

TABLE OF CONTENTS

o] 1 2T T TS ix
AUGIENCE DESCIIPHION. ...ttt s bbbt b b s e s bbb bt s s s s et e bt n s s iX
Compatibility and Conformance t0 StaNAArdS............cvceiiirriirne e iX
OFGANIZALION. ..ottt bbb s bbb bbb bbb bbb b b s s bbbt bbbttt bbb X
Hardware and SOftware CONSIAINES...........coceruriercicr ettt Xi
CONVENTIONS.cvceeseceiscte et ese et s es e s b st s b8 282885888 s bt s bbbt Xi
=T 10T Xii
REIAIEA PUDIICAIIONS.c.cvuieeieic bbbt Xii

Chapter 1.Getting StArted...........oeceeceieininirre s s a e e p e e e R R nE e 1
I O 1 TSRS 1
1.2, Creating @N EXAIMPIE.coiiiieiieiiirieisis ettt bbbt 2
1.3. Invoking the Command-level PGl COMPIIETS..........coeiirieiirieeineseisce st 2

1.3.1. COMMANG-NE SYNEAX...... vttt 2
1.3.2. COMMANG-NE OPHONS......c..cvirierieiieiiieei ettt 3
1.3.3. Fortran Directives and C/C++ Pragmas..........ccccuiueiriireviiiieiiiese e sssesssesse s s st ssae st sse s sssenas 3
1.4, Filename CONVENTIONS.oiuiueiieerirciciei ettt st res ettt st e e e eene s ennens 3
0 T T U 1T ST 4
142, OULPUL FlES.... ettt ettt s e e es e e s st ettt eenes 5
1.5. Fortran, C, and CH+ Data TYPES......cvccuriiieiicieieieiri ettt sse bbbt b s st 6
1.6. Parallel Programming Using the PGl COMPIIEIS..........c.crieiuiiiiinicnenieeseseise e 7
1.6.1. RUN SMP Parallel PrOGrams........c.cceueuiuriieiiirieineineie ettt sse s 7
1.7. Platform-specific CONSIAEIAtIONS............ccocuiiirieiieeece ettt ettt bbb a st 8
1.7.1. Using the PGl COMPIIErS ON LINUX.....c.vururierirririenirriieniseieesissieessseiess ettt sssssessnens 8
1.8. Site-Specific Customization 0f the COMPIIETS..........cccuicveiiiiieiiecee e 8
1.8.1. USE SIEIC FIlBS.. .. iuiueiieieisiictsi ettt ettt et s st enns 8
1.8.2. USING USEI 1T FIIBS....eveieieiiicieeet sttt bbbttt 9
1.9. CommON DEVEIOPMENT TASKS......cccvu vttt 9

Chapter 2.Use ComMand-line OPLIONS.........cccrerererrerressssessessssessessssesssssssesssssssessessssessssssesssssssesssssssesssssssesssssssesssssssessens 1

2.1, Command-liNE OPtION OVEIVIEW.........cuiururiiiririeieerieieiresees st ses s sess st sees e st s et ses et ssese s s et eenssnseseens 11
2.1.1. Command-ling OPHONS SYNTAX.......ccciririiiriiciei ettt bbb bbb s s s 11
2.1.2. CommMANd-NE SUDOPLONS........curuirererereees ettt st 12
2.1.3. Command-line Conflicing OPtONS.......c.veuiiiieiriciesice ettt nen 12

2.2. Help with Command-ling OPLONS.........cccuiiiiiciceee sttt bbbt be bbb as 12

2.3. Getting Started With PErfOrMaNCE...........couiuririireesteet ettt 14
2.3, USING aSH. ... et R 14
2.3.2. Other Performance-Related OPHONS.........c.ocvuiiiricirecrene ettt 15

2.4, Frequently-USEA OPtIONS.......cc ittt ettt ettt 15

Chapter 3.0ptimizing and Parallelizing............cournmnnss s 17
3.1, Overview of OPtIMIZALION.ccciiiuiiiceicsce et b bt aee 18

T T T I o= 1 @ o] 41 1o 3PP OTTRSRT 18

PGI Compiler User's Guide for OpenPOWER CPUs i

3.1.2. Global OPtMIZALON.........ceviiiecieicieice sttt b bbb bbb naes 18

3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization..............c.coerirnnnniiceecncersccreeens 18
314, FUNCHON INMINING...cttiititiicieiiets ettt st et s b st b st n s 18
3.1.5. Profile-Feedback Optimization (PFO).........ccvieiriiirieiicieieissseissess ettt sttt ssssessenns 19
3.2. Getting Started With OPHMIZALON. ...ttt 19
321, NBID et 20
32,20 AMINFOL 1ottt 20
32,3, AMINEGINTO. ..ttt ettt bbbttt 20
B2 —OIYTUN ot f e E bR R bbb bbbt b e 20
32 D, VbR 21
3.2.8. PGPROF ...ttt ee et s8££t 21
3.3. Common Compiler Feedback FOrMat (CCFF).........cccviiiieiiccriee ettt s 21
3.4. Local and Global OptMIZALON..........c.cri ettt sttt ne et ees s nnnen 21
R T 7 =T (PP 21
Bi8.2. =0 E R 22
3.5. Loop Unrolling USING -MUNTOIL...........couiuriiriiiiiriiseeirceeee st s 24
3.6. VeCtorization USING -IMVECL. ..ottt s bbbt 25
3.6.1. VeCtorization SUD-OPHONS.c.iiieieiieieircie ettt bbbttt 25
3.6.2. Vectorization Example Using SIMD INSTTUCHIONS.cuivriiriiirieieirieiscisee st sssssssenns 27
3.7. Auto-Parallelization USING -MCONCUF..........c.iuiiieiirieiirteet ettt bbbt 29
3.7.1. Auto-Parallelization SUD-0PHONS.........c..cccuiiiieiiicie ettt 29
3.7.2. Loops That Fail to ParalleliZe............veurrerrieeericer et 31
3.8. Default OptimIzation LEVEIS..........ccoviieviiiici ittt bbb st 34
3.9. Local Optimization Using Directives and Pragmas..........ccocureuriieriiniineeineieeeneieesseie e es e ses e sessssessenes 35
3.10. Execution Timing and INStruction COUNLING............ccviireeiierrieieniie ettt nses 35
3.11. Portability of Multi-Threaded Programs 0N LINUX..........coeeurrieinineineeesiseee s 36
T 1 1310 T TP 36
Chapter 4.Using FUNCLiON INIINING.......cccoiirrcscncrcscss s ss s e s s s s ssssssesessssassssssssssnens 37
4.1. Automatic fFunction INlINING iN C/CH+........ciiirer e 37
4.2, InVOKING FUNCHON TNIINING. ...cectiiiieerctc et 38
4.3, USING AN ININE LIDIAIY....oiuiiieiciiece st 39
4.4, Creating an INNNE LIDIATY.......cviiiiiieieiiceeiseeiet sttt bbb 39
4.4.1. Working With INliNE LIDFAMES........cceviirieiriirieseeers e 40
4.4.2. DEPENAENCIES.cvvviieeeiesereie ettt ae bt e bbb e e sttt s s s e e e s e b et e b e bbb e s s e bbb e b ettt s s e e sn s et et n et e 40
4.4.3. Updating Inling Libraries — MaKEfiles. ..ot 40
4.5, Error Detection during INMNING........ccccoiiiiieeceiss ettt se s 41
e 01T - TSRS 41
4.7. ReStrictions 0N INNNING........cceiiriiieisicecees st s st a s s e e s 41
Chapter 5.USING OPENMP.........oo st b se b 43
5.1, OPENMP OVEIVIEW.....c..coiriiiiiecieietstie ettt bbbttt 43
5.1.1. OpenMP Shared-Memory Parallel Programming MOGEL............cereuriniiinieieiniiesissesisse s 43
512, TEIMINOIOGYvueerrereieiet sttt ettt ettt 44
5.1.3. OPENMP EXAMPIE.......cooiuireiiieiiiitietee ettt sttt bbb bbbt bbb bbb n et n s nes 45

PGI Compiler User's Guide for OpenPOWER CPUs iii

5.2, TASK OVEIVIBW........cucviviiiiieseetet ettt sttt sttt ettt e bbb e s e et s et et e b e ettt e b et et eb e e e st st et et e b e as et st st et et ebese e st se st bebeneas 46

5.3. Fortran Parallelization DIMECHVES.c.ciurriiueirercieerieie ettt ettt ettt et 46
5.4, C/C++ Parallelization Pragmas.........cccccieiviieiriieiississeessssess st ssss e ssssss st sss s ssssssesssssasassesenns 47
5.5. Directive and Pragma RECOGNITION.cc. ettt en 47
5.6. Directive and Pragma SUmMMary Table.........cciriereeeee ettt 48
5.6.1. Directive and Pragma SUMMArY TabIE..........cccceririirierirririeisiisiescs et 48
5.7. Directive and Pragma ClAUSES..........c.oueueuiuriieiriirieireieeetetee ettt bbbttt 49
5.8. RUNLIME LIDrary ROULNES.......c.curiiuiiiiieriet sttt bbbt 52
5.9, ENVIFONMENT VAITADIES.........ieieeerieeercies ettt ne st ens et nnns 57
L =TT T T T 59
8.1, IMPL OVEIVIEW. ... ettt ettt et s £t et s et enn s st 59
6.2. Debugging MPI APPHCALIONS.c.cviviiceeiceeietcisis ettt s st b st es s 59
6.3, USING OPEN MPI ON LINUX..t.ttitietiiieieieettiei ettt 60
6.4, USiNg MPI COMPIIEr WEAPPETS.....cueuireuiierciriiietsssieiss et ssssiessssss s sss ettt ss b st s st st ss s ssssessssnssansesns 60
8.5, LIMIEALIONS. ...ttt s e e s R et n bt 60
6.6. Testing and BENCRMAIKING........c..cuiuriiriirieireeie ettt ettt 60
Chapter 7.USiNg @n ACCEIEIAtOr........c.cccvereieremrsrmrissssesesssssssssssssssss e s s s s s s e e s s s s s s ssssssesesesesssssssssssssssssseensasans 62
7.0, OVEIVIBW. ... ettt sttt sttt S e s e b et e ettt ee s nn st nnes 62
7. 0.1, COMPONENES......cviviiitiiectet ettt ettt bttt bbb es bbb b e b b s bbbt b s bbb bbb bbb en st s seeas 62
71,2, AVIIADIIEY......cvocvieccect st s bR bbbt 63
7.1.3. User-directed Accelerator Programming.......cccccccceeeeeerisenesnis s ssssesesesessssssssssssssesesssssesessssssssssssssssssesesans 63
7.1.4. Features Not Covered or IMPIEMENTEA. ...t 63
A 1= 1 4114 TP 63
7.3. SYSIEM REGUIMEIMENTS......c..cvvrieiieicieieict ettt bbb bbb bbbt bbbt 65
7.4. Supported Processors @nd GPUS.........c..ccuiiieiicieisice st ss st 65
7.5. InStallation @nd LICENSING........c. ettt 65
7.5.1. REQUITEA FllES.......eciicee ettt 66
7.5.2. COMMANG-NNE FIAG..... . etteeirieeie ettt s ettt 66
7.8, EXECULION MOGEL......viieiiicieiieisistee ettt sttt ettt snnnnnennn 66
78,1, HOSE FUNCHONS. ...ttt 66
7.6.2. LeVEIS OF ParalEIISM........cueuiiieieiiieisieie sttt sttt 67
7.7, MEMOTY MOTEL......c.cviviiieeieisieeece ettt e bbbt bbb sttt et s st st s s e nea bt ee 67
7.7.1. Separate Host and Accelerator Memory COnSIAErations.............ccuvceeveurierneinierneinieenee e 67
7.7.2. ACCEIEIAtOr MEBMOIY......cuiieteieiiiii ittt ettt bbbttt a sttt n s st bbb s s e 68
7.7.3. CaChe MaANAGEMENL.........iuieiiierieiseiriee bbb 68
7.8. Running an ACCEIErator PrOgIam.........ccciieeriiiriiiisieieie ettt s st s s s 68
7.9, ACCEIRTAION DIFECHVES.ceu ettt ee ettt s et st e e e s et re s e ense e eens 68
7.9.1. Enable ACCEIErator DIFECHVES. ..o ittt 69
7.9.2. FOMMAL.... ettt e 2Rt s8££ e85 E £ eE b e e £ e e R E et ent et ennnnas 69
TR TR O 1 =T 1T 70
7.9.4. Free-FOrm FOrran DIrCHVES. ...ttt st et 70
7.9.5. Fixed-FOrm FOrran DIrCHVES.vvurieeeiiiririsieissetstsisie ettt sns s 71
7.9.6. OpenACC DireCtive SUMMAIY.......c.vurirririerirririenirrieieiseisessseesie sttt sttt sse st es s 71

PGI Compiler User's Guide for OpenPOWER CPUs iv

7.10. ACCEIETator DIFECHVE ClAUSES........cooviieeeeectieiieises ettt sttt sttt bttt bbbt e s ettt an sttt enns 76

7.11. OpenACC RUNLME LIDFAMES.c.cueceeererieees ettt sttt st ns et 78
7.11.1. Runtime Library DEfiNitiONS..........ccccieiieieiiiiciniciescesi ettt ns s 78
7.11.2. RUNEIME LIDrary ROULNES.......c.cuieeieeririeees ettt et 79

7.12. ENVIFONMENE VATDIES.......ocvieieeiieicieiieis ettt sttt st 80

7.13. Applicable CommaNnd-lNE OPLONS..........cccciiueiiieicisicie ettt e bbbt b st seeas 81

7.14. Profiling ACCEIErator KEIMEIS..........cou it s 82

7.15. Related Accelerator Programming TOOIS..........cieuriieririniineeie ettt 82
7.15.1. NVIDIA CUDA PIOFIB......cerreereeeeeeeieeee ittt sttt ses s ss s 82
7.15.2. TAU = Tuning and ANalYSIS ULIIILY..........cccorviiiriceessssicesee ettt 83

LT 1070 oo (=T I T (4o 83
7.16.1. Supported Fortran Intrinsics SUMMArY TabIE........cccoveuriiriniieisicese et 83
7.16.2. Supported C Intrinsics SUMMArY TabIE.........c.oi it 84

7.17. References related t0 ACCRIBIAOrS........civivciiiciii e 86

Chapter 8.Using Directives and Pragmas............cccurernninennssninsess e ssssssssassss s sesssssssssass 87

8.1. PGl Proprietary FOran DIfECHVES..........coiiiiiririeieireeet sttt ettt sttt eb st 87

8.2. PGl Proprietary C and CHt PragMas.........ceurireieuriieiiinsiesessssesessssesssssssesessssesssssssesssssssesssssssesssssssesssssssessessssesss 88

8.3. PGI Proprietary Optimization Directive and Pragma SUMMAIY...........ccorrirrrinninnniseeesenees e sseeseessnees 88

8.4. Scope of Fortran Directives and Command-Line OPtioNS...........ccccuviiueiicieiiiceieee e 90

8.5. Scope of C/C++ Pragmas and Command-Ling OPtioNS............cruriereinieriininiseeeseeeescsseeesesseeesssseesseseenees 91

8.6. Prefetch DireCtives and Pragmas.........cieeuiirieiiirinnieieissieseisstes ettt ettt essenns 93
8.6.1. Prefetch Directive SYntaX in FOMIAN.........ciiriirenceee e 93
8.6.2. Prefetch Directive FOrmat REQUIFEMENLS............cccuciiciiiccr et 93
8.6.3. Sample Usage of Prefetch DIFECHVE. ..ot 94
8.6.4. Prefetch Pragma Syntax in C/CHt........c.oviiiciicssecs ettt ss bbb 94
8.6.5. Sample Usage of PrefetCh Pragma..........oiiiicc e 94

8.7, IFPRAGMA C....oovvoeieiie sttt sttt bbb 94

8.8. IGNORE_TKR DiIFECHVE.ceuceueereereereeseeeiseeeiseessesecsssecssessss s esse s sttt 95
8.8.1. IGNORE_TKR DirECHVE SYNMAX.......vevverererereereeeeseeseseeseesseseesese s ssssssssssssssssssssssssssssssssesssssesssssessessessessss 95
8.8.2. IGNORE_TKR Directive Format REQUIFEMENLS............cccueiereiiiiieiecieee e 95
8.8.3. Sample Usage of IGNORE_TKR Dif€CHVE.c.ccuriuriiiriieireirieeintee et 96

Chapter 9.Creating and USING LibrarieS........cuucrereresesmsmsmsmsresesesessssssssssssssssssesssesssssasssssssassnens 97

9.1. Using builtin Math FUNCLONS N C/CH+.........iiiiirieri s e 97

9.2. Using System LiDrary ROULINES.........couiuiiiiiieiiictciiee sttt bbb 98

9.3. Creating and Using Shared Object FileS 0N LINUX......c..cvieiirieiiiiseeseeneisee e ensssenne 98
9.3.1. Procedure to create a use a shared ObJECE file..........cuieiciiciie s 98
LR 20728 1o [0 I 04112 =T o PP ORTSSRRTR 99

0.4, USING LIB3F ...ttt 100

9.5, LAPACK, BLAS @NGA FFTS.....ceiuierieiereiieieeeieee sttt sttt bbbt 100

9.6. LINKING WIth SCALAPACKcoiiiiiiriirieircei ettt bbbt 100

9.7. The C++ Standard Template LIDrary.........cccccerieininesciesissesesse sttt sttt sssesssassesaes 100

Chapter 10.Using Environment Variables............consssss s 101

10.1. Setting ENVIronmMENt Varables...........covuiriiiiirieiseees et 101

PGI Compiler User's Guide for OpenPOWER CPUs v

10.1.1. Setting Environment VariableS 0N LiNUX.........ccccriiueriieiiiieiieissesesisie s esssssss s sssesessssenns 101

10.2. PGI-Related Environment VariabIEs..........c.c.vuiuriieririiercs sttt 102
10.3. PGl ENVIrONMENt VAMADIES.........cvvivririircriecriesis s 103
10.3.1. FORTRANOPT ...ttt ettt sttt sttt ettt es 103
10.3.2. LD_LIBRARY _PATH. .. .ottt st sss st ss bbb bbb st aen 103
10.3.3. MANPATH. ..ottt R bbb 103
10.3.4. NO_STOP_MESSARGE.........coitiiiiiieicsits ettt s s bbb bbb bbb 104
10.3.5. PATH. ...ttt s 104
10.3.8. PGlL..oveieiceeieietsete ettt sttt bbb bbbt bbbt b 104
10.3.7. PGI_CONTINUE.........citieiieetieiiiniieiet sttt sttt ss s s s b s b s bt s e 104
10.3.8. PGILOBUSUFFIX ..ottt bbb 105
10.3.9. PWUD.... ettt R R e 105
10.3.10. STATIC_RANDOM_SEED........cstiitiriiriiiriieieinitsieiti ettt 105
10,311, TIMP .o s b8 R8RSRt 105
10,312, TIMPDIR ..ottt ettt st s bbb 105
10.4. Using Environment MOAUIES ON LINUX........cvuiurieiiiirieiiirieicisieicis e 105
Chapter 11.Distributing Files — DEPIOYMENL...........coecereicieerrrrrcrcss s ns 107
11.1. Deploying APPIICALIONS ON LINUX.......cueuieierieieriseirireieiieieeseseeeesssesess et 107
11.1.1. Runtime Library CONSIAEIAtIONS.veiriuriieeieiiieseireieeetseieee sttt ss st sesns 107
11.1.2. Linux RediStributable Files..........cvviriierirercerics st nnes 108
11.1.3. Restrictions on LINUX POM@DIIILY.........cccooiiiiiiieee e 108
11.1.4. Licensing for Redistributable Files..........coviceee e 108
11.2. PGl ReiStDULADIES. ..ot 108
Chapter 12.Inter-language Calling...........coocrurerurerenserenerinisse e s p s s 109
12.1. Overview of Calling CONVENTIONS...........ccviiiiieiiieieicie ettt sea bbb nnee 109
12.2. Inter-language Calling CONSIAEIATIONS.........c.vuiurieimiiieieici e 109
12.3. FUNCHONS @Nd SUDTOULINES........coivurieiiieisiiiceiee ettt sttt bbbt 110
12.4. Upper and Lower Case Conventions, UNAEISCOIES............cviieereiiiiiiieceeiee et 110
12.5. COMPALIDIE DAL TYPES.....cvuieeeeerieireiierisei et 111
12.5.1. Fortran Named CommON BIOCKS..........ccceuiuriiriiirieiiisceicisse ittt sttt 112
12.6. Argument Passing and REUMN VaIUES..........coiiriiiirees et 112
12.6.1. PasSiNgG DY VAIUE (J0VAL)........ouuirieiirieriiriereineiseise ettt bbb 113
12.6.2. Character REIUMN VAIUES. ..ottt 113
12,7, AITAY INQICES. ... cvveretititsisiee ettt bbbt s b bt s b et e s bbb bbb s s e st bbbt s s s s s e e nen st e 114
(T e 41 o] LT 3PS TTTR 114
12.8.1. Example — Fortran CalliNg C.......ccovveuiiicice ettt st 114
12.8.2. Example — C Calling FOMIAN........coiiiriircc e 115
12.8.3. Example — CH+ CalliNG C......ooevveieiriceisecees sttt na s etes 116
12.8.4. EXample — C CalliNg C H....eieeeeeee ettt sttt ens st 116
12.8.5. Example — Fortran Calling CH..... .ottt 117
12.8.6. Example — CH+ CalliNg FOMIaN........ccoiiuiieieirieesce sttt 118
Chapter 13.Contact INFOrMALION..........ccvieeiciires s s 120

PGI Compiler User's Guide for OpenPOWER CPUs vi

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

PGl Compilers and COMMEANGSc.euieremiuierieiierieice s Xii
OPLION DESCIIPHONSvuceeereeceeeseieeeesei ettt sttt s bbb es bbbttt 6
Examples of Usine Siterc and USET IC FlESccoviiuiiieicis ettt 9
TYPICAI -TaSt OPONSvuvecviiceetcte bbb bbbt bbbt b bbbt 14
AddItIoNAl -fast OPHONScucviieciiiieie ettt et bbb bbb bbb ae b 14
Commonly Used Command-LiNg OPLIONSccovueuiieiieiiiriieiieissisisesse sttt 15
Example of Effect 0f Code UNTOllINGc.vuiieiiiiriiiici e 24
SMVECE SUDOPHIONS ...ttt ettt ensnteen 26
-MCONCUE SUDOPEIONS ...ttt bbbt 30
Optimization and -0, -g and -M<OPE> OPONScc.euieririirierieirirecse s 34
Directive and Pragma SUMMArY TabIEccoiieiiesicer et 48
Directive and Pragma SUMmMAry TaDIEccccucuiiiriiiicesce ettt 49
Runtime Library ROUIINES SUMMATYcviiiiririiriesiees s 53
OpenMP-related Environment Variable SUMMAry TabIEcccocviiiniinieininiieseeissese e, 57
PGl Accelerator Directive SUMMArY TabIEc.ciieiiiiiriie e 72
DireCtive ClauSES SUMMAIYcoviiiieeeiieeieireiee ettt ettt bbbttt 76
Accelerator Runtime Library ROULINESc.cuiiiriiriee ettt 79
Accelerator ENVIronment Variablesco ittt 80
SupPOrted FOMran INMHNSICScciiveiiercieiiese ettt b bbbt a st b anais 83
Supported C Intrinsic DOUBIE FUNCHONSc.coviveiicieiece et 84
Supported C Intrinsic Float FUNCHONSccceuiiiiiiicsce ettt s 85
Proprietary Optimization-Related Fortran Directive and C/C++ Pragma SUmmaryccoeveeevereenienreennennees 89
IGNORE_TKR EXBMPIE -...ceeeuiereereereesseeeieeeseesseee et eseees et ess s ess et sssess sttt ssesssessessnnssncs 96
PGI-Related Environment Variable SUMMANY ..o 102

PGI Compiler User's Guide for OpenPOWER CPUs vii

Table 25 Fortran and C/C++ Data Type Compatibilitycccoveveiiiieiiccscee e

Table 26 Fortran and C/C++ Representation of the COMPLEX TYPEc.coveviiiviiniiieisiceseee et

PGI Compiler User's Guide for OpenPOWER CPUs

viii

PREFACE

Thisguideis part of a set of manuals that describe how to use The Portland Group (PGI) Fortran,
C, and C++ compilers and program development tools. These compilers and tools include the
PGFORTRAN, PGC++, PGCC compilers and the PGPROF profiler. They work in conjunction
with an OpenPOWER assembler and linker. Y ou can use the PGI compilers and tools to compile,
debug, optimize, and profile serial and parallel applications for OpenPOWER processor-based
systems.

The PGI Compiler User’s Guide provides operating instructions for the PGI command-level
development environment. The PGI Compiler Reference Manual contains details concerning
the PGI compilers' interpretation of the Fortran language, implementation of Fortran language
extensions, and command-level compilation. Users are expected to have previous experience
with or knowledge of the Fortran programming language. Neither guide teaches the Fortran
programming language.

Audience Description

This manual isintended for scientists and engineers using the PGl compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C, and C++,
aswell as assembly-language in the software devel opment process; and you should have some
level of understanding of programming. Y ou also need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards

Y our system needs to be running a properly installed and configured version of this PGI product.
For information on installing PGl compilers and tools, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

» American National Sandard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

» ISO/IEC 1539-1: 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

PGI Compiler User's Guide for OpenPOWER CPUs ix

Preface

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» TheFortran 2003 Handbook, Adams et a, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» American National Standard Programming Language C, ANSI X 3.159-1989.

» ISO/MEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999
(C99).

» ISO/EC 9899:2011, Information Technology — Programming Languages — C, Geneva, 2011
(C11).

» ISO/IEC 14882:2011, Information Technology — Programming Languages — C++, Geneva,
2011 (C++11).

Organization

Userstypically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasksis key to using the PGI compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

This book contains the essential information on how to use the compiler and is divided into these
sections:

Getting Started provides an introduction to the PGI compilers and describes their use and overall
features.

Use Command-line Options provides an overview of the command-line options as well as task-
related lists of options.

Optimizing and Parallelizing describes standard optimization techniques that, with little effort,
allow usersto significantly improve the performance of programs.

Using Function Inlining describes how to use function inlining and shows how to create an inline
library.

Using OpenM P provides a description of the OpenMP Fortran parallelization directives and of
the OpenMP C and C++ parall€elization pragmas, and shows examples of their use.

Using MPI describes how to use MPI with PGI products.

Using an Accelerator describes how to use the PGl Accelerator compilers.

PGI Compiler User's Guide for OpenPOWER CPUs X

http://www.openmp.org

Preface

Using Directives and Pragmas provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Creating and Using Libraries discusses PGl support libraries, shared object files, and environment
variables that affect the behavior of the PGl compilers.

Using Environment V ariabl es describes the environment variables that affect the behavior of the
PGI compilers.

Distributing Files — Deployment describes the deployment of your files once you have built,
debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language callsin a Fortran
program and Fortran language callsin a C program.

Hardware and Software Constraints

This guide describes versions of the PGl compilers that produce assembly code for OpenPOWER
processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the rel ease notes delivered with the PGI
compilers.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this caseiteml isoptional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename ...
élipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, macOS and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER

PGI Compiler User's Guide for OpenPOWER CPUs Xi

Preface

processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGl 2016 and will no longer be available as of the PGl
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

Terms

A number of terms related to systems, processors, compilers and tools are used throughout this
guide. For example:

driver MPI NUMA static linking
dynamic library MPICH OpenPOWER shared library
Linux library multicore

For a complete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGl provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command
PGFORTRAN ISO/ANSI Fortran 2003 pgfortran
PGCC ISO/ANSI C11 and K&R C pgcc
PGC++ ISO/ANSI C++14 with GNU compatibility | pgct++
PGPROF Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to The Portland Group's Fortran 2003
compiler, and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For ssimplicity, examples of command-line invocation of the compilers generaly reference the
pgfortran command, and most source code examples are written in Fortran. Usage of PGC+ +
and PGCC is consistent with PGFORTRAN, though there are command-line options and features
of these compilers that do not apply to PGFORTRAN, and vice versa.

Related Publications

The following documents contain additional information related to the OpenPOWER
architecture, and the compilers and tools available from The Portland Group.

PGI Compiler User's Guide for OpenPOWER CPUs Xii

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm

Preface

» PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

» SystemV Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

» OpenPOWER ABI for Linux Supplement, Power Architecture 64-Bit ELF V2
ABI Specification, http://openpowerfoundation.org/wp-content/upl oads/2016/03/
ABI64BitOpenPOWERV1.1_16July2015 pubd.pdif.

» Fortran 95 Handbook Complete ISO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» The C Programming Language by Kernighan and Ritchie (Prentice Hall).

» C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

» The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT& T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

PGI Compiler User's Guide for OpenPOWER CPUs xiii

http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf
http://openpowerfoundation.org/wp-content/uploads/2016/03/ABI64BitOpenPOWERv1.1_16July2015_pub4.pdf

Preface

PGI Compiler User's Guide for OpenPOWER CPUs Xiv

Chapter 1.
GETTING STARTED

This section describes how to use the PGI compilers.

1.1. Overview

The command used to invoke a compiler, such as the pgfortran command, is called a compiler
driver. The compiler driver controls the following phases of compilation: preprocessing,
compiling, assembling, and linking. Once afile is compiled and an executablefile is produced,
you can execute, debug, or profile the program on your system. Executables produced by the PGI
compilers are unconstrained, meaning they can be executed on any compatible OpenPOWER
processor-based system, regardless of whether the PGI compilers are installed on that system.

In general, using a PGl compiler involves three steps:

1. Produce program source code in afile containing a .f extension or another appropriate
extension, as described in Input Files. This program may be one that you have written or one
that you are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

Y ou might also want to deploy your application, though thisis not arequired step.

The PGI compilers allow many variations on these general program development steps. These
variations include the following:

» Stop the compilation after preprocessing, compiling or assembling to save and examine
intermediate results.

» Provide options to the driver that control compiler optimization or that specify various
features or limitations.

» Include asinput intermediate files such as preprocessor output, compiler output, or assembler
output.

PGI Compiler User's Guide for OpenPOWER CPUs 1

Getting Started

1.2. Creating an Example

Let'slook at asimple example of using the PGI compiler to create, compile, and execute a
program that prints:
hello

1.

1.

Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello. f:

print *, "hello"
end

. Compile the program.

When you created your program, you called it hello. f. In this example, we compileit from
a shell command prompt using the default pgfortran driver option. Use the following
syntax:

S pgfortran hello.f

By default, the executable output is placed in the file a . out. However, you can specify an
output file name by using the -o option.

To place the executable output in the file hello, use this command:
$ pgfortran -o hello hello.f

. Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and
press the Return or Enter key on your keyboard:

S hello

Below is the expected output:
hello

3. Invoking the Command-level PGl Compilers

To trandlate and link a Fortran, C, or C++ program, the pgfortran, pgcc and pgc++
commands do the following:

1

2.
3.
4,

Preprocess the source text file.

Check the syntax of the source text.

Generate an assembly language file.

Pass control to the subsequent assembly and linking steps.

1.3.1. Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:
pgfortran [options] [path]filename [...]

PGI Compiler User's Guide for OpenPOWER CPUs

Getting Started

Where:

options
is one or more command-line options, al of which are described in detail in Use Command-
line Options.

path
is the pathname to the directory containing the file named by filename. If you do not specify
the path for afilename, the compiler uses the current directory. Y ou must specify the path
separately for each filename not in the current directory.

filename
isthe name of a source file, preprocessed source file, assembly-language file, object file,
or library to be processed by the compilation system. Y ou can specify more than one
[path]filename.

1.3.2. Command-line Options

The command-line options control various aspects of the compilation process. For a complete
alphabetical listing and a description of all the command-line options, refer to Use Command-
Line Options.

Thefollowing list provides important information about proper use of command-line options.

» Command-line options and their arguments are case sensitive.
» The compiler drivers recognize characters preceded by a hyphen (-) as command-line
options. For example, the -M11i st option specifies that the compiler creates alisting file.

The convention for the text of this manual is to show command-line options using a dash instead of a
hyphen; for example, you see -M1ist.

» Theorder of options and the filename is flexible. That is, you can place options before and
after the filename argument on the command line. However, the placement of some options
issignificant, such asthe -1 option, in which the order of the filenames determines the
search order.

n If two or more options contradict each other, the last one in the command line takes precedence.

1.3.3. Fortran Directives and C/C++ Pragmas

Y ou can insert Fortran directives and C/C++ pragmas in program source code to alter the effects
of certain command-line options and to control various aspects of the compilation process for a
specific routine or a specific program loop. For more information on Fortran directives and C/
C++ pragmas, refer to Using OpenM P and Using Directives and Pragmas.

1.4. Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create
input and output files. This section describes the input and output filename conventions for the
phases of the compilation process.

PGI Compiler User's Guide for OpenPOWER CPUs 3

Getting Started

1.4.1. Input Files

Y ou can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files,
object files, and libraries as inputs on the command line. The compiler driver determines the type
of each input file by examining the filename extensions.

For systems with a case-insensitive file system, use the —Mpreprocess option, described in ‘Command-
Line Options Reference’ section of the PGl Compiler's Reference Manual, under the commands for Fortran
preprocessing.

The drivers use the following conventions:

filename. f
indicates a Fortran sourcefile.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.F90
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.£90
indicates a Fortran 90/95 source file that isin freeform format.

filename.£95
indicates a Fortran 90/95 source file that isin freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that
can contain macros and preprocessor directives (to be preprocessed).

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.i
indicates a preprocessed C or C++ sourcefile.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

PGI Compiler User's Guide for OpenPOWER CPUs 4

http://www.pgroup.com/resources/docs.htm

Getting Started

filename.cpp
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).
filename.s
indicates an assembly-language file.
filename.o
indicates an object file.
filename.a
indicates alibrary of object files.
filename.so
indicates alibrary of shared object files.

Thedriver passesfileswith . s extensionsto the assembler and fileswith .o, .so,and . a
extensions to the linker. Input files with unrecognized extensions, or no extension, are also passed
to the linker.

Fileswitha .F (Capital F) or . FOR suffix arefirst preprocessed by the Fortran compilers and
the output is passed to the compilation phase. The Fortran preprocessor functions like cpp for C
programs, but is built in to the Fortran compilers rather than implemented through an invocation
of cpp. This design ensures consistency in the preprocessing step regardless of the type or
revision of operating system under which you are compiling.

Any input files not needed for a particular phase of processing are not processed. For example,

if on the command line you specify an assembly-language file (filename. s) and the -5
option to stop before the assembly phase, the compiler takes no action on the assembly language
file. Processing stops after compilation and the assembler does not run. In this scenario, the
compilation must have been completed in a previous pass which created the . s file. For a
complete description of the -5 option, refer to Output Files.

In addition to specifying primary input files on the command line, code within other files can
be compiled as part of include files using the INCLUDE statement in a Fortran source file or
the preprocessor #include directive in Fortran source files that use a . F extension or C and C++
sourcefiles.

When linking a program with alibrary, the linker extracts only those library components that the
program needs. The compiler driverslink in several libraries by default. For more information
about libraries, refer to Create and Use Libraries.

1.4.2. Output Files

By default, an executable output file produced by one of the PGI compilersis placed in thefile
a.out. Asthe Hello example shows, you can use the -o option to specify the output file name.

If you use option -F (Fortran only), -p (C/C++ only), -s or -c, the compiler produces afile
containing the output of the last completed phase for each input file, as specified by the option
supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked object
file respectively. Similarly, the -£ option does not produce afile, but displays the preprocessed
source file on the standard output. Using any of these options, the -o option isvalid only if you
specify asingle input file. If no errors occur during processing, you can use the files created by
these options as input to a future invocation of any of the PGI compiler drivers.

PGI Compiler User's Guide for OpenPOWER CPUs 5

Getting Started

The following table lists the stop-after options and the output files that the compilers create when
you use these options. It also indicates the accepted input files.

Table 2 Option Descriptions

Option Stop After Input Output

-E preprocessing Source files preprocessed file to standard out

-F preprocessing Source files. This option is not valid for preprocessed file (. £)
pgcc or pgc++.

-P preprocessing Source files. This option is not valid for preprocessed file (. 1)
pgfortran.

-S compilation Source files or preprocessed files assembly-language file (. s)

-c assembly Source files, or preprocessed files, or unlinked object file (. o)
assembly-language files

none linking Source files, or preprocessed files, executable file (a . out)
assembly-language files, object files, or
libraries

If you specify multiple input files or do not specify an object filename, the compiler uses the
input filenames to derive corresponding default output filenames of the following form, where
filename is the input filename without its extension:

filename. f

indicates a preprocessed file, if you compiled a Fortran file using the —F option.
filename.i

indicates a preprocessed file, if you compiled using the —p option.
filename.lst

indicates alisting file from the -M11ist option.
filename.o

indicates a object file from the —c option.
filename.s

indicates an assembly-language file from the -s option.

Unless you specify otherwise, the destination directory for any output file is the current working directory. If
the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output filesproto.o and protol. o, al of which are binary object files.
Prior to compilation, thefileprotol . F ispreprocessed because it has a . F filename extension.

1.9. Fortran, C, and C++ Data Types

The PGI Fortran, C, and C++ compilers recognize scalar and aggregate data types. A scalar data
type holds asingle value, such asthe integer value 42 or the real value 112.6. An aggregate data
type consists of one or more scalar data type objects, such as an array of integer values.

PGI Compiler User's Guide for OpenPOWER CPUs 6

Getting Started

For information about the format and alignment of each data type in memory, and the range of
values each type can have on OpenPOWER processor-based systems, refer to ‘ Fortran, C, and C+
+ Data Types' section of the PGI Compiler’s Reference Guide.

For more information on OpenPOWER-specific data representation, refer to the OpenPOWER
ABI for Linux Supplement, Power Architecture 64-Bit ELF V2 ABI Specification listed in the
Related Publications section in the Preface.

1.6. Parallel Programming Using the PGI Compilers

The PGI compilers support many styles of parallel programming:

» Automatic shared-memory parallel programs compiled using the -Mconcur option to
pgfortran, pgcc Of pge++. Paralel programs of this variety can be run on shared-
memory paralel (SMP) systems such as dual-core or multi-processor workstations.

» OpenMP shared-memory parallel programs compiled using the -mp option to pgfortran,
pgcc or pgc++. Parallel programs of this variety can be run on SMP systems. Carefully
coded user-directed parallel programs using OpenM P directives can often achieve significant
speed-ups on dual-core workstations or large numbers of processors on SMP server systems.
Using OpenM P contains compl ete descriptions of user-directed parallel programming.

» Distributed computing using an MPI message-passing library for communication between
distributed processes.

» Accelerated computing using either alow-level model such as CUDA Fortran or ahigh-level
model such asthe PGI Accelerator model or OpenACC to target a many-core GPU or other
attached accelerator.

The first two types of parallel programs are collectively referred to as SMP parallel programs.

On asingle silicon die, today's CPUs incorporate two or more complete processor cores —
functional units, registers, level 1 cache, level 2 cache, and so on. These CPUs are known as
multicore processors. For purposes of threads or OpenMP parallelism, these cores function as
two or more distinct processors. However, the processing cores are on a single chip occupying
asingle socket on a system motherboard. For purposes of PGl software licensing, a multicore
processor istreated as asingle CPU.

1.6.1. Run SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run on
more than one processor, set the OMP_NUM_THREADS environment variable to the desired
number of processors. For information on how to set environment variables, refer to Setting
Environment Variables.

If you set OMP_NUM_THREADS to a number larger than the number of physical processors, your
program may execute very slowly.

PGI Compiler User's Guide for OpenPOWER CPUs 7

http://www.pgroup.com/resources/docs.htm

Getting Started

1.7. Platform-specific considerations
The OpenPOWER Linux platform is supported by the PGI compilers and tools:

1.7.1. Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGl supports many of these
extensions, thus allowing the PGI C and C++ compilers to compile most programs that the
GNU compilers can compile. A few header files not interoperable with the PGI compilers have
been rewritten. Thesefilesareincluded in $PGI/1linuxpower/include andin $PGI/
linuxpower/include --gcc*,suchasfloat.h,machine / _types.h, stddef.h,
sys/cdefs.h and others. Also, PGI’sversion of stdarg.h supports changesin newer
versions of Linux.

If you are using the PGI C or C++ compilers, please make sure that the supplied versions of these
include files are found before the system versions. This hierarchy happens by default unless you
explicitly add a-I option that references one of the system include directories.

Running Parallel Programs on Linux

Y ou may encounter difficulties running auto-parallel or OpenM P programs on Linux systems
when the per-thread stack sizeis set to the default (2MB). If you have unexplained failures,
please try setting the environment variable oMP_STACKSIZE to alarger value, such as 8MB. For
information on setting environment variables, refer to Setting Environment Variables.

If your program is still failing, you may be encountering the hard 8 MB limit on main process
stack sizesin Linux. You can work around the problem by issuing the following command:

In csh;

o)

% limit stacksize unlimited

In bash, sh, zsh, or ksh, use:

$ ulimit -s unlimited

1.8. Site-Specific Customization of the Compilers

If you are using the PGl compilers and want all your users to have access to specific libraries or
other files, there are specia filesthat allow you to customize the compilers for your site.

1.8.1. Use siterc Files

The PGI compiler drivers utilize afile named si terc to enable site-specific customization of
the behavior of the PGl compilers. The siterc fileislocated in the bin subdirectory of the

PGI Compiler User's Guide for OpenPOWER CPUs 8

Getting Started

PGI installation directory. Using siterc, you can control how the compiler driversinvoke the
various components in the compilation tool chain.

1.8.2. Using User rc Files

In addition to the siterc file, user rc files can reside in a given user's home directory, as specified
by the user's HOME environment variable. Y ou can use these files to control the respective PGI
compilers. All of these files are optional.

On Linux, thesefilesare named .mypgf90rc, .mypgccre, and .mypgc++rc.

The following examples show how you can use these rc filesto tailor a given installation for a

particular purpose.

Table 3 Examples of Usine siterc and User rc Files

To do this...

Add the line shown to the indicated file(s)

Make available to all linuxpower
compilations the libraries found in
/opt/newlibs/64

set SITELIB=/opt/newlibs/64;

to /opt/pgi/linuxpower/16.10/bin/siterc

Add to all linuxpower compilations a new
library path: /opt/local/fast

append SITELIB=/opt/local/fast;

to /opt/pgi/linuxpower/16.10/bin/siterc

With linuxpower compilations, change
-Mmpi to linkin /opt/mympi/64/

libmpix.a

set MPILIBDIR=/opt/mympi/64;

set MPILIBNAME=mpix;

to /opt/pgi/linuxpower/16.10/bin/siterc

With linuxpower compilations, always
add -DIS64BIT -DIBM

set SITEDEF=IS64BIT IBM;

to /opt/pgi/linuxpower/16.10/bin/siterc

Build an F90 or F95 executable for
linuxpower or linuxpower that resolves
PGl shared objects in the relative
directory . /REDIST

set set RPATH=./REDIST;

to ~/ .mypgfortranrc

Note.This only affects the behavior of PGFORTRAN for the given user.

1.9. Common Development Tasks

Now that you have a brief introduction to the compiler, let'slook at some common devel opment
tasks that you might wish to perform.

PGI Compiler User's Guide for OpenPOWER CPUs 9

Getting Started

» When you compile code you can specify a number of options on the command line that
define specific characteristics related to how the program is compiled and linked, typically
enhancing or overriding the default behavior of the compiler. For alist of the most common
command line options and information on all the command line options, refer to Use
Command-line Options.

» Code optimization and parallelization allows the compiler to organize your code for efficient
execution. While possibly increasing compilation time and making the code more difficult
to debug, these techniques typically produce code that runs significantly faster than code
that does not use them. For more information on optimization and parallelization, refer to
Optimizing and Parallelizing.

» Functioninlining, a special type of optimization, replaces acall to afunction or a subroutine
with the body of the function or subroutine. This process can speed up execution by
eliminating parameter passing and the function or subroutine call and return overhead. In
addition, function inlining allows the compiler to optimize the function with the rest of the
code. However, function inlining may also result in much larger code size with no increase in
execution speed. For more information on function inlining, refer to Using Function Inlining.

» Directives and pragmas allow users to place hints in the source code to help the compiler
generate better assembly code. Y ou typically use directives and pragmas to control the
actions of the compiler in a particular portion of a program without affecting the program
asawhole. You place them in your source code where you want them to take effect. A
directive or pragmatypically staysin effect from the point where included until the end
of the compilation unit or until another directive or pragma changes its status. For more
information on directives and pragmas, refer to Using OpenM P and Using Directives and
Pragmas.

» Alibrary isacollection of functions or subprograms used to develop software. Libraries
contain "helper" code and data, which provide services to independent programs, allowing
code and data to be shared and changed in a modular fashion. The functions and programs
in alibrary are grouped for ease of use and linking. When creating your programs, it is often
useful to incorporate standard libraries or proprietary ones. For more information on this
topic, refer to Creating and Using Libraries.

» Environment variables define a set of dynamic values that can affect the way running
processes behave on acomputer. It is often useful to use these variables to set and pass
information that alters the default behavior of the PGI compilers and the executables
which they generate. For more information on these variables, refer to Using Environment
Variables.

» Deployment, though possibly an infrequent task, can present some unique issues related
to concerns of porting the code to other systems. Deployment, in this context, involves
distribution of a specific file or set of filesthat are already compiled and configured. The
distribution must occur in such away that the application executes accurately on another
system which may not be configured exactly the same as the system on which the code was
created. For more information on what you might need to know to successfully deploy your
code, refer to Distributing Files — Deployment.

» Anintrinsicisafunction available in a given language whose implementation is handled
specially by the compiler. Intrinsics make using processor-specific enhancements easier
because they provide a C/C++ language interface to assembly instructions. In doing so, the
compiler manages details that the user would normally have to be concerned with, such as
register names, register allocations, and memory locations of data.

PGI Compiler User's Guide for OpenPOWER CPUs 10

Chapter 2.
USE COMMAND-LINE OPTIONS

A command line option allows you to control specific behavior when a program is compiled and
linked. This section describes the syntax for properly using command-line options and provides a
brief overview of afew of the more common options.

For a complete list of command-line options, their descriptions and use, refer to the Command-Line
Options Reference section of the PGI Compiler’s Reference Guide.

2.1. Command-line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for these
options. There are alarge number of options available to you, yet most users only use a few of
them. So, start simple and progress into using the more advanced options.

By default, the PGl compilers generate code that is optimized for the type of processor on which
compilation is performed, the compilation host. Before adding options to your command-line,
review Help with Command-line Options and Frequently-used Options.

2.1.1. Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not
recognize an option, you get an unknown switch error. The error can be downgraded to awarning
by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

PGI Compiler User's Guide for OpenPOWER CPUs 1

http://www.pgroup.com/resources/docs.htm

Use Command-line Options

Horizontal ellipsesindicate that zero or more instances of the preceding item are valid.

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in the Command-Line Options Reference section of
the PGI Compiler’s Reference Guide .

2.1.2. Command-line Suboptions

Some options accept several suboptions. Y ou can specify these suboptions either by using the full
option statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:

pgfortran -Mvect=simd -Mvect=noaltcode

pgfortran -Mvect=simd,noaltcode

2.1.3. Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both -Mvect and
-Mnovect are available. -Mvect enables vectorization and -Mnovect disablesit. If you used
both of these commands on acommand line, they would conflict.

Rule: When you use conflicting options on a command line, the last encountered option takes precedence
OVEr any previous one.

The conflicting options rule is important for a number of reasons.

» Someoptions, such as - fast, include other options. Therefore, it is possible for you to be
unaware that you have conflicting options.

» You can usethisrule to create makefiles that apply specific flagsto a set of files, as shown in
the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags
defined for CCFLAGS but disables vectorization.

CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$ (CCFLAGS) -Mnovect

2.2. Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which
options are available, when to use them, and which options most users find effective.

Using -help

The -help option is useful because it provides information about all options supported by a
given compiler.

PGI Compiler User's Guide for OpenPOWER CPUs 12

http://www.pgroup.com/resources/docs.htm

Use Command-line Options

You can use -help in one of three ways:

>

Use -help with no parametersto obtain alist of al the available options with a brief one-
line description of each.

Add a parameter to -he1p to restrict the output to information about a specific option. The
syntax for thisusageis:

-help <command line option>

Suppose you use the following command to restrict the output to information about the
-fast option:
$ pgfortran -help -fast

The output you seeis similar to:

-fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the -he1p parameter to restrict the output to information
about the help command. The usage information for -he1p shows how groups of options
can be listed or examined according to function.

S pgfortran -help -help
-help[=groups|asm|debug|language|linker|opt|other|overall |phase|prepro]
suffix|switch|target|variable]

Add a parameter to -help to restrict the output to a specific set of options or to abuilding
process. The syntax for this usageisthis:
-help=<subgroup>

By using the command pgfortran -help -help, aspreviously shown, we can see
output that shows the available subgroups. Y ou can use the following command to restrict
the output on the -he1p command to information about only the options related to only one
group, such as debug information generation.

S pgfortran -help=debug

The output you seeis similar to this:

Debugging switches:

-M[no]lbounds Generate code to check array bounds

-Mchkfpstk Check consistency of floating point stack at subprogram calls
(32-bit only)

-Mchkstk Check for sufficient stack space upon subprogram entry
-Mcoff Generate COFF format object

-Mdwarfl Generate DWARF1l debug information with -g

-Mdwarf2 Generate DWARF2 debug information with -g

-Mdwarf3 Generate DWARF3 debug information with -g

-Melf Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optimizations

For a complete description of subgroups, refer to the -he1p description in the Command-
line Options Reference section of the PGI Compiler Reference Manual .

PGI Compiler User's Guide for OpenPOWER CPUs 13

Use Command-line Options

2.3. Getting Started with Performance

One of the top priorities of most usersis performance and optimization. This section provides a
quick overview of afew of the command-line options that are useful in improving performance.

2.3.1. Using -fast

PGI compilersimplement awide range of options that allow users a fine degree of control
on each optimization phase. When it comes to optimization of code, the quickest way to
start isto use the option -fast. These options create a generally optimal set of flags. They
incorporate optimization options to enable use of vector streaming SIMD instructions. They
enabl e vectorization with SIMD instructions, cache alignment, and flush to zero mode.

The contents of the - fast option are host-dependent. Further, you should use these options on both
compile and link command lines.

The following table shows the typical -fast options.

Table 4 Typical -fast Options

Use this option... To do this...

-02 Specifies a code optimization level of 2.
-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each iteration.
-Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

-Mpre Indicates partial redundancy elimination

-fast typicaly includes the options shown in this table:

Table 5 Additional -fast Options

Use this option... To do this...

-Mvect=simd Generates packed SIMD instructions.
-Mcache align Aligns long objects on cache-line boundaries
-Mflushz Sets flush-to-zero mode.

-M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SIMD instructions, use the PGFORTRAN compiler and
the - fast option.

PGI Compiler User's Guide for OpenPOWER CPUs 14

Use Command-line Options

To see the specific behavior of -fast for your target, use the following command:

$ pgfortran -help -fast

2.3.2. Other Performance-Related Options

While -fast isdesigned to be the quickest route to best performance, it islimited to routine
boundaries. Depending on the nature and writing style of the source code, the compiler often
can perform further optimization by knowing the global context of usage of a given routine. For
instance, determining the possible value range of actual parameters of a routine could enable
aloop to be vectorized; similarly, determining static occurrence of calls helps to decide which
routine is beneficial to inline.

These types of global optimizations are under control of Interprocedural Analysis (1PA)

in PGl compilers. Option -Mipa enables Interprocedural Analysis. -Mipa=fast isthe
recommended option to get best performances for global optimization. Y ou can also add the
suboption in1ine to enable automatic global inlining across files. Y ou might consider using
-Mipa=fast, inline. Thisoption for interprocedural analysis and global optimization can
improve performance.

Y ou may also obtain further performance improvements by experimenting with the
-M<pgflag> options described in the section ‘ -M Options by Category’ section of the PGI
Compiler’s Reference Guide. These optionsinclude, but are not limited to, -Mvect, -Munroll,
-Minline, -Mconcur, -Mpfi and -Mpfo. However, performance improvements using these
options are typically application- and system-dependent. It isimportant to time your application
carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Optimizing and Parallelizing. For specific
information about these options, refer to the * Optimization Controls’ section of the PGI
Compiler’s Reference Guide.

2.4. Frequently-used Options

In addition to overal performance, there are a number of other options that many users find
useful when getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the compl ete description of each option available
in the Command-Line Options Reference section of the PGl Compiler’ s Reference Guide.

Also, there are a number of suboptions available with each of the -M options listed. For more
information on those options, refer to the specific section on M Options by Category.

Table 6 Commonly Used Command-Line Options

Use this option... To do this...

-fast This options creates a generally optimal set of flags for targets that support SIMD
capability. It incorporates optimization options to enable use of vector streaming SIMD
instructions (64-bit targets) and enable vectorization with SIMD instructions, cache
aligned and flushz.

-g Instructs the compiler to include symbolic debugging information in the object module.

PGI Compiler User's Guide for OpenPOWER CPUs 15

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Use this option...

Use Command-line Options

To do this...

-—-gopt Instructs the compiler to include symbolic debugging information in the object file, and
to generate optimized code identical to that generated when -g is not specified.
-help Provides information about available options.

-mcmodel=medium

Enables medium=model core generation for 64-bit targets, which is useful when the
data space of the program exceeds 4GB.

-Mconcur Instructs the compiler to enable auto-concurrentization of loops. If specified,
the compiler uses multiple processors to execute loops that it determines to be
parallelizable; thus, loop iterations are split to execute optimally in a multithreaded
execution context.

-Minfo Instructs the compiler to produce information on standard error.

-Minline Enables function inlining.

-Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables automatic procedure
inlining.

-Mpfior-Mpfo

Enable profile feedback driven optimizations

-Mkeepasm

Keeps the generated assembly files.

-Munroll

Invokes the loop unroller to unroll loops, executing multiple instances of the loop
during each iteration. This also sets the optimization level to 2 if the level is set to less
than 2, or if no -O or -g options are supplied.

-M[no]vect

Enables/Disables the code vectorizer.

--[no_Jexceptions

Removes exception handling from user code. For C++, declares that the functions in
this file generate no C++ exceptions, allowing more optimal code generation.

-0

Names the output file.

-0 <level>

Specifies code optimization level where <level>is 0, 1, 2, 3, or 4.

-Wl, <option>

Compiler driver passes the specified options to the linker.

PGI Compiler User's Guide for OpenPOWER CPUs 16

Chapter 3.
OPTIMIZING AND PARALLELIZING

Source code that is readable, maintainable, and produces correct results is not always organized
for efficient execution. Normally, the first step in the program development process involves
producing code that executes and produces the correct results. Thisfirst step usually involves
compiling without much worry about optimization. After code is compiled and debugged, code
optimization and parall€lization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler to
generate optimized code. Optimization is not always performed since it increases compilation
time and may make debugging difficult. However, optimization produces more efficient code that
usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. Y ou can use a number
of options to specify the optimization levels, including -0, -Mvect, -Mipa, and -Mconcur.

In addition, you can use several of the -M<pgflag> switchesto control specific types of
optimization and parall€lization.

This chapter describes these optimization options:

-fast -Minline -0 -Munroll
-Mconcur -Mvect -Minfo -Mneginfo
-Msafeptr

-fast -Minline -0 -Munroll
-Mconcur -Mpfi -Mvect -Minfo
-Mneginfo -Mpfo

This chapter aso describes how to choose optimization options to use with the PGl compilers.
This overview ishelpful if you are just getting started with one of the PGI compilers, or wish to
experiment with individual optimizations.

Complete specifications of each of these optionsis available in the Command-Line Options
Reference section of the PGl Compiler Reference Manual.

PGI Compiler User's Guide for OpenPOWER CPUs 17

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

3.1. Overview of Optimization

In general, optimization involves using transformations and replacements that generate more
efficient code. Thisis done by the compiler and involves replacements that are independent of
the particular target processor's architecture as well as replacements that take advantage of the
OpenPOWER architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization

Global Optimization

L oop Optimization

Optimization Through Function Inlining
Profile Feedback Optimization (PFO)

3.1.1. Local Optimization

A basic block is a sequence of statements in which the flow of control enters at the beginning and
leaves at the end without the possibility of branching, except at the end. Local optimization is
performed on a block-by-block basis within a program’ s basic blocks.

The PGI compilers perform many types of local optimization including: algebraic identity
removal, constant folding, common sub-expression elimination, redundant load and store
elimination, scheduling, strength reduction, and peephole optimizations.

3.1.2. Global Optimization

This optimization is performed on a subprogram/function over all its basic blocks. The optimizer
performs control-flow and data-flow analysis for an entire program unit. All loops, including
those formed by ad hoc branches such as IFs or GOTOs, are detected and optimized.

Glabal optimization includes: constant propagation, copy propagation, dead store elimination,
global register alocation, invariant code motion, and induction variable elimination.

3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling
options. Vectorization transforms |oops to improve memory access performance and make use of
packed vector instructions which perform the same operation on multiple data items concurrently.
Unrolling replicates the body of loops to reduce loop branching overhead and provide better
opportunities for local optimization, vectorization and scheduling of instructions. Performance for
loops on systems with multiple processors may also improve using the parallelization features of
the PGI compilers.

3.1.4. Function Inlining

This optimization allows a call to afunction to be replaced by a copy of the body of that function.
This optimization will sometimes speed up execution by eliminating the function call and

PGI Compiler User's Guide for OpenPOWER CPUs 18

Optimizing and Parallelizing

return overhead. Function inlining may also create opportunities for other types of optimization.
Function inlining is not always beneficial. When used improperly it may increase code size and
generate less efficient code.

3.1.5. Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from a trace file produced by
specially instrumented executables which capture and save information on branch frequency,
function and subroutine call frequency, semi-invariant values, loop index ranges, and other
input data dependent information that can only be collected dynamically during execution of a
program.

By definition, use of profile-feedback optimization is atwo-phase process: compilation and
execution of a specially-instrumented executable, followed by a subsequent compilation which
reads atrace file generated during the first phase and uses the information in that trace file to
guide compiler optimizations.

3.2. Getting Started with Optimization

The first concern should be getting the program to execute and produce correct results. To get the
program running, start by compiling and linking without optimization. Add -00 to the compile
line to select no optimization; or add -g to debug the program easily and isolate any coding
errors exposed during porting to OpenPOWER platform.

To get started quickly with optimization, a good set of options to use with any of the PGI
compilersis-fast . For example:
$ pgfortran -fast -Mipa=fast,inline prog.f

For al of the PGI Fortran, C, and C++ compilers, the -fast -Mipa=fast, inline options
generally produce code that is well-optimized without the possibility of significant slowdowns
due to pathological cases.

» The-fast option isan aggregate option that includes a number of individual PGI
compiler options; which PGI compiler options are included depends on the target for which
compilation is performed.

» The-Mipa=fast, inline optioninvokesinterprocedural analysis (IPA), including severa
IPA suboptions. The inline suboption enables automatic inlining with I1PA. If you do not
wish to use automatic inlining, you can compile with -Mipa=fast and use severa IPA
suboptions without inlining.

By experimenting with individual compiler options on afile-by-file basis, further significant
performance gains can sometimes be realized. However, depending on the coding style,
individual optimizations can sometimes cause slowdowns, and must be used carefully to ensure
performance improvements.

There are other useful command line options related to optimization and parallelization, such as -
help, -Minfo, -Mneginfo, -dryrun, and -v.

PGI Compiler User's Guide for OpenPOWER CPUs 19

Optimizing and Parallelizing

3.2.1. -help

As described in Help with Command-Line Options, you can see a specification of any command-
line option by invoking any of the PGI compilers with -he1p in combination with the optionin
guestion, without specifying any input files.

For example, you might want information on -0:
$ pgfortran -help -O

The resulting output is similar to this:

-0 Set opt level. All -0l optimizations plus traditional scheduling and
global scalar optimizations performed

Or you can see the full functionality of -he1lp itself, which can return information on either an

individual option or groups of options:

$ pgfortran -help -help

The resulting output is similar to this:

-help[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

3.2.2. -Minfo

Y ou can use the -Minfo option to display compile-time optimization listings. When this option
is used, the PGI compilersissue informational messages to standard error (stderr) as compilation
proceeds. From these messages, you can determine which loops are optimized using unrolling,
vector instructions, vectorization, parallelization, interprocedural optimizations and various
miscellaneous optimizations. Y ou can aso see where and whether functions are inlined.

For more information on -Minfo, refer to Optimization Controls section of the PGI Compiler
Reference Manual.

3.2.3. -Mneginfo

Y ou can use the -Mneginfo option to display informational messages to standard error (stderr)
that explain why certain optimizations are inhibited.

For more information on -Mneginfo, refer to Optimization Controls section of the PGI
Compiler Reference Manual.

3.2.4. -dryrun

The -dryrun option can be useful as a diagnostic tool if you need to see the steps used by

the compiler driver to preprocess, compile, assemble and link in the presence of a given set of
command line inputs. When you specify the -dryrun option, these steps are printed to standard
error (stderr) but are not actually performed. For example, you can use this option to inspect the
default and user-specified libraries that are searched during the link phase, and the order in which
they are searched by the linker.

PGI Compiler User's Guide for OpenPOWER CPUs 20

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

3.2.5.-v

The -+ option is similar to -dryrun, except each compilation step is performed and not simply
printed.

3.2.6. PGPROF

PGPROF isaprofiling tool that provides away to visualize the performance of the components
of your program. Using tables and graphs, PGPROF associates execution time and resource
utilization data with the source code and instructions of your program. This association allows
you to see where a program’ s execution time is spent. Through resource utilization data and
compiler analysisinformation, PGPROF helps you to understand why certain parts of your
program have high execution times. Thisinformation may help you with selecting which
optimization options to use with your program.

PGPROF also allows you to correlate the messages produced by -Minfo and -Mneginfo,
described above, to your program’ s source code. This feature is known as the Common Compiler
Feedback Format (CCFF).

For more information on PGPROF, refer to the PGPROF Profiler Guide.

3.3. Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information
about how your program was optimized, or why a particular optimization was not made, in
the executable file. To append thisinformation to the object file, use the compiler option
-Minfo=ccff.

If you choose to use PGPROF to aid with your optimization, PGPROF can extract this
information and associate it with source code and other performance data, allowing you to view
al of thisinformation simultaneously in one of the available profiler panels.

3.4. Local and Global Optimization

This section describes local and global optimization.

3.4.1. -Msafeptr

The -Msa feptr option can significantly improve performance of C/C++ programsin which
thereis known to be no pointer aliasing. For obvious reasons, this command-line option must be
used carefully. There are anumber of suboptionsfor -Msafeptr:

» -Msafeptr=all —All pointersare safe. Equivalent to the default setting: -Msafeptr.

» -Msafeptr=arg— Function formal argument pointers are safe. Equivalent to
-Msafeptr=dummy.

» -Msafeptr=global —Global pointers are safe.

» -Msafeptr=local —Loca pointersare safe. Equivalent to -Msafeptr=auto.

PGI Compiler User's Guide for OpenPOWER CPUs 21

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

» -Msafeptr=static —Staticlocal pointersare safe.

If your C/C++ program has pointer aliasing and you al so want automating inlining, then
compiling with -Mipa=fast Of -Mipa=fast, inline includes pointer aliasing optimizations.
IPA may be able to optimize some of the alias referencesin your program and leave intact those
that cannot be safely optimizied.

34.2.-0

Using the PGI compiler commands with the -o<level> option (the capital O isfor Optimize), you
can specify any integer level from O to 4.

-00

Level zero specifies no optimization. A basic block is generated for each language statement. At
thislevel, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. Thislevel is useful

for theinitial execution of a program. It is also useful for debugging, since thereis adirect
correlation between the program text and the code generated. To enable debugging, include -g on
your compile line.

-01

Level one specifieslocal optimization. Scheduling of basic blocksis performed. Register
allocation is performed.

Local optimization is a good choice when the codeis very irregular, such as code that contains
many short statements containing | F statements and does not contain loops (DO or DO WHILE
statements). Although this case rarely occurs, for certain types of code, this optimization level
may perform better than level-two (-02).

-0

When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is
enabled.

-02

Level two specifies global optimization. This level performs al level-one local optimization as
well aslevel two global optimization described in -0. In addition, more advanced optimizations
such as SIMD code generation, cache alignment, and partial redundancy elimination are enabled.

-03

Level three specifies aggressive global optimization. This level performs all level-one and level-
two optimizations and enables more aggressive hoisting and scalar replacement optimizations that
may or may not be profitable.

PGI Compiler User's Guide for OpenPOWER CPUs 22

Optimizing and Parallelizing

-04

Level four performs all level-one, level-two, and level-three optimizations and enables haisting of
guarded invariant floating point expressions.

Types of Optimizations

The PGI compilers perform many different types of local optimizations, including but not limited
to:

Algebraic identity removal

Constant folding

Common subexpression elimination
Local register optimization

Peephol e optimizations

Redundant load and store elimination
Strength reductions

Level-two optimization (-02 or -0) specifies global optimization. The -fast option generally
specifies global optimization; however, the -fast switch varies from release to release,
depending on a reasonabl e selection of switches for any one particular release. The -0 or -02
level performs all level-one local optimizations as well as global optimizations. Control flow
analysisis applied and global registers are allocated for all functions and subroutines. Loop
regions are given special consideration. This optimization level is a good choice when the
program contains loops, the loops are short, and the structure of the codeis regular.

The PGI compilers perform many different types of global optimizations, including but not
limited to:

Branch to branch elimination
Constant propagation

Copy propagation

Dead store elimination

Global register allocation
Induction variable elimination
Invariant code motion

Y ou can explicitly select the optimization level on the command line. For example, the following
command line specifies level-two optimization which resultsin global optimization:
$ pgfortran -02 prog.f

The default optimization level changes depending on which options you select on the command
line. For example, when you select the -g debugging option, the default optimization level is
set to level-zero (-00). However, if you need to debug optimized code, you can use the -gopt
option to generate debug information without perturbing optimization. For a description of the
default levels, refer to Default Optimization Levels.

PGI Compiler User's Guide for OpenPOWER CPUs 23

Optimizing and Parallelizing

The -fast optionincludes -02 on al targets. If you want to override the default for - fast with
-03 while maintaining all other elements of -fast, smply compile asfollows:
$ pgfortran -fast -03 prog.f

3.5. Loop Unrolling using -Munroll

This optimization unrolls loops, which reduces branch overhead, and can improve execution
speed by creating better opportunities for instruction scheduling. A loop with a constant count
may be completely unrolled or partialy unrolled. A loop with a hon-constant count may also be
unrolled. A candidate loop must be an innermost loop containing one to four blocks of code.

The following example shows the use of the -Munro11 option:
$ pgfortran -Munroll prog.f

The -Munroll optionisincluded as part of -fast on all targets. The loop unroller expands
the contents of aloop and reduces the number of times aloop is executed. Branching overhead
is reduced when aloop isunrolled two or more times, since each iteration of the unrolled loop
corresponds to two or more iterations of the original loop; the number of branch instructions
executed is proportionately reduced. When aloop is unrolled completely, the loop’s branch
overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When aloop is completely
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented.
The code generator can take advantage of more possibilities for instruction grouping or filling
instruction delays found within the [oop.

Examples Showing Effect of Unrolling

The following side-by-side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop; it is not meant to imply
that the programmer needs to manually change code. In fact, manually unrolling your code can sometimes
inhibit the compiler’s analysis and optimization.

Table 7 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z
INTEGER I INTEGER I
DO I=1, 100 DO I=1, 100, 2
Z =72 + A(i) * B(i) Z =72 + A(i) * B(i)
END DO Z =272 + A(i+1) * B(i+1)
END END DO
END

PGI Compiler User's Guide for OpenPOWER CPUs 24

Optimizing and Parallelizing

Using the -Minfo option, the compiler informs you when aloop is being unrolled. For example,
amessage similar to the following, indicating the line number, and the number of times the code
isunrolled, displays when aloop is unrolled:

dot:
5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-optionsto -Munrol1, Or using -Mnounrol1, you can control
whether and how loops are unrolled on afile-by-file basis. Using directives or pragmas, you can
precisely control whether and how a given loop is unrolled. For more information on -Munroll,
refer to Use Command-line Options.

3.6. Vectorization using -Mvect

The -Mvect optionisincluded as part of -fast on al targets. If your program contains
computationally-intensive loops, the -Mvect option may be helpful. If in addition you specify
-Minfo, and your code contains loops that can be vectorized, the compiler reports relevant
information on the optimizations applied.

When a PGl compiler command is invoked with the -Mvect option, the vectorizer scans code
searching for loops that are candidates for high-level transformations such as loop distribution,
loop interchange, cachetiling, and idiom recognition (replacement of a recognizable code
sequence, such as a reduction loop, with optimized code sequences or function calls). When the
vectorizer finds vectorization opportunities, it internally rearranges or replaces sections of loops
(the vectorizer changes the code generated; your source code’ s loops are not altered). In addition
to performing these loop transformations, the vectorizer produces extensive data dependence
information for use by other phases of compilation and detects opportunities to use vector or
packed vector instructions on OpenPOWER processors where these are supported.

The -Mvect option can speed up code which contains well-behaved countable loops which
operate on large floating point arraysin Fortran and their C/C++ counterparts. However, it is
possible that some codes will show a decrease in performance when compiled with the -Mvect
option due to the generation of conditionally executed code segments, inability to determine data
alignment, and other code generation factors. For this reason, it is recommended that you check
carefully whether particular program units or loops show improved performance when compiled
with this option enabled.

3.6.1. Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable
if the number of iterationsis set only before loop execution and cannot be modified during loop
execution. Some of the vectorizer transformations can be controlled by arguments to the -Mvect
command line option. The following sections describe the arguments that affect the operation of
the vectorizer. In addition, some of these vectorizer operations can be controlled from within code
using directives and pragmas. For details on the use of directives and pragmas, refer to Using
Directives and Pragmas.

The vectorizer performs the following operations:

» Loop interchange

PGI Compiler User's Guide for OpenPOWER CPUs 25

Loop splitting
Loop fusion

vV Vv v v v v

Alternate code generation

Optimizing and Parallelizing

Memory-hierarchy (cache tiling) optimizations

Generation of SIMD instructions on processors where these are supported
Generation of prefetch instructions on processors where these are supported
Loop iteration peeling to maximize vector alignment

By default, -Mvect without any sub-optionsis equivalent to:

-Mvect=assoc, cachesize=c

where c isthe actua cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options.
These defaults may vary depending on the target system. The following table lists and briefly

describes some of the -Mvect suboptions.

Table 8 -Mvect Suboptions

Use this option ...

To instruct the vectorizer to do this ...

-Mvect=altcode

Generate appropriate code for vectorized loops.

-Mvect=[nolassoc

Perform[disable] associativity conversions that can change the
results of a computation due to a round-off error. For example,
a typical optimization is to change one arithmetic operation

to another arithmetic operation that is mathematically correct,
but can be computationally different and generate faster code.
This option is provided to enable or disable this transformation,
since a round-off error for such associativity conversions may
produce unacceptable results.

-Mvect=cachesize:n

Tiles nested loop operations, assuming a data cache size of

n bytes. By default, the vectorizer attempts to tile nested loop
operations, such as matrix multiply, using multi-dimensional
strip-mining techniques to maximize re-use of items in the data
cache.

-Mvect=fuse

Enable loop fusion.

-Mvect=gather

Enable vectorization of indirect array references.

-Mvect=idiom

Enable idiom recognition.

-Mvect=levels:<n>

Set the maximum next level of loops to optimize.

-Mvect=nocond

Disable vectorization of loops with conditions.

-Mvect=partial

Enable partial loop vectorization via inner loop distribution.

-Mvect=prefetch

Automatically generate prefetch instructions when vectorizable
loops are encountered, even in cases where SIMD instructions
are not generated.

-Mvect=short

Enable short vector operations.

-Mvect=simd

Automatically generate packed SIMD, and prefetch instructions
when vectorizable loops are encountered. SIMD instructions,
first introduced on Pentium IIl and AthlonXP processors,
operate on single-precision floating-point data.

PGI Compiler User's Guide for OpenPOWER CPUs

26

Optimizing and Parallelizing

Use this option ... To instruct the vectorizer to do this ...

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to -Mvect=simd

-Mvect=tile Enable loop tiling.

-Mvect=uniform Perform consistent optimizations in both vectorized and
residual loops. Be aware that this may affect the performance
of the residual loop.

Inserting no in front of the option disables the option. For example, to disable the generation of vector
instructions on OpenPOWER, compile with -Mvect=nosimd.

3.6.2. Vectorization Example Using SIMD Instructions

One of the most important vectorization optionsis -Mvect=simd. When you use this option,
the compiler automatically generates vector instructions, where possible, when targeting x86
processors on which these instructions are supported. This process can improve performance

by several factors compared with the equivalent scalar code. All of the PGI Fortran, C and C++
compilers support this capability. The PGl Release Notes show which OpenPOWER processors
PGI supports.

In the program in Vector operation using SIMD instructions, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch -Mvect=simd or -fast isused.
This example shows the compilation, informational messages, and runtime results using the

SIMD instructions on a OpenPOWER system, along with issues that affect SIMD performance.

L oops vectorized using OpenPOWER vector instructions operate much more efficiently when
processing vectors that are aligned to a cache-line boundary. Y ou can cause unconstrained data
objects of size 16 bytes or greater to be cache-aligned by compiling with the -Mcache align
switch. An unconstrained data object is a data object that is not a common block member and not
amember of an aggregate data structure.

-Mcache_align.

n For stack-based local variables to be properly aligned, the main program or function must be compiled with

The -Mcache align switch has no effect on the alignment of Fortran allocatable or automatic
arrays. If you have arrays that are constrained, such as vectors that are members of Fortran
common blocks, you must specifically pad your data structures to ensure proper cache alignment.
You can use -Mcache _align for only the beginning address of each common block to be
cache-aligned.

The following examples show the results of compiling the sample code in Vector operation using
SIMD instructions both with and without the option -Mvect=simd.

Vector operation using SIMD instructions

program vector op
parameter (N = 9999)
real*4 x(N), y(N), z(N), W(N)
doi=1, n
y(i) =1

PGI Compiler User's Guide for OpenPOWER CPUs 27

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

z (i) = 2*1
w(i) = 4*1i
enddo

do j = 1, 200000
call loop(x,vy,z,w,1.0e0,N)
enddo
print *, x(1),x(771),x(3618),x(6498),x(9999)
end

subroutine loop(a,b,c,d,s,n)
integer i, n
real*4 a(n), b(n), c(n), d(n),s
do i=1, n
a(i) = b(i) + c(i) - s * d(1)
enddo
end

Assume the preceding program is compiled as follows, where -Mvect=nosimd disables
vectorization:

[)

% pgfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop unrolled 16 times
Generates 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
18, Loop unrolled 4 times

The following output shows a sample result if the generated executableis run and timed on a
OpenPOWER system:

% /bin/time vadd

-1.000000 -771.000 -3618.000 -6498.00 -9999.00

1.35user 0.00system 0:01.35elapsed 99%CPU (Oavgtext+Oavgdata 3936maxresident)k
Oinputs+0Ooutputs (Omajor+290minor)pagefaults Oswaps

Now, recompile with vectorization enabled, and you see results similar to these:

[

% pgfortran -fast -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop not vectorized: may not be beneficial
Unrolled inner loop 8 times
Residual loop unrolled 7 times (completely unrolled)
Generated 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
17, Generated 4 alternate versions of the loop
Generated vector sse code for the loop
Generated 3 prefetch instructions for the loop

Notice the informational message for the loop at line 17.

» Thefirst two lines of the message indicate that the loop was vectorized, and four aternate
versions of the loop were also generated. The loop count and alignments of the arrays
determine which of these versions is executed.

» Thelast line of the informational message indicates that prefetch instructions have been
generated for three loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/time vadd

-1.000000 -771.000 -3618.00 -6498.00 -9999.0

0.60user 0.00system 0:00.6lelapsed 99%CPU (Oavgtext+0avgdata 3920maxresident)k
Oinputs+0Ooutputs (Omajor+289minor)pagefaults Oswaps

PGI Compiler User's Guide for OpenPOWER CPUs 28

Optimizing and Parallelizing

The SIMD result is 2.25 times faster than the equivalent non-SIMD version of the program.
Speed-up realized by agiven loop or program can vary widely based on a number of factors:

» When the vectors of data are resident in the data cache, performance improvement using
vector instructions is most effective.

» If dataisaligned properly, performance will be better in general than when using vector
operations on unaligned data.

» If the compiler can guarantee that datais aligned properly, even more efficient sequences of
vector instructions can be generated.

» Theefficiency of loops that operate on single-precision data can be higher. vector
instructions can operate on four single-precision elements concurrently, but only two double-
precision elements.

Compiling with -Mvect=simd can result in numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive to order of
operations and the associative transformations necessary to enable vectorization (or parallelization).

3.7. Auto-Parallelization using -Mconcur

With the -Mconcur option the compiler scans code searching for loops that are candidates for
auto-parallelization. -Mconcur must be used at both compile-time and link-time. When the
parallelizer finds opportunities for auto-parallelization, it parallelizes loops and you are informed
of theline or loop being parallelized if the -Minfo option is present on the compile line. For
acomplete specification of -Mconcur, refer to the * Optimization Controls' section of the PGI
Compiler Reference Manual.

A loop is considered parallelizable if it doesn't contain any cross-iteration data dependencies.
Cross-iteration dependencies from reductions and expandable scalars are excluded from
consideration, enabling more loops to be parallelizable. In general, loops with calls are not
parallelized due to unknown side effects. Also, loops with low trip counts are not parallelized
since the overhead in setting up and starting a parallel loop will likely outweigh the potential
benefits. In addition, the default is not to parallelize innermost loops, since these often by
definition are vectorizable using x86 SSE instructions and it is seldom profitable to both vectorize
and parallelize the same loop, especially on multicore processors. Compiler switches and
directives are available to let you override most of these restrictions on auto-parallelization.

3.7.1. Auto-Parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the
-Mconcur command line option. The following sections describe these arguments that affect
the operation of the parallelizer. In addition, these parallelizer operations can be controlled from
within code using directives and pragmas. For details on the use of directives and pragmas, refer
to Using Directives and Pragmas.

By default, -Mconcur without any sub-optionsis equivalent to:

-Mconcur=dist:block

PGI Compiler User's Guide for OpenPOWER CPUs 29

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

This enables parallelization of loops with blocked iteration allocation across the available threads
of execution. These defaults may vary depending on the target system. The following table lists
and briefly describes some of the -Mconcur suboptions.

Table 9 -Mconcur Suboptions

Use this option ... To instruct the parallelizer to do this...
-Mconcur=allcores Use all available cores. Specify this option at link time.
~Mconcur=[noJaltcode Generate [do not generate] alternate serial code for parallelized

loops. If altcode is specified without arguments, the parallelizer
determines an appropriate cutoff length and generates serial
code to be executed whenever the loop count is less than or
equal to that length.

If altcode: n is specified, the serial altcode is executed
whenever the loop count is less than or equal to n. Specifying
noaltcode disables this option and no alternate serial code

is generated.
-Mconcur=[no]assoc Enable [disable] parallelization of loops with associative
reductions.
-Mconcur=bind Bind threads to cores. Specify this option at link time.
-Mconcur=cncall Specifies that it is safe to parallelize loops that contain

subroutine or function calls. By default, such loops are
excluded from consideration for auto-parallelization. Also,

no minimum loop count threshold must be satisfied before
parallelization occurs, and last values of scalars are assumed
to be safe.

-Mconcur=dist:{block|cyclic} Specifies whether to assign loop iterations to the available
threads in blocks or in a cyclic (round-robin) fashion. Block
distribution is the default. If cyclic is specified, iterations are
allocated to processors cyclically. That is, processor 0 performs
iterations 0, 3, 6, etc.; processor 1 performs iterations 1, 4, 7,
etc.; and processor 2 performs iterations 2, 5, 8, etc.

-Mconcur=innermost Enable parallelization of innermost loops.

-Mconcur=levels:<n> Parallelize loops nested at most n levels deep.

-Mconcur=[no]numa Use thread/processors affinity when running on a NUMA
architecture. Specifying -Mconcur=nonuma disables this
option.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is

set to 1, aparallel program runs serially, but will use the parallel routines generated during
compilation. If NCPUS is set to a value greater than 1, the specified number of processors

are used to execute the program. Setting NCPUS to a value exceeding the number of physical
processors can produce inefficient execution. Executing a program on multiple processorsin an
environment where some of the processors are being time-shared with another executing job can
also result in inefficient execution.

Aswith the vectorizer, the -Mconcur option can speed up code if it contains well-behaved
countable loops and/or computationally intensive nested loops that operate on arrays. However,
it is possible that some codes show a decrease in performance on multi-processor systems when

PGI Compiler User's Guide for OpenPOWER CPUs 30

Optimizing and Parallelizing

compiled with -Mconcur dueto parallelization overheads, memory bandwidth limitations in the
target system, false-sharing of cache lines, or other architectural or code-generation factors. For
thisreason, it is recommended that you check carefully whether particular program units or loops
show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to
Using OpenMP. It is possible that insertion of explicit paralldization directives or pragmas, and
use of the compiler option -mp might enable the application to run in parallel.

3.7.2. Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler,
programmers may notice loops that are seemingly parallel, but are not parallelized. In this
subsection, we look at some examples of common situations where parallelization does not occur.

Innermost Loops

As noted earlier in this section, the PGI compilers will not parallelize innermost loops by
default, because it is usually not profitable. However, you can override this default using the
-Mconcur=innermost command-line option.

Timing Loops

Often, loops occur in programs that are similar to timing loops. The outer loop in the following
exampleis one such loop.
do j =1, 2

do i =1, n
1 a(i) = b(i) + c(i)
enddo
enddo

The outer loop in the preceding example is not parallelized because the compiler detects a cross-
iteration dependence in the assignment to a (i) . Suppose the outer loop were parallelized.

Then both processors would simultaneously attempt to make assignmentsinto a (1:n) . Now

in general the values computed by each processor for a (1 :n) will differ, so that simultaneous
assignment into a (1 :n) will produce values different from sequential execution of the loops.

In this example, values computed for a (1:n) don’t depend on 5, so that simultaneous
assignment by both processors does not yield incorrect results. However, it is beyond the scope
of the compilers’ dependence analysis to determine that values computed in one iteration of
aloop don't differ from values computed in another iteration. So the worst case is assumed,
and different iterations of the outer loop are assumed to compute different valuesfor a (1:n).
I's this assumption too pessimistic? If § doesn’t occur anywhere within aloop, the loop exists
only to cause some delay, most probably to improve timing resolution. It is not usually valid to
paralelize timing loops; to do so would distort the timing information for the inner loops.

PGI Compiler User's Guide for OpenPOWER CPUs 31

Optimizing and Parallelizing

Scalars

Quite often, scalars will inhibit parall€elization of non-innermost loops. There are two separate
cases that present problems. In the first case, scalars appear to be expandable, but appear in non-
innermost loops, as in the following example.

There are a number of technical problems to be resolved in order to recognize expandable scalars
in non-innermost loops. Until this generalization occurs, scalars like x in the preceding code
segment inhibit parallelization of loops in which they are assigned. In the following example,
scalar k isnot expandable, and it is not an accumulator for a reduction.

.gt. n/2) k =n - (i - n/2)

If the outer loop is parallelized, conflicting values are stored into k by the various processors. The
variable k cannot be made local to each processor because its value must remain coherent among
the processors. It is possible the loop could be parallelized if all assignmentsto k are placed in
critical sections. However, it is not clear where critical sections should be introduced because

in general the value for k could depend on another scalar (or on k itself), and code to obtain the
value of other scalars must reside in the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k from being
recognized as an induction variable. If the conditional statement at label 2 isremoved, k would be
an induction variable whose value varies linearly with -, and the loop could be parallelized.

Scalar Last Values

During parallelization, scalars within loops often need to be privatized; that is, each execution
thread has its own independent copy of the scalar. Problems can arise if a privatized scalar is
accessed outside the loop. For example, consider the following loopsin C/C++ and Fortran:

/* C/C++ version */
for (1 = 1; 1<N; 1i++){
if(x[i] > 5.0)
t = x[1i];

PGI Compiler User's Guide for OpenPOWER CPUs 32

Optimizing and Parallelizing

v =t
call f(v)

The value of + may not be computed on the last iteration of the loop. Normally, if ascalar is
assigned within aloop and used following the loop, the PGI compilers save the last value of the
scalar. However, if the loop is parallelized and the scalar is not assigned on every iteration, it may
be difficult, without resorting to costly critical sections, to determine on what iteration t islast
assigned. Analysis allows the compiler to determine that a scalar is assigned on each iteration and
hence that the loop is safe to parallelize if the scalar is used later, asillustrated in the following C/
C++ and Fortran examples.

/* C/C++ version */
for (i=1;i<n;i++) {
if (x[11>0.0) {
t=2.0;
}
else {
£t=3.0;
ylil=t;
}
}

v=t;

! Fortran version
do I =1,N
if (x(I)>0.0) then
£t=2.0
else
t=3.0
y(i)=t
endif
enddo
v=t

Notice that t isassigned on every iteration of the loop. However, there are cases where a scalar
may be privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine the
following loops in which each use of t within the loop is reached by a definition from the same
iteration.

/* C/C++ Version */
for (i=1;i<N;i++) {
1if(x[1]>0.0) {

t=x[1];
ylil=t;
}
}
v=t;
f(v)s
! Fortran Version
do I =1,N
if (x(I)>0.0) then
t=x(I)
y(i)=t
endif
enddo
v=t
call f(v)

PGI Compiler User's Guide for OpenPOWER CPUs 33

Optimizing and Parallelizing

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the
compiler may not be able to detect on which iteration of the parallelized loop t islast assigned.
The compiler detects the previous cases. When a scalar is used after the loop but is not defined on
every iteration of the loop, parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the
programmer may use a directive or pragmato let the compiler know the loop is safe to parallelize.
Thedirective or pragmasafe lastval informsthe compiler that, for agiven loop, all scalars
are assigned in the last iteration of the loop; thus, it is safe to parallelize the loop. We could add
the following line to any of our previous examples.

'pgis$l safe lastval ! Fortran Version

#pragma loop safe lastval /* C/C++ Version */

The resulting code looks similar to this:

/* C/C++ Version */
#pragma loop safe lastval

for (i=1;i<N;i++)(
if(x[1]1>5.0) t=x[i];
1

v = t;

! Fortran Version
'pgis$l safe lastv
do I =
if (x
t:
endif

enddo
v = t

1,N
I) > 5.0) then
(

(
x(I)

In addition, acommand-line option -Msafe lastval providesthisinformation for al loops
within the routines being compiled, which essentially provides global scope.

3.8. Default Optimization Levels

The following table shows the interaction between the -O<level>, -g, and -M<opt> options. In
thetable, level canbeO, 1, 2, 3 or 4, and <opt> can be vect, concur, unroll oOr ipa. The
default optimization level is dependent upon these command-line options.

Table 10 Optimization and -O, -g and -M<opt> Options

Optimize Option Debug Option -M<opt> Option Optimization Level
none none none 1

none none -M<opt> 2

none -9 none 0

-0 none or -g none 2

-O<level> none or -g none level

-O<level> <=2 none or -g -M<opt> 2

PGI Compiler User's Guide for OpenPOWER CPUs 34

Optimizing and Parallelizing

Code that is not optimized yet compiled using the option -00 can be significantly slower

than code generated at other optimization levels. The -M<opt> option, where <opt>isvect,
concur, unroll Or ipa, setsthe optimization level to 2 if no -0 options are supplied. The
-fast option sets the optimization level to a target-dependent optimization level if no -0 options
are supplied.

3.9. Local Optimization Using Directives and Pragmas

Command-line options let you specify optimizations for an entire source file. Directives
supplied within a Fortran source file and pragmas supplied within a C or C++ source file provide
information to the compiler and alter the effects of certain command-line options or the default
behavior of the compiler. (Many directives have a corresponding command-line option.)

While acommand line option affects the entire source file that is being compiled, directives and
pragmas let you do the following:

» Apply, or disable, the effects of a particular command-line option to selected subprograms or
to selected loops in the source file (for example, an optimization).
» Globally override command-line options.

» Tune selected routines or loops based on your knowledge or on information obtained through
profiling.

Using Directives and Pragmas provides details on how to add directives and pragmas to your
source files.

3.10. Execution Timing and Instruction Counting

Asthis chapter describes, once you have a program that compiles, executes and gives correct
results, you may optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you compare
several optimization levels before arriving at the best solution. To compare optimization levels,
you need to measure the execution time for your program. There are several approaches you can
take for timing execution.

» You can use shell commands that provide execution time statistics.
» You can include function callsin your code that provide timing information.
» You can profile sections of code.

Timing functions available with the PGI compilersinclude these:

» 3F timing routines.
» The SECNDS pre-declared function in PGFORTRAN.
» TheSYSTEM_CLOCK or CPU_CLOCK intrinsicsin PGF95 or PGFORTRAN.

In general, when timing a program, you should try to eliminate or reduce the amount of system
level activities such as /O, program loading, and task switching.

The following example shows a fragment that indicates how to use SY STEM_CLOCK
effectively within a Fortran program unit.

PGI Compiler User's Guide for OpenPOWER CPUs 35

Optimizing and Parallelizing

Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clock0O, clockl
real :: time
call system clock (count rate=hz)
call system clock (count=clockO0)

< do work>

call system clock (count=clockl)

t = (clockl - clock0)

time = real (t) / real (hz)

Or you can use the F90 cpu_ time subroutine:

real :: tl, t2, time
call cpu time(tl)

< do work>

call cpu time(t2)
time = t2 - tl

3.11. Portability of Multi-Threaded Programs on Linux

PGI created the library 1ibnuma to handle the variations between various implementations of
Linux.

Some older versions of Linux are lacking certain features that support multi-processor and
multicore systems; in particular, the system call 'sched_setaffinity' and the numallibrary
libnuma. The PGI runtime library uses these features to implement some -Mconcur and -mp
operations.

These variations led to the creation of the PGI library: 1ibnuma, which isused on al 32-bit and
64-bit Linux systems.

When a program is linked with the system 1ibnuma library, the program depends on that
library to run. On systems without a 1 ibnuma library, the PGI version of 1ibnuma provides
the required stubs so that the program links and executes properly. If the program is linked with
1libnuma, the differences between systemsis masked by the different versions of 1ibnuma.

When a program is deployed to the target system, the proper set of libraries, real or stub, should
be deployed with the program.

Thisfacility requires that the program be dynamically linked with 1ibnuma.

3.11.1. libnuma

Not all systems have 1ibnuma. Typicaly, only numa systems have this library. PGl suppliesa
stub version of 1ibnuma which satisfies the calls from the PGI runtime to 1 ibnuma. 1ibnuma
isashared library that is linked dynamically at runtime.

The reason to have anumalibrary on all systemsisto allow multi-threaded programs, such as
programs compiled with -Mconcur or -mp, to be compiled, linked, and executed without regard
to whether the host or target systems has a numallibrary. When the numallibrary is not available,
amulti-threaded program still runs because the calls to the numalibrary are satisfied by the PGI
stub library.

During installation, the installation procedure checks for the existence of areal 1ibnuma among
the system libraries. If thereal library is not found, the PGI stub version is substituted.

PGI Compiler User's Guide for OpenPOWER CPUs 36

Chapter 4.
USING FUNCTION INLINING

Function inlining replaces a call to afunction or a subroutine with the body of the function

or subroutine. This can speed up execution by eliminating parameter passing and function/
subroutine call and return overhead. It also allows the compiler to optimize the function with the
rest of the code. Note that using function inlining indiscriminately can result in much larger code
size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

» Automatic function inlining — In C/C++, you can inline static functionswiththe inline
keyword by using the -Mautoinline option, which isincluded with -fast.

» Function inlining — Y ou can inline functions which were extracted to theinline libraries
in C/Fortran/C++. There are two ways of enabling function inlining: with and without the
1ib suboption. For the latter, you create inline libraries, for example using the pgfortran
compiler driver and the -0 and -Mextract options.

There are important restrictions on inlining. Inlining only appliesto certain types of functions.
Refer to Restrictions on Inlining for more details on function inlining limitations.

This section describes how to use the following options related to function inlining:

-Mautoinline
-Mextract
-Minline

-Mrecursive

4.1. Automatic function inlining in C/C++

To enable automatic function inlining in C/C++ for static functions with the in1ine keyword,
usethe -Mautoinline option (included in -fast). Use -Mnoautoinline to disableit.

Several -Mautoinline suboptionslet you determine the selection criteria. These suboptions
are:
maxsize:n

Automatically inline functions size n and less

PGI Compiler User's Guide for OpenPOWER CPUs 37

Using Function Inlining

totalsize:n
Limit automatic inlining to total size of n

4.2. Invoking Function Inlining

To invoke the function inliner, use the -Min1ine option. If you do not specify an inline library,
the compiler performs a special prepass on all source files named on the compiler command
line before it compiles any of them. This pass extracts functions that meet the requirements for
inlining and puts them in atemporary inline library for use by the compilation pass.

Severa -Minline suboptionslet you determine the selection criteriafor functionsto be inlined.
These suboptions include:

except: func
Inlines al digible functions except func, afunction in the source text. you can use a comma-
separated list to specify multiple functions.

[name:] func
Inlines al functions in the source text whose name matches func. you can use a comma-
separated list to specify multiple functions.

[size]n
Inlines functions with a statement count less than or equal to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

levelsin
Inlinesn level of function calling levels. The default number isone (1). Using alevel greater
than one indicates that function calls within inlined functions may be replaced with inlined
code. This approach allows the function inliner to automatically perform a sequence of inline
and extract processes.

[lib:]file.ext
Instructs the inliner to inline the functions within the library file file.ext. If noinline
library is specified, functions are extracted from atemporary library created during an extract

prepass.

n Tip Create the library file using the -Mextract option.

If you specify both a function name and a size n, the compiler inlines functions that match the
function name or have n or fewer statements.

If anameis used without a keyword, then a name with a period is assumed to be aninline library
and a name without a period is assumed to be a function name. If a number is used without a
keyword, the number is assumed to be asize.

In the following example, the compiler inlines functions with fewer than approximately 100
statementsin the source filemyprog. £ and writes the executable code in the default output file
a.out.

$ pgfortran -Minline=size:100 myprog.f

PGI Compiler User's Guide for OpenPOWER CPUs 38

Using Function Inlining

Refer to *-M Options by Category’ in the PGl Compiler’s Reference Guide. For more information
onthe -Minline options, refer to ‘-M Options by Category’ section of the PGl Compiler’s
Reference Guide.

4.3. Using an Inline Library

If you specify one or more inline libraries on the command line with the -Minline option, the
compiler does not perform an initial extract pass. The compiler selects functions to inline from
the specified inline library. If you also specify a size or function name, all functionsin theinline
library meeting the selection criteria are selected for inline expansion at points in the source text
where they are called.

If you do not specify afunction name or asize limitation for the -Minline option, the compiler
inlines every function in the inline library that matches a function in the source text.

In the following example, the compiler inlines the function proc fromtheinlinelibrary 1ib.i1
and writes the executable code in the default output file a . out.

$ pgfortran -Minline=name:proc,lib:1lib.il myprog.f

The following command line is equivalent to the preceding line, with the exception that in the
following example does not use the keywordsname : and 1ib:. Youtypicaly use keywords

to avoid name conflicts when you use an inline library name that does not contain a period.
Otherwise, without the keywords, a period informs the compiler that the file on the command line
isaninlinelibrary.

$ pgfortran -Minline=proc,lib.il myprog.f

4.4. Creating an Inline Library

Y ou can create or update an inline library using the -Mextract command-line option. If you
do not specify selection criteriawith the -Mext ract option, the compiler attempts to extract all
subprograms.

Several -Mextract optionslet you determine the selection criteriafor creating or updating an
inline library. These selection criteriainclude:

func
Extracts the function func. you can use a commarseparated list to specify multiple functions.
[name:] func
Extracts the functions whose name matches func, afunction in the source text.
[size]n
Limits the size of the extracted functions to functions with a statement count less than or equal
to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

[lib:lext.1lib
Stores the extracted information in the library directory ext . 1ib.

PGI Compiler User's Guide for OpenPOWER CPUs 39

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Function Inlining

If noinlinelibrary is specified, functions are extracted to atemporary library created during an
extract prepass for use during the compilation stage.

When you use the -Mextract option, only the extract phase is performed; the compile and link
phases are not performed. The output of an extract passisalibrary of functions available for
inlining. This output is placed in theinline library file specified on the command line with the -o
filename specification. If the library file exists, new information is appended to it. If the file does
not exigt, it iscreated. You can use acommand similar to the following:

$ pgfortran -Mextract=1lib:1ib.il myfunc.f

You can usethe -Min1line option with the -Mextract option. In this case, the extracted library
of functions can have other functions inlined into the library. Using both options enables you to
obtain more than one level of inlining. In this situation, if you do not specify alibrary with the
-Minline option, theinline process consists of two extract passes. Thefirst passis a hidden
passimplied by the -Min1ine option, during which the compiler extracts functions and places
them into atemporary library. The second pass uses the results of the first pass but putsits results
into the library that you specify with the -o option.

4.4.1. Working with Inline Libraries

Aninline library isimplemented as a directory with each inline function in the library stored asa
file using an encoded form of the inlinable function.

A specid file named Toc in theinline library directory serves as atable of contents for theinline
library. Thisisaprintable, ASCII file which you can examine to locate information about the
library contents, such as names and sizes of functions, the source file from which they were
extracted, the version number of the extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

» Inlinelibraries can be copied or renamed.
» Elements of libraries can be deleted or copied from one library to another.
» Thels or dir command can be used to determine the last-change date of alibrary entry.

4.4.2. Dependencies

When alibrary is created or updated using one of the PGI compilers, the last-change date of the
library directory is updated. This allows alibrary to be listed as a dependence in a makefile and
ensures that the necessary compilations are performed when alibrary is changed.

4.4.3. Updating Inline Libraries — Makefiles

If you useinline libraries you must be certain that they remain up-to-date with the source files
into which they areinlined. One way to assure inline libraries are updated isto include themin a
makefile.

The makefile fragment in the following example assumesthefileutils. £ contains a number of
small functionsused inthefilesparser.fandalloc. f.

This portion of the makefile:

» Maintainstheinlinelibrary utils.il.

PGI Compiler User's Guide for OpenPOWER CPUs 40

Using Function Inlining

» Updatesthe library whenever you change utils. £ or one of theincludefilesit uses.
» Compilesparser. f and alloc. f whenever you update the library.

Sample Makefile

SRC = mydir
FC = pgfortran
FFLAGS = -02
main.o: $(SRC)/main.f $(SRC)/global.h
S (FC) S$(FFLAGS) -c $(SRC)/main.f
utils.o: $(SRC)/utils.f S$(SRC)/global.h $(SRC)/utils.h
S(FC) $(FFLAGS) -c S$(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
S(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
$(FC) S$(FFLAGS) -Minline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
$(FC) -o myprog main.o utils.o parser.o alloc.o

4.5. Error Detection during Inlining

Y ou can specify the -Minfo=inline option to request inlining information from the compiler
when you invoke the inliner. For example:

$ pgfortran -Minline=mylib.il -Minfo=inline myext.f

4.6. Examples

Assume the program dhry consists of asingle sourcefile dhry. f£. The following command line
builds an executable file for dhry in which proc7 isinlined wherever it is called:

$ pgfortran dhry.f -Minline=proc?

The following command lines build an executable file for dhry in which proc7 plus any
functions of approximately 10 or fewer statements are inlined (one level only).

The specified functions are inlined only if they are previously placed in the inline library, temp . i1, during
the extract phase.

$ pgfortran dhry.f -Mextract=lib:temp.il
$ pgfortran dhry.f -Minline=10,proc7,temp.il

Using the same sourcefile dhry . £, the following example builds an executable for dhry in
which all functions of roughly ten or fewer statements are inlined. Two levels of inlining are
performed. This means that if function A calls function B, and B calls C, and both B and C are
inlinable, then the version of B which isinlined into A will have had C inlined into it.

S pgfortran dhry.f -Minline=size:10,levels:2

4.7. Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

PGI Compiler User's Guide for OpenPOWER CPUs 41

Using Function Inlining

» Mainor BLOCK DATA programs.

» Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or
EQUIVALENCE statements.

» Subprograms containing FORMAT statements.

» Subprograms containing multiple entries.

>

Fortran subprogram is not inlined if any of the following applies:

» Itisreferenced in a statement function.

» A common block mismatch exists; in other words, the caller must contain all common blocks
specified in the callee, and elements of the common blocks must agree in name, order, and
type (except that the caller's common block can have additional members appended to the
end of the common block).

» Anargument mismatch exists; in other words, the number and type (size) of actual and
formal parameters must be equal.

» A name clash exists, such asacall to subroutine xyz in the extracted subprogram and a
variable named xyz in the caler.

The following types of C and C++ functions cannot be inlined:

» Functions containing switch statements
» Functions which reference a static variable whose definition is nested within the function
» Functions which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

» Static functions
» Functions which call a static function
» Functions which reference a static variable

PGI Compiler User's Guide for OpenPOWER CPUs 42

Chapter 5.
USING OPENMP

The PGFORTRAN Fortran compiler supports the OpenMP Fortran Application Program
Interface. The PGCC and PGC++ compilers support the OpenM P C/C++ Application Program
Interface.

OpenMP is a specification for a set of compiler directives, an applications programming interface
(API), and a set of environment variables that can be used to specify shared memory parallelism
in FORTRAN and C/C++ programs. OpenM P may be used to obtain most of the parallel
performance you can expect from your code, or it may serve as a stepping stone to paralelizing
an entire application with MPI.

This section provides information on OpenMP asiit is supported by PGI compilers. Currently, all
PGI compilers support the version 3.1 OpenM P specification.

Use the -mp compiler switch to enable processing of the OpenMP pragmas listed in this section.
As of the PGI 2011 Release, the OpenMP runtime library islinked by default. Note that GNU
pthreads are not completely interoperable with OpenMP threads.

When using pgc++ on Linux, the GNU STL is thread-safe to the extent listed in the GNU documentation
as required by the C++11 standard. If an STL thread-safe issue is suspected, the suspect code can be run
sequentially inside of an OpenMP region using #pragma omp critical sections.

This section describes how to use the following option supporting OpenMP: -mp

5.1. OpenMP Overview

Let'slook at the OpenM P shared-memory parallel programming model and some common
OpenMP terminology.

5.1.1. OpenMP Shared-Memory Parallel Programming Model

The OpenM P shared-memory programming model is a collection of compiler directives or
pragmas, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran and in C/C++ programs.

PGI Compiler User's Guide for OpenPOWER CPUs 43

Using OpenMP

Fortran directivesand C/C++ pragmas
Allow users to mark sections of code that can be executed in parallel when the codeis
compiled using the -mp switch.

When this switch is not present, the compiler ignores these directives and pragmas.

Fixed-form Fortran OpenMP directives begin with ! SoMP, C$SOMP, Or * $OMP, beginning in
column 1. Free-form Fortran OpenM P pragmas begin with ! soMP. OpenMP pragmas for C/
C++ begin with #pragma omp. Thisformat allows the user to have a single source codefile
for use with or without the -mp switch, as these lines are then merely viewed as comments
when -mp is not present.

These directives and pragmas allow the user to create task, loop, and parallel section work-
sharing constructs and synchronization constructs. They also allow the user to define how data
is shared or copied between parallel threads of execution.

The data environment is controlled either by using clauses on the directives or pragmas, or with
additional directives or pragmas.

Runtimelibrary routines
Are available to query the parallel runtime environment, for example to determine how many
threads are participating in execution of aparallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on
OpenMP, see www.openmp.org.

Macr o substitution
C and C++ pragmas are subject to macro replacement after #pragma omp.

5.1.2. Terminology

For OpenMP 3.1 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

» An OpenMP thread is athread that is managed by the OpenMP runtime system.

» A thread-safe routine is aroutine that performs the intended function even when executed
concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an
OpenMP library routine. A region includes any codein called routines as well as any implicit
code introduced by the OpenM P implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, aregion
is encountered during the execution of another region. PGI supports both lexically and non-
lexically nested parallel regions.

Parallel region
In OpenMP 3.1 there is a distinction between a parallel region and an active parallel region. A
parallel region can be either inactive or active.

» Aninactive parallel region is executed by a single thread.

PGI Compiler User's Guide for OpenPOWER CPUs 44

www.openmp.org

Using OpenMP

» Anactive parallel regionisaparallel region that is executed by ateam consisting of more
than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.1. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:

program test
logical omp in parallel

!Somp parallel
print *, omp in parallel ()
!'Somp end parallel

stop
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.1, the program yields F. In OpenMP 3.1, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

Task
A specific instance of executable code and its data environment, generated when athread
encounters a task construct or aparallel construct.

5.1.3. OpenMP Example

Look at the following simple OpenM P example involving loops.

OpenMP Loop Example

PROGRAM MAIN
INTEGER I, N, OMP GET THREAD NUM
REAL*8 V(1000), GSUM, LSUM
GSUM = 0.0DO
N = 1000
DO I =1, N
V(I) = DBLE(I)
ENDDO

!SOMP PARALLEL PRIVATE (I,LSUM) SHARED (V,GSUM, N)
LSUM = 0.0DO
I'SOMP DO
DO I =1, N
LSUM = LSUM + V(I)
ENDDO
!'SOMP END DO
!'SOMP CRITICAL
print *, "Thread ",OMP_GET THREAD NUM()," local sum: ",LSUM
GSUM = GSUM + LSUM
!'SOMP END CRITICAL
!SOMP END PARALLEL

PRINT *, "Global Sum: ",GSUM
STOP
END

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then
the output looks similar to this:
Thread 0 local sum: 31375.00000000000

PGI Compiler User's Guide for OpenPOWER CPUs 45

Using OpenMP

Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000

FORTRAN STOP

5.2. Task Overview

Every part of an OpenMP program is part of atask. A task, whose execution can be performed
immediately or delayed, has these characteristics:

» Codeto execute
» A dataenvironment —that is, it ownsits data
» Anassigned thread that executes the code and uses the data

There are two activities associated with tasks: packaging and execution.

» Packaging: Each encountering thread packages a new instance of atask — code and data.
» Execution: Some thread in the team executes the task at some later time.

In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a
task construct. A task can be implicit or explicit.

» Anexplicit task is atask generated when atask construct is encountered during execution.

» Animplicit task is atask generated by the implicit parallel region or generated when a
parallel construct is encountered during execution.

Task construct
A task directive or pragma plus a structured block.
Task region
The dynamic sequence of instructions produced by the execution of atask by athread.

5.3. Fortran Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran
compilers when the option -mp is specified on the command line. The form of a parallelization
directiveis:

sentinel directive name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with
theserules:

» Beoneof these: IOMP, COMP, or * $OMP.

» Must start in column 1 (one) for free-form code.

» Must appear as asingle word without embedded white space.
» The sentinel marking a DOACROSS directiveis C$.

PGI Compiler User's Guide for OpenPOWER CPUs 46

Using OpenMP

The directive_name can be any of the directiveslisted in Directive and Pragma Summary Table.
The valid clauses depend on the directive. Directive and Pragma Clauses provides alist of
clauses, the directives and pragmas to which they apply, and their functionality.

In addition to the sentind rules, the directive must also comply with these rules:

» Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply
to the directive line.

» Initia directive lines must have a space or zero in column six.

» Continuation directive lines must have a character other than a space or a zero in column six.
Continuation lines for CBDOACROSS directives are specified using the C$& sentinel.

» Directiveswhich are presented in pairs must be used in pairs.

Clauses associated with directives have these characteristics:

» Theorder in which clauses appear in the parallelization directives is not significant.

» Commas separate clauses within the directives, but commas are not allowed between the
directive name and the first clause.

» Clauses on directives may be repeated as needed, subject to the restrictions listed in the
description of each clause.

5.4. C/C++ Parallelization Pragmas

Parallelization pragmas are #pragma statementsin a C or C++ program that are interpreted by the
PGI C and C++ compilers when the option -mp is specified on the command line. The form of a
paralelization pragmais:

#pragma omp pragma name [clauses]
The format for pragmas include these rules:

» The pragmas follow the conventions of the C and C++ rules.

Whitespace can appear before and after the #.

Preprocessing tokens following the #pragma omp are subject to macro replacement.
The order in which clauses appear in the parall€elization pragmas is not significant.
Spaces separate clauses within the pragmas.

» Clauses on pragmas may be repeated as needed subject to the restrictions listed in the
description of each clause.

v v VY

v

For the purposes of the OpenM P pragmas, a C/C++ structured block is defined to be a statement
or compound statement (a sequence of statements beginning with { and ending with }) that has a
single entry and asingle exit. No statement or compound statement is a C/C++ structured block if
thereisajump into or out of that statement.

5.5. Directive and Pragma Recognition

The compiler option -mp enables recognition of the parallelization directives and pragmas.

The use of this option also implies:

PGI Compiler User's Guide for OpenPOWER CPUs 47

Using OpenMP

-Miomutex
For directives, critical sections are generated around Fortran /O statements.

For pragmas, callsto 1/O library functions are system-dependent and are not necessarily
guaranteed to be thread-safe. |/O library calls within parallel regions should be protected by
critical regions to ensure they function correctly on all systems.

5.6. Directive and Pragma Summary Table

The following table provides a brief summary of the directives and pragmas that PGI supports.

In the table, the values in uppercase letters are Fortran directives while the names in lowercase letters are
C/C++ pragmas.

5.6.1. Directive and Pragma Summary Table
Table 11 Directive and Pragma Summary Table

Fortran Directive and C++

Pragma Description

ATOMIC [TYPE] ... END ATOMIC and | Semantically equivalent to enclosing a single statement in the CRITCIAL...END
atomic CRITICAL directive or critical pragma.

TYPE may be empty or one of the following: UPDATE, READ, WRITE, or CAPTURE.
The END ATOMIC directive is only allowed when ending ATOMIC CAPTURE regions.

D Only certain statements are allowed.

BARRIER and barrier Synchronizes all threads at a specific point in a program so that all threads complete
work to that point before any thread continues.

CRITICAL ... END CRITICAL and Defines a subsection of code within a parallel region, a critical section, which is executed
critical one thread at a time.
DO...END DO and for Provides a mechanism for distribution of loop iterations across the available threads in a

parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

FLUSH and flush When this appears, all processor-visible data items, or, when a list is present (FLUSH
[list]), only those specified in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects in memory.

MASTER ... END MASTER and Designates code that executes on the master thread and that is skipped by the other
master threads.
ORDERED and ordered Defines a code block that is executed by only one thread at a time, and in the order of

the loop iterations; this makes the ordered code block sequential, while allowing parallel
execution of statements outside the code block.

PARALLEL DO and parallel for Enables you to specify which loops the compiler should parallelize.

PGI Compiler User's Guide for OpenPOWER CPUs 48

Using OpenMP

Fortran Directive and C++
Pragma Description

PARALLEL ... END PARALLEL and | Supports a fork/join execution model in which a single thread executes all statements
parallel until a parallel region is encountered.

PARALLEL SECTIONS and parallel | Defines a non-iterative work-sharing construct without the need to define an enclosing
sections parallel region.

PARALLEL WORKSHARE ... END Provides a short form method for including a WORKSHARE directive inside a
PARALLEL WORKSHARE PARALLEL construct.

SECTIONS ... END SECTIONS and | Defines a non-iterative work-sharing construct within a parallel region.
sections

SINGLE ... END SINGLE and single | Designates code that executes on a single thread and that is skipped by the other

threads.

TASK and task Defines an explicit task.

TASKYIELD and taskyield Specifies a scheduling point for a task where the currently executing task may be
yielded, and a different deferred task may be executed.

TASKWAIT and taskwait Specifies akwait on the completion of child tasks generated since the beginning of the
current task.

THREADPRIVATE and threadprivate | When a common block or variable that is initialized appears in this directive or pragma,
each thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE | Provides a mechanism to effect parallel execution of non-iterative but implicitly data
parallel constructs.

5.7. Directive and Pragma Clauses

Some directives and pragmas accept clauses that further allow a user to control the scope
attributes of variables for the duration of the directive or pragma. Not all clauses are allowed on
all directives, so the clausesthat are valid are included with the description of the directive and

pragma.

The following table provides a brief summary of the clauses associated with OPENMP directives
and pragmas that PGI supports.

For complete information on these clauses, refer to the OpenM P documentation available on the
World Wide Web.

Table 12 Directive and Pragma Summary Table

Applies to this

This clause... Applies to this directive pragma Has this functionality

CAPTURE ATOMIC Spegifies that the gtomic ac.ti.on is
reading and updating, or writing
and updating a value, capturing the

intermediate state.

atomic

PGI Compiler User's Guide for OpenPOWER CPUs 49

This clause...

COLLAPSE (n)

Applies to this directive

Applies to this
pragma

Using OpenMP

Has this functionality

Specifies how many loops are

DO..END DO parallel for associated with the loop construct.
PARALLEL DO
PARALLEL
WORKSHARE
PO PARALLEL padlel | el fora trosdpite
value, iV
PARALLEL DO parallel for variable. You assign the same value
PARALLEL SECTIONS to threadprivate variables for each
PARALLEL thread in the team executing the
WORKSHARE parallel region. Then, for each variable
specified, the value of the variable
in the master thread of the team is
copied to the threadprivate copies at
the beginning of the parallel region.
COPYPRIVATE(list) SINGLE single Specifies that one or more variables
should be shared among all threads.
This clause provides a mechanism to
use a private variable to broadcast a
value from one member of a team to
the other members.
DEFAULT PARALLEL parallel Spgcti)flies _the behal\lliclar of _unscopid
variables in a parallel region, such as
PARALLEL DO parallel for the data-sharing attributes of variables.
PARALLEL SECTIONS
PARALLEL
WORKSHARE
FINAL TASK task Specifies that all gubtasks of this task
will be run immediately.
FIRSTPRIVATE(list) DO for Specifies that each thread should have
its own instance of a variable, and
PARALLEL parallel that each variable in the list should be
PARALLEL DO paralle for initialized with the value of the original
PARALLEL SECTIONS sections variable, because it exists before the
PARALLEL single parallel construct.
WORKSHARE
SECTIONS
SINGLE
IF() PARALLEL ... END parallel Specifies yvhether a qup shc?uld be
PARALLEL parallel for executed in parallel or in serial.
PARALLEL DO ... parallel sections
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE

PGI Compiler User's Guide for OpenPOWER CPUs

50

This clause...

Applies to this directive

Applies to this
pragma

Using OpenMP

Has this functionality

LASTPRIVATE(list)

Specifies that the enclosing context's

DO parallel -] ’
PARALLEL DO ... parallel for version of the vgnable |s.set equal to
) the private version of whichever thread
END PARALLEL DO parallel sections executes the final iteration of a loop
PARALLEL SECTIONS ... sections construct or last section of an OpenMP
END PARALLEL section.
SECTIONS
SECTIONS
MERGEABLE TASK task Specifies that this t.ask will run with.
the same data environment, including
OpenMP internal control variables, as
when it is encountered.
NOWAIT DO .. END DO for Eliminates the parrier implicit at the end
SECTIONS sections of a parallel region.
SINGLE single
WORKSHARE ...
END WORKSHARE
NUM_THREADS PARALLEL parallel Sets the number of threads in a thread
PARALLEL DO ... parallel for team.
END PARALLEL DO parallel sections
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
ORDERED DO..END DO parallel for Specifies that this bIockl within the
PARALLEL DO.. parallel DO or FOR.regmn needs to
be execute serially in the same order
END PARALLEL DO indicated by the enclosing loop.
PRIVATE DO for Specifies that each thread should have
PARALLEL paralle its own instance of a variable.
PARALLEL DO ... parallel for
END PARALLEL DO parallel sections
PARALLEL SECTIONS ... sections
END PARALLEL single
SECTIONS
PARALLEL
WORKSHARE
SECTIONS
SINGLE
READ ATOMIC atomic Spegifies that the atomic action is
reading a value.
REDUCTION DO for Specifies that one or more variables in
PARALLEL list that are private to gach threaq
({operator PARALLEL DO .. are the subject of a reductlop operation
at the end of the parallel region.
END PARALLEL DO

PGI Compiler User's Guide for OpenPOWER CPUs

51

Using OpenMP

Applies to this

This clause... Applies to this directive pragma Has this functionality
| intrinsic } : PARALLEL SECTIONS ... parallel
END PARALLEL parallel for
list) SECTIONS parallel sections
PARALLEL sections
WORKSHARE
SECTIONS
SCHEDULE DO ... END DO for Applies to the looping directive,
allowing the user to specify the
(typel PARALLEL DO... paralel for chunking method for parallelization.
END PARALLEL DO Work is assigned to threads in different
, chunk]) manners depen_ding on the scheduling
type or chunk size used.
SHARED PARALLEL parallel Sﬁeclicfjiebs th;lt onde or more ﬁr:iablgs Al
should be shared among all threads.
PARALLEL DO ... parallel for) threads within a team access the same
END PARALLEL DO parallel sections | gtorage area for shared variables.
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
UNTIED TASK task Specifies that any thread in the team
TASKWAIT taskwait :ﬁg F::r?:ir:;? the task region after a
UPDATE ATOMIC atomic Specifies that the atomic action is
updating a value.
WRITE ATOMIC atomic Specifies that the atomic action is
writing a value.

5.8. Runtime Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution
environment.

Any C/C++ program unit that invokes these functions should include the statement #include
<omp.h>. The omp . h header file contains definitions for each of the C/C++ library routines and
the required type definitions. For example, to use the omp get num threads function, use
this syntax:

#include <omp.h>
int omp get num threads(void) ;

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP runtime libraries — up to the hard limit of 256 threads. The OpenPOWER
compiler relies on the llvm OpenMP runtime, which has a maximum of 2*" threads.

PGI Compiler User's Guide for OpenPOWER CPUs 52

Using OpenMP

The following table summarizes the runtime library calls.

n The Fortran call is shown first followed by the equivalent C/C++ call.

Table 13 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When called from a serial region,
this function returns 1. A nested parallel region is the same as a single parallel region. By default, the value returned by this
function is equal to the value of the environment variable oMP NUM THREADS or to the value set by the last previous call to
omp set num threads().

Fortran integer function omp get num threads/()

CIC++ int omp get num threads (void) ;

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine or function can only be called from a serial region of code. If it is called from within a parallel region, or from within
a subroutine or function that is called from within a parallel region, the results are undefined. Further, this subroutine or function
has precedence over the OMP_NUM THREADS environment variable.

Fortran subroutine omp set num threads (scalar integer exp)

C/C++ void omp set num threads (int num threads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and omp get num_threads () -1. When
called from a serial region, this function returns 0. A nested parallel region is the same as a single parallel region.

Fortran integer function omp get thread num()

C/C++ int omp get thread num(void);

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp get ancestor thread num(level)
integer level

C/C++ int omp get ancestor thread num(int level);

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call.

Fortran integer function omp get active level ()
CIC++ int omp get active level (void);
omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

PGI Compiler User's Guide for OpenPOWER CPUs 53

Using OpenMP

Runtime Library Routines with Examples

Fortran integer function omp get level ()

C/C++ int omp get level (void);

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get num_threads ().

If omp set num threads () is used to change the number of processors, subsequent calls to
omp get max_threads () return the new value. Further, this function returns the maximum value whether executing from a
parallel or serial region of code.

Fortran integer function omp get max threads|()
C/C++ int omp get max threads (void);
omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp get num procs ()

C/C++ int omp get num procs (void) ;

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a stack for a newly created
thread.

This value may not be the size of the stack of the current thread.

Fortran lomp get stack size interface

function omp get stack size ()

use omp lib kinds

integer (kind=OMP_ STACK SIZE KIND)
omp get stack size

end function omp get stack size

end interface

CIC++ size t omp get stack size (void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a stack for a newly created
thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread cannot be changed. In the
PGl implementation, all OpenMP or auto-parallelization threads are created just prior to the first parallel region; therefore, only
callsto omp set stack size () thatoccur prior to the first region have an effect.

Fortran subroutine omp set stack size (integer (KIND=OMP_ STACK SIZE KIND))

C/C++ void omp set stack size(size t stack size);

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor belongs.

Fortran integer function omp get team size (level)
integer level

C/C++ int omp get team size (int level);

PGI Compiler User's Guide for OpenPOWER CPUs 54

Using OpenMP

Runtime Library Routines with Examples

omp_in_final

Returns . TRUE .

Returns whether or not the call is within a final task.

for directives and non-zero for pragmas if called from within a final task region.

Fortran

integer function omp in final ()

CIC++

int omp in final (void);

omp_in_parallel

Returns . TRUE .
zero for pragmas

directives and zer

Returns whether or not the call is within a parallel region.

in the presence of an IF clause evaluating . FALSE . for directives and zero for pragmas, the function returns . FALSE . for

for directives and non-zero for pragmas if called from within a parallel region and . FALSE . for directives and
if called outside of a parallel region. When called from within a parallel region that is serialized, for example

o for pragmas.

Fortran

logical function omp_in parallel ()

C/C++

int omp in parallel (void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

Fortran subroutine omp_ set dynamic(scalar logical exp)

C/C++

void omp set dynamic (int dynamic_threads) ;

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for execution of parallel regions is

enabled.

Fortran

logical function omp get dynamic ()

CIC++

void omp get dynamic (void);

omp_set_nested

Allows enabling/d

isabling of nested parallel regions.

Fortran subroutine omp set nested(nested)
logical nested
C/C++ void omp set nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution of parallel regions is

enabled.
Fortran logical function omp get nested()
C/IC++ int omp get nested(void);

omp_set_schedule

Set the value of the run_sched_var.

Fortran

PGI Compiler User's Guide for OpenPOWER CPUs

subroutine omp set schedule (kind, modifier)
include 'omp lib kinds.h'

55

Using OpenMP

Runtime Library Routines with Examples

integer
integer

(kind=omp sched kind) kind

modifier

C/C++

void omp set schedule (omp sched t kind,

int chunk size);

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp get schedule (kind, modifier)

include 'omp lib kinds.h'

integer (kind=omp sched kind) kind

integer modifier
C/C++ void omp get schedule (omp sched t *kind, int *chunk size);
omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a floating-point double
value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp get wtime ()
C/IC++ double omp get wtime (void);
omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran directives and as a floating-
point double value for C/C++ pragmas.

Fortran double precision function omp get wtick()
CIC++ double omp get wtick();
omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock; it is illegal to make a call to this routine.

Fortran subroutine omp init lock(lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock
C/C++ void omp init lock(omp lock t *lock);
void omp init nest lock(omp nest lock t *lock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp destroy lock (lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock
C/C++ void omp destroy lock(omp lock t *lock);
void omp destroy nest lock (omp nest lock t *lock);
omp_set_lock

Causes the calling thread to wait until the specified lock is available.

PGI Compiler User's Guide for OpenPOWER CPUs

56

Using OpenMP

Runtime Library Routines with Examples

The thread gains ownership of the lock when it is available. If the variable is not already associated with a lock, it is illegal to make
a call to this routine.

Fortran subroutine omp set lock (lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

C/C++ void omp set lock(omp lock t *lock);
void omp set nest lock(omp nest lock t *lock);

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_unset lock (lock)
include 'omp lib kinds.h'
integer (kind=omp lock kind) lock

C/C++ void omp unset lock(omp lock t *lock);
void omp unset nest lock(omp nest lock t *lock);

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns . TRUE . for directives and non-zero for pragmas if the thread gains ownership of the lock; otherwise, it
returns . FALSE. for directives and zero for pragmas.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp test lock(lock)
include 'omp lib kinds.h'
integer (kind=omp_ lock kind) lock

C/C++ int omp test lock(omp lock t *lock);
int omp test nest lock(omp nest lock t *lock);

5.9. Environment Variables

Y ou can use OpenMP environment variables to control the behavior of OpenMP programs.
These environment variables allow you to set and pass information that can alter the behavior of
directives and pragmas. The OpenPOWER compiler relies on the llvm OpenMP runtime, which
has different default values.

The following summary table is a quick reference for the OpenM P environment variables that
PGI uses.

Table 14 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Typically enables (TRUE) or disables (FALSE) the dynamic adjustment
of the number of threads.

OMP_MAX_ACTIVE_LEVELS 2% Specifies the maximum number of nested parallel regions.

PGI Compiler User's Guide for OpenPOWER CPUs 57

Using OpenMP

Environment Variable Default Description
OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.
OMP_NUM_THREADS # of logical Specifies the number of threads to use during execution of
CPUs parallel regions at the corresponding nested level. For example,
OMP_NUM_THREADS=4,2 uses 4 threads at the first nested parallel
level, and 2 at the next nested parallel level.
OMP_SCHEDULE STATIC with Specifies the type of iteration scheduling and optionally the chunk size

chunk size of 0

to use for omp for and omp parallel for loops that include the runtime
schedule clause. The supported schedule types, which can be specified
in upper- or lower-case are static, dynamic, guided, and auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 2 Specifies the absolute maximum number of threads that can be used in
a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin or sleep

when idle. The values are ACTIVE and PASSIVE.

PGI Compiler User's Guide for OpenPOWER CPUs

58

Chapter 6.
USING MPI

Message Passing Interface (MPI) is an industry-standard application programming interface
designed for rapid data exchange between processors in a cluster application. MPI is computer
software used in computer clustersthat allows the processes of a parallel application to
communicate with one another.

PGI provides MPI support with PGI compilers and tools on Linux using Open MPI. Of course,
you may always build using an arbitrary version of MPI; to do this, usethe -1, -1, and -1
option.

PGI products for Linux include Open MPI, PGI products for macOS includes MPICH, and PGI
products for Windows includes MS-MPI. This section describes how to use the MPI capabilities
of PGI compilers and how to configure PGI compilers so these capabilities can be used with
custom MPI installations.

The debugger is enabled to support MPI applications running locally with alimited number of
processes. The PGDBG Debugger Guide describes the MPI-enabled toolsin detail .

6.1. MPI Overview

This section contains general information applicable to various MPI distributions. For
distribution-specific information, refer to the sections later in this section.

MPI isaset of function calls and libraries that are used to send messages between multiple
processes. These processes can be located on the same system or on a collection of distributed
servers. Unlike OpenMP, the distributed nature of MPI alowsit to work in amost any parallel
environment.

6.2. Debugging MPI Applications

The PGI debugger, PGDBG, provides support for symbolic debugging of MPI applications. The
number and location of processes that can be debugged is limited by your license. PGl node-
locked licenses limit processes to a single system.

PGDBG can display the contents of message queues for instances of MPI that have been
configured to support that feature.

PGI Compiler User's Guide for OpenPOWER CPUs 59

Using MPI

For more information on MPI and displaying message queues, refer to the documentation for
your specific distribution of MPI.

6.3. Using Open MPI on Linux

PGI products for Linux ship with a PGI-built version of Open MPI that includes everything
required to compile, execute and debug MPI programs using Open MPI.

To build an application using Open MPI, use the Open MPI compiler wrappers: mpicc, mpic++,
mpif77,and mpif90. These wrappers automatically set up the compiler commands with the
correct include file search paths, library directories, and link libraries.

To build an application using Open MPI for debugging, add -g to the compiler wrapper
command line arguments.

6.4. Using MPI Compiler Wrappers

When you use MPI compiler wrappers to build with the -fpic or -mcmodel=medium Options,
then you must specify -sh1ib to link with the correct libraries. Here are afew examples:

For astatic link to the MPI libraries, use this command:

[

% mpicc hello.f

For adynamic link to the MPI libraries, use this command:
% mpicc hello.f -shlib

To compilewith -fpic, which, by default, invokes dynamic linking, use this command:

[)

% mpicc -fpic -shlib hello.f

To compile with -mcmode1=medium, use this command:

[

% mpicc -mcmodel=medium -shlib hello.f

6.5. Limitations

The Open Source Cluster utilities, in particular the MPICH and ScaL APACK libraries, are
provided with support necessary to build and define their proper use. However, use of these
libraries on linuxpower systems is subject to the following limitations:

» MPI libraries are limited to Messages of length < 2GB, and integer arguments are
INTEGER*4 in FORTRAN, and intin C.

» Integer argumentsfor ScaLAPACK libraries are INTEGER*4 in FORTRAN, andint in C.

» Arrays passed must be < 2GB in size.

6.6. Testing and Benchmarking

TheExamples directory contains various benchmarks and tests. Copy this directory into alocal
working directory by issuing the following command:
% cp -r $PGI/linuxpower/16.10/EXAMPLES/MPI .

PGI Compiler User's Guide for OpenPOWER CPUs 60

Using MPI

NAS Parallel Benchmarks

The NPB2.3 subdirectory contains version 2.3 of the NAS Parallel Benchmarksin MPI. Issue the
following commands to run the BT benchmark on four nodes of your cluster:

cd MPI/NPB2.3/BT

make BT NPROCS=4 CLASS=W
cd ../bin

mpirun -np 4 bt.W.4

o° o o

o\

There are several other NAS parallel benchmarks available in this directory. Similar commands
are used to build and run each of them. If you want to run alarger problem, try building the Class
A version of BT by substituting "A" for "W" in the previous commands.

ScalLAPACK

The ScaL APACK test times execution of the 3D PBLAS (parallel BLAS) on your cluster. To run
this test, execute the following commands:

oe

cd scalapack
make
mpirun -np 4 pdbla3tim

o

o\

PGI Compiler User's Guide for OpenPOWER CPUs 61

Chapter 7.
USING AN ACCELERATOR

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can
offload data and executable kernels to perform compute-intensive calculations. This section
describes a collection of compiler directives used to specify regions of codein Fortran and C
programs that can be offloaded from a host CPU to an attached accelerator.

7.1. Overview

The programming model and directives described in this section allow programmers to create
high-level host+accelerator programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accelerator, or initiate accel erator
startup and shutdown. Rather, all of these details are implicit in the programming model and are
managed by the PGI Fortran , C, and C++ accelerator compilers.

The method described provides a model for accelerator programming that is portable across
operating systems and various host CPUs and accelerators. The directives allow a programmer to
migrate applications incrementally to accelerator targets using standards-compliant Fortran or C.

This programming model allows the programmer to augment information available to the
compilers, including specification of datalocal to an accelerator region, guidance on mapping of
loops onto an accelerator, and similar performance-related details.

7.1.1. Components

The PGI Accelerator compiler technology includes the following components:

PGFORTRAN™ native OpenM P and OpenACC Fortran 2003 compiler.
PGCC® native OpenMP and OpenACC ANSI C11 and K&R C compiler.
PGC++® native OpenM P and OpenACC ANS| C++14 compiler.

PGPROF® OpenACC, CUDA, OpenMP, and multi-thread graphical profiler.
NVIDIA CUDA Toolkit components

A simple command-line tool to detect whether the system has an appropriate GPU or
accelerator card

vV vV v v v VY

No accel erator-enabled debugger isincluded with this release

PGI Compiler User's Guide for OpenPOWER CPUs 62

Using an Accelerator

7.1.2. Availability

The PGI 16.10 Fortran & C Accelerator compilers are available on OpenPOWER processor-
based workstations and servers with an attached NVIDIA CUDA-enabled GPU or Tesla card.
These compilerstarget al platformsthat PGl supports. All examplesincluded in this section
are devel oped and presented on such a platform. For alist of supported GPUSs, refer to the
Accelerator Installation and Supported Platformslist in the latest PGl Release Notes.

7.1.3. User-directed Accelerator Programming

In user-directed accelerator programming the user specifies the regions of a host program to be
targeted for offloading to an accelerator device. The bulk of auser’s program, aswell asregions
containing constructs that are not supported on the targeted accelerator, are executed on the host.
This section concentrates on specification of loops and regions of code to be offloaded to an
accelerator.

7.1.4. Features Not Covered or Implemented

This section does not describe features or limitations of the host programming environment as
awhole. Further, it does not cover automatic detection and offloading of regions of code to an
accelerator by acompiler or other tool. While future versions of the PGl compilers may allow for
automatic offloading, this feature is not currently supported.

7.2. Terminology

Clear and consistent terminology isimportant in describing any programming model. This section
provides definitions of the terms required for you to effectively use this section and the associated
programming model.

Accelerator
a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations.

Compute intensity
for agiven loop, region, or program unit, the ratio of the number of arithmetic operations
performed on computed data divided by the number of memory transfers required to move
that data between two levels of amemory hierarchy.

Computeregion
astructure block defined by an OpenA CC compute construct. A compute construct is
a structured block containing loops which are compiled for the accelerator. A compute
region may require device memory to be allocated and data to be copied from host to device
upon region entry, and data to be copied from device to host memory and device memory
deallocated upon exit. The dynamic range of a compute construct, including any code in
procedures called from within the construct, is the compute region. In this release, compute
regions may not contain other compute regions or data regions.

Construct
astructured block identified by the programmer or implicitly defined by the language. Certain
actions may occur when program execution reaches the start and end of a construct, such as

PGI Compiler User's Guide for OpenPOWER CPUs 63

http://www.pgroup.com/resources/docs.htm

Using an Accelerator

device memory allocation or data movement between the host and device memory. Loops
in a compute construct are targeted for execution on the accelerator. The dynamic range of a
construct including any code in procedures called from within the construct, is called aregion.
CUDA
stands for Compute Unified Device Architecture; the CUDA environment from NVIDIA isa
C-like programming environment used to explicitly control and program an NVIDIA GPU.
Dataregion
aregion defined by an OpenACC data construct, or an implicit data region for a function or
subroutine containing OpenACC directives. Data regions typically require device memory
to be alocated and data to be copied from host to device memory upon entry, and data to be
copied from device to host memory and device memory deallocated upon exit. Data regions
may contain other data regions and compute regions.
Device
agenera reference to any type of accelerator.
Device memory
memory attached to an accelerator which is physically separate from the host memory.
Directive
in C, a#pragma, or in Fortran, a specially formatted comment statement that is interpreted by
acompiler to augment information about or specify the behavior of the program.
DMA
Direct Memory Access, a method to move data between physically separate memories; thisis
typically performed by aDMA engine, separate from the host CPU, that can access the host
physical memory aswell asan IO device or GPU physical memory.
GPU
a Graphics Processing Unit; one type of accelerator device.
GPGPU
General Purpose computation on Graphics Processing Units.
Host
the main CPU that in this context has an attached accelerator device. The host CPU controls
the program regions and data |oaded into and executed on the device.
L oop trip count
the number of times a particular loop executes.
OpenACC
aparald programming standard describing a set of compiler directives which can be applied
to standard C, C++, and Fortran to specify regions of code for offloading from a host CPU to
an attached accelerator.
OpenCL — Open Compute Language
a standard C-like programming environment similar to CUDA that enables portable low-level
general-purpose programming on GPUs and other accelerators.
Private data
with respect to an iterative loop, data which is used only during a particular loop iteration.
With respect to amore general region of code, data which is used within the region but is not
initialized prior to the region and isre-initialized prior to any use after the region.
Region
the dynamic range of a construct, including any procedures invoked from within the construct.
Structured block
in C, an executable statement, possibly compound, with asingle entry at the top and asingle
exit at the bottom. In Fortran, a block of executable statements with a single entry at the top
and a single exit at the bottom.

PGI Compiler User's Guide for OpenPOWER CPUs 64

Using an Accelerator

Vector operation
asingle operation or sequence of operations applied uniformly to each element of an array.
Visible device copy
acopy of avariable, array, or subarray alocated in device memory, that is visible to the
program unit being compiled.

7.3. System Requirements

For NVIDIA GPUs

To use the PGI Accelerator compiler features on NVIDIA GPUs, you must install the NVIDIA
drivers. Y ou may download these components from the NVIDIA website at www.nvidia.com/
cuda

These are not PGI products. They are licensed and supported by NVIDIA.

You must be using an operating system that is supported by both the current PGI release and by the
CUDA software and drivers.

7.4. Supported Processors and GPUs

This PGl Accelerator compiler release supports OpenPOWER host processors.

Usethe -acc flag to enable OpenACC directives and the -ta=<nvidia> flag to target
NVIDIA GPUs. You can then use the generated code on any supported system with CUDA
installed that has a CUDA -enabled GeForce, Quadro, or Tesla card.

For more information on these flags as they relate to accel erator technology, refer to Applicable
Command-line Options.

For acomplete list of supported CUDA GPUSs, refer to the NVIDIA website at:www.nvidia.com/
object/cuda learn_products.html

Y ou can detect whether the system has CUDA properly installed and has an attached GPU
by running the pgaccelinfo command, which is delivered as part of the PGl Accelerator
compilers software package.

7.5. Installation and Licensing

n The PGI Accelerator compilers have a different license key than the CPU-only version of the PGI products.

PGI Compiler User's Guide for OpenPOWER CPUs 65

www.nvidia.com/cuda
www.nvidia.com/cuda
www.nvidia.com/object/cuda_learn_products.html
www.nvidia.com/object/cuda_learn_products.html

Using an Accelerator

7.5.1. Required Files

The default NVIDIA Compute Capability for generated code in thisrelease is cc2+ or fermi+,
enabling code generation for NVIDIA Fermi and Kepler GPUs. You can usethe -ta flag to
specify other compute capabilities.

Y ou can also change the default to one or more of the supported compute capabilities by adding a
line similar to the following one to the sitenvrc file. This example sets the compute capability
to enable code generation for al of the supported compute capabilities. Notice that the compute
capabilities are separated by a space.

set COMPUTECAP=20 30 35 50;

Placethe sitenvrc filein the following directory, where $PGI is the PGI installation directory,
whichistypically /opt/pgi or /usr/pgi.
$PGI/linuxpower/16.10/bin/

7.5.2. Command-line Flag

After acquiring the PGl Accelerator compilers license key, you can use the -acc or —-ta option
withthepgfortran, pgcc or pge++ commands.

For more information on the -t a flag and the suboptions that relate to the target accelerators,
refer to Applicable Command-line Options.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code
and embeds the kernelsin the Linux object file.

n To access the accelerator libraries, you must link an accelerator program with the -t a flag as well.

7.6. Execution Model

The execution model targeted by the PGl Accelerator compilersis host-directed execution with
an attached accelerator device, such asa GPU. The bulk of a user application executes on the
host. Compute intensive regions are offloaded to the accel erator device under control of the host.
The accelerator device executes kernels, which may be as ssmple as a tightly-nested loop, or as
complex as a subroutine, depending on the accelerator hardware.

7.6.1. Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

» alocates memory on the accelerator device
» initiates data transfer

sends the kernel code to the accel erator
passes kernel arguments

queues the kernel

waits for completion

v

v v VY

PGI Compiler User's Guide for OpenPOWER CPUs 66

Using an Accelerator

» transfers results back to the host
» deadlocates memory

n In most cases, the host can queue a sequence of kernels to be executed on the device, one after the
other.

7.6.2. Levels of Parallelism

Most current GPUs support two levels of parallelism:

» anouter doall (fully paralel) loop level
» aninner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly
rectangular. The synchronous level may not be fully implemented with SIMD or vector
operations, so explicit synchronization is supported and required across this level. No
synchronization is supported between parallel threads across the doall level.

The execution model on the device side exposes these two levels of paralelism and the
programmer is required to understand the difference between, for example, afully parallel loop
and aloop that is vectorizable but requires synchronization acrossiterations. All fully parallel
loops can be scheduled for either doall or synchronous parallel execution, but by definition
SIMD vector loops that require synchronization can only be scheduled for synchronous parallel
execution.

7.7. Memory Model

The most significant difference between a host-only program and a host+accelerator program is
that the memory on the accelerator can be completely separate from host memory, which isthe
case on most current GPUs. For example:

» The host cannot read or write accelerator memory by reference because it is not mapped into
the virtual memory space of the host.

» All data movement between host memory and accelerator memory must be performed by the
host through runtime library calls that explicitly move data between the separate memories.

» Itisnot valid to assume the accelerator can read or write host memory, though this may be
supported by accelerators in the future.

7.7.1. Separate Host and Accelerator Memory Considerations

The programmer must be aware of the potentially separate memories for many reasons, including
but not limited to:

» Memory bandwidth between host memory and accelerator memory determines the compute
intensity required to effectively accelerate a given region of code.

» Limited size of accelerator memory may prohibit offloading of regions of code that operate
on very large amounts of data.

PGI Compiler User's Guide for OpenPOWER CPUs 67

Using an Accelerator

7.7.2. Accelerator Memory

On the accelerator side, current GPUs implement aweak memory model. In particular, they

do not support memory coherence between threads unless those threads are parallel only at the
synchronous level and the memory operations are separated by an explicit barrier. Otherwise,

if one thread updates a memory location and another reads the same location, or two threads
store avalue to the same location, the hardware does not guarantee the results. While the results
of running such a program might be inconsistent, it is not accurate to say that the results are
incorrect. By definition, such programs are defined as being in error. While a compiler can detect
some potential errors of this nature, it is nonethel ess possible to write an accel erator region that
produces inconsistent numerical results.

7.7.3. Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and
most have hardware caches that can be used only in certain situations and are limited to read-only
data. In low-level programming models such as CUDA or OpenCL, it is up to the programmer

to manage these caches. However, in the PGl Accelerator programming model, the compiler
manages these caches using hints from the programmer in the form of directives.

7.8. Running an Accelerator Program

Running a program that has accelerator directives and was compiled and linked with the -t a flag
is the same as running the program compiled without the -t a flag.

» When running programs on NVIDIA GPUs, the program looks for and dynamically |oads the
CUDA libraries.

» OnLinux, if you have no server running on your NVIDIA GPU, when your program reaches
itsfirst accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from
apower-off audience. Y ou can avoid this delay by running the pgcudainit programin the
background, which keeps the GPU powered on.

» If you compile a program for a particular accelerator type, then run the program on a system
without that accelerator, or on a system where the target libraries are not in a directory where
the runtime library can find them, the program may fail at runtime with an error message.

> If you set the environment variable PGI_ACC NOTIFY to anonzero integer value,
the runtime library prints aline to standard error every time it launches a kernel on the
accelerator.

7.9. Accelerator Directives

This section provides an overview of the Fortran and C directives used to delineate accelerator
regions and to augment information available to the compiler for scheduling of loops and
classification of data.

PGI Compiler User's Guide for OpenPOWER CPUs 68

Using an Accelerator

7.9.1. Enable Accelerator Directives

PGI Accelerator compilers enable accelerator directives with the —acc and -ta command line
option. For more information on this option as it relates to the Accelerator, refer to Applicable
Command-line Options.

The syntax used to define directives allows compilers to ignore accelerator directives if support is disabled
or not provided.

_ACCEL macro

The AcCEL macro nameis defined to have avalue yyyymm where yyyy isthe year and

mm iS the month designation of the version of the Accelerator directives supported by the
implementation. For example, the version for May, 2009 is 200905. The PGI compilers define
this macro when accelerator directives are enabled.

_OPENACC macro

The oPENACC macro nameis defined to have avaue yyyymm where yyyy isthe year

and mm is the month designation of the version of the OpenACC directives supported by the
implementation. For example, the version for June, 2013 is 201306. All OpenACC compilers
define this macro when OpenACC directives are enabled.

7.9.2. Format

The specific format of the directive depends on the language and the format or form of the source.
Directives include a name and clauses, and the format of the directive depends on the type:

» Cdirectives, described in ‘C Directives
» Free-form Fortran directives, described in ‘ Free-Form Fortran Directives
» Fixed-form Fortran directives, described in ‘ Fixed-Form Fortran Directives

n This document uses free form for all PGl Accelerator compiler Fortran directive examples.

Rules
The following rules apply to all OpenACC compiler directives:

» Only one directive-name can be specified per directive.
» Theorder in which clauses appear is not significant.
» Clauses may be repeated unless otherwise specified.

» For clauses that have alist argument, alist is acommar-separated list of variable names, array
names, or, in some cases, subarrays with subscript ranges.

PGI Compiler User's Guide for OpenPOWER CPUs 69

Using an Accelerator

7.9.3. C Directives

In C, OpenACC compiler directives are specified using #pragma

Syntax
The syntax of an OpenACC compiler directiveis:

#pragma acc directive-name [clause [,clause]...] new-line
Rules

In addition to the general directive rules, the following rules apply to OpenACC C directives:

» Eachdirective startswith #pragma acc.
» Theremainder of the directive follows the C conventions for pragmas.

» White space may be used before and after the #; white space may be required to separate
wordsin adirective.

» Preprocessing tokens following the #pragma acc are subject to macro replacement.
» Cdirectives are case sensitive.
» An Accelerator directive applies to the immediately following structured block or loop.

7.9.4. Free-Form Fortran Directives

OpenACC Fortran directives can be either Free-Form or Fixed-Form directives. Free-Form
Accelerator directives are specified with the ! $acc mechanism.

Syntax

The syntax of directivesin free-form sourcefilesis:
!Sacc directive-name [clause [,clause]...]

Rules

In addition to the general directive rules, the following rules apply to OpenACC Free-Form
Fortran directives:

» The comment prefix (') may appear in any column, but may only be preceded by white space
(spaces and tabs).

» The sentinel (!$acc) must appear as a single word, with no intervening white space.
» Linelength, white space, and continuation rules apply to the directive line.
» Initial directive lines must have a space after the sentinel.

» Continued directive lines must have an ampersand (&) as the last nonblank character on the
line, prior to any comment placed in the directive.

» Comments may appear on the same line as the directive, starting with an exclamation point
and extending to the end of theline.

» If thefirst nonblank character after the sentinel is an exclamation point, the lineisignored.

PGI Compiler User's Guide for OpenPOWER CPUs 70

Using an Accelerator

» Directives are case-insensitive.
» Directives cannot be embedded within continued statements.
» Statements must not be embedded within continued directives.

7.9.5. Fixed-Form Fortran Directives

Fixed-Form Accelerator directives are specified using one of three formats.

Syntax

The syntax of directivesin fixed-form source filesis one these three formats:

!Sacc directive-name [clause [,clause]...]
cSacc directive-name [clause [,clause]...]
*Sacc directive-name [clause [,clause]...]

Rules

In addition to the genera directive rules, the following rules apply to Accelerator Fixed-Form
Fortran directives:

» The sentinel (acc, cacc, or *$acc) must occupy columns 1-5.

» Fixed form line length, white space, continuation, and column rules apply to the directive
line.

» Initia directive lines must have a space or zero in column 6, and continuation directive lines
must have a character other than a space or zero in column 6.

» Comments may appear on the same line as a directive, starting with an exclamation point on
or after column 7 and continuing to the end of theline.

» Directives are case-insensitive.

» Directives cannot be embedded within continued statements.

» Statements must not be embedded within continued directives.

7.9.6. OpenACC Directive Summary

PGI currently supports these types of accelerator directives:

Parallel Directive
Kernels Directive
Loop Directive
Combined Directive
Data Directive

Enter Data and Exit Data Directives
Host_Data Directive
Cache Directive
Declare Directive
Update Directive
Routine Directive
Wait Directive

PGI Compiler User's Guide for OpenPOWER CPUs 71

Using an Accelerator

Table 15 lists and briefly describes each of the accelerator directives that PGI currently supports.
For a complete description of each directive, refer to ‘PGl Accelerator Directives' in the PGI

Compiler’s Reference Guide.

Table 15 PGl Accelerator Directive Summary Table

This directive... Accepts these clauses...

Has this functionality...

Parallel Directive async [(int-expr)]

wait [(int-expr-list)]
num_gangs (int-expr)
num_workers(int-expr)
vector_length(int-expr)
if(condition)

reduction(operator : list)
copy (list)

copyin(list)

copyout(list)

create(list)

present(list)

deviceptr(list)

private(list)
firstprivate(list)

Defines the region of the program that should be compiled for
parallel execution on the accelerator device.

structured block
!Sacc end parallel

C Syntax

#pragma acc parallel [clause [, clause]...
structured block

Fortran Syntax

!Sacc parallel [clause [, clause]...]

] new-line

Kernels Directive async [(int-expr)]

wait [(int-expr-list)]
if(condition)

copy (list)

copyin(list)
copyout(list)
create(list)
present(list)

Defines the region of the program that should be compiled
into a sequence of kernels for execution on the accelerator
device.

structured block
!Sacc end kernels

deviceptr(list)
C Syntax
#pragma acc kernels [clause [, clause]...
structured block
Fortran Syntax
!Sacc kernels [clause [, clause]...]

] new-line

Data Directive if(condiition)

copy (list)

PGI Compiler User's Guide for OpenPOWER CPUs

Defines data, typically arrays, that should be allocated
in the device memory for the duration of the data region,
whether data should be copied from the host to the device

72

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

This directive...

Accepts these clauses...

Using an Accelerator

Has this functionality...

memory upon region entry, and copied from the device to
host memory upon region exit.

copyin(list)
copyout(list)
create(list)
deviceptr(list)
C Syntax
#pragma acc data [clause [, clause]...
structured block
Fortran Syntax
!Sacc data [clause [, clause]...]

structured block
!Sacc end data

] new-line

Enter Data Directive if(condtion)

async [(int-expr)]
wait [(int-expr-list)]
copyin(list)
create(list)

Defines data, typically arrays, that should be allocated in the
device memory for the duration of the program or until an
exit data regdirective that deallocates the data, and
whether data should be copied from the host to the device
memory atthe enter data directive.

C Syntax
#pragma acc enter data [clause [, clause]...] new-line
FortranSyntax
!Sacc enter data [clause [, clause]...]
Exit Data Directive if(condition) Defines data, typically arrays, that should be allocated in the
) device memory, and whether data should be copied from the
async [(int-expr)] .
S . device to the host memory.
wait [(int-expr-list)]
copyout(list)
delete(list)
C Syntax
#pragma acc exit data [clause [, clause]...] new-line
Fortran Syntax
!Sacc exit data [clause [, clause]...]
Host_Data Directive use_device(st) Makes the address of the device data available on the host.
C Syntax
#pragma acc host data [clause [, clause]...] new-line

structured block

Fortran Syntax
!$acc host data [clause [, clause]...]
structured block
!$acc end host data
Loop Directive collapse(n) Describes what type of parallelism to use to execute the loop

gang [(gang-arg-list)]
worker [([num:] int-expr)]
vector [([length:] int-expr)]

PGI Compiler User's Guide for OpenPOWER CPUs

and declare loop-private variables and arrays and reduction
operations. Applies to a loop which must appear on the
following line.

73

Using an Accelerator

This directive... Accepts these clauses... Has this functionality...
seq
independent
private(list)
reduction(operator : list)
shortloop

C Syntax

#pragma acc loop [clause [,clause]...] new-line

for loop

Fortran Syntax

!Sacc loop [clause [,clause]...]

do loop

Combined Parallel Loop Any clause that is allowed on a Is a shortcut for specifying a loop directive nested

Directive parallel directive or a loop directive | immediately inside an accelerator parallel directive. The

is allowed on a combined parallel meaning is identical to explicitly specifying a parallel
loop directive. construct containing a loop directive.

C Syntax

#pragma acc parallel loop [clause [, clause]...] new-line

for loop

Fortran Syntax

!Sacc parallel loop [clause [, clause]...]

do loop

Combined Kernels Loop Any clause that is allowed on a Is a shortcut for specifying a loop directive nested

Directive kernels directive or a loop directive | immediately inside an accelerator kernels directive. The

is allowed on a combined kernels meaning is identical to explicitly specifying a kernels
loop directive. construct containing a loop directive.

C Syntax

#pragma acc kernels loop [clause [, clause]...] new-line

for loop

Fortran Syntax

!Sacc kernels loop [clause [, clause]...]

do loop

Cache Directive Specifies array elements or subarrays that should be fetched

into the highest level of the cache for the body of a loop.
Must appear at the top of (inside of) the loop.

C Syntax

#pragma acc cache (list)... new-line

Fortran Syntax

!Sacc cache (list)

Declare Directive copy (ist) Specifies that an array or arrays are to be allocated in the
copyin(fist) device memory for the duration of the implicit data region of a
copyout(st) function, subroutine, or program.
create(ist) Specifies whether the data values are to be transferred from
deviceptr(fist) the host to the device memory upon entry to the implicit data
device_resident(fist) region, and from the device to the host memory upon exit

- from the implicit data region.

PGI Compiler User's Guide for OpenPOWER CPUs 74

Using an Accelerator

This directive... Accepts these clauses... Has this functionality...

Creates a visible device copy of the variable or array.

C Syntax
#pragma acc declare clause [,clause]... new-line
FortranSyntax
!Sacc declare clause [,clause]...
Update Directive async [(int-expr)] Used during the lifetime of accelera?or data to update
o all or part of a host memory array with values from the
wait [(int-expr)] . . !

) . corresponding array in device memory, or to update all
device-type (deviype-list) | or part of a device memory array with values from the
if (condition) corresponding array in host memory.
self (fist)
host (list)
device(list)

C Syntax
#pragma acc update clause [,clause]... new-line
Fortran Syntax
!Sacc update clause [,clause]...
Routine Directive gang Used to tell the compiler to compile a given procedure
for an accelerator as well as the host. In a file or routine
worker .) oo
with a procedure call the rout ine directive tells the
vector implementation the attributes of the procedure when called
S€q on the accelerator.
C Syntax
#pragma acc routine clause [,clause]... new-line
or
#pragma acc routine (name) clause [,clause]... new-line
Fortran Syntax

!Sacc routine clause [,clause]...

or

!Sacc routine(name) clause [,clause]...

Specifies to wait until all operations on a specific device
async queue or all async queues are complete.

Wait Directive if(condition)

device(list)

C Syntax

#pragma acc wait [(int-expr-list)] [clause [,clause]...] new-line
Fortran Syntax

!Sacc wait [(int-expr-list)] [clause [,clause]...]

PGI Compiler User's Guide for OpenPOWER CPUs

75

Using an Accelerator

7.10. Accelerator Directive Clauses

Table 16 provides an alphabetical listing and brief description of each clause that is applicable
for the various Accelerator directives. The table also indicates for which directives the clauseis
applicable.

Table 16 Directive Clauses Summary

Use this clause... In these directives... To do this...
async [(int-expr)] Parallel The parallel or kernels region or data operations may be processed
Kernels asynchronously while the local thread continues with the code
following the construct or directive. (The async clause on the data
Ea:a oat construct is a PG extension)
nter Data
Exit Data
Update
collapse (n) Loop Specifies how many tightly nested loops are associated with the loop
construct.
copy (list) Parallel At execution time, the implementation will test whether each of
Kernels the items in the list are already present in the device memory. If
) not, corresponding device memory will be allocated and the data
Data Region will be copied to the device at entry to the region, and data will be
Declare copied back to the host and the memory deallocated at exit from the
region. For compatibility with OpenACC 2.0, this may also be spelled
present_or_copy or pcopy.
copyin (list) Parallel At execution time, the implementation will test whether each of
Kernels the items in the list are already present in the device memory. If
not, corresponding device memory will be allocated and the data
Data will be copied to the device at entry to the region, and the memory
Declare deallocated at exit from the region. For compatibility with OpenACC
Enter Data 2.0, this may also be spelled present_or_copyin or pcopyin.
copyout (list) Parallel At execution time, the implementation will test whether each of the
Kernels items in the list are already present in the device memory. If not,
corresponding device memory will be allocated at entry to the region,
Data and data will be copied back to the host and the memory deallocated
Declare at exit from the region. For compatibility with OpenACC 2.0, this may
Exit Data also be spelled present_or_copyout or pcopyout.
create (list) Parallel At execution time, the implementation will test whether each of the
Kernels items in the list are already present in the device memory. If not,
corresponding device memory will be allocated at entry to the region,
Data and the memory deallocated at exit from the region. For compatibility
Declare with OpenACC 2.0, this may also be spelled present_or_create or
Enter Data pcreate.
delete (list) Exit Data At execution time, the implementation will deallocate the
corresponding device memory.
device (list) Update Copies the variables, arrays, or subarrays in the list argument from
host memory to the visible device copy of the variables, arrays, or
subarrays in device memory.

PGI Compiler User's Guide for OpenPOWER CPUs 76

Use this clause...

In these directives...

Using an Accelerator

To do this...

device_resident (list)

Specifies that the memory of the named variables should be allocated

Declare) . °
in the accelerator device memory and not in the host memory.
deviceptr (list) Parallel Declares that the items in the list are device pointers, so the data
need not be allocated or moved between the host and device..
Kernels
Data
Declare
firstprivate (list) Parallel Declares that a copy of each item on the list will be created for each
parallel gang, and that the copy will be initialized with the value of that
item on the host when the parallel construct is encountered.
gang [(gang-arg-list)] Loop Specifies that the iterations of the associate loop or loops are to be
. executed in parallel by distributing the iterations among the gangs
Routine
created by the parallel construct.
host (list) Update Copies the visible device copies of the variables, arrays, or subarrays
in the list argument to the associated host memory locations. The
copy occurs after completion of the compute or data region.
if (condition) Parallel When present, tells the compiler to generate two copies of the region
—one for the accelerator, one for the host — and to generate code to
Kernels . .
decide which copy to execute.
if (condition) Data Region Conditionally allocate memory on, and move data to and/or from the
device.
Enter Data
Exit Data
Update
independent Loop Tells the compiler that the iterations of this loop are data-independent
of each other, thus allowing the compiler to generate code to execute
the iterations in parallel, without synchronization.
num_gangs (int-expr) Parallel Defines the number of parallel gangs that will execute the region.
num_workers (int-expr) Parallel Defines the number of workers within each gang that will be active
after a gang transitions from worker-single mode to worker-partitioned
mode.
present (list) Parallel Tells the implementation that the items in the list are already present
in device memory.
Kernels
Data
Declare
private (list) Loop Specifies that a copy of each item in the list will be created for each
thread that executes one or more iterations of the associated loop or
loops.
private (list) Parallel Declares that a copy of each item on the list will be created for each
parallel gang.
reduction (operator: list) Loop For each variable in the list, a private copy is created for each thread

that executes iterations of the associated loop or loops and initialized
for the operator. At the end of the loop, the values for each thread are
combined using the reduction operator, and the result combined with

the value of the original variable and stored in the original variable.

PGI Compiler User's Guide for OpenPOWER CPUs

77

Using an Accelerator

Use this clause... In these directives... To do this...

reduction (operator: list) Parallel For each variable in the list, a private copy is created for each parallel
gang and initialized for the operator. At the end of the region, the
values for each gang are combined using the reduction operator, and
the result combined with the value of the original variable and stored
in the original variable.
self (list) Update Specifies that the items in the list are to be copied from the
accelerator device memory to the local memory. The self clause is
a synonym for the host clause.
seq Loop Tells the compiler to execute this loop sequentially on the accelerator.
There is no maximum number of iterations for a seq schedule.
shortloop Loop If the loop has the vector clause, this tells the compiler that the
trip count for the loop is less than or equal to the number of vector
lanes created for this kernel, as specified by the vector_length on
the parallel construct or vector clause in a kernels construct. (PGl
extension)
use_device (list) Host Data Tells the compiler to use the device address of any item in the list in
- code within the construct.
vector [([length:] int-expr)] Loop Tells the compiler to execute this loop in vector or SIMD mode on the
accelerator.
vector_length (int-expr) Parallel Defines the number of vector lanes that will be active after a worker
transitions from vector-single mode to vector-partitioned mode.
wait [(int-expr-list)] Parallel The compute, data or update operation may not be launched or
executed until all operations enqueued up to this point by this
Kernels . . -
thread on the associated asynchronous device activity queues have
Enter Data completed.
Exit Data
Update
worker [([num:] int-expr)] Loop Specifies that the iterations of the associated loop or loops are to be
executed in parallel by distributing the iterations among the multiple
workers within a single gang.

7.11. OpenAcc Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are
available for use by programmersto query the accelerator features and to control behavior of
accelerator-enabled programs at runtime.

In Fortran, none of the OpenACC runtime library routines may be called from a PURE or ELEMENTAL
procedure.

7.11.1. Runtime Library Definitions

There are separate runtime library files for C and for Fortran.

PGI Compiler User's Guide for OpenPOWER CPUs 78

C Runtime Library Files

Using an Accelerator

In C, prototypes for the runtime library routines are available in a header file named accel . h.
All thelibrary routines are extern functionswith ‘C’ linkage. Thisfile defines:

» The prototypes of all routinesin this section.
» Any datatypes used in those prototypes, including an enumeration type to describe types of

accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named accel 1ib.h and
in aFortran module named accel 1ib. Thesefiles define:

» Interfacesfor al routines in this section.
» Integer parameters to define integer kinds for arguments to those routines.
» Integer parameters to describe types of accelerators.

» Theinteger parameter accel version withavalue yyyymm where yyyy and mm are
the year and month designations of the version of the Accelerator programming model
supported. This value matches the value of the preprocessor variable ACCEL.

7.11.2. Runtime Library Routines

Table 17 lists and briefly describes the runtime library routines supported by PGI in addition to
the standard OpenACC runtine API routines.

Table 17 Accelerator Runtime Library Routines

This Runtime Library

Routine...

Does this...

acc_allocs

Returns the number of arrays allocated in data or compute regions.

acc_bytesalloc

Returns the total bytes allocated by data or compute regions.

acc_bytesin

Returns the total bytes copied in to the accelerator by data or compute regions.

acc_bytesout

Returns the total bytes copied out from the accelerator by data or compute regions.

acc_copyins

Returns the number of arrays copied in to the accelerator by data or compute regions.

acc_copyouts

Returns the number of arrays copied out from the accelerator by data or compute regions.

acc_disable_time

Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time

Tells the runtime to start profiling accelerator regions and kernels, if it is not already doing so.

acc_exec_time

Returns the number of microseconds spent on the accelerator executing kernels.

acc_frees

Returns the number of arrays freed or deallocated in data or compute regions.

acc_get_device

Returns the type of accelerator device used to run the next accelerator region, if one is
selected.

acc_get_device_num

Returns the number of the device being used to execute an accelerator region.

acc_get_free_memory

Returns the total available free memory on the attached accelerator device.

PGI Compiler User's Guide for OpenPOWER CPUs

This Runtime Library

Routine...

Using an Accelerator

Does this...

acc_get_memory

Returns the total memory on the attached accelerator device.

acc_get_num_devices

Returns the number of accelerator devices of the given type attached to the host.

acc_kernels

Returns the number of accelerator kernels launched since the start of the program.

acc_present_dump

Summarizes all data present on the current device.

acc_present_dump_all

Summarizes all data present on all devices.

acc_regions

Returns the number of accelerator regions entered since the start of the program.

acc_total_time

Returns the number of microseconds spent in accelerator compute regions and in moving data
for accelerator data regions.

7.12. Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section
defines the user-setable environment variables used to control behavior of accelerator-enabled
programs at execution. These environment variables must comply with these rules:

» The names of the environment variables must be upper case.
» Thevalues assigned environment variables are case insensitive and may have leading and

trailing white space.

» The behavior isimplementation-defined if the values of the environment variables change
after the program has started, even if the program itself modifies the values.

Table 18 lists and briefly describes the Accelerator environment variables that PGl supports.

Table 18 Accelerator Environment Variables

This environment variable...

Does this...

ACC_DEVICE_TYPE

Controls which accelerator device to use when executing accelerator regions, if the
program has been compiled to use more than one different type of device. The value
of this environment variable is implementation-defined, and currently may be the
string NVIDIA, RADEON, or HOST.

ACC_DEVICE_NUM

Controls the default device number to use when executing accelerator regions. The
value of this environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

PGI_ACC_NOTIFY

When set to an integer value, the value is used as a bit mask to print information
about kernel launches (value 1), data transfers (value 2), wait operations or
synchronizations with the device (value 4), region entry/exit (value 8), and data
allocate/free (value 16).

PGI_ACC_TIME

Enables a lightweight profiler to measure data movement and accelerator kernel
execution time and print a summary at the end of program execution.

PGI_ACC_BUFFERSIZE

For NVIDIA CUDA devices, this defines the size of the pinned buffer used to transfer
data between host and device.

PGI Compiler User's Guide for OpenPOWER CPUs 80

Using an Accelerator

This environment variable... Does this...

PGI_ACC_GANGLIMIT For NVIDIA CUDA devices, this defines the maximum number of gangs (CUDA
thread blocks) that will be launched by a kernel.

PGI_ACC_DEV_MEMORY For AMD Radeon devices, this defines the maximum size OpenCL buffer to allocate.

The maximum size may also be limited by the target device.

7.13. Applicable Command-line Options

The following command line options are applicable specifically when working with accelerators.

-ta
Use this option to enable recognition of the ! $acc directivesin Fortran, and #pragma acc
directivesin C.

—acc
Use this option to enable OpenACC directives. Y ou can use the -acc suboptionsto specify
loop autoparallelization, how the compiler reports compute regions failures to accelerate, and
whether to issue awarning or an error for non-OpenACC accel erator directives.

-Minfo OF -Minfo=accel
Use this option to see messages about the success or failure of the compiler in trandating the
accelerator region into GPU kernels.

The -ta flag has the following accel erator-related suboptions:

teda
Select NVIDIA accelerator target. This option has a number of suboptions:

cc20, cc30, cc35, cc50, Generate code for compute capability 2.0, 3.0, 3.5, 5.0 or 6.0 respectively; multiple selections are

cc60

valid.

cuda7.00r7.0 Specify the CUDA 7.0 version of the toolkit. This is the default.

cuda7.50r7.5 Specify the CUDA 7.5 version of the toolkit.

cuda8.0 or 8.0 Specify the CUDA 8.0 version of the toolkit.

fastmath Use routines from the fast math library.

fermi Generate code for Fermi Architecture equivalent to NVIDIA compute capability 2.x.
[no]flushz Control flush-to-zero mode for floating point computations in the GPU code.

keep Keep the kernel files.

kepler Generate code for Kepler Architecture equivalent to NVIDIA compute capability 3.x.

maxregcount:n

Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

[no]fma Control generation of fused multiply-add instructions.
noL1 Prevent the use of L1 hardware data cache to cache global variables.
[no]rdc Control generation of relocatable device code (default on).

host

Generate host code for accelerator regions.

PGI Compiler User's Guide for OpenPOWER CPUs 81

Using an Accelerator

The compiler automatically invokes the necessary software toolsto create the kernel code and
embeds the kernelsin the object file.

n To access accelerator libraries, you must link an accelerator program with the -t a flag.

7.14. Profiling Accelerator Kernels

This release supports the environment variable PGI_ACC_TIME for 64-bits. Setting this
environment variable to a nonzero value enables collection and printing of simple timing
information about the accelerator regions and generated kernels.

Turn off all CUDA Profilers (NVIDIA's Visual Profiler, NVPROF, CUDA_PROFILE, etc) when enabling
PGI_ACC_TIME, they use the same library to gather performance data and cannot be used concurently.

Accelerator Kernel Timing Data

bb04.£90
sl
15: region entered 1 times
time (us): total=1490738
init=1489138 region=1600
kernels=155 data=1445
w/o init: total=1600 max=1600
min=1600 avg=1600
18: kernel launched 1 times
time (us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

» For each accelerator region, the file name bb 04 . £90 and subroutine or function name s1 is
printed, with the line number of the accelerator region, which in the exampleis 15.

» Thelibrary counts how many times the region is entered (1 in the example) and the
microseconds spent in the region (in this example 1490738), which is split into initialization
time (in this example 1489138) and execution time (in this example 1600).

» Theexecution timeisthen divided into kernel execution time and data transfer time between
the host and GPU.

» For each kernel, the line number is given, (18 in the example), along with a count of kernel
launches, and the total, maximum, minimum, and average time spent in the kernel, all of
which are 155 in this example.

7.15. Related Accelerator Programming Tools

7.15.1. NVIDIA CUDA Profile

Y ou can use the NVIDIA CUDA Profiler with PGI-generated code for the NVIDIA
GPUs. Y ou may download the CUDA Profiler from the same website as the CUDA
software:www.nvidia.com/cuda

PGI Compiler User's Guide for OpenPOWER CPUs 82

www.nvidia.com/cuda

Using an Accelerator

Documentation and support is provided by NVIDIA.

7.15.2. TAU - Tuning and Analysis Utility

Y ou can use the TAU (Tuning and Analysis Utility), version 2.18.1+, with PGI-generated
accelerator code. TAU instruments code at the function or loop level, and version 2.18.1
is enhanced with support to track performance in accelerator regions. TAU software and
documentation is available at this website: http://tau.uoregon.edu

7.16. Supported Intrinsics

Anintrinsic is afunction available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of theintrinsic function, it can better integrate it and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a
language interface to assembly instructions. In doing so, the compiler manages things that the
user would normally have to be concerned with, such as register names, register allocations, and
memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accel erator supports.

7.16.1. Supported Fortran Intrinsics Summary Table

Table 19 isan alphabetical summary of the supported Fortran intrinsics that the accel erator
supports. These functions are specific to Fortran 90/95 unless otherwise specified.

n For complete descriptions of these intrinsics, refer to ‘Fortran Intrinsics’ of the PGI Fortran Reference
Manual.

In most cases PGI provides support for al the data types for which the intrinsic is valid. When
support is available for only certain data types, the middle column of the table specifies which
ones, using the following codes:

| for integer S for single precision real C for single precision complex

D for double precision real Z for double precision complex

Table 19 Supported Fortran Intrinsics

This intrinsic Returns this value ...

ABS 1,S,D absolute value of the supplied argument.

ACOS arccosine of the specified value.

AINT truncation of the supplied value to a whole number.
ANINT nearest whole number to the supplied argument.
ASIN arcsine of the specified value.

PGI Compiler User's Guide for OpenPOWER CPUs 83

http://tau.uoregon.edu
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using an Accelerator

This intrinsic Returns this value ...

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

Ccos SD cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE SD conversion of the value to double precision real.
DPROD double precision real product.

EXP SD exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.
IEOR result of a bit-by-bit logical exclusive OR on the arguments.
INT 1,S,.D conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.
LOG SD natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

MOD remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.
REAL 1,S,D conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN SD value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT SD square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

7.16.2. Supported C Intrinsics Summary Table

This section contains two a phabetical summaries — one for double functions and a second for
float functions. These lists contain only those C intrinsics that the accelerator supports.

Table 20 Supported C Intrinsic Double Functions

This intrinsic Returns this value ...

acos arccosine of the specified value.
asin arcsine of the specified value.
atan arctangent of the specified value.

PGI Compiler User's Guide for OpenPOWER CPUs

84

Using an Accelerator

This intrinsic Returns this value ...

atan2 arctangent of y/x, where y is the first argument, x the second.
oS cosine of the specified value.

cosh hyperbolic cosine of the specified value.

exp exponential value of the argument.

fabs absolute value of the argument.

fmax maximum value of the two supplied arguments

fmin minimum value of the two supplied arguments

log natural logarithm of the specified value.

log10 base-10 logarithm of the specified value.

pow value of the first argument raised to the power of the second argument.
sin value of the sine of the argument.

sinh hyperbolic sine of the argument.

sqrt square root of the argument.

tan tangent of the specified value.

tanh hyperbolic tangent of the specified value.

Table 21 Supported C Intrinsic Float Functions

This intrinsic Returns this value ...

acosf arccosine of the specified value.

asinf arcsine of the specified value.

atanf arctangent of the specified value.

atan2f arctangent of y/x, where y is the first argument, x the second.
cosf cosine of the specified value.

coshf hyperbolic cosine of the specified value.

expf exponential value of the floating-point argument.

fabsf absolute value of the floating-point argument.

logf natural logarithm of the specified value.

log10f base-10 logarithm of the specified value.

powf value of the first argument raised to the power of the second argument.
sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrif square root of the argument.

tanf tangent of the specified value.

tanhf hyperbolic tangent of the specified value.

PGI Compiler User's Guide for OpenPOWER CPUs 85

Using an Accelerator

7.17. References related to Accelerators

>

ISO/IEC 1539-1:1997, Information Technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).
I1SO/IEC 9899:1999, Information Technology — Programming Languages — C, Geneva, 1999
(C99).

ISO/IEC 9899:2011, Information Technology — Programming Languages — C, Geneva, 2011
(C11).

ISO/IEC 14882:2011, Information Technology — Programming Languages — C++, Geneva,
2011 (C++11).

PGI Debugger User's Guide, The Portland Group. Available online at http://
www.pgroup.com/doc/pgdbg. pdf.

PGI Profiler User's Guide, The Portland Group. Available online at http://www.pgroup.com/
doc/pgprof.pdf.

PGI Fortran Reference, The Portland Group. Available online at http://www.pgroup.com/
doc/pgifortref.pdf.

PGI Compiler User's Guide for OpenPOWER CPUs 86

http://www.pgroup.com/doc/pgdbg.pdf
http://www.pgroup.com/doc/pgdbg.pdf
http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgifortref.pdf
http://www.pgroup.com/doc/pgifortref.pdf

Chapter 8.
USING DIRECTIVES AND PRAGMAS

It is often useful to be able to alter the effects of certain command line options or default behavior
of the compiler. Fortran directives and C/C++ pragmas provide pragmatic information that
control the actions of the compiler in a particular portion of a program without affecting the
program as awhole. That is, while acommand line option affects the entire source file that is
being compiled, directives and pragmas apply, or disable, the effects of a command line option

to selected subprograms or to selected loopsin the source file, for example, to optimize a specific
area of code. Use directives and pragmas to tune selected routines or loops.

8.1. PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:

'pgiSg directive
'pgi$r directive
'pgi$l directive
'pgi$ directive

n If the input is in fixed format, the comment character must begin in column 1 and either * or C is allowed in
place of !.

The scope indicator controls the scope of the directive. Thisindicator occurs after the $. Some
directives ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:

° (global) indicates the directive applies to the end of the sourcefile.

r (routine) indicates the directive applies to the next subprogram.

| (loop) indicates the directive applies to the next loop, but not to any loop contained within the
loop body. Loop-scoped directives are only applied to DO loops.

blainr;icateﬁ that the default scope for the directive is applied.

PGI Compiler User's Guide for OpenPOWER CPUs 87

Using Directives and Pragmas

The body of the directive may immediately follow the scope indicator. Alternatively, any
number of blanks may precede the name of the directive. Any namesin the body of the directive,
including the directive name, may not contain embedded blanks. Blanks may surround any
specia characters, such asacommaor an equal sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and
the caseis not significant. Caseis significant for any variable names that appear in the body of
the directive if the command line option -Mupcase is selected. For compatibility with other
vendors' directives, the prefix cpgis may be substituted with cdir$ or cvds.

8.2. PGI Proprietary C and C++ Pragmas

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Many
pragmas have a corresponding command-line option. Pragmas may also toggle an option,
selectively enabling and disabling the option.

The general syntax of apragmais:
#pragma [scope] pragma-body

The optional scopefield isan indicator for the scope of the pragma; some pragmas ignore the
scope indicator.

The valid scopes are:

global
indicates the pragma applies to the entire source file.
routine
indicates the pragma applies to the next function.
loop
indicates the pragma applies to the next loop (but not to any loop contained within the loop
body). Loop-scoped pragmas are only applied to for and while loops.

If ascope indicator is not present, the default scope, if any, is applied. Whitespace must

appear after the pragma keyword and between the scope indicator and the body of the pragma.
Whitespace may also surround any special characters, such asacommaor an equal sign. Caseis
significant for the names of the pragmas and any variable names that appear in the body of the

pragma.

8.3. PGl Proprietary Optimization Directive and Pragma
Summary

The following table summarizes the supported Fortran directives and C/C++ pragmas. The
following terms are useful in understanding the table.

» Functionality isabrief summary of the way to use the directive or pragma. For a complete
description, refer to the ‘ Directives and Pragmas Reference’ section of the PGl Compiler’s
Reference Guide.

» Many of the directives and pragmas can be preceded by No. The default entry indicates the
default for the directive or pragma. N/A appearsif a default does not apply.

PGI Compiler User's Guide for OpenPOWER CPUs 88

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Directives and Pragmas

» The scope entry indicates the allowed scope indicators for each directive or pragma, with 1.
for loop, R for routine, and G for global. The default scope is surrounded by parentheses and
N/A appearsif the directive or pragmais not available in the given language.

The "*" in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive or pragma until the end of the routine.

For globally-scoped directive
The scope includes the code following the directive or pragma until the end of the file rather than
for the entire file.

The name of a directive or pragma may also be prefixed with -Mm.

For example, you can use the directive -Mbounds, which is equivalent to the directive bounds and you
can use —Mopt, which is equivalent to opt. For pragmas, you can use the directive -Mnoassoc, which
is equivalent to the pragma noassoc, and -Mvintr, which is equivalent to vintr.

Table 22 Proprietary Optimization-Related Fortran Directive and C/C++ Pragma
Summary

C/C++
Scope

Fortran
Scope

Directive or

pragma DIEN]

Functionality

altcode (noaltcode) Do/don't generate alternate code for vectorized altcode (LRG (LRG
and parallelized loops.
assoc (noassoc) Do/don’t perform associative transformations. assoc (L)RG (LRG
bounds (nobounds) Do/don’t perform array bounds checking. nobounds (R)G* (R)G
cncall (nocncall) Loops are considered for parallelization, even if nocncall (L)RG (L)RG
they contain calls to user-defined subroutines or
functions, or if their loop counts do not exceed
usual thresholds.
concur (noconcur) Do/don’t enable auto-concurrentization of loops. concur (L)RG (LIRG
depchk (nodepchk) Do/don't ignore potential data dependencies. depchk (L)RG (LRG
eqvchk (noeqvchk) Do/don’t check EQUIVALENCE for data eqvchk (LRG N/A
dependencies.
fcon (nofcon) Do/don’'t assume unsuffixed real constants are nofcon N/A (R)G
single precision.
invarif (noinvarif) Do/don’t remove invariant if constructs from loops. | invarif (L)RG (LRG
ivdep Ignore potential data dependencies. ivdep (L)RG N/A
Istval (nolstval) Do/don’t compute last values. Istval (L)RG (LIRG
prefetch Control how prefetch instructions are emitted
opt Select optimization level. N/A (R)G (R)G
safe (nosafe) Do/don't treat pointer arguments as safe. safe N/A (R)G
safe_lastval Parallelize when loop contains a scalar used not enabled L) (L)
outside of loop.

PGI Compiler User's Guide for OpenPOWER CPUs

89

Using Directives and Pragmas

Directive or Fortran C/C++

pragma Functionality Default Scope Scope

safeptr (nosafeptr) Do/don’t ignore potential data dependencies to nosafeptr N/A L(R)G
pointers.

single (nosingle) Do/don’t convert float parameters to double. nosingle N/A (R)G*

tp Generate PGI Unified Binary code optimized for N/A (R)G (R)G
specified targets.

unroll (nounroll) Do/don’t unroll loops. nounroll (L)RG (LRG

vector (novector) Do/don't perform vectorizations. vector (L)RG* (LRG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (L)RG (LRG

8.4. Scope of Fortran Directives and Command-Line Options

During compilation the effect of a directive may be to either turn an option on, or turn an option
off. Directives apply to the section of code following the directive, corresponding to the specified
scope, which may include the following loop, the following routine, or the rest of the program.
This section presents several examples that show the effect of directives aswell as their scope.
Consider the following Fortran code:

integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
doi =1, n
do j =1, n
c(i,3) = a(i,J) + b(i,3)
enddo
enddo
enddo

When compiled with -Mvect, both interior loops are interchanged with the outer loop.
$ pgfortran -Mvect dirvectl.f

Directives ater this behavior either globally or on aroutine or loop by loop basis. To assure that
vectorization is not applied, use the novector directive with global scope.

'pgi$g novector
integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
do i =1, n
do j =1, n
c(i,J) = a(i,j) + b(i,3J)
enddo
enddo
enddo
end

In this version, the compiler disables vectorization for the entire source file. Another use of the
directive scoping mechanism turns an option on or off locally, either for a specific procedure or
for a specific loop:

integer maxtime, time
parameter (n = 1000, maxtime = 10)

PGI Compiler User's Guide for OpenPOWER CPUs 90

Using Directives and Pragmas

double precision a(n,n), b(n,n), c(n,n)
'pgi$l novector

do time = 1, maxtime
do i=1, n
do j =1, n
c(i,j) = a(i,j) + b(i,3)
enddo
enddo
enddo

Loop level scoping does not apply to nested loops. That is, the directive only applies to the
following loop. In this example, the directive turns off vector transformations for the top-

level loop. If the outer loop were atiming loop, thiswould be a practical use for aloop-scoped
directive.

8.5. Scope of C/C++ Pragmas and Command-Line Options

During compilation a pragma either turns an option on or turns an option off. Pragmas apply to
the section of code corresponding to the specified scope — either the entire file, the following
loop, or the following or current routine. This section presents several examples showing the
effect of pragmas and the use of the pragma scope indicators.

n In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for determining the
scope of the pragma. We cover these special scope rules at the end of this section.

Consider the following program:

main () {

float a[100][100], b[100][100], c[100]([100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;

for (time=0; time<maxtime;time++)

for (3=0; j<n;j++)
for (i=0; i<n;i++)
c[il[3] = alil[3] + bIi][3];

}

When thisis compiled using the -Mvect command-line option, both interior loops are
interchanged with the outer loop. Pragmas alter this behavior either globally or on aroutine or
loop by loop basis. To ensure that vectorization is not applied, use the novector pragmawith
global scope.

main () {
#pragma global novector

float a[100][100], b[100]([100],c[100]([100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;

for (time=0; time<maxtime;time++)

for (j=0; j<n;j++)
for (i=0; i<n;i++)
cli]1[J] = alillj] + blill31;

PGI Compiler User's Guide for OpenPOWER CPUs 91

Using Directives and Pragmas

In this version, the compiler does not perform vectorization for the entire source file. Another use
of the pragma scoping mechanism turns an option on or off locally either for a specific procedure
or for a specific loop. The following example shows the use of aloop-scoped pragma.

main () {

float a[100][100], b[100][100],c[100][100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;
#pragma loop novector

for (time=0; time<maxtime;time++)

for (3j=0; j<n;j++)
for (i=0; i<n;i++)
clil[3] = alill3] + blil[j];

}

Loop level scoping does not apply to nested loops. That is, the pragma only appliesto the
following loop. In this example, the pragma turns off vector transformations for the top-level
loop. If the outer loop were atiming loop, this would be a practical use for aloop-scoped pragma.
The following example shows routine pragma scope:

#include "math.h"
funcl () |
#pragma routine novector
float a[100][100], b[100][100];
float c¢[100][100], 4[100][100];
int 1i,3;
for (i=0;i<100;i++)
for (3j=0;3<100;j++)
alil 3] alil[3] + b[1][3] * clil[J];
c[i][3] c[i][3] + bli]l[3] * dli]l[3j];

func2 () {
float a[200] [200], b[200][200];
float c[200] [200], d[200][200];
int i,3;
for (i=0;1<200;1i++)
for (3j=0;73<200;j++)
alil[3] = alil(j] + bIi]1[3] * clil[il;
cli]l[3] cl[i][J] + blil[3] * d[i]l[3]:

}

When this source is compiled using the -Mvect command-line option, func? is vectorized
but funcl is not vectorized. In the following example, the global novector pragma turns off
vectorization for the entire file.

#include "math.h"
funcl () {
#pragma global novector
float a[100][100], b[100][100];
float ¢[100][100], dA[100][100];
int 1,73;
for (1i=0;1<100;1i++)
for (3j=0;3<100;j++)
alil[j] = alil[3] + bli]1[J] * clil[317
cli][3] cli][J] + bli1([3] * dli][3];

}
func2 () {

float a[200] [200], b[200][200];

float c[200] [200], d[200][200];

int i,3;

for (i=0;1<200;1i++)

for (3j=0;73<200;j++)
ali]l [j] = alil[j] + blil[3] * cli]l[]];

PGI Compiler User's Guide for OpenPOWER CPUs 92

Using Directives and Pragmas

c[il[3] = cli][j] + bli)[3] * d[i][]];
}

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma.is placed
within aroutine, it applies to the routine from its point in the routine to the end of the routine. The
same rule applies for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which
affect code immediately following the pragma:

» bounds and fcon — The bounds and fcon pragmas behave in a similar manner to pragmas with
loop scope. That is, they apply to the code following the pragma.

» opt and safe — When the opt or safe pragmas are placed within aroutine, they apply to the
entire routine as if they had been placed at the beginning of the routine.

8.6. Prefetch Directives and Pragmas

Today’s processors are so fast that it is difficult to bring data into them quickly enough to keep
them busy. Prefetch instructions can increase the speed of an application substantially by bringing
datainto cache so that it is available when the processor needsiit.

When vectorization is enabled using the -Mvect or -Mprefetch compiler options, or an
aggregate option such as - fast that incorporates -Mvect, the PGl compilers selectively emit
instructions to explicitly prefetch data into the data cache prior to first use. Y ou can control how
these prefetch instructions are emitted by using prefetch directives and pragmas.

For alist of processors that support prefetch instructions refer to the PGl Release Notes.

8.6.1. Prefetch Directive Syntax in Fortran
The syntax of a prefetch directive is asfollows:

!'Smem prefetch <varl>[,<var2>[,...]]

where <varn>isany valid variable, member, or array element reference.

8.6.2. Prefetch Directive Format Requirements

The sentinel for prefetch directives is ! $mem, which is distinct from the ! pgi $ sentinel used for
optimization directives. Any prefetch directives that use the ! pgi$ sentinel are ignored by the PGI
compilers.

» The"c" must bein column 1 for fixed format.

» Either * or ! isalowed in place of ¢ for fixed format.

» Thescopeindicators g, r and | used with the ! pgi$ sentinel are not supported.

» The directive name, including the directive prefix, may contain upper or lower case |etters
and is case insengitive (case is not significant).

PGI Compiler User's Guide for OpenPOWER CPUs 93

Using Directives and Pragmas

» If the command line option -Mupcase isused, any variable names that appear in the body of
the directive are case sensitive.

8.6.3. Sample Usage of Prefetch Directive

Prefetch Directive Use

This example uses prefetch directives to prefetch datain a matrix multiplication inner loop where
arow of one source matrix has been gathered into a contiguous vector.

real*8 a(m,n), b(n,p), c(m,p), arow(n)

do j =1, p

!'Smem prefetch arow(l),b(1l,7)

!'Smem prefetch arow(5),b(5,7)

!'Smem prefetch arow(9),b(9,7)

do k =1, n, 4

!'Smem prefetch arow(k+12),b(k+12,7)

c(i,j) = c(i,J) + arow(k) * b(k,J)
c(i,j) = c(i,3) + arow(k+l) * b(k+1l,7)
c(i,j) = c(i,J) + arow(k+2) * b(k+2,7)
c(i,j) = c(i,J) + arow(k+3) * b(k+3,7)
enddo

enddo

This pattern of prefetch directives the compiler emits prefetch instructions whereby elements of
arow and b are fetched into the data cache starting four iterations prior to first use. By varying

the prefetch distance in thisway, it is sometimes possible to reduce the effects of main memory
latency and improve performance.

8.6.4. Prefetch Pragma Syntax in C/C++

The syntax of a prefetch pragmais asfollows:

#pragma mem prefetch <varl>[,<var2>[,...]]

where <varn>isany valid variable, member, or array element reference.

8.6.5. Sample Usage of Prefetch Pragma

Prefetch Pragmain C

This example uses the prefetch pragmato prefetch data from the source vector x for eight
iterations beyond the current iteration.

for (i=0; i<n; i++) {
#pragma mem prefetch x[1+8]
y[il = y[i] + a*x[i];

}

8.7. I5PRAGMA C

When programs are compiled using one of the PGI Fortran compilers on Linux systems, an
underscore is appended to Fortran global names, including names of functions, subroutines, and
common blocks. This mechanism distinguishes Fortran name space from C/C++ name space.

PGI Compiler User's Guide for OpenPOWER CPUs 94

Using Directives and Pragmas

Y ou can use !'$PRAGMA C in the Fortran program to call a C/C++ function from Fortran. The
statement would look similar to this:

! SPRAGMA C (name[,name]...)

This statement directs the compiler to recognize the routine 'name' as a C function, thus preventing the
Fortran compiler from appending an underscore to the routine name.

8.8. IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specificsin ageneric call for
ambiguities.

8.8.1. IGNORE_TKR Directive Syntax

The syntax for the IGNORE_TKR directiveisthis:
!DIRS IGNORE TKR [[(<letter>) <dummy arg>] ...]

<letter>
isone or any combination of the following:

T-type K - kind R -rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules areignored for al dummy arguments in the procedure that contains the
directive.

8.8.2. IGNORE_TKR Directive Format Requirements

The following rules apply to this directive:

» IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

» |IGNORE_TKR may appear in the body of an interface block or in the body of a module
procedure, and may specify dummy argument names only.

» |IGNORE_TKR may appear before or after the declarations of the dummy arguments it
specifies.

» If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

» If no dummy argument names are specified, IGNORE_TKR appliesto all dummy arguments
except those that are allocatable objects, Fortran 90 pointers, or assumed-shape arrays.

PGI Compiler User's Guide for OpenPOWER CPUs 95

Using Directives and Pragmas

8.8.3. Sample Usage of IGNORE_TKR Directive

Consider this subroutine fragment:

subroutine example(A,B,C,D)
IDIRS IGNORE TKR A, (R) B, (TK) C, (K) D

Table 23 indicates which rules are ignored for which dummy argumentsin the preceding sample
subroutine fragment:

Table 23 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so al type, kind, and rank rules are ignored.

PGI Compiler User's Guide for OpenPOWER CPUs 96

Chapter 9.
CREATING AND USING LIBRARIES

A library is acollection of functions or subprograms that are grouped for reference and ease of
linking. This section discusses issues related to PGI-supplied compiler libraries. Specificaly, it
addresses the use of C/C++ builtin functionsin place of the corresponding libc routines, creation
of dynamically linked libraries, known as shared objects or shared libraries, and math libraries.

This section does not duplicate material related to using libraries for inlining, described in Creating
an Inline Library or information related to runtime library routines available to OpenMP programmers,
described in Runtime Library Routines.

PGI provides libraries that export C interfaces by using Fortran modules.

This section has examples that include the following options related to creating and using
libraries.

-Bdynamic -def<file> -implib <file> -Mmakeimplib
-Bstatic -dynamiclib -1 -o
-c -fpic -Mmakedll -shared

9.1. Using builtin Math Functions in C/C++

The name of the math header fileismath . h. Include the math header filein all of your source
files that use amath library routine asin the following example, which calculates the inverse
cosine of 3.5.

#include <math.h>
#include<stdio.h>
#define PI 3.1415926535
void main ()
{

double x, vy;

x = PI/3.0;

y = acos (0.5);

printf (‘$f %$f\n’,x,vy);
}

PGI Compiler User's Guide for OpenPOWER CPUs 97

Creating and Using Libraries

Including math . h causes PGl C and C++ to use builtin functions, which are much more
efficient than library calls. In particular, if you includemath . h, thefollowing intrinsics cals are
processed using builtins:

abs acosf asinf atan atan2 atan2f
atanf oS cosf exp expf fabs
fabsf fmax fmaxf fmin fminf log
log10 log10f logf pow powf sin
sinf sqrt sqrtf tan tanf

9.2. Using System Library Routines

Release 16.10 of the PGI runtime libraries makes use of Linux system libraries to implement,
for example, OpenMP and Fortran 1/0O. The PGI runtime libraries make use of several additional
system library routines.

On 64-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_write pthread_mutex_init sleep
aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock

aio_suspend pthread_attr_init setrlimit

On 32-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_suspend getrlimit sleep
aio_read aio_write pthread_attr_init
aio_return calloc setrlimit

9.3. Creating and Using Shared Object Files on Linux

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike
statically-linked object and library files, shared object files link and resolve references with

an executable at runtime viaa dynamic linker supplied with your operating system. The PGI
compilers must generate position independent code to support creation of shared objects by the
linker. However, thisis not the default. Y ou must create object files with position independent
code and shared abject files that will include them.

9.3.1. Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

1. Create an object file with position independent code.

To do this, compile your code with the appropriate PGl compiler using the - fpi c option, or
one of the equivalent options, suchas-£fpr1C, -Kpic, and -KPIC, which are supported for

PGI Compiler User's Guide for OpenPOWER CPUs 98

Creating and Using Libraries

compatibility with other systems. For example, use the following command to create an object
file with position independent code using pgfortran:

[)

% pgfortran -c -fpic tobeshared.f

2. Produce a shared object file.

To do this, use the appropriate PGl compiler to invoke the linker supplied with your system.
It is customary to name such filesusing a . so filename extension. On Linux, you do this by
passing the -shared option to the linker:

[

% pgfortran -shared -o tobeshared.so tobeshared.o

Compilation and generation of the shared object can be performed in one step using both the - fpic
option and the appropriate option for generation of a shared object file.

3. Use ashared object file.

To do this, use the appropriate PGl compiler to compile and link the program which will
reference functions or subroutines in the shared object file, and list the shared object on the
link line, as shown here:

[

% pgfortran -o myprog myprog.f tobeshared.so

4. Make the executable available.

Y ou now have an executable myprog which does not include any code from functions or
subroutinesin tobeshared. so, but which can be executed and dynamically linked to
that code. By default, when the program is linked to produce myprog, no assumptions are
made on the location of tobeshared. so. Therefore, for myprog to execute correctly,
you must initialize the environment variable LD LIBRARY PATH to include the directory
containing tobeshared. so. If LD LIBRARY PATH isalready initialized, it isimportant
not to overwrite its contents. If you have placed tobeshared. so in directory /home/
myusername/bin, you caninitialize LD LIBRARY PATH toinclude that directory and
preserve its existing contents, as shown in the following:

% setenv LD LIBRARY PATH "SLD LIBRARY PATH":/home/myusername/bin

If you know that tobeshared. so dways residesin a specific directory, you can create the
executable myprog in aform that assumes this directory by using the -r link-time option. For
example, you can link asfollows:

[)

% pgfortran -o myprog myprof.f tobeshared.so -R/home/myusername/bin

As with the -1, option, there is no space between -R and the directory name. If the -R option is used,
it is not necessary to initialize LD LIBRARY PATH.

In the previous example, the dynamic linker aways looksin /home /myusername/bin to
resolve referencesto tobeshared. so. By default, if the LD LIBRARY PATH environment
variable is not set, the linker only searches /usr/1ib and /1ib for shared objects.

9.3.2. 1dd Command

The 1dd command is a useful tool when working with shared object files and executabl es that
reference them. When applied to an executable, as shown in the following example, 1dd lists al

PGI Compiler User's Guide for OpenPOWER CPUs 99

Creating and Using Libraries

shared object files referenced in the executable along with the pathname of the directory from
which they will be extracted.
% 1ldd myprog

If the pathname is not hard-coded using the-r option, and if LD LIBRARY PATH isnot
initialized, the pathnameislisted as "not found". For more information on 1dd, its options and
usage, see the online man page for 1dd.

9.4. Using LIB3F

The PGI Fortran compilersinclude complete support for the de facto standard LIB3F library
routines. See the PGI Fortran Language Reference manual for a complete list of available
routines in the PGI implementation of LIB3F.

9.5. LAPACK, BLAS and FFTs

All PGI products now includeaBLAS and LAPACK library based on the customized
OpenBLAS project source and built with PGI compilers. The LAPACK library is called
liblapack.a. TheBLASIibraryiscalled 1ibblas.a. Theselibrariesareinstaled to $PG1/
<target>/1lib, where <target> is replaced with the appropriate target name (linuxpower).

To use these libraries, smply link them in using the -1 option when linking your main program:
% pgfortran myprog.f -llapack -lblas

9.6. Linking with ScaLAPACK

The ScaLAPACK libraries are automatically installed with each MPI library version which
accompanies a PGl ingtallation. Y ou can link with the ScaL APACK libraries by specifying
-Mscalapack on any of the PGl compiler command lines. For example:

% mpif90 myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the -Mscalapack switch
is specified. If you wish to use adifferent BLAS library, and still use the -Mscalapack switch,
then you can list the set of libraries explicitly on your link line. Alternately, you can copy your
BLAS library into $PGI/linuxpower/16.10/1ib/libblas.a.

9.7. The C++ Standard Template Library

On Linux, the GNU-compatible pgc++ compiler uses the GNU g++ header files and Standard
Template Library (STL) directly. The versions used are dependent on the version of the GNU
compilersinstalled on your system, or specified when makelocalrc was run during installation of
the PGI compilers.

PGI Compiler User's Guide for OpenPOWER CPUs 100

Chapter 10.
USING ENVIRONMENT VARIABLES

Environment variables allow you to set and pass information that can alter the default behavior of
the PGI compilers and the executables which they generate. This section includes explanations of
the environment variables specific to PGl compilers. Other environment variables are referenced

and documented in other sections of this User’s Guide, the accompanying Reference Manual, the
PGI Debugger User’s Guide and the PGI Profiler User’s Guide.

» You use OpenMP environment variables to control the behavior of OpenMP programs.
For consistency related to the OpenM P environment, the details of the OpenM P-rel ated
environment variables are included in OpenMP section: Environment Variables.

» You can use environment variables to control the behavior of the PGPROF profiler. For a
description of environment variables that affect thistool, refer to the PGI Profiler User’s
Guide.

10.1. Setting Environment Variables

Before we look at the environment variables that you might use with the PGI compilers and tools,
let’stake alook at how to set environment variables. To illustrate how to set these variablesin
various environments, let’slook at how a user might initialize the shell environment prior to
using the PGI compilers and tools.

10.1.1. Setting Environment Variables on Linux

Let’s assume that you want access to the PGI products when you log in. Let’s further assume
that you installed the PGI compilersin /opt/pgi andthat thelicensefileisin /opt/pgi/
license.dat. For access at startup, you can add the following lines to your startup file.

In csh, use these commands:

% setenv PGI /opt/pgi
% setenv MANPATH "$SMANPATH":$PGI/linuxpower/16.10/man
% set path = ($SPGI/linuxpower/16.10/bin/ S$path)

In bash, sh, zsh, or ksh, use these commands:

$ PGI=/opt/pgi; export PGI
$ MANPATH=S$MANPATH:S$PGI/linuxpower/16.10/man; export MANPATH
S PATH=S$PGI/linuxpower/16.10/bin:$PATH; export PATH

PGI Compiler User's Guide for OpenPOWER CPUs 101

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

10.2. PGI-Related Environment Variables

For easy reference, the following table provides a quick listing of some OpenMP and al PGI
compiler-related environment variables. This section provides more detailed descriptions of
the environment variables specific to PGl compilers and the executables they generate. For
information specific to OpenMP environment variables, refer to Table 14 and to the complete
descriptionsin ‘ OpenM P Environment Variables' in the PGI Compiler’s Reference Manual.

Table 24 PGl-Related Environment Variable Summary

Environment Variable Description

FORTRANOPT

Allows the user to specify that the PGI Fortran compilers user VAX 1/O conventions.

GMON_OUT_PREFIX

Specifies the name of the output file for programs that are compiled and linked with
the -pg option.

LD_LIBRARY_PATH

Specifies a colon-separated set of directories where libraries should first be searched,
prior to searching the standard set of directories.

MANPATH Sets the directories that are searched for manual pages associated with the
command that the user types.
MP_WARN Allows you to eliminate certain default warning messages.

NO_STOP_MESSAGE

If used, the execution of a plain STOP statement does not produce the message
FORTRAN STOP.

OMP_DYNAMIC

Currently has no effect. Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads. The default is FALSE.

OMP_MAX_ACTIVE_LEVELS

Specifies the maximum number of nested parallel regions.

OMP_NESTED

Currently has no effect. Enables (TRUE) or disables (FALSE) nested parallelism.
The default is FALSE.

OMP_NUM_THREADS

Specifies the number of threads to use during execution of parallel regions. Default is
1.

OMP_SCHEDULE

Specifies the type of iteration scheduling and, optionally, the chunk size to use for
omp for and omp parallel for loops that include the runtime schedule clause. The
default is STATIC with chunk size = 1.

OMP_STACKSIZE

Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY

Sets the behavior of idle threads, defining whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE. The defaultis ACTIVE.

PATH Determines which locations are searched for commands the user may type.

PGl Specifies, at compile-time, the root directory where the PGI compilers and tools are
installed.

PWD Allows you to display the current directory.

STATIC_RANDOM_SEED

Forces the seed returned by RANDOM SEED to be constant.

PGI Compiler User's Guide for OpenPOWER CPUs 102

http://www.pgroup.com/resources/docs.htm

Using Environment Variables

Environment Variable Description

T™MP Sets the directory to use for temporary files created during execution of the PGI
compilers and tools; interchangeable with TMPDIR.

TMPDIR Sets the directory to use for temporary files created during execution of the PGI
compilers and tools.

10.3. PGI Environment Variables

Y ou use the environment variables listed in Table 24 to alter the default behavior of the PGI
compilers and the executables which they generate. This section provides more detailed
descriptions about the variables in this table that are not OpenM P environment variables.

10.3.1. FORTRANOPT

FORTRANOPT allows the user to adjust the behavior of the PGI Fortran compilers.

» If FORTRANOPT exists and contains the value vaxi o, the record length in the open
statement is in units of 4-byte words, and the $ edit descriptor only has an effect for lines
beginning with a space or aplussign (+).

» If FORTRANOPT exists and containsthe value format relaxed, anl/O item
corresponding to anumerical edit descriptor (such asF, E, |, and so on) is not required to be
atype implied by the descriptor.

» If FORTRANOPT exists and containsthe value cri £, asequential formatted or list-directed
record is allowed to be terminated with the character sequence \ r\n (carriage return,
newline). This approach is useful when reading records from afile produced on a Window’s
system.

The following example causes the PGI Fortran compilersto use VAX /O conventions:
% setenv FORTRANOPT vaxio

10.3.2. LD_LIBRARY_PATH

The1D LIBRARY PATH variableisacolon-separated set of directories specifying where
libraries should first be searched, prior to searching the standard set of directories. Thisvariableis
useful when debugging a new library or using a nonstandard library for special purposes.

The following csh example adds the current directory to your LD LIBRARY PATH variable.
% setenv LD LIBRARY PATH "$LD LIBRARY PATH":"./"

o

10.3.3. MANPATH

The MANPATH variable sets the directories that are searched for manual pages associated with the
commands that the user types. When using PGI products, it isimportant that you set your PATH
to include the location of the PGI products and then set the MANPATH variable to include the man
pages associated with the products.

The following csh example targets the linuxpower version of the compilers and tool s and allows
the user access to the manual pages associated with them.
% set path = (/opt/pgi/linuxpower/16.10/bin $path

PGI Compiler User's Guide for OpenPOWER CPUs 103

Using Environment Variables

% setenv MANPATH "SMANPATH":/opt/pgi/linuxpower/16.10/man

10.3.4. NO_STOP_MESSAGE

If theNO STOP MESSAGE variable exists, the execution of aplain STOP statement does not
produce the message FORTRAN STOP. The default behavior of the PGI Fortran compilersisto
issue this message.

10.3.5. PATH

The pATH variable sets the directories that are searched for commands that the user types. When
using PGI products, it isimportant that you set your PATH to include the location of the PGI
products.

Y ou can aso use this variable to specify that you want to use only the linuxpower version of the
compilers and tools, or to target linuxpower as the default.

The following csh exampl e targets linuxpower version of the compilers and tools.

[

% set path = (/opt/pgi/linuxpower/16.10/bin $path)

10.3.6. PGl

The pGI environment variable specifies the root directory where the PGI compilers and tools are
installed. Thisvariable isrecognized at compile-time. If it isnot set, the default value depends on
your system as well as which compilers are installed:

» OnLinux, the default value of thisvariableis /opt /pgi.

In most cases, if the PGI environment variable is not set, the PGl compilers and tools
dynamically determine the location of this root directory based on the instance of the compiler
or tool that was invoked. However, there are still some dependencies on the PGI environment
variable, and you can useit as a convenience when initializing your environment for use of the
PGI compilers and tools.

For example, assuming you use csh and want the 64-bit linuxpower versions of the PGI compilers
and tools to be the default, you would use this syntax:

setenv PGI /opt/pgi
setenv MANPATH "$MANPATH":$PGI/linuxpower/16.10/man
set path = ($PGI/linuxpower/16.10/bin $path)

o° oo

o
°

10.3.7. PGI_CONTINUE

You set the PGI _CONTINUE variable to specify the actions to take before continuing with
execution. For example, if the PGI_CONTINUE environment variable is set and then a program
that is compiled with -Mchkfpstk is executed, the stack is automatically cleaned up and
execution then continues. If PGI_CONTINUE isset to verbose, the stack is automatically
cleaned up, awarning message is printed, and then execution continues.

n There is a performance penalty associated with the stack cleanup.

PGI Compiler User's Guide for OpenPOWER CPUs 104

Using Environment Variables

10.3.8. PGI_OBJSUFFIX

You can set the PGI_OBJSUFFIX environment variable to generate object files that have a
specific suffix. For example, if you set PGI OBJSUFFIX tO .o, the object files have a suffix of
.o rather than . ob7.

10.3.9. PWD

The PWD variable allows you to display the current directory.

10.3.10. STATIC_RANDOM_SEED

You canuse STATIC RANDOM SEED to force the seed returned by the Fortran 90/95
RANDOM SEED intrinsic to be constant. Thefirst call to RANDOM SEED without arguments
resets the random seed to a default value, then advances the seed by a variable amount based
on time. Subsequent callsto RANDOM SEED without arguments reset the random seed to the
sameinitial value asthefirst call. Unless the time is exactly the same, each time a program
isrun adifferent random number sequence is generated. Setting the environment variable
STATIC RANDOM SEED to YES forcesthe seed returned by RANDOM SEED to be constant,
thereby generating the same sequence of random numbers at each execution of the program.

10.3.11. TMP

Y ou can use TMP to specify the directory to use for placement of any temporary files created
during execution of the PGI compilers and tools. This variable is interchangeable with TMPDIR.

10.3.12. TMPDIR

Y ou can use TMPDIR to specify the directory to use for placement of any temporary files created
during execution of the PGl compilers and tools.

10.4. Using Environment Modules on Linux

On Linux, if you use the Environment Modules package, that is, themodule 1load command,
PGI includes a script to set up the appropriate module files.

Assuming your installation base directory is /opt /pgi, and your MODULEPATH environment
variableis /usr/local/Modules/modulefiles, execute this command:

% /opt/pgi/linuxpower/16.10/etc/modulefiles/pgi.module.install \
-all -install /usr/local/Modules/modulefiles

This command creates module files for al installed versions of the PGI compilers. Y ou must
have write permission to themodulefiles directory to enable the module commands:

oo

module load pgi32/16.10
module load pgi64/16.10
module load pgi/16.10

o° oo

PGI Compiler User's Guide for OpenPOWER CPUs 105

Using Environment Variables

where"pgi/16.10" usesthe 32-bit compilers on a 32-bit system and uses 64-bit compilerson a
64-bit system.

To see what versions are available, use this command:

% module avail pgi

Themodule load command setsor modifies the environment variables as indicated in the
following table.

This Environment Variable... Is set or modified by the module load command
cc Full path to pgcc

CPP Full path to pgprepro

CXX Pathto pgc++

FC Full pathto pgfortran

LD _LIBRARY PATH Prepends the PGl library directory

MANPATH Prepends the PGI man page directory

PATH Prepends the PGI compiler and tools bin directory

PGI The base installation directory

PGl does not provide support for the Environment Modules package. For more information about the
package, go to: http://modules.sourceforge.net.

PGI Compiler User's Guide for OpenPOWER CPUs 106

http://modules.sourceforge.net

Chapter 11.
DISTRIBUTING FILES — DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want to
distribute it to users who need to run it on avariety of systems. This section addresses how to
effectively distribute applications built using PGI compilers and tools. The application must be
installed in such away that it executes accurately on a system other than the one on which it was
built, and which may be configured differently.

11.1. Deploying Applications on Linux

To successfully deploy your application on Linux, some of the issues to consider include:

Runtime Libraries
64-bit Linux Systems
Redistribution of Files
Licensing

vV v v Vv

11.1.1. Runtime Library Considerations

On Linux systems, the system runtime libraries can be linked to an application either statically or
dynamically. For example, for the C runtime library, 1ibc, you can use either the static version
libc.a or the shared object version 1ibc. so. If the application isintended to run on Linux
systems other than the one on which it was built, it is generally safer to use the shared object
version of the library. This approach ensures that the application uses aversion of the library that
is compatible with the system on which the application is running. Further, it works best when the
application is linked on a system that has an equivalent or earlier version of the system software
than the system on which the application will be run.

n Building on a newer system and running the application on an older system may not produce the desired
output.

To use the shared object version of alibrary, the application must also link to shared object
versions of the PGI runtime libraries. To execute an application built in such away on a system
on which PGI compilers are not installed, those shared objects must be available. To build using
the shared object versions of the runtime libraries, use the -Bdynamic option, as shown here:

PGI Compiler User's Guide for OpenPOWER CPUs 107

Distributing Files — Deployment

$ pgf90 -Bdynamic myprog.f90

11.1.2. Linux Redistributable Files

The method for installing the shared object versions of the runtime libraries required for
applications built with PGI compilers and tools is manual distribution.

When the PGI compilers are installed, there are directories that have a name that begins with
REDIST for each platform (linuxpower); these directories contain the redistributed shared object
libraries. These may be redistributed by licensed PGI customers under the terms of the End-User
License Agreement.

11.1.3. Restrictions on Linux Portability

Y ou cannot expect to be able to run an executable on any given Linux machine. Portability
depends on the system you build on as well as how much your program uses system routines
that may have changed from Linux release to Linux release. For example, an area of significant
change between some versions of Linux isin 1ibpthread.so and 1ibnuma. so. PGI
compilers use these dynamically linked libraries for the options -Mconcur (auto-paralel), -mp
(OpenMP), and —acc -ta=multicore (OpenACC). Staticaly linking these libraries may not
be possible, or may result in failure at execution.

Typically, portability is supported for forward execution, meaning running a program on the same
or alater version of Linux. But not for backward compatibility, that is, running on a prior release.
For example, a user who compiles and links a program under RHEL 7.2 should not expect the
program to run without incident on aRHEL 5.2 system, an earlier Linux version. It may run, but
itislesslikely. Developers might consider building applications on earlier Linux versions for
wider usage. Dynamic linking of Linux and gcc system routines on the platform executing the
program can aso reduce problems.

11.1.4. Licensing for Redistributable Files

Thefilesin the REDIST directories may be redistributed under the terms of the End-User License
Agreement for the product in which they were included.

11.2. PGI Redistributables

PGI redistributable directories contain al of the PGI Linux runtime library shared object files
that can be re-distributed by PGI 16.10 licensees under the terms of the PGl End-User License
Agreement (EULA).

PGI Compiler User's Guide for OpenPOWER CPUs 108

Chapter 12.
INTER-LANGUAGE CALLING

This section describes inter-language calling conventions for C, C++, and Fortran programs
using the PGI compilers. Fortran 2003 ISO_C_Binding provides a mechanism to support the
interoperability with C. Thisincludesthe ISO_C_Binding intrinsic module, binding labels, and
the BIND attribute. In the absence of this mechanism, the following sections describe how to call
a Fortran function or subroutine from a C or C++ program and how to call aC or C++ function
from a Fortran program. For information on calling assembly language programs, refer to the
“*Runtime Environment’’ section of the PGI Compilers Reference Guide.

This section provides examples that use the following options related to inter-language calling.
For more information on these options, refer to the ** Command-Line Options Reference’” section
of the PGI Compiler Reference Guide.

-c -Mnomain -Miface -Mupcase

12.1. Overview of Calling Conventions

This section includes information on the following topics:

Functions and subroutinesin Fortran, C, and C++
Naming and case conversion conventions
Compatible data types

Argument passing and special return values
Arrays and indexes

vV V. v v VY

The sections | nter-language Calling Considerations through Example — C++ Calling Fortran
describe how to perform inter-language calling.

12.2. Inter-language Calling Considerations

In general, when argument data types and function return values agree, you can call aC or C
++ function from Fortran as well as call a Fortran function from C or C++. When data types
for arguments do not agree, you may need to devel op custom mechanisms to handle them. For
example, the Fortran COMPLEX type has a matching type in C99 but does not have a matching

PGI Compiler User's Guide for OpenPOWER CPUs 109

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Inter-language Calling

typein C89; however, it is gtill possible to provide inter-language calls but there are no general
calling conventions for such cases.

» Ifa C++ function contains objects with constructors and destructors, calling such a function from
either C or Fortran is not possible unless the initialization in the main program is performed from a
C + + program in which constructors and destructors are properly initialized.

» Ingeneral, you can call a C or Fortran function from C++ without problems as long as you use the
extern "C" keyword to declare the function in the C++ program. This declaration prevents name
mangling for the C function name. If you want to call a C++ function from C or Fortran, you also
have to use the extern "C" keyword to declare the C++ function. This keeps the C++ compiler from
mangling the name of the function.

» You can use the __cplusplus macro to allow a program or header file to work for both C and C++. For
example, the following defines in the header file stdio.h allow this file to work for both C and C++.
#ifndef STDIO H
#define STDIO H
#ifdef cplusplus

extern "C" {
#endif /* _ cplusplus */

. /* Functions and data types defined... */

#ifdef cplusplus

}

#endif /* cplusplus */
#endif

» C++ member functions cannot be declared extern, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

12.3. Functions and Subroutines

Fortran, C, and C++ define functions and subroutines differently.

For aFortran program calling a C or C++ function, observe the following return value
convention:

» When aC or C++ function returns avalue, cal it from Fortran as a function.
» When aC or C++ function does not return avalue, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return asimilar type. Table 25,
Fortran and C/C++ Data Type Compatibility, lists compatible types. If the call isto a Fortran
subroutine or a Fortran CHARACTER function, cal it from C/C++ as a function that returns void.
The exception to this convention is when a Fortran subroutine has alternate returns; call such

a subroutine from C/C++ as afunction returning int whose value is the value of the integer
expression specified in the alternate RETURN statement.

12.4. Upper and Lower Case Conventions, Underscores

By default, all Fortran symbol names are converted to lower case. C and C++ are case sensitive,
S0 upper-case function names stay upper-case. When you use inter-language calling, you can
either name your C/C++ functions with lower-case names, or invoke the Fortran compiler

PGI Compiler User's Guide for OpenPOWER CPUs 110

Inter-language Calling

command with the option -Mupcase, in which case it will not convert symbol names to lower-
case.

When programs are compiled using one of the PGI Fortran compilers, an underscore is appended
to Fortran global names (names of functions, subroutines and common blocks). This mechanism
distinguishes Fortran name space from C/C++ name space. Use these naming conventions:

» If you call a C/C++ function from Fortran, you should rename the C/C++ function
by appending an underscore or use CSPRAGMA C in the Fortran program. For more
information on CSPRAGMA C, refer to |$SPRAGMA C.

» If you call aFortran function from C/C++, you should append an underscore to the Fortran
function namein the calling program.

12.5. Compatible Data Types

Table 25 shows compatible data types between Fortran and C/C++. Table 26, Fortran and C/
C++ Representation of the COMPLEX Type shows how the Fortran COMPLEX type may be
represented in C/C++.

Tip If you can make your function/subroutine parameters as well as your return values match types, you
should be able to use inter-language calling.

Table 25 Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) C/C++ Type Size (bytes)
character x char x 1
charactern x char x[n] n
real x float x 4
real*4 x float x 4
real*8 x double x 8
double precision double x 8
integer x int x 4
integer*1 x signed char x 1
integer*2 x short x 2
integer*4 x int x 4
integer*8 x long long x 8
logical x int x 4
logical*1 x char x 1
logical*2 x short x 2
logical*4 int x 4
logical*8 long x 8

PGI Compiler User's Guide for OpenPOWER CPUs 111

Inter-language Calling

Table 26 Fortran and C/C++ Representation of the coMPLEX Type

Fortran Type (lower case) CIC++ Type Size (bytes)
complex x float complex x; 8
complex*8 x float complex x; 8

double complex x double complex x; 16

complex *16 x double complex x; 16

n For C/C++, the comp1ex type implies C99 or later.

12.5.1. Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. For example, here is a Fortran common block:

INTEGER I

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:

extern struct {
int 1i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com ;

This same Fortran Common Block is represented in C++ with the following equivalent:
extern "C" struct {

int 1i;

struct {float real, imag;} c;

struct {double real, imag;} cd;

double d;
} com ;

n Tip For global or external data sharing, extern "C" is not required.

12.6. Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed,
rather than the argument itself. In C/C++, arguments are passed by value, except for strings and
arrays, which are passed by reference. Due to the flexibility provided in C/C++, you can work
around these differences. Solving the parameter passing differences generally involvesintelligent

PGI Compiler User's Guide for OpenPOWER CPUs 112

Inter-language Calling

use of the & and * operators in argument passing when C/C++ calls Fortran and in argument
declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the
string is also passed to a calling function.

The compiler places the length argument(s) at the end of the parameter list, following the other
formal arguments.

The length argument is passed by value, not by reference.

12.6.1. Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to

pass by value using the $vATL function. If you enclose a Fortran parameter with $VAL (), the
parameter is passed by value. For example, the following call passestheinteger i and the logical
bvar by value.

integer*1l 1

logical*1l bvar
call cvalue (%VAL(i), $%VAL (bvar))

12.6.2. Character Return Values

Functions and Subroutines describes the general rules for return values for C/C++ and Fortran
inter-language calling. Thereisa special return value to consider. When a Fortran function
returns a character, two arguments need to be added at the beginning of the C/C++ calling
function’ s argument list:

» The address of the return character or characters
» Thelength of the return character

The following exampleillustrates the extra parameters, tmp and 10, supplied by the caller:

Character Return Parameters

! Fortran function returns a character
CHARACTER* (*) FUNCTION CHF(C1,I)
CHARACTER* (*) C1
INTEGER I
END

/* C declaration of Fortran function */

extern void chf ();

char tmp[10];

char cl1[9];

int 1i;

chf (tmp, 10, cl, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF (), the second extra parameter representing the length must

still be supplied, but is not used.

n The value of the character function is not automatically NULL-terminated.

PGI Compiler User's Guide for OpenPOWER CPUs 113

Inter-language Calling

12.7. Array Indices

C/C++ arrays and Fortran arrays use different default initial array index values. By default, arrays
in C/C++ start at 0 and arrgaysin Fortran start at 1. If you adjust your array comparisons so that
a Fortran second element is compared to a C/C++ first element, and adjust similarly for other
elements, you should not have problems working with this difference. If thisis not satisfactory,
you can declare your Fortran arraysto start at zero.

Another difference between Fortran and C/C++ arraysis the storage method used. Fortran uses
column-major order and C/C++ uses row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns,
row and column indexes can simply be reversed. For arrays other than single dimensional arrays,
and square two-dimensional arrays, inter-language function mixing is not recommended.

12.8. Examples

This section contains examples that illustrate inter-language calling.

12.8.1. Example — Fortran Calling C

There are other solutions to calling C from Fortran than the one presented in this section. For example,
you can use the iso_c binding intrinsic module which PGI does support. For more information on this
module and for examples of how to use it, search the web using the keyword iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program shown
in Fortran Main Program f2c_main.f. Notice that each argument is defined as a pointer, since
Fortran passes by reference. Also notice that the C function name uses all lower-case and a
trailing"_"

Fortran Main Program f2c_main.f

logical*1l booll

character letterl
integer*4 numintl, numint?2
real numfloatl

double precision numdoubl
integer*2 numshorl
external f2c func

call f2c func(booll, letterl, numintl, numint2, numfloatl, numdoubl, numshorl)

write(*, "(L2, A2, I5, I5, F6.l1, Fo.1l, I5)")
+ booll, letterl, numintl, numint2, numfloatl,numdoubl, numshorl

end

C function f2¢_func_

#define TRUE Oxff

#define FALSE O

void f2c func (booll, letterl, numintl, numint2, numfloatl,\
numdoubl, numshorl, len letterl)
char *booll, *letterl;

PGI Compiler User's Guide for OpenPOWER CPUs 114

Inter-language Calling

int *numintl, *numint2;
float *numfloatl;
double *numdoubl;
short *numshorl;
int len letterl;

*booll = TRUE; *letterl = 'v';
*numintl = 11; *numint?2 = -44;
*numfloatl = 39.6 ;

*numdoubl = 39.2;

*numshorl = 981;

}

Compile and execute the program £2c_main. £ withthecall to £2c func using the following
command lines:

$ pgcc -c f2c_func.c
$ pgfortran f2c_ func.o f2c main.f

Executing the a . out file should produce the following outpult:
T v 11 -44 39.6 39.2 981

12.8.2. Example — C Calling Fortran

The example C Main Program c2f_main.c shows a C main program that calls the Fortran
subroutine shown in Fortran Subroutine c2f_sub.f.

» Each call usesthe & operator to pass by reference.
» Thecall to the Fortran subroutine uses all lower-case and atrailing

non

C Main Program c2f_main.c

void main () {
char booll, letterl;
int numintl, numint2;
float numfloatl;
double numdoubl;
short numshorl;
extern void c2f func ();
c2f sub_ (&booll, &letterl, &énumintl, &énumint2, &numfloatl, &énumdoubl, &numshorl, 1);
printf (" %s %c %d %d %3.1f %.0f %d\n",
booll?"TRUE" : "FALSE", letterl, numintl, numint2,
numfloatl, numdoubl, numshorl);

}
Fortran Subroutine c2f_sub.f

subroutine c2f func (booll, letterl, numintl, numint2,
+ numfloatl, numdoubl, numshorl)

logical*1l booll

character letterl

integer numintl, numint2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true.
letterl = "v"
numintl = 11
numint2 = -44

numdoubl = 902
numfloatl = 39.6
numshorl = 299
return

PGI Compiler User's Guide for OpenPOWER CPUs 115

Inter-language Calling

end

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c c2f main.c
$ pgfortran -Mnomain c2f main.o c2 sub.f

Executing the resulting a . out file should produce the following output:
TRUE v 11 -44 39.6 902 299

12.8.3. Example — C++ Calling C

C++ Main Program cp2c_main.C Calling a C Function shows a C++ main program that calls the
C function shown in Simple C Function c2cp_func.c.

C++ Main Program cp2c¢_main.C Calling a C Function

extern "C" void cp2c_ func(int n, int m, int *p);
#include <iostream>

main ()

{

int a,b,c;

a=8;

b=2;

c=0;

cout << "main: a = "<<a<<" b = "<<b<<Mptr c = "<<hex<<&c<< endl;
cp2c_func(a,b, &c) ;

cout << "main: res = "<<c<<endl;

)
Simple C Function c2cp_func.c

void cp2c func(numl, num2, res)
int numl, num2, *res;

{

printf ("func: a = %d b = %d ptr ¢ = %$x\n",numl, num2, res) ;
*res=numl/num?2;
printf ("func: res = %d\n", *res);

}
To compile this C function and C++ main program, use the following commands:

$ pgcc -c cp2c_func.c
$ pgct++ cp2c _main.C cp2c_ func.o

Executing the resulting a.out file should produce the following outpult:

main: a = 8 b = 2 ptr ¢ = Oxbffffb94
func: a = 8 b = 2 ptr ¢ = bffffb94
func: res = 4

main: res = 4

12.8.4. Example — C Calling C ++

The example in C Main Program c2cp_main.c Calling a C++ Function shows a C main program
that calls the C++ function shown in Simple C++ Function c2cp_func.C with Extern C.

C Main Program c2cp_main.c Calling a C++ Function

extern void c2cp_ func(int a, int b, int *c);
#include <stdio.h>
main () {

int a,b,c;

a=8; b=2;

printf ("main: a = $d b = %d ptr ¢ = %x\n",a,b, &c);

PGI Compiler User's Guide for OpenPOWER CPUs 116

Inter-language Calling

c2cp_func(a,b, &c);
printf ("main: res = %d\n",c);

}
Simple C++ Function c2cp_func.C with Extern C

#include <iostream>
extern "C" void c2cp_ func(int numl,int num2,int *res)

{

cout << "func: a = "<<numl<<" b = "<<num2<<"ptr c ="<<res<<endl;
*res=numl/num?2;
cout << "func: res = "<<res<<endl;

}
To compile this C function and C++ main program, use the following commands:

$ pgcc -c c2cp main.c
$ pgct++ c2cp main.o c2cp_ func.C

Executing the resulting a.out file should produce the following outpult:

Oxbffffb9o4
bffffb94

2 ptr

main: a = 8
= 2 ptr

b

func: a = 8 b
=4

4

C
(o]

func: res
main: res =

n You cannot use the extern "C" form of declaration for an object’s member functions.

12.8.5. Example - Fortran Calling C++

The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++ function
calls the C++ function shown in C++ function f2cp_func.C .

Notice:

» Each argument is defined as a pointer in the C++ function, since Fortran passes by reference.
» The C++ function name uses all lower-case and atrailing"_":

Fortran Main Program f2cp_main.f calling a C++ function

logical*1l booll
character letterl
integer*4 numintl, numint?2
real numfloatl
double precision numdoubl
integer*2 numshorl
external f2cpfunc
call f2cp func (booll, letterl, numintl,
+ numint2, numfloatl, numdoubl, numshorl)
write(*, " (L2, A2, I5, I5, F6.1, F6.1, I5)")
+ booll, letterl, numintl, numint2, numfloatl,
+ numdoubl, numshorl
end

C++ function f2cp_func.C

#define TRUE Oxff

#define FALSE O

extern "C"

{

extern void f2cp func (
char *booll, *letterl,
int *numintl, *numint2,

PGI Compiler User's Guide for OpenPOWER CPUs 117

float *numfloatl,
double *numdoubl,
short *numshortl,
int len letterl)

{

*booll = TRUE; *letterl = 'v';
*numintl = 11; *numint2 = -44;
*numfloatl = 39.6; *numdoubl = 39.2; *numshortl =

}
}

981;

Inter-language Calling

Assuming the Fortran programisin afile fmain. f, and the C++ functionisin afile cpfunc.c,

create an executable, using the following command lines:

$ pgct++ -c f2cp func.C
$ pgfortran f2cp func.o f2cp main.f -pgc++libs

Executing the a . out file should produce the following outpult:
T v 11 -44 39.6 39.2 981

12.8.6. Example — C++ Calling Fortran

Fortran Subroutine cp2f func.f shows a Fortran subroutine called by the C++ main program
shown in C++ main program cp2f_main.C. Notice that each call usesthe s operator to pass by
reference. Also notice that the call to the Fortran subroutine uses all lower-case and atrailing " ":

C++ main program cp2f_main.C

#include <iostream>

extern "C" { extern void cp2f func (char *,char *,int *,int *,

float *,double *,short *); }
main ()

{

char booll, letterl;

int numintl, numint2;

float numfloatl;

double numdoubl;

short numshorl;

cp2f func(&booll, &letterl, &numintl, &numint2, &numfloatl,

cout << " booll = ";

booll?cout << "TRUE ":cout << "FALSE "; cout <<endl;
cout << " letterl = " << letterl <<endl;

cout << " numintl = " << numintl <<endl;

cout << " numint2 = " << numint2?2 <<endl;

cout << " numfloatl = " << numfloatl <<endl;

cout << " numdoubl = " << numdoubl <<endl;

cout << " numshorl = " << numshorl <<endl;

}
Fortran Subroutine cp2f_func.f

subroutine cp2f func (booll, letterl, numintl,
+ numint2, numfloatl, numdoubl, numshorl)
logical*1l booll

character letterl

integer numintl, numint2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true. ; letterl = "v"

numintl = 11 ; numint2 = -44

numdoubl = 902 ; numfloatl = 39.6 ; numshorl = 299
return

end

PGI Compiler User's Guide for OpenPOWER CPUs

&numdoubl, &numshorl) ;

118

Inter-language Calling

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgfortran -c cp2f func.f
$ pgct+ cp2f func.o cp2f main.C -pgf90libs

Executing this C++ main should produce the following output:
booll = TRUE

letterl = v
numintl = 11
numint2 = -44
numfloatl = 39.6
numdoubl = 902
numshorl = 299

You must explicitly link in the PGFORTRAN runtime support libraries when linking pgfortran-compiled
program units into C or C++ main programs.

PGI Compiler User's Guide for OpenPOWER CPUs 119

Chapter 13.
CONTACT INFORMATION

Y ou can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales. sales@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm
Submit technical support requests through the online form at:
https://www.pgroup.com/support/support_request.php

PGI documentation is available at http://www.pgroup.com/resources/docs.htm.

PGI Compiler User's Guide for OpenPOWER CPUs 120

mailto: sales@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
https://www.pgroup.com/support/support_request.php
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2016 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Getting Started
	1.1. Overview
	1.2. Creating an Example
	1.3. Invoking the Command-level PGI Compilers
	1.3.1. Command-line Syntax
	1.3.2. Command-line Options
	1.3.3. Fortran Directives and C/C++ Pragmas

	1.4. Filename Conventions
	1.4.1. Input Files
	1.4.2. Output Files

	1.5. Fortran, C, and C++ Data Types
	1.6. Parallel Programming Using the PGI Compilers
	1.6.1. Run SMP Parallel Programs

	1.7. Platform-specific considerations
	1.7.1. Using the PGI Compilers on Linux

	1.8. Site-Specific Customization of the Compilers
	1.8.1. Use siterc Files
	1.8.2. Using User rc Files

	1.9. Common Development Tasks

	Use Command-line Options
	2.1. Command-line Option Overview
	2.1.1. Command-line Options Syntax
	2.1.2. Command-line Suboptions
	2.1.3. Command-line Conflicting Options

	2.2. Help with Command-line Options
	2.3. Getting Started with Performance
	2.3.1. Using -fast
	2.3.2. Other Performance-Related Options

	2.4. Frequently-used Options

	Optimizing and Parallelizing
	3.1. Overview of Optimization
	3.1.1. Local Optimization
	3.1.2. Global Optimization
	3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization
	3.1.4. Function Inlining
	3.1.5. Profile-Feedback Optimization (PFO)

	3.2. Getting Started with Optimization
	3.2.1. -help
	3.2.2. -Minfo
	3.2.3. -Mneginfo
	3.2.4. -dryrun
	3.2.5. -v
	3.2.6. PGPROF

	3.3. Common Compiler Feedback Format (CCFF)
	3.4. Local and Global Optimization
	3.4.1. -Msafeptr
	3.4.2. -O

	3.5. Loop Unrolling using -Munroll
	3.6. Vectorization using -Mvect
	3.6.1. Vectorization Sub-options
	3.6.2. Vectorization Example Using SIMD Instructions

	3.7. Auto-Parallelization using -Mconcur
	3.7.1. Auto-Parallelization Sub-options
	3.7.2. Loops That Fail to Parallelize

	3.8. Default Optimization Levels
	3.9. Local Optimization Using Directives and Pragmas
	3.10. Execution Timing and Instruction Counting
	3.11. Portability of Multi-Threaded Programs on Linux
	3.11.1. libnuma

	Using Function Inlining
	4.1. Automatic function inlining in C/C++
	4.2. Invoking Function Inlining
	4.3. Using an Inline Library
	4.4. Creating an Inline Library
	4.4.1. Working with Inline Libraries
	4.4.2. Dependencies
	4.4.3. Updating Inline Libraries – Makefiles

	4.5. Error Detection during Inlining
	4.6. Examples
	4.7. Restrictions on Inlining

	Using OpenMP
	5.1. OpenMP Overview
	5.1.1. OpenMP Shared-Memory Parallel Programming Model
	5.1.2. Terminology
	5.1.3. OpenMP Example

	5.2. Task Overview
	5.3. Fortran Parallelization Directives
	5.4. C/C++ Parallelization Pragmas
	5.5. Directive and Pragma Recognition
	5.6. Directive and Pragma Summary Table
	5.6.1. Directive and Pragma Summary Table

	5.7. Directive and Pragma Clauses
	5.8. Runtime Library Routines
	5.9. Environment Variables

	Using MPI
	6.1. MPI Overview
	6.2. Debugging MPI Applications
	6.3. Using Open MPI on Linux
	6.4. Using MPI Compiler Wrappers
	6.5. Limitations
	6.6. Testing and Benchmarking

	Using an Accelerator
	7.1. Overview
	7.1.1. Components
	7.1.2. Availability
	7.1.3. User-directed Accelerator Programming
	7.1.4. Features Not Covered or Implemented

	7.2. Terminology
	7.3. System Requirements
	7.4. Supported Processors and GPUs
	7.5. Installation and Licensing
	7.5.1. Required Files
	7.5.2. Command-line Flag

	7.6. Execution Model
	7.6.1. Host Functions
	7.6.2. Levels of Parallelism

	7.7. Memory Model
	7.7.1. Separate Host and Accelerator Memory Considerations
	7.7.2. Accelerator Memory
	7.7.3. Cache Management

	7.8. Running an Accelerator Program
	7.9. Accelerator Directives
	7.9.1. Enable Accelerator Directives
	7.9.2. Format
	7.9.3. C Directives
	7.9.4. Free-Form Fortran Directives
	7.9.5. Fixed-Form Fortran Directives
	7.9.6. OpenACC Directive Summary

	7.10. Accelerator Directive Clauses
	7.11. OpenAcc Runtime Libraries
	7.11.1. Runtime Library Definitions
	7.11.2. Runtime Library Routines

	7.12. Environment Variables
	7.13. Applicable Command-line Options
	7.14. Profiling Accelerator Kernels
	7.15. Related Accelerator Programming Tools
	7.15.1. NVIDIA CUDA Profile
	7.15.2. TAU – Tuning and Analysis Utility

	7.16. Supported Intrinsics
	7.16.1. Supported Fortran Intrinsics Summary Table
	7.16.2. Supported C Intrinsics Summary Table

	7.17. References related to Accelerators

	Using Directives and Pragmas
	8.1. PGI Proprietary Fortran Directives
	8.2. PGI Proprietary C and C++ Pragmas
	8.3. PGI Proprietary Optimization Directive and Pragma Summary
	8.4. Scope of Fortran Directives and Command-Line Options
	8.5. Scope of C/C++ Pragmas and Command-Line Options
	8.6. Prefetch Directives and Pragmas
	8.6.1. Prefetch Directive Syntax in Fortran
	8.6.2. Prefetch Directive Format Requirements
	8.6.3. Sample Usage of Prefetch Directive
	8.6.4. Prefetch Pragma Syntax in C/C++
	8.6.5. Sample Usage of Prefetch Pragma

	8.7. !$PRAGMA C
	8.8. IGNORE_TKR Directive
	8.8.1. IGNORE_TKR Directive Syntax
	8.8.2. IGNORE_TKR Directive Format Requirements
	8.8.3. Sample Usage of IGNORE_TKR Directive

	Creating and Using Libraries
	9.1. Using builtin Math Functions in C/C++
	9.2. Using System Library Routines
	9.3. Creating and Using Shared Object Files on Linux
	9.3.1. Procedure to create a use a shared object file
	9.3.2. ldd Command

	9.4. Using LIB3F
	9.5. LAPACK, BLAS and FFTs
	9.6. Linking with ScaLAPACK
	9.7. The C++ Standard Template Library

	Using Environment Variables
	10.1. Setting Environment Variables
	10.1.1. Setting Environment Variables on Linux

	10.2. PGI-Related Environment Variables
	10.3. PGI Environment Variables
	10.3.1. FORTRANOPT
	10.3.2. LD_LIBRARY_PATH
	10.3.3. MANPATH
	10.3.4. NO_STOP_MESSAGE
	10.3.5. PATH
	10.3.6. PGI
	10.3.7. PGI_CONTINUE
	10.3.8. PGI_OBJSUFFIX
	10.3.9. PWD
	10.3.10. STATIC_RANDOM_SEED
	10.3.11. TMP
	10.3.12. TMPDIR

	10.4. Using Environment Modules on Linux

	Distributing Files – Deployment
	11.1. Deploying Applications on Linux
	11.1.1. Runtime Library Considerations
	11.1.2. Linux Redistributable Files
	11.1.3. Restrictions on Linux Portability
	11.1.4. Licensing for Redistributable Files

	11.2. PGI Redistributables

	Inter-language Calling
	12.1. Overview of Calling Conventions
	12.2. Inter-language Calling Considerations
	12.3. Functions and Subroutines
	12.4. Upper and Lower Case Conventions, Underscores
	12.5. Compatible Data Types
	12.5.1. Fortran Named Common Blocks

	12.6. Argument Passing and Return Values
	12.6.1. Passing by Value (%VAL)
	12.6.2. Character Return Values

	12.7. Array Indices
	12.8. Examples
	12.8.1. Example – Fortran Calling C
	12.8.2. Example – C Calling Fortran
	12.8.3. Example – C++ Calling C
	12.8.4. Example – C Calling C ++
	12.8.5. Example – Fortran Calling C++
	12.8.6. Example – C++ Calling Fortran

	Contact Information

