
PGI Compiler Reference Guide
for OpenPOWER CPUs

Version 2016

PGI Compilers and Tools

PGI Compiler Reference Guide for OpenPOWER CPUs ii

TABLE OF CONTENTS

Preface.. xvii
Audience Description... xvii
Compatibility and Conformance to Standards...xvii
Organization.. xviii
Hardware and Software Constraints.. xix
Conventions.. xix
Terms... xx
Related Publications..xx

Chapter 1. Fortran, C, and C++ Data Types... 1
1.1. Fortran Data Types..1

1.1.1. Fortran Scalars.. 1
1.1.2. FORTRAN Aggregate Data Type Extensions... 3
1.1.3. Fortran 90 Aggregate Data Types (Derived Types).. 3

1.2. C and C++ Data Types...4
1.2.1. C and C++ Scalars..4
1.2.2. C and C++ Aggregate Data Types..5
1.2.3. Class and Object Data Layout.. 6
1.2.4. Aggregate Alignment... 6
1.2.5. Bit-field Alignment.. 7
1.2.6. Other Type Keywords in C and C++...8

Chapter 2. Command-Line Options Reference.. 9
2.1. PGI Compiler Option Summary...9

2.1.1. Build-Related PGI Options...9
2.1.2. PGI Debug-Related Compiler Options.. 11
2.1.3. PGI Optimization-Related Compiler Options... 12
2.1.4. PGI Linking and Runtime-Related Compiler Options.. 12

2.2. C and C++ Compiler Options..13
2.3. Generic PGI Compiler Options..14

2.3.1. -#.. 14
Default..14
Usage...15
Description... 15
Related options..15

2.3.2. -###.. 15
Default..15
Usage...15
Description... 15
Related options..15

2.3.3. -acc...15
Default..15

PGI Compiler Reference Guide for OpenPOWER CPUs iii

Syntax.. 15
Usage...16
Description... 16
Related options..16

2.3.4. -Bdynamic.. 16
Default..16
Usage...16
Description... 17
Related options..17

2.3.5. -Bstatic... 17
Default..17
Usage...17
Description... 17
Related options..17

2.3.6. -Bstatic_pgi...17
Default..17
Usage...17
Description... 18
Related options..18

2.3.7. -byteswapio.. 18
Default..18
Usage...18
Description... 18
Related options..18

2.3.8. -C..19
Default..19
Usage...19
Description... 19
Related options..19

2.3.9. -c.. 19
Default..19
Usage...19
Description... 19
Related options..19

2.3.10. -d<arg>...20
Default..20
Syntax.. 20
Usage...20
Description... 20
Related options..20

2.3.11. -D..20
Syntax.. 20
Default..21

PGI Compiler Reference Guide for OpenPOWER CPUs iv

Usage...21
Description... 21
Related options..21

2.3.12. -dryrun.. 21
Default..21
Usage...21
Description... 21
Related options..22

2.3.13. -drystdinc..22
Default..22
Usage...22
Description... 22
Related options..22

2.3.14. -E..22
Default..22
Usage...22
Description... 22
Related options..22

2.3.15. -F..23
Default..23
Usage...23
Description... 23
Related options..23

2.3.16. -fast.. 23
Default..23
Usage...23
Description... 23
Related options..24

2.3.17. --flagcheck..24
Default..24
Usage...24
Description... 24
Related options..24

2.3.18. -flags...24
Default..24
Usage...24
Description... 24
Related options..24

2.3.19. -fpic...25
Default..25
Usage...25
Related options..25

2.3.20. -fPIC... 25

PGI Compiler Reference Guide for OpenPOWER CPUs v

2.3.21. -g.. 25
Default..25
Usage...25
Description... 25
Related options..26

2.3.22. -gopt... 26
Default..26
Usage...26
Description... 26
Related options..26

2.3.23. -help... 26
Default..26
Usage...26
Description... 27
Related options..28

2.3.24. -I... 28
Default..28
Syntax.. 28
Usage...28
Description... 28
Related options..29

2.3.25. -i2, -i4, -i8.. 29
Default..29
Usage...29
Description... 29
Related options..29

2.3.26. -K<flag>..30
Default..30
Syntax.. 30
Usage...30
Description... 30
Related options..31

2.3.27. -L.. 31
Default..31
Syntax.. 31
Usage...31
Description... 32
Related options..32

2.3.28. -l<library>... 32
Syntax.. 32
Description... 32
Related options..32

2.3.29. -M... 32

PGI Compiler Reference Guide for OpenPOWER CPUs vi

2.3.30. -m... 32
Default..33
Usage...33
Description... 33
Related options..33

2.3.31. -m64... 33
Usage...33
Description... 33

2.3.32. -M<pgflag>... 33
2.3.33. -module <moduledir>... 38

Default..38
Usage...39
Description... 39
Related options..39

2.3.34. -mp... 39
Default..39
Usage...39
Description... 39
Related options..39

2.3.35. -noswitcherror...40
Default..40
Usage...40
Description... 40
Related options..40

2.3.36. -O<level>..40
Default..40
Syntax.. 40
Usage...40
Description... 41
Related options..42

2.3.37. -o.. 42
Default..42
Syntax.. 42
Usage...42
Related options..42

2.3.38. --pedantic... 42
Default..43
Usage...43
Related options..43

2.3.39. -pg.. 43
Default..43
Usage:..43
Description... 43

PGI Compiler Reference Guide for OpenPOWER CPUs vii

Related options..43
2.3.40. -pgc++libs...43

Default..43
Usage...44
Description... 44
Related options..44

2.3.41. -pgf90libs..44
Default..44
Usage...44
Description... 44
Related options..44

2.3.42. -R<directory>..44
Usage...45
Description... 45
Related options..45

2.3.43. -r...45
Default..45
Usage...45
Description... 45
Related options..45

2.3.44. -r4 and -r8..45
Usage...45
Description... 46
Related options..46

2.3.45. -rc... 46
Syntax.. 46
Usage...46
Description... 46
Related options..46

2.3.46. -s.. 46
Default..46
Usage...47
Description... 47
Related options..47

2.3.47. -S..47
Default..47
Usage...47
Description... 47
Related options..47

2.3.48. -shared... 47
Default..47
Usage...47
Description... 48

PGI Compiler Reference Guide for OpenPOWER CPUs viii

Related options..48
2.3.49. -show..48

Default..48
Usage...48
Description... 48
Related options..48

2.3.50. -silent..48
Default..48
Usage...48
Description... 48
Related options..49

2.3.51. -soname... 49
Default..49
Usage...49
Description... 49
Related options..49

2.3.52. -ta=tesla(tesla_suboptions),host.. 49
Default..49
Usage...49
Description... 50
Multiple Targets... 51
Relocatable Device Code..51
LLVM/SPIR and Native GPU Code Generation..51
DWARF Debugging Formats...51
Related options..52

2.3.53. -time... 52
Default..52
Usage...52
Description... 52
Related options..52

2.3.54. -u.. 52
Default..52
Syntax.. 52
Usage...53
Description... 53
Related options..53

2.3.55. -U..53
Syntax.. 53
Usage...53
Description... 53
Related options..53

2.3.56. -V[release_number]..53
Default..54

PGI Compiler Reference Guide for OpenPOWER CPUs ix

Usage...54
Description... 54
Related options..54

2.3.57. -v.. 54
Default..54
Usage...54
Description... 54
Related options..55

2.3.58. -W...55
Syntax.. 55
Usage...55
Description... 55
Related options..55

2.3.59. -w..55
Default..56
Usage...56
Description... 56
Related options..56

2.3.60. -Xs..56
Default..56
Usage...56
Description... 56
Related options..56

2.3.61. -Xt...56
Default..56
Usage...57
Description... 57
Related options..57

2.4. C and C++ -specific Compiler Options... 57
2.4.1. -A..57

Default..57
Usage...57
Description... 57
Related options..57

2.4.2. -a.. 58
Default..58
Usage...58
Description... 58
Related options..58

2.4.3. -alias...58
Syntax.. 58
Default..58
Usage...58

PGI Compiler Reference Guide for OpenPOWER CPUs x

Description... 58
Related options..59

2.4.4. --[no_]alternative_tokens..59
Default..59
Usage...59
Related options..59

2.4.5. -B..59
Default..59
Usage...59
Description... 59
Related options..60

2.4.6. -b.. 60
Default..60
Usage...60
Description... 60
Related options..60

2.4.7. -b3.. 60
Default..60
Usage...60
Description... 61
Related options..61

2.4.8. --[no_]bool.. 61
Default..61
Usage...61
Description... 61
Related options..61

2.4.9. --[no_]builtin..61
Default..61
Usage...61
Description... 62
Related options..62

2.4.10. --cfront_2.1... 62
Default..62
Usage...62
Description... 62
Related options..62

2.4.11. --cfront_3.0... 62
Default..62
Usage...62
Description... 63
Related options..63

2.4.12. --[no_]compress_names...63
Default..63

PGI Compiler Reference Guide for OpenPOWER CPUs xi

Usage...63
Description... 63
Related options..63

2.4.13. --create_pch filename.. 63
Default..63
Usage...64
Description... 64
Related options..64

2.4.14. --diag_error <number>...64
Default..64
Description... 64
Related options..64

2.4.15. --diag_remark <number>... 64
Default..64
Description... 64
Related options..64

2.4.16. --diag_suppress <number>..65
Default..65
Usage...65
Description... 65
Related options..65

2.4.17. --diag_warning <number>..65
Default..65
Usage...65
Description... 65
Related options..65

2.4.18. --display_error_number.. 66
Default..66
Usage...66
Description... 66
Related options..66

2.4.19. -e<number>..66
2.4.20. --[no_]exceptions..66

Default..66
Usage...66
Description... 66
Related options..67

2.4.21. --gnu_version <num>...67
Default..67
Usage...67
Description... 67

2.4.22. --[no]llalign..67
Default..67

PGI Compiler Reference Guide for OpenPOWER CPUs xii

Usage...67
Description... 67
Related options..67

2.4.23. -M... 68
Default..68
Usage...68
Description... 68
Related options..68

2.4.24. -MD...68
Default..68
Usage...68
Description... 68
Related options..68

2.4.25. --optk_allow_dollar_in_id_chars...69
Default..69
Usage...69
Description... 69

2.4.26. -P..69
Default..69
Usage...69
Description... 69
Related options..69

2.4.27. -+p.. 69
Default..69
Usage...70
Description... 70
Related options..70

2.4.28. --pch... 70
Default..70
Usage...70
Description... 70
Related options..70

2.4.29. --pch_dir directoryname... 70
Usage...71
Description... 71
Related options..71

2.4.30. --[no_]pch_messages...71
Description... 71
Related options..71

2.4.31. --preinclude=<filename>...71
Description... 71
Related options..72

2.4.32. --use_pch filename.. 72

PGI Compiler Reference Guide for OpenPOWER CPUs xiii

Default..72
Related options..72

2.4.33. --[no_]using_std..72
Default..72
Usage...72
Description... 72
Related options..72

2.4.34. -Xfilename.. 73
Default..73
Usage...73
Description... 73
Related options..73

2.4.35. --[no]zc_eh... 73
Default..73
Usage...73
Description... 73
Related options..74

2.5. -M Options by Category.. 74
2.5.1. Code Generation Controls...74
2.5.2. C/C++ Language Controls...76
2.5.3. Environment Controls.. 78
2.5.4. Fortran Language Controls..79
2.5.5. Inlining Controls... 82
2.5.6. Optimization Controls...84
2.5.7. Miscellaneous Controls..92

Chapter 3. C++ Name Mangling...98
Chapter 4. Directives and Pragmas Reference.. 99

4.1. PGI Proprietary Fortran Directive and C/C++ Pragma Summary... 99
4.1.1. altcode (noaltcode).. 100
4.1.2. assoc (noassoc)...101
4.1.3. bounds (nobounds).. 101
4.1.4. cncall (nocncall)... 101
4.1.5. concur (noconcur).. 101
4.1.6. depchk (nodepchk).. 101
4.1.7. eqvchk (noeqvchk)...102
4.1.8. fcon (nofcon).. 102
4.1.9. invarif (noinvarif).. 102
4.1.10. ivdep...102
4.1.11. lstval (nolstval)... 102
4.1.12. opt.. 102
4.1.13. prefetch.. 103
4.1.14. safe (nosafe).. 103
4.1.15. safe_lastval.. 103

PGI Compiler Reference Guide for OpenPOWER CPUs xiv

4.1.16. safeptr (nosafeptr)..104
4.1.17. single (nosingle)...105
4.1.18. tp.. 105
4.1.19. unroll (nounroll).. 105
4.1.20. vector (novector).. 106
4.1.21. vintr (novintr).. 106

4.2. Prefetch Directives and Pragmas..106
4.3. !$PRAGMA C...107
4.4. IGNORE_TKR Directive.. 107

4.4.1. IGNORE_TKR Directive Syntax.. 107
4.4.2. IGNORE_TKR Directive Format Requirements...107
4.4.3. Sample Usage of IGNORE_TKR Directive... 108

Chapter 5. Runtime Environment.. 109
5.1. Linux Programming Model.. 109

5.1.1. Function Calling Sequence..109
5.1.2. Linux OpenPOWER Fortran Supplement..123

Chapter 6. C++ Dialect Supported...129
6.1. Extensions Accepted in Normal C++ Mode.. 129
6.2. cfront 2.1 Compatibility Mode..130
6.3. cfront 2.1/3.0 Compatibility Mode..131
6.4. Extensions accepted in GNU compatibility mode (pgc++)... 132
6.5. C++11 Language Features Accepted..132
6.6. C++14 Language Features Accepted... 136

Chapter 7. Messages...137
7.1. Diagnostic Messages...137
7.2. Phase Invocation Messages... 138
7.3. Fortran Compiler Error Messages...138

7.3.1. Message Format.. 138
7.3.2. Message List..138

7.4. Fortran Run-time Error Messages...170
7.4.1. Message Format.. 170
7.4.2. Message List..170

Chapter 8. Contact Information... 174

PGI Compiler Reference Guide for OpenPOWER CPUs xv

LIST OF FIGURES

Figure 1 Internal Padding in a Structure ..7

Figure 2 Tail Padding in a Structure .. 8

Figure 3 Floating-point Registers as Part of Vector Scalar Registers .. 111

Figure 4 Vector Registers as Part of Vector Scalar Registers ..111

Figure 5 Stack Frame Organization ... 112

PGI Compiler Reference Guide for OpenPOWER CPUs xvi

LIST OF TABLES

Table 1 PGI Compilers and Commands ... xx

Table 2 Representation of Fortran Data Types ..1

Table 3 Real Data Type Ranges .. 2

Table 4 Scalar Type Alignment ...2

Table 5 C/C++ Scalar Data Types ... 4

Table 6 Scalar Alignment ..5

Table 7 PGI Build-Related Compiler Options ...10

Table 8 PGI Debug-Related Compiler Options .. 11

Table 9 Optimization-Related PGI Compiler Options ...12

Table 10 Linking and Runtime-Related PGI Compiler Options ..12

Table 11 C and C++ -specific Compiler Options ..13

Table 12 Subgroups for -help Option ... 27

Table 13 -M Options Summary ...33

Table 14 Optimization and -O, -g, -Mvect, and -Mconcur Options .. 41

Table 15 IGNORE_TKR Example ...108

Table 16 Register Allocation ...110

Table 17 Linux OpenPOWER Fortran Fundamental Types ... 123

Table 18 Fortran and C/C++ Data Type Compatibility ... 125

Table 19 Fortran and C/C++ Representation of the COMPLEX Type ... 126

PGI Compiler Reference Guide for OpenPOWER CPUs xvii

PREFACE

This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran,
C, and C++ compilers and program development tools. These compilers and tools include the
PGF95, PGFORTRAN, PGC++, PGCC ANSI C compilers and the PGPROF profiler. They work
in conjunction with an OpenPOWER assembler and linker. You can use the PGI compilers and
tools to compile, debug, optimize, and profile serial and parallel applications for OpenPOWER
processor-based systems.

The PGI Compiler Reference Manual is the reference companion to the PGI Compiler
User's Guide which provides operating instructions for the PGI command-level development
environment. It also contains details concerning the PGI compilers' interpretation of the Fortran
language, implementation of Fortran language extensions, and command-level compilation.
Users are expected to have previous experience with or knowledge of the Fortran programming
language. Neither guide teaches the Fortran programming language.

Audience Description
This manual is intended for scientists and engineers using the PGI compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C, and C++,
as well as assembly-language in the software development process; and you should have some
level of understanding of programming. You also need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards
Your system needs to be running a properly installed and configured version of this PGI product.
For information on installing PGI compilers and tools, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539-1 : 1991, Information technology – Programming Languages – Fortran,

Geneva, 1991 (Fortran 90).
‣ ISO/IEC 1539-1 : 1997, Information technology – Programming Languages – Fortran,

Geneva, 1997 (Fortran 95).

Preface

PGI Compiler Reference Guide for OpenPOWER CPUs xviii

‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,
Geneva, 2004 (Fortran 2003).

‣ ISO/IEC 1539-1 : 2010, Information technology – Programming Languages – Fortran,
Geneva, 2010 (Fortran 2008).

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ The Fortran 2003 Handbook, Adams et al, Springer, 2009.
‣ OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,

1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard Programming

Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).
‣ American National Standard Programming Language C, ANSI X3.159-1989.
‣ ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999

(C99).
‣ ISO/IEC 9899:2011, Information Technology – Programming Languages – C, Geneva, 2011

(C11).
‣ ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, Geneva,

2011 (C++11).

Organization
Users typically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasks is key to using the PGI compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

To facilitate ease of use, this manual contains detailed reference information about specific
aspects of the compiler, such as the details of compiler options, directives, and more. This guide
contains these sections:

Fortran, C, and C++ Data Types describes the data types that are supported by the PGI Fortran, C,
and C++ compilers.

Command-Line Options Reference provides a detailed description of each command-line option.

C++ Name Mangling describes the name mangling facility and explains the transformations of
names of entities to names that include information on aspects of the entity’s type and a fully
qualified name.

Directives and Pragmas Reference contains detailed descriptions of PGI’s proprietary directives
and pragmas.

Runtime Environment describes the programming model supported for compiler code generation,
including register conventions and calling conventions for OpenPOWER processor-based
systems.

http://www.openmp.org

Preface

PGI Compiler Reference Guide for OpenPOWER CPUs xix

C++ Dialect Supported lists more details of the version of the C++ language that PGC++
supports.

Messages provides a list of compiler error messages.

Hardware and Software Constraints
This guide describes versions of the PGI compilers that produce assembly code for OpenPOWER
processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the release notes delivered with the PGI
compilers.

Conventions
This guide uses the following conventions:

italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, macOS and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER
processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGI 2016 and will no longer be available as of the PGI
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm

Preface

PGI Compiler Reference Guide for OpenPOWER CPUs xx

Terms
A number of terms related to systems, processors, compilers and tools are used throughout this
guide. For example:

driver MPI NUMA static linking

dynamic library MPICH OpenPOWER shared library

Linux library multicore

For a complete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGI provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command

PGFORTRAN ISO/ANSI Fortran 2003 pgfortran

PGCC ISO/ANSI C11 and K&R C pgcc

PGC++ ISO/ANSI C++14 with GNU compatibility pgc++

PGPROF Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to The Portland Group's Fortran 2003
compiler, and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the
pgfortran command, and most source code examples are written in Fortran. Usage of PGC++
and PGCC is consistent with PGFORTRAN, though there are command-line options and features
of these compilers that do not apply to PGFORTRAN, and vice versa.

Related Publications
The following documents contain additional information related to the OpenPOWER
architecture, and the compilers and tools available from The Portland Group.

‣ PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

‣ OpenPOWER ABI for Linux Supplement, Power Architecture 64-Bit ELF V2
ABI Specification, http://openpowerfoundation.org/wp-content/uploads/2016/03/
ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf.

http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm
http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf
http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf

Preface

PGI Compiler Reference Guide for OpenPOWER CPUs xxi

‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ The C Programming Language by Kernighan and Ritchie (Prentice Hall).
‣ C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).
‣ The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell

Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

Preface

PGI Compiler Reference Guide for OpenPOWER CPUs xxii

PGI Compiler Reference Guide for OpenPOWER CPUs 1

Chapter 1.
FORTRAN, C, AND C++ DATA TYPES

This section describes the scalar and aggregate data types recognized by the PGI Fortran, C, and
C++ compilers, the format and alignment of each type in memory, and the range of values each
type can have.

1.1. Fortran Data Types

1.1.1. Fortran Scalars
A scalar data type holds a single value, such as the integer value 42 or the real value 112.6.
The next table lists scalar data types, their size, format and range. Table 3 shows the range and
approximate precision for Fortran real data types. Table 4 shows the alignment for different scalar
data types. The alignments apply to all scalars, whether they are independent or contained in an
array, a structure or a union.

Table 2 Representation of Fortran Data Types

Fortran Data Type Format Range

INTEGER 2's complement integer -231 to 231-1

INTEGER*2 2's complement integer -32768 to 32767

INTEGER*4 2's complement integer -231 to 231-1

INTEGER*8 2's complement integer -263 to 263-1

LOGICAL 32-bit value true or false

LOGICAL*1 8-bit value true or false

LOGICAL*2 16-bit value true or false

LOGICAL*4 32-bit value true or false

LOGICAL*8 64-bit value true or false

BYTE 2's complement -128 to 127

REAL Single-precision floating point 10-37 to 1038 (1)

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 2

Fortran Data Type Format Range

REAL*4 Single-precision floating point 10-37 to 10 38 (1)

REAL*8 Double-precision floating point 10-307 to 10 308 (1)

DOUBLE PRECISION Double-precision floating point 10-307 to 10308 (1)

COMPLEX Single-precision floating point 10-37 to 1038 (1)

DOUBLE COMPLEX Double-precision floating point 10-307 to 10308 (1)

COMPLEX*16 Double-precision floating point 10-307 to 10308 (1)

CHARACTER*n Sequence of n bytes

(1) Approximate value

The logical constants .TRUE. and .FALSE. are all ones and all zeroes, respectively. Internally,
the value of a logical variable is true if the least significant bit is one and false otherwise. When
the option -Munixlogical is set, a logical variable with a non-zero value is true and with a
zero value is false.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 3 Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision

REAL -2-126 to 2128 10-37 to 1038 (1) 7–8

REAL*8 -2-1022 to 21024 10-307 to 10308 (1) 15–16

Table 4 Scalar Type Alignment

This Type... ...Is aligned on this size boundary

LOGICAL*1 1-byte

LOGICAL*2 2-byte

LOGICAL*4 4-byte

LOGICAL*8 8-byte

BYTE 1-byte

INTEGER*2 2-byte

INTEGER*4 4-byte

INTEGER*8 8-byte

REAL*4 4-byte

REAL*8 8-byte

COMPLEX*8 4-byte

COMPLEX*16 8-byte

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 3

1.1.2. FORTRAN Aggregate Data Type Extensions
The PGFORTRAN compiler supports de facto standard extensions to FORTRAN that allow for
aggregate data types. An aggregate data type consists of one or more scalar data type objects. You
can declare the following aggregate data types:

‣ An array consists of one or more elements of a single data type placed in contiguous
locations from first to last.

‣ A structure can contain different data types. The members are allocated in the order they
appear in the definition but may not occupy contiguous locations.

‣ A union is a single location that can contain any of a specified set of scalar or aggregate
data types. A union can have only one value at a time. The data type of the union member to
which data is assigned determines the data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of
their members.

Array types
align according to the alignment of the array elements. For example, an array of INTEGER*2
data aligns on a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In
the next example, the union aligns on a 4-byte boundary since the alignment of c, the most
restrictive element, is four.

STRUCTURE /astr/
UNION
 MAP
 INTEGER*2 a ! 2 bytes
 END MAP
 MAP
 BYTE b ! 1 byte
 END MAP
 MAP
 INTEGER*4 c ! 4 bytes
 END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the
structure is called internal padding. Padding between the last member and the end of the space is
called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member's
alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an
INTEGER*2 member from the beginning of a structure is a multiple of two bytes.

1.1.3. Fortran 90 Aggregate Data Types (Derived Types)
The Fortran 90 standard added formal support for aggregate data types. The TYPE statement
begins a derived type data specification or declares variables of a specified user-defined type. For
example, the following would define a derived type ATTENDEE:
TYPE ATTENDEE
 CHARACTER(LEN=30) NAME

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 4

 CHARACTER(LEN=30) ORGANIZATION
 CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable,
code such as the following would be used:
TYPE (ATTENDEE) ATTLIST(100)
. . .
ATTLIST(1)%NAME = ‘JOHN DOE’

1.2. C and C++ Data Types

1.2.1. C and C++ Scalars
Table 5 lists C and C++ scalar data types, providing their size and format. The alignment of
a scalar data type is equal to its size. Table 6 shows scalar alignments that apply to individual
scalars and to scalars that are elements of an array or members of a structure or union. Wide
characters are supported (character constants prefixed with an L). The size of each wide character
is 4 bytes.

Table 5 C/C++ Scalar Data Types

Data Type
Size
(bytes) Format Range

unsigned char 1 ordinal 0 to 255

signed char 1 2's complement integer -128 to 127

char 1 ordinal 0 to 255

unsigned short 2 ordinal 0 to 65535

[signed] short 2 2's complement integer -32768 to 32767

unsigned int 4 ordinal 0 to 232 -1

[signed] int 4 2's complement integer -231 to 231-1

[signed] long [int] 8 2's complement integer -263 to 263-1

unsigned long [int] 8 ordinal 0 to 264-1

[signed] long long [int] 8 2's complement integer -263 to 263-1

unsigned long long [int] 8 ordinal 0 to 264-1

float 4 IEEE single-precision
floating-point

10-37 to 1038 (1)

double 8 IEEE double-precision
floating-point

10-307 to 10308 (1)

long double 16 IBM double-double 10-307 to 10308 (1)

bit field(2) (unsigned value) 1 to 32
bits

ordinal 0 to 2size-1, where size is the number of bits
in the bit field

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 5

Data Type
Size
(bytes) Format Range

bit field(2) (signed value) 1 to 32
bits

2's complement integer -2size-1 to 2size-1-1, where size is the number
of bits in the bit field

pointer 8 address 0 to 264-1

enum 4 2's complement integer -231 to 231-1

(1) Approximate value
(2) Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a
multiple of 8 bits (1 byte)

Table 6 Scalar Alignment

Data Type Alignment on this size boundary

char 1-byte boundary, signed or unsigned.

short 2-byte boundary, signed or unsigned.

int 4-byte boundary, signed or unsigned.

enum 4-byte boundary.

pointer 8-byte boundary.

float 4-byte boundary.

double 8-byte boundary.

long double 16-byte boundary.

long [int] 8-byte boundary, signed or unsigned.

long long [int] 8-byte boundary, signed or unsigned.

1.2.2. C and C++ Aggregate Data Types
An aggregate data type consists of one or more scalar data type objects. You can declare the
following aggregate data types:

array
consists of one or more elements of a single data type placed in contiguous locations from first
to last.

class
(C++ only) is a class that defines an object and its member functions. The object can contain
fundamental data types or other aggregates including other classes. The class members are
allocated in the order they appear in the definition but may not occupy contiguous locations.

struct
is a structure that can contain different data types. The members are allocated in the order they
appear in the definition but may not occupy contiguous locations. When a struct is defined
with member functions, its alignment rules are the same as those for a class.

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 6

union
is a single location that can contain any of a specified set of scalar or aggregate data types. A
union can have only one value at a time. The data type of the union member to which data is
assigned determines the data type of the union after that assignment.

1.2.3. Class and Object Data Layout
Class and structure objects with no virtual entities and with no base classes, that is just direct data
field members, are laid out in the same manner as C structures. The following section describes
the alignment and size of these C-like structures. C++ classes (and structures as a special case
of a class) are more difficult to describe. Their alignment and size is determined by compiler
generated fields in addition to user-specified fields. The following paragraphs describe how
storage is laid out for more general classes. The user is warned that the alignment and size of a
class (or structure) is dependent on the existence and placement of direct and virtual base classes
and of virtual function information. The information that follows is for informational purposes
only, reflects the current implementation, and is subject to change. Do not make assumptions
about the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence
indicated):

‣ First, storage for all of the direct base classes (which implicitly includes storage for non-
virtual indirect base classes as well):

‣ When the direct base class is also virtual, only enough space is set aside for a pointer to
the actual storage, which appears later.

‣ In the case of a non-virtual direct base class, enough storage is set aside for its own non-
virtual base classes, its virtual base class pointers, its own fields, and its virtual function
information, but no space is allocated for its virtual base classes.

‣ Next, storage for the class’s own fields.
‣ Next, storage for virtual function information (typically, a pointer to a virtual function table).
‣ Finally, storage for its virtual base classes, with space enough in each case for its own non-

virtual base classes, virtual base class pointers, fields, and virtual function information.

1.2.4. Aggregate Alignment
The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members.

Arrays
align according to the alignment of the array elements. For example, an array of short data
type aligns on a 2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. In the following
example, the union un1 aligns on a 4-byte boundary since the alignment of c, the most
restrictive element, is four:
union un1 {
 short a; /* 2 bytes */
 char b; /* 1 byte */
 int c; /* 4 bytes */
 };

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 7

Structure alignment can result in unused space, called padding. Padding between members of a
structure is called internal padding. Padding between the last member and the end of the space
occupied by the structure is called tail padding. Figure 1 illustrates structure alignment. Consider
the following structure:
struct strc1 {
 char a; /* occupies byte 0 */
 short b; /* occupies bytes 2 and 3 */
 char c; /* occupies byte 4 */
 int d; /* occupies bytes 8 through 11 */
 };

Figure 1 Internal Padding in a Structure

Figure 2 shows how tail padding is applied to a structure aligned on a doubleword (8 byte)
boundary.
struct strc2{
 int m1[4]; /* occupies bytes
0 through 15 */
 double m2; /* occupies bytes 16 through 23 */
 short m3; /* occupies bytes 24 and 25 */
} st;

1.2.5. Bit-field Alignment
Bit-fields have the same size and alignment rules as other aggregates, with several additions to
these rules:

‣ Bit-fields are allocated from right to left.
‣ A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross

unit boundaries.
‣ Bit-fields may share a storage unit with other structure/union members, including members

that are not bit-fields.
‣ Unnamed bit-field's types do not affect the alignment of a structure or union.
‣ Items of [signed/unsigned] long long type may not appear in field declarations on 32-bit

systems.

Fortran, C, and C++ Data Types

PGI Compiler Reference Guide for OpenPOWER CPUs 8

Figure 2 Tail Padding in a Structure

1.2.6. Other Type Keywords in C and C++
The void data type is neither a scalar nor an aggregate. You can use void or void* as the return
type of a function to indicate the function does not return a value, or as a pointer to an unspecified
data type, respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate
attributes with other types. Use const to specify that an identifier is a constant and is not to be
changed. Use volatile to prevent optimization problems with data that can be changed from
outside the program, such as memory-mapped I/O buffers.

PGI Compiler Reference Guide for OpenPOWER CPUs 9

Chapter 2.
COMMAND-LINE OPTIONS REFERENCE

A command-line option allows you to specify specific behavior when a program is compiled and
linked. Compiler options perform a variety of functions, such as setting compiler characteristics,
describing the object code to be produced, controlling the diagnostic messages emitted, and
performing some preprocessor functions. Most options that are not explicitly set take the default
settings. This reference section describes the syntax and operation of each compiler option. For
easy reference, the options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks, refer to the
‘Using Command-line Options’ section of the PGI Compiler Userr’s Guide, which also provides
summary tables of the different options.

This section uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

...
Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

2.1. PGI Compiler Option Summary
The following tables include all the PGI compiler options that are not language-specific. The
options are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this section.

2.1.1. Build-Related PGI Options
The options included in the following table pertain to the initial building of your program or
application.

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 10

Table 7 PGI Build-Related Compiler Options

Option Description

-# Display invocation information.

-### Shows but does not execute the driver commands (same as the option -dryrun).

-acc Enable OpenACC directives.

-Bdynamic Compiles for and links to the shared object version of the PGI runtime libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime libraries.

-c Stops after the assembly phase and saves the object code in filename.o.

-D<args> Defines a preprocessor macro.

-dryrun Shows but does not execute driver commands.

-drystdinc Displays the standard include directories and then exits the compiler.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

-F Stops after the preprocessing phase and saves the preprocessed file in
filename.f. This option is only valid for the PGI Fortran compilers.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-fpic (Linux and macOS only) Generate position-independent code.

-fPIC (Linux and macOS only) Equivalent to -fpic.

-help Display driver help message.

-I<dirname> Adds a directory to the search path for #include files.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-L<dirname> Specifies a directory to search for libraries.

-l<library> Loads a library.

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

-module <moduledir> (F90/F95 only) Save/search for module files in directory <moduledir>.

-mp[=all, align,bind,
[no]numa]

Interpret and process user-inserted shared-memory parallel programming directives.

-noswitcherror Ignore unknown command line switches after printing an warning message.

-o Names the object file.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 11

Option Description

- -pedantic Prints warnings from included <system header files>

-pg or -qp Instrument the generated executable to produce a gprof-style gmon.out sample-
based profiling trace file; -qp is equivalent to -pg.

-R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the search path
for shared object files.

-r Creates a relocatable object file.

-r4: Interpret DOUBLE PRECISION variables as REAL.-r4 and -r8

-r8: Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver's startup file.

-s Strips the symbol-table information from the object file.

-S Stops after the compiling phase and saves the assembly-language code in
filename.s.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a shared object file.
Implies -fpic.

-show Display driver's configuration parameters after startup.

-silent Do not print warning messages.

-soname Pass the soname option and its argument to the linker.

-time Print execution times for the various compilation steps.

-u<symbol> Initializes the symbol table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

-U<symbol> Undefine a preprocessor macro.

-V[release_number] Displays the version messages and other information, or allows invocation of a
version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

2.1.2. PGI Debug-Related Compiler Options
The options included in the following table pertain to debugging your program or application.

Table 8 PGI Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-c Instrument the generated executable to perform array bounds checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 12

Option Description

-g Includes debugging information in the object module.

-gopt Includes debugging information in the object module, but forces assembly code
generation identical to that obtained when -gopt is not present on the command
line.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

2.1.3. PGI Optimization-Related Compiler Options
The options included in the following table pertain to optimizing your program or application
code.

Table 9 Optimization-Related PGI Compiler Options

Option Description

-fast Generally optimal set of flags.

-M<pgflag> Selects variations for code generation and optimization.

-mp[=all, align,bind,[no]numa] Interpret and process user-inserted shared-memory parallel programming directives.

-O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

2.1.4. PGI Linking and Runtime-Related Compiler Options
The options included in the following table pertain to defining parameters related to linking and
running your program or application.

Table 10 Linking and Runtime-Related PGI Compiler Options

Option Description

-Bdynamic Compiles for and links to the DLL version of the PGI runtime libraries.

-Bstatic_pgi Compiles for and links to the static version of the PGI runtime libraries.

-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice versa on input/
output of unformatted data.

-fpic (Linux only) Generate position-independent code.

-fPIC (Linux only) Equivalent to -fpic.

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i2, -i4 and -i8

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER*8 operations.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 13

Option Description

-M<pgflag> Selects variations for code generation and optimization.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a shared object file.
Implies -fpic.

-soname Pass the soname option and its argument to the linker.

-
ta=tesla(:tesla_suboptions)
host

Specify the target accelerator.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

2.2. C and C++ Compiler Options
There are a large number of compiler options specific to the PGCC and PGC++ compilers,
especially PGC++. The next table lists several of these options, but is not exhaustive. For a
complete list of available options, including an exhaustive list of PGC++ options, use the -help
command-line option. For further detail on a given option, use -help and specify the option
explicitly. The majority of these options are related to building your program or application.

Table 11 C and C++ -specific Compiler Options

Option Description

-A (pgc++ only) Accept proposed ANSI C++, issuing errors for non-
conforming code.

-a (pgc++ only) Accept proposed ANSI C++, issuing warnings for non-
conforming code.

--[no_]alternative_tokens (pgc++ only) Enable/disable recognition of alternative tokens. These
are tokens that make it possible to write C++ without the use of the ,,
[,], #, &, and ^ and characters. The alternative tokens include the
operator keywords (e.g., and, bitand, etc.) and digraphs. The default is
--no_alternative_tokens.

-B Allow C++ comments (using //) in C source.

--[no_]bool (pgc++ only) Enable or disable recognition of bool. The default value is --
bool.

--[no_]builtin Do/don’t compile with math subroutine builtin support, which causes
selected math library routines to be inlined. The default is --builtin.

--compress_names (pgc++ only) Create a precompiled header file with the name filename.

-d<arg> (pgcc only) Prints additional information from the preprocessor.

--dependencies (see -M) (pgc++ only) Print makefile dependencies to stdout.

--dependencies_to_file filename (pgc++ only) Print makefile dependencies to file filename.

--display_error_number (pgc++ only) Display the error message number in any diagnostic
messages that are generated.

--diag_error<number> (pgc++ only) Override the normal error severity of the specified diagnostic
messages.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 14

Option Description

--diag_remark<number> (pgc++ only) Override the normal error severity of the specified diagnostic
messages.

--diag_suppress<number> (pgc++ only) Override the normal error severity of the specified diagnostic
messages.

--diag_warning<number> (pgc++ only) Override the normal error severity of the specified diagnostic
messages.

-e<number> (pgc++ only) Set the C++ front-end error limit to the specified <number>.

--[no_]exceptions (pgc++ only) Disable/enable exception handling support. The default is --
exceptions

--gnu_version <num> (pgc++ only) Sets the GNU C++ compatibility version.

--[no]llalign (pgc++ only) Do/don’t align longlong integers on integer boundaries. The
default is --llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

-MD,filename (pgc++ only) Generate make dependence lists and print them to file
filename.

--optk_allow_dollar_in_id_chars (pgc++ only) Accept dollar signs in identifiers.

-P Stops after the preprocessing phase and saves the preprocessed file in
filename.i.

--pch (pgc++ only) Automatically use and/or create a precompiled header file.

--preinclude=<filename> (pgc++ only) Specify file to be included at the beginning of compilation so
you can set system-dependent macros, types, and so on.

--[no_]using_std (pgc++ only) Enable/disable implicit use of the std namespace when
standard header files are included.

-X filename (pgc++ only) Generate cross-reference information into file filename.

2.3. Generic PGI Compiler Options
The following descriptions are for all the PGI options. For easy reference, the options are
arranged in alphabetical order. For a list of options by tasks, refer to the tables in the beginning of
this section.

2.3.1. -#
Displays the invocations of the compiler, assembler and linker.

Default
The compiler does not display individual phase invocations.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 15

Usage
The following command-line requests verbose invocation information.
$ pgfortran -# prog.f

Description
The -# option displays the invocations of the compiler, assembler and linker. These invocations
are command-lines created by the driver from your command-line input and the default value.

Related options
-Minfo[=option [,option,...]], -V[release_number], -v

2.3.2. -###
Displays the invocations of the compiler, assembler and linker, but does not execute them.

Default
The compiler does not display individual phase invocations.

Usage
The following command-line requests verbose invocation information.
$ pgfortran -### myprog.f

Description
Use the -### option to display the invocations of the compiler, assembler and linker but not to
execute them. These invocations are command lines created by the compiler driver from the rc
files and the command-line options.

Related options
-#, -dryrun, -Minfo[=option [,option,...]], -V[release_number]

2.3.3. -acc
Enables OpenACC directives.

Default
The compiler enables OpenACC directives.

Syntax
-acc[=[no]autopar|[no]required|strict|verystrict]

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 16

[no]autopar
Enable [default] loop autoparallelization within acc parallel. The default is to autopar, that is,
to enable loop autoparallelization.

[no]required
Instructs the compiler to issue a compiler error if the compute regions fail to accelerate. The
default is required.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator directive.

Usage
The following command-line requests that OpenACC directives be enabled and that the issue an
error for any non-OpenACC accelerator directive.
$ pgfortran -acc=verystrict -g prog.f

Description
The -acc option enables OpenACC directives. You can use the suboptions to specify loop
autoparallelization, how the compiler reports compute regions failures to accelerate, and whether
to issue a warning or an error for non-OpenACC accelerator directives.

Starting in PGI 14.1, you control the OpenACC compiler behavior related to accelerator code
generation failures with the required suboption. The OpenACC compilers now issue a
compile-time error if accelerator code generation fails. In previous releases, the compiler would
issue a warning, then generate code to run the compute kernel on the host. This previous behavior
generates incorrect results if the compute kernels are inside a data region and the host and
device memory values are inconsistent. You can enable the old behavior by using the -acc
norequired switch.

Related options
-g, -ta=tesla(tesla_suboptions),host

2.3.4. -Bdynamic
Compiles for and links to the shared object version of the PGI runtime libraries.

Default
The compiler uses static libraries.

Usage

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 17

Description
When you use the PGI compiler flag -Bdynamic to create an executable that links to the shared
object form of the runtime, the executable built is smaller than one built without -Bdynamic.
The PGI runtime shared object(s), however, must be available on the system where the executable
is run. The -Bdynamic flag must be used when an executable is linked against a shared object
built by the PGI compilers.

Related options
-Bstatic

2.3.5. -Bstatic
Compiles for and links to the static version of the PGI runtime libraries.

Default
The compiler uses static libraries.

Usage
The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:
% pgfortran -Bstatic -c object1.f

Description
You can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

Related options
-Bdynamic, -Bstatic_pgi

2.3.6. -Bstatic_pgi
Linux only.Compiles for and links to the static version of the PGI runtime libraries. Implies
-Mnorpath.

Default
The compiler uses static libraries.

Usage
The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 18

% pgfortran -Bstatic -c object1.f

Description
You can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

On Linux, -Bstatic_pgi results in code that runs on most Linux systems without requiring a
Portability package.

Related options
-Bdynamic, -Bstatic

2.3.7. -byteswapio
Swaps the byte-order of data in unformatted Fortran data files on input/output.

Default
The compiler does not byte-swap data on input/output.

Usage
The following command-line requests that byte-swapping be performed on input/output.
$ pgfortran -byteswapio myprog.f

Description
Use the -byteswapio option to swap the byte-order of data in unformatted Fortran data files on
input/output. When this option is used, the order of bytes is swapped in both the data and record
control words; the latter occurs in unformatted sequential files.

You can use this option to convert big-endian format data files produced by most legacy RISC
workstations to the little-endian format used on x86/x64 or OpenPOWER systems on the fly
during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access
files are the same on the systems. It further assumes that the IEEE representation is used for
floating-point numbers. In particular, the format of unformatted data files produced by PGI
Fortran compilers is identical to the format used on Sun and SGI workstations; this format allows
you to read and write unformatted Fortran data files produced on those platforms from a program
compiled for an x86/x64 or OpenPOWER platform using the -byteswapio option.

Related options
None.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 19

2.3.8. -C
(Fortran only) Generates code to check array bounds.

Default
The compiler does not enable array bounds checking.

Usage
In this example, the compiler instruments the executable produced from myprog.f to perform
array bounds checking at runtime:
$ pgfortran -C myprog.f

Description
Use this option to enable array bounds checking. If an array is an assumed size array, the bounds
checking only applies to the lower bound. If an array bounds violation occurs during execution,
an error message describing the error is printed and the program terminates. The text of the error
message includes the name of the array, the location where the error occurred (the source file and
the line number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

Related options
-Mbounds, -Mnobounds

2.3.9. -c
Halts the compilation process after the assembling phase and writes the object code to a file.

Default
The compiler produces an executable file and does not use the -c option.

Usage
In this example, the compiler produces the object file myprog.o in the current directory.
$ pgfortran -c myprog.f

Description
Use the -c option to halt the compilation process after the assembling phase and write the object
code to a file. If the input file is filename.f, the output file is filename.o.

Related options
-E, -Mkeepasm, -o, -S

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 20

2.3.10. -d<arg>
Prints additional information from the preprocessor. [Valid only for c (pgcc)]

Default
No additional information is printed from the preprocessor.

Syntax
-d[D|I|M|N]

-dD
Print macros and values from source files.

-dI
Print include file names.

-dM
Print macros and values, including predefined and command-line macros.

-dN
Print macro names from source files.

Usage
In the following example, the compiler prints macro names from the source file.
$ pgfortran -dN myprog.f

Description
Use the -d<arg> option to print additional information from the preprocessor.

Related options
-E, -D, -U

2.3.11. -D
Creates a preprocessor macro with a given value.

You can use the -D option more than once on a compiler command line. The number of active macro
definitions is limited only by available memory.

Syntax
-Dname[=value]

Where name is the symbolic name and value is either an integer value or a character string.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 21

Default
If you define a macro name without specifying a value, the preprocessor assigns the string 1 to
the macro name.

Usage
In the following example, the macro PATHLENGTH has the value 256 until a subsequent
compilation. If the -D option is not used, PATHLENGTH is set to 128.
$ pgfortran -DPATHLENGTH=256 myprog.F

The source text in myprog.F is this:
 #ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path
 ...
END

Description
Use the -D option to create a preprocessor macro with a given value. The value must be either an
integer or a character string.

You can use macros with conditional compilation to select source text during preprocessing. A
macro defined in the compiler invocation remains in effect for each module on the command line,
unless you remove the macro with an #undef preprocessor directive or with the -U option. The
compiler processes all of the -U options in a command line after processing the -D options.

Related options
-U

2.3.12. -dryrun
Displays the invocations of the compiler, assembler, and linker but does not execute them.

Default
The compiler does not display individual phase invocations.

Usage
The following command line requests verbose invocation information.
$ pgfortran -dryrun myprog.f

Description
Use the -dryrun option to display the invocations of the compiler, assembler, and linker but not
have them executed. These invocations are command lines created by the compiler driver from
the rc files and the command-line supplied with -dryrun.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 22

Related options
-Minfo[=option [,option,...]], -V[release_number], -###

2.3.13. -drystdinc
Displays the standard include directories and then exits the compiler.

Default
The compiler does not display standard include directories.

Usage
The following command line requests a display for the standard include directories.
$ pgfortran -drystdinc myprog.f

Description
Use the -drystdinc option to display the standard include directories and then exit the
compiler.

Related options
None.

2.3.14. -E
Halts the compilation process after the preprocessing phase and displays the preprocessed output
on the standard output.

Default
The compiler produces an executable file.

Usage
In the following example the compiler displays the preprocessed myprog.f on the standard
output.
$ pgfortran -E myprog.f

Description
Use the -E option to halt the compilation process after the preprocessing phase and display the
preprocessed output on the standard output.

Related options
-C, -c, -Mkeepasm, -o, -F, -S

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 23

2.3.15. -F
Stops compilation after the preprocessing phase.

Default
The compiler produces an executable file.

Usage
In the following example the compiler produces the preprocessed file myprog.f in the current
directory.
$ pgfortran -F myprog.F

Description
Use the -F option to halt the compilation process after preprocessing and write the preprocessed
output to a file. If the input file is filename.F, then the output file is filename.f.

Related options
-c, -E, -Mkeepasm, -o, -S

2.3.16. -fast
Enables vectorization with SIMD instructions, cache alignment, and flushz for 64-bit targets.

Default
The compiler enables vectorization with SIMD instructions, cache alignment, and flushz.

Usage
In the following example the compiler produces vector SIMD code when targeting a 64-bit
machine.
$ pgfortran -fast vadd.f95

Description
When you use this option, a generally optimal set of options is chosen for targets that support
SIMD capability. In addition, the appropriate -tp option is automatically included to enable
generation of code optimized for the type of system on which compilation is performed. This
option enables vectorization with SIMD instructions, cache alignment, and flushz.

C/C++ compilers enable -Mautoinline with -fast.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 24

Related options
-O<level>, -Munroll[=option [,option...]], -Mnoframe, -M[no]vect[=option [,option,...]], -
Mcache_align, - M[no]autoinline[=option[,option,...]]

2.3.17. --flagcheck
Causes the compiler to check that flags are correct and then exit without any compilation
occuring.

Default
The compiler begins a compile without the additional step to first validate that flags are correct.

Usage
In the following example the compiler checks that flags are correct, and then exits.
$ pgfortran --flagcheck myprog.f

Description
Use this option to make the compiler check that flags are correct and then exit. If flags are all
correct then the compiler returns a zero status. No compilation occurs.

Related options
None.

2.3.18. -flags
Displays valid driver options on the standard output.

Default
The compiler does not display the driver options.

Usage
In the following example the user requests information about the known switches.
$ pgfortran -flags

Description
Use this option to display driver options on the standard output. When you use this option with
-v, in addition to the valid options, the compiler lists options that are recognized and ignored.

Related options
-#, -###, -v

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 25

2.3.19. -fpic
(Linux only) Generates position-independent code suitable for inclusion in shared object
(dynamically linked library) files.

Default
The compiler does not generate position-independent code.

Usage
In the following example the resulting object file, myprog.o, can be used to generate a shared
object.
$ pgfortran -fpic myprog.f

(Linux only) Use the -fpic option to generate position-independent code suitable for inclusion in
shared object (dynamically linked library) files.

Related options
-shared,-fPIC,-R<directory>

2.3.20. -fPIC
(Linux only) Equivalent to -fpic. Provided for compatibility with other compilers.

2.3.21. -g
Instructs the compiler to include symbolic debugging information in the object module.

Default
The compiler does not put debugging information into the object module.

Usage
In the following example, the object file myprog.o contains symbolic debugging information.
$ pgfortran -c -g myprog.f

Description
Use the -g option to instruct the compiler to include symbolic debugging information in the object
module. Debuggers, such as PGDBG, require symbolic debugging information in the object
module to display and manipulate program variables and source code.

If you specify the -g option on the command-line, the compiler sets the optimization level to -O0
(zero), unless you specify the -O option. For more information on the interaction between the

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 26

-g and -O options, refer to the -O entry. Symbolic debugging may give confusing results if an
optimization level other than zero is selected.

Including symbolic debugging information increases the size of the object module.

Related options
-O<level>, -gopt

2.3.22. -gopt
Instructs the compiler to include symbolic debugging information in the object file, and to
generate optimized code identical to that generated when -g is not specified.

Default
The compiler does not put debugging information into the object module.

Usage
In the following example, the object file myprog.o contains symbolic debugging information.
$ pgfortran -c -gopt myprog.f

Description
Using -g alters how optimized code is generated in ways that are intended to enable or improve
debugging of optimized code. The -gopt option instructs the compiler to include symbolic
debugging information in the object file, and to generate optimized code identical to that
generated when -g is not specified.

Related options
-g, -M<pgflag>

2.3.23. -help
Used with no other options, -help displays options recognized by the driver on the standard
output. When used in combination with one or more additional options, usage information for
those options is displayed to standard output.

Default
The compiler does not display usage information.

Usage
In the following example, usage information for -Minline is printed to standard output.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 27

$ pgcc -help -Minline
-Minline[=lib:<inlib>|<func>|except:<func>| name:<func>|size:<n>|levels:<n>]
 Enable function inlining lib:<extlib>Use extracted functions from extlib
 <func>Inline function func except:<func>Do not inline function func
 name:<func>Inline function func size:<n>Inline only functions smaller than n
 levels:<n>Inline n levels of functions -Minline Inline all functions that were
 extracted

In the following example, usage information for -help shows how groups of options can be listed
or examined according to function.
$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall|phase|prepro|suffix|switch|target|variable]

Description
Use the -help option to obtain information about available options and their syntax. You can use
-help in one of three ways:

‣ Use -help with no parameters to obtain a list of all the available options with a brief one-
line description of each.

‣ Add a parameter to -help to restrict the output to information about a specific option. The
syntax for this usage is this:
-help <command line option>

‣ Add a parameter to -help to restrict the output to a specific set of options or to a building
process. The syntax for this usage is this:
-help=<subgroup>

The following table lists and describes the subgroups available with -help.

Table 12 Subgroups for -help Option

Use this -help option To get this information...

-help=asm A list of options specific to the assembly phase.

-help=debug A list of options related to debug information generation.

-help=groups A list of available switch classifications.

-help=language A list of language-specific options.

-help=linker A list of options specific to link phase.

-help=opt A list of options specific to optimization phase.

-help=other A list of other options, such as ANSI conformance pointer aliasing for C.

-help=overall A list of options generic to any PGI compiler.

-help=phase A list of build process phases and to which compiler they apply.

-help=prepro A list of options specific to the preprocessing phase.

-help=suffix A list of known file suffixes and to which phases they apply.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 28

Use this -help option To get this information...

-help=switch A list of all known options; this is equivalent to usage of -help without any parameter.

-help=target A list of options specific to target processor.

-help=variable A list of all variables and their current value. They can be redefined on the command line
using syntax VAR=VALUE.

For more examples of -help, refer to ‘Help with Command-line Options’.

Related options
-#, -###, -show, -V[release_number], -flags

2.3.24. -I
Adds a directory to the search path for files that are included using either the INCLUDE
statement or the preprocessor directive #include.

Default
The compiler searches only certain directories for included files.

‣ For gcc-lib includes:/usr/lib64/gcc-lib

‣ For system includes:/usr/include

Syntax
-Idirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage
In the following example, the compiler first searches the directory mydir and then searches the
default directories for include files.
$ pgfortran -Imydir

Description
Adds a directory to the search path for files that are included using the INCLUDE statement or
the preprocessor directive #include. Use the -I option to add a directory to the list of where to
search for the included files. The compiler searches the directory specified by the -I option before
the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The
compiler uses two rules to locate the file:

‣ If the file name specified in the INCLUDE statement includes a path name, the compiler
begins reading from the file it specifies.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 29

‣ If no path name is provided in the INCLUDE statement, the compiler searches (in order):

 1. Any directories specified using the -I option (in the order specified)

 2. The directory containing the source file

 3. The current directory

For example, the compiler applies rule (1) to the following statements:
INCLUDE '/bob/include/file1' (absolute path name)
 INCLUDE '../../file1' (relative path name)

and rule (2) to this statement:
INCLUDE 'file1'

Related options
-Mnostdinc

2.3.25. -i2, -i4, -i8
Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default
The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage
In the following example, using the -i8 switch causes the integer variables to be treated as 64 bits.
$ pgfortran -i8 int.f

int.f is a function similar to this:
int.f
 print *, "Integer size:", bit_size(i)
 end

Description
Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
INTEGER*8 values not only occupy 8 bytes of storage, but operations use 64 bits, instead of 32
bits.

‣ -i2: Treat INTEGER variables as 2 bytes.

‣ -i4: Treat INTEGER variables as 4 bytes.

‣ -i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTEGER*8
operations.

Related options
None.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 30

2.3.26. -K<flag>
Requests that the compiler provide special compilation semantics with regard to conformance to
IEEE 754.

Default
The default is -Knoieee and the compiler does not provide special compilation semantics.

Syntax
-K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754 standard. Some optimizations are
disabled, and on some systems a more accurate math library is linked if -Kieee is used during the link
step.

noieee Default flag. Use the fastest available means to perform floating-point operations, link in faster non-IEEE
libraries if available, and disable underflow traps.

PIC or pic (Linux only) Generate position-independent code. Equivalent to -fpic. Provided for compatibility with
other compilers.

trap=option

[,option]...

Controls the behavior of the processor when floating-point exceptions occur.

Possible options include:

fp

align (ignored)

inv

denorm

divz

ovf

unf

inexact

Usage
In the following example, the compiler performs floating-point operations in strict conformance
with the IEEE 754 standard
$ pgfortran -Kieee myprog.f

Description
Use -K to instruct the compiler to provide special compilation semantics.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 31

-Ktrap is only processed by the compilers when compiling main functions or programs. The
options inv, denorm, divz, ovf, unf, and inexact correspond to the processor’s exception
mask bits: invalid operation, denormalized operand, divide-by-zero, overflow, underflow, and
precision, respectively.

Normally, the processor’s exception mask bits are on, meaning that floating-point exceptions
are masked – the processor recovers from the exceptions and continues. If a floating-point
exception occurs and its corresponding mask bit is off, or "unmasked", execution terminates with
an arithmetic exception (C's SIGFPE signal).

-Ktrap=fp is equivalent to -Ktrap=inv,divz,ovf.

The PGI compilers do not support exception-free execution for -Ktrap=inexact. The purpose of this
hardware support is for those who have specific uses for its execution, along with the appropriate signal
handlers for handling exceptions it produces. It is not designed for normal floating point operation code
support.

Related options
None.

2.3.27. -L
Specifies a directory to search for libraries.

Multiple -L options are valid. However, the position of multiple -L options is important relative to -l options
supplied.

Default
The compiler searches the standard library directory.

Syntax
-Ldirectory

Where directory is the name of the library directory.

Usage
In the following example, the library directory is /lib and the linker links in the standard
libraries required by PGFORTRAN from this directory.
$ pgfortran -L/lib myprog.f

In the following example, the library directory /lib is searched for the library file libx.a and
both the directories /lib and /libz are searched for liby.a.
$ pgfortran -L/lib -lx -L/libz -ly myprog.f

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 32

Description
Use the -L option to specify a directory to search for libraries. Using -L allows you to add
directories to the search path for library files.

Related options
-I

2.3.28. -l<library>
Instructs the linker to load the specified library. The linker searches <library>in addition to the
standard libraries.

The linker searches the libraries specified with -l in order of appearance before searching the standard
libraries.

Syntax
-llibrary

Where library is the name of the library to search.

Usage: In the following example, if the standard library directory is /lib the linker loads the
library /lib/libmylib.a, in addition to the standard libraries.
$ pgfortran myprog.f -lmylib

Description
Use this option to instruct the linker to load the specified library. The compiler prepends the
characters lib to the library name and adds the .a extension following the library name. The linker
searches each library specified before searching the standard libraries.

Related options
-L

2.3.29. -M
Generate make dependence lists. You can use -MD,filename (pgc++ only) to generate make
dependence lists and print them to the specified file.

2.3.30. -m
Displays a link map on the standard output.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 33

Default
The compiler does display the link map and does not use the -m option.

Usage
$ pgfortran -m myprog.f

Description
Use this option to display a link map. The map is written to stdout.

Related options
-c, -o,-s,-u

2.3.31. -m64
Use the 64-bit compiler for the default processor type.

Usage
When the following example is executed, pgfortran uses the 64-bit compiler for the default
processor type.
$ pgfortran -m64 myprog.f

Description
Use this option to specify the 64-bit compiler as the default processor type.

2.3.32. -M<pgflag>
Selects options for code generation. The options are divided into the following categories:

Code generation Fortran Language Controls Optimization

Environment C/C++ Language Controls Miscellaneous

Inlining

The following table lists and briefly describes the options alphabetically and includes a field
showing the category. For more details about the options as they relate to these categories, refer
to ‘-M Options by Category’ on page 113.

Table 13 -M Options Summary

pgflag Description Category

allocatable=95|03 Controls whether to use Fortran 95 or Fortran 2003 semantics in
allocatable array assignments.

Fortran Language

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 34

pgflag Description Category

anno Annotate the assembly code with source code. Miscellaneous

[no]autoinline When a C/C++ function is declared with the inline keyword, inline it
at -O2.

Inlining

[no]asmkeyword Specifies whether the compiler allows the asm keyword in C/C++
source files (pgcc and pgc++ only).

C/C++ Language

[no]backslash Determines how the backslash character is treated in quoted strings
(Fortran only).

Fortran Language

[no]bounds Specifies whether array bounds checking is enabled or disabled. Miscellaneous

--[no_]builtin Do/don't compile with math subroutine builtin support, which causes
selected math library routines to be inlined (pgcc and pgc++ only).

Optimization

byteswapio Swap byte-order (big-endian to little-endian or vice versa) during I/O
of Fortran unformatted data.

Miscellaneous

cache_align Where possible, align data objects of size greater than or equal to 16
bytes on cache-line boundaries.

Optimization

chkptr Check for NULL pointers (pgf95, pgfortran only). Miscellaneous

chkstk Check the stack for available space upon entry to and before the
start of a parallel region. Useful when many private variables are
declared.

Miscellaneous

concur Enable auto-concurrentization of loops. Multiple processors or cores
will be used to execute parallelizable loops.

Optimization

cpp Run the PGI cpp-like preprocessor without performing subsequent
compilation steps.

Miscellaneous

cray Force Cray Fortran (CF77) compatibility (Fortran only). Optimization

cuda Enables CUDA Fortran. Fortran Language

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk Determines whether all program variables must be declared (Fortran
only).

Fortran Language

[no]defaultunit Determines how the asterisk character ("*") is treated in relation to
standard input and standard output, regardless of the status of I/O
units 5 and 6. (Fortran only).

Fortran Language

[no]depchk Checks for potential data dependencies. Optimization

[no]dse Enables [disables] dead store elimination phase for programs
making extensive use of function inlining.

Optimization

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 35

pgflag Description Category

[no]dlines Determines whether the compiler treats lines containing the letter
"D" in column one as executable statements (Fortran only).

Fortran Language

dollar,char Specifies the character to which the compiler maps the dollar sign
code(Fortran only).

Fortran Language

[no]dwarf Specifies not to add DWARF debug information. Code Generation

dwarf1 When used with -g, generate DWARF1 format debug information. Code Generation

dwarf2 When used with -g, generate DWARF2 format debug information. Code Generation

dwarf3 When used with -g, generate DWARF3 format debug information. Code Generation

extend Instructs the compiler to accept 132-column source code; otherwise
it accepts 72-column code (Fortran only).

Fortran Language

extract invokes the function extractor. Inlining

[no]f[=option] Perform certain floating point intrinsic functions using relaxed
precision.

Optimization

fixed Instructs the compiler to assume FORTRAN-style fixed format
source code (pgfortran only).

Fortran Language

[no]flushz Do/don't set SIMD flush-to-zero mode Code Generation

[no]fpapprox Specifies not to use low-precision fp approximation operations. Optimization

free Instructs the compiler to assume F90-style free format source
code(pgf95, pgfortran only).

Fortran Language

func32 The compiler aligns all functions to 32-byte boundaries. Code Generation

gccbug[s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding optimization and code
generation to standard output as compilation proceeds.

Miscellaneous

inform Specifies the minimum level of error severity that the compiler
displays.

Miscellaneous

inline Invokes the function inliner. Inlining

[no]iomutex Determines whether critical sections are generated around Fortran I/
O calls(Fortran only).

Fortran Language

[no]ipa Invokes interprocedural analysis and optimization. Optimization

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 36

pgflag Description Category

[no]large_arrays Enables support for 64-bit indexing and single static data objects of
size larger than 2GB.

Code Generation

lfs Links in libraries that allow file I/O to files of size larger than 2GB on
32-bit systems (32-bit Linux only).

Environment

list Specifies whether the compiler creates a listing file. Miscellaneous

[no]lre Enable [disable] loop-carried redundancy elimination. Optimization

[no]m128 Recognizes [ignores] __m128, __m128d, and __m128i datatypes.
(C only)

Code Generation

[no]m128 Instructs the compiler to treat floating-point constants as float data
types (pgcc and pgc++ only).

C/C++ Language

mpi=option Link to MPI libraries: MPICH, SGI, or Microsoft MPI libraries Code Generation

neginfo Instructs the compiler to produce information on why certain
optimizations are not performed.

Miscellaneous

noframe Eliminates operations that set up a true stack frame pointer for
functions.

Optimization

noi4 Determines how the compiler treats INTEGER variables(Fortran
only).

Optimization

nomain When the link step is called, don’t include the object file that calls the
Fortran main program.(Fortran only).

Code Generation

noopenmp When used in combination with the -mp option, the compiler ignores
OpenMP parallelization directives or pragmas, but still processes
SGI-style parallelization directives or pragmas.

Miscellaneous

norpath On Linux, do not add -rpath paths to the link line. Miscellaneous

nosgimp When used in combination with the -mp option, the compiler ignores
SGI-style parallelization directives or pragmas, but still processes
OpenMP directives or pragmas.

Miscellaneous

[no]stddef Instructs the compiler to not recognize the standard preprocessor
macros.

Environment

nostdinc Instructs the compiler to not search the standard location for include
files.

Environment

nostdlib Instructs the linker to not link in the standard libraries. Environment

[no]onetrip Determines whether each DO loop executes at least once(Fortran
only).

Language

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 37

pgflag Description Category

novintr Disable idiom recognition and generation of calls to optimized vector
functions.

Optimization

pfi Instrument the generated code and link in libraries for dynamic
collection of profile and data information at runtime.

Optimization

pre Read a pgfi.out trace file and use the information to enable or guide
optimizations.

Optimization

[no]pre Force [disable] generation of non-temporal moves and prefetching. Code Generation

[no]prefetch Enable [disable] generation of prefetch instructions. Optimization

preprocess Perform cpp-like preprocessing on assembly language and Fortran
input source files.

Miscellaneous

prof Enable Compiler feedback and modify DWARF sections. Code Generation

[no]r8 Determines whether the compiler promotes REAL variables and
constants to DOUBLE PRECISION(Fortran only).

Optimization

[no]r8intrinsics Determines how the compiler treats the intrinsics CMPLX and
REAL(Fortran only).

Optimization

[no]recursive Allocate [do not allocate] local variables on the stack; this allows
recursion. SAVEd, data-initialized, or namelist members are always
allocated statically, regardless of the setting of this switch(Fortran
only).

Code Generation

[no]reentrant Specifies whether the compiler avoids optimizations that can prevent
code from being reentrant.

Code Generation

[no]ref_externals Do [do not] force references to names appearing in EXTERNAL
statements(Fortran only).

Code Generation

safeptr Instructs the compiler to override data dependencies between
pointers and arrays (pgcc and pgc++ only).

Optimization

safe_lastval In the case where a scalar is used after a loop, but is not defined
on every iteration of the loop, the compiler does not by default
parallelize the loop. However, this option tells the compiler it is safe
to parallelize the loop. For a given loop, the last value computed for
all scalars make it safe to parallelize the loop.

Code Generation

[no]save Determines whether the compiler assumes that all local variables
are subject to the SAVE statement(Fortran only).

Fortran Language

schar Specifies signed char for characters (pgcc and pgc++ only – also
see uchar).

C/C++ Language

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 38

pgflag Description Category

[no]second_underscore Do [do not] add the second underscore to the name of a Fortran
global if its name already contains an underscore(Fortran only).

Code Generation

[no]signextend Do [do not] extend the sign bit, if it is set. Code Generation

[no]single Do [do not] convert float parameters to double parameter characters
(pgcc and pgc++ only).

C/C++ Language

[no]smartalloc[=huge| huge:<n>|
hugebss]

Add a call to the routine mallopt in the main routine. Supports large
TLBs.

Tip To be effective, this switch must be specified
when compiling the file containing the Fortran, C,
or C++ main program.

Environment

standard Causes the compiler to flag source code that does not conform to
the ANSI standard(Fortran only).

Fortran Language

[no]stride0 Do [do not] generate alternate code for a loop that contains an
induction variable whose increment may be zero(Fortran only).

Code Generation

uchar Specifies unsigned char for characters (pgcc and pgc++ only – also
see schar).

C/C++ Language

[no]unixlogical Determines how the compiler treats logical values.(Fortran only). Fortran Language

[no]unroll Controls loop unrolling. Optimization

[no]upcase Determines whether the compiler preserves uppercase letters in
identifiers.(Fortran only).

Fortran Language

varargs Forces Fortran program units to assume calls are to C functions with
a varargs type interface (pgfortran only).

Code Generation

[no]vect Do [do not] invoke the code vectorizer. Optimization

2.3.33. -module <moduledir>
Allows you to specify a particular directory in which generated intermediate .mod files should be
placed.

Default
The compiler places .mod files in the current working directory, and searches only in the current
working directory for pre-compiled intermediate .mod files.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 39

Usage
The following command line requests that any intermediate module file produced during
compilation of myprog.f be placed in the directory mymods; specifically, the file ./mymods/
myprog.mod is used.
$ pgfortran -module mymods myprog.f

Description
Use the -module option to specify a particular directory in which generated intermediate .mod
files should be placed. If the -module <moduledir> option is present, and USE statements
are present in a compiled program unit, then <moduledir> is searched for .mod intermediate files
prior to a search in the default local directory.

Related options
None.

2.3.34. -mp
Instructs the compiler to interpret user-inserted OpenMP shared-memory parallel programming
directivesand pragmas, and to generate an executable file which will utilize multiple processors in
a shared-memory parallel system.

Default
The compiler interprets user-inserted shared-memory parallel programming directives and
pragmas when linking. To disable this option, use the -nomp option when linking.

Usage
The following command line requests processing of any shared-memory directives present in
myprog.f:
$ pgfortran -mp myprog.f

Description
Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory
parallel programming directives and to generate an executable file which utilizes multiple
processors in a shared-memory parallel system.

For a detailed description of this programming model and the associated directivesand pragmas,
refer to Section 9, ‘Using OpenMP’ of the PGI Compiler User's Guide.

Related options
-Mconcur[=option [,option,...]], -M[no]vect[=option [,option,...]]

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 40

2.3.35. -noswitcherror
Issues warnings instead of errors for unknown switches. Ignores unknown command line
switches after printing a warning message.

Default
The compiler prints an error message and then halts.

Usage
In the following example, the compiler ignores unknown command line switches after printing a
warning message.
$ pgfortran -noswitcherror myprog.f

Description
Use this option to instruct the compiler to ignore unknown command line switches after printing
an warning message.

Tip You can configure this behavior in the siterc file by adding: set NOSWITCHERROR=1.

Related options
None.

2.3.36. -O<level>
Invokes code optimization at the specified level.

Default
The compiler optimizes at level 2.

Syntax
-O [level]

Where level is an integer from 0 to 4.

Usage
In the following example, since no -O option is specified, the compiler sets the optimization to
level 1.
$ pgfortran myprog.f

In the following example, since no optimization level is specified and a -O option is specified, the
compiler sets the optimization to level 2.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 41

$ pgfortran -O myprog.f

Description
Use this option to invoke code optimization.Using the PGI compiler commands with the -Olevel
option (the capital O is for Optimize), you can specify any of the following optimization levels:

-O0
Level zero specifies no optimization. A basic block is generated for each language statement.

-O1
Level one specifies local optimization. Scheduling of basic blocks is performed. Register
allocation is performed.

-O
When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant motion. No SIMD vectorization
is enabled.

-O2
Level two specifies global optimization. This level performs all level-one local optimization
as well as level-two global optimization described in -O. In addition, this level enables
more advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination.

-O3
Level three specifies aggressive global optimization. This level performs all level-one
and level-two optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

-O4
Level four performs all level-one, level-two, and level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

The following table shows the interaction between the -O option, -g option, -Mvect, and
-Mconcur options.

Table 14 Optimization and -O, -g, -Mvect, and -Mconcur Options

Optimize Option Debug Option -M Option Optimization Level

none none none 1

none none -Mvect 2

none none -Mconcur 2

none -g none 0

-O none or -g none 2

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 42

Optimize Option Debug Option -M Option Optimization Level

-Olevel none or -g none level

-Olevel < 2 none or -g -Mvect 2

-Olevel < 2 none or -g -Mconcur 2

Unoptimized code compiled using the option -O0 can be significantly slower than code generated
at other optimization levels. Like the -Mvect option, the -Munroll option sets the optimization
level to level-2 if no -O or -g options are supplied. The -gopt option is recommended for
generation of debug information with optimized code. For more information on optimization,
refer to the ‘Optimizing and Parallelizing’ section of the PGI Compiler User’s Guide.

Related options
-g, -M<pgflag>, -gopt

2.3.37. -o
Names the executable file. Use the -o option to specify the filename of the compiler object file.
The final output is the result of linking.

Default
The compiler creates executable filenames as needed. If you do not specify the -o option, the
default filename is the linker output file a.out.

Syntax
-o filename

Where filename is the name of the file for the compilation output. The filename should not have a
.f extension.

Usage
In the following example, the executable file ismyprog instead of the default
a.outmyprog.exe.
$ pgfortran myprog.f -o myprog

Related options
-c, -E, -F, -S

2.3.38. --pedantic
Prints warnings from included <system header files>.

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 43

Default
The compiler prints the warnings from the included system header files.

Usage
In the following example, the compiler prints the warnings from the included system header files.
$ pgc++ --power myprog.cc

Related options
None.

2.3.39. -pg
(Linux only) Instructs the compiler to instrument the generated executable for gprof-style
gmon.out sample-based profiling trace file.

Default
The compiler does not instrument the generated executable for gprof-style profiling.

Usage:
In the following example the program is compiled for profiling using pgdbg or gprof.
$ pgfortran -pg myprog.c

Description
Use this option to instruct the compiler to instrument the generated executable for gprof-
style sample-based profiling. You must use this option at both the compile and link steps. A
gmon.out style trace is generated when the resulting program is executed, and can be analyzed
using gprof.

Related options
None.

2.3.40. -pgc++libs
Instructs the compiler to append C++ runtime libraries to the link line for programs built using
PGFORTRAN.

Default
The C/C++ compilers do not append the C++ runtime libraries to the link line.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 44

Usage
In the following example the C++ runtime libraries are linked with an object file compiled with
pgfortran.

$ pgfortran main.f90 mycpp.o -pgc++libs

Description
Use this option to instruct the compiler to append C++ runtime libraries to the link line for
programs built using PGFORTRAN.

Related options
-pgf90libs

2.3.41. -pgf90libs
Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

Default
The C/C++ compilers do not append the PGFORTRAN runtime libraries to the link line.

Usage
In the following example a .c main program is linked with an object file compiled with
pgfortran.
$ pgcc main.c myf95.o -pgf90libs

Description
Use this option to instruct the compiler to append PGFORTRAN runtime libraries to the link line.

Related options
-pgc++libs

2.3.42. -R<directory>
(Linux only) Instructs the linker to hard-code the pathname <directory>into the search path for
generated shared object (dynamically linked library) files.

There cannot be a space between R and <directory>.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 45

Usage
In the following example, at runtime the a.out executable searches the specified directory, in this
case /home/Joe/myso, for shared objects.
$ pgfortran -R/home/Joe/myso myprog.f

Description
Use this option to instruct the compiler to pass information to the linker to hard-code the
pathname <directory> into the search path for shared object (dynamically linked library) files.

Related options
-fpic, -shared

2.3.43. -r
Linux only.Creates a relocatable object file.

Default
The compiler does not create a relocatable object file and does not use the -r option.

Usage
In this example, pgfortran creates a relocatable object file.
$ pgfortran -r myprog.f

Description
Use this option to create a relocatable object file.

Related options
-C, -O<level>, -S, -U

2.3.44. -r4 and -r8
Interprets DOUBLE PRECISION variables as REAL (-r4), or interprets REAL variables as
DOUBLE PRECISION (-r8).

Usage
In this example, the double precision variables are interpreted as REAL.
$ pgfortran -r4 myprog.f

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 46

Description
Interpret DOUBLE PRECISION variables as REAL (-r4) or REAL variables as DOUBLE
PRECISION (-r8).

Related options
-i2, -i4, -i8, -Mnor8

2.3.45. -rc
Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a
full pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path
of the currently executing driver). If a full pathname is supplied, that file is used for the driver
configuration file.

Syntax
-rc [path] filename

Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname
beginning with "/". Filename is the driver configuration file.

Usage
In the following example, the file .pgfortranrctest, relative to /usr/pgi/linuxpower/
bin, the value of $DRIVER, is the driver configuration file.
$ pgfortran -rc .pgfortranrctest myprog.f

Description
Use this option to specify the name of the driver startup configuration file. If the file or pathname
supplied is not a full pathname, the path for the configuration file loaded is relative to the
$DRIVER path – the path of the currently executing driver. If a full pathname is supplied, that
file is used for the driver configuration file.

Related options
-show

2.3.46. -s
(Linux only) Strips the symbol-table information from the executable file.

Default
The compiler includes all symbol-table information and does not use the -s option.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 47

Usage
In this example, pgfortran strips symbol-table information from the a.out. executable file.
$ pgfortran -s myprog.f

Description
Use this option to strip the symbol-table information from the executable.

Related options
-c, -o, -u

2.3.47. -S
Stops compilation after the compiling phase and writes the assembly-language output to a file.

Default
The compiler does not retain a .s file.

Usage
In this example, pgfortran produces the file myprog.s in the current directory.
$ pgfortran -S myprog.f

Description
Use this option to stop compilation after the compiling phase and then write the assembly-
language output to a file. If the input file is filename.f, then the output file is filename.s.

Related options
-c, -E, -F, -Mkeepasm, -o

2.3.48. -shared
(Linux only) Instructs the compiler to pass information to the linker to produce a shared object
(dynamically linked library) file.

Default
The compiler does not pass information to the linker to produce a shared object file.

Usage
In the following example the compiler passes information to the linker to produce the shared
object file:myso.so.
$ pgfortran -shared myprog.f -o myso.so

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 48

Description
Use this option to instruct the compiler to pass information to the linker to produce a shared
object (dynamically linked library) file.

Related options
-fpic, -R<directory>

2.3.49. -show
Produces driver help information describing the current driver configuration.

Default
The compiler does not show driver help information.

Usage
In the following example, the driver displays configuration information to the standard output
after processing the driver configuration file.
$ pgfortran -show myprog.f

Description
Use this option to produce driver help information describing the current driver configuration.

Related options
-V[release_number], -v, -###, -help, -rc

2.3.50. -silent
Do not print warning messages.

Default
The compiler prints warning messages.

Usage
In the following example, the driver does not display warning messages.
$ pgfortran -silent myprog.f

Description
Use this option to suppress warning messages.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 49

Related options
-v, -V[release_number], -w

2.3.51. -soname
(Linux only) The compiler recognizes the -soname option and passes it through to the linker.

Default
The compiler does not recognize the -soname option.

Usage
In the following example, the driver passes the soname option and its argument through to the
linker.
$ pgfortran -soname library.so myprog.f

Description
Use this option to instruct the compiler to recognize the -soname option and pass it through to the
linker.

Related options
None.

2.3.52. -ta=tesla(tesla_suboptions),host
Defines the target accelerator and the type of code to generate. This flag is valid for Fortran, C,
and C++ on supported platforms.

There are three major suboptions:

tesla(:tesla_suboptions)

host

Default
The compiler uses -ta=tesla,host.

Usage
In the following example, tesla is the accelerator target architecture and the accelerator generates
code for compute capability 3.0.
$ pgfortran -ta=tesla,cc30

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 50

Description
Use this option to select the accelerator target and, optionally, to define the type of code to
genertate.

The -ta flag has the following options:

tesla
Select the tesla accelerator target. This option has the following tesla-suboptions:
cc30

Generate code for compute capability 3.0.
cc35

Generate code for compute capability 3.5.
cc3x

Generate code for the lowest 3.x compute capability possible.
cc3+

Is equivalent to cc3x.
[no]debug

Enable[disable] debug information generation in device code.
fastmath

Use routines from the fast math library.
[no]flushz

Enable[disable] flush-to-zero mode for floating point computations in the GPU code
generated forPGI Accelerator model compute regions.

keep
Keep the kernel files.

kepler
is equivalent to cc3x.

kepler+
is equivalent to cc3+.

llvm
Generate code using the llvm-based back-end.

[no]debug
Enable[disable] GPU debug information generation.

[no]lineinfo
Enable[disable] GPU line information generation.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.

nofma
Do not generate fused multiply-add instructions.

noL1
Prevents the use of L1 hardware data cache to cache global variables.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 51

pin+
is equivalent to cc3+.

[no]rdc
Generate [do not generate] relocatable device code.

[no]required
Generate [do not generate] a compiler error if accelerator device code cannot be generated.

tesla
is equivalent to -ta=tesla,cc2+

host
Use the host option to generate code to execute OpenACC regions on the host.

The -ta=host flag has no suboptions.

Multiple Targets
When host is one of the multiple targets, such as -ta=tesla,host, the result is generated code
that can be run with or without an attached accelerator.

Relocatable Device Code
A rdc option is available for the -ta and -Mcuda flags that specifies to generate relocatable
device code. Starting in PGI 14.1, the default code generation and linking mode for NVIDIA-
target OpenACC and CUDA Fortran is rdc, relocatable device code.

You can disable the default and enable the old behavior and non-relocatable code by specifying
any of the following: -ta=tesla:nordc, -Mcuda=nordc.

LLVM/SPIR and Native GPU Code Generation
For accelerator code generation, PGI 2016 has two options.

‣ In legacy mode, which continues to be the default, PGI generates low-level CUDA C or
OpenCL code.

‣ Beginning in PGI 14.1, PGI can generate an LLVM-based intermediate representation.
To enable this code generation, use -ta=tesla:llvm on NVIDIA Tesla hardware.
-ta=tesla:llvm implies and requires CUDA 5.5 or higher.

PGI’s debugging capability for Tesla uses the LLVM back-end.

DWARF Debugging Formats
PGI 2016 has initial support for generating dwarf information in GPU code. To enable dwarf
generation, just as in host code, you use the -g option.

Dwarf generation requires use of the LLVM code generation capabilities. Further, it is possible
to generate dwarf information and debug on the host, device, or both. Further, for NVIDIA, the
LLVM code generation requires CUDA 5.5.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 52

If you don't want -g to apply to both targets, PGI supports the debug and nodebug suboptions.
For example:

-acc -g implies -ta=tesla,host -O0 -g on the host and -g llvm on the device with
cuda5.5.

-acc -ta=tesla:debug implies debug on the device; use llvm and cuda5.5

-acc -g -ta=tesla:nodebug implies debug on the host and no llvm code generation

Related options
-#

2.3.53. -time
Print execution times for various compilation steps.

Default
The compiler does not print execution times for compilation steps.

Usage
In the following example, pgfortran prints the execution times for the various compilation steps.
$ pgfortran -time myprog.f

Description
Use this option to print execution times for various compilation steps.

Related options
-#

2.3.54. -u
Initializes the symbol-table with <symbol>, which is undefined for the linker. An undefined
symbol triggers loading of the first member of an archive library.

Default
The compiler does not use the -u option.

Syntax
-usymbol

Where symbol is a symbolic name.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 53

Usage
In this example, pgfortran initializes symbol-table with test.
$ pgfortran -utest myprog.f

Description
Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker.
An undefined symbol triggers loading of the first member of an archive library.

Related options
-c, -o, -s

2.3.55. -U
Undefines a preprocessor macro.

Syntax
-Usymbol

Where symbol is a symbolic name.

Usage
The following examples undefine the macro test.
$ pgfortran -Utest myprog.F
 $ pgfortran -Dtest -Utest myprog.F

Description
Use this option to undefine a preprocessor macro. You can also use the #undef pre-processor
directive to undefine macros.

Related options
-D, Mnostddef

2.3.56. -V[release_number]
Displays additional information, including version messages. Further, if a release_number
is appended, the compiler driver attempts to compile using the specified release instead of the
default release.

There can be no space between -V and release_number.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 54

Default
The compiler does not display version information and uses the release specified by your path to
compile.

Usage
The following command-line shows the output using the -V option.
% pgfortran -V myprog.f

The following command-line causes pgcc to compile using the 5.2 release instead of the default
release.
% pgcc -V5.2 myprog.c

Description
Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using the
specified release instead of the default release.

The specified release must be co-installed with the default release, and must have a release
number greater than or equal to 4.1, which was the first release that supported this functionality.

Related options
-Minfo[=option [,option,...]], -v

2.3.57. -v
Displays the invocations of the compiler, assembler, and linker.

Default
The compiler does not display individual phase invocations.

Usage
In the following example you use -v to see the commands sent to compiler tools, assembler, and
linker.
$ pgfortran -v myprog.f90

Description
Use the -v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the -W options
you specify on the compiler command-line.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 55

Related options
-dryrun, -Minfo[=option [,option,...]], -V[release_number], -W

2.3.58. -W
Passes arguments to a specific phase.

Syntax
-W{0 | a | l },option[,option...]

You cannot have a space between the -W and the single-letter pass identifier, between the identifier and
the comma, or between the comma and the option.

0
(the number zero) specifies the compiler.

a
specifies the assembler.

l
(lowercase letter l) specifies the linker.

option
is a string that is passed to and interpreted by the compiler, assembler or linker. Options
separated by commas are passed as separate command line arguments.

Usage
In the following example the linker loads the text segment at address 0xffc00000 and the data
segment at address 0xffe00000.
$ pgfortran -Wl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

Description
Use this option to pass arguments to a specific phase. You can use the -W option to specify
options for the assembler, compiler, or linker.

A given PGI compiler command invokes the compiler driver, which parses the command-line,
and generates the appropriate commands for the compiler, assembler, and linker.

Related options
-Minfo[=option [,option,...]], -V[release_number], -v

2.3.59. -w
Do not print warning messages.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 56

Default
The compiler prints warning messages.

Usage
In the following example no warning messages are printed.
$ pgfortran -w myprog.f

Description
Use the -w option to not print warning messages. Sometimes the compiler issues many warning
in which you may have no interest. You can use this option to not issue those warnings.

Related options
-silent

2.3.60. -Xs
Use legacy standard mode for C and C++.

Default
None.

Usage
In the following example the compiler uses legacy standard mode.
$ pgcc -Xs myprog.c

Description
Use this option to use legacy standard mode for C and C++. Further, this option implies -
alias=traditional.

Related options
-alias, -Xt

2.3.61. -Xt
Use legacy transitional mode for C and C++.

Default
None.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 57

Usage
In the following example the compiler uses legacy transitional mode.
$ pgcc -Xt myprog.c

Description
Use this option to use legacy transitional mode for C and C++. Further, this option implies -
alias=traditional.

Related options
-alias, -Xs

2.4. C and C++ -specific Compiler Options
There are a large number of compiler options specific to the PGCC and PGC++ compilers,
especially PGC++. This section provides the details of several of these options, but is not
exhaustive. For a complete list of available options, including an exhaustive list of PGC++
options, use the -help command-line option. For further detail on a given option, use -help
and specify the option explicitly

2.4.1. -A
(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the ISO C++ standard,
issuing errors for non-conforming code.

Default
By default, the compiler accepts code conforming to the standard C++ Annotated Reference
Manual.

Usage
The following command-line requests ISO conforming C++.
 $ pgc++ -A hello.cc

Description
Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues errors for non-conforming code.

Related options
-a, -b, -+p

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 58

2.4.2. -a
(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the ISO C++ standard,
issuing warnings for non-conforming code.

Default
By default, the compiler accepts code conforming to the standard C++ Annotated Reference
Manual.

Usage
The following command-line requests ISO conforming C++, issuing warnings for non-
conforming code.
 $ pgc++ -a hello.cc

Description
Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues warnings for non-conforming code.

Related options
-A,-b

2.4.3. -alias
select optimizations based on type-based pointer alias rules in C and C++.

Syntax
-alias=[ansi|traditional]

Default
None.

Usage
The following command-line enables optimizations.
 $ pgc++ -alias=ansi hello.cc

Description
Use this option to select optimizations based on type-based pointer alias rules in C and C++.

ansi
Enable optimizations using ANSI C type-based pointer disambiguation

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 59

traditional
Disable type-based pointer disambiguation

Related options
-Xt

2.4.4. --[no_]alternative_tokens
(pgc++ only) Enables or disables recognition of alternative tokens. These are tokens that make
it possible to write C++ without the use of the comma (,) , [,], #, &, ^, and characters. The
alternative tokens include the operator keywords (e.g., and, bitand, etc.) and digraphs.

Default
The default behavior is --no_alternative_tokens, that is, to disable recognition of alternative
tokens.

Usage
The following command-line enables alternative token recognition.
 $ pgc++ --alternative_tokens hello.cc

(pgc++ only) Use this option to enable or disable recognition of alternative tokens. These tokens
make it possible to write C++ without the use of the comma (,), [,], #, &, ^, and characters. The
alternative tokens include digraphs and the operator keywords, such as and, bitand, and so on.
The default behavior is disabled recognition of alternative tokens: --no_alternative_tokens.

Related options
None.

2.4.5. -B
(pgcc and pgc++ only) Enables use of C++ style comments starting with // in C program units.

Default
The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage
In the following example the compiler accepts C++ style comments.
 $ pgcc -B myprog.cc

Description
Use this option to enable use of C++ style comments starting with // in C program units.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 60

Related options
-Mcpp[=option [,option,...]]

2.4.6. -b
(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default
The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage
In the following example the compiler accepts cfront constructs.
 $ pgc++ -b myprog.cc

Description
Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options
--cfront_2.1,-b3,--cfront_3.0,-+p,-A

2.4.7. -b3
(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default
The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage
In the following example, the compiler accepts cfront constructs.
 $ pgc++ -b3 myprog.cc

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 61

Description
Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options
--cfront_2.1,-b,--cfront_3.0,-+p,-A

2.4.8. --[no_]bool
(pgc++ only) Enables or disables recognition of bool.

Default
The compile recognizes bool: --bool.

Usage
In the following example, the compiler does not recognize bool.
 $ pgc++ --no_bool myprog.cc

Description
Use this option to enable or disable recognition of bool.

Related options
None.

2.4.9. --[no_]builtin
Compile with or without math subroutine builtin support.

Default
The default is to compile with math subroutine support: --builtin.

Usage
In the following example, the compiler does not build with math subroutine support.
 $ pgc++ --no_builtin myprog.cc

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 62

Description
Use this option to enable or disable compiling with math subroutine builtin support. When you
compile with math subroutine builtin support, the selected math library routines are inlined.

Related options
None.

2.4.10. --cfront_2.1
(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default
The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage
In the following example, the compiler accepts cfront constructs.
 $ pgc++ --cfront_2.1 myprog.cc

Description
Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options
-b,-b3,--cfront_3.0,-+p,-A

2.4.11. --cfront_3.0
(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default
The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage
In the following example, the compiler accepts cfront constructs.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 63

 $ pgc++ --cfront_3.0 myprog.cc

Description
Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT&T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options
--cfront_2.1,-b,-b3,-+p,-A

2.4.12. --[no_]compress_names
Compresses long function names in the file.

Default
The compiler does not compress names: --no_compress_names.

Usage
In the following example, the compiler compresses long function names.
 $ pgc++ --ccmpress_names myprog.cc

Description
Use this option to specify to compress long function names. Highly nested template parameters
can cause very long function names. These long names can cause problems for older assemblers.
Users encountering these problems should compile all C++ code, including library code with --
compress_names. Libraries supplied by PGI work with --compress_names.

Related options
None.

2.4.13. --create_pch filename
(pgc++ only) If other conditions are satisfied, create a precompiled header file with the specified
name.

If --pch (automatic PCH mode) appears on the command line following this option, its effect is erased.

Default
The compiler does not create a precompiled header file.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 64

Usage
In the following example, the compiler creates a precompiled header file, hdr1.
 $ pgc++ --create_pch hdr1 myprog.cc

Description
If other conditions are satisfied, use this option to create a precompiled header file with the
specified name.

Related options
--pch

2.4.14. --diag_error <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default
The compiler does not override normal error severity.

Description
Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options
--diag_remark <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

2.4.15. --diag_remark <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default
The compiler does not override normal error severity.

Description
Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options
--diag_error <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 65

2.4.16. --diag_suppress <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default
The compiler does not override normal error severity.

Usage
In the following example, the compiler overrides the normal error severity of the specified
diagnostic messages.
 $ pgc++ --diag_suppress error_tag prog.cc

Description
Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options
--diag_error <number>,--diag_remark <number>,--diag_warning <number>,--
display_error_number

2.4.17. --diag_warning <number>
(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default
The compiler does not override normal error severity.

Usage
In the following example, the compiler overrides the normal error severity of the specified
diagnostic messages.
 $ pgc++ --diag_suppress an_error_tag myprog.cc

Description
Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options
--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--
display_error_number

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 66

2.4.18. --display_error_number
(pgc++ only) Displays the error message number in any diagnostic messages that are generated.
The option may be used to determine the error number to be used when overriding the severity of
a diagnostic message.

Default
The compiler does not display error message numbers for generated diagnostic messages.

Usage
In the following example, the compiler displays the error message number for any generated
diagnostic messages.
 $ pgc++ --display_error_number myprog.cc

Description
Use this option to display the error message number in any diagnostic messages that are
generated. You can use this option to determine the error number to be used when overriding the
severity of a diagnostic message.

Related options
--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--diag_warning
<number>

2.4.19. -e<number>
(pgc++ only) Set the C++ front-end error limit to the specified <number>.

2.4.20. --[no_]exceptions
(pgc++ only) Enables or disables exception handling support.

Default
The compiler provides exception handling support: --exceptions.

Usage
In the following example, the compiler does not provide exception handling support.
 $ pgc++ --no_exceptions myprog.cc

Description
Use this option to enable or disable exception handling support.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 67

Related options
--[no]zc_eh

2.4.21. --gnu_version <num>
(pgc++ only) Sets the GNU C++ compatibility version.

Default
The compiler uses the latest version.

Usage
In the following example, the compiler sets the GNU version to 4.3.4.
 $ pgc++ --gnu_version 4.3.4 myprog.cc

Description
Use this option to set the GNU C++ compatibility version to use when you compile.

2.4.22. --[no]llalign
(pgc++ only) Enables or disables alignment of long long integers on long long boundaries.

Default
The compiler aligns long long integers on long long boundaries: --llalign.

Usage
In the following example, the compiler does not align long long integers on long long boundaries.
 $ pgc++ --nollalign myprog.cc

Description
Use this option to allow enable or disable alignment of long long integers on long long
boundaries.

Related options
-Mipa=<option>[,<option>[,...]]=align-noalign

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 68

2.4.23. -M
Generates a list of make dependencies and prints them to stdout.

The compilation stops after the preprocessing phase.

Default
The compiler does not generate a list of make dependencies.

Usage
In the following example, the compiler generates a list of make dependencies.
 $ pgc++ -M myprog.cc

Description
Use this option to generate a list of make dependencies and print them to stdout.

Related options
-MD,-P

2.4.24. -MD
Generates a list of make dependencies and prints them to a file.

Default
The compiler does not generate a list of make dependencies.

Usage
In the following example, the compiler generates a list of make dependencies and prints them to
the file myprog.d.
 $ pgc++ -MD myprog.cc

Description
Use this option to generate a list of make dependencies and print them to a file. The name of the
file is determined by the name of the file under compilation.dependencies_file<file>.

Related options
-M,-P

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 69

2.4.25. --optk_allow_dollar_in_id_chars
(pgc++ only) Accepts dollar signs ($) in identifiers.

Default
The compiler does not accept dollar signs ($) in identifiers.

Usage
In the following example, the compiler allows dollar signs ($) in identifiers.
 $ pgc++ -optk_allow_dollar_in_id_chars myprog.cc

Description
Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

2.4.26. -P
Halts the compilation process after preprocessing and writes the preprocessed output to a file.

Default
The compiler produces an executable file.

Usage
In the following example, the compiler produces the preprocessed file myprog.i in the current
directory.
 $ pgc++ -P myprog.cc

Description
Use this option to halt the compilation process after preprocessing and write the preprocessed
output to a file. If the input file is filename.c or filename.cc., then the output file is
filename.i.

Related options
-C,-c,-e<number>,-Mkeepasm,-o,-S

2.4.27. -+p
(pgc++ only) Disallow all anachronistic constructs.

Default
The compiler disallows all anachronistic constructs.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 70

Usage
In the following example, the compiler disallows all anachronistic constructs.
 $ pgc++ -+p myprog.cc

Description
Use this option to disallow all anachronistic constructs.

Related options
None.

2.4.28. --pch
(pgc++ only) Automatically use and/or create a precompiled header file.

If --use_pch or --create_pch (manual PCH mode) appears on the command line following this option, this
option has no effect.

Default
The compiler does not automatically use or create a precompiled header file.

Usage
In the following example, the compiler automatically uses a precompiled header file.
 $ pgc++ --pch myprog.cc

Description
Use this option to automatically use and/or create a precompiled header file.

Related options
--create_pch filename,--pch_dir directoryname,--use_pch filename

2.4.29. --pch_dir directoryname
(pgc++ only) Specifies the directory in which to search for and/or create a precompiled header
file.

The compiler searches your PATH for precompiled header files / use or create a precompiled
header file.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 71

Usage
In the following example, the compiler searches in the directory myhdrdir for a precompiled
header file.
 $ pgc++ --pch_dir myhdrdir myprog.cc

Description
Use this option to specify the directory in which to search for and/or create a precompiled
header file. You may use this option with automatic PCH mode (--pch) or manual PCH mode
(--create_pch or --use_pch).

Related options
--create_pch filename,--pch,--use_pch filename

2.4.30. --[no_]pch_messages
(pgc++ only) Enables or disables the display of a message indicating that the current compilation
used or created a precompiled header file.

The compiler displays a message when it uses or creates a precompiled header file.

In the following example, no message is displayed when the precompiled header file located in
myhdrdir is used in the compilation.
 $ pgc++ --pch_dir myhdrdir --no_pch_messages myprog.cc

Description
Use this option to enable or disable the display of a message indicating that the current
compilation used or created a precompiled header file.

Related options
--pch_dir directoryname

2.4.31. --preinclude=<filename>
(pgc++ only) Specifies the name of a file to be included at the beginning of the compilation.

In the following example, the compiler includes the file incl_file.c at the beginning of the
compilation. me
 $ pgc++ --preinclude=incl_file.c myprog.cc

Description
Use this option to specify the name of a file to be included at the beginning of the compilation.
For example, you can use this option to set system-dependent macros and types.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 72

Related options
None.

2.4.32. --use_pch filename
(pgc++ only) Uses a precompiled header file of the specified name as part of the current
compilation.

If --pch (automatic PCH mode) appears on the command line following this option, its effect is erased.

Default
The compiler does not use a precompiled header file.

In the following example, the compiler uses the precompiled header file, hdr1 as part of the
current compilation.
 $ pgc++ --use_pch hdr1 myprog.cc

Use a precompiled header file of the specified name as part of the current compilation. If --pch
(automatic PCH mode) appears on the command line following this option, its effect is erased.

Related options
--create_pch filename,--pch_dir directoryname,--[no_]pch_messages

2.4.33. --[no_]using_std
(pgc++ only) Enables or disables implicit use of the std namespace when standard header files are
included.

Default
The compiler uses std namespace when standard header files are included: --using_std.

Usage
The following command-line disables implicit use of the std namespace:
 $ pgc++ --no_using_std hello.cc

Description
Use this option to enable or disable implicit use of the std namespace when standard header files
are included in the compilation.

Related options
-M[no]stddef

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 73

2.4.34. -Xfilename
(pgc++ only) Generates cross-reference information and places output in the specified file.

Syntax:

-Xfoo

where foo is the specified file for the cross reference information.

Default
The compiler does not generate cross-reference information.

Usage
In the following example, the compiler generates cross-reference information, placing it in the
file:xreffile.
 $ pgc++ -Xxreffile myprog.cc

Description
Use this option to generate cross-reference information and place output in the specified file. This
is an EDG option.

Related options
None.

2.4.35. --[no]zc_eh
(Linux only)Generates zero-overhead exception regions.

Default
The compiler generates zero-overhead exception regions. To use exception handling with setjmp
and longjmp, use the --nozc_eh flag.

Usage
The following command-line enables zero-overhead exception regions:
 $ pgc++ --zc_eh ello.cc

Description
Use this option to generate zero-overhead exception regions. The --zc_eh option defers the cost of
exception handling until an exception is thrown. For a program with many exception regions and
few throws, this option may lead to improved run-time performance.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 74

To use exception handling with setjmp and longjmp, use the --nozc_eh flag.

The --zc_eh option is available only on newer Linux systems that supply the system unwind libraries in
libgcc_eh.

Related options
--[no_]exceptions,--[no]zc_eh

2.5. -M Options by Category
This section describes each of the options available with -M by the categories:

Code Generation Fortran Language Controls Optimization Environment

C/C++ Language Controls Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not all, of the -M<pgflag>
options. For a complete alphabetical list of all the options, refer to Table 13. These options are
grouped according to categories and are listed with exact syntax, defaults, and notes concerning
similar or related options.

For the latest information and description of a given option, or to see all available options, use the
-help command-line option, described in -help.

2.5.1. Code Generation Controls
This section describes the -M<pgflag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are these:

nodaz norecursive nosecond_underscore

noflushz noreentrant nostride0

largeaddressaware noref_externals signextend

Related options: -D, -I, -L, -l, -U.

The following list provides the syntax for each -M<pgflag> option that controls code
generation. Each option has a description and, if appropriate, any related options.

-Mdaz
Set IEEE denormalized input values to zero; there is a performance benefit but misleading
results can occur, such as when dividing a small normalized number by a denormalized
number. To take effect, this option must be set for the main program.

-Mnodaz
Do not treat denormalized numbers as zero.

To take effect, this option must be set for the main program.

-Mnodwarf
Specifies not to add DWARF debug information.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 75

To take effect, this option must be used in combination with -g.

-Mdwarf1
Generate DWARF1 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf2
Generate DWARF2 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf3
Generate DWARF3 format debug information.

To take effect, this option must be used in combination with -g.

-Mflushz
Set SIMD flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.

To take effect, this option must be set for the main program.

-Mnoflushz
Do not set SIMD flush-to-zero mode; generate underflows. To take effect, this option must be
set for the main program.

-Mfunc32
Align functions on 32-byte boundaries.

-Mnomain
Instructs the compiler not to include the object file that calls the Fortran main program as
part of the link step. This option is useful for linking programs in which the main program is
written in C/C++ and one or more subroutines are written in Fortran (Fortran only).

-M[no]movnt
Instructs the compiler to generate nontemporal move and prefetch instructions even in cases
where the compiler cannot determine statically at compile-time that these instructions will be
beneficial.

-M[no]pre
enables [disables] partial redundancy elimination.

-Mprof[=option[,option,...]]
Set performance profiling options. Use of these options changes which sections are included
in the binary. These sections can be read by PGPROF.

The option argument can be any of the following:

[no]ccff
Enable [disable] common compiler feedback format, CCFF, information.

dwarf
Add limited DWARF symbol information sufficient for most performance profilers.

-Mrecursive
instructs the compiler to allow Fortran subprograms to be called recursively.

-Mnorecursive
Fortran subprograms may not be called recursively.

-Mref_externals
force references to names appearing in EXTERNAL statements (Fortran only).

-Mnoref_externals
do not force references to names appearing in EXTERNAL statements (Fortran only).

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 76

-Mreentrant
instructs the compiler to avoid optimizations that can prevent code from being reentrant.

-Mnoreentrant
instructs the compiler not to avoid optimizations that can prevent code from being reentrant.

-Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global symbol if
its name already contains an underscore. This option is useful for maintaining compatibility
with object code compiled using pgfortran, which uses this convention by default (Fortran
only).

-Mnosecond_underscore
instructs the compiler not to add a second underscore to the name of a Fortran global symbol if
its name already contains an underscore (Fortran only).

-Msafe_lastval
When a scalar is used after a loop, but is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop. However, this option tells the compiler it’s
safe to parallelize the loop. For a given loop, the last value computed for all scalars makes it
safe to parallelize the loop.

-Msignextend
instructs the compiler to extend the sign bit that is set as a result of converting an object of one
data type to an object of a larger signed data type.

-Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting an object
of one data type to an object of a larger data type.

-Mstride0
instructs the compiler to inhibit certain optimizations and to allow for stride 0 array references.
This option may degrade performance and should only be used if zero-stride induction
variables are possible.

-Mnostride0
instructs the compiler to perform certain optimizations and to disallow for stride 0 array
references.

-Mvarargs
force Fortran program units to assume procedure calls are to C functions with a varargs-type
interface (pgfortran only).

2.5.2. C/C++ Language Controls
This section describes the -M<pgflag> options that affect C/C++ language interpretations by the
PGI C and C++ compilers. These options are only valid to the pgcc and pgc++ compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle

dollar,_ schar

Usage:

In this example, the compiler allows the asm keyword in the source file.
 $ pgcc -Masmkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 77

 $ pgcc -Mdollar,. myprog.c

In the following example, the compiler treats floating-point constants as float values.
 $ pgcc -Mfcon myprog.c

In the following example, the compiler does not convert float parameters to double parameters.
 $ pgcc -Msingle myprog.c

Without -Muchar or with -Mschar, the variable ch is a signed character:
 char ch;
 signed char sch;

If -Muchar is specified on the command line:
 $ pgcc -Muchar myprog.c

char ch in the preceding declaration is equivalent to:
 unsigned char ch;

The following list provides the syntax for each -M<pgflag> option that controls code generation
in C/C++. Each option has a description and, if appropriate, any related options.

-Masmkeyword
instructs the compiler to allow the asm keyword in C source files. The syntax of the asm
statement is as follows:
asm("statement");

Where statement is a legal assembly-language statement. The quote marks are required.

-Mnoasmkeyword
instructs the compiler not to allow the asm keyword in C source files. If you use this option
and your program includes the asm keyword, unresolved references are generated

-Mdollar,char
char specifies the character to which the compiler maps the dollar sign ($). The PGCC
compiler allows the dollar sign in names; ANSI C does not allow the dollar sign in names.

-M[no]eh_frame
instructs the linker to keep eh_frame call frame sections in the executable.

The eh_frame option is available only on newer Linux systems that supply the system unwind libraries.

-Mfcon
instructs the compiler to treat floating-point constants as float data types, instead of double
data types. This option can improve the performance of single-precision code.

-M[no]m128
instructs the compiler to recognize [ignore] __m128, __m128d, and __m128i datatypes.
floating-point constants as float data types, instead of double data types. This option can
improve the performance of single-precision code.

-Mschar
specifies signed char characters. The compiler treats "plain" char declarations as signed char.

-Msingle
do not to convert float parameters to double parameters in non-prototyped functions. This
option can result in faster code if your program uses only float parameters. However, since
ANSI C specifies that routines must convert float parameters to double parameters in non-
prototyped functions, this option results in non-ANSI conformant code.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 78

-Mnosingle
instructs the compiler to convert float parameters to double parameters in non-prototyped
functions.

-Muchar
instructs the compiler to treat "plain" char declarations as unsigned char.

2.5.3. Environment Controls
This section describes the -M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

The following list provides the syntax for each -M<pgflag> option that controls environments.
Each option has a description and, if appropriate, a list of any related options.

-Mnostartup
instructs the linker not to link in the standard startup routine that contains the entry point
(_start) for the program.

If you use the -Mnostartup option and do not supply an entry point, the linker issues the following
error message: Warning: cannot find entry symbol _start

-M[no]smartalloc[=huge|huge:<n>|hugebss|nohuge]
adds a call to the routine mallopt in the main routine. This option supports large TLBs. This
option must be used to compile the main routine to enable optimized malloc routines.

The option arguments can be any of the following:

huge
Link in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of
TLB entries required to execute a program. This option is most effective on Barcelona and
Core 2 systems; older architectures do not have enough TLB entries for this option to be
beneficial. By itself, the huge suboption tries to allocate as many huge pages as required.

nohuge
Overrides a previous -Msmartalloc=huge setting.

Tip To be effective, this switch must be specified when compiling the file containing the Fortran, C, or C
++ main program.

-M[no]hugetlb
links in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of TLB
entries required to execute a program. This option is most effective on Barcelona and Core 2
systems; older architectures do not have enough TLB entries for this option to be beneficial.
By itself, the huge suboption tries to allocate as many huge pages as required.

You can also limit the pages allocated by using the environment variable PGI_HUGE_PAGES.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 79

-M[no]stddef
instructs the compiler not to predefine any macros to the preprocessor when compiling a C
program.

-Mnostdinc
instructs the compiler to not search the standard location for include files.

-Mnostdlib
instructs the linker not to link in the standard libraries libpgftnrtl.a, libm.a, libc.a,
and libpgc.a in the library directory lib within the standard directory. You can link in
your own library with the -l option or specify a library directory with the -L option.

2.5.4. Fortran Language Controls
This section describes the -M<pgflag> options that affect Fortran language interpretations by
the PGI Fortran compilers. These options are valid only for the Fortran compiler drivers.

Default: Before looking at all the options, let's look at the defaults. For arguments that you do not
specify, the defaults are as follows:

nobackslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each -M<pgflag> option that affect Fortran language
interpretations. Each option has a description and, if appropriate, a list of any related options.

-Mallocatable=95|03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array
assignments. The default behavior is to use Fortran 95 semantics; the 03 option instructs the
compiler to use Fortran 2003 semantics.

-Mbackslash
instructs the compiler to treat the backslash as a normal character, and not as an escape
character in quoted strings.

-Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted strings (in
accordance with standard C usage).

-Mcuda
instructs the compiler to enable CUDA Fortran.

The following suboptions exist:

If more than one option is on the command line, all the specified options occur.

cc30
Generate code for compute capability 3.0.

cc35
Generate code for compute capability 3.5.

cc3x
Generate code for the lowest 3.x compute capability possible.

cc3+
Is equivalent to cc3x.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 80

cc50
Generate code for compute capability 5.0.

cc60
Generate code for compute capability 6.0.

cuda7.0 or 7.0
Specify the NVIDIA CUDA 7.0 version of the toolkit. This is the default.

cuda7.5 or 7.5
Specify the NVIDIA CUDA 7.5 version of the toolkit.

cuda8.0 or 8.0
Specify the NVIDIA CUDA 8.0 version of the toolkit.

Compile with the CUDA 7.5 or CUDA 8.0 toolkit either by using the -Mcuda=7.5
or -Mcuda=8.0 option, or by adding set DEFCUDAVERSION=7.5 or set
DEFCUDAVERSION=8.0 to the siterc file. This action generates binaries that may not work
on machines with an earlier CUDA driver.

pgaccelinfo prints the driver version as the first line of output.

For a 7.0 driver: CUDA Driver Version 7000
For a 7.5 driver: CUDA Driver Version 7050
For an 8.0 driver: CUDA Driver Version 8000

emu
Enable CUDA Fortran emulation mode.

fastmath
Use routines from the fast math library.

fermi
is equivalent to -Mcuda,cc2x

[no]flushz
Enable[disable] flush-to-zero mode for floating point computations in the GPU code
generated for CUDA Fortran kernels.

generate rdc
Generate relocatable device code

keepbin
Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu
Keep the generated GPU code for CUDA Fortran.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

kepler
is equivalent to -Mcuda,cc3x

llvm
Generate code using the llvm-based back-end.

[no]debug
Enable[disable] GPU debug information generation.

[no]lineinfo
Enable[disable] GPU line information generation.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 81

nofma
Do not generate fused multiply-add instructions.

noL1
Prevent the use of L1 hardware data cache to cache global variables.

ptxinfo
Show PTXAS informational messages during compilation.

rdc
Enable CUDA Fortran separate compilation and linking of device routines, including
device routines in Fortran modules.

To enable separate compilation and linking, include the command line option -
Mcuda=rdc on both the compile and the link steps.

-Mdclchk
instructs the compiler to require that all program variables be declared.

-Mnodclchk
instructs the compiler not to require that all program variables be declared.

-Mdefaultunit
instructs the compiler to treat "*" as a synonym for standard input for reading and standard
output for writing.

-Mnodefaultunit
instructs the compiler to treat "*" as a synonym for unit 5 on input and unit 6 on output.

-Mdlines
instructs the compiler to treat lines containing "D" in column 1 as executable statements
(ignoring the "D").

-Mnodlines
instructs the compiler not to treat lines containing "D" in column 1 as executable statements.
The compiler does not ignore the "D".

-Mdollar,char
char specifies the character to which the compiler maps the dollar sign. The compiler allows
the dollar sign in names.

-Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-column code.

-Mfixed
instructs the compiler to assume input source files are in FORTRAN-style fixed form format.

-Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform format.

-Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.

-Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran I/O statements.

-Monetrip
instructs the compiler to force each DO loop to execute at least once. This option is useful for
programs written for earlier versions of Fortran.

-Mnoonetrip
instructs the compiler not to force each DO loop to execute at least once.

-Msave
instructs the compiler to assume that all local variables are subject to the SAVE statement.

This may allow older Fortran programs to run, but it can greatly reduce performance.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 82

-Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE statement.

-Mstandard
instructs the compiler to flag non-ANSI-conforming source code.

-Munixlogical
directs the compiler to treat logical values as true if the value is non-zero and false if the value
is zero (UNIX FORTRAN convention). When -Munixlogical is enabled, a logical value
or test that is non-zero is .TRUE., and a value or test that is zero is .FALSE.. In addition, the
value of a logical expression is guaranteed to be one (1) when the result is .TRUE..

-Mnounixlogical
directs the compiler to use the VMS convention for logical values for true and false. Even
values are true and odd values are false.

-Mupcase
instructs the compiler to preserve uppercase letters in identifiers.

With -Mupcase, the identifiers "X" and "x" are different. Keywords must be in lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase on one occasion and -Mnoupcase on another, you may get two different
executables – depending on whether the source contains uppercase letters. The standard
libraries are compiled using the default -Mnoupcase .

-Mnoupcase
instructs the compiler to convert all identifiers to lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase on one occasion and -Mnoupcase on another, you may get two different
executables, depending on whether the source contains uppercase letters. The standard
libraries are compiled using -Mnoupcase.

2.5.5. Inlining Controls
This section describes the -M<pgflag> options that control function inlining.

Usage:Before looking at all the options, let’s look at a couple examples. In the following
example, the compiler extracts functions that have 500 or fewer statements from the source file
myprog.f and saves them in the file extract.il.
$ pgfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100
statements in the source file myprog.f.
$ pgfortran -Minline=size:100 myprog.f

Related options: -o, -Mextract

The following list provides the syntax for each -M<pgflag> option that controls function inlining.
Each option has a description and, if appropriate, a list of any related options.

- M[no]autoinline[=option[,option,...]]
instructs the compiler to inline [not to inline] a C/C++ function at -O2, where the option can
be any of these:
levels:n

instructs the compiler to perform n levels of inlining. The default number of levels is 10.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 83

maxsize:n
instructs the compiler not to inline functions of size > n. The default size is 100.

totalsize:n
instructs the compiler to stop inlining when the size equals n. The default size is 800.

-Mextract[=option[,option,...]]
Extracts functions from the file indicated on the command line and creates or appends to the
specified extract directory where option can be any of the following:
name:func

instructs the extractor to extract function func from the file.
size:number

instructs the extractor to extract functions with number or fewer statements from the file.
lib:filename.ext

instructs the extractor to use directory filename.ext as the extract directory, which is
required to save and re-use inline libraries.

If you specify both name and size, the compiler extracts functions that match func, or that
have number or fewer statements. For examples of extracting functions, refer to the ‘Using
Function Inlining’ section of the PGI Compiler User’s Guide.

-Minline[=option[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be any of
the following:
except:func

instructs the inliner to inline all eligible functions except func, a function in the source text.
You can use a comma-separated list to specify multiple functions.

[name:]func
instructs the inliner to inline all functions in the source text that match func.

The function name should be a non-numeric string that does not contain a period. You
can also use a name: prefix followed by the function name. If name: is specified, what
follows is always the name of a function.

[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext. The
compiler assumes that a filename.ext option containing a period is a library file.

Tip Create the library file using the -Mextract option. You can also use a lib: prefix followed
by the library name.

‣ If lib: is specified, no period is necessary in the library name. Functions from the specified
library are inlined.

‣ If no library is specified, functions are extracted from a temporary library created during an
extract prepass.

levels:number
instructs the inliner to perform number levels of inlining.

The default number of function calling levels is 1. Using a level greater than one indicates
that function calls within inlined functions may be replaced with inlined code. This
approach allows the function inliner to automatically perform a sequence of inline and
extract processes.

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 84

[no]reshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes do not
match. The default is -Minline=noreshape, except with -Mconcur or -mp, where the
default is -Minline=reshape,=reshape.

[size:]number
instructs the inliner to inline functions with a statement count less than or equal to number,
the specified size. You can also use a size: prefix followed by a number. If size: is
specified, what follows is always taken as a number.

The size number need not exactly equal the number of statements in a selected function;
the size parameter is merely a rough guage.

If you specify both func and number, the compiler inlines functions that match the function
name or have number or fewer statements.

For examples of inlining functions, refer to ‘Using Function Inlining’ in the PGI Compiler
User’s Guide.

2.5.6. Optimization Controls
This section describes the -M<pgflag> options that control optimization.

Default: Before looking at all the options, let's look at the defaults. For arguments that you do not
specify, the default optimization control options are as follows:

depchk noipa nounroll nor8

i4 nolre novect nor8intrinsics

nofprelaxed noprefetch

If you do not supply an option to -Mvect, the compiler uses defaults that are dependent upon the target
system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SIMD
instructions enabled.
$ pgfortran -Mvect=sse -Mcache_align myprog.f

Related options: -g, -O

The following list provides the syntax for each -M<pgflag> option that controls optimization.
Each option has a description and, if appropriate, a list of any related options.

-Mcache_align
Align unconstrained objects of length greater than or equal to 16 bytes on cache-line
boundaries. An unconstrained object is a data object that is not a member of an aggregate
structure or common block. This option does not affect the alignment of allocatable or
automatic arrays.

To effect cache-line alignment of stack-based local variables, the main program or function
must be compiled with -Mcache_align.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 85

-Mconcur[=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -Mconcur is specified,
multiple processors will be used to execute loops that the compiler determines to be
parallelizable.

option is one of the following:

allcores
Instructs the compiler to use all available cores. Use this option at link time.

[no]altcode:n
Instructs the parallelizer to generate alternate serial code for parallelized loops.

‣ If altcode is specified without arguments, the parallelizer determines an appropriate
cutoff length and generates serial code to be executed whenever the loop count is less
than or equal to that length.

‣ If altcode:n is specified, the serial altcode is executed whenever the loop count is
less than or equal to n.

‣ If noaltcode is specified, the parallelized version of the loop is always executed
regardless of the loop count.

cncall
Indicates that calls in parallel loops are safe to parallelize.

Loops containing calls are candidates for parallelization. Also, no minimum loop count
threshold must be satisfied before parallelization will occur, and last values of scalars are
assumed to be safe.

[no]innermost
Instructs the parallelizer to enable parallelization of innermost loops. The default is to not
parallelize innermost loops, since it is usually not profitable on dual-core processors.

noassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result. The
NCPUS environment variable controls how many processors or cores are used to execute
parallelized loops.

This option applies only on shared-memory multi-processor (SMP) or multicore processor-based
systems.

-Mcray[=option[,option,...]]
(Fortran only) Force Cray Fortran (CF77) compatibility with respect to the listed options.
Possible values of option include:
pointer

for purposes of optimization, it is assumed that pointer-based variables do not overlay the
storage of any other variable.

-Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

-Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 86

-Mdse
Enables a dead store elimination phase that is useful for programs that rely on extensive use of
inline function calls for performance. This is disabled by default.

-Mnodse
Disables the dead store elimination phase. This is the default.

-M[no]fpapprox[=option]
Perform certain floating point operations using low-precision approximation.

-Mnofpapprox specifies not to use low-precision fp approximation operations.

By default -Mfpapprox is not used.

If -Mfpapprox is used without suboptions, it defaults to use approximate div, sqrt, and
rsqrt. The available suboptions are these:

div
Approximate floating point division

sqrt
Approximate floating point square root

rsqrt
Approximate floating point reciprocal square root

-M[no]fpmisalign
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory
operands that are not aligned on 16-byte boundaries. The default is -Mnofpmisalign on all
processors.

Applicable only with one of these options: -tp barcelona or -tp barcelona-64 or newer
processors.

-M[no]fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some intrinsic
functions. Can result in improved performance at the expense of numerical accuracy.

The possible values for option are:

div
Perform divide using relaxed precision.

intrinsic
Enables use of relaxed precision intrinsics.

noorder
Do not allow expression reordering or factoring.

order
Allow expression reordering, including factoring.

recip
Perform reciprocal using relaxed precision.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sqrt
Perform square root with relaxed precision.

With no options, -Mfprelaxed generates relaxed precision code for those operations that
generate a significant performance improvement, depending on the target processor.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 87

The default is -Mnofprelaxed which instructs the compiler to not use relaxed precision in
the calculation of intrinsic functions.

-Mi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*4.

-Mipa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer. Note: -Mipa is not compatible with parallel
make environments (e.g., pmake).

-Mipa implies -O2, and the minimum optimization level that can be specified in combination
with -Mipa is -O2.

For example, if you specify -Mipa -O1 on the command line, the optimization level is
automatically elevated to -O2 by the compiler driver. Typically, as recommended, you would
use -Mipa=fast.

Many of the following suboptions can be prefaced with no, which reverses or disables the
effect of the suboption if it's included in an aggregate suboption such as -Mipa=fast. The
choices of option are:

[no]align
recognize when targets of a pointer dummy are aligned. The default is noalign.

[no]arg
remove arguments replaced by const, ptr. The default is noarg.

[no]cg
generate call graph information for viewing using the pgicg command-line utility. The
default is nocg.

[no]const
perform interprocedural constant propagation. The default is const.

except:<func>
used with inline to specify functions which should not be inlined. The default is to inline
all eligible functions according to internally defined heuristics. Valid only immediately
following the inline suboption.

[no]f90ptr
F90/F95 pointer disambiguation across calls. The default is nof90ptr.

fast
choose IPA options generally optimal for the target. To see settings for -Mipa=fast on a
given target, use -help.

force
force all objects to re-compile regardless of whether IPA information has changed.

[no]globals
optimize references to global variables. The default is noglobals.

inline[:n]
perform automatic function inlining. If the optional :n is provided, limit inlining to at most
n levels. IPA-based function inlining is performed from leaf routines upward.

ipofile
save IPA information in an .ipo file rather than incorporating it into the object file.

jobs[:n]
recompile n jobs in parallel and print source file names as they are compiled.

[no]keepobj
keep the optimized object files, using file name mangling, to reduce re-compile time in
subsequent builds. The default is keepobj.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 88

[no]libc
optimize calls to certain standard C library routines. The default is nolibc.

[no]libinline
allow inlining of routines from libraries; implies -Mipa=inline. The default is
nolibinline.

[no]libopt
allow recompiling and optimization of routines from libraries using IPA information. The
default is nolibopt.

[no]localarg
equivalent to arg plus externalization of local pointer targets. The default is
nolocalarg.

main:<func>
specify a function to appear as a global entry point. May appear multiple times and it
disables linking.

reaggregation
Enables IPA-guided structure reaggregation, which automatically attempts to reorder
elements in a struct, or to split structs into substructs to improve memory locality and cache
utilization.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

[no]pfo
enable profile feedback information. The nopfo option is valid only immediately
following the inline suboption. -Mipa=inline,nopfo tells IPA to ignore PFO
information when deciding what functions to inline, if PFO information is available.

[no]ptr
enable pointer disambiguation across procedure calls. The default is noptr.

[no]pure
pure function detection. The default is nopure.

required
return an error condition if IPA is inhibited for any reason, rather than the default behavior
of linking without IPA optimization.

[no]reshape
enable [disable] Fortran inline with mismatched array shapes. Valid only immediately
following the inline suboption.

safe:[<function>|<library>]
declares that the named function, or all functions in the named library, are safe. A safe
procedure does not call back into the known procedures and does not change any known
global variables.

Without -Mipa=safe, any unknown procedures cause IPA to fail.

[no]safeall
declares that all unknown procedures are safe. The default is nosafeall. For more
information, refer to -Mipa=safe.

[no]shape
perform Fortran 90 array shape propagation. The default is noshape.

summary
only collect IPA summary information when compiling. This option prevents IPA
optimization of this file, but allows optimization for other files linked with this file.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 89

[no]vestigial
remove uncalled (vestigial) functions. The default is novestigial.

If you use -Mipa=vestigial in combination with -Mipa=libopt with PGCC, you
may encounter unresolved references at link time. These unresolved references are a result
of erroneous removal of functions by the vestigial sub-option to -Mipa. You can work
around this problem by listing specific sub-options to -Mipa, not including vestigial.

-Mlre[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the number of
arithmetic operations and memory references in loops. The available suboptions are:
array

treat individual array element references as candidates for possible loop-carried
redundancy elimination. The default is to eliminate only redundant expressions involving
two or more operands.

assoc
allow expression re-association. Specifying this suboption can increase opportunities for
loop-carried redundancy elimination but may alter numerical results.

noassoc
disallow expression re-association.

-Mnolre
Disable loop-carried redundancy elimination.

-Mnoframe
Eliminate operations that set up a true stack frame pointer for every function. With this option
enabled, you cannot perform a traceback on the generated code and you cannot access local
variables.

-Mnoi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER*2.

-Mpre
Enables partial redundancy elimination.

-Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported. Possible
values for option include:
d:m

set the fetch-ahead distance for prefetch instructions to m cache lines.
n:p

set the maximum number of prefetch instructions to generate for a given loop to p.
nta

use the prefetch instruction.
plain

use the prefetch instruction (default).
t0

use the prefetcht0 instruction.
-Mnoprefetch

Disables generation of prefetch instructions.
-M[no]propcond

Enables or disables constant propagation from assertions derived from equality conditionals.

The default is enabled.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 90

-Mr8
(Fortran only) The compiler promotes REAL variables and constants to DOUBLE
PRECISION variables and constants, respectively. DOUBLE PRECISION elements are 8
bytes in length.

-Mnor8
(Fortran only) The compiler does not promote REAL variables and constants to DOUBLE
PRECISION. REAL variables will be single precision (4 bytes in length).

-Mr8intrinsics
(pgfortran only) The compiler treats the intrinsics CMPLX and REAL as DCMPLX and
DBLE, respectively.

-Mnor8intrinsics
(pgfortran only) The compiler does not promote the intrinsics CMPLX and REAL to
DCMPLX and DBLE, respectively.

-Msafeptr[=option[,option,...]]
(pgcc and pgc++ only) instructs the C/C++ compiler to override data dependencies between
pointers of a given storage class. Possible values of option include:
all

assume all pointers and arrays are independent and safe for aggressive optimizations, and
in particular that no pointers or arrays overlap or conflict with each other.

arg
instructs the compiler to treat arrays and pointers with the same copyin and copyout
semantics as Fortran dummy arguments.

global
instructs the compiler that global or external pointers and arrays do not overlap or conflict
with each other and are independent.

local/auto
instructs the compiler that local pointers and arrays do not overlap or conflict with each
other and are independent.

static
instructs the compiler that static pointers and arrays do not overlap or conflict with each
other and are independent.

-Munroll[=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each iteration. This
also sets the optimization level to 2 if the level is set to less than 2, or if no -O or -g options
are supplied. The option is one of the following:
c:m

instructs the compiler to completely unroll loops with a constant loop count less than or
equal to m, a supplied constant. If this value is not supplied, the m count is set to 4.

m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for loops
that have conditional statements. If n is not supplied, then the default value is 4. The
default setting is not to enable -Munroll=m.

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not completely
unrolled, or has a non-constant loop count. If n is not supplied, the unroller computes the
number of times a candidate loop is unrolled.

-Mnounroll
instructs the compiler not to unroll loops.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 91

-M[no]vect[=option [,option,...]]
enable [disable] the code vectorizer, where option is one of the following:
altcode

Instructs the vectorizer to generate alternate code (altcode) for vectorized loops when
appropriate. For each vectorized loop the compiler decides whether to generate altcode
and what type or types to generate, which may be any or all of: altcode without iteration
peeling, altcode with non-temporal stores and other data cache optimizations, and altcode
based on array alignments calculated dynamically at runtime. The compiler also determines
suitable loop count and array alignment conditionals for executing the altcode. This option
is enabled by default.

noaltcode
Instructs the vectorizer to disable alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change the
results of a computation due to roundoff error. A typical optimization is to change an
arithmetic operation to an arithmetic operation that is mathematically correct, but can be
computationally different, due to round-off error.

noassoc
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache
size of n. The default is set per processor type, either using the -tp switch or auto-detected
from the host computer.

[no]gather
Instructs the vectorizer to vectorize loops containing indirect array references, such as this
one:
sum = 0.d0
do k=d(j),d(j+1)-1
 sum = sum + a(k)*b(c(k))
enddo

The default is gather.

partial
Instructs the vectorizer to enable partial loop vectorization through innermost loop
distribution.

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of prefetch instructions.

[no]short
Instructs the vectorizer to enable [disable] short vector operations. -Mvect=short
enables generation of packed SIMD instructions for short vector operations that arise from
scalar code outside of loops or within the body of a loop iteration.

[no]sizelimit
Instructs the vectorizer to generate vector code for all loops where possible regardless
of the number of statements in the loop. This overrides a heuristic in the vectorizer that
ordinarily prevents vectorization of loops with a number of statements that exceeds a
certain threshold. The default is nosizelimit.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 92

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length is less than or equal to
n. The vectorizer uses this information to eliminate generation of the stripmine loop for
vectorized loops wherever possible. If the size n is omitted, the default is 100.

No space is allowed on either side of the colon (:).

[no]sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of SIMD and prefetch instructions. The default is nosse.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and residual
loops.

This option may affect the performance of the residual loop.

-Mnovect
instructs the compiler not to perform vectorization. You can use this option to override a
previous instance of -Mvect on the command-line, in particular for cases in which -Mvect is
included in an aggregate option such as -fastsse.

-Mvect=[option]
instructs the compiler to enable loop vectorization, where option is one of the following:
partial

Enable partial loop vectorization through innermost loop distribution.
[no]short

Enable [disable] short vector operations. Enables [disables] generation of packed SIMD
instructions for short vector operations that arise from scalar code outside of loops or
within the body of a loop iteration.

simd[:{128|256}]
Specifies to vectorize using SIMD instructions and data, either 128 bits or 256 bits wide,
on processors where there is a choice.

tile
Enable tiling/blocking over multiple nested loops for more efficient cache utilization.

-Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized
vector functions.

2.5.7. Miscellaneous Controls
This section describes the -M<pgflag> options that do not easily fit into one of the other
categories of -M<pgflag> options.

Default: Before looking at all the options, let’s look at the defaults. For arguments that you do
not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Related options: -m, -S, -V, -v

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 93

Usage: In the following example, the compiler includes Fortran source code with the assembly
code.
 $ pgfortran -Manno -S myprog.f

In the following example, the assembler does not delete the assembly file myprog.s after the
assembly pass.
 $ pgfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions with fewer
than approximately 20 source lines in the source file myprog.f.
 $ pgfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler creates the listing file myprog.lst.
 $ pgfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.
 $ pgfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous -M<pgflag> option. Each option
has a description and, if appropriate, a list of any related options.

-Manno
annotate the generated assembly code with source code. Implies -Mkeepasm.

-Mbounds
enables array bounds checking.

‣ If an array is an assumed size array, the bounds checking only applies to the lower bound.
‣ If an array bounds violation occurs during execution, an error message describing the

error is printed and the program terminates. The text of the error message includes the
name of the array, the location where the error occurred (the source file and the line
number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

The following is a sample error message:
PGFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1, upper bound=2, dimension=2

-Mnobounds
disables array bounds checking.

-Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran
unformatted data files.

-Mchkptr
instructs the compiler to check for pointers that are dereferenced while initialized to NULL
(Fortran only).

-Mchkstk
instructs the compiler to check the stack for available space in the prologue of a function
and before the start of a parallel region. Prints a warning message and aborts the program
gracefully if stack space is insufficient.

This option is useful when many local and private variables are declared in an OpenMP
program.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 94

If the user also sets the PGI_STACK_USAGE environment variable to any value, then the
program displays the stack space allocated and used after the program exits. For example, you
might see something similar to the following message:
thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. This
information is useful when you want to explicitly set a reserved and committed stack size for
your programs.

For more information on the PGI_STACK_USAGE, refer to ‘PGI_STACK_USAGE’ in the
PGI Compiler User’s Guide.

-Mcpp[=option [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation steps.
This option is useful for generating dependence information to be included in makefiles.

Only one of the m, md, mm or mmd options can be present; if multiple of these options are listed, the
last one listed is accepted and the others are ignored.

The option is one or more of the following:

m
print makefile dependencies to stdout.

md
print makefile dependencies to filename.d, where filename is the root name of the input
file being processed, ignoring system include files.

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to filename.d, where filename is the root name of the input
file being processed, ignoring system include files.

[no]comment
do [do not] retain comments in output.

[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.

-Mgccbug[s]
instructs the compiler to match the behavior of certain gcc bugs.

-Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:
unix

(Win32 only) uses UNIX calling conventions, no trailing underscores.
cref

uses CREF calling conventions, no trailing underscores.
mixed_str_len_arg

places the lengths of character arguments immediately after their corresponding argument.
Has affect only with the CREF calling convention.

nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has affect only
with the CREF calling convention.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 95

-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the
following:
all

instructs the compiler to produce all available -Minfo information. Implies a number of
suboptions:
-Mneginfo=accel,inline,ipa,loop,lre,mp,opt,par,vect

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append common compiler feedback format information, such as
optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.

intensity
instructs the compiler to provide informational messages about the intensity of the loop.
Specify <n> to get messages on nested loops.

‣ For floating point loops, intensity is defined as the number of floating point operations
divided by the number of floating point loads and stores.

‣ For integer loops, the loop intensity is defined as the total number of integer arithmetic
operations, which may include updates of loop counts and addresses, divided by the
total number of integer loads and stores.

‣ By default, the messages just apply to innermost loops.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination, information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

time
instructs the compiler to display compilation statistics.

unroll
instructs the compiler to display information about loop unrolling.

vect
instructs the compiler to enable vectorizer information.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 96

-Minform=level
instructs the compiler to display error messages at the specified and higher levels, where
level is one of the following:
fatal

instructs the compiler to display fatal error messages.
[no]file

instructs the compiler to print or not print source file names as they are compiled. The
default is to print the names: -Minform=file.

inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).

severe
instructs the compiler to display severe and fatal error messages.

warn
instructs the compiler to display warning, severe and fatal error messages.

-Minstrumentation=option
specifies the level of instrumentation calls generated. This option implies -Minfo=ccff, -
Mframe.

option is one of the following:

level
specifies the level of instrumentation calls generated.

function (default)
generates instrumentation calls for entry and exit to functions.

Just after function entry and just before function exit, the following profiling functions are
called with the address of the current function and its call site.

void __cyg_profile_func_enter (void *this_fn, void *call_site);
void __cyg_profile_func_exit (void *this_fn, void *call_site);

In these calls, the first argument is the address of the start of the current function.

-Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the
assembler deletes this file when it is finished. The assembly file has the same filename as the
source file, but with a .s extension.

-Mlist
instructs the compiler to create a listing file. The listing file is filename.lst, where the
name of the source file is filename.f.

-Mnames=lowercase|uppercase
specifies the case for the names of Fortran externals.

‣ lowercase - Use lowercase for Fortran externals.
‣ uppercase - Use uppercase for Fortran externals.

-Mneginfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the
following:
all

instructs the compiler to produce all available information on why various optimizations
are not performed.

Command-Line Options Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 97

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to the
object file.

concur
instructs the compiler to produce all available information on why loops are not
automatically parallelized. In particular, if a loop is not parallelized due to potential data
dependence, the variable(s) that cause the potential dependence are listed in the messages
that you see when using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on
vectorization.

lre
instructs the compiler to enable LRE, loop-carried redundancy elimination, information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

vect
instructs the compiler to enable vectorizer information.

-Mnolist
the compiler does not create a listing file. This is the default.

-Mnoopenmp
when used in combination with the -mp option, the compiler ignores OpenMP parallelization
directives or pragmas, but still processes SGI-style parallelization directives or pragmas.

-Mnorpath
(Linux only) Do not add -rpath to the link line.

-Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran input source
files.

-Mwritable_strings
stores string constants in the writable data segment.

Options -Xs and -Xst include -Mwritable_strings.

PGI Compiler Reference Guide for OpenPOWER CPUs 98

Chapter 3.
C++ NAME MANGLING

Name mangling transforms the names of entities so that the names include information on aspects
of the entity’s type and fully qualified name. This ability is necessary since the intermediate
language into which a program is translated contains fewer and simpler name spaces than there
are in the C++ language; specifically:

‣ Overloaded function names are not allowed in the intermediate language.
‣ Classes have their own scopes in C++, but not in the generated intermediate language. For

example, an entity x from inside a class must not conflict with an entity x from the file scope.
‣ External names in the object code form a completely flat name space. The names of entities

with external linkage must be projected onto that name space so that they do not conflict with
one another. A function f from a class A, for example, must not have the same external name
as a function f from class B.

‣ Some names are not names in the conventional sense of the word, they're not strings of
alphanumeric characters, for example: operator=.

There are two main problems here:

 1. Generating external names that will not clash.
 2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and
alphanumeric names for entities with strange names in C++. It also solves the problem of
generating hidden names for some behind-the-scenes language support in such a way that they
match up across separate compilations.

You see mangled names if you view files that are translated by PGC++ or PGCC, and you do not
use tools that demangle the C++ names. Intermediate files that use mangled names include the
assembly and object files created by the PGC++ command. To view demangled names, use the
tool pggdecode, which takes input from stdin. pggdecode demangles PGC++ names.
prompt> pggdecode
_ZN1A1gEf
A::g(float)

The name mangling algorithm for the PGC++ compiler is IA-64 ABI compliant and is described
at mentorembedded.github.io/cxx-abi. Refer to this document for a complete description of the
name mangling algorithm.

mentorembedded.github.io/cxx-abi

PGI Compiler Reference Guide for OpenPOWER CPUs 99

Chapter 4.
DIRECTIVES AND PRAGMAS REFERENCE

PGI Fortran compilers support proprietary directives and pragmas. These directives and pragmas
override corresponding command-line options. For usage information such as the scope and
related command-line options, refer to the PGI Compiler User’s Guide.

This section contains detailed descriptions of PGI’s proprietary directives and pragmas.

4.1. PGI Proprietary Fortran Directive and C/C++ Pragma
Summary
Directives (Fortran comments) and C/C++ pragmas may be supplied by the user in a source
file to provide information to the compiler. Directives and pragmas alter the effects of certain
command line options or default behavior of the compiler. They provide pragmatic information
that control the actions of the compiler in a particular portion of a program without affecting the
program as a whole. That is, while a command line option affects the entire source file that is
being compiled, directives and pragmas apply, or disable, the effects of a command line option
to selected subprograms or to selected loops in the source file, for example, to optimize a specific
area of code. Use directives and pragmas to tune selected routines or loops.

The Fortran directives may have any of the following forms:
!pgi$g directive
!pgi$r directive
!pgi$l directive
!pgi$ directive

where the scope indicator follows the $ and is either g (global), r (routine), or l (loop). This
indicator controls the scope of the directive, though some directives ignore the scope indicator.

If the input is in fixed format, the comment character, !, * or C, must begin in column 1.

Directives and pragmas override corresponding command-line options. For usage information
such as the scope and related command-line options, refer to the the Using Directives and
Pragmas section of the PGI Compiler User’s Guide.

http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 100

4.1.1. altcode (noaltcode)
The altcode directive or pragma instructs the compiler to generate alternate code for vectorized
or parallelized loops.

The noaltcode directive or pragma disables generation of alternate code.

Scope: This directive or pragma affects the compiler only when -Mvect=sse or -Mconcur is
enabled on the command line.

!pgi$ altcode
Enables alternate code (altcode) generation for vectorized loops. For each loop the compiler
decides whether to generate altcode and what type(s) to generate, which may be any or all
of: altcode without iteration peeling, altcode with non-temporal stores and other data cache
optimizations, and altcode based on array alignments calculated dynamically at runtime. The
compiler also determines suitable loop count and array alignment conditions for executing the
alternate code.

!pgi$ altcode alignment
For a vectorized loop, if possible, generates an alternate vectorized loop containing additional
aligned moves which is executed if a runtime array alignment test is passed.

!pgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the loop
count is less than or equal to n. If n is omitted or n is 0, the compiler determines a suitable
value of n for each loop.

!pgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each auto-
parallelized reduction loop, generate an alternate serial loop to be executed if the loop count is
less than or equal to n. If n is omitted or n is 0, the compiler determines a suitable value of n
for each loop.

!pgi$ altcode [(n)] nontemporal
For a vectorized loop, if possible, generates an alternate vectorized loop containing non-
temporal stores and other cache optimizations to be executed if the loop count is greater than
n. If n is omitted or n is 1, the compiler determines a suitable value of n for each loop. The
alternate code is optimized for the case when the data referenced in the loop does not all fit in
level 2 cache.

!pgi$ altcode [(n)] nopeel
For a vectorized loop where iteration peeling is performed by default, if possible, generates an
alternate vectorized loop without iteration peeling to be executed if the loop count is less than
or equal to n. If n is omitted or n is 1, the compiler determines a suitable value of n for each
loop, and in some cases it may decide not to generate an alternate unpeeled loop.

!pgi$ altcode [(n)] vector
For each vectorized loop, generates an alternate scalar loop to be executed if the loop count is
less than or equal to n. If n is omitted or n is 1, the compiler determines a suitable value of n
for each loop.

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 101

!pgi$ noaltcode
Sets the loop count thresholds for parallelization of all innermost loops to 0, and disables
alternate code generation for vectorized loops.

4.1.2. assoc (noassoc)
This directive or pragma toggles the effects of the -Mvect=noassoc command-line option, an
optimization -M control.

Scope: This directive or pragma affects the compiler only when -Mvect=sse is enabled on the
command line.

By default, when scalar reductions are present the vectorizer may change the order of operations,
such as dot product, so that it can generate better code. Such transformations may change
the result of the computation due to roundoff error. The noassoc directive disables these
transformations.

4.1.3. bounds (nobounds)
This directive or pragma alters the effects of the -Mbounds command line option. This directive
enables the checking of array bounds when subscripted array references are performed. By
default, array bounds checking is not performed.

4.1.4. cncall (nocncall)
This directive or pragma indicates that loops within the specified scope are considered for
parallelization, even if they contain calls to user-defined subroutines or functions. A nocncall
directive cancels the effect of a previous cncall.

4.1.5. concur (noconcur)
This directive or pragma alters the effects of the -Mconcur command-line option. The directive
instructs the auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive or pragma affects the compiler only when -Mconcur is enabled on the
command line.

If concur is specified, the compiler uses multiple processors to execute loops which the
auto-parallelizer determines to be parallelizable. The noconcur directive disables these
transformations; however, use of concur overrides previous noconcur statements.

4.1.6. depchk (nodepchk)
This directive or pragma alters the effects of the -Mdepchk command line option. When
potential data dependencies exist, the compiler, by default, assumes that there is a data
dependence that in turn may inhibit certain optimizations or vectorizations. nodepchk directs the
compiler to ignore unknown data dependencies.

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 102

4.1.7. eqvchk (noeqvchk)
The eqvchk directive or pragma specifies to check dependencies between EQUIVALENCE
associated elements. When examining data dependencies, noeqvchk directs the compiler to ignore
any dependencies between variables appearing in EQUIVALENCE statements.

4.1.8. fcon (nofcon)
This C/C++ pragma alters the effects of the -Mfcon (a -M Language control) command-line
option.

The pragma instructs the compiler to treat non-suffixed floating-point constants as float rather
than double. By default, all non-suffixed floating-point constants are treated as double.

Only routine or global scopes are allowed for this C/C++ pragma.

4.1.9. invarif (noinvarif)
This directive or pragma has no corresponding command-line option. Normally, the compiler
removes certain invariant if constructs from within a loop and places them outside of the loop.
The directive noinvarif directs the compiler not to move such constructs. The directive invarif
toggles a previous noinvarif.

4.1.10. ivdep
The ivdep directive assists the compiler's dependence analysis and is equivalent to the directive
nodepchk.

4.1.11. lstval (nolstval)
This directive or pragma has no corresponding command-line option. The compiler determines
whether the last values for loop iteration control variables and promoted scalars need to be
computed. In certain cases, the compiler must assume that the last values of these variables are
needed and therefore computes their last values. The directive nolstval directs the compiler not to
compute the last values for those cases.

4.1.12. opt
The opt directive or pragma overrides the value specified by the -On command line option.

The syntax of this directive or pragma is:
!pgi$<scope> opt=<level>

where the optional <scope> is r or g and <level> is an integer constant representing the
optimization level to be used when compiling a subprogram (routine scope) or all subprograms in
a file (global scope).

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 103

4.1.13. prefetch
The prefetch directive or pragma the compiler emits prefetch instructions whereby elements are
fetched into the data cache prior to first use. By varying the prefetch distance, it is sometimes
possible to reduce the effects of main memory latency and improve performance.

The syntax of this directive or pragma is:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

4.1.14. safe (nosafe)
This C/C++ pragma has no corresponding command-line option. By default, the compiler
assumes that all pointer arguments are unsafe. That is, the storage located by the pointer can be
accessed by other pointers.

The formats of the safe pragma are:
#pragma [scope] [no]safe
#pragma safe (variable [, variable]...)

where scope is either global or routine.

‣ When the pragma safe is not followed by a variable name or a list of variable names:

‣ If the scope is routine, then the compiler treats all pointer arguments appearing in the
routine as safe.

‣ If the scope is global, then the compiler treats all pointer arguments appearing in all
routines as safe.

‣ When the pragma safe is followed by a variable name or a list of variable names, each name
is the name of a pointer argument in the current function, and the compiler considers that
named argument to be safe.

If only one variable name is specified, you may omit the surrounding parentheses.

4.1.15. safe_lastval
During parallelization, scalars within loops need to be privatized. Problems are possible if a scalar
is accessed outside the loop. If you know that a scalar is assigned on the last iteration of the loop,
making it safe to parallelize the loop, you use the safe_lastval directive or pragma to let the
compiler know the loop is safe to parallelize.

For example, use the following Fortran directive or C pragma to tell the compiler that for a given
loop the last value computed for all scalars make it safe to parallelize the loop:
!pgi$l safe_lastval
#pragma loop safe_lastval

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 104

The command-line option-Msafe_lastval provides the same information for all loops within
the routines being compiled, essentially providing global scope.

In the following example, the value of t may not be computed on the last iteration of the loop.
do i = 1, N
 if(f(x(i)) > 5.0) then
 t = x(i)
 endif
enddo
v = t

If a scalar assigned within a loop is used outside the loop, we normally save the last value of the
scalar. Essentially the value of the scalar on the "last iteration" is saved, in this case when i=N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult
to determine on what iteration t is last assigned, without resorting to costly critical sections.
Analysis allows the compiler to determine if a scalar is assigned on every iteration, thus the loop
is safe to parallelize if the scalar is used later. An example loop is:
do i = 1, N
 if(x(i) > 0.0) then
 t = 2.0
 else
 t = 3.0
 endif
 ...
 y(i) = t
 ...
enddo
v = t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may
be privatizable. If it is used after the loop, it is unsafe to parallelize. Examine this loop:
do i = 1,N
 if(x(i) > 0.0) then
 t = x(i)
 ...
 y(i) = t
 ...
 endif
enddo
v = t

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may
not be able to detect on which iteration of the parallelized loop t is assigned last.

The compiler detects these cases. When a scalar is used after the loop, but is not defined on every
iteration of the loop, parallelization does not occur.

4.1.16. safeptr (nosafeptr)
The pragma safeptr directs the compiler to treat pointer variables of the indicated storage class as
safe. The pragma nosafeptr directs the compiler to treat pointer variables of the indicated storage
class as unsafe. This pragma alters the effects of the -Msafeptr command-line option.

The syntax of this pragma is:

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 105

!pgi$[] [no]safeptr={arg|local|auto|global|static|all},..
#pragma [scope] [no]safeptr={arg|local|auto|global|static|all},...

where scope is one of global, routine, or loop. and the values local and auto are
equivalent.

‣ all – All pointers are safe

‣ arg – Argument pointers are safe

‣ local – local pointers are safe

‣ global – global pointers are safe

‣ static – static local pointers are safe

In a file containing multiple functions, the command-line option -Msafeptr might be helpful
for one function, but can’t be used because another function in the file would produce incorrect
results. In such a file, the safeptr pragma, used with routine scope could improve performance and
produce correct results.

4.1.17. single (nosingle)
The pragma single directs the compiler not to implicitly convert float values to double non-
prototyped functions. This can result in faster code if the program uses only float parameters.

Since ANSI C specifies that floats must be converted to double, this pragma results in non-ANSI
conforming code. Valid only for routine or global scope.

4.1.18. tp
You use the directive or pragma tp to specify one or more processor targets for which to generate
code.
!pgi$ tp [target]...

The tp directive or pragma can only be applied at the routine or global level. For more information about
these levels, refer to the ‘Scope of C/C++ Pragmas and Command-Line Options’ section of the PGI
Compiler User’s Guide.

4.1.19. unroll (nounroll)
The unroll directive or pragma enables loop unrolling while nounroll disables loop unrolling.

The unroll directive or pragma has no effect on vectorized loops.

The unroll directive or pragma takes arguments c, n and m.

‣ c specifies that c complete unrolling should be turned on or off.

‣ n specifies single block loop unrolling.

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 106

‣ m specifies multi-block loop unrolling.

In addition, a constant may be specified for the c, n and m arguments.

‣ c:v sets the threshold to which c unrolling applies. v is a constant; and a loop whose constant
loop count is less than or equal to (<=) v is completely unrolled.
!pgi$ unroll = c:v

‣ n:v unrolls single block loops v times.
!pgi$ unroll = n:v

‣ m:v unrolls single block loops v times.
!pgi$ unroll = m:v

The directives unroll and nounroll only apply if-Munroll is selected on the command line.

4.1.20. vector (novector)
The directive or pragma novector disables vectorization. The directive or pragma vector re-
enables vectorization after a previous novector directive. The directives vector and novector only
apply if -Mvect has been selected on the command line.

4.1.21. vintr (novintr)
The directive or pragma novintr directs the vectorizer to disable recognition of vector intrinsics.
The directive vintr is re-enables recognition of vector intrinsics after a previous novintr directive.
The directives vintr and novintr only apply if -Mvect has been selected on the command line.

4.2. Prefetch Directives and Pragmas
Prefetch instructions can increase the speed of an application substantially by bringing data into
cache so that it is available when the processor needs it. The PGI prefetch directive takes the
form:

The syntax of a prefetch directive in Fortran is as follows:
!$mem prefetch <var1>[,<var2>[,...]]

where <varn> is any valid variable, member, or array element reference.

The syntax of a prefetch pragma in C/C++ is as follows:
#pragma mem prefetch <var1>[,<var2>[,...]]

where <varn is any valid variable, member, or array element reference.

For examples on how to use the prefetch directive or pragma, refer to the Prefetch Directives and
Pragmas section of the PGI Compiler User’s Guide.

http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 107

4.3. !$PRAGMA C
When programs are compiled using one of the PGI Fortran compilers on Linux systems, an
underscore is appended to Fortran global names, including names of functions, subroutines, and
common blocks. This mechanism distinguishes Fortran name space from C/C++ name space.

4.4. IGNORE_TKR Directive
This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specifics in a generic call for
ambiguities.

4.4.1. IGNORE_TKR Directive Syntax
The syntax for the IGNORE_TKR directive is this:
!DIR$ IGNORE_TKR [[(<letter>) <dummy_arg>] ...]

<letter>
is one or any combination of the following:

T – type K – kind R – rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules are ignored for all dummy arguments in the procedure that contains the
directive.

4.4.2. IGNORE_TKR Directive Format Requirements
The following rules apply to this directive:

‣ IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

‣ IGNORE_TKR may appear in the body of an interface block or in the body of a module
procedure, and may specify dummy argument names only.

‣ IGNORE_TKR may appear before or after the declarations of the dummy arguments it
specifies.

‣ If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

‣ If no dummy argument names are specified, IGNORE_TKR applies to all dummy arguments
except those that are allocatable objects, Fortran 90 pointers, or assumed-shape arrays.

Directives and Pragmas Reference

PGI Compiler Reference Guide for OpenPOWER CPUs 108

4.4.3. Sample Usage of IGNORE_TKR Directive
Consider this subroutine fragment:
subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 15 indicates which rules are ignored for which dummy arguments in the preceding sample
subroutine fragment:

Table 15 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank

B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

PGI Compiler Reference Guide for OpenPOWER CPUs 109

Chapter 5.
RUNTIME ENVIRONMENT

This section describes the programming model supported for compiler code generation, including
register conventions and calling conventions for OpenPOWER processor-based systems.

In this section we sometimes refer to word, halfword, and double word. The equivalent byte information is
word (4 byte), halfword (2 byte), and double word (8 byte).

5.1. Linux Programming Model
This section defines compiler and assembly language conventions for the use of certain aspects of
an OpenPOWER processor running a linux operating system. These standards must be followed
to guarantee that compilers, application programs, and operating systems written by different
people and organizations will work together. The conventions supported by the PGCC ANSI C
compiler implement the application binary interface (ABI) as defined in the OpenPOWER for
Linux Supplement, Power Architecture 64-Bit ELF V2 ABI Specification, listed in the Related
Publications section in the Preface.

5.1.1. Function Calling Sequence
This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The OpenPOWER Architecture
provides a variety of registers. All the general purpose registers, vector scalar registers, and
vector registers are visible to all procedures in a running program.

In the 64-bit OpenPOWER Architecture, there are always 32 general-purpose registers, each 64
bits wide. Throughout this document the symbol rN is used, where N is a register number, to refer
to general-purpose register N.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 110

Table 16 Register Allocation

Type Name Preservation Rules Purpose

r0 Volatile Optional use in function linkage. Used in function prologues.

r1 Nonvolatile Stack frame pointer.

r2 Nonvolatile(1) TOC pointer.

r3–r10 Volatile Parameter and return values.

r11 Volatile Optional use in function linkage. Used as an environment pointer in
languages that require environment pointers.

r12 Volatile Optional use in function linkage. Function entry address at the global
entry point.

General

r13 Reserved Thread pointer.

r14–r31(2) Nonvolatile Local variables.

f0 Volatile Local variables.

f1–f13 Volatile Used for parameter passing and return values of binary float types.

Floating-point

f14–f31 Nonvolatile Local variables.

v0–v1 Volatile Local variables.

v2–v13 Volatile Used for parameter passing and return values.

v14–v19 Volatile Local variables.

Vector

v20–v31 Nonvolatile Local variables.

(1) Register r2 is nonvolatile with respect to calls between functions in the same compilation unit.
It is saved and restored by code inserted by the linker resolving a call to an external function.

(2) If a function needs a frame pointer, assigning r31 to the role of the frame pointer is
recommended.

In OpenPOWER-compliant processors, floating-point and vector functions are implemented
using a unified vector-scalar model. As shown in Figure 3 and Figure 4, there are 64 vector-scalar
registers; each is 128 bits wide.

The vector-scalar registers can be addressed with vector-scalar instructions, for vector and scalar
processing of all 64 registers, or with the “classic” Power floating-point instructions to refer to a
32-register subset of 64 bits per register. They can also be addressed with VMX instructions to
refer to a 32-register subset of 128-bit wide registers.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 111

Figure 3 Floating-point Registers as Part of Vector Scalar Registers

Figure 4 Vector Registers as Part of Vector Scalar Registers

The classic floating-point repertoire consists of 32 floating-point registers, each 64 bits wide, and
an associated special-purpose register to provide floating-point status and control. Throughout
this document, the symbol fN is used, where N is a register number, to refer to floating-point
register N.

For the purpose of function calls, the right half of VSX registers, corresponding to the classic
floating-point registers (that is, vsr0–vsr31), is volatile.

Single-precision and double-precision shall be passed in the floating-point registers. Single-
precision decimal floating-point shall occupy the lower half of a floating-point register. When a
floating-point register is skipped during input parameter allocation, words in the corresponding
GPR or memory doubleword in the parameter list are not skipped.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 112

The OpenPOWER vector-category instruction repertoire provides the ability to reference 32
vector registers, each 128 bits wide, of the vector-scalar register file, and a special-purpose
register VSCR. Throughout this document, the symbol vN is used, where N is a register number,
to refer to vector register N.

Parameters in the long double format with a pair of two double-precision floating-point values
shall be passed in two successive floating-point registers.

If only one value can be passed in a floating-point register, the second parameter will be passed in
a GPR or in memory in accordance with the parameter passing rules for structure aggregates.

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. Figure 5 shows the stack frame organization, in which the white
areas indicate an optional save area of the stack frame. For a description of the optional save areas
described by this ABI, see Optional Save Areas.

Figure 5 Stack Frame Organization

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 113

Key points concerning the stack frame:

‣ The stack shall be quadword aligned.

‣ The minimum stack frame size shall be 32 bytes. A minimum stack frame consists of the
first 4 doublewords (back-chain doubleword, CR save word and reserved word, LR save
doubleword, and TOC pointer doubleword), with padding to meet the 16-byte alignment
requirement.

‣ There is no maximum stack frame size defined.

‣ Padding shall be added to the Local Variable Space of the stack frame to maintain the
defined stack frame alignment.

‣ The stack pointer, r1, shall always point to the lowest address doubleword of the most
recently allocated stack frame.

‣ The stack shall start at high addresses and grow downward toward lower addresses.

‣ The lowest address doubleword (the back-chain word in Figure 5) shall point to the
previously allocated stack frame when a back chain is present. As an exception, the first
stack frame shall have a value of 0 (NULL).

‣ If required, the stack pointer shall be decremented in the called function's prologue and
restored in the called function's epilogue.

‣ The stack pointer shall be updated atomically so that, at all times, it points to a valid back-
chain doubleword if a back chain is maintained.

‣ Before a function calls any other functions, it shall save the value of the LR register into the
LR save doubleword of the caller's stack frame.

Back Chain Doubleword

When a back chain is not present, alternate information compatible with the ABI unwind
framework to unwind a stack must be provided by the compiler, for all languages, regardless of
language features. A compiler that does not provide such system-compatible unwind information
must generate a back chain. All compilers shall generate back chain information by default, and
default libraries shall contain a back chain.

CR Save Word

If a function changes the value in any nonvolatile field of the condition register, it shall first save
at least the value of those nonvolatile fields of the condition register, to restore before function
exit. The caller frame CR Save Word may be used as the save location. This location in the
current frame may be used as temporary storage, which is volatile over function calls.

Reserved Word

This word is reserved for system functions. Modifications of the value contained in this word are
prohibited unless explicitly allowed by future ABI amendments.

LR Save Doubleword

If a function changes the value of the link register, it must first save the old value to restore before
function exit. The caller frame LR Save Doubleword may be used as the save location. This

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 114

location in the current frame may be used as temporary storage, which is volatile over a function
call.

TOC Pointer Doubleword

If a function changes the value of the TOC pointer register, it shall first save it in the TOC pointer
doubleword.

Optional Save Areas

This ABI provides a stack frame with a number of optional save areas. These areas are always
present, but may be of size 0. This section indicates the relative position of these save areas in
relation to each other and the primary elements of the stack frame.

Because the back-chain word of a stack frame must maintain quadword alignment, a reserved
word is introduced above the CR save word to provide a quadword-aligned minimal stack frame
and align the doublewords within the fixed stack frame portion at doubleword boundaries.

An optional alignment padding to a quadword-boundary element might be necessary above the
Vector Register Save Area to provide 16-byte alignment, as shown in Figure 5.

Floating-Point Register Save Area

If a function changes the value in any nonvolatile floating-point register fN, it shall first save the
value in fN in the Floating-Point Register Save Area and restore the register upon function exit.

The Floating-Point Register Save Area is always doubleword aligned. The size of the Floating-
Point Register Save Area depends upon the number of floating-point registers that must be saved.
If no floating-point registers are to be saved, the Floating-Point Register Save Area has a zero
size.

General-Purpose Register Save Area

If a function changes the value in any nonvolatile general-purpose register rN, it shall first save
the value in rN in the General-Purpose Register Save Area and restore the register upon function
exit.

The General-Purpose Register Save Area is always doubleword aligned. The size of the General-
Purpose Register Save Area depends upon the number of general registers that must be saved. If
no general-purpose registers are to be saved, the General-Purpose Register Save Area has a zero
size.

Vector Register Save Area

If a function changes the value in any nonvolatile vector register vN, it shall first save the value in
vN in the Vector Register Save Area and restore the register upon function exit.

The Vector Register Save Area is always quadword aligned. If necessary to ensure suitable
alignment of the vector save area, a padding doubleword may be introduced between the vector
register and General- Purpose Register Save Areas, and/or the Local Variable Space may be
expanded to the next quadword boundary. The size of the Vector Register Save Area depends

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 115

upon the number of vector registers that must be saved. It ranges from 0 bytes to a maximum of
192 bytes (12 × 16). If no vector registers are to be saved, the Vector Register Save Area has a
zero size.

Local Variable Space

The Local Variable Space is used for allocation of local variables. The Local Variable Space is
located immediately above the Parameter Save Area, at a higher address. There is no restriction
on the size of this area.

Sometimes a register spill area is needed. It is typically positioned above the Local Variable Space.

The Local Variable Space also contains any parameters that need to be assigned a memory
address when the function's parameter list does not require a save area to be allocated by the
caller.

Parameter Save Area

The Parameter Save Area shall be allocated by the caller for function calls unless a prototype is
provided for the callee indicating that all parameters can be passed in registers. (This requires
a Parameter Save Area to be created for functions where the number and type of parameters
exceeds the registers available for parameter passing in registers, for those functions where the
prototype contains an ellipsis to indicate a variadic function, and functions are declared without
prototype.)

When the caller allocates the Parameter Save Area, it will always be automatically quadword
aligned because it must always start at SP + 32. It shall be at least 8 doublewords in length. If a
function needs to pass more than 8 doublewords of arguments, the Parameter Save Area shall be
large enough to spill all register-based parameters and to contain the arguments that the caller
stores in it.

The calling function cannot expect that the contents of this save area are valid when returning
from the callee.

The Parameter Save Area, which is located at a fixed offset of 32 bytes from the stack pointer,
is reserved in each stack frame for use as an argument list when an in-memory argument list
is required. For example, a Parameter Save Area must be allocated by the caller when calling
functions with the following characteristics:

‣ Prototyped functions where the parameters cannot be contained in the parameter registers

‣ Prototyped functions with variadic arguments

‣ Functions without a suitable declaration available to the caller to determine the called
function's characteristics (for example, functions in C without a prototype in scope).

Under these circumstances, a minimum of 8 doublewords are always reserved. The size of this
area must be sufficient to hold the longest argument list being passed by the function that owns
the stack frame. Although not all arguments for a particular call are located in storage, when an

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 116

in-memory parameter list is required, consider the parameters to be forming a list in this area.
Each argument occupies one or more doublewords.

More arguments might be passed than can be stored in the parameter registers. In that case, the
remaining arguments are stored in the Parameter Save Area. The values passed on the stack are
identical to the values placed in registers. Therefore, the stack contains register images for the
values that are not placed into registers.

This ABI uses a simple va_list type for variable lists to point to the memory location of the next
parameter. Therefore, regardless of type, variable arguments must always be in the same location
so that they can be found at runtime. The first 8 doublewords are located in general registers
r3–r10. Any additional doublewords are located in the stack Parameter Save Area. Alignment
requirements such as those for vector types may require the va_list pointer to first be aligned
before accessing a value.

Follow these rules for parameter passing:

‣ Map each argument to enough doublewords in the Parameter Save Area to hold its value.

‣ Map single-precision floating-point values to the least-significant word in a single
doubleword.

‣ Map double-precision floating-point values to a single doubleword.

‣ Map simple integer types (char, short, int, long, enum) to a single doubleword. Sign or zero
extend values shorter than a doubleword to a doubleword based on whether the source data
type is signed or unsigned.

‣ When 128-bit integer types are passed by value, map each to two consecutive GPRs, two
consecutive doublewords, or a GPR and a doubleword. The required alignment of int128
data types is 16 bytes. Therefore, by-value parameters must be copied to a new location
in the local variable area of the callee's stack frame before the address of the type can be
provided (for example, using the address-of operator, or when the variable is to be passed by
reference), when the incoming parameter is not aligned at a 16-byte boundary.

‣ Map long double to two consecutive doublewords. The required alignment of long double
data types is 16 bytes. Therefore, by-value parameters must be copied to a new location
in the local variable area of the callee's stack frame before the address of the type can be
provided (for example, using the address-of operator, or when the variable is to be passed by
reference), when the incoming parameter is not aligned at a 16-byte boundary.

‣ Map complex floating-point and complex integer types as if the argument was specified as
separate real and imaginary parts.

‣ Map pointers to a single doubleword.

‣ Map vectors to a single quadword, quadword aligned. This might result in skipped
doublewords in the Parameter Save Area.

‣ Map fixed-size aggregates and unions passed by value to as many doublewords of the
Parameter Save Area as the value uses in memory. Align aggregates and unions as follows:

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 117

‣ Aggregates that contain qualified floating-point or vector arguments are normally
aligned at the alignment of their base type. For more information about qualified
arguments, see Parameter Passing in Registers.

‣ Other aggregates are normally aligned in accordance with the aggregate's defined
alignment.

‣ The alignment will never be larger than the stack frame alignment (16 bytes).

This might result in doublewords being skipped for alignment. When a doubleword in
the Parameter Save Area (or its GPR copy) contains at least a portion of a structure, that
doubleword must contain all other portions mapping to the same doubleword. (That is, a
doubleword can either be completely valid, or completely invalid, but not partially valid and
invalid, except in the last doubleword where invalid padding may be present.)

‣ Pad an aggregate or union smaller than one doubleword in size so that it is in the least-
significant bits of the doubleword. Pad all others, if necessary, at their tail. Variable size
aggregates or unions are passed by reference.

‣ Map other scalar values to the number of doublewords required by their size.

‣ Future data types that have an architecturally defined quadword-required alignment will be
aligned at a quadword boundary.

‣ If the callee has a known prototype, arguments are converted to the type of the corresponding
parameter when loaded to their parameter registers or when being mapped into the Parameter
Save Area. For example, if a long is used as an argument to a float double parameter, the
value is converted to double precision and mapped to a doubleword in the Parameter Save
Area.

Protected Zone

The 288 bytes below the stack pointer are available as volatile program storage that is not
preserved across function calls. Interrupt handlers and any other functions that might run without
an explicit call must take care to preserve a protected zone, also referred to as the red zone, of 512
bytes that consists of:

‣ The 288-byte volatile program storage region that is used to hold saved registers and local
variables

‣ An additional 224 bytes below the volatile program storage region that is set aside as a
volatile system storage region for system functions

If a function does not call other functions and does not need more stack space than is available
in the volatile program storage region (that is, 288 bytes), it does not need to have a stack frame.
The 224-byte volatile system storage region is not available to compilers for allocation to saved
registers and local variables.

Parameter Passing in Registers

For the OpenPOWER Architecture, it is more efficient to pass arguments to functions in registers
rather than through memory. For more information about passing parameters through memory,

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 118

see Parameter Save Area under Optional Save Areas. For the OpenPOWER ABI, the following
parameters can be passed in registers:

‣ Up to eight arguments can be passed in general-purpose registers r3–r10.

‣ Up to thirteen qualified floating-point arguments can be passed in floating-point registers f1–
f13 or up to twelve in vector registers v2–v13.

‣ Up to thirteen single-precision or double-precision decimal floating-point arguments can be
passed in floating-point registers f1–f13.

‣ Up to six quad-precision decimal floating-point arguments can be passed in even-odd
floating-point register pairs f2–f13.

‣ Up to 12 qualified vector arguments can be passed in v2–v13.

A qualified floating-point argument corresponds to:

‣ A scalar floating-point data type

‣ Each member of a complex floating-point type

‣ A member of a homogeneous aggregate of multiple like data types passed in up to eight
floating-point registers

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number of
members of the base floating-point type. (A complex floating-point data type is treated as if
two separate scalar values of the base type were passed.)

Homogeneous floating-point aggregates can have up to four long double members or
eight members of floating-point types. (Unions are treated as their largest member. For
homogeneous unions, different union alternatives may have different sizes, provided that all
union members are homogeneous with respect to each other.) They are passed in floating-
point registers if parameters of that type would be passed in floating-point registers. They are
passed in vector registers if parameters of that type would be passed in vector registers. They
are passed as if each member was specified as a separate parameter.

A qualified vector argument corresponds to:

‣ A vector data type

‣ A member of a homogeneous aggregate of multiple like data types passed in up to eight
vector registers

‣ Any future type requiring 16-byte alignment (see Optional Save Areas) or processed in
vector registers

A homogeneous aggregate can consist of a variety of nested constructs including structures,
unions, and array members, which shall be traversed to determine the types and number
of members of the base vector type. Homogeneous vector aggregates with up to eight
members are passed in up to eight vector registers as if each member was specified as a
separate parameter. (Unions are treated as their largest member. For homogeneous unions,

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 119

different union alternatives may have different sizes, provided that all union members are
homogeneous with respect to each other.)

Floating-point and vector aggregates that contain padding words and integer fields with a width of 0 should
not be treated as homogeneous aggregates.

A homogeneous aggregate is either a homogeneous floating-point aggregate or a homogeneous
vector aggregate. This ABI does not specify homogeneous aggregates for integer types.

Long double numbers in are passed using two successive floating-point registers. A floating-point
register might be skipped to allocate an even/odd register pair when necessary. When a floating-
point register is skipped, no corresponding memory word is skipped in the natural home location;
that is, the corresponding GPR or memory doubleword in the parameter list.

All other aggregates are passed in consecutive GPRs, in GPRs and in memory, or in memory.

When a parameter is passed in a floating-point or vector register, a number of GPRs are skipped,
in allocation order, commensurate to the size of the corresponding in-memory representation of
the passed argument's type.

Each parameter is allocated to at least one doubleword.

Full doubleword rule:

When a doubleword in the Parameter Save Area (or its GPR copy) contains at least a portion of a
structure, that doubleword must contain all other portions mapping to the same doubleword. (That
is, a doubleword can either be completely valid, or completely invalid, but not partially valid and
invalid, except in the last doubleword where invalid padding may be present.)

Long Double

Long double parameters are passed as if they were a struct consisting of separate double
parameters.

Long double parameters shall be considered as a distinct type for the determination of
homogeneous aggregates.

If fewer arguments are needed, the unused registers defined previously will contain undefined
values on entry to the called function.

If there are more arguments than registers or no function prototype is provided, a function must
provide space for all arguments in its stack frame. When this happens, only the minimum storage
needed to contain all arguments (including allocating space for parameters passed in registers)
needs to be allocated in the stack frame.

General-purpose registers r3–r10 correspond to the allocation of parameters to the first 8
doublewords of the Parameter Save Area. Specifically, this requires a suitable number of general-
purpose registers to be skipped to correspond to parameters passed in floating-point and vector
registers.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 120

If a parameter corresponds to an unnamed parameter that corresponds to the ellipsis, a caller
shall promote float values to double. If a parameter corresponds to an unnamed parameter that
corresponds to the ellipsis, the parameter shall be passed in a GPR or in the Parameter Save Area.

If no function prototype is available, the caller shall promote float values to double and pass
floating-point parameters in both available floating-point registers and in the Parameter Save
Area. If no function prototype is available, the caller shall pass vector parameters in both
available vector registers and in the Parameter Save Area. (If the callee expects a float parameter,
the result will be incorrect.)

It is the callee's responsibility to allocate storage for the stored data in the local variable area.
When the callee's parameter list indicates that the caller must allocate the Parameter Save
Area (because at least one parameter must be passed in memory or an ellipsis is present in
the prototype), the callee may use the preallocated Parameter Save Area to save incoming
parameters.

Parameter Passing Register Selection Algorithm

The following algorithm describes where arguments are passed for the C language. In this
algorithm, arguments are assumed to be ordered from left (first argument) to right. The actual
order of evaluation for arguments is unspecified.

‣ gr contains the number of the next available general-purpose register.

‣ fr contains the number of the next available floating-point register.

‣ vr contains the number of the next available vector register.

The following types refer to the type of the argument as declared by the function prototype. The argument
values are converted (if necessary) to the types of the prototype arguments before passing them to the
called function.

If a prototype is not present, or it is a variable argument prototype and the argument is after the
ellipsis, the type refers to the type of the data objects being passed to the called function.

‣ INITIALIZE: If the function return type requires a storage buffer, set gr = 4; else set gr = 3.
Set fr = 1
Set vr = 2

‣ SCAN: If there are no more arguments, terminate. Otherwise, allocate as follows based on
the class of the function argument:
switch(class(argument))

integer:
pointer:

 if gr > 10
 goto mem_argument
 pass (GPR, gr, argument);
 gr++

 break;

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 121

aggregate:
 if (homogeneous(argument,float) and regs_needed(members(argument)) <= 8)
 n_fregs = n_fregs_for_type(member_type(argument,0))
 agg_size = members(argument * n_fregs
 reg_size = min(agg_size, 15-fr)
 pass(FPR,fr,first_n_DW(argument,reg_size)
 fr += reg_size;
 gr += size_in_DW (first_n_DW(argument,reg_size))

 if remaining_members
 argument = after_n_DW(argument,reg_size))
 goto gpr_struct
 break;

 if (homogeneous(argument,vector) and members(argument) <= 8)
 use_vrs:
 agg_size = members(argument)
 reg_size = min(agg_size, 14-vr)
 if (gr&1 = 0) // align vector in memory
 gr++
 pass(VR,vr,first_n_elements(argument,reg_size);
 vr += reg_size
 gr += size_in_DW (first_n_elements(argument,reg_size)

 if remaining_members
 argument = after_n_elements(argument,reg_size))
 goto gpr_struct

 break;

 if gr > 10
 goto mem_argument

 size = size_in_DW(argument)

gpr_struct:
 reg_size = min(size, 11-gr)
 pass (GPR, gr, first_n_DW (argument, reg_size));
 gr += size_in_DW (first_n_DW (argument, reg_size))

 if remaining_members
 argument = after_n_DW(argument,reg_size))
 goto mem_argument

 break;

float:

// float is passed in one FPR.
// double is passed in one FPR.

 if (register_type_used (type (argument)) == vr)
 goto use_vr;
 if fr > 14
 goto mem_argument

 n_fregs = n_fregs_for_type(argument) // Assumes n_fregs_for_type == 2
 // for long double == 1 for float
 // or double
 pass(FPR,fr,argument)
 fr += n_fregs
 gr += size_in_DW(argument)

 break;

vector:
 Use vr:

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 122

 if vr > 13
 goto mem_argument

 if (gr&1 = 0) // align vector in memory
 gr++

 pass(VR,vr,argument)
 vr ++
 gr += 2

 break;

next argument;

mem_argument:
 need_save_area = TRUE
 pass (stack, gr, argument)
 gr += size_in_DW(argument)

next argument;

All complex data types are handled as if two scalar values of the base type were passed as
separate parameters.

If the callee takes the address of any of its parameters, values passed in registers are stored
to memory. It is the callee's responsibility to allocate storage for the stored data in the local
variable area. When the callee's parameter list indicates that the caller must allocate the Parameter
Save Area (because at least one parameter must be passed in memory, or an ellipsis is present
in the prototype), the callee may use the preallocated Parameter Save Area to save incoming
parameters. (If an ellipsis is present, using the preallocated Parameter Save Area ensures that all
arguments are contiguous.) If the compilation unit for the caller contains a function prototype, but
the callee has a mismatching definition, this may result in the wrong values being stored.

If the declaration of a function that is used by the caller does not match the definition for the called
function, corruption of the caller's stack space can occur.

Variable Argument Lists

C programs that are intended to be portable across different compilers and architectures must use
the header file <stdarg.h> to deal with variable argument lists. This header file contains a set of
macro definitions that define how to step through an argument list. The implementation of this
header file may vary across different architectures, but the interface is the same.

C programs that do not use this header file for the variable argument list and assume that all the
arguments are passed on the stack in increasing order on the stack are not portable, especially on
architectures that pass some of the arguments in registers. The OpenPOWER Architecture is one
of the architectures that passes some of the arguments in registers.

The parameter list may be zero length and is only allocated when parameters are spilled, when a
function has unnamed parameters, or when no prototype is provided. When the Parameter Save
Area is allocated, the Parameter Save Area must be large enough to accommodate all parameters,
including parameters passed in registers.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 123

Return Values

Functions that return a value shall place the result in the same registers as if the return value
was the first named input argument to a function unless the return value is a nonhomogeneous
aggregate larger than 2 doublewords or a homogeneous aggregate with more than eight registers.1

(Homogeneous aggregates are arrays, structs, or unions of a homogeneous floating-point or
vector type and of a known fixed size.) Therefore, long double functions are returned in f1:f2.

Homogeneous floating-point or vector aggregate return values that consist of up to eight registers
with up to eight elements will be returned in floating-point or vector registers that correspond to
the parameter registers that would be used if the return value type were the first input parameter
to a function.

Aggregates that are not returned by value are returned in a storage buffer provided by the caller.
The address is provided as a hidden first input argument in general-purpose register r3.

Functions that return values of the following types shall place the result in register r3 as signed or
unsigned integers, as appropriate, and sign extended or zero extended to 64 bits where necessary:

‣ char

‣ enum

‣ short

‣ int

‣ long

‣ pointer to any type

‣ _Bool

5.1.2. Linux OpenPOWER Fortran Supplement
Sections A2.4.1 through A2.4.4 of the ABI for Linux define the Fortran supplement. The register
usage conventions set forth in that document remain the same for Fortran.

Fortran Fundamental Types

Table 17 Linux OpenPOWER Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)

INTEGER 4 4

INTEGER*1 1 1

INTEGER*2 2 2

INTEGER*4 4 4

INTEGER*8 8 8

1 For a definition of homogeneous aggregates, see Parameter Passing in Registers.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 124

Fortran Type Size (bytes) Alignment (bytes)

LOGICAL 4 4

LOGICAL*1 1 1

LOGICAL*2 2 2

LOGICAL*4 4 4

LOGICAL*8 8 8

BYTE 1 1

CHARACTER*n n 1

REAL 4 4

REAL*4 4 4

REAL*8 8 8

DOUBLE PRECISION 8 8

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

A logical constant is one of:

‣ .TRUE.

‣ .FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and
0 respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks)
are converted to lower-case. In addition, an underscore is appended to Fortran global names to
distinguish the Fortran name space from the C/C++ name space.

Argument Passing and Return Conventions

Arguments are passed by reference (i.e., the address of the argument is passed, rather than the
argument itself). In contrast, C/C++ arguments are passed by value.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 125

When passing an argument declared as Fortran type CHARACTER, an argument representing
the length of the CHARACTER argument is also passed to the function. This length argument
is a four-byte integer passed by value, and is passed at the end of the parameter list following
the other formal arguments. A length argument is passed for each CHARACTER argument; the
length arguments are passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area created
by the caller for the return value; the second additional argument is the length of the return
value. If a Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF(), the second extra parameter representing the length of the
return value must still be supplied.

A Fortran complex function returns its value in the same manner as complex functions.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The
alternate return function passes the appropriate return value back to the caller in r1.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters
and return values match types.

‣ If a C/C++ function returns a value, call it from Fortran as a function, otherwise, call it as a
subroutine.

‣ If a Fortran function has type CHARACTER, call it from C/C++ as a void function.

‣ If a Fortran subroutine has alternate returns, call it from C/C++ as a function returning int;
the value of such a subroutine is the value of the integer expression specified in the alternate
RETURN statement.

‣ If a Fortran subroutine does not contain alternate returns, call it from C/C++ as a void
function.

Fortran 2003 also provides a mechanism to support interoperability with C. This mechanism
inclues the ISO_C_BINDING intrinsic module, binding labels, and the BIND attribute.

Table 18 provides the C/C++ data type corresponding to each Fortran data type.

Table 18 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)

CHARACTER*n x char x[n] n

REAL x float x 4

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 126

Fortran Type C/C++ Type Size (bytes)

REAL*4 x float x 4

REAL*8 x double x 8

DOUBLE PRECISION x double x 8

INTEGER x int x 4

INTEGER*1 x signed char x 1

INTEGER*2 x short x 2

INTEGER*4 x int x 4

INTEGER*8 x long x, or long long x 8

LOGICAL x int x 4

LOGICAL*1 x char x 1

LOGICAL*2 x short x 2

LOGICAL*4 x int x 4

LOGICAL*8 x long x, or long long x 8

Table 19 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)

complex x struct {float r,i;} x; 8

float complex x;

complex*8 x struct {float r,i;} x; 8

float complex x; 8

double complex x struct {double dr,di;} x; 16

double complex x; 16

complex *16 x struct {double dr,di;} x; 16

double complex x; 16

For C/C++, the complex type implies C99 or later.

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/
C++ arrays start at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 127

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran
uses column-major order and C/C++ use row-major order. For one-dimensional arrays, this
poses no problems. For two-dimensional arrays, where there are an equal number of rows and
columns, row and column indexes can simply be reversed. Inter-language function mixing is not
recommended for arrays other than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore.

For example, the Fortran common block:
INTEGER I, J
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, j, c, cd, d

is represented in C with the following equivalent:
extern struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

and in C++ with the following equivalent:
extern "C" struct {
 int i;
 int j;
 struct {float real, imag;} c;
 struct {double real, imag;} cd;
 double d;
} com_;

The compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward
as calling other types of Fortran functions. Additional arguments must be passed to the Fortran
function by the C/C++ caller. A Fortran COMPLEX function returns its value in memory; the
first argument passed to the function must contain the address of the storage for this value. A
Fortran CHARACTER function adds two arguments to the beginning of its argument list. The
following example of calling a Fortran CHARACTER function from C/C++ illustrates these
caller-provided extra parameters:
CHARACTER*(*) FUNCTION CHF(C1, I)

Runtime Environment

PGI Compiler Reference Guide for OpenPOWER CPUs 128

CHARACTER*(*) C1
INTEGER I
END

extern void chf_();
char tmp[10];
char c1[9];
int i;
chf_(tmp, 10, c1, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the
length of c1.

PGI Compiler Reference Guide for OpenPOWER CPUs 129

Chapter 6.
C++ DIALECT SUPPORTED

The PGC++ compiler accepts the C++ language of the ISO/IEC 14882:2003 standard, the ISO/
IEC 14882:2011 standard, plus substantially all GNU C++ extensions.

Command-line options provide full support of many C++ variants, including strict standard
conformance. PGC++ provides command line options that enable the user to specify whether
anachronisms and/or cfront 2.1/3.0 compatibility features should be accepted. C++11 and C++14
are also supported via command line options.

6.1. Extensions Accepted in Normal C++ Mode
The following extensions are accepted in all modes, except when strict ANSI violations are
diagnosed as errors, described in the -A option:

‣ A friend declaration for a class may omit the class keyword:
class A {
 friend B; // Should be "friend class B"
};

‣ Constants of scalar type may be defined within classes:
class A {
 const int size = 10;
 int a[size];
};

‣ In the declaration of a class member, a qualified name may be used:
struct A{
 int A::f(); // Should be int f();
}

‣ The preprocessing symbol c_plusplus is defined in addition to the standard __cplusplus.
‣ An assignment operator declared in a derived class with a parameter type matching one of its

base classes is treated as a "default'' assignment operator—that is, such a declaration blocks
the implicit generation of a copy assignment operator. (This is cfront behavior that is known
to be relied upon in at least one widely used library.)

Here's an example:
struct A { } ;
struct B : public A {
 B& operator=(A&);
};

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 130

‣ By default, as well as in cfront-compatibility mode, there will be no implicit declaration
of B::operator=(const B&), whereas in strict-ANSI mode B::operator=(A&) is not a copy
assignment operator and B::operator=(const B&) is implicitly declared.

‣ Implicit type conversion between a pointer to an extern "C" function and a pointer to an
extern "C++" function is permitted. Here’s an example:
extern "C" void f(); // f's type has extern "C" linkage
void (*pf) () // pf points to an extern "C++" function = &f;
 // error unless implicit conv is allowed

6.2. cfront 2.1 Compatibility Mode
The following extensions are accepted in cfront 2.1 compatibility mode in addition to the
extensions listed in the following section. These things were corrected in the 3.0 release of cfront:

‣ The dependent statement of an if, while, do-while, or for is not considered to define a scope.
The dependent statement may not be a declaration. Any objects constructed within the
dependent statement are destroyed at exit from the dependent statement.

‣ Implicit conversion from integral types to enumeration types is allowed.
‣ A non-const member function may be called for a const object. A warning is issued.
‣ A const void * value may be implicitly converted to a void * value, e.g., when passed as an

argument.
‣ When, in determining the level of argument match for overloading, a reference parameter is

initialized from an argument that requires a non-class standard conversion, the conversion
counts as a user-defined conversion. (This is an outright bug, which unfortunately happens to
be exploited in some class libraries.)

‣ When a builtin operator is considered alongside overloaded operators in overload resolution,
the match of an operand of a builtin type against the builtin type required by the builtin
operator is considered a standard conversion in all cases (e.g., even when the type is exactly
right without conversion).

‣ A reference to a non-const type may be initialized from a value that is a const-qualified
version of the same type, but only if the value is the result of selecting a member from a
const class object or a pointer to such an object.

‣ A cast to an array type is allowed; it is treated like a cast to a pointer to the array element
type. A warning is issued.

‣ When an array is selected from a class, the type qualifiers on the class object (if any) are not
preserved in the selected array. (In the normal mode, any type qualifiers on the object are
preserved in the element type of the resultant array.)

‣ An identifier in a function is allowed to have the same name as a parameter of the function.
A warning is issued.

‣ An expression of type void may be supplied on the return statement in a function with a void
return type. A warning is issued.

‣ cfront has a bug that causes a global identifier to be found when a member of a class or one
of its base classes should actually be found. This bug is not emulated in cfront compatibility
mode.

‣ A parameter of type "const void *'' is allowed on operator delete; it is treated as equivalent to
"void *".

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 131

‣ A period (".") may be used for qualification where "::" should be used. Only "::'' may be used
as a global qualifier. Except for the global qualifier, the two kinds of qualifier operators may
not be mixed in a given name (i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C).
A period may not be used in a vacuous destructor reference nor in a qualifier that follows a
template reference such as A<T>::B.

‣ cfront 2.1 does not correctly look up names in friend functions that are inside class
definitions. In this example function f should refer to the functions and variables (e.g., f1 and
a1) from the class declaration. Instead, the global definitions are used.
int a1;
int e1;
void f1();
class A {
 int a1;
 void f1();
 friend void f()
 {
 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
};

‣ Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the
following example.
int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

‣ operator= may be declared as a nonmember function. (This is flagged as an anachronism by
cfront 2.1)

‣ A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For
example:
class A {
 A() const; // No error in cfront 2.1 mode
};

6.3. cfront 2.1/3.0 Compatibility Mode
The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e.,
these are features or problems that exist in both cfront 2.1 and 3.0):

‣ Type qualifiers on this parameter may to be dropped in contexts such as this example:
struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 132

This is actually a safe operation. A pointer to a const function may be put into a pointer to
non-const, because a call using the pointer is permitted to modify the object and the function
pointed to will actually not modify the object. The opposite assignment would not be safe.

‣ Conversion operators specifying conversion to void are allowed.
‣ A nonstandard friend declaration may introduce a new type. A friend declaration that omits

the elaborated type specifier is allowed in default mode, but in cfront mode the declaration is
also allowed to introduce a new type name.
struct A {
 friend B;
};

‣ The third operator of the ? operator is a conditional expression instead of an assignment
expression.

‣ A reference to a pointer type may be initialized from a pointer value without use of a
temporary even when the reference pointer type has additional type qualifiers above those
present in the pointer value. For example,
int *p;
const int *&r = p;
// No temporary use

‣ A reference may be initialized with a null.

6.4. Extensions accepted in GNU compatibility mode (pgc++)
New GNU C++ features are added as needed, with priority given to features used in system
headers. Because the GNU compiler frequently changes behavior between releases, PGC++ is
configured to emulate the specific release currently on the user's system. The most recent versions
of GCC implement some C++14 features that the front end does not yet implement.

A few GCC extensions that are likely not going to be supported in the foreseeable future are
these:

‣ The forward declaration of function parameters (so they can participate in variable-length
array parameters).

‣ GNU-style complex integral types (complex floating-point types are supported)
‣ Nested functions
‣ Local structs with variable-length array fields. Such fields are treated (with a warning) as

zero-length arrays.

6.5. C++11 Language Features Accepted
The following features added in the C++11 standard are enabled in C++11 mode. This mode can
be combined with the option for strict standard conformance. Several of these features are also
enabled in default (nonstrict) C++ mode.

‣ A ‘right shift token’ (>>) can be treated as two closing angle brackets. For example:
template<typename T> struct S {};
S<S<int>> s; // Okay.
// No whitespace needed between closing angle brackets.

‣ The static_;assert construct is supported. For example:

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 133

template<typename T> struct S {
 static_;assert(sizeof(T) > 1, "Type T too small");
};
S<char[2]> s1; // Okay.
S<char> s2; // Instantiation error due to failing static_;assert

‣ The friend class syntax is extended to allow nonclass types as well as class types expressed
through a typedef or without an elaborated type name. For example:
typedef struct S ST;
class C {
 friend S; // Okay (requires S to be in scope).
 friend ST; // Okay (same as "friend S;").
 friend int; // Okay (no effect).
 friend S const; // Error: cv-qualifiers cannot appear directly.
};

‣ Mixed string literal concatenations are accepted, a feature carried over from C99
preprocessor extensions. For example:
wchar_;t *str = "a" L"b"; // Okay, same as L"ab".

‣ Variadic macros and empty macro arguments are accepted, as in C99.
‣ In function bodies, the reserved identifier _;_;func_;_; refers to a predefined array

containing a string representing the function’s name (a feature carried over from C99).
‣ A trailing comma in the definition of an enumeration type is silently accepted (a feature

carried over from C99):
enum E { e, };

‣ The type long long is accepted. Unsuffixed integer literals that cannot be represented by
type long, but could potentially be represented by type unsigned long, have type long
long instead (this matches C99, but not the treatment of the long long extension in C89
or default C++ mode).

‣ An explicit instantiation directive may be prefixed with the extern keyword to suppress the
instantiation of the specified entity.

‣ The keyword typename followed by a qualified-id can appear outside a template
declaration.
struct S { struct N {}; };
typename S::N *p; // Silently accepted in C++11 mode.

‣ The keyword auto can be used as a type specifier in the declaration of a variable or
reference. In such cases, the actual type is deduced from the associated initializer. This
feature can be used for variable declarations, for inclass declarations of static const members,
and for new-expressions.
auto x = 3.0; // Same as "double x = 3.0;"
auto p = new auto(x); // Same as "double *p = new double(x);"
struct S {
 static auto const m = 3; // Same as "static int const m = 3;"
};

By default, auto is no longer accepted as a storage class specifier (but an option is available
to re-enable it).

‣ The keyword decltype is supported: It allows types to be described in terms of
expressions. For example:
template<typename T> struct S {
 decltype(f(T())) *p; // A pointer to the return type of f.
};

‣ The constraints on the code points implied by universal character names (UCNs) are slightly
different: UCNs for surrogate code points (0xD000 through 0xDFFF) are never permitted,

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 134

and UCN corresponding to control characters or to characters in the basic source character
set are permitted in string literals.

‣ Scoped enumeration types (defined with the keyword sequence enum class) and explicit
underlying integer types for enumeration types are supported. For example:
enum class Primary { red, green, blue };
enum class Danger { green, yellow, red }; // No conflict on "red".
enum Code: unsigned char { yes, no, maybe };
void f() {
 Primary p = Primary::red; // Enum-qualifier is required to access
 // scoped enumerator filepaths.
 Code c = Code::maybe; // Enum qualifier is allowed (but not
 required)
} // for unscoped enumeration types.

‣ Lambdas are supported. For example:
template<class F> int z(F f) { return f(0); }
int g() {
 int v = 7;
 return z([v](int x)->int { return x+v; });
}

‣ The C99-style _;Pragma operator is supported.
‣ Rvalue references are supported. For example:

int f(int);
int &&rr = f(3);

‣ Functions can be ‘deleted’. For example:
int f(int) = delete;
short f(short);
int x = f(3); // Error: selected function is deleted.
int y = f((short)3); // Okay.

‣ Special member functions can be explicitly ‘defaulted’ (i.e., given a default definition). For
example:
struct S { S(S const&) = default; };
struct T { T(T const&); };
T::T(T const&) = default;

‣ The operand of sizeof, typeid, or decltype can refer directly to a non-static data
member of a class without using a member access expression. For example:
struct S {
 int i;
};
decltype(S::i) j = sizeof(S;;i);

‣ The keyword nullptr, conventionally known by its standard typedef std::nullptr_;t,
can be used as both a null pointer and a null pointer-to-member filepath. Variables and other
expressions whose type is that of the nullptr keyword can also be used as null pointer(-to-
member) filepaths, although they are only filepath expressions if they wotherwise would be.
For example:
#include <cstddef> // to get std::nullptr_;t
struct S { };
template <int *> struct X { };
std::nullptr_;t null();
void f() {
 void *p = nullptr // Initializes p to null pointer
 int S::* mp = nullptr // Initializes mp to null ptr-to-member
 p = null(); // Sets p to null pointer
 X<nullptr> xnull0; // Instantiates X with null int * value
 x<null()> xnull1 // Error: templeate argument not a
 // filepath expression
}

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 135

‣ Attributes delimited by double square brackets ([[...]]) are accepted in declarations. The
standard attributes noreturn and carries_;dependency are supported. For example:
[[noreturn]] void f();

‣ The context-sensitive keyword final is accepted on class types, to indicate they cannot be
derived from, and on virtual member functions, to indicate they cannot be overridden. The
context-sensitive keyword override can be specified on virtual member functions to assert
that they override a corresponding base class member.

‣ Alias and alias template declarations are supported. For example:
using X = int;
X x; // equivalent to `int x'
template <typename T> using Y = T*
Y<int> yi; // equivalent to `int* yi'

‣ Variadic templates are supported. For example:
template<class ...T> void f(T ...args) {
 int i = sizeof...(args);
}
int main() {
 f(1, 2, 3, 4);
}

‣ U-literals as well as the char16_;t and char32_;t keywords are supported. For example:
char16_;t *str = U'A 16-bit character string';
char32_;t ch = U'\U00012345'; // A 32-bit character string literal

‣ Substitution Failure is Not An Error (SFINAE) for expressions. Many errors in expression
that arise during the substitution of template parameters in function templates are now
treated as deduction failures rather than definite errors. This approach may result in a valid
program if another (overloaded) function template allows the substitution. In the original C+
+ standard (1998, 2003) SFINAE was mostly limited to simple type substitutions.

‣ Access checking of names used as base classes is done in the context of the class being
defined. For example:
class B {protected: class N {} };
class D: B;;N, B {}; // now allowed

‣ Inline namespaces are supported. For example:
namespace N {
 template <class T> struct A {};
 template <class T> void g(T){}
 inline namespace M {
 template <class T> void f(T){}
 template <> void f(A,int>);
 struct B;
 }
}
template <> void N;;f(a<int>){} // specialized as if member of N
struct N:: B {}; // defined as if member of N
int main() {
 N::A<int> na;
 f(na); // argument dependent lookup finds N::M::f
 g(na); // argument dependent lookup finds N::g
 N::B nb;
 f(nb); // argument dependent lookup finds N::M::f
 g(nb); // argument dependent lookup finds N::g
}

‣ Initializer lists are supported. These are brace-enclosed lists used as variable initializes
and call arguments, and in casts, mem-initializers, default arguments, range-based ‘for’
statements, and return statements. For example:
struct A { int a1; double a2; };
struct B { B(int, double); };

C++ Dialect Supported

PGI Compiler Reference Guide for OpenPOWER CPUs 136

A a{1, 2.0}
B b{1, 2.0};
B b2 = B{1, 2.0};

‣ The noexcept specifier and operator are supported. For example:
void f(int) noexcept; // never throws
const int version = 5;
void f(float) noexcept(version >=;5); // does not throw if expr true
int main() {
 int arr[noexcept(f(1.0f))]; // operator is true if expression
 // cannot throw, so true in this case
}

In strict mode, implicit exception specifications are generated for destructors and
deallocation functions declared without an explicit exception specification. This can also be
enabled in nonstrict modes using the command line option --implicit_;noexcept.

‣ Range-based ‘for’ loops are supported. For example:
int f() {
 auto x = {1, 2, 3};
 int sum = 0;
 for (auto i | x) sum += i;
 return sum;
};

6.6. C++14 Language Features Accepted
The following features added in the C++14 standard are enabled in C++14 mode. This mode can
be combined with the option for strict standard conformance. Several of these features are also
enabled in default (nonstrict) C++ mode.

‣ The implicit conversion rules are modified to allow multiple conversion functions in a
class type such as a smart pointer, with the best match for the context chosen by overload
resolution. Previous versions of the standard required a single conversion function in such
classes.

‣ Binary literals such as 0b0110 are accepted.
‣ Function return types can be deduced from the return statements of the function definition,

and the decl-type(auto) specifier is supported. For example:
auto f() { return 5; } // return type is int

‣ Lambdas can specify expressions, not just local variables, to be captured. For example:
auto l = [x = 42]{ return x + 1; };

‣ Class aggregates can have member initializers. For example:
struct S { int i = 3; } s{}; // s.i has value 3

‣ Generic lambdas are accepted, allowing auto parameters to define a call operator template.
For example:
auto l = [](auto p) {return p*2; };

‣ The deprecated standard attribute is accepted.
‣ The apostrophe is accepted in numeric literals as a digit separator. For example:

long l = 123'456'789; // Equivalent to 123456789

Not yet supported are generalized constexpr functions, variable templates, and sized
deallocation.

PGI Compiler Reference Guide for OpenPOWER CPUs 137

Chapter 7.
MESSAGES

This section describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler
always displays any error messages, along with the erroneous source line, on the screen. If you
specify the -Mlist option, the compiler places any error messages in the listing file. You can
also use the -v option to display more information about the compiler, assembler, and linker
invocations and about the host system. For more information on the -Mlist and -v options,
refer to ‘Using Command-line Options’ in the PGI Compiler User’s Guide.

7.1. Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information includes information such as syntax errors. Semantic information includes
information such as unreachable code, incorrect number of arguments specified for a call to a
routine, illegal data type usage, etc.

You can specify that the compiler displays error messages at a certain level with the -Minform
option.

The compiler messages refer to a severity level, a message number, and the line number where
the error occurs.

The compiler can also display internal error messages on standard error. If your compilation
produces any internal errors, contact The Portland Group’s technical reporting service using the
form at www.pgroup.com/support/support_request.php.

If you use the listing file option -Mlist, the compiler places diagnostic messages after the
source lines in the listing file, in the following format:
 PGFTN-etype-enum-message (filename: line)

Where:

etype
is a character signifying the severity level

enum
is the error number

https://www.pgroup.com/support/support_request.php

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 138

message
is the error message

filename
is the source filename

line
is the line number where the compiler detected an error.

7.2. Phase Invocation Messages
You can display compiler, assembler, and linker phase invocations by using the -v command
line option. For further information about this option, refer to the ‘Using Command-line Options’
section of the PGI Compiler User’s Guide.

7.3. Fortran Compiler Error Messages
This section presents the error messages generated by the PGFORTRAN compiler. The compilers
display error messages in the program listing and on standard output. They can also display
internal error messages on standard error.

7.3.1. Message Format
Each message is numbered. Each message also lists the line and column number where the error
occurs. A dollar sign ($) in a message represents information that is specific to each occurrence of
the message.

7.3.2. Message List
Error message severities:

I
informative

W
warning

S
severe error

F
fatal error

V
variable

V000 Internal compiler error. $ $

This message indicates an error in the compiler, rather than a user error – although it may be
possible for a user error to cause an internal error. The severity may vary; if it is informative
or warning, correct object code was probably generated, but it is not safe to rely on this.
Regardless of the severity or cause, internal errors should be reported to PGI using the form at
www.pgroup.com/support/support_request.php.
F001 Source input file name not specified

http://www.pgroup.com/resources/docs.htm
https://www.pgroup.com/support/support_request.php

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 139

On the command line, source file name should be specified either before all the switches, or after
them.
F002 Unable to open source input file: $

Source file name is misspelled, file is not in current working directory, or file is read protected.
F003 Unable to open listing file

This message typically occurs when the user does not have write permission for the current
working directory.
F004 $ $

Generic message for file errors.
F005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" in which to create temporary files. If neither of
these directories is available on the node on which the compiler is being used, this error will
occur.
S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler
directives.
F007 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other non-
recoverable problem related to the size of the subprogram. If this error occurs at opt level
2, reducing the opt level to 1 may work around the problem. Moving the subprogram being
compiled to its own source file may eliminate the problem. If this error occurs while compiling a
subprogram of fewer than 2000, report the problem using the form at www.pgroup.com/support/
support_request.php.
F008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on
the command line.
F009 Unable to open assembly file

This message typically occurs when the user does not have write permission for the current
working directory.
F010 File write error occurred $

The file system may be full.
S011 Unrecognized command line switch: $

Refer to the PGI Compiler User’s Guide for a list of allowed compiler switches.
S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".
S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.
W015 Hexadecimal or octal constant truncated to fit data type

I016 Identifier, $, truncated to 63 chars

https://www.pgroup.com/support/support_request.php
https://www.pgroup.com/support/support_request.php

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 140

An identifier may be at most 63 characters in length; characters after the 63rd are ignored.
S017 Unable to open include file: $

File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file
name should be enclosed in quotes.
S018 Illegal label $ $

Used for label ‘field’ errors or illegal values. E.g., in fixed source form, the label field (first five
characters) of the indicated line contains a non-numeric character.
S019 Illegally placed continuation line

A continuation line does not follow an initial line, or more than 99 continuation lines were
specified.
S020 Unrecognized compiler directive

Refer to Directives and Pragmas Reference for list of allowed compiler directives.
S021 Label field of continuation line is not blank

The first five characters of a continuation line must be blank.
S022 Unexpected end of file - missing END statement

The source file is missing and END statement, or the file is truncated.
S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.
W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough to
contain all of the characters in the constant. This type conversion occurs when the constant is
used in an arithmetic expression or is assigned to a non-character variable. The character or
hollerith constant is truncated on the right, that is, if 4 characters are needed then the first 4 are
used and the remaining characters are discarded.
W025 Illegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran character
(characters inside of character or Hollerith constants cannot cause this error). As a general rule,
all non-printing characters are treated as white space characters (blanks and tabs); no error
message is generated when this occurs. If for some reason, a non-printing character is not treated
as a white space character, its hex representation is printed in the form dd where each d is a hex
digit.
S026 Unmatched quote

A character constant is missing a closing quote or the source file is truncated.
S027 Illegal integer constant: $

Integer constant is too large for 32 bit word.
S028 Illegal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0..9 and
letters A..F or a..f; any other character in a hexadecimal constant is illegal. An octal constant
consists of digits 0..7; any other digit or character in an octal constant is illegal. A binary constant
consists of digits 0 or 1; any other digit or character in a binary constant is illegal.
S030 Explicit shape must be specified for $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 141

A shape for an array expression is effected in this context.
S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is a
member of the set of allowed values for this particular data type.
W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g.
DIMENSION A(10)*4).
S033 Illegal use of constant $

A constant was used in an illegal context, such as on the left side of an assignment statement or as
the target of a data initialization statement.
S034 Syntax error at or near $

Illegal command specified.
I035 Predefined intrinsic $ loses intrinsic property

An intrinsic name was used in a manner inconsistent with the language definition for that
intrinsic. The compiler, based on the context, will treat the name as a variable or an external
function.
S036 Illegal implicit character range

First character must alphabetically precede second.
S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.
S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in a type statement; this is required when the IMPLICIT
NONE statement occurs in the subprogram.
W039 Symbol, $, appears illegally in a SAVE statement $

An identifier appearing in a SAVE statement must be a local variable or array.
S040 Illegal common variable $

Indicated identifier is a dummy variable, is already in a common block, or has previously been
defined to be something other than a variable or array.
W041 Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified
on a PROGRAM statement. It can also occur if a dummy argument name occurs in a DATA,
COMMON, SAVE, or EQUIVALENCE statement. A program statement must have an empty
argument list.
S042 $ is a duplicate dummy argument

Each dummy argument must have a unique name.
S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of
the same symbol. This can happen for a number of reasons. The message attempts to indicate the
situation that occurred.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 142

intrinsic – An attempt was made to redefine an intrinsic function. A symbol that represents
an intrinsic function may be redefined if that symbol has not been previously verified to be
an intrinsic function. For example, the intrinsic sin can be defined to be an integer array. If a
symbol is verified to be an intrinsic function via the INTRINSIC statement or via an intrinsic
function reference then it must be referred to as an intrinsic function for the remainder of the
program unit.

symbol – An attempt was made to redefine a symbol that was previously defined. An example
of this is to declare a symbol to be a PARAMETER which was previously declared to be a
subprogram argument.
S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol as an ENTRY when that symbol was previously declared as an ENTRY.
S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsistent with the data type of the
current function. For example, the function returns type character and an entry point returns type
complex.
S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the
other data types. Suppose, we want to declare arrays ARRAYA and ARRAYB to have 8 elements
each having an element length of 4 bytes. The difference is that ARRAYA is character and
ARRAYB is integer. The declarations would be CHARACTER ARRAYA(8)*4 and INTEGER
ARRAYB*4(8).
S047 More than seven dimensions specified for array

The compiler currently supports up to seven dimensions for arrays.
S048 Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.
S049 Illegal use of '*' in non-subroutine subprogram

The alternate return specifier ‘*’ is legal only in the subroutine statement. Programs, functions,
and block data are not allowed to have alternate return specifiers.
S050 Assumed size array, $, is not a dummy argument

Arrays with ‘*’ in their dimension(s) may only be declared as dummy arguments.
S051 Unrecognized built-in % function

The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was encountered
that did not match one of these allowed forms.
S052 Illegal argument to %VAL or %LOC

S053 %REF or %VAL not legal in this context

The built-in functions %REF and %VAL can only be used as actual parameters in procedure
calls.
W054 Implicit character $ used in a previous implicit statement

An implicit character has been given an implied data type more than once. The implied data type
for the implicit character is changed anyway.
W055 Multiple implicit none statements

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 143

The IMPLICIT NONE statement can occur only once in a subprogram.
W056 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will
produce a warning message for IMPLICIT statements.
S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.
S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.
S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.
S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.
S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not
optimal for variables of its data type. This can occur when INTEGER and CHARACTER data are
equivalenced, for instance.
I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

The indicated variable is referenced where it is not an active implied DO index variable.
S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant is in the range 0 through 255.
S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.
S070 Incorrect sequence of statements $

The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.
S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector
reference. The assignment operation may be by way of an assignment statement, a data statement,
or the index variable of an implied DO-loop. The compiler has determined that the identifier used
as the destination is not a storage location. The error message attempts to indicate the type of
entity used.

entry point – An assignment to an entry point that was not a function procedure was attempted.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 144

external procedure – An assignment to an external procedure or a Fortran intrinsic name
was attempted. If the identifier is the name of an entry point that is not a function, an external
procedure.
S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of a fixed data type.
S075 Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also applies to substring
and function references.
S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$

S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.
S083 Vector expression used where scalar expression required

A vector expression was used in an illegal context. For example, iscalar = iarray, where a
scalar is assigned the value of an array. Also, character and record references are not vectorizable.
S084 Illegal use of symbol $ $

This message is used for many different errors.
S085 Incorrect number of arguments to statement function $

S086 Dummy argument to statement function must be a variable

S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.
S089 Illegal use of symbol, $, with character length = *

Symbols of type CHARACTER*(*) must be dummy variables and must not be used as statement
function dummy parameters and statement function names. Also, a dummy variable of type
CHARACTER*(*) cannot be used as a function.
S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.
S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within I/O statements,
must not consist of a concatenation involving a passed length character variable.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 145

W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other
data type. The compiler generates code to convert the expression into the required type.
S094 Variable $ is of wrong data type $

The indicated variable is used in a context which requires a variable of some other data type.
S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other
data type.
S096 Illegal complex comparison

The relations .LT., .GT., .GE., and .LE. are not allowed for complex values.
S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.
S098 Divide by zero

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted
I/O statements, and as parameters to subprograms. They may not appear, for example, in
expressions. Also, records with differing structure types may not be assigned to one another.
S100 Expression cannot be promoted to a vector

An expression was used that required a scalar quantity to be promoted to a vector illegally. For
example, the assignment of a character constant string to a character array. Records, too, cannot
be promoted to vectors.
S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.
S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double
precision scalar expression.
S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it is not, it is converted.
S104 Illegal control structure $

This message is issued for a number of errors involving IF-THEN statements, DO loops, and
directives. You may see one of the following messages:
PGF90-S-0104-Illegal control structure - unterminated PARALLEL directive

PGF90-S-0104-Illegal control structure - unterminated block IF

If the line number specified is the last line (END statement) of the subprogram, the error
is probably an unterminated DO loop or IF-THEN statement. If the message contains
unterminated PARALLEL directive, it is likely you are missing the required !$omp end
parallel directive.
S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement.
S106 DO index variable must be a scalar variable

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 146

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.
S107 Illegal assigned goto variable $

S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars.
I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits
produces an overflow. The constant is truncated at left (e.g. ‘1234567890abcdef1’x will be
‘234567890abcdef1’x).
I110 <reserved message number>

I111 Underflow of real or double precision constant

I112 Overflow of real or double precision constant

S113 Label $ is referenced but never defined

S114 Cannot initialize $

W115 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.
S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.
I120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, a logical expression can consist of only logical elements of type integer
or logical. Real data would be invalid.
I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER
statement has been truncated to fit the declared size of the corresponding identifier.
W123 Hollerith length specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were present in
the character field of the hollerith constant. The length specifier was reduced to agree with the
number of characters present.
S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.
I125 Dummy procedure $ not declared EXTERNAL

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 147

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram
name in a CALL statement, or is called as a function, and is therefore assumed to be a dummy
procedure. This message can result from a failure to declare a dummy array.
I126 Name $ is not an intrinsic function

I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

An integer constant will be truncated when assigned to data types smaller than 32-bits, such as a
BYTE.
I129 Floating point overflow. Check constants and constant expressions

I130 Floating point underflow. Check constants and constant expressions

I131 Integer overflow. Check floating point expressions cast to integer

I132 Floating pt. invalid oprnd. Check constants and constant expressions

I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.
W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.
W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.
W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.
S140 Variable $ is not a RECORD

S141 RECORD required on left of $

S142 $ is not a member of this RECORD

S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

This is used as a temporary message for compiler development.
W145 %FILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It is only
valid when used within a STRUCTURE multiline statement even though it is ignored.
S146 Expression must be character type

S147 Character expression not allowed in this context

S148 Reference to $ required

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 148

An aggregate reference to a record was expected during statement compilation but another data
type was found instead.
S149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.
S150 Structure, Record, derived type, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported.
S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP -
ENDMAP declaration contains no members.
S152 All dimension specifiers must be ':'

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ $

S156 Number of colons and triplets must be equal in ALIGN $ with $

S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE
or ENTRY statements.
S159 Alternate return illegal in FUNCTION subprogram

An alternate return cannot be used in a FUNCTION.
S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array

W162 Not equal test of loop control variable $ replaced with < or > test.

S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element already initialized.
S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only
when an assembly file is the output of the compiler.
S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable
only when an assembly file is the output of the compiler.
I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its size is not identical.
The maximum size is chosen. The message is applicable only when an assembly file is the output
of the compiler.
S168 Incompatible size of common block $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 149

A common block occurs in more than one subprogram of a source file and is initialized in one
subprogram. Its initialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.
W169 Multiple data initializations of common block $

A common block is initialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly file is the output of the
compiler.
W170 PGI Fortran extension: $ $

Use of a nonstandard feature. A description of the feature is provided.
W171 PGI Fortran extension: nonstandard statement type $

W172 PGI Fortran extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.
W173 PGI Fortran extension: nonstandard use of data type length specifier

W174 PGI Fortran extension: type declaration contains data initialization

W175 PGI Fortran extension: IMPLICIT range contains nonalpha characters

W176 PGI Fortran extension: nonstandard operator $

W177 PGI Fortran extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 PGI Fortran extension: use of structure field reference $

W180 PGI Fortran extension: nonstandard form of constant

W181 PGI Fortran extension: & alternate return

W182 PGI Fortran extension: mixed non-character and character elements in COMMON
 $

W183 PGI Fortran extension: mixed non-character and character EQUIVALENCE ($,$)

W184 Mixed type elements (numeric and/or character types) in COMMON $

W185 Mixed numeric and/or character type EQUIVALENCE ($,$)

S186 Argument missing for formal argument $

S187 Too many arguments specified for $

S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual argument to array
 dummy argument

S190 Argument number $ to $: non-conformable arrays

S191 Argument number $ to $ cannot be an assumed-size array

S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT(IN) argument cannot be defined - $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 150

S195 Statement may not appear in an INTERFACE block $

S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement

An illegal qualifier was found or a value was specified for a qualifier which does not expect a
value. In either case, the qualifier for which the error occurred is indicated in the error message.
S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.
S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $

S202 Repeated I/O specifier - $

S203 FORMAT statement has no label

S204 $ $

Miscellaneous I/O error.
S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.
S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors

S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/O cannot be performed with internal, unformatted, formatted, and list-directed I/O.
Also, I/O lists must not be present.
S213 $ is not a NAMELIST group name

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/O item or specifier

An assumed size array was used as an item to be read or written or as an I/O specifier (i.e., FMT
= array-name). In these contexts the size of the array must be known.
S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or array element

S218 Statement labeled $ $

S219 <reserved message number>

S220 Redefining predefined macro $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 151

S221 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this
context.
S222 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this
context.
S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).
S224 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).
W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parameters in the macro’s definition.
F226 Can't find include file $

The indicated include file could not be opened.
S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed
(currently 2048).
S228 EOF in comment

The end of a file was encountered while processing a comment.
S229 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S230 EOF in string

The end of a file was encountered while processing a quoted string.
S231 Formal parameters too long for $

The total length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).
S232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W235 Illegal macro name

A macro name was not an identifier.
S236 Illegal number $

The indicated number contained a syntax error.
F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).
W238 Missing #endif

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 152

End of file was encountered before a required #endif directive was found.
W239 Missing argument list for $

A call of the indicated macro had no argument list.
S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W241 Redefinition of symbol $

The indicated macro name was redefined.
I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.
F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
W245 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro’s definition.
S246 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S247 Syntax error in #include

The #include directive was not correctly formed.
W248 Syntax error in #line

A #line directive was not correctly formed.
W249 Syntax error in #module

A #module directive was not correctly formed.
W250 Syntax error in #undef

A #undef directive was not correctly formed.
W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).
F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be
recursive.
W256 Undefined directive $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 153

The identifier following a # was not a directive name.
F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and 0 values are illegal for a position in a file.
S257 EOF in #include directive

End of file was encountered while processing a #include directive.
S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).
S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.
I264 Possible nested comment

The characters /* were found within a comment.
S265 <reserved message number>

S266 <reserved message number>

S267 <reserved message number>

W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be severe if the compilation has gone too far to undo the inlining process.
F270 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram

I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 154

The optimizer has detected the possibility that a variable is used before it has been assigned a
value. The names of the variable and the function in which the use occurred are listed. The line
number, if specified, is the line number of the basic block containing the use of the variable.
W280 Syntax error in directive $

Messages 280-300 reserved for directives handling
W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $

S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$

S305 $ cannot be named, $

S306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or arithmetic
 IF

S309 Incorrect name, $, specified in END statement

S310 $ $

Generic message for MODULE errors.
W311 Non-replicated mapping for $ array, $, ignored

W312 Array $ should be declared SEQUENCE

W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is not an asterisk

The call passes a label to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the alternate return.
I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.
I316 IPA: routine $, $ INTENT(IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.
I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.
I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.
I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.
I320 IPA: routine $, $ common blocks optimized

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 155

This many mapped common blocks were optimized by interprocedural analysis.
I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either
because they were declared differently in different routines, or they did not appear in the main
program.
I322 IPA: analyzing main program $

Interprocedural analysis is building the call graph and propagating information with the named
main program.
I323 IPA: collecting information for $

Interprocedural analysis is saving information for the current subprogram for subsequent analysis
and propagation.
W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to $

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

I330 IPA: $ dummy arguments changed to INTENT(IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments verified

I335 IPA: $ descriptive/prescriptive distribution formats verified

I336 IPA: $ descriptive/prescriptive distribution targets verified

I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information

S342 Unable to open file $ while analyzing IPA information

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to a table overflowing its maximum size.
W346 Subprogram $ appears twice

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 156

The subprogram appears twice in the same source file; IPA will ignore the first appearance.
F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, or -ipapropagate
options, requires the -ipalib option to specify the library directory.
W348 Common /$/ $ has different distribution target

The array was declared in a common block with a different distribution target in another
subprogram.
W349 Common /$/ $ has different distribution format

The array was declared in a common block with a different distribution format in another
subprogram.
W350 Common /$/ $ has different alignment

The array was declared in a common block with a different alignment in another subprogram.
W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.
W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.
W353 Subprogram $ is missing

A call to a subroutine or function with this name appears, but it could not be found or analyzed.
I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.
W355 Missing argument in call to $

A nonoptional argument is missing in a call to the given subprogram.
I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incomplete; some information may not be
available for optimization.
I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be
available for optimization.
W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to a dummy argument that is declared EXTERNAL.
W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a function.
W360 FUNCTION $ passed to FUNCTION dummy argument $ with different result type

The call statement passes a function argument to a function dummy argument, but the dummy has
a different result type.
W361 FUNCTION $ passed to SUBROUTINE dummy argument $

The call statement passes a function name to a dummy argument that is used as a subroutine.
W362 Argument $ has a different type than dummy argument $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 157

The type of the actual argument is different than the type of the corresponding dummy argument.
W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.
W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is a scalar variable.
W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.
F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to the compiler
maintenance group. If user errors were reported when collecting IPA information or during IPA
analysis, correcting them may avoid this error.
I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array
to sequential storage. The most common cause is passing an ALLOCATABLE array or array
expression to a dummy argument that is declared with explicit bounds. Declaring the dummy
argument as assumed shape, with bounds (:,:,:), will remove this warning.
W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar variable.
W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than the dummy
argument.
W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.
W371 Dummy argument $ is INTENT(IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the argument
may be modified; the INTENT(IN) declaration should be changed.
W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a dummy
argument with non- inherited alignment.
I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution format to a
dummy argument with prescriptive or descriptive distribution format.
I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution target to a
dummy argument with prescriptive or descriptive distribution target.
I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different dimensions.
I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its template than
does the dummy argument.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 158

I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its template
than does the dummy argument.
I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target sizes.
I379 Alignment of $ is too complex

The alignment specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.
I380 Distribution format of $ is too complex

The distribution format specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.
I381 Distribution target of $ is too complex

The distribution target specification of the array is too complex for interprocedural analysis to
verify or propagate; the program will work correctly, but without the benefit of IPA.
I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole
program.
I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be
replaced by constants.
I384 IPA: $ dummy arguments changed to INTENT(IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).
W385 IPA: $ INTENT(IN) dummy arguments should be INTENT(INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were
declared as INTENT(IN) but should be INTENT(INOUT).
I386 IPA: $ array alignments propagated

Interprocedural analysis has found this many array dummy arguments that could have the
inherited array alignment replaced by a descriptive alignment.
I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many
array dummy arguments match the alignments of the actual argument.
I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution format replaced by a descriptive format.
I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of
this many array dummy arguments match the formats of the actual argument.
I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution target replaced by a descriptive target.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 159

I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this
many array dummy arguments match the targets of the actual argument.
I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be optimized, either
because the common block was not declared in the main program, or because it was declared
differently in different subprograms.
I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.
I395 IPA: $ changed to INTENT(IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.
I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural analysis.
I397 IPA: distribution format propagated to $

The distribution format for the dummy argument was changed as per interprocedural analysis.
I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural analysis.
I399 IPA: common block $ not optimized

The given common block was not optimized by interprocedural analysis either because it was not
declared in the main program, or because it was declared differently in different subprograms.
E400 IPA: dummy argument $ is an asterisk, but actual argument is not a label

The subprogram expects an alternate return label for this argument.
E401 Actual argument $ is a subprogram, but Dummy argument $ is not declared
 EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar
variable or array.
E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are
declared with the HPF SEQUENCE attribute.
E404 Sequential array section of $ in argument $ is not contiguous

When passing an array section to a formal argument that has the HPF SEQUENCE attribute, the
actual argument must be a whole array with the HPF SEQUENCE attribute, or an array section of
such an array where the section is a contiguous sequence of elements.
E405 Array expression argument $ may not be passed to sequential dummy argument
 $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a
whole array with the HPF SEQUENCE attribute or a contiguous array section of such an array,
unless an INTERFACE block is used.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 160

E406 Actual argument $ and formal argument $ have different character lengths

The actual and formal array character arguments have different character lengths, which is
allowed only if both character arrays are declared with the HPF SEQUENCE attribute, unless an
INTERFACE block is used.
W407 Argument $ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.
W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data
subprogram.
W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the IPA directory shown. The first one found is
used.
W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysis to proceed.
W411 Formal argument $ is DYNAMIC but actual argument is an expression

W412 Formal argument $ is DYNAMIC but actual argument $ is not

I413 Formal argument $ has two reaching distributions and may be a candidate for
 cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased because the
same variable is passed in both argument positions; or one formal argument and a global or
COMMON variable may be aliased, because the global or COMMON variable is passed as an
actual argument. If either alias is assigned in the subroutine, unexpected results may occur; this
message alerts the user that this situation is disallowed by the Fortran standard.
F415 IPA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA directory.
One of these files has been renamed or corrupted. This can arise when there are two files with the
same prefix, such as a.hpf and a.f90.
E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must
have the SEQUENCE attribute or an INTERFACE block must be used.
E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION

E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE

E419 Interface block for $ is a FUNCTION has wrong result type

W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 161

E424 Equivalence using substring or vector triplets is not allowed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete

W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ‘real a(-1)’, or an upper
bound less than the lower bound, as ‘real a(4:2)’.
W436 Independent loop not parallelized$

W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.
E438 $ $ not supported on this platform

This construct is not supported by the compiler for this target.
S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE statement or WHERE
 block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type
must have the SEQUENCE attribute, but does not.
E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.
S446 Argument number $ to $: rank mismatch

The number of dimensions in the array or array expression does not match the number of
dimensions in the dummy argument.
S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 162

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported

S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - $ $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association
can appear in a MODULE PROCEDURE statement.
S455 A derived type array section cannot appear with a member array section - $

A reference like A(:)%B(:), where ‘A’ is a derived type array and ‘B’ is a member array, is not
allowed; a section subscript may appear after ‘A’ or after ‘B’, but not both.
S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL() must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot have the POINTER
 attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

S465 Functions returning a POINTER require an explicit interface

S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE attribute

W468 Argument to ISO_C_BINDING intrinsic must have TARGET attribute set

W469 Character argument to C_LOC intrinsic must have length of one

W470 Accelerator feature license not found; accelerator features disabled

W471 CUDA Fortran feature license not found; CUDA Fortran features disabled

E472 A Scalar element of a nonsequential array cannot be passed to a dummy array
 argument - $

A subroutine or function call may not pass an element of an array, like 'A(N)', to a dummy array
argument if the array 'A' is not sequential. If the array is sequential, then Fortran sequence and
storage association rules will treat the dummy argument as a new array equivalenced to the actual
argument starting at the element passed. If the array is not sequential, then Fortran sequence and
storage association rules do not apply.
W473 $ must have the PURE attribute

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 163

F474 This type EXTRINSIC is not yet implemented - $

Contact PGI to ask when this EXTRINSIC type will be implemented.
E475 A dummy argument may not be distributed in a PURE interface - $

A dummy argument to a routine defined with a PURE interface may not have the DISTRIBUTE
attribute.
E476 A dummy argument may only be aligned with another dummy in a PURE interface
 - $

E477 The device array section actual argument was not stride-1 in the leading
 dimension - $

A device (device, shared, or constant attribute) array passed as an array section to an assumed-
shape dummy argument must be stride-1 in the leading dimension.
E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to a dummy argument with the Accelerator
REFLECTED attribute must be a symbol that has a visible device copy. Expressions are not
allowed.
E479 The dummy argument $ is REFLECTED; the actual argument $ must have a
 visible device copy

If a dummy argument has the Accelerator REFLECTED attribute, the actual argument must be
a symbol with a visible device copy. This may be because the symbol appeared in a MIRROR,
REFLECTED, COPYIN, COPYOUT, COPY or LOCAL declarative Accelerator directive, or
because it appeared in a COPYIN, COPYOUT, COPY or LOCAL clause for an Accelerator
DATA REGION or REGION surrounding the procedure call.
E480 Argument $ is passed to dummy argument $, which is REFLECTED; the actual
 argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the actual
argument must be copied to a temporary array. This may occur if the dummy argument is not
assumed-shape, and so must be contiguous in memory, or if the actual argument is not stride-1 in
the leftmost (first) dimension. In these cases, the REFLECTED argument is not supported.
F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a dummy
argument to the subprogram.
482 COMMON /$/ is declared differently in two subprograms - $

The COMMON block name was declared with different distribution or alignment for one or more
members in two different subprograms.
E483 Storage association due to EQUIVALENCE($,$) causes HPF alignments and
 distributions to be ignored

An EQUIVALENCE statement causes Fortran storage association between entries in this
COMMON block. The storage association overrides the HPF alignments and distributions for the
COMMON block members.
E484 Datatype conflict in EQUIVALENCE between two distributed or aligned COMMON
 block members: $ and $

Two distributed COMMON block members that appear in a COMMON block must have the
same datatype.
E485 Datatype conflict in EQUIVALENCE between a distributed or aligned COMMON
 block member and another: $ and $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 164

A distributed COMMON block member may not be EQUIVALENCEd with another COMMON
member.
E486 The dummy argument $ is REFLECTED; an array element cannot be passed to a
 REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy
argument.
E487 Index variable $ does not appear in a subscript on the left hand side of
 the FORALL assignment

In a FORALL statement, each index variable in the FORALL must appear in some subscript of
the left hand side of the FORALL assignment. Otherwise, the FORALL will assign the same left
hand side elements for different values of that index.
I489 An ALLOCATE of a POINTER with transcriptive or inherited distribution
 causes replication - $

When an array with the POINTER attribute and with a distribution that is transcriptive or
inherited is allocated, the alignment and distribution are ignored and the array pointer is treated as
replicated, since there is no symbol from which to inherit a distribution.
E488 The function call in the FORALL does not have the PURE attribute - $

In a FORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise, they
cannot be called in parallel.
E490 An array section of $ is passed to the REFLECTED argument $, which is not
 supported

When an actual argument is an array section, the dummy argument must not have the
REFLECTED attribute.
W491 EXTRINSIC($) subprograms require an explicit interface - $

An EXTRINSIC subprogram with the LOCAL or SERIAL attributes require an explicit interface,
either through an INTERFACE block, or by being in the same MODULE as the caller, or being
in a MODULE that is referenced with a USE statement.
E492 DYNAMIC distribution is only supported in HPF_GLOBAL subprograms - $

Variables with DYNAMIC distribution are not supported in EXTRINSIC(F77_LOCAL),
EXTRINSIC(F77_SERIAL), EXTRINSIC(F90_LOCAL), EXTRINSIC(F90_SERIAL),
EXTRINSIC(HPF_LOCAL) or EXTRINSIC(HPF_SERIAL) subprograms.
E493 $ arrays may not be aligned with ALLOCATABLE arrays - $

Static local arrays, common arrays, and dummy argument arrays may not be aligned with arrays
that have the ALLOCATABLE attribute, since the allocatable alignee may not be allocated.
E494 COMMON arrays may not be aligned with dummy argument arrays - $

An array in a COMMON block may not specify an alignment with a dummy argument array.
W495 The SHADOW directive for CYCLIC distributed dimensions is ignored - $

A shadow boundary specified for array dimensions that are distributed with the CYCLIC
distribution is ignored.
I496 A $ of an unused template is eliminated

The HPF executable REDISTRIBUTE or REALIGN directive appeared specifying an HPF
TEMPLATE that is not used; the REDISTRIBUTE or REALIGN is eliminated.
E497 EXTRINSIC(F77_LOCAL) does not support distributed symbols of this datatype
 - $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 165

This HPF implementation does not support distributed symbols of character or derived type in
EXTRINSIC(F77_LOCAL) subprograms.
E498 Alignment cycle involving two or more arguments - $

This dummy argument appears in an HPF ALIGN directive specifying alignment to another
dummy argument that is then aligned to this argument, or aligned to another dummy argument
that is eventually aligned to this argument.
W499 The descriptive distribution or alignment for this dummy argument is
 treated as prescriptive - $

Even though the distribution or alignment for this dummy argument was specified as descriptive,
it is treated as prescriptive.
E500 MODULE $ uses (directly or indirectly) MODULE $, which causes a USE cycle

If MODULE A has a USE statement for MODULE B, we say that MODULE A directly uses
MODULE B. If MODULE B has a USE statement for MODULE C, we say that MODULE A
indirectly uses MODULE C. If MODULE C then has a USE statement for MODULE A, then
MODULE A indirectly uses itself, which is a USE cycle, and is not allowed.
E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be between 1
and the rank of the array or expression being transformed.
E505 DIM argument out of range for this reduction - $

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1 and the
rank of the expression being reduced.
E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with the
POINTER attribute.
E507 The arguments to MOVE_ALLOC must be ALLOCATABLE - $

The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE attribute.
E508 The array objects in a call to an elemental function are not conformable -
 $

When calling an elemental function, the arguments must be scalars or conformable arrays or array
expressions.
E509 Variables in a PURE subprogram may not have the SAVE attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot save state in
a SAVEd variable.
E510 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching
ENDWHERE. The body of the WHERE construct can only contain assignment statements.
E511 The WHERE mask expression and the array assignment do not conform

The assignment under control of a WHERE mask must have the same shape as the WHERE
mask.
E512 The WHERE mask is not an array expression

The WHERE mask expression must be a logical array expression.
E513 The alignment or distribution target may not be a private variable - $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 166

This is a HPF_CRAFT restriction.
E514 The alignment extends beyond the bounds of the template - $

When aligning to a template, the entire array must align to template elements that lie within the
bounds of the template.
E515 Static variable aligned with allocatable symbol - $

A nonallocatable symbol cannot be aligned to an allocatable symbol.
E516 PURE subprograms may not have distributed variables - $

Distributed arrays are not allowed in PURE subprograms.
E517 Variables in HPF_LOCAL subprograms may not be distributed - $

Distributed arrays are not allowed in HPF_LOCAL subprograms.
W518 Function result could not be distributed; replicating - $

The compiler will replicate the function result.
E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.
E520 Host MODULE data cannot be used in a DEVICE or GLOBAL subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.
E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
 compiling for compute capability >= 2.0 - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE
except the MODULE containing the subprogram, unless they are being compiled for compute
capability 2.0 or higher. This feature requires the unified memory system provided in compute
capability 2.0.
E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
 compiling with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE
except the MODULE containing the subprogram, unless they are being compiled for compute
capability 2.0 or higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.
W523 MODULE data used in a DEVICE or GLOBAL subprogram forces compute capability
 >= 2.0 only - $

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when
compiled for compute capability 2.0 or greater.
E524 Dependency in assignment causes allocation of a temporary which is not
 supported in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which requires
allocation of temporary storage to produce a correct result. Dynamic allocation of memory is not
supported in subprograms that run on the device.
E525 Array reshaping is not supported for device subprogram calls: argument $ to
 subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy argument is not
supported in global or device subprograms. This would require a run-time test and a possible run-
time copy to a dynamically allocated temporary array.
W526 SHARED attribute ignored on dummy argument $

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 167

The SHARED attribute has no meaning when applied to a dummy argument.
E527 Argument number $ requires allocation of a temporary which is not supported
 in DEVICE or GLOBAL subprograms

Evaluation of the specified argument requires allocation of temporary storage for the result to
be passed to the subprogram being called. Dynamic allocation of memory is not supported in
subprograms that run on the device.
E528 Argument number $ to $: device attribute mismatch

Device attributes of the actual and formal arguments are not the same.
E529 PRINT and WRITE statements in device subprograms are only supported when
 compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
E530 PRINT and WRITE statements in device subprograms are only supported with
 compute capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statements in CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.
W531 PGI extension to OpenACC: $

This program is using a PGI extension to OpenACC.
W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program is using a PGI extension to
OpenACC.
E533 Clause $ not allowed in $ directive

This clause is not allowed on the specified directive.
E534 A loop scheduling directive may not appear within a KERNEL loop

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL,
VECTOR, WORKER or GANG, may not appear inside a loop that has an accelerator loop
directive with the KERNEL clause. This clause is not allowed on the specified directive.
E535 Undeclared symbol $ used in directive

Symbols used in OpenACC directives must be declared.
S901 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this
context.
S902 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this
context.
W905 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parameters in the macro's definition.
F906 Can't find include file $

The indicated include file could not be opened.
S908 EOFin comment

The end of a file was encountered while processing a comment.

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 168

S909 EOFin macro call to $

The end of a file was encountered while processing a call to the indicated macro.
S912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
W914 Illegal directive name

The sequence of characters following a # sign was not an identifier.
W915 Illegal macro name

A macro name was not an identifier.
W918 Missing #endif

End of file was encountered before a required #endif directive was found.
W919 Missing argument list for $

A call of the indicated macro had no argument list.
S920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W921 Redefinition of symbol $

The indicated macro name was redefined.
I922 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.
F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).
S924 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
S926 Syntax error in #if

A syntax error was found while parsing the expression following a #if or #elif directive.
S927 Syntax error in #include

The #include directive was not correctly formed.
W928 Syntax error in #line

A #line directive was not correctly formed.
W929 Syntax error in #module

A #module directive was not correctly formed.
W930 Syntax error in #undef

A #undef directive was not correctly formed.
W931 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W932 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.
S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 169

S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S935 Illegal context for __VA_ARGS__

W936 Undefined directive $

The identifier following a # was not a directive name.
S937 EOFin #include directive

End of file was encountered while processing a #include directive.
S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
W941 Illegal token in directive, $

A directive token contains a illegal character.
S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.
S943 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.
I944 Possible nested comment

The characters /* were found within a comment.
I945 Redefining predefined macro $

I946 Undefining predefined macro $

W947 Can't redefine predefined macro $

W948 Can't undefine predefined macro $

F949 #error -- $

User defined preprocessor error message.
W950 #ident not followed by quoted string

W951 Extraneous tokens ignored following # directive

F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

S954 Illegal number in directive

S955 Illegal token in #if expression

S956 Missing > in #include

W957 Arguments in macro $ are not unique

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 170

S959 ## directive occurs at beginning or end of macro definition

S960 $ is not an argument

W961 No macro replacement within a character constant

W962 Macro replacement within a character constant

W964 Macro replacement within a string literal

F965 Recursive include file $

W966 Null argument to macro

Argument to macro is a null value.
F967 #warning -- $

User defined preprocessor warning message.
S969 _Pragma $

Pragma operator errors.

7.4. Fortran Run-time Error Messages
This section presents the error messages generated by the run-time system. The run-time system
displays error messages on standard output.

7.4.1. Message Format
The messages are numbered but have no severity indicators because they all terminate program
execution.

7.4.2. Message List
Here are the run-time error messages:

201 illegal value for specifier

An improper specifier value has been passed to an I/O run-time routine. Example: within an
OPEN statement, form='unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an OPEN
statement, form='unformatted', blank='null'.

203 record length must be specified

A recl specifier required for an I/O run-time routine has not been passed. Example: within an
OPEN statement, access='direct' has been passed, but the record length has not been specified
(recl=specifier).

204 illegal use of a readonly file

Self explanatory. Check file and directory modes for readonly status.

205 'SCRATCH' and 'SAVE'/'KEEP' both specified

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 171

In an OPEN statement, a file disposition conflict has occurred. Example: within an OPEN
statement, status='scratch' and dispose='keep' have both been passed.

206 attempt to open a named file as 'SCRATCH'

207 file is already connected to another unit

208 'NEW' specified for file that already exists

209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/O. The most probable
cause of fixed buffer overflow is exceeding the maximum number of simultaneously open file
units.

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict

Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record

For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string

A run-time encoded format contains a lexical or syntax error.

222 unbalanced parentheses in format string

223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format

An unknown token type has been found in a format encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format

An unexpected Fortran edit descriptor (FED) was found in a run-time format item.

228 end of file reached without finding group

229 end of file reached while processing group

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 172

230 scale factor out of range -128 to 127

Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion

233 too many constants to initialize group item

234 invalid edit descriptor

An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match item type

Data types specified by I/O list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters

237 quad precision type unsupported

238 tab value out of range

A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor

250 error in format - number missing after '.', '-', or '+'

251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

Messages

PGI Compiler Reference Guide for OpenPOWER CPUs 173

255 illegal asynchronous I/O operation

256 POS can only be specified for a 'STREAM' file

257 POS value must be positive

258 NEWUNIT requires FILE or STATUS=SCRATCH

PGI Compiler Reference Guide for OpenPOWER CPUs 174

Chapter 8.
CONTACT INFORMATION

You can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGI engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
questions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/faq.htm

Submit technical support requests through the online form at:

https://www.pgroup.com/support/support_request.php

PGI documentation is available at http://www.pgroup.com/resources/docs.htm.

mailto: sales@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013–2016 NVIDIA Corporation. All rights reserved.

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Fortran, C, and C++ Data Types
	1.1. Fortran Data Types
	1.1.1. Fortran Scalars
	1.1.2. FORTRAN Aggregate Data Type Extensions
	1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

	1.2. C and C++ Data Types
	1.2.1. C and C++ Scalars
	1.2.2. C and C++ Aggregate Data Types
	1.2.3. Class and Object Data Layout
	1.2.4. Aggregate Alignment
	1.2.5. Bit-field Alignment
	1.2.6. Other Type Keywords in C and C++

	Command-Line Options Reference
	2.1. PGI Compiler Option Summary
	2.1.1. Build-Related PGI Options
	2.1.2. PGI Debug-Related Compiler Options
	2.1.3. PGI Optimization-Related Compiler Options
	2.1.4. PGI Linking and Runtime-Related Compiler Options

	2.2. C and C++ Compiler Options
	2.3. Generic PGI Compiler Options
	2.3.1. -#
	Default
	Usage
	Description
	Related options

	2.3.2. -###
	Default
	Usage
	Description
	Related options

	2.3.3. -acc
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.4. -Bdynamic
	Default
	Usage
	Description
	Related options

	2.3.5. -Bstatic
	Default
	Usage
	Description
	Related options

	2.3.6. -Bstatic_pgi
	Default
	Usage
	Description
	Related options

	2.3.7. -byteswapio
	Default
	Usage
	Description
	Related options

	2.3.8. -C
	Default
	Usage
	Description
	Related options

	2.3.9. -c
	Default
	Usage
	Description
	Related options

	2.3.10. -d<arg>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.11. -D
	Syntax
	Default
	Usage
	Description
	Related options

	2.3.12. -dryrun
	Default
	Usage
	Description
	Related options

	2.3.13. -drystdinc
	Default
	Usage
	Description
	Related options

	2.3.14. -E
	Default
	Usage
	Description
	Related options

	2.3.15. -F
	Default
	Usage
	Description
	Related options

	2.3.16. -fast
	Default
	Usage
	Description
	Related options

	2.3.17. --flagcheck
	Default
	Usage
	Description
	Related options

	2.3.18. -flags
	Default
	Usage
	Description
	Related options

	2.3.19. -fpic
	Default
	Usage
	Related options

	2.3.20. -fPIC
	2.3.21. -g
	Default
	Usage
	Description
	Related options

	2.3.22. -gopt
	Default
	Usage
	Description
	Related options

	2.3.23. -help
	Default
	Usage
	Description
	Related options

	2.3.24. -I
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.25. -i2, -⁠i4, -⁠i8
	Default
	Usage
	Description
	Related options

	2.3.26. -K<flag>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.27. -L
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.28. -l<library>
	Syntax
	Description
	Related options

	2.3.29. -M
	2.3.30. -m
	Default
	Usage
	Description
	Related options

	2.3.31. -m64
	Usage
	Description

	2.3.32. -M<pgflag>
	2.3.33. -module <moduledir>
	Default
	Usage
	Description
	Related options

	2.3.34. -mp
	Default
	Usage
	Description
	Related options

	2.3.35. -noswitcherror
	Default
	Usage
	Description
	Related options

	2.3.36. -O<level>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.37. -o
	Default
	Syntax
	Usage
	Related options

	2.3.38. --pedantic
	Default
	Usage
	Related options

	2.3.39. -pg
	Default
	Usage:
	Description
	Related options

	2.3.40. -pgc++libs
	Default
	Usage
	Description
	Related options

	2.3.41. -pgf90libs
	Default
	Usage
	Description
	Related options

	2.3.42. -R<directory>
	Usage
	Description
	Related options

	2.3.43. -r
	Default
	Usage
	Description
	Related options

	2.3.44. -r4 and -⁠r8
	Usage
	Description
	Related options

	2.3.45. -rc
	Syntax
	Usage
	Description
	Related options

	2.3.46. -s
	Default
	Usage
	Description
	Related options

	2.3.47. -S
	Default
	Usage
	Description
	Related options

	2.3.48. -shared
	Default
	Usage
	Description
	Related options

	2.3.49. -show
	Default
	Usage
	Description
	Related options

	2.3.50. -silent
	Default
	Usage
	Description
	Related options

	2.3.51. -soname
	Default
	Usage
	Description
	Related options

	2.3.52. -ta=tesla(tesla_suboptions),host
	Default
	Usage
	Description
	Multiple Targets
	Relocatable Device Code
	LLVM/SPIR and Native GPU Code Generation
	DWARF Debugging Formats
	Related options

	2.3.53. -time
	Default
	Usage
	Description
	Related options

	2.3.54. -u
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.55. -U
	Syntax
	Usage
	Description
	Related options

	2.3.56. -V[release_number]
	Default
	Usage
	Description
	Related options

	2.3.57. -v
	Default
	Usage
	Description
	Related options

	2.3.58. -W
	Syntax
	Usage
	Description
	Related options

	2.3.59. -w
	Default
	Usage
	Description
	Related options

	2.3.60. -Xs
	Default
	Usage
	Description
	Related options

	2.3.61. -Xt
	Default
	Usage
	Description
	Related options

	2.4. C and C++ -specific Compiler Options
	2.4.1. -A
	Default
	Usage
	Description
	Related options

	2.4.2. -a
	Default
	Usage
	Description
	Related options

	2.4.3. -alias
	Syntax
	Default
	Usage
	Description
	Related options

	2.4.4. --[no_]alternative_tokens
	Default
	Usage
	Related options

	2.4.5. -B
	Default
	Usage
	Description
	Related options

	2.4.6. -b
	Default
	Usage
	Description
	Related options

	2.4.7. -b3
	Default
	Usage
	Description
	Related options

	2.4.8. --[no_]bool
	Default
	Usage
	Description
	Related options

	2.4.9. --[no_]builtin
	Default
	Usage
	Description
	Related options

	2.4.10. --cfront_2.1
	Default
	Usage
	Description
	Related options

	2.4.11. --cfront_3.0
	Default
	Usage
	Description
	Related options

	2.4.12. --[no_]compress_names
	Default
	Usage
	Description
	Related options

	2.4.13. --create_pch filename
	Default
	Usage
	Description
	Related options

	2.4.14. --diag_error <number>
	Default
	Description
	Related options

	2.4.15. --diag_remark <number>
	Default
	Description
	Related options

	2.4.16. --diag_suppress <number>
	Default
	Usage
	Description
	Related options

	2.4.17. --diag_warning <number>
	Default
	Usage
	Description
	Related options

	2.4.18. --display_error_number
	Default
	Usage
	Description
	Related options

	2.4.19. -e<number>
	2.4.20. --[no_]exceptions
	Default
	Usage
	Description
	Related options

	2.4.21. --gnu_version <num>
	Default
	Usage
	Description

	2.4.22. --[no]llalign
	Default
	Usage
	Description
	Related options

	2.4.23. -M
	Default
	Usage
	Description
	Related options

	2.4.24. -MD
	Default
	Usage
	Description
	Related options

	2.4.25. --optk_allow_dollar_in_id_chars
	Default
	Usage
	Description

	2.4.26. -P
	Default
	Usage
	Description
	Related options

	2.4.27. -+p
	Default
	Usage
	Description
	Related options

	2.4.28. --pch
	Default
	Usage
	Description
	Related options

	2.4.29. --pch_dir directoryname
	Usage
	Description
	Related options

	2.4.30. --[no_]pch_messages
	Description
	Related options

	2.4.31. --preinclude=<filename>
	Description
	Related options

	2.4.32. --use_pch filename
	Default
	Related options

	2.4.33. --[no_]using_std
	Default
	Usage
	Description
	Related options

	2.4.34. -Xfilename
	Default
	Usage
	Description
	Related options

	2.4.35. --[no]zc_eh
	Default
	Usage
	Description
	Related options

	2.5. -M Options by Category
	2.5.1. Code Generation Controls
	2.5.2. C/C++ Language Controls
	2.5.3. Environment Controls
	2.5.4. Fortran Language Controls
	2.5.5. Inlining Controls
	2.5.6. Optimization Controls
	2.5.7. Miscellaneous Controls

	C++ Name Mangling
	Directives and Pragmas Reference
	4.1. PGI Proprietary Fortran Directive and C/C++ Pragma Summary
	4.1.1. altcode (noaltcode)
	4.1.2. assoc (noassoc)
	4.1.3. bounds (nobounds)
	4.1.4. cncall (nocncall)
	4.1.5. concur (noconcur)
	4.1.6. depchk (nodepchk)
	4.1.7. eqvchk (noeqvchk)
	4.1.8. fcon (nofcon)
	4.1.9. invarif (noinvarif)
	4.1.10. ivdep
	4.1.11. lstval (nolstval)
	4.1.12. opt
	4.1.13. prefetch
	4.1.14. safe (nosafe)
	4.1.15. safe_lastval
	4.1.16. safeptr (nosafeptr)
	4.1.17. single (nosingle)
	4.1.18. tp
	4.1.19. unroll (nounroll)
	4.1.20. vector (novector)
	4.1.21. vintr (novintr)

	4.2. Prefetch Directives and Pragmas
	4.3. !$PRAGMA C
	4.4. IGNORE_TKR Directive
	4.4.1. IGNORE_TKR Directive Syntax
	4.4.2. IGNORE_TKR Directive Format Requirements
	4.4.3. Sample Usage of IGNORE_TKR Directive

	Runtime Environment
	5.1. Linux Programming Model
	5.1.1. Function Calling Sequence
	5.1.2. Linux OpenPOWER Fortran Supplement

	C++ Dialect Supported
	6.1. Extensions Accepted in Normal C++ Mode
	6.2. cfront 2.1 Compatibility Mode
	6.3. cfront 2.1/3.0 Compatibility Mode
	6.4. Extensions accepted in GNU compatibility mode (pgc++)
	6.5. C++11 Language Features Accepted
	6.6. C++14 Language Features Accepted

	Messages
	7.1. Diagnostic Messages
	7.2. Phase Invocation Messages
	7.3. Fortran Compiler Error Messages
	7.3.1. Message Format
	7.3.2. Message List

	7.4. Fortran Run-time Error Messages
	7.4.1. Message Format
	7.4.2. Message List

	Contact Information

