differs from the
binding-name. The procedure-name can be either a module procedure or an external procedure
with an explicit interface.

In the example SELECT TY PE construct, the binding-nameis initialize. Because
procedure-name Was not specified, an implicit procedure-name, initialize,iS
also declared. Another way to writethat exampleisprocedure :: initialize =>
initialize.

Type-Bound Procedure using Module Procedure

The following example is a type-bound procedure that uses a module procedure.

module shape mod

type shape
integer :: color
logical :: filled

PGI Fortran Reference Guide 124

integer :: x
integer :: y
contains
procedure initialize

end type shape

type, extends (shape) rectangle
integer length
integer width

end type rectangle

type, extends (rectangle) square

end type square

contains

subroutine initialize (sh,
! initialize shape objects

color, filled, x, y, length,

class (shape) sh
integer color
logical filled
integer :: x
integer :: y
integer, optional length
integer, optional width
sh%color = color
sh%filled = filled
sh%x = x
shsy = y
select type (sh)
type is (shape)
! no further initialization required
class is (rectangle)
! rectangle or square specific initializations
if (present (length)) then
sh%length = length
else
sh%length = 0
endif
if (present (width)) then
sh%width = width
else
sh%width = 0
endif

class default
! give error for unexpected/unsupported type

stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize
end module

Type-Bound Procedure using an External Procedure

Object Oriented Programming

width)

The following exampleis atype-bound procedure that uses an external procedure with an explicit

interface:

module shape mod

type shape
integer color
logical filled
integer :: x
integer :: y

contains

procedure initialize

end type shape

type, extends (shape) rectangle
integer length
integer width

end type rectangle

type, extends (rectangle) square

PGI Fortran Reference Guide

125

Object Oriented Programming

end type square

interface
subroutine initialize(sh, color, filled, x, y, length, width)
import shape

class (shape) :: sh

integer :: color

logical :: filled

integer :: x

integer :: y

integer, optional :: length
integer, optional :: width

end subroutine
end interface
end module
Using the preceding examples, we can invoke the type-bound procedure in the following manner:

use shape mod

type (shape) :: shp ! declare an instance of shape

call shp%initialize(l, .true., 10, 20) ! initialize shape

The syntax for invoking atype-bound procedure is very similar to accessing a data component

in a derived type. The name of the component is preceded by the variable name separated by a
percent (%) sign. In this case, the name of the componentisinitialize and the name of the
variable is shp. To access the initialize type-bound procedure, type shp%initialize. Using
the preceding invocation callsthe initialize subroutine and passesin 1 for color, . true. for
filled, 10 for x, and 20 fory.

But what about the first dummy argument, sh, ininitialize? This dummy argument is known
as the passed-object dummy argument. By default, the passed-object dummy is the first dummy
argument in the type-bound procedure. It receives the object that invoked the type-bound
procedure. In our example, sh is the passed-object dummy and the invoking object is shp.
Therefore, the shp object gets assigned to sh when initialize isinvoked.

The passed-object dummy argument must be declared CLASS and of the same type asthe
derived type that defined the type-bound procedure. For example, a type bound procedure
declared in shape must have a passed-object dummy argument declared "class(shape)”.

Y ou can aso specify adifferent passed-object dummy argument using the PASS binding-
attribute. For example, suppose that the sh dummy in our initialize subroutine did not appear as
the first argument. Then you must specify a PASS attribute, asillustrated in the following code:

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
contains
procedure, pass(sh) :: initialize

end type shape

If you do not want to specify a passed-object dummy argument, you can do so using the
NOPASS binding-attribute:

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
contains

PGI Fortran Reference Guide 126

Object Oriented Programming

procedure, nopass :: initialize
end type shape
When you specify NOPASS, you invoke the type-bound procedure the same way. The only
differenceisthat the invoking object is not automatically assigned to a passed-object dummy in
the type-bound procedure. For example, if you were to specify NOPASSinthe initialize
type-bound procedure, then you would invoke it this way:
type (shape) :: shp ! declare an instance of shape

call shp%initialize(shp, 1, .true., 10, 20) ! initialize shape

Y ou explicitly specify shp for the first argument of initialize because it was declared NOPASS.

7.2.6. Inheritance and Type-Bound Procedures

A child type inherits or reuses components from their parent or ancestor types. When dealing
with F2003 derived types, this inheritance applies to both data and procedures. In the following
example, rectangle and square both inherit the initialize type-bound procedure from shape.

type shape
integer :: color
logical :: filled
integer :: x
integer :: y

contains

procedure :: initialize

end type shape

type, EXTENDS (shape) :: rectangle
integer :: length
integer :: width

end type rectangle

type, EXTENDS (rectangle) :: square

end type square

Using the example above, we can invoke initialize with a shape, rectangle, or square object:

type (shape) :: shp ! declare an instance of shape
type (rectangle) :: rect ! declare an instance of rectangle
type (square) :: sg ! declare an instance of square
call shp%initialize(l, .true., 10, 20) ! initialize shape

call rect%$initialize (2, .false., 100, 200, 50, 25) ! initialize rectangle
call sg%initialize (3, .false., 400, 500, 30, 20) ! initialize rectangle

7.2.7. Procedure Overriding

Most OOP languages alow a child object to override a procedure inherited from its parent object.
Thisis known as procedure overriding. In F2003, you can specify atype-bound procedurein a
child type that has the same binding-name as a type-bound procedure in the parent type. When
the child overrides a particular type-bound procedure, the version defined in its derived type
isinvoked instead of the version defined in the parent. In the following example, rectangle
definesan initialize type-bound procedure that overrides shape's initialize type-bound
procedure.

module shape mod

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
contains
procedure :: initialize => initShape

PGI Fortran Reference Guide 127

Object Oriented Programming

end type shape

type, EXTENDS (shape) :: rectangle
integer :: length
integer :: width
contains
procedure :: initialize => initRectangle
end type rectangle
type, EXTENDS (rectangle) :: square
end type square
contains

subroutine initShape (this, color, filled, x, y, length, width)
! initialize shape objects

class (shape) :: this

integer :: color

logical :: filled

integer :: x

integer :: y

integer, optional :: length ! ignored for shape
integer, optional :: width ! ignored for shape
this%color = color

this%filled = filled

this%x = x

this%y =y

end subroutine

subroutine initRectangle (this, color, filled, x, vy, length, width)
! initialize rectangle objects

class (rectangle) :: this
integer :: color

logical :: filled

integer :: x

integer :: y

integer, optional :: length
integer, optional :: width
this%color = color
this%filled = filled
this%x = x

this%y =y

if (present(length)) then
this%$length = length
else
this%length = 0
endif
if (present (width)) then
this%width = width
else
this%width = 0
endif
end subroutine
end module

The preceding example illustrates code that defines atype-bound procedurecalled initialize
for both shape and rectangle. The only differenceisthat shape's version of initialize invokes
aprocedure called initShape while rectangle's version invokes a procedure called
initRectangle. The passed-object dummy in initShape isdeclared "class(shape)" and the
passed-object dummy in initRectangle isdeclared "class(rectangle)".

A type-bound procedure's passed-object dummy must match the type of the derived type that
defined it. Other than differing passed-object dummy arguments, the interface for the child's
overriding type-bound procedure is identical with the interface for the parent's type-bound
procedure. Both type-bound procedures are invoked in the same manner:

type (shape) :: shp ! declare an instance of shape
type (rectangle) :: rect ! declare an instance of rectangle
type (square) :: sg ! declare an instance of square

PGI Fortran Reference Guide 128

Object Oriented Programming

call shp%$initialize(l, .true., 10, 20) ! calls initShape
call rect%initialize (2, .false., 100, 200, 11, 22) ! calls initRectangle
call sg%initialize (3, .false., 400, 500) ! calls initRectangle

sq isdeclared square but itsinitialize type-bound procedure invokes initRectangle because
sq inherits the rectangle version of initialize.

Although atype may override atype-bound procedure, it is still possible to invoke the version
defined by a parent type. Each type extension contains an implicit parent object of the same name
and type as the parent. Y ou can use thisimplicit parent object to access components specific to a
parent, say, a parent's version of atype-bound procedure, asillustrated here:

call rect%$shape%$initialize (2, .false., 100, 200) ! calls initShape
call sg%rectangle%shape%$initialize (3, .false., 400, 500) ! calls initShape

If you do not want a child to override a parent's type-bound procedure, you can use the
NON_OVERRIDABLE hinding-attribute to prevent any type extensions from overriding a
particular type-bound procedure:

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
contains
procedure, non overridable :: initialize

end type shape

7.2.8. Functions as Type-Bound Procedures

In the preceding examples, subroutines implement type-bound procedures. Y ou can also
implement type-bound procedures with functions. The following example uses a function that
gueries the status of the filled component in shape.

module shape mod

type shape
integer :: color
logical :: filled
integer :: x
integer :: y
contains
procedure :: isFilled
end type shape
contains
logical function isFilled(this)
class (shape) :: this

isFilled = this%filled
end function
end module

Y ou can invoke the preceding function in the following manner:

use shape mod

type (shape) :: shp ! declare an instance of shape
logical filled

call shp%initialize(l, .true., 10, 20)

filled = shp%isFilled()

7.3. Information Hiding

In Procuedure Overriding, you saw how achild type can override a parent's type-bound
procedure. This process allows a user to invoke atype-bound procedure without any knowledge

PGI Fortran Reference Guide 129

Object Oriented Programmi

of the implementation details of that procedure. Thisis another important feature of Object
Oriented Programming know as information hiding.

Information hiding allows the programmer to view an object and its procedures as a " black
box". That is, the programmer can use (or reuse) an object without any knowledge of the
implementation details of the object.

Inquiry functions, likethe i s¥i11ed function, shown in Functions as Type-Bound Procedures,
are common with information hiding. The motivation for inquiry functions, rather than direct
access to the underlying data, is that the object's implementer can change the underlying data
without affecting the programs that use the object. Otherwise, each program that uses the object
would need to be updated whenever the underlying data of the object changes.

To enable information hiding, F2003 provides a PRIVATE keyword and binding-attribute. To
enable information hiding, F2003 also provides a PUBLIC keyword and binding-attribute. By
default, all derived type components are declared PUBLIC. The PRIVATE keyword can be
placed on derived type data and type-bound procedure components and on module data and
procedures. The following sampleillustrates use of PUBLIC and PRIVATE:

Code Using Private and Public

module shape mod

private ! hide the type-bound procedure implementation procedures
public :: shape, constructor ! allow access to shape & constructor procedure
type shape
private ! hide the underlying details
integer :: color
logical :: filled
integer :: x
integer :: y
contains
private ! hide the type bound procedures by default
procedure :: initShape ! private type-bound procedure
procedure, public :: isFilled ! allow access to isFilled type-bound
procedure
procedure, public :: print ! allow access to print type-bound procedure
end type shape
contains
logical function isFilled (this)
class (shape) :: this

isFilled = this%filled
end function

function constructor (color, filled, x, V)

type (shape) :: constructor
integer :: color

logical :: filled

integer :: x

integer :: y

call constructor%initShape (color, filled, x, vy)
end function

subroutine initShape(this, color, filled, x, y)
! initialize shape objects

class (shape) :: this
integer :: color
logical :: filled
integer :: x

integer :: y
this%color = color

this%filled = filled

PGI Fortran Reference Guide

ng

130

Object Oriented Programming

this%x
this%y
end subroutine

X

subroutine print (this)
class (shape) :: this
print *, this%color, this$%$filled, this%x, this%y

end subroutine

end module

The preceding example uses information hiding in the host module as well asin the shape type.
The private statement, located at the top of the module, enables information hiding on all module
data and procedures. The i sFi11ed module procedure, which is not to be confused with the
isFilled type-bound procedure, is hidden as aresult of the private statement at the top of the
module. Thepublic :: constructor alowsthe user to invoke the constructor module
procedure. Thereis also a private statement on the data components of shape. Now, the only way
auser can query the filled component is through the i sFi11ed type-bound procedure, which is
declared public.

Notice the private statement after the contains in type shape. The private that appears after type
shape only affects the data components of shape. If you want your type-bound procedures to also
be private, then a private statement must also be added after the contains keyword. Otherwise,
type-bound procedures are public by default.

In Code Using Private and Public, the initsShape type-bound procedure is declared private.
Therefore, only procedures local to the host module can invoke a private type-bound procedure.
The constructor module procedure invokes the initShape type-bound procedure. Y ou may
invoke this example in this way:

program shape prg

use shape mod

type (shape) :: sh

logical filled

sh = constructor (5, .true., 100, 200)

call sh%print ()
end

Here is a sample compile and sample run of the preceding program. In this example, the
shape mod moduleissaved inafilecaled shape.£03 and the main programis called
main.f03:

[)

% pgfortran -V ; pgfortran shape.f03 main.f03 -o shapeTest
pgfortran 14.7-0 64-bit target on x86-64 Linux -tp nehalem
The Portland Group - PGI Compilers and Tools

Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
shape.f03:

main.f03:

% shapeTest

5 T 100 200

7.3.1. Type Overloading

The example Code Using Private and Public creates an instance of shape by invoking a function
caled constructor. Thisfunction hides the details for constructing a shape object, including
the underlying type-bound procedure that performs the initialization. However, you may have
noticed that the word constructor could very well be defined somewhere else in the host program.

PGI Fortran Reference Guide 131

Object Oriented Programming

If that is the case, the program cannot use our modul e without renaming one of the constructor
functions. Since OOP encourages information hiding and code reusability, it would make more
sense to come up with aname that probably is not being defined in the host program. That name
is the type name of the object we are constructing.

F2003 allows the programmer to overload a name of a derived type with a generic interface. The
generic interface acts as awrapper for our constructor function. The ideais that the user would
then construct a shape in the following manner:

program shape prg

use shape mod

type (shape) :: sh

logical filled

! invoke constructor through shape generic interface
sh = shape (5, .true., 100, 200)

call sh%print ()

end

Here is the modified version of Code Using Private and Public that uses type overloading:

module shape mod

private ! hide the type-bound procedure implementation procedures
public :: shape ! allow access to shape
type shape
private ! hide the underlying details
integer :: color
logical :: filled
integer :: x
integer :: y
contains
private ! hide the type bound procedures by default
procedure :: initShape ! private type-bound procedure
procedure, public :: isFilled ! allow access to isFilled type-bound procedure

end type shape

interface shape

procedure constructor ! add constructor to shape generic interface
end interface

contains

end module

The constructor function is now declared private and is invoked through the shape public
generic interface.

7.4. Data Polymorphism

As described in Polymorphic Entities, the c1ass keyword allows F2003 programmers to create
apolymorphic variable, that is, a variable whose data type is dynamic at runtime. Recall that the
polymorphic variable must be a pointer variable, allocatable variable, or adummy argument.

7.4.1. Pointer Polymorphic Variables

The following exampleillustrates pointer polymorphic variables.

subroutine init (sh)

class (shape) :: sh ! polymorphic dummy argument
class (shape), pointer :: p ! polymorphic pointer variable
class (shape), allocatable:: als ! polymorphic allocatable variable

end subroutine

PGI Fortran Reference Guide 132

Object Oriented Programming

In the preceding example, the sh, p, and a1s polymorphic variables can each hold values of type
shape or any type extension of shape.

» The sh dummy argument receives its type and value from the actual argument to sh of
subroutine init (). Inthe same manner that polymorphic dummy arguments form the basis
to procedure polymorphism, polymorphic pointer and allocatable variables form the basis to
data polymorphism.

» The polymorphic pointer variable p can point to an object of type shape or any of its
extensions. For example, the select type construct in the following example helps
illustrate the fact that the polymorphic pointer, p, can take on several types. In this case, p
can point to a shape, rectangle, or square object. The dynamic type of pointer p isnot known
until the pointer assignment, p => sh inthisexample, is executed.

subroutine init (sh)
class (shape), target :: sh
class (shape), pointer :: p
select type (sh)
type is (shape)
p => sh
! shape specific code here
type is (rectangle)
p => sh
! rectangle specific code here
type is (square)
p => sh
! square specific code here
class default
p => null ()
end select

end subroutine

7.4.2. Allocatable Polymorphic Variables

The following exampleillustrates pointer polymorphic variables.

An allocatable polymorphic variable receives its type and optionally its value at the point of its
allocation. By default, the dynamic type of a polymorphic allocatable variable is the same asits
declared type after executing an allocate statement.

The following example alocates the polymorphic variable a1s. This variable receives dynamic
type shape after the ALLOCATE statement is executed.

class (shape), allocatable :: als

allocate (als)

Obviousdly thereis not much use for polymorphic allocatable variables if you can only specify the
declared typein an allocate statement. Therefore, F2003 provides typed allocation to allow the
programmer to specify atype other than the declared type in an allocate statement.

In the following allocate statement, notice that following the typeisa:: and then the variable
name.

class (shape), allocatable :: als
allocate (rectangle::als)

In thisexample, rectangle isthe dynamic type of variable a1ls. However, the declared type of
als isdll shape.

PGI Fortran Reference Guide 133

Object Oriented Programming

The type specification must be the same or atype extension of the declared type of the allocatable
variable. The following example illustrates how to allocate a polymorphic variable with the same
type of another object:

subroutine init (sh)
class (shape) :: sh
class (shape), allocatable :: als
select type (sh)
type is (shape)
allocate (shape::als)
type is (rectangle)
allocate (rectangle::als)
type is (square)
allocate (square::als)
end select

end subroutine

Y ou can expand the preceding example to create a"copy" of an object, as shown here:

subroutine init (sh)
class (shape) :: sh
class (shape), allocatable :: als
select type (sh)
type is (shape)
allocate (shape::als)
select type(als)
type is (shape)
als = sh ! copy sh
end select
type is (rectangle)
allocate (rectangle::als)
select type (als)
type is (rectangle)
als = sh ! copy sh
end select
type is (square)
allocate (square::als)
select type (als)
type is (square)
als = sh ! copy sh
end select
end select

end subroutine

The programmer can only access the components of the declared type by default. Therefore, in
the preceding example, you can only access the shape components for object als by default. To
access the components of the dynamic type of object als requires you to use a nested select type
for object als.

The previous exampl e illustrates one application of data polymorphism: making a copy or a
clone of an object. Unfortunately, this approach does not scale well if shape has severa type
extensions. Further, whenever atype extension to shape is added, the programmer must update
the init () subroutineto include the new type extension. An alternative to thisis sourced
alocation.

7.4.3. Sourced Allocation

Sourced allocation allows you to make an extra copy, or clone, of an object. In the following
example, the ALLOCATE statement allocates a1 s with the same dynamic type as sh and with
the same value(s) of sh. The source= argument specifies the object that you wish to clone.

PGI Fortran Reference Guide 134

Object Oriented Programming

The declared type of the source= must be the same or atype extension of the allocate argument

(eg., als).

subroutine init (sh)

class (shape) :: sh

class (shape), allocatable :: als

allocate (als, source=sh) ! als becomes a clone of sh

end subroutine

7.4.4. Unlimited Polymorphic Objects

Data polymorphism using derived types and their type extensions satisfies most applications.
However, sometimes you may want to write a procedure or a data structure that can operate
on any type, including any intrinsic or derived type. As described in the section on procedure
polymorphism, F2003 provides unlimited polymorphic objects.

Here are some exampl es of unlimited polymorphic objects:

subroutine init (sh)

class(*) :: sh ! unlimited polymorphic dummy argument
class(*), pointer :: p ! unlimited polymorphic pointer variable
class (*), allocatable:: als ! unlimited polymorphic allocatable variable

end subroutine

Youusethe class (*) keyword to specify an unlimited polymorphic object declaration. The
operations for unlimited polymorphic objects are similar to those in the preceding section for
"limited" polymorphic objects. However, unlike "limited" polymorphic objects, their "unlimited”
counterparts can take any F2003 type.

The following exampleillustrates unlimited polymorphic objects that can be used with procedure
polymorphism:

subroutine init (sh)
class(*) :: sh
select type (sh)
type is (shape)

! shape specific code
type is (integer)

! integer specific code
type is (real)

! real specific code
type is (complex)

! complex specific code
end select
end subroutine

Similarly, you can assign any pointer or target to an unlimited polymorphic pointer, regardless of
type.

The following example shows sh assigned to pointer p. Thenaselect type constructisused
to query the dynamic type of pointer p.

subroutine init (sh)
class (*),target :: sh
class (*), pointer :: p
p => sh
select type (p)
class is (shape)
! shape specific code

type is (integer)

: ! integer specific code
type is (real)

S ! real specific code

PGI Fortran Reference Guide 135

Object Oriented Programming

type is (complex)

! complex specific code
end select
end subroutine

Y ou can also use unlimited polymorphic objects with typed allocation. In fact, atype (or
source=) argument must be specified with the ALLOCATE statement since there is no default
typefor class (*). However, unlike their "limited" counterparts, asillustrated in the following
example, you can specify any F2003 type, intrinsic or derived.

subroutine init (sh)
class(*) :: sh
class(*), allocatable :: als
select type (sh)
type is (shape)
allocate (shape::als)
type is (integer)
allocate (integer::als)
type is (real)
allocate(real::als)
type is (complex)
allocate (complex::als)
end select

end subroutine

Sourced allocation can also operate on unlimited polymorphic objects:

subroutine init (sh)

class(*) :: sh
class(*), allocatable :: als

allocate (als, source=sh) ! als becomes a clone of sh
end subroutine

If the source= argument is an unlimited polymorphic object (i.e., declared class(*)), the allocate
argument, in this example a1 s, must also be an unlimited polymorphic object.

When the ALLOCATE argument isdeclared c1ass (*), the declared typein the source=
argument can be any typeincluding class (*), any derived type, or any intrinsic type.

The following code demonstrates sourced allocation with an unlimited polymorphic allocatable
argument and an intrinsic typed source= argument.

class(*), allocatable :: als
integer i

i = 1234

allocate (als, source=i)

Data Polymorphic Linked List

One of the advantages to unlimited polymorphic objects is that you can create data structures
that operate on all datatypes, both intrinsic and derived in F2003. Traditionally, data stored in
alinked list all have the same data type. However, with unlimited polymorphic objects, we can
easily create alist that contains a variety of data types and values.

This example creates data structures that can be used to create a heterogeneous list of objects.

1. Start by creating aderived type that will represent each link in our linked list.

type link
class (*), pointer :: value => null()
type (link), pointer :: next => null()

end type link

PGI Fortran Reference Guide 136

Object Oriented Programming

Thisbasic link derived type contains an unlimited polymorphic pointer that points to the

value of the link followed by a pointer to the next link in the list.

2. Placethisderived typeinto its own module, add a constructor, and add some type-bound

procedures to access the value(s).

Recall that information hiding allows others to use an object without understanding its

implementation details.

module link mod

private ! information hiding
public :: link
type link
private ! information hiding
class (*), pointer :: value => null()
type (link), pointer :: next => null()
contains
procedure :: getValue ! get value in this link
procedure :: nextLink ! get the link after this link
procedure :: setNextLink ! set the link after this link

end type link

interface link
procedure constructor
end interface

contains
function nextLink (this)
class(link) :: this
class (link), pointer :: nextLink
nextLink => this%next
end function nextLink
subroutine setNextLink (this, next)
class(link) :: this
class (link), pointer :: next
this%next => next
end subroutine setNextLink
function getValue (this)
class (link) :: this
class (*), pointer :: getValue
getValue => this%value
end function getValue
function constructor (value, next)

class (link) ,pointer :: constructor
class(*) :: value
class(link), pointer :: next

allocate (constructor)
constructor$next => next
allocate (constructor$value, source=value)
end function constructor
end module link mod

This code uses the PRIVATE keyword. Therefore the user of the object must use the
getValue () function to accessthe values of each link in our list, the nextLink ()

procedure to access the next link inthelist, and setNextLink () to add alink after alink.
Thegetvalue () functionreturnsapointer toaclass (*), meaning it can return an object

of any type.

We employ type overloading for the constructor function. Recall that type overloading

allows you to create a generic interface with the same name as a derived type. Therefore you

can create a constructor function and hide it behind the name of the type.

PGI Fortran Reference Guide

137

Object Oriented Programming

3. Construct alink in the following manner:
class (link),pointer :: linkList
integer v
linkList => link (v, linkList%next)
Although you could easily create alinked list with just the preceding link object, the real
power of Object Oriented Programming liesin its ability to create flexible and reusable
components. However, the user must understand how the list is constructed with the link
object; in this example, the link constructor assignsitsresult tothe 1inkList pointer.

4. To take advantage of OOP, create another object called 11 st that acts asthe " Application

Program Interface" or API to the linked list data structure.

type list

class (link) ,pointer :: firstLink => null() ! first link in list
class (link) ,pointer :: lastLink => null() ! last link in list
contains

procedure :: addInteger ! add integer to list

procedure :: addChar ! add character to list

procedure :: addReal ! add real to list

procedure :: addValue ! add class(*) to list

generic :: add => addInteger, addChar, addReal, addValue

end type list

The list derived type has two data components, i rst1ink, which pointsto thefirst link in its
list and 1astLink which pointsto thelast link in thelist. The 1astLink pointer allows the user

to easily add valuesto the end of thelist.

There are four type-bound procedures called addInteger (), addChar (), addReal (), and

addvalue (). You usethefirst three procedures to add an integer, a character, and areal to the
linked list respectively. The addvalue () procedure adds class (*) valuesto thelist and isthe
main add routine. The addInteger (), addChar (), and addReal () procedures are actually

just wrappersto the addvalue () procedure.

The addInteger () procedure takes an integer value and allocates a class(*) with that value
using sourced allocation.

subroutine addInteger (this, wvalue)

class(list) :: this
integer value
class(*), allocatable :: v

allocate (v, source=value)
call this%addvalue (v)
end subroutine addInteger

The only difference between addInteger (), addChar (), and addReal () isthe datatype
dummy argument, value.

The value from the procedure is passed to the addvalue () procedure:

subroutine addValue (this, wvalue)

class(list) :: this
class (*), value
class(link), pointer :: newLink

if (.not. associated(this%firstLink)) then
this%firstLink => link(value, this%firstLink)
this%lastLink => this%firstLink

else
newLink => link(value, this%lastLink%nextLink())
call this%lastLink$%setNextLink (newLink)
this%lastLink => newLink

PGI Fortran Reference Guide

138

Object Oriented Programming

end if
end subroutine addValue
The addvalue () proceduretakestwo arguments; alist and aclass(*). If thelist's firstlink
is not associated (i.e., pointsto null()), then add the value to the start of the list by assigning it to
thelist's first1ink pointer. Otherwise, add it after the list's 1ast1ink pointer.

Returning to the list type definition, notice the following statement:
generic :: add => addInteger, addChar, addReal, addValue

This statement uses an F2003 feature known as a generic-type bound procedure. These
procedures act very much like generic interfaces, except they are specified in the derived-type
and only type-bound procedures are permitted in the generic-set. Y ou define a type-bound
procedure to be generic by defining a generic statement within the type-bound procedure part.
The statement is of the form:

generic [[, access-spec] ::] generic-spec => tbp-name-list

where thp-name-list isalist of the specific type-bound procedures to be included in the generic
set. You can use these statements for named generics as well as for operators and assignments.

In the preceding example, you can invoke the add type-bound procedure and either the
addInteger (), addChar (), addReal (), Of addvalue () implementations get called. The
compiler determines which procedure to invoke based on the data type of the actual arguments.
If you pass an integer to the value argument of add (), addInteger () isinvoked, acharacter
valueinvokes addChar (), area valueinvokes addreal (), and aclass(*) value invokes
addValue ()

Here is asimple program that adds valuesto alist and prints out the values. Y ou can download
the complete 1ist mod and 1ink mod modules, which encapsulate the list and link objects
respectively.

program main
use list mod
implicit none
integer 1

type(list) :: my list
do i=1, 10

call my list%add (i)
enddo

call my list%add/(

call my list%add(

call my list%add(

call my list%add('C'")

call my list%printvalues ()
end program main

1.23)
VAV)
VBV)

oo

pgfortran -c 1list.f£90
pgfortran -c 1link.f£90
pgfortran -V main.f90 list.o link.o

oe

o

a.out

oo .

o U1 WN

PGI Fortran Reference Guide 139

http://www.pgroup.com/lit/samples/list.f90
http://www.pgroup.com/lit/samples/link.f90

Object Oriented Programming

7
8
9

10

1.230000

Qw >

7.4.5. Abstract Types and Deferred Bindings

The example, Data Polymorphic Linked List, contained alist derived type that acted as the API
for alinked list. Rather than employ one implementation for the list derived type, you could
choose to define some of the components and type-bound procedures for alist object and require
the user to define the rest. One way to do thisis through an abstract type.

An abstract type is a derived type that cannot be instantiated. Instead, it is extended and further
defined by another type. The type extension can also be declared abstract, but ultimately it must
be extended by a non-abstract typeif it ever isto be instantiated in a program.

The following exampleillustrates alist type declared abstract:

module abstract list mod

type, abstract :: list

private
class (link) ,pointer :: firstLink => null() ! first link in list
class (link) ,pointer :: lastLink => null() ! last link in 1list
class (link) ,pointer :: currLink => null() ! 1list iterator

contains
procedure, non overridable :: addValue ! add value to list
procedure, non overridable :: firstValue ! get first value in list
procedure, non overridable :: reset ! reset list iterator
procedure, non overridable :: next ! iterate to next value in list
procedure, non overridable :: currentValue! get current value in list
procedure, non overridable :: moreValues ! more values to iterate?
generic :: add => addValue
procedure (printValues), deferred :: printList ! print contents of list

end type list
abstract interface
subroutine printValues (this)
import list
class(list) :: this
end subroutine
end interface

end module abstract list mod

The abstract list type in the preceding code uses the link type from Data Polymorphic Linked
List asits underlying data structure. This example has three data components, firstLink,
lastLink, and currLink.

» The firstLink component pointsto thefirst link inthelist.

» ThelastLink component pointsto thelast link inthelist.

» The currLink component pointsto the "current” link that we are processing in the list. In
other words, currLink actsasalist iterator that allows us to traverse the list using inquiry
functions. Without alist iterator, the user of thislist type would need to understand the
underlying link data structure. Instead, the code takes advantage of information hiding by
providing alist iterator.

PGI Fortran Reference Guide 140

Object Oriented Programming

Our list typeisdeclared abstract. Therefore, the following declaration and allocate statements
areinvaidfor 1ist:

type(list) :: my list ! invalid because list is abstract

allocate (list::x) ! invalid because list 1s abstract

On the other hand, you can use the abstract type in a class declaration since its dynamic type

can be anon-abstract type extension. In the following example, the usage of list is valid because
nothing is declared or allocated with type list. Instead, each variable is some type extension of
list.

subroutine list stuff (my list)

class(list) :: my list
class(list), pointer :: p
class(list), allocatable :: a

select type (my list)
type is (list)

énd select

end subroutine

The preceding list type definition has the deferred binding added to the printvalues type-
bound procedure. Deferred bindings allow the author of the abstract type to dictate what
procedures must be implemented by the user of the abstract type and what may or may not be
overridden. Y ou can add the deferred binding to type-bound procedures that are not defined in
the abstract type, but these must be defined in all of its non-abstract type extensions. F2003 also
requires that a deferred binding have an interface (or an abstract interface) associated with it.

Y ou use the following syntax for deferred bindings:
procedure (interface-name), deferred :: procedure-name

Because deferred bindings have an interface associated with them, there is no => followed by an
implementation-name allowed in the syntax. For example, procedure, deferred :: foo
=> bar isnot allowed.

The following module includes an integerList which extends the abstract type, 1ist,
previously defined.

module integer list mod

type, extends(list) :: integerList

contains
procedure :: addInteger
procedure :: printlList => printIntegerlList
generic :: add => addInteger

end type integerList
end module integer list mod

Inthisexample, printList () isdefined asrequired by the deferred binding in 1ist. You can
use the following implementation for theprintList () type-bound procedure:

subroutine printIntegerList (this)

class (integerList) :: this

class (*), pointer :: curr

call this%reset () ! reset list iterator

do while (this%$moreValues ()) ! loop while there are values to print
curr => this%currentValue () ! get current value

select type (curr)
type is (integer)

print *, curr ! print the integer
end select
call this%nextValue () ! increment the list iterator

PGI Fortran Reference Guide 141

Object Oriented Programming

end do
call this%reset () ! reset list iterator
end subroutine printIntegerList

printIntegerList () printstheintegersinthelist. Thelist reset() procedure verifies that
thelist iterator is at the beginning of the list. Then the subroutine loops through the list, calling
thelist'smorevalues () function to determineif our list iterator has reached the end of the
list. Thelist'scurrentvalue () function getsthe value to which the list iterator is pointing. A
select type accesses the integer value and printsit. Finally, thelist'snextvalue () procedure
incrementsthe list iterator to access the next value.

The following sample program uses the abstract list and integerList types. The
sample program adds the integers one through ten to the list and then calls the integerList's
printList () procedure. Next, the program traverses the list, places the integersinto an
array, and then prints out the array. Y ou can download the complete abstract_list_mod and
integer_list_ mod modules from the PGI website.

program main

use integer list mod

implicit none

integer i

type (integerList) :: my list

integer values (10)

do i=1, 10
call my list%add (i)

enddo

call my list3printList ()

print *

call my list%reset()

i=1

do while (my list%moreValues())
values (i) = my listS%current ()
call my list%next()
i=1+1

end do

print *, values

end program main

Here is a sample compile and run of the preceding program:

pgfortran -c 1link.£90

pgfortran -c abstract 1ist.f90

pgfortran -c integerList.f90

pgfortran -V main.f90 link.o abstract list.o integerList.o
pgfortran 11.6-0 64-bit target on x86-64 Linux -tp penryn
Copyright 2014 NVIDIA Corporation All Rights Reserved.

0C o° o° oo

[

% a.out

=
NP O WOo-Jo Ul WN

PGI Fortran Reference Guide 142

Object Oriented Programming

7.5. |EEE Modules

PGI 2016 supports the Fortran IEEE standard intrinsic modules ieee arithmetic,
ieee exceptions, and ieee features.

» ieee arithmetic affectsthe manner in which codeiscompiled in the scoping units.

» ieee exceptions specifiesaccessibility of overflow and divide-by-zero flags aswell as
determines the level of support for other exceptions.

» ieee features supports specification of essential |EEE features. It provides accessto one
derived type and a collection of named constants of this type that affect the manner in which
code is compiled in the scoping units.

For details on each of these modules, refer to Intrinsic Modules.

7.6. Intrinsic Functions

The following table lists the Fortran 2003 intrinsic functions available to facilitate an object-
oriented approach to programming. A more complete description of each of theseintrinsicsis
availablein Fortran Intrinsics.

Table 31 Fortran 2003 Functions and Procedures

Num.

Generic Name Purpose Args Argument Type Result Type

EXTENDS_TYPE_OF Determines whether the 2 Objects of extensible type LOGICAL
dynamic type of Ais an SCALAR
extension type of the dynamic
type of B.

MOVE_ALLOC Moves an allocation from one 2 Any - of same type and rank none
allocatable object to another.

SAME_TYPE_AS Determines whether the 2 Objects of extensible type LOGICAL
dynamic type of A is the same SCALAR
as the dynamic type of B.

PGI Fortran Reference Guide 143

Chapter 8.
OPENMP DIRECTIVES FOR FORTRAN

The PGF77 and PGFORTRAN compilers support the OpenMP Fortran Application Program
Interface. The OpenM P shared-memory paralel programming model is defined by a collection
of compiler directives, library routines, and environment variables that can be used to specify
shared-memory parallelism in Fortran programs.

The directives include a parallel region construct for writing coarse grain SPMD programs, work-
sharing constructs which specify that DO loop iterations should be split among the available
threads of execution, and synchronization constructs. The data environment is controlled using
clauses on the directives or with additional directives. Runtime library routines are provided

to query the paralel runtime environment, for example to determine how many threads are
participating in execution of aparalel region. Finaly, environment variables are provided to
control the execution behavior of paralel programs. For more information on OpenMP, refer to
this website:

http://www.openmp.org

For an introduction to how to execute programs that use multiple processors along with some
pointers to example code, refer to ‘ Parallel Programming Using PGl Compilers' in the PGI
Compiler User’s Guide.

n The C/C++ pragmas to which this section refers are not available in PVF.

8.1. OpenMP Overview

Let'slook at the OpenM P shared-memory parallel programming model and some common
OpenM P terminology.

8.1.1. OpenMP Shared-Memory Parallel Programming Model

The OpenM P shared-memory programming model is a collection of compiler directives, library
routines, and environment variables that can be used to specify shared-memory parallelismin
Fortran, C and C++ programs.

PGI Fortran Reference Guide 144

http://www.openmp.org
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

OpenMP Directives for Fortran

Fortran directives
Allow usersto place hintsin the source code to help the compiler generate more efficient
code. Y ou typically use directives to control the actions of the compiler in a particular portion
of a program without affecting the program as awhole. Y ou place them in your source code
where you want them to take effect; and they usually stay in effect from the point where
included until the end of the compilation unit or until ancther directive or C/C++ pragma
changesits status.

Fortran directives and C/C++ pragmasinclude a parallel region construct for writing coarse
grain SPMD programs, work-sharing constructs which specify that DO loop iterations should
be split among the available threads of execution, and synchronization constructs.

n The data environment is controlled either by using clauses on the directives or with additional
directives.

Runtimelibrary routines
Are available to query the parallel runtime environment, for example to determine how many
threads are participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on
OpenMP, refer to www.openmp.org.

8.1.2. Terminology

For OpenMP 3.0 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

» An OpenMP thread is athread that is managed by the OpenMP runtime system.

» A thread-safe routine is aroutine that performs the intended function even when executed
concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an
OpenMP library routine. A region includes any code in called routines as well as any implicit
code introduced by the OpenM P implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, aregion
is encountered during the execution of another region. PGI currently does not support nested
parallel regions.

Parallel region
In OpenMP 3.0 there is a distinction between a parallel region and an active parallel region. A
parallel region can be either inactive or active.

» Aninactive parallel region is executed by a single thread.

PGI Fortran Reference Guide 145

www.openmp.org

OpenMP Directives for Fortran

» Anactive parallel regionisaparallel region that is executed by ateam consisting of more
than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.0. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:

program test
logical omp in parallel

!Somp parallel
print *, omp in parallel ()
!'Somp end parallel

stop
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.0, the program yields F. In OpenMP 3.0, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

Task
A specific instance of executable code and its data environment, generated when athread
encounters a task construct or aparallel construct.

8.1.3. OpenMP Example

Look at the following simple OpenM P example involving loops.

OpenMP Loop Example

PROGRAM MAIN
INTEGER I, N, OMP GET THREAD NUM
REAL*8 V(1000), GSUM, LSUM

GSUM = 0.0DO
N = 1000

DO I =1, N
V(I) =D
ENDDO

BLE (I)

!SOMP PARALLEL PRIVATE (I,LSUM) SHARED (V,GSUM, N)
LSUM = 0.0DO
I'SOMP DO
DO I =1, N
LSUM = LSUM + V (I)
ENDDO
!SOMP END DO
!SOMP CRITICAL
print *, "Thread ",OMP GET THREAD NUM()," local sum: ",LSUM
GSUM = GSUM + LSUM
!'SOMP END CRITICAL
!'SOMP END PARALLEL

PRINT *, "Global Sum: ",GSUM

STOP
END

PGI Fortran Reference Guide 146

OpenMP Directives for Fortran

If you execute this example with the environment variable OMP_NUM_THREADS s&t to 4, then
the output looks similar to this:

Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000

FORTRAN STOP

8.2. Task Overview

Every part of an OpenMP program is part of atask. A task, whose execution can be performed
immediately or delayed.

In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a
task construct. A task can be implicit or explicit.

» Anexplicit task is atask generated when atask construct is encountered during execution.

» Animplicit task is atask generated by the implicit parallel region or generated when a
paralel construct is encountered during execution.

Task construct
A task directive plus a structured block
Task region
The dynamic sequence of instructions produced by the execution of atask by athread.

8.3. Tasks

Every part of an OpenMP program is part of atask. Task Overview provides a general overview
of tasks and general terminology associated with tasks. This section provides more detailed
information about tasks, including tasks scheduling points and the task construct.

8.3.1. Task Characteristics and Activities

A task, whose execution can be performed immediately or delayed, has these characteristics:

» Codeto execute
» A dataenvironment - that is, it ownsits data
» Anassigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

» Packaging: Each encountering thread packages a new instance of atask - code and data.
» Execution: Some thread in the team executes the task at some later time.

PGI Fortran Reference Guide 147

OpenMP Directives for Fortran

8.3.2. Task Scheduling Points

PGI currently supports four task scheduling points: at the beginning of atask, at the end of atask,

ataskwait, and at a barrier.

Beginning of a task.
At the beginning of atask, the task can be executed immediately or registered for later
execution. A programmer-specified "if" clause that is FAL SE forces immediate execution of
the task. The implementation can also force immediate execution; for example, atask within a
task is never registered for later execution, it executesimmediately.

End of atask
At the end of atask, the behavior of the scheduling point depends on how the task was
executed. If the task was immediately executed, execution continues to the next statement. If
it was previously registered and is being executed "out of sequence”, control returns to where
the task was executed - a taskwait.

Taskwait
A taskwait executes all registered tasks at thetime it is called. In addition to executing all
tasks registered by the calling thread, it also executes tasks previously registered by other
threads. Let’ s take aquick look at this process.

Suppose thread O called taskwait and is executing tasks and that thread 1 is registering tasks.
Depending on the timing between thread 0 and thread 1, thread 0 may execute none of the
tasks, all of the tasks, or some of tasks.

Taskwait waits only for immediate children tasks, not for descendant tasks. You can achieve waiting on
descendants but ensuring that each child also waits on its children.

Barrier
A barrier can be explicit or implicit. An example of an implicit barrier is the end of a parallel
region.

The barrier effectively contains taskwaits. All threads must arrive at the barrier for the barrier
to complete. This rule guarantees that all tasks have been executed at the completion of the
barrier.

8.3.3. Task Construct

A task construct is atask directive plus a structured block, with the following syntax:

#pragma omp task [clause[[,]clause] ...]
structured-block

where clause can be one of the following:

if (expression)

untied

shared (list)

private (list)
firstprivate (list)
default (shared | none)

Consider the following simple example of a program using tasks. This exampleillustrates
the difference between registering tasks and executing tasks, a concept that is fundamental to
understanding tasks.

PGI Fortran Reference Guide 148

OpenMP Directives for Fortran

This program contains a parallel region that contains a single region. The single region contains
aloop that registers 10 tasks. Before reading the explanation that follows the example, consider
what happens if you use four threads with this example.

OpenMP Task Fortran Example

PROGRAM MAIN
INTEGER I
INTEGER omp get thread num
!SOMP PARALLEL PRIVATE (I)
! SOMP SINGLE
DO I =1, 10
CALL SLEEP (MOD(I,2))
PRINT *,"TASK ",I," REGISTERED BY THREAD ",omp get thread num()
! SOMP TASK FIRSTPRIVATE (I)
CALL SLEEP (MOD(I,5))
PRINT *,"TASK ",I," EXECUTED BY THREAD ",omp get thread num()
!SOMP END TASK
ENDDO
!SOMP END SINGLE
!SOMP END PARALLEL
END

If you run this program with four threads, 0 through 3, one thread isin the single region
registering tasks. The other three threads are in the implied barrier at the end of the single region

executing tasks. Further, when the thread executing the single region completes registering the
tasks, it joins the other threads and executes tasks.

The program includes callsto s1eep to dow the program and allow all threads to participate.

The output for the Fortran example is similar to the following. In this output, thread 1 was
registering tasks while the other three threads - 0,2, and 3 - were executing tasks When all 10
tasks were registered, thread 1 began executing tasks as well.

TASK 1 REGISTERED BY THREAD 1
TASK 2 REGISTERED BY THREAD 1
TASK 1 EXECUTED BY THREAD 0
TASK 3 REGISTERED BY THREAD 1
TASK 4 REGISTERED BY THREAD 1
TASK 2 EXECUTED BY THREAD 3
TASK 5 REGISTERED BY THREAD 1
TASK 6 REGISTERED BY THREAD 1
TASK 6 EXECUTED BY THREAD 3
TASK 5 EXECUTED BY THREAD 3
TASK 7 REGISTERED BY THREAD 1
TASK 8 REGISTERED BY THREAD 1
TASK 3 EXECUTED BY THREAD 0
TASK 9 REGISTERED BY THREAD 1
TASK 10 REGISTERED BY THREAD 1
TASK 10 EXECUTED BY THREAD 1
TASK 4 EXECUTED BY THREAD 2
TASK 7 EXECUTED BY THREAD 0
TASK 8 EXECUTED BY THREAD 3
TASK 9 EXECUTED BY THREAD 1

8.4. Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran
compilers when the option —mp is specified on the command line. The form of a parallelization
directiveis:

PGI Fortran Reference Guide 149

OpenMP Directives for Fortran

sentinel directive name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with
theserules:

» Beoneof these: '$OMP, CSOMP, or * $OMP.
» Must start in column 1 (one).

» Must appear as a single word without embedded white space.
» The sentinel marking a DOACROSS directiveis C$.

In addition to the sentinel rules, the directive must also comply with these rules:

» Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply
to the directive line.

» Initia directive lines must have a space or zero in column six.

» Continuation directive lines must have a character other than a space or azero in column six.
Continuation lines for CSDOACROSS directives are specified using the C$& sentinel.

» Directiveswhich are presented in pairs must be used in pairs.

Valid clauses depend on the directive. Clauses associated with directives have these
characteristics:

» Theorder in which clauses appear in the parallelization directivesis not significant.

» Commas separate clauses within the directives, but commas are not allowed between the
directive name and the first clause.

» Clauses on directives may be repeated as needed, subject to the restrictions listed in the
description of each clause.

8.5. Directive Recognition

The compiler option -mp enables recognition of the parallelization directives. The use of this
option also implies:
-Mreentrant
Local variables are placed on the stack and optimizations, such as -Mno f rame, that may
result in non-reentrant code are disabled.
-Miomutex
Critical sections are generated around Fortran 1/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given
with each section, the routines omp_get_num_threads() and omp_get_thread num() are used;
refer to Runtime Library Routines for more information. These routines return the number of
threads currently in the team executing the parallel region and the thread number within the team,
respectively.

8.6. Directive Clauses

Some directives accept clauses that further allow a user to control the scope attributes of variables
for the duration of the directive or pragma. Not all clauses are alowed on all directives, so the

PGI Fortran Reference Guide 150

OpenMP Directives for Fortran

clausesthat are valid are included with the description of the directive. Typicaly, if no data scope
clause is specified for variables, the default scopeis share

The following table provides a brief summary of the clauses associated with OpenMP directives
that PGI supports. Following the table is more detailed information about these clauses. For
complete information on OpenMP and use of these clauses, refer to the User’s Guide and to the
OpenM P documentation available on the WorldWide Web.

Table 32 Directive Clauses Summary Table

Clause Applies to Description

COLLAPSE (n) DO...END DO Specifies how many loops are associated with the loop
PARALLEL DO . construct.
END PARALLEL DO
PARALLEL WORKSHARE

COPYIN (list) PARALLEL Allows threads to access the master thread's value, for

a threadprivate variable. You assign the same value
PARALLEL DO ... to threadprivate variables for each thread in the team
END PARALLEL DO executing the parallel region. Then, for each variable
PARALLEL SECTIONS ... specified, the value of the variable in the master thread
END PARALLEL SECTIONS | of the team is copied to the threadprivate copies at the
PARALLEL WORKSHARE beginning of the parallel region.

COPYPRIVATE(list) END SINGLE Specifies that one or more variables should be shared
among all threads. This clause provides a mechanism
to use a private variable to broadcast a value from one
member of a team to the other members.

DEFAULT PARALLEL Specifies the behavior of unscoped variables in a parallel

PARALLEL DO ... region, such as the data-sharing attributes of variables.
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
COPYPRIVATE(list) DO Specifies that each thread should have its own instance
PARALLEL of a \{arlablg, and that each varlaplg in the. list should be
initialized with the value of the original variable, because
PARALLEL DO .. it exists before the parallel construct.
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
SINGLE

PGI Fortran Reference Guide

PARALLEL ... END
PARALLEL

PARALLEL DO ...

Specifies whether a loop should be executed in parallel
orin serial.

151

Clause

Applies to

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

OpenMP Directives for Fortran

Description

LASTPRIVATE(list)

DO

PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
SECTIONS

Specifies that the enclosing context's version of the
variable is set equal to the private version of whichever
thread executes the final iteration of a for-loop construct.

NOWAIT

DO ..END DO
SECTIONS
SINGLE
WORKSHARE ...
END WORKSHARE

Qverrides the barrier implicit in a directive.

NUM_THREADS

PARALLEL

PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

Sets the number of threads in a thread team.

ORDERED

DO...END DO
PARALLEL DO ...
END PARALLEL DO

Required on a parallel FOR statement if an ordered
directive is used in the loop.

PRIVATE

DO

PARALLEL

PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS

SINGLE

Specifies that each thread should have its own instance
of a variable.

REDUCTION({operator |
intrinsic } : list)

DO

PARALLEL

PARALLEL DO ...

END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS

Specifies that one or more variables that are private to
each thread are the subject of a reduction operation at
the end of the parallel region.

PGI Fortran Reference Guide

152

OpenMP Directives for Fortran

Clause Applies to Description

SCHEDULE(type [,chunk]) DO .. END DO Applies to the FOR directive, allowing the user to
P AR.ALLEL 00 specify the chunking method for parallelization. Work is

assigned to threads in different manners depending on

END PARALLEL DO the scheduling type or chunk size used.

SHARED PARALLEL Specifies that one or more variables should be shared
PARALLEL DO among all threads. All threads within a team access the
END PARALLEI_".DO same storage area for shared variables
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

UNTIED TASK Specifies that any thread in the team can resume the
TASKWAIT task region after a suspension.

8.6.1. COLLAPSE (n)

The COLLAPSE(n) clause specifies how many |oops are associated with the loop construct.

The parameter of the collapse clause must be a constant positive integer expression. If no
COLLAPSE clauseis present, the only loop that is associated with the loop construct is the one
that immediately follows the construct.

If more than one loop is assaociated with the loop construct, then the iterations of all associated
loops are collapsed into one larger iteration space, which is then divided according to the
schedule clause. The sequential execution of the iterationsin all associated |oops determines the
order of the iterations in the collapsed iteration space.

If the loop directive contains a COLLAPSE clause then there may be more than one associated
loop.

8.6.2. COPYIN (list)

The COPY IN(list) clause allows threads to access the master thread's value, for a threadprivate
variable. Y ou assign the same value to threadprivate variables for each thread in the team
executing the parallél region; that is, for each variable specified, the value of the variable in the
master thread of the team is copied to the threadprivate copies at the beginning of the parallel
region.

The COPYIN clause applies only to THREADPRIVATE common blocks. If you specify a
COPYIN clause, here are afew tips:

» Y ou cannot specify the same entity name more than once in the list.
» You cannot specify the same entity name in separate COPY IN clauses of the same directive.

» You cannot specify both a common block hame and any variable within that same named
common block in the list.

PGI Fortran Reference Guide 153

OpenMP Directives for Fortran

» You cannot specify both a common block name and any variable within that same named
common block in separate COPY IN clauses of the same directive.

8.6.3. COPYPRIVATE(list)

The COPY PRIVATE(list) clause specifies that one or more variables should be shared among all
threads. This clause provides a mechanism to use a private variable to broadcast a value from one
member of ateam to the other members.

You use a COPY PRIVATE(list) clause on an END SINGLE directive to cause the variablesin
the list to be copied from the private copiesin the single thread that executes the SINGLE region
to the other copiesin all other threads of the team at the end of the SINGLE region.

The COPYPRIVATE clause must not appear on the same END SINGLE directive as a NOWAIT clause.

The compiler evaluates a COPYPRIVATE clause before any threads have passed the implied BARRIER
directive at the end of that construct.

8.6.4. DEFAULT

The DEFAULT clause specifies the behavior of unscoped variablesin a parallel region, such
as the data-sharing attributes of variables. The DEFAULT clause lets you specify the default
attribute for variablesin the lexical extent of the parallel region. Individual clauses specifying
PRIVATE, SHARED, and so on, override the declared DEFAULT.

Specifying DEFAULT(NONE) declares that thereis no implicit default. With this declaration,
each variable in the parallel region must be explicitly listed with an attribute of PRIVATE,
SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION.

8.6.5. FIRSTPRIVATE(list)

The FIRSTPRIVATE(list) clause specifies that each thread should have its own instance of a
variable, and that each variable in the list should be initialized with the value of the original
variable, because it exists before the parallel construct.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as
PRIVATE variables; however, these variables are initialized from the original object that exists
prior to entering the parallel region.

If adirective construct contains a FIRSTPRIVATE argument to a Message Passing Interface
(MPI) routine performing non-blocking communication, the MPI communi cation must complete
before the end of the construct.

8.6.6. IF()

The IF() clause specifies whether aloop should be executed in parallel or in serial.

PGI Fortran Reference Guide 154

OpenMP Directives for Fortran

In the presence of an IF clause, the parallel region is executed in paralel only if the
corresponding scalar logical expression evaluatesto.TRUE.. Otherwise, the code
within the region is executed by a single processor, regardless of the value of the environment
variable OMP NUM THREADS.

8.6.7. LASTPRIVATE(list)

The LASTPRIVATE(list) clause specifies that the enclosing context's version of the variable
is set equal to the private version of whichever thread executes the final iteration (for-loop
construct).

8.6.8. NOWAIT

The NOWAIT clause overrides the barrier implicit in a directive. When you specify NOWAIT, it
removes the implicit barrier synchronization at the end of afor or sections construct.

8.6.9. NUM_THREADS

The NUM_THREADS clause sets the number of threads in athread team. The num_threads
clause allows a user to request a specific number of threads for a parallel construct. If the
num_threads clause is present, then

8.6.10. ORDERED

The ORDERED clause specifiesthat aloop is executed in the order of the loop iterations. This
clauseisrequired on a parallel FOR statement when an ordered directive is used in the loop.

Y ou use this clause in conjunction with aDO or SECTIONS construct to impose a seria order on
the execution of a section of code. If ORDERED constructs are contained in the dynamic extent
of the DO construct, the ordered clause must be present on the DO directive.

8.6.11. PRIVATE

The PRIVATE clause specifies that each thread should have its own instance of avariable.
Therefore, variables specified in aPRIVATE list are private to each thread in ateam. In effect,
the compiler creates a separate copy of each of these variables for each thread in the team. When
an assignment to a private variable occurs, each thread assigns to its local copy of the variable.
When operations involving a private variable occur, each thread performs the operations using its
local copy of the variable.

Tips about private variables:

» Variables declared private in aparalel region are undefined upon entry to the paralel
region. If the first use of a private variable within the parallel region isin aright-hand-side
expression, the results of the expression will be undefined, indicating the probability of a
coding error.

PGI Fortran Reference Guide 155

OpenMP Directives for Fortran

» Variables declared private in aparallel region are undefined when serial execution resumes
at the end of the parallel region.

8.6.12. REDUCTION

The REDUCTION clause specifies that one or more variables that are private to each thread are
the subject of areduction operation at the end of the parallel region. updates named variables
declared on the clause within the directive construct.

Intermediate values of REDUCTION variables are not used within the parallel construct, other
than in the updates themselves.Variables that appear in the list of aREDUCTION clause must be
SHARED. A private copy of each variablein 1ist is created for each thread as if the PRIVATE
clause had been specified. Each private copy isinitialized according to the operator as specified
in the following table:

Table 33 Initialization of REDUCTION Variables
Operator / Operator /
Intrinsic Initialization Intrinsic Initialization
+ 0 NEQV. .FALSE.
* 1 MAX Smallest representable number
0 MIN Largest representable number
AND. .TRUE. IAND All bits on
.OR. .FALSE. IOR 0
EQV. .TRUE. [EOR 0

At the end of the parallél region, areduction is performed on the instances of variables appearing
in 11ist using operator or intrinsic as specified in the REDUCTION clause. Theinitial value

of each REDUCTION variableisincluded in the reduction operation. If the {operator |
intrinsic} : portion of the REDUCTION clause is omitted, the default reduction operator is
"+" (addition).

8.6.13. SCHEDULE

The SCHEDULE clause specifies how iterations of the DO loop are divided up between
processors. Given a SCHEDULE (type [, chunk]) clause, the type can be STATIC, DYNAMIC,
GUIDED, or RUNTIME, defined in the following list.

» When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. The blocks of iterations are statically assigned to threads in a round-
robin fashion in order of the thread ID numbers. The chunk must be a scalar integer
expression. If chunk is not specified, a default chunk size is chosen equal to:

(number of iterations + omp num threads() - 1) / omp num threads()

PGI Fortran Reference Guide 156

OpenMP Directives for Fortran

» When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. As each thread finishes a piece of the iteration space, it dynamically
obtains the next set of iterations. The chunk must be a scalar integer expression. If no chunk
is specified, adefault chunk size is chosen equal to 1.

» When SCHEDULE (GUIDED, chunk) is specified, the chunk sizeis reduced in an
exponentially decreasing manner with each dispatched piece of the iteration space. Chunk
specifies the minimum number of iterations to dispatch each time, except when there are less
than chunk iterations remaining to be processed, at which point all remaining iterations are
assigned. If no chunk is specified, adefault chunk size is chosen equal to 1.

» When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is
deferred until runtime. The schedule type and chunk size can be chosen at runtime by setting
the OMP_SCHEDULE environment variable. If this environment variable is not set, the
resulting schedule is equivalent to SCHEDULE(STATIC).

8.6.14. SHARED

The SHARED clause specifies variables that must be available to al threads. If you specify
avariable as SHARED, you are stating that all threads can safely share a single copy of the
variable. When one or more variables are shared among al threads, all threads access the same
storage areafor the shared variables.

8.6.15. UNTIED
The UNTIED clause specifies that any thread in the team can resume the task region after a

suspension.

The thread number may change at any time during the execution of an untied task. Therefore, the value
returned by omp get thread numis generally not useful during execution of such a task region.

8.7. Directive Summary Table

Table 34 provides a brief summary of the directives and pragmas that PGI supports.

Table 34 Directive Summary Table

Directive Description

ATOMIC [TYPE} ... END ATOMIC Semantically equivalent to enclosing a single statement in the CRITCIAL...END
CRITICAL directive.

TYPE may be empty or one of the following: UPDATE, READ, WRITE, or CAPTURE.
The END ATOMIC directive is only allowed when ending ATOMIC CAPTURE regions.

D Only certain statements are allowed.

PGI Fortran Reference Guide 157

OpenMP Directives for Fortran

Directive Description

BARRIER

Synchronizes all threads at a specific point in a program so that all threads complete
work to that point before any thread continues.

CRITICAL ... END CRITICAL

Defines a subsection of code within a parallel region, a critical section, which is
executed one thread at a time.

DO...END DO Provides a mechanism for distribution of loop iterations across the available threads
in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

FLUSH When this appears, all processor-visible data items, or, when a list is present (FLUSH

[list]), only those specified in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects in memory.

MASTER ... END MASTER

Designates code that executes on the master thread and that is skipped by the other
threads.

ORDERED Defines a code block that is executed by only one thread at a time, and in the order
of the loop iterations; this makes the ordered code block sequential, while allowing
parallel execution of statements outside the code block.

PARALLEL DO Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL

Supports a fork/join execution model in which a single thread executes all statements
until a parallel region is encountered.

PARALLEL SECTIONS

Defines a non-iterative work-sharing construct without the need to define an
enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE directive inside a
PARALLEL construct.

SECTIONS ... END SECTIONS

Defines a non-iterative work-sharing construct within a parallel region.

SINGLE ... END SINGLE

Designates code that executes on a single thread and that is skipped by the other
threads.

TASK Defines an explicit task.

TASKYIELD Specifies a scheduling point for a task where the currently executing task may be
yielded, and a different deferred task may be executed.

TASKWAIT Specifies a wait on the completion of child tasks generated since the beginning of the
current task.

THREADPRIVATE When a common block or variable that is initialized appears in this directive, each

thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE

Provides a mechanism to effect parallel execution of non-iterative but implicitly data
parallel constructs.

8.7.1. ATOMIC

The OpenMP ATOMIC directive is semantically equivalent to a single statement in a
CRITICAL...END CRITICAL directive.

Syntax

!SOMP ATOMIC

PGI Fortran Reference Guide 158

OpenMP Directives for Fortran

Usage

The ATOMIC directiveis semantically equivalent to enclosing the following single statement in
aCRITICAL / END CRITICAL directive pair.

The statements must be one of the following forms:

X = x operator expr x = intrinsic (x, expr)

b4 expr operator x b4 intrinsic (expr, x)

where x isascalar variable of intrinsic type, expr isascalar expression that does not reference
%, intrinsic isoneof MAX, MIN, IAND, IOR, or IEOR, and operator isoneof +, *,
-, 1, ./AND., .OR., .EQV., or .NEQV..

8.7.2. BARRIER

The OpenMP BARRIER directive defines a point in a program where each thread waits for all
other threads to arrive before continuing with program execution.

Syntax

! SOMP BARRIER

Usage

There may be occasionsin a parallel region when it is necessary that all threads complete work

to that point before any thread is allowed to continue. The BARRIER directive synchronizes all
threads at such a point in a program. Multiple barrier points are allowed within a parallel region.
The BARRIER directive must either be executed by all threads executing the parallel region or by
none of them.

8.7.3. CRITICAL ... END CRITICAL

The CRITICAL...END CRITICAL directive requires athread to wait until no other thread is
executing within a critical section.

Syntax
I'SOMP CRITICAL [(name)]

< Fortran code executed in body of critical section >
!'SOMP END CRITICAL [(name)]

Usage

Within a parallel region, there may exist subregions of code that will not execute properly when
executed by multiple threads simultaneously. Thisissue is often due to a shared variable that is
written and then read again.

PGI Fortran Reference Guide 159

OpenMP Directives for Fortran

The CRITICAL... END CRITICAL directive pair defines a subsection of code within a parallel
region, referred to as acritical section, which is executed one thread at atime.

Thefirst thread to arrive at a critical section isthe first to execute the code within the section. The
second thread to arrive does not begin execution of statementsin the critical section until the first
thread exits the critical section. Likewise, each of the remaining threads wait its turn to execute
the statements in the critical section.

Y ou can use the optional name argument to identify the critical region. Names that identify
critical regions have external linkage and are in a name space separate from the name spaces used
by labels, tags, members, and ordinary identifiers. If aname argument appears on a CRITICAL
directive, the same name must appear on the END CRITICAL directive.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

Example of Critical...End Critical directive

PROGRAM CRITICAL USE
REAL A(100,100),MX, LMX
INTEGER I, J MX = -1.0
IMX = -1.0
CALL RANDOM SEED ()
CALL RANDOM NUMBER (A)

1$0MP PARALLEL PRIVATE (I), FIRSTPRIVATE (LMX)

!'SOMP DO
DO J=1,100
DO I=1,100

LMX = MAX(A(I,J),LMX)

ENDDO ENDDO
!$SOMP CRITICAL

MX = MAX (MX, LMX)
!'SOMP END CRITICAL
!SOMP END PARALLEL

PRINT *,"MAX VALUE OF A IS ", MX
END
This program could also be implemented without the critical region by declaring Mx asa
reduction variable and performing the Max calculation in the loop using Mx directly rather than
using .Mx. Refer to PARALLEL...END PARALLEL and DO...END DO for more information on

how to use the REDUCTION clause on a parallel DO loop.

8.7.4. C\SDOACROSS

The C$DOACROSS directive, while not part of the OpenMP standard, is supported for
compatibility with programs parallelized using legacy SGI-style directives.

Syntax

CSDOACROSS [Clauses]
< Fortran DO loop to be executed in parallel >

PGI Fortran Reference Guide 160

OpenMP Directives for Fortran

Clauses
{PRIVATE | LOCAL} (list) CHUNK=<integer_expression>
{SHARED | SHARE} (list) IF (logical_expression)

MP_SCHEDTYPE={SIMPLE | INTERLEAVE}

Usage

The C$DOACROSS directive has the effect of a combined parallel region and parallel DO
loop applied to the loop immediately following the directive. It is very similar to the OpenMP
PARALLEL DO directive, but provides for backward compatibility with codes parallelized for
SGI systems prior to the OpenM P standardization effort.

The C$DOACROSS directive must not appear within a parallel region. It is a shorthand notation
that tells the compiler to parallelize the loop to which it applies, even though that loop is not
contained within a parallel region.

Important While The CSDOACROSS syntax may be more convenient, if multiple successive DO loops are
to be parallelized, it is more efficient to define a single enclosing parallel region and parallelize each loop
using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as a
private variable in aparallel region or DO. A variable declared SHARED or SHAREtoaC
$DOACROSS loop is shared among the threads, meaning that only 1 copy of the variable exists
to be used and/or modified by all of the threads. Thisis equivalent to the default status of a
variable that is not listed as PRIVATE in aparalel region or DO. This same default statusis used
in CSDOACROSS loops as well.

For more information on clauses, refer to Directive Clauses.

8.7.5.DO...END DO

The OpenMP DO...END DO directive supports parallel execution and the distribution of loop
iterations across available threads in a parallel region.

Syntax:

!SOMP DO [Clauses] < Fortran DO loop to be executed in parallel> [!SOMP END
DO [NOWAIT]

PGI Fortran Reference Guide 161

OpenMP Directives for Fortran

Clauses:
PRIVATE (list) SCHEDULE (type [, chunk])
FIRSTPRIVATE (list) COLLAPSE (n)
LASTPRIVATE list) ORDERED

REDUCTION({operator | intrinsic} : list)

Usage:

Thereal purpose of supporting parallel execution is the distribution of work across the available
threads. The DO... END DO directive pair provides a convenient mechanism for the distribution
of loop iterations across the available threads in a parallel region.

While you can explicitly manage work distribution with constructs such as the following one,
these constructs are not in the form of directives.

Examples:

IF (omp get thread num() .EQ. 0)
THEN

ELSE IF (omp get thread num() .EQ. 1)
THEN

ENDif'
Tips
Remember these items about clausesin the DO...END DO directives:

» Variablesdeclared in aPRIVATE list are treated as private to each thread participating in
paralel execution of the loop, meaning that a separate copy of the variable exists with each
thread.

» Variablesdeclared in aFIRSTPRIVATE list are PRIVATE, and areinitialized from the
original object existing before the construct.

» Variablesdeclared in aLASTPRIVATE list are PRIVATE, and the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

» The REDUCTION clause for the directive is described in REDUCTION.

» The SCHEDULE clause specifies how iterations of the DO loop are divided up between
threads. For more information on this clause, refer to SCHEDULE.

» If ORDERED code blocks are contained in the dynamic extent of the DO directive, the
ORDERED clause must be present. For more information on ORDERED code blocks, refer
to ORDERED.

» TheDO... END DO directive pair directs the compiler to distribute the iterative DO loop
immediately following the '$SOMP DO directive across the threads available to the program.
The DO loop is executed in parallel by the team that was started by an enclosing parallel
region. If the 'SOMP END DO directive is not specified, the ' $OMP DO is assumed to end

PGI Fortran Reference Guide 162

OpenMP Directives for Fortran

with the enclosed DO loop. DO... END DO directive pairs may not be nested. Branching into
or out of a!$OMP DO loop is not supported.

» By default, thereisan implicit barrier after the end of the parallel 1oop; the first thread to
complete its portion of the work waits until the other threads have finished their portion of
work. If NOWAIT is specified, the threads will not synchronize at the end of the parallel
loop.

In addition to the preceding items, remember these items about !$OMP DO loops :

» The DO loop index variable is always private.

» 1$OMP DO loops must be executed by all threads participating in the parallel region or none
at all.

» The END DO directiveis optional, but if it is present it must appear immediately after the
end of the enclosed DO loop.

» Vaues of the loop control expressions and the chunk expressions must be the same for al
threads executing the loop.

Example:
PROGRAM DO USE

REAL A(1000), B(1000)
DO I=1,1000

B(I) = FLOAT (I)
ENDDO

! SOMP PARALLEL

!SOMP DO
DO I=1,1000

A(I) = SQRT(B(I));
ENDDO

!SOMP END PARALLEL

8.7.6. FLUSH

The OpenMP FLUSH directive ensures that processor-visible dataitem are written back to
memory at the point at which the directive appears.

Syntax
!'SOMP FLUSH [(list)]
Usage

The OpenMP FLUSH directive ensures that all processor-visible dataitems, or only those
specified in list, when it is present, are written back to memory at the point at which the directive

appears.

8.7.7. MASTER ... END MASTER

The MASTER...END MASTER directive allows the user to designate code that must execute on
amaster thread and that is skipped by other threads in the team of threads.

PGI Fortran Reference Guide 163

OpenMP Directives for Fortran

Syntax

! SOMP MASTER
< Fortran code executed in body of MASTER section >
!SOMP END MASTER

Usage

A master thread is a single thread of control that begins an OpenM P program and which is
present for the duration of the program. In aparallel region of code, there may be a sub-region of
code that should execute only on the master thread. Instead of ending the parallel region before
this subregion and then starting it up again after this subregion, the MASTER... END MASTER
directive pair allows the user to conveniently designate code that executes on the master thread
and is skipped by the other threads.

» Thereisnoimplied barrier on entry to or exit from a master section of code.
» Nested master sections are ignored.
» Branching into or out of a master section is not supported.

Examples

Example of Fortran MASTER...END MASTER directive

PROGRAM MASTER USE

INTEGER A(0:1)

INTEGER omp get thread num

A=-1
!SOMP PARALLEL

A(omp get thread num()) = omp get thread num()
! SOMP MASTER

PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!SOMP END MASTER
!SOMP END PARALLEL

PRINT *, "A(0)=", A(0), "™ A(l)=", A(l)
END

8.7.8. ORDERED

The OpenMP ORDERED directive alows the user to identify a portion of code within an
ordered code block that must be executed in the original, sequential order, while allowing parallel
execution of statements outside the code block.

Syntax
! SOMP ORDERED

< Fortran code block executed by processor >
!SOMP END ORDERED

Usage

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL
DO directive that includes the ORDERED clause. The structured code block between the
ORDERED / END ORDERED directivesis executed by only one thread at atime, and in the

PGI Fortran Reference Guide 164

OpenMP Directives for Fortran

order of the loop iterations. This sequentializes the ordered code block while allowing parallel
execution of statements outside the code block. The following additional restrictions apply to the
ORDERED directive:

» The ordered code block must be a structured block.
» Itisillegal to branch into or out of the block.

» A giveniteration of aloop with a DO directive cannot execute the same ORDERED
directive more than once, and cannot execute more than one ORDERED directive.

8.7.9. PARALLEL ... END PARALLEL

The OpenMP PARALLEL...END PARALLEL directive supports afork/join execution model in
which asingle thread executes all statements until a parallel region is encountered.

Syntax

!SOMP PARALLEL [Clauses]
< Fortran code executed in body of parallel region >
!'SOMP END PARALLEL

Clauses
PRIVATE(list) REDUCTION([{operator | intrinsic}] list)
SHARED((ist) COPYIN(list)
DEFAULT(PRIVATE | SHARED | NONE) IF(scalar_logical_expression)
FIRSTPRIVATE(list) NUM_THREADS(scalar_integer_expression)
Usage

Thisdirective pair declares aregion of parallel execution. It directs the compiler to create an
executable in which the statements within the structured block, such as between PARALLEL and
PARALLEL END for directives, are executed by multiple lightweight threads. The code that lies
within this structured block is called a parallel region.

The OpenMP parallelization directives support afork/join execution model in which asingle
thread executes all statements until a parallel region is encountered. At the entrance to the parallel
region, a system-dependent number of symmetric parallel threads begin executing all statements
in the parallel region redundantly. These threads share work by means of work-sharing constructs
such as parallel DO loops or FOR loops.

» The number of threadsin the team is controlled by the oMP NUM THREADS environment
variable. If oMP_NUM THREADS is not defined, the program executes parallel regions using
only one processor.

» Branching into or out of a parallel region is not supported.

» All other shared-memory parallelization directives must occur within the scope of a parallel
region. Nested PARALLEL... END PARALLEL directive pairs are not supported and are
ignored.

PGI Fortran Reference Guide 165

OpenMP Directives for Fortran

» Thereisanimplicit barrier at the end of the parallel region, which, in the directive, is
denoted by the END PARALLEL directive. When all threads have completed execution of
the parallel region, a single thread resumes execution of the statements that follow.

By default, there is no work distribution in a parallel region. Each active thread executes the entire region
redundantly until it encounters a directive that specifies work distribution. For work distribution, refer to the
DO...END DO, PARALLEL DO, or CSDOACROSS directives.

Example

Example of Fortran PARALLEL..END PARALLEL directive

PROGRAM WHICH PROCESSOR AM I
INTEGER A (0:1)
INTEGER omp get thread num
A(0) = -1
A(l) = -1
!SOMP PARALLEL
A(omp get thread num()) = omp get thread num()
!SOMP END PARALLEL
PRINT *, "A(0)=",A(0),"™ A(1l)=",A(1)
END

Clause Usage

COPYIN: The COPYIN clause applies only to THREADPRIVATE common blocks. In the
presence of the COPYIN clause, data from the master thread’ s copy of the common block is
copied to the THREADPRIVATE copies upon entry to the parallel region.

IF: In the presence of an IF clause, the parallel region is executed in parallel only if the
corresponding scalar logical expression evauatesto .TRUE.. Otherwise, the code
within the region is executed by a single processor, regardless of the value of the environment
variable OMP NUM THREADS.

NUM_THREADS: If the NUM_THREADS clause is present, the corresponding expression,
scalar integer expression, must evaluateto apositive integer value. Thisvalue setsthe
maximum number of threads used during execution of the parallel region. A NUM_THREADS
clause overrides either a previous call to the library routine omp_set_num_threads() or the setting
of the OMP_NUM_THREADS environment variable.

8.7.10. PARALLEL DO

The OpenMP PARALLEL DO directiveis a shortcut for a PARALLEL region that contains a
single DO directive.

The OpenMP PARALLEL DO or DO directive must be immediately followed by a DO statement (as defined
by R818 of the ANSI Fortran standard). If you place another statement or an OpenMP directive between
the PARALLEL DO or DO directive and the DO statement, the compiler issues a syntax error.

PGI Fortran Reference Guide 166

OpenMP Directives for Fortran

Syntax

!SOMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[!SOMP END PARALLEL DO]

Clauses
PRIVATE(list) COPYIN(list)
SHARED (list) IF(scalar_logical_expression)
DEFAULT(PRIVATE | SHARED | NONE) NUM_THREADS(scalar_integer_expression)
FIRSTPRIVATE(list) SCHEDULE (type [, chunk])
LASTPRIVATE(list) COLLAPSE (n)
REDUCTION([{operator | intrinsic}:] list) ORDERED

Usage

The semantics of the PARALLEL DO directive are identical to those of a parallel region
containing only asingle parallel DO loop and directive. The available clauses are the same as
those defined in PARALLEL...END PARALLEL and DO...END DO.

n The END PARALLEL DO directive is optional.

8.7.11. PARALLEL SECTIONS

The OpenMP PARALLEL SECTIONS/END SECTIONS directive pair define tasks to be
executed in parallel; that is, they define a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

Syntax
!SOMP PARALLEL SECTIONS [CLAUSES]
[!SOMP SECTION]
< Fortran code block executed by processor i >
['SOMP SECTION]
< Fortran code block executed by processor j >

!SOMP END SECTIONS [NOWAIT]

Clauses

PRIVATE(list) REDUCTION({operator | intrinsic} : list)
SHARED((ist)

PGI Fortran Reference Guide 167

OpenMP Directives for Fortran

DEFAULT(PRIVATE | SHARED | NONE) COPYIN (list)

FIRSTPRIVATE(list) IF(scalar_logical_expression)

LASTPRIVATE(list) NUM_THREADS(scalar_integer_expression)
Usage

The PARALLEL SECTIONS/END SECTIONS directive pair define a non-iterative work-
sharing construct without the need to define an enclosing parallel region. Each section is executed
by a single processor. If there are more processors than sections, some processors will have no
work and will jump to the implied barrier at the end of the construct. If there are more sections
than processors, one or more processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL
SECTIONS/ END SECTIONS directives. In addition, the code within the PARALLEL
SECTIONS/ END SECTIONS directives must be a structured block, and the code in each
SECTION must be a structured block.

Semantics are identical to a parallel region containing only an omp sections pragma and
the associated structured block. The available clauses are as defined in PARALLEL...END
PARALLEL and DO...END DO.

8.7.12. PARALLEL WORKSHARE

The OpenMP PARALLEL WORKSHARE directive provides a short form method of including a
WORKSHARE directive inside a PARALLEL construct.

Syntax

!SOMP PARALLEL WORKSHARE [CLAUSES]
< Fortran structured block to be executed in parallel >
[!SOMP END PARALLEL WORKSHARE]

!SOMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[!SOMP END PARALLEL DO]

Clauses
PRIVATE(list) COPYIN(list)
SHARED(list) IF(scalar_logical_expression)
DEFAULT(PRIVATE | SHARED | NONE) NUM_THREADS(scalar_integer_expression)
FIRSTPRIVATE(list) SCHEDULE (type [, chunk])
LASTPRIVATE(list) COLLAPSE (n)
REDUCTION([{operator | intrinsic}:] list) ORDERED

PGI Fortran Reference Guide 168

OpenMP Directives for Fortran

Usage

The OpenMP PARALLEL WORKSHARE directive provides a short form method of including
aWORKSHARE directive inside a PARALLEL construct. The semantics of the PARALLEL
WORKSHARE directive are identical to those of aparallel region containing asingle
WORKSHARE construct.

The END PARALLEL WORKSHARE directiveis optional, and NOWAIT may not be specified
on an END PARALLEL WORKSHARE directive. The available clauses are as defined in
PARALLEL...END PARALLEL.

8.7.13. SECTIONS ... END SECTIONS

The OpenMP SECTIONS/ END SECTIONS directive pair define a non-iterative work-sharing
construct within aparallel region in which each section is executed by a single processor.

Syntax

!SOMP SECTIONS [Clauses]
[!SOMP SECTION]

< Fortran code block executed by processor i >
[!SOMP SECTION]

< Fortran code block executed by processor j >

!SOMP END SECTIONS [NOWAIT]

Clauses
PRIVATE(list) LASTPRIVATE(list)
FIRSTPRIVATE(list) REDUCTION({operator | intrinsic} : list)
Usage

The SECTIONS/ END SECTIONS directive pair defines a non-iterative work-sharing construct
within a parallel region. Each section is executed by a single processor. If there are more
processors than sections, some processors have no work and thus jump to the implied barrier at
the end of the construct. If there are more sections than processors, one or more processors must
execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS/
END SECTIONS directives. In addition, the code within the SECTIONS/ END SECTIONS
directives must be a structured block.

The available clauses are as defined in PARALLEL...END PARALLEL and DO...END DO.

8.7.14. SINGLE ... END SINGLE

The SINGLE...END SINGLE directive designates code that executes on a single thread and that
is skipped by the other threads.

PGI Fortran Reference Guide 169

OpenMP Directives for Fortran

Syntax

SOMP SINGLE [Clauses]
< Fortran code executed in body of SINGLE processor section >
!SOMP END SINGLE [NOWAIT]

Clauses

PRIVATE(list)
FIRSTPRIVATE(list)
COPYPRIVATE(list)

Usage

In aparalel region of code, there may be a sub-region of code that only executes correctly on a
single thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the SINGLE...END SINGLE directive pair or the omp single pragma
lets you conveniently designate code that executes on a single thread and is skipped by the other
threads.

The following restrictions apply to the SINGLE...END SINGLE directive:

» Thereisanimplied barrier on exit from a SINGLE...END SINGLE section of code unless
the optional NOWAIT clauseis specified.

» Nested single process sections are ignored.
» Branching into or out of asingle process section is not supported.

Examples

PROGRAM SINGLE_USE

INTEGER A (0:1)

INTEGER omp get thread num()
!SOMP PARALLEL

A(omp get thread num()) = omp get thread num()
! SOMP SINGLE

PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!SOMP END SINGLE
'SOMP END PARALLEL

PRINT *, "A(0)=",A(0), " A(1l)=", A(1l)
END

8.7.15. TASK

The OpenMP TASK directive defines an explicit task.

Syntax
SOMP TASK [Clauses]

< Fortran code executed as task >
!SOMP END TASK

PGI Fortran Reference Guide 170

OpenMP Directives for Fortran

Clauses
IF(scalar_logical_expression) PRIVATE(list)
UNTIED FIRSTPRIVATE ist)
DEFAULT(private | firstprivate | shared | none) SHARED(list)
Usage

The TASK / END TASK directive pair defines an explicit task.

When athread encounters atask construct, atask is generated from the code for the associated
structured block. The data environment of the task is created according to the data-sharing
attribute clauses on the task construct and any defaults that apply. The encountering thread may
immediately execute the task, or delay its execution. If the task execution is delayed, then any
thread in the team may be assigned the task. Completion of the task can be guaranteed using task
synchronization constructs.

A task construct may be nested inside an outer task, but the task region of the inner task isnot a
part of the task region of the outer task.

When an if clause is present on atask construct and the if clause expression evaluates to false, the
encountering thread must suspend the current task region and begin execution of the generated
task immediately, and the suspended task region may not be resumed until the generated task is
completed. Thetask still behaves as a distinct task region with respect to data environment, lock
ownership, and synchronization constructs.

Use of a variable in an if clause expression of a task construct causes an implicit reference to the variable
in all enclosing constructs.

A thread that encounters atask scheduling point within the task region may temporarily suspend
the task region. By default, atask istied and its suspended task region can only be resumed by the
thread that started its execution. If the untied clause is present on atask construct, any thread in
the team can resume the task region after a suspension.

Thetask construct includes atask scheduling point in the task region of its generating task,
immediately following the generation of the explicit task. Each explicit task region includes a
task scheduling point at its point of completion. An implementation may add task scheduling
points anywhere in untied task regions.

When storage is shared by an explicit task region, it is the programmer's responsibility to ensure, by
adding proper synchronization, that the storage does not reach the end of its lifetime before the explicit task
region completes its execution.

PGI Fortran Reference Guide 171

OpenMP Directives for Fortran

Restrictions
The following restrictions apply to the TASK directive:

» A program that branchesinto or out of atask region is non-conforming.

» A program must not depend on any ordering of the evaluations of the clauses of the task
directive, or on any side effects of the evaluations of the clauses.

» At most oneif clause can appear on the directive.

» Unsynchronized use of Fortran 1/0O statements by multiple tasks on the same unit has
unspecified behavior.

8.7.16. TASKWAIT

The OpenMP TASKWAIT directive specifies await on the completion of child tasks generated
since the beginning of the current task.

Syntax

! SOMP TASKWAIT

Clauses
IF(scalar_logical_expression) PRIVATE (list)
UNTIED FIRSTPRIVATE(list)
DEFAULT (private | firstprivate | shared | none) SHARED(list)

Usage

The OpenMP TASKWAIT directive specifies await on the completion of child tasks generated
since the beginning of the current task.

Restrictions

The following restrictions apply to the TASKWAIT directive:

» The TASKWAIT directive and the omp taskwait pragma may be placed only at a point
where a base language statement is allowed.

» Thetaskwait directive may not be used in place of the statement following an if, while,do,
switch, or label.

8.7.17. THREADPRIVATE

The OpenMP THREADPRIVATE directive identifies a Fortran common block as being private
to each thread.

PGI Fortran Reference Guide 172

OpenMP Directives for Fortran

Syntax

! SOMP THREADPRIVATE (list)

Usage

The 11ist for thisdirective isa comma-separated list of named variables to be made private to
each thread or named common blocks to be made private to each thread but global within the
thread.

On entry to aparallel region, datain a THREADPRIVATE common block or variableis
undefined unless COPY IN is specified on the PARALLEL directive. When a common block or
variable that isinitialized using DATA statements appearsin a THREADPRIVATE directive,
each thread’ s copy isinitialized once prior to itsfirst use.

Restrictions
The following restrictions apply to the THREADPRIVATE directive:

» The THREADPRIVATE directive must appear after every declaration of athread private
common block.

» Only named common blocks can be made thread private.

» Common block names must appear between sashes, such as /common_block name/.

» Thisdirective must appear in the declarations section of a program unit after the declaration
of any common blocks or variables listed.

» ltisillegal for aTHREADPRIVATE common block or its constituent variables to appear in
any clause other than a COPY IN clause.

» A variable can appear in a THREADRIVATE directive only in the scope in which
itis declared. It must not be an element of a common block or be declared in an
EQUIVALENCE statement.

» A variablethat appearsin a THREADPRIVATE directive and is not declared in the scope of
amodule must have the SAVE attribute.

8.7.18. WORKSHARE ... END WORKSHARE

The OpenMP WORK SHARE ... END WORKSHARE directive pair provides a mechanism to
effect parallel execution of non-iterative but implicitly data parallel constructs.

Syntax

! SOMP WORKSHARE
< Fortran structured block to be executed in parallel >
! SOMP END WORKSHARE [NOWAIT]

Usage

The Fortran structured block enclosed by the WORKSHARE ... END WORK SHARE directive
pair can consist only of the following types of statements and constructs:

PGI Fortran Reference Guide 173

OpenMP Directives for Fortran

» Array assignments

» Scalar assignments

» FORALL statements or constructs

» WHERE statements or constructs

» OpenMP ATOMIC, CRITICAL or PARALLEL constructs

The work implied by these statements and constructs is split up between the threads executing the
WORKSHARE construct in away that is guaranteed to maintain standard Fortran semantics. The
goa of the WORKSHARE construct isto effect paralel execution of non-iterative but implicitly
data parallel array assignments, FORALL, and WHERE statements and constructs intrinsic to

the Fortran language beginning with Fortran 90. The Fortran structured block contained within a
WORKSHARE construct must not contain any user-defined function calls unless the function is
ELEMENTAL.

8.8. Runtime Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution
environment.

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP runtime libraries — up to the hard limit of 256 threads. The OpenPOWER
compiler relies on the llvm OpenMP runtime, which has a maximum of 2% threads.

The following table summarizes the runtime library calls.

Table 35 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When called from a serial region,
this function returns 1. A nested parallel region is the same as a single parallel region. By default, the value returned by this
function is equal to the value of the environment variable oMP_NUM THREADS or to the value set by the last previous call to
omp set num threads().

Fortran integer function omp get num threads/()

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine can only be called from a serial region of code. If it is called from within a parallel region, or from within a
subroutine that is called from within a parallel region, the results are undefined. Further, this subroutine has precedence over the
OMP_NUM THREADS environment variable.

Fortran subroutine omp set num threads (scalar integer exp)

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and omp get num_threads () -1. When
called from a serial region, this function returns 0. A nested parallel region is the same as a single parallel region.

PGI Fortran Reference Guide 174

OpenMP Directives for Fortran

Runtime Library Routines with Examples

Fortran integer function omp get thread num()

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp_get ancestor thread num(level)
integer level

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call.

Fortran integer function omp get active level ()

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp get level ()

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp _get num threads ().

If omp set num threads () is used to change the number of processors, subsequent calls to
omp_get max threads () return the new value. Further, this function returns the maximum value whether executing from a
parallel or serial region of code.

Fortran integer function omp get max threads|()

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp get num procs()

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a stack for a newly created
thread.

This value may not be the size of the stack of the current thread.

Fortran lomp_get_stack size interface

function omp get stack size ()

use omp lib kinds

integer (kind=OMP STACK SIZE KIND)
omp get stack size

end function omp get stack size

end interface

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a stack for a newly created
thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread cannot be changed. In the
PGl implementation, all OpenMP or auto-parallelization threads are created just prior to the first parallel region; therefore, only
callsto omp set stack size () thatoccur prior to the first region have an effect.

Fortran subroutine omp_set stack size(integer (KIND=OMP_STACK SIZE KIND))

omp_get_team_size

PGI Fortran Reference Guide 175

OpenMP Directives for Fortran

Runtime Library Routines with Examples

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor belongs.

Fortran integer function omp get team size (level)
integer level

omp_in_final

Returns whether or not the call is within a final task.

Returns . TRUE . if called from within a parallel region and . FALSE . if called outside of a parallel region. When called from
within a parallel region that is serialized, for example in the presence of an IF clause evaluating . FALSE ., the function returns
.FALSE..

Fortran integer function omp in final ()

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE . if called from within a parallel region and . FALSE . if called outside of a parallel region. When called from
within a parallel region that is serialized, for example in the presence of an IF clause evaluating . FALSE ., the function returns
.FALSE..

Fortran logical function omp in parallel ()

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine omp set dynamic(scalar logical exp)

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for execution of parallel regions is
enabled.

This function is recognized, but currently always returns . FALSE . for directives and zero for pragmas.

This function is recognized, but currently always returns . FALSE ..

Fortran logical function omp get dynamic ()

omp_set_nested

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp set nested(nested)
logical nested

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution of parallel regions is
enabled.

Fortran logical function omp get nested()

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine omp set schedule (kind, modifier)
include 'omp lib kinds.h'
integer (kind=omp sched kind) kind

PGI Fortran Reference Guide 176

OpenMP Directives for Fortran

Runtime Library Routines with Examples

integer modifier

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp get schedule (kind, modifier)
include 'omp lib kinds.h'

integer (kind=omp sched kind) kind
integer modifier

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp get wtime ()

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

Fortran double precision function omp get wtick()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp init lock (lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp destroy lock(lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with a lock, it is illegal to make
a call to this routine.

Fortran subroutine omp set lock (lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp unset lock(lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

omp_test_lock

PGI Fortran Reference Guide 177

OpenMP Directives for Fortran

Runtime Library Routines with Examples

Causes the calling thread to try to gain ownership of the lock associated with the variable.
The function returns . TRUE . if the thread gains ownership of the lock; otherwise, it returns . FALSE ..

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp test lock(lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

8.9. OpenMP Environment Variables

OpenMP environment variables allow you to control the behavior of OpenMP programs. These
environment variables allow you to set and pass information that can alter the behavior of
directives.

The following table provides a brief summary of these variables. After the table this section
contains more information about each of them. For complete information and more details related
to these environment variables, refer to the OpenM P documentation available on the WorldWide
Web.

Table 36 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect.

Typically enables (TRUE) or disables (FALSE) the dynamic adjustment
of the number of threads.

OMP_MAX_ACTIVE_LEVELS 1 Specifies the maximum number of nested parallel regions.
OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.
OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of

parallel regions at the corresponding nested level. For example,
OMP_NUM_THREADS=4,2 uses 4 threads at the first nested parallel
level, and 2 at the next nested parallel level.

OMP_SCHEDULE STATIC with Specifies the type of iteration scheduling and optionally the chunk size
chunk size of 1 | to use for omp for and omp parallel for loops that include the runtime
schedule clause. The supported schedule types, which can be specified
in upper- or lower-case are static, dynamic, guided, and auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can be used in
a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin or sleep

when idle. The values are ACTIVE and PASSIVE.

PGI Fortran Reference Guide 178

OpenMP Directives for Fortran

8.9.1. OMP_DYNAMIC

OMP_DYNAMIC currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) the dynamic adjustment of the number of threads.

8.9.2. OMP_MAX_ACTIVE_LEVELS

OMP_ MAX ACTIVE LEVELS specifiesthe maximum number of nested parallel regions.

8.9.3. OMP_NESTED

OMP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) nested parallelism.

8.9.4. OMP_NUM_THREADS

OMP_ NUM THREADS specifiesthe number of threads to use during execution of parallel regions.
The default value for thisvariableis 1. For historical reasons, the environment variable NCPUS is
supported with the same functionality. In the event that both OMP_NUM THREADS and NCPUS are
defined, the value of OMP_NUM THREADS takes precedence.

OMP_NUM_THREADS defines the threads that are used to execute the program, regardless of the
number of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they execute correctly. However, performance of programs executed
in this manner can be unpredictable, and oftentimes will be inefficient.

8.9.5. OMP_PROC_BIND

OMP_PROC_BIND specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

8.9.6. OMP_SCHEDULE

OMP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO
loop directives that include the SCHEDULE(RUNTIME) clause, described in SCHEDULE. The
default value for thisvariableis STATIC.

If the optional chunk sizeis not set, achunk size of 1 isassumed except in the case of a static
schedule. For a static schedule, the default is as defined in DO...END DO.

Examples of the use of oMP_SCHEDULE are as follows:

setenv OMP_SCHEDULE "STATIC, 5"
setenv OMP_ SCHEDULE "GUIDED, 8"
setenv OMP SCHEDULE "DYNAMIC"

o° o° o°

PGI Fortran Reference Guide 179

OpenMP Directives for Fortran

8.9.7. OMP_STACKSIZE

OMP_STACKSIZE isan OpenMP 3.0 feature that controls the size of the stack for newly-created
threads. This variable overrides the default stack size for a newly created thread. The value
isadecimal integer followed by an optional letter B, K, M, or G, to specify bytes, kilobytes,
megabytes, and gigabytes, respectively. If no letter is used, the default is kilobytes. Thereisno
space between the value and the letter; for example, one megabyte is specified 1M. The following
example specifies a stack size of 8 megabytes.

% setenv OMP_STACKSIZE 8M

The API functionsrelated to OMP_STACKSIZE are omp set stack size and
omp _get stack size.

The environment variable 0MP_STACKSIZE isread on program start-up. If the program changes
its own environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKz, which increases the size of the stacks
used by threads executing in parallel regions. Once athread is created, its stack size cannot be
changed.

In the PGI implementation, threads are created prior to the first parallel region and persist for the
life of the program. The stack size of the main thread (thread 0) is set at program start-up and is
not affected by OMP_STACKSIZE.

For more information on controlling the program stack sizein Linux, refer to' Running Parallel
Programson Linux’ in Chapter 2 of the PGI Compiler User’s Guide. For more information on
MPSTKZ, refer to the PGI Compiler User’s Guide.

8.9.8. OMP_THREAD_LIMIT

You can usethe OMP THREAD LIMIT environment variable to specify the absolute maximum
number of threads that can be used in a paralel program. Attempts to dynamically set the number
of processes or threads to a higher value, for example using set_omp_num_threads(), cause the
number of processes or threads to be set at the value of OMP THREAD LIMIT rather than the
value specified in the function call.

8.9.9. OMP_WAIT_POLICY

OMP WAIT POLICY setsthe behavior of idle threads - specifically, whether they spin or sleep
whenidle. The values are ACTIVE and PASSIVE, with ACTIVE the default. The behavior
defined by oMP WAIT POLICY isalso shared by threads created by auto-parallelization.

» Threads are considered idle when waiting at a barrier, when waiting to enter acritical region,
or when unemployed between parallél regions.
» Threadswaiting for critical sections aways busy wait (ACTIVE).

PGI Fortran Reference Guide 180

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

OpenMP Directives for Fortran

» Barriersaways busy wait (ACTIVE), with callsto sched yield determined by the
environment variable Mp_ SPIN, that specifies the number of timesit checks the semaphore
before calling sched yield () (onLinux or macOS) or sleep () (on Windows).

» Unemployed threads during a serial region can either busy wait using the barrier (ACTIVE)
or politely wait using amutex (PASSIVE). This choiceisset by OMP WAIT POLICY, Sothe
default isACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop
waiting to restart in aparallel region. This mechanism alows for very quick entry into parallel
regions, a condition which is good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex in the operating system and consume no
CPU time until being restarted. Passive idle is best when a program has long periods of serial
activity or when the program runs on a multi-user machine or otherwise shares CPU resources.

PGI Fortran Reference Guide 181

Chapter 9.
3F FUNCTIONS AND VAX SUBROUTINES

The PGI Fortran compilers support FORTRAN 77 3F functions and VAX/VMS system
subroutines and built-in functions.

9.1. 3F Routines

This section describes the functions and subroutines in the Fortran runtime library which are
known as 3F routines on many systems. These routines provide an interface from Fortran
programs to the system in the same manner as the C library does for C programs. These functions
and subroutines are automatically loaded from PGI's Fortran runtime library if referenced by a
Fortran program.

The implementation of many of the routines uses functions which residein the C library. If aC
library does not contain the necessary functions, undefined symbol errors will occur at link-time.
For example, if PGI's C library isthe C library available on the system, the following 3F routines
exist in the Fortran runtime library, but use of these routines will result in errors at link-time:

besj0 besj1 besjn besy0 besy1 besyn
dbesj0 dbes;j1 dbesjn dbesy0 dbesy1 dbesyn
derf derfc erf erfc getlog hostnm
Istat putenv symink ttynam

The routines mclock and times depend on the existence of the C function times().

The routines dtime and etime are only available in a SY SV R4 environment. These routines are
not available in all environments simply because there is no standard mechanism to resolve the
resolution of the value returned by the times() function.

There are several 3F routines, such as fputc and fgetc, that perform 1/0 on alogica unit. These
routines bypass normal Fortran I/O. If norma Fortran 1/O is also performed on alogical unit
which appears in any of these routines, the results are unpredictable.

9.1.1. abort

Terminate abruptly and write memory image to corefile.

PGI Fortran Reference Guide 182

3F Functions and VAX Subroutines

Synopsis
subroutine abort ()
Description

The abort function cleans up the 1/0 buffers and then aborts, producing a core file in the current
directory.

9.1.2. access

Determine access mode or existence of afile.

Synopsis
integer function access(fil, mode)

character* (*) fil
character* (*) mode

Description

The access function tests the file, whose name isfil, for accessibility or existence as determined
by mode.
The mode argument may include, in any order and in any combination, one or more of:

r
test for read permission
w
test for write permission

test for execute permission
(blank)
test for existence

Anerror codeisreturned if either the mode argument isillegal or if the file cannot be accessed in
all of the specified modes. Zero is returned if the specified access is successful.

9.1.3. alarm

Execute a subroutine after a specified time.

Synopsis
integer function alarm(time, proc)

integer time
external proc

PGI Fortran Reference Guide 183

Description

3F Functions and VAX Subroutines

This routine establishes subroutine proc to be called after time seconds. If timeis O, theaarmis
turned off and no routine will be called. The return value of alarm is the time remaining on the
last alarm.

9.1.4. Bessel functions

These functions calculate Bessel functions of the first and second kinds for real and double
precision arguments and integer orders.

bes0
beg 1
begin
besy0
besyl
besyn
dbesO
dbesj1
dbesin
dbesy0
dbesy1
dbesyn

Synopsis

real function

real x

real function

real x

real function

integer n

real x

real function

real x

real function

real x

real function

integer n

real x
double
double
double
double
double

precision

besj0 (x)

besjl (x)

besjn(n, x)

besy0 (x)

besyl (x)

besyn(n, x)

function

precision x

precision
precision
precision

integer n

double
double
double
double
double
double

precision
precision
precision
precision
precision
precision

PGI Fortran Reference Guide

function
X
function

X
function
X
function
X
function

dbesj0 (x)
dbesjl (x)

dbesjn (n,

dbesy0 (x)
dbesyl (x)

dbesyn (n,

X)

X)

184

3F Functions and VAX Subroutines

integer n
double precision x

9.1.5. chdir
Change default directory.

Synopsis

integer function chdir (path)
character* (*) path

Description

Change the default directory for creating and locating filesto path. Zero isreturned if successful;
otherwise, an error code is returned.

9.1.6. chmod

Change mode of afile.

Synopsis

integer function chmod(nam, mode)
character* (*) nam
integer mode

Description

Change the file system mode of file nam. If successful, avalue of 0 is returned; otherwise, an
error code is returned.

9.1.7. ctime

Return the system time.

Synopsis

character* (*) function ctime (stime)
integer*8 stime

Description

ctime converts a system time in stime to its ASCII form and returns the converted form. Neither
newline nor NULL isincluded.

9.1.8. date

Return the date.

Synopsis

character* (*) function date (buf)

PGI Fortran Reference Guide 185

3F Functions and VAX Subroutines

Description
Returns the ASCII representation of the current date. The format returned is dd-mmm-yy.

9.1.9. error functions

The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x) and 1.0-
derf(x), respectively.
Synopsis

real function erf (x)

real x

real function erfc(x)

real x

double precision function derf (x)
double precision x

double precision function derfc (x)
double precision x

9.1.10. etime, dtime
Get the elapsed time.

Synopsis

real function etime (tarray)
real function dtime (tarray)
real tarray(2)

Description
etime returns the total processor runtime in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first timeit is
called, it returns the processor time since the start of execution.

Both functions place values in the argument tarray: user timein the first element and system time
in the second element. The return value is the sum of these two times.

9.1.11. exit

Terminate program with status.

Synopsis

subroutine exit (s)
integer s

Description

exit flushes and closes all of the program's files, and returns the value of s to the parent process.

PGI Fortran Reference Guide 186

3F Functions and VAX Subroutines

9.1.12. fdate

Return date and timein ASCII form.
Synopsis

character* (*) function fdate ()

Description

fdate returns the current date and time as a character string. Neither newline nor NULL will be
included.

9.1.13. fgetc

Get character from alogical unit.

Synopsis

integer function fgetc(lu, ch)
integer lu
character* (*) ch

Description

Returns the next character in ch from the file connected to the logical unit lu, bypassing normal
Fortran |/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was
detected. Any other valueis an error code.

9.1.14. flush

Flush alogical unit.

Synopsis

subroutine flush (lu)
integer 1lu

Description

flush flushes the contents of the buffer associated with logical unit lu.

9.1.15. fork

Fork a process.

Synopsis

integer function fork/()

PGI Fortran Reference Guide 187

3F Functions and VAX Subroutines

Description

fork creates a copy of the calling process. The value returned to the parent process will be the
process id of the copy. The value returned to the child process (the copy) will be zero. If the
returned value is negative, an error occurred and the value is the negation of the system error
code.

9.1.16. fputc

Write a character to alogical unit.

Synopsis

integer function fputc(lu, ch)
integer lu
character* (*) ch

Description

A character ch iswritten to the file connected to logical unit lu bypassing normal Fortran 1/0. If
successful, avalue of zero is returned; otherwise, an error code is returned.

9.1.17. free

Free memory.

Synopsis

subroutine free (p)
int p

Description

Free a pointer to a block of memory located by malloc; the value of the argument, p, is the pointer
to the block of memory.

9.1.18. fseek

Position file at offset.

Synopsis
integer function fseek(lu, offset, from)
integer 1lu

integer offset
integer from

Description

fseek repositions afile connected to logical unit lu. offset is an offset in bytesrelative to the
position specified by from :

PGI Fortran Reference Guide 188

3F Functions and VAX Subroutines

beginning of thefile

current position
2
end of thefile

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

9.1.19. ftell

Determine file position.

Synopsis

integer function ftell (lu)
integer lu

Description

ftell returns the current position of the file connected to the logical unit lu. The value returned is
an offset, in units of bytes, from the beginning of the file. If the value returned is negative, it is
the negation of the system error code.

9.1.20. gerror
Return system error message.

Synopsis

character* (*) function gerror()

Description
Return the system error message of the last detected system error.

9.1.21. getarg
Get the nth command line argument.

Synopsis

subroutine getarg(n, arg)
integer n
character* (*) arg

Description

Return the nth command line argument in arg, where the Oth argument is the command name.

PGI Fortran Reference Guide 189

3F Functions and VAX Subroutines

9.1.22. iargc

Theiargc subroutine returns the number of command line arguments following the program
name.

integer function iargc ()

9.1.23. getc

Get character from unit 5.

Synopsis

integer function getc(ch)
character* (*) ch

Description

Returns the next character in ch from the file connected to the logical unit 5, bypassing normal
Fortran /O statements. If successful, the return valueis zero; -1 indicates that an end-of-file was
detected. Any other valueis an error code.

9.1.24. getcwd

Get pathname of current working directory.

Synopsis

integer function getcwd(dir)
character* (*) dir

Description

The pathname of the current working directory isreturned in dir. If successful, the return valueis
zero; otherwise, an error code is returned.

9.1.25. getenv

Get value of environment variable.

Synopsis

subroutine getenv(en, ev)
character* (*) en
character* (*) ev

Description

getenv checks for the existence of the environment variable en. If it does not exist or if itsvalueis
not present, ev isfilled with blanks. Otherwise, the string value of enisreturnedin ev.

PGI Fortran Reference Guide 190

9.1.26. getgid

Get group id.

Synopsis

integer function getgid()

Description

Return the group id of the user of the process.

9.1.27. getlog

Get user'slogin name.

Synopsis

character* (*) function getlog()

Description

3F Functions and VAX Subroutines

getlog returns the user's login name or blanks if the processis running detached from aterminal.

9.1.28. getpid

Get processid.

Synopsis

integer function getpid()

Description

Return the processid of the current process.

9.1.29. getuid

Get user id.

Synopsis

integer function getuid()

Description

Return the user id of the user of the process.

PGI Fortran Reference Guide

191

3F Functions and VAX Subroutines

9.1.30. gmtime
Return system time.

Synopsis

subroutine gmtime (stime, tarray)
integer stime
integer tarray(9)

Description
Dissect the UNIX time, stime, into month, day, etc., for GMT and return in tarray.

9.1.31. hostnm

Get name of current host.

Synopsis

integer function hostnm (nm)
character* (*) nm

Description

hostnm returns the name of the current host in nm. If successful, a value of zerois returned;
otherwise an error occurred.

9.1.32. idate

Return the date.

Synopsis

subroutine idate (im, id, iy)
integer im, id, iy

Description

Returns the current date in the variablesim, id, and iy, which indicate the month, day, and year,
respectively. The month isin the range 1-12; only the last 2 digits of the year are returned.

9.1.33. lerrno

Get error number.

Synopsis

integer function ierrno()

PGI Fortran Reference Guide 192

3F Functions and VAX Subroutines

Description
Return the number of the last detected system error.

9.1.34. ioinit
Initialize I/O

Synopsis

subroutine ioinit(cctl, bzro, apnd, prefix, vrbose)
integer cctl

integer bzro

integer apnd

character* (*) prefix

integer vrbose

Description

Currently, no action is performed.

9.1.35. isatty

Islogical unit atty.

Synopsis

logical function isatty(lu)
integer 1lu

Description
Returns .TRUE. if logical unit lu is connected to aterminal; otherwise, .FALSE. is returned.

9.1.36. itime

Return time in numerical form.

Synopsis
subroutine itime (iarray)

integer iarray(3)

Description

Return current time in the array iarray. The order is hour, minute, and second.

9.1.37. kil

Send signal to a process.

PGI Fortran Reference Guide 193

3F Functions and VAX Subroutines

Synopsis

integer function kill (pid, sig)
integer pid
integer sig

Description

Send signal number sig to the process whose processid is pid. If successful, the value zero is
returned; otherwise, an error code is returned.

9.1.38. link
Make link

Synopsis

integer function link(nl, n2)
character* (*) nl
character* (*) n2

Description

Create alink n2 to an existing file nl. If successful, zero is returned; otherwise, an error codeis
returned.

9.1.39. Inbink

Return index of last non-blank.

Synopsis

integer function lnblnk(al)
character* (*) al

Description
Return the index of the last non-blank character in string al.

9.1.40. loc

Address of an object.

Synopsis

integer function loc (a)
integer a

Description

Return the value which is the address of a

PGI Fortran Reference Guide 194

3F Functions and VAX Subroutines

9.1.41. ltime

Return system time.

Synopsis

subroutine ltime (stime, tarray)
integer stime
integer tarray(9)

Description

Dissect the UNIX time, stime, into month, day, etc., for the local time zone and return in tarray.

9.1.42. malloc

Allocate memory.

Synopsis

integer function malloc (n)
integer n

Description

Allocate ablock of n bytes of memory and return the pointer to the block of memory.

9.1.43. mclock
Get elapsed time.

Synopsis
integer function mclock()
Description

mclock returns the sum of the user's cpu time and the user and system times of all child processes.
Thereturn valueisin units of clock ticks per second.

9.1.44. mvbits

Move hits.

Synopsis

subroutine mvbits(src, pos, len, dest, posd)
integer src

integer pos

integer len

integer dest

integer posd

PGI Fortran Reference Guide 195

3F Functions and VAX Subroutines

Description

len bits are moved beginning at position pos of argument src to position posd of argument dest.

9.1.45. outstr

Print a character string.

Synopsis

integer function outstr (ch)
character* (*) ch

Description
Output the character string to logical unit 6 bypassing normal Fortran I/O. If successful, avaue

of zero isreturned; otherwise, an error occurred.
9.1.46. perror
Print error message.

Synopsis

subroutine perror (str)
character* (*) str

Description

Write the message indicated by str to logical unit 0 and the message for the last detected system
error.

9.1.47. putc

Write a character to logical unit 6.

Synopsis

integer function putc (ch)
character* (*) ch

Description

A character ch iswritten to the file connected to logical unit 6 bypassing normal Fortran 1/O. If
successful, avalue of zero is returned; otherwise, an error code is returned.

9.1.48. putenv

Change or add environment variable.

PGI Fortran Reference Guide 196

3F Functions and VAX Subroutines

Synopsis

integer function putenv (str)
character* (*) str

Description

str contains a character string of the form name=value. This function makes the value of the
environment variable name equal to value. If successful, zero is returned.

9.1.49. gsort

Quick sort.

Synopsis

subroutine gsort (array, len, isize, compar)
dimension array(*)

integer len

integer isize

external compar

integer compar

Description

gsort sorts the elements of the one dimensional array, array. len isthe number of elementsin
the array and isize is the size of an element. compar is the name of an integer function that
determines the sorting order. Thisfunction is called with 2 arguments (argl and arg2) which are
elements of array. The function returns:
negative

if argl is considered to precede arg2
zero

if arglisequivalent to arg2
positive

if argl is considered to follow arg2

9.1.50. rand, irand, srand
Random number generator.

Synopsis

double precision function rand()
integer function irand()
subroutine srand (iseed)

integer iseed

PGI Fortran Reference Guide 197

3F Functions and VAX Subroutines

Description

The functions rand and irand generate successive pseudo-random integers or double precision
numbers. srand uses its argument, iseed, to re-initialize the seed for successive invocations of
rand and irand.
irand

returns a positive integer in the range 0 through 2147483647.
rand

returns avalue in the range 0 through 1.0.

9.1.51. random, irandm, drandm

Return the next random number value.

Synopsis

real function random(flag)
integer flag

integer function irandm(flag)
integer flag

double precision function drandm(flag)
integer flag

Description

If theargument, £1ag, isnonzero, the random number generator is restarted before the next
random number is generated.

Integer values range from 0 through 2147483647.

Floating point values range from 0.0 through 1.0.

9.1.52. range

Range functions.

Synopsis

real function flmin ()

real function flmax ()

real function ffrac()

double precision function dflmin ()
double precision function dflmax()
double precision function dffrac/()
integer function inmax ()

Description

The following range functions return a value from arange of values.

flmin
minimum single precision value

PGI Fortran Reference Guide 198

fimax

maximum single precision value
ffrac

smallest positive single precision value
dfmin

minimum double precision value
dflmax

maximum double precision value
dffrac

smallest positive double precision value
inmax

maximum integer

9.1.53. rename
Rename afile.

Synopsis

integer function rename (from, to)
character* (*) from
character* (*) to

Description

3F Functions and VAX Subroutines

Renames the existing file from where the new name s, the £ rom value, to what you want it to be,
the to value.. If the renameis successful, zero is returned; otherwise, the return value is an error

code.

9.1.54. rindex

Return index of substring.

Synopsis
integer function rindex (al, aZ2)

character* (*) al
character* (*) a2

Description

Return the index of the last occurrence of string a2 in string al.

9.1.55. secnds, dsecnds
Return elapsed time.

Synopsis

real function secnds (x)

PGI Fortran Reference Guide

199

3F Functions and VAX Subroutines

real x
double precision function dsecnds (x)
double precision x

Description

Returns the elapsed time, in seconds, since midnight, minus the value of x.

9.1.56. setvbuf

Change 1/0 buffering behavior.

Synopsis

integer function setvbuf (lu, typ, size, buf)
integer 1lu

integer typ

integer size

character* (*) buf

Description
Fortran 1/0O supports 3 types of buffering:

» Fully buffered: on output, data is written once the buffer is full. On input, the buffer isfilled
when an input operation is requested and the buffer is empty.

» Line buffered: on output, data is written when a newline character isinserted in the buffer or
when the buffer isfull. Oninput, if an input operation is encountered and the buffer is empty,
the buffer isfilled until a newline character is encountered.

» Unbuffered: No buffer is used. Each I/O operation is completed as soon as possible. In this
case, the typ and size arguments are ignored.

Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit O (stderr) is unbuffered.
Disk files are fully buffered. These defaults generally give the expected behavior. Y ou can use
setvbuf3f to change a unit's buffering type and size of the buffer.

n The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any 1/0 is done on the unit.

Thetyp parameter can have the following values, 0 specifies full buffering, 1 specifiesline
buffering, and 2 specifies unbuffered. The size parameter specifies the size of the buffer. Note,
the underlying stdio implementation may silently restrict your choice of buffer size.

The buf parameter is the address of the new buffer.

The buffer specified by the buf and size parameters must remain available to the Fortran runtime until after
the logical unit is closed.

This function returns zero on success and non-zero on failure.

PGI Fortran Reference Guide 200

3F Functions and VAX Subroutines

An example of aprogram in which this function might be useful is along-running program that
periodically writes a small amount of datato alog file. If thelog file is line buffered, you could
check thelog file for progress. If the log fileisfully buffered (the default), the data may not be
written to disk until the program terminates.

9.1.57. setvbuf3f

Change /0 buffering behavior.

Synopsis
integer function setvbuf3f (lu, typ, size)
integer 1lu

integer typ
integer size

Description

Fortran 1/0 supports 3 types of buffering., described in detail in the description of setvbuf.
Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit O (stderr) is unbuffered.
Disk files are fully buffered. These defaults generally give the expected behavior. Y ou can use
setvbuf3f to change a unit's buffering type and size of the buffer.

n The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any 1/0 is done on the unit.

Thetyp parameter can have the following values, 0 specifies full buffering, 1 specifiesline
buffering, and 2 specifies unbuffered. The size parameter specifies the size of the buffer.

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is along-running program that
periodically writes a small amount of datato alog file. If thelog file is line buffered, you could
check thelog file for progress. If the log fileisfully buffered (the default), the data may not be
written to disk until the program terminates.

9.1.58. signal

Signal facility.

Synopsis

integer function signal (signum, proc, flag)
integer signum

external proc

integer flag

PGI Fortran Reference Guide 201

Description

3F Functions and VAX Subroutines

signal allowsthe calling process to choose how the receipt of a specific signal is handled; signum
isthe signal and proc is the choice. If flag is negative, proc is a Fortran subprogram and is
established as the signal handler for the signal. Otherwise, proc isignored and the value of flag

is passed to the system as the signal action definition. In particular, thisis how previously saved
signal actions can be restored. There are two special cases of flag: 0 means use the default action

and 1 meansignore this signal.

The return value is the previous action. If thisis avalue greater than one, then it is the address of
aroutine that was to have been called. The return value can be used in subsequent callsto signal
to restore a previous action. A negative return value indicates a system error.

9.1.59. sleep

Suspend execution for a period of time.

Synopsis

subroutine sleep (itime)
integer itime

Description

Suspends the process for t seconds.

9.1.60. stat, Istat, fstat, fstat64

Get file status.

Synopsis

integer function stat(nm, statb)
character* (*) nm
integer statb (*)

integer function lstat (nm, statb)
character* (*) nm
integer statb (*)

integer function fstat (lu, statb)
integer 1lu
integer statb (*)

integer function fstat64 (lu, statb)

integer 1lu
integer*8 statb (*)

Description

Return the file status of the filein the array statb. If successful, zero is returned; otherwise, the
value of -1 isreturned. stat obtains information about the file whose nameis nm; if thefileisa
symbolic link, information is obtained about the file the link references. Istat is similar to stat

PGI Fortran Reference Guide

202

3F Functions and VAX Subroutines

except Istat returns information about the link. fstat obtains information about the file which is
connected to logical unit lu.

9.1.61. stime
Set time.

Synopsis

integer function stime (tp)
integer tp

Description

Set the system time and date. tp is the value of the time measured in seconds from 00:00:00 GMT
January 1, 1970.

9.1.62. symink

Make symbolic link.

Synopsis

integer function symlnk(nl, n2)
character* (*) nl
character* (*) n2

Description

Create asymbolic link n2 to an existing file nl. If successful, zero is returned; otherwise, an error
codeis returned.

9.1.63. system

Issue a shell command.

Synopsis

integer function system(str)
character* (*) str

Description

system causes the string, str, to be given to the shell asinput. The current process waits until the
shell has completed and returns the exit status of the shell.

9.1.64. time

Return system time.

PGI Fortran Reference Guide 203

3F Functions and VAX Subroutines

Synopsis

integer *8 function time ()

Description

Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

9.1.65. times

Get process and child process time

Synopsis

integer function times (buff)
integer buff (*)

Description

Returns the time-accounting information for the current process and for any terminated child
processes of the current process in the array buff. If successful, zero is returned; otherwise, the
negation of the error code is returned.

9.1.66. ttynam

Get name of aterminal

Synopsis

character* (*) ttynam(lu)
integer 1lu

Description

Returns a blank padded path name of the terminal device connected to the logical unit lu. Thelu
is not connected to aterminal, blanks are returned.

9.1.67. unlink

Remove afile.

Synopsis

integer function unlink(fil)
character* (*) fil

Description

Removes the file specified by the pathname fil. If successful, zero is returned; otherwise, an error
codeisreturned.

PGI Fortran Reference Guide 204

3F Functions and VAX Subroutines

9.1.68. wait

Wait for process to terminate.

Synopsis

integer function wait(st)
integer st

Description

wait causes its caller to be suspended until asignal isreceived or one of its child processes
terminates. If any child has terminated since the last wait, return isimmediate. If there are no
child processes, return isimmediate with an error code.

If the return value is positive, it isthe processid of the child and st isits termination status. If the
return value is negative, it is the negation of an error code.

9.2. VAX System Subroutines

The PGI FORTRANT77 compiler, pgf77, supports avariety of built-in functionsamd VAX/VMS
system subroutines.

9.2.1. Built-In Functions

The built-in functions perform inter-language utilities for argument passing and location
calculations. The following built-in functions are available:

%LOC(arg)

Compute the address of the argument arg.

%REF(a)

Pass the argument a by reference.

%VAL(a)

Pass the argument as a 32-bit immediate value (64-bit if ais double precision.) A value of 64-bits
isalso possibleif supported for integer and logical values.

9.2.2. VAXIVMS System Subroutines

The PGI FORTRANT77 compiler, pgf77, supports a variety of built-in functionsand VAX/VMS
system subroutines.

PGI Fortran Reference Guide 205

3F Functions and VAX Subroutines

DATE

The DATE subroutine returns a nine-byte string containing the ASCI | representation of the
current date. It has the form:
CALL DATE (buf)

where buf isanine-byte variable, array, array element, or character substring. The date is
returned as a nine-byte ASCI| character string of the form:
dd-mmm-yy

Where:

dd
isthe two-digit day of the month
mmm
is the three-character abbreviation of the month

yy
isthe last two digits of the year

EXIT

The EXIT subroutine causes program termination, closes al open files, and returns control to the
operating system. It has the form:
CALL EXIT[(exit status)]

Where:

exit_status
isan optional integer argument used to specify the image exit value.

GETARG

The GETARG subroutine returns the Nth command line argument in character variable ARG. For
N equal to zero, the name of the program is returned.

SUBROUTINE GETARG (N, ARG)
INTEGER*4 N
CHARACTER* (*) ARG

IARGC

The IARGC subroutine returns the number of command line arguments following the program
name.
INTEGER*4 FUNCTION IARGC ()

IDATE

The IDATE subroutine returns three integer values representing the current month, day, and year.
It has the form:
CALL IDATE (IMONTH, IDAY, IYEAR)

PGI Fortran Reference Guide 206

3F Functions and VAX Subroutines

If the current date were October 9, 2004, the values of the integer variables upon return would be:

MVBITS

The MVBITS subroutine transfers a bit field from one storage location (source) to afieldina
second storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 +
a3 - 1) of the source, src, to positions a5 through (ab + a3 - 1) of the destination, dest. Other bits
of the destination location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less
than or equal to 32 (less than or equal to 64 if the source or destination is INTEGER* 8). It has the
form:

CALL MVBITS (src, a2, a3, dest, ab)

Where:

src
isan integer variable or array element that represents the source location.
a2
isan integer expression that identifies the first position in the field transferred from src.
a3
isan integer expression that identifies the length of the field transferred from src.
dest
isaninteger variable or array element that represents the destination location.
a5
isan integer expression that identifies the starting position within a4, for the bits being
transferred.

RAN

The RAN subroutine returns the next number from a sequence of pseudo-random numbers of
uniform distribution over therange O to 1. The result is afloating point number that is uniformly
distributed in the range between 0.0 and 1.0 exclusive. It has the form:

y = RAN (i)

wherey is set equal to the value associated by the function with the seed argument i. The
argument i must be an INTEGER* 4 variable or INTEGER*4 array element.

The argument i should initially be set to alarge, odd integer value. The RAN function stores a
value in the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on
separate runsin order to obtain different random numbers. The seed is updated automatically, and
RAN uses the following algorithm to update the seed passed as the parameter:

SEED = 6969 * SEED + 1 ! MOD

2% 32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point
and returned as the result.

PGI Fortran Reference Guide 207

3F Functions and VAX Subroutines

If the command-line option to treat all REAL declarations as DOUBLE PRECISION declarations
isin effect, RAN returns aDOUBLE PRECISION value.

SECNDS

The SECNDS subroutine provides system time of day, or elapsed time, as afloating point value
in seconds. It has the form:
y = SECNDS (x)

where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since midnight,
minus the user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time
computations can be performed with the following sequence of calls.

X = SECNDS (0.0)

. ! Code to be timed
DELTA = SECNDS (X)

The accuracy of thiscall isthe same as the resolution of the system clock.

TIME
The TIME subroutine returns the current system time as an ASCI| string. It has the form:

CALL TIME (buf)

where buf is an eight-byte variable, array, array element, or character substring. The TIME call
returns the time as an eight-byte ASCII character string of the form:

hh:mm:ss

For example:
16:45:23

Note that a 24-hour clock is used.

PGI Fortran Reference Guide 208

Chapter 10.
INTEROPERABILITY WITH C

Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must have
equivalent declarations made in both C and Fortran. This section describes the pointer types and
enumerators available for interoperability.

10.1. Enumerators

Fortran 2003 has enumerators to provide interoperability with C. An enumerator is a set of integer
constants. The kind of enumerator corresponds to the integer type that C would choose for the
same set of constants.

Y ou can specify the value of an enumerator when it is declared. If the value is not specified, then
it isone of two values:

» If the enumerator isthefirst one, the valueis zero.
» If the enumerator is not the first one, the value is one greater than the previous enumerator.

Enumerator Example

In the following example, green has avalue of 4, purple avaue of 8, and gold avalue of 9.

enum, bind(c)

enumerator :: green = 4, purple = 8
enumerator gold
end enum

10.2. Interoperability with C Pointer Types

C pointers are addresses. The derived type c_ptr isinteroperable with C pointer types. The
named constant ¢ null ptr correspondsto the null valuein C.

10.2.1. ¢_f_pointer

A subroutine that assigns the C pointer target to the Fortran pointer, and specifies its shape.

F2003

PGI Fortran Reference Guide 209

Interoperability with C

Syntax

c f pointer (cptr, fptr [,shape])

Type

subroutine

Description
c_f_pointer assignsthe target, cpt r, to the Fortran pointer, fptr, and specifiesits shape.
» cptrisascaar of thetype C_PTR with INTENT(IN). Itsvalueis one of the following:

» the C address of an interoperable data entity

If cptr is the C address of a Fortran variable, the Fortran variable must have the target
attribute.

» theresult of areferenceto ¢ 1oc with anon-interoperable argument.
» fptrisisaprocedure pointer with INTENT(OUT).

» If cptr isthe C address of an interoperable data entity, then fptr must be adata
pointer of the type and type parameters of the entity. It becomes pointer associated with
the target of cptr.

» If cptr wasreturned by acall of ¢ 1oc with anon-interoperable argument x, then
fptr must be a nonpolymorphic scalar pointer of the type and type parameters of x.

x, or its target if it is a pointer, must not have been deallocated or become undefined due to
execution of a return or end statement.

fptr is associated with x or its target.

» shape isan optional argument that isarank-one array of type INTEGER with INTENT(IN).
shape ispresent if and only if fptr isan array. The size must be equal to the rank of fptr;
each lower bound is assumed to be 1.

Example

program main
use iso c _binding
implicit none

interface
subroutine my routine (p) bind(c,name='myC func')
import :: c ptr
type (c_ptr), intent(out) :: p

end subroutine
end interface
type (c_ptr) :: cptr
real,pointer :: a(:)
call my routine (cptr)
call ¢ f pointer(cptr, a, [12])
end program main

PGI Fortran Reference Guide 210

Interoperability with C

10.2.2. ¢_f_procpointer

A subroutine that associates a procedure pointer with the target of a C function pointer.

F2003

Syntax

c_f procpointer (cptr, fptr)

Type

subroutine

Description
c_f_procpointer associates a procedure pointer with the target of a C function pointer.

» cptrisascaar of thetype C_PTR with INTENT(IN). Itsvalue is the C address of the
procedure that is interoperable.

Its value is one of the following:

» the C address of an interoperable procedure

» theresult of areferenceto ¢ 1oc with anon-interoperable argument. In this case, there
is no intent that any use of it be made within C except to passit back to Fortran, where
C_F POINTER isavailable to reconstruct the Fortran pointer.

» fptrisisaprocedure pointer with INTENT(OUT).

Theinterface for ftpr shall be interoperable with the prototype that describes the target of
cptr.

fptr becomes pointer associated with the target of cptr.

» If cptr isthe C address of an interoperable procedure, then the interface for fptr shall
be interoperable with the prototype that describes the target of cptr. fptr must bea
data pointer of the type and type parameters of the entity. It becomes pointer associated
with the target of cptr.

» If cptr wasreturned by acall of ¢ 1oc with anon-interoperable argument x, then
fptr must be a nonpolymorphic scalar pointer of the type and type parameters of x.

x or its target if it is a pointer, must not have been deallocated or become undefined due to

execution of a return or end statement.

fptr is associated with x or its target.

PGI Fortran Reference Guide 211

Interoperability with C

Example

program main
use iso c binding
implicit none

interface
subroutine my routine(p) bind(c,name='myC func')
import :: c_ptr
type(c_ptr), intent(out) :: p

end subroutine
end interface
type (c_ptr) :: cptr
real,pointer :: a(:)
call my routine (cptr)
call c f pointer (cptr, a, [12])
end program main

10.2.3. c_associated
A subroutine that determines the status of aC_PTR, or determinesif one C_PTR is associated
with atarget C_PTR.

F2003

Syntax

c _associated (cptrl[, cptr2])

Type

subroutine

Description

c_associated determines the status of aC_PTR,cptr1, or determinesif cptr1 isassociated with
atarget cptr2.

» cptrlisascaar of thetypeC_PTR.
» cptr2isanoptiona scalar or the sametypeascptril.

Return Value

A logical vaue:

» fdse if either cptrl isaC NULL pointer or if cptrl and cptr2 point to different
addresses.

» .true. if cptrlisanotaC NULL pointer or if cptrl and cptr2 point to the same address.

Example

program main
use iso c binding
subroutine test association (h, k)
only: c associated, c_loc, c ptr

PGI Fortran Reference Guide 212

Interoperability with C

real, pointer :: h
type(c_ptr) :: k
if (c_associated(k, c loc(h))) &
stop 'h and k do not point to same target'
end subroutine test association

10.3. Interoperability of Derived Types

For aderived type to be interoperable, the following must be true:

» It must havethe bind attribute.
type, bind(c) :: atype

end £ype atype

It cannot be a sequence type.

It cannot have type pmeters.

It cannot have the extends attribute.

It cannot have any type-bound procedures.

» Each component must comply with these rules:

v v VY

v

» Must haveinteroperable type and type pmeters.
» Must not be a pointer.
» Must not be alocatable.

Under the preceding conditions the type can interoperate with a C struct type that has the same
number of components, with components corresponding by their position in the definitions.
Further, each Fortran component must be interoperable with its corresponding C component. The
name of the type and names of the componentsis not significant for interoperability.

There is no Fortran type that is interoperable with these C types:

» aCunion type,
» aC struct typethat contains a bit field
» aC struct type that contains a flexible array member.

Derived Type Interoperability

This type... Is interoperable with this type

typedef struct ({ use iso c binding
int a,b; type, bind(c) :: my fort type
float t; integer(c_int) :: 1i,]j

} my c type real (c _float) :: s

end type my fort type

PGI Fortran Reference Guide 213

Chapter 11.
CONTACT INFORMATION

Y ou can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales. sales@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm
Submit technical support requests through the online form at:
https://www.pgroup.com/support/support_request.php

PGI documentation is available at http://www.pgroup.com/resources/docs.htm.

PGI Fortran Reference Guide 214

mailto: sales@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2016 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	Language Overview
	1.1. Elements of a Fortran Program Unit
	1.1.1. Fortran Statements
	1.1.2. Free and Fixed Source
	1.1.3. Statement Ordering

	1.2. The Fortran Character Set
	1.3. Free Form Formatting
	1.4. Fixed Formatting
	1.4.1. Column Formatting
	1.4.2. Fixed Format Label Field
	1.4.3. Fixed Format Continuation Field
	1.4.4. Fixed Format Statement Field
	1.4.5. Fixed Format Debug Statements
	1.4.6. Tab Formatting
	1.4.7. Fixed Input File Format Summary

	1.5. Include Fortran Source Files
	1.6. Components of Fortran Statements
	1.6.1. Symbolic Names

	1.7. Expressions
	1.7.1. Forming Expressions
	1.7.2. Expression Precedence Rules
	1.7.3. Arithmetic Expressions
	1.7.4. Relational Expressions
	1.7.5. Logical Expressions
	1.7.6. Character Expressions
	1.7.7. Character Concatenation

	1.8. Symbolic Name Scope
	1.9. Assignment Statements
	1.9.1. Arithmetic Assignment
	1.9.2. Logical Assignment
	1.9.3. Character Assignment

	1.10. Listing Controls
	1.11. OpenMP Directives

	Fortran Data Types
	2.1. Intrinsic Data Types
	2.1.1. Kind Parameter
	2.1.2. Number of Bytes Specification

	2.2. Constants
	2.2.1. Integer Constants
	2.2.2. Binary, Octal and Hexadecimal Constants
	2.2.3. Real Constants
	2.2.4. Double Precision Constants
	2.2.5. Complex Constants
	2.2.6. Double Complex Constants
	2.2.7. Logical Constants
	2.2.8. Character Constants
	2.2.9. Parameter Constants

	2.3. Structure Constructors
	2.4. Derived Types
	2.5. Deferred Type Parameters
	2.5.1. Typed Allocation

	2.6. Arrays
	2.6.1. Array Declaration Element
	2.6.2. Deferred Shape Arrays
	2.6.3. Subscripts
	2.6.4. Character Substring
	2.6.5. Array Constructor Syntax

	2.7. Fortran Pointers and Targets
	2.8. Fortran Binary, Octal and Hexadecimal Constants
	2.8.1. Octal and Hexadecimal Constants - Alternate Forms

	2.9. Hollerith Constants
	2.10. Structures
	2.10.1. Records
	2.10.2. UNION and MAP Declarations
	2.10.3. Data Initialization

	2.11. Pointer Variables
	2.11.1. Restrictions
	2.11.2. Pointer Assignment

	Fortran Statements
	3.1. Statement Format Overview
	3.1.1. Definition of Statement-related Terms
	3.1.2. Origin of Statement
	3.1.3. List-related Notation

	3.2. Fortran Statement Summary Table
	3.3. ACCEPT
	F77 extension
	Syntax
	Examples
	Non-character Format-specifier
	See Also

	3.4. ARRAY
	CMF
	Syntax
	Description
	Example
	See Also

	3.5. BYTE
	F77 extension
	Syntax
	Description
	Example

	3.6. DECODE
	F77 extension
	Syntax
	Non-character Format-specifier
	See Also

	3.7. DOUBLE COMPLEX
	F77 extension
	Syntax
	Syntax Extension
	Description
	Examples
	See Also

	3.8. DOUBLE PRECISION
	F90
	Syntax
	Syntax Extension
	Description
	Example

	3.9. ENCODE
	F77 extension
	Syntax
	Non-character Format-specifier
	See Also

	3.10. END MAP
	F77 extension
	Syntax
	Description
	Example

	3.11. END STRUCTURE
	F77 extension
	Syntax
	Description

	3.12. END UNION
	F77 extension
	Syntax
	Description

	3.13. INCLUDE
	F77 extension
	Syntax
	Example

	3.14. MAP
	F77 extension
	Syntax
	Description
	Example

	3.15. POINTER (Cray)
	F77 extension
	Syntax
	Example
	Restrictions

	3.16. PROTECTED
	F2003
	Syntax
	Description
	Examples

	3.17. RECORD
	F77 extension
	Syntax
	Description
	Example

	3.18. REDIMENSION
	F77 extension
	Syntax
	Example

	3.19. RETURN
	F77
	Syntax
	Alternate RETURN
	Example

	3.20. STRUCTURE
	F77 VAX extension
	Syntax
	Description

	3.21. UNION
	F77 extension
	Syntax
	Description

	3.22. VOLATILE
	F77 extension (statement)
	F2003 (attribute)
	Syntax
	Volatile Attribute
	Volatile Statement
	Description
	Volatile Attribute Example
	Volatile Statement Example

	3.23. WAIT
	F2003
	Syntax
	Description
	Examples

	Fortran Arrays
	4.1. Array Types
	4.1.1. Explicit Shape Arrays
	4.1.2. Assumed Shape Arrays
	4.1.3. Deferred Shape Arrays
	4.1.4. Assumed Size Arrays

	4.2. Array Specification
	4.2.1. Explicit Shape Arrays
	4.2.2. Assumed Shape Arrays
	4.2.3. Deferred Shape Arrays
	4.2.4. Assumed Size Arrays

	4.3. Array Subscripts and Access
	4.3.1. Array Sections and Subscript Triplets
	4.3.2. Array Sections and Vector Subscripts

	4.4. Array Constructors

	Input and Output
	5.1. File Access Methods
	5.1.1. Standard Preconnected Units

	5.2. Opening and Closing Files
	5.2.1. Direct Access Files
	5.2.2. Closing a File

	5.3. Data Transfer Statements
	5.4. Unformatted Data Transfer
	5.5. Formatted Data Transfer
	5.5.1. Implied DO List Input Output List
	5.5.2. Format Specifications
	5.5.2.1. A Format Control – Character Data
	5.5.2.2. B Format Control – Binary Data
	5.5.2.3. D Format Control – Real Double Precision Data with Exponent
	5.5.2.4. d Format Control – Decimal specifier
	5.5.2.5. E Format Control – Real Single Precision Data with Exponent
	5.5.2.6. EN Format Control
	5.5.2.7. ES Format Control
	5.5.2.8. F Format Control - Real Single Precision Data
	5.5.2.9. G Format Control
	5.5.2.10. I Format Control – Integer Data
	5.5.2.11. L Format Control – Logical Data
	5.5.2.12. Quote Format Control
	5.5.2.13. BN Format Control – Blank Control
	5.5.2.14. H Format Control – Hollerith Control
	5.5.2.15. O Format Control Octal Values
	5.5.2.16. P Format Specifier – Scale Control
	5.5.2.17. Q Format Control - Quantity
	5.5.2.18. r Format Control - Rounding
	5.5.2.19. S Format Control – Sign Control
	5.5.2.20. T, TL and X Format Controls – Spaces and Tab Controls
	5.5.2.21. Z Format Control Hexadecimal Values
	5.5.2.22. Slash Format Control / – End of Record
	5.5.2.23. The : Format Specifier – Format Termination
	5.5.2.24. $ Format Control

	5.5.3. Variable Format Expressions

	5.6. Non-advancing Input and Output
	5.7. List-directed formatting
	5.7.1. List-directed input
	5.7.2. List-directed output
	5.7.3. Commas in External Field
	5.7.4. Character Encoding Format

	5.8. Namelist Groups
	5.8.1. Namelist Input
	5.8.2. Namelist Output

	5.9. Recursive Input/Output
	5.10. Input and Output of IEEE Infinities and NaNs
	5.10.1. Output Format
	5.10.2. Input Format

	Fortran Intrinsics
	6.1. Intrinsics Support
	6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines
	6.1.2. Elemental Character and Logical Functions
	6.1.3. Fortran 90/95 Vector/Matrix Functions
	6.1.4. Fortran 90/95 Array Reduction Functions
	6.1.5. Fortran 90/95 String Construction Functions
	6.1.6. Fortran 90/95 Array Construction/Manipulation Functions
	6.1.7. Fortran 90/95 General Inquiry Functions
	6.1.8. Fortran 90/95 Numeric Inquiry Functions
	6.1.9. Fortran 90/95 Array Inquiry Functions
	6.1.10. Fortran 90/95 Subroutines
	6.1.11. Fortran 90/95 Transfer Functions
	6.1.12. Arithmetic Functions
	6.1.13. Fortran 2003 and 2008 Functions
	6.1.14. Miscellaneous Functions

	6.2. ACOSD
	F77
	Synopsis
	Arguments
	Return Value

	6.3. AND
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.4. ASIND
	F77
	Synopsis
	Argument
	Return Value

	6.5. ASSOCIATED
	F90
	Synopsis
	Arguments
	Return Value

	6.6. ATAN2D
	F77
	Synopsis
	Arguments
	Return Value

	6.7. ATAND
	F77
	Synopsis
	Argument
	Return Value

	6.8. COMPL
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.9. CONJG
	F77
	Synopsis
	Argument
	Return Value

	6.10. COSD
	F77
	Synopsis
	Argument
	Return Value

	6.11. DIM
	F77
	Synopsis
	Arguments
	Return Value

	6.12. ININT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.13. INT8
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.14. IZEXT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.15. JINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.16. JNINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.17. KNINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.18. LEADZ
	F2003
	Synopsis
	Arguments
	Return Value
	Description
	Examples

	6.19. LSHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.20. OR
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.21. RSHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.22. SHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.23. SIND
	F77
	Synopsis
	Argument
	Return Value

	6.24. TAND
	F77
	Synopsis
	Argument
	Return Value

	6.25. XOR
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.26. ZEXT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.27. Intrinsic Modules
	6.27.1. Module IEEE_ARITHMETIC
	6.27.2. IEEE_ARITHMETIC Derived Types
	6.27.3. IEEE_ARITHMETIC Inquiry Functions
	6.27.4. IEEE_ARITHMETIC Elemental Functions
	6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines
	6.27.6. IEEE_ARITHMETIC Transformational Function

	6.28. Module IEEE_EXCEPTIONS
	6.28.1. IEEE_EXCEPTIONS Derived Types
	6.28.2. IEEE_EXCEPTIONS Inquiry Functions
	6.28.3. IEEE_EXCEPTIONS Subroutines Functions

	6.29. IEEE_FEATURES
	6.29.1. IEEE_FEATURES Derived Type
	6.29.2. IEEE_FEATURES Named Constants

	6.30. Module iso_c_binding
	6.31. Module iso_fortran_env

	Object Oriented Programming
	7.1. Inheritance
	7.2. Polymorphic Entities
	7.2.1. Unlimited Polymorphic Entities
	7.2.2. Typed Allocation for Polymorphic Variables
	7.2.3. Sourced Allocation for Polymorphic Variables
	7.2.4. Procedure Polymorphism
	7.2.5. Procedure Polymorphism with Type-Bound Procedures
	7.2.6. Inheritance and Type-Bound Procedures
	7.2.7. Procedure Overriding
	7.2.8. Functions as Type-Bound Procedures

	7.3. Information Hiding
	7.3.1. Type Overloading

	7.4. Data Polymorphism
	7.4.1. Pointer Polymorphic Variables
	7.4.2. Allocatable Polymorphic Variables
	7.4.3. Sourced Allocation
	7.4.4. Unlimited Polymorphic Objects
	7.4.5. Abstract Types and Deferred Bindings

	7.5. IEEE Modules
	7.6. Intrinsic Functions

	OpenMP Directives for Fortran
	8.1. OpenMP Overview
	8.1.1. OpenMP Shared-Memory Parallel Programming Model
	8.1.2. Terminology
	8.1.3. OpenMP Example

	8.2. Task Overview
	8.3. Tasks
	8.3.1. Task Characteristics and Activities
	8.3.2. Task Scheduling Points
	8.3.3. Task Construct

	8.4. Parallelization Directives
	8.5. Directive Recognition
	8.6. Directive Clauses
	8.6.1. COLLAPSE (n)
	8.6.2. COPYIN (list)
	8.6.3. COPYPRIVATE(list)
	8.6.4. DEFAULT
	8.6.5. FIRSTPRIVATE(list)
	8.6.6. IF()
	8.6.7. LASTPRIVATE(list)
	8.6.8. NOWAIT
	8.6.9. NUM_THREADS
	8.6.10. ORDERED
	8.6.11. PRIVATE
	8.6.12. REDUCTION
	8.6.13. SCHEDULE
	8.6.14. SHARED
	8.6.15. UNTIED

	8.7. Directive Summary Table
	8.7.1. ATOMIC
	Syntax
	Usage

	8.7.2. BARRIER
	Syntax
	Usage

	8.7.3. CRITICAL ... END CRITICAL
	Syntax
	Usage
	Example of Critical...End Critical directive

	8.7.4. C\$DOACROSS
	Syntax
	Clauses
	Usage

	8.7.5. DO...END DO
	Clauses:
	Usage:
	Examples:
	Tips

	8.7.6. FLUSH
	Syntax
	Usage

	8.7.7. MASTER ... END MASTER
	Syntax
	Usage
	Examples

	8.7.8. ORDERED
	Syntax
	Usage

	8.7.9. PARALLEL ... END PARALLEL
	Syntax
	Clauses
	Usage
	Example
	Clause Usage

	8.7.10. PARALLEL DO
	Syntax
	Clauses
	Usage

	8.7.11. PARALLEL SECTIONS
	Syntax
	Clauses
	Usage

	8.7.12. PARALLEL WORKSHARE
	Syntax
	Clauses
	Usage

	8.7.13. SECTIONS ... END SECTIONS
	Syntax
	Clauses
	Usage

	8.7.14. SINGLE ... END SINGLE
	Syntax
	Clauses
	Usage
	Examples

	8.7.15. TASK
	Syntax
	Clauses
	Usage
	Restrictions

	8.7.16. TASKWAIT
	Syntax
	Clauses
	Usage
	Restrictions

	8.7.17. THREADPRIVATE
	Syntax
	Usage
	Restrictions

	8.7.18. WORKSHARE ... END WORKSHARE
	Syntax
	Usage

	8.8. Runtime Library Routines
	8.9. OpenMP Environment Variables
	8.9.1. OMP_DYNAMIC
	8.9.2. OMP_MAX_ACTIVE_LEVELS
	8.9.3. OMP_NESTED
	8.9.4. OMP_NUM_THREADS
	8.9.5. OMP_PROC_BIND
	8.9.6. OMP_SCHEDULE
	8.9.7. OMP_STACKSIZE
	8.9.8. OMP_THREAD_LIMIT
	8.9.9. OMP_WAIT_POLICY

	3F Functions and VAX Subroutines
	9.1. 3F Routines
	9.1.1. abort
	Synopsis
	Description

	9.1.2. access
	Synopsis
	Description

	9.1.3. alarm
	Synopsis
	Description

	9.1.4. Bessel functions
	Synopsis

	9.1.5. chdir
	Synopsis
	Description

	9.1.6. chmod
	Synopsis
	Description

	9.1.7. ctime
	Synopsis
	Description

	9.1.8. date
	Synopsis
	Description

	9.1.9. error functions
	Synopsis

	9.1.10. etime, dtime
	Synopsis
	Description

	9.1.11. exit
	Synopsis
	Description

	9.1.12. fdate
	Synopsis
	Description

	9.1.13. fgetc
	Synopsis
	Description

	9.1.14. flush
	Synopsis
	Description

	9.1.15. fork
	Synopsis
	Description

	9.1.16. fputc
	Synopsis
	Description

	9.1.17. free
	Synopsis
	Description

	9.1.18. fseek
	Synopsis
	Description

	9.1.19. ftell
	Synopsis
	Description

	9.1.20. gerror
	Synopsis
	Description

	9.1.21. getarg
	Synopsis
	Description

	9.1.22. iargc
	9.1.23. getc
	Synopsis
	Description

	9.1.24. getcwd
	Synopsis
	Description

	9.1.25. getenv
	Synopsis
	Description

	9.1.26. getgid
	Synopsis
	Description

	9.1.27. getlog
	Synopsis
	Description

	9.1.28. getpid
	Synopsis
	Description

	9.1.29. getuid
	Synopsis
	Description

	9.1.30. gmtime
	Synopsis
	Description

	9.1.31. hostnm
	Synopsis
	Description

	9.1.32. idate
	Synopsis
	Description

	9.1.33. ierrno
	Synopsis
	Description

	9.1.34. ioinit
	Synopsis
	Description

	9.1.35. isatty
	Synopsis
	Description

	9.1.36. itime
	Synopsis
	Description

	9.1.37. kill
	Synopsis
	Description

	9.1.38. link
	Synopsis
	Description

	9.1.39. lnblnk
	Synopsis
	Description

	9.1.40. loc
	Synopsis
	Description

	9.1.41. ltime
	Synopsis
	Description

	9.1.42. malloc
	Synopsis
	Description

	9.1.43. mclock
	Synopsis
	Description

	9.1.44. mvbits
	Synopsis
	Description

	9.1.45. outstr
	Synopsis
	Description

	9.1.46. perror
	Synopsis
	Description

	9.1.47. putc
	Synopsis
	Description

	9.1.48. putenv
	Synopsis
	Description

	9.1.49. qsort
	Synopsis
	Description

	9.1.50. rand, irand, srand
	Synopsis
	Description

	9.1.51. random, irandm, drandm
	Synopsis
	Description

	9.1.52. range
	Synopsis
	Description

	9.1.53. rename
	Synopsis
	Description

	9.1.54. rindex
	Synopsis
	Description

	9.1.55. secnds, dsecnds
	Synopsis
	Description

	9.1.56. setvbuf
	Synopsis
	Description

	9.1.57. setvbuf3f
	Synopsis
	Description

	9.1.58. signal
	Synopsis
	Description

	9.1.59. sleep
	Synopsis
	Description

	9.1.60. stat, lstat, fstat, fstat64
	Synopsis
	Description

	9.1.61. stime
	Synopsis
	Description

	9.1.62. symlnk
	Synopsis
	Description

	9.1.63. system
	Synopsis
	Description

	9.1.64. time
	Synopsis
	Description

	9.1.65. times
	Synopsis
	Description

	9.1.66. ttynam
	Synopsis
	Description

	9.1.67. unlink
	Synopsis
	Description

	9.1.68. wait
	Synopsis
	Description

	9.2. VAX System Subroutines
	9.2.1. Built-In Functions
	%LOC(arg)
	%REF(a)
	%VAL(a)

	9.2.2. VAX/VMS System Subroutines
	DATE
	EXIT
	GETARG
	IARGC
	IDATE
	MVBITS
	RAN
	SECNDS
	TIME

	Interoperability with C
	10.1. Enumerators
	10.2. Interoperability with C Pointer Types
	10.2.1. c_f_pointer
	F2003
	Syntax
	Type
	Description
	Example

	10.2.2. c_f_procpointer
	F2003
	Syntax
	Type
	Description
	Example

	10.2.3. c_associated
	F2003
	Syntax
	Type
	Description
	Return Value
	Example

	10.3. Interoperability of Derived Types

	Contact Information

