=
S
=
=
=
S
S
20
=
=
=
=

TABLE OF CONTENTS

ProfiliNg OVEIVIEW.ccuiiuiiisrississsississ i ss s bR R R iv
WREE'S INBW. ...ttt s bbb bbbttt iv
=1 40011 010 (o 2SSO v

Chapter 1.Preparing An Application FOr Profiling.........c.cccounmninnnnnnnssssnesssssssssssssssssessssssesssssssssssssesssssssssssesens 1
1.1, FOCUSEA PrOflING... .. cvuierceie it 1
1.2. Marking Regions Of CPU ACHVILY..........ccoeiieiriiieiiiceiecteissse sttt sss et bbb 2
1.3. Naming CPU and CUDA RESOUITES.........ceuiuiuerririeiereiieieeseeseseeessesessessssessessssesessssesesesses st sesassessesessesesessesenans 2
1.4, FIUSH PrOfile DALcoucvrieeiriieiciee et 2
1.5. Profiling CUDA FOrtran APPlICATIONS.c..vcueriiceririceereesseiets ettt 3

Chapter 4.Remote Profiling.........ccccounimniiis s s ens 42

Chapter 5.NVIDIA TOOIS EXEENSION........ccccoeiciecrriririrrerese s s s e ss s sss e se s s sssssse e sesessssssnns 46
5.1 NVTX AP OVEIVIBW.ooeeeaeeeeeeeeeeseeseeseesesseesessesssssess et st essssessssssssssssesssssssssssesssssessessessassassassssssssssssnesnesnnsnnes 46
5.2, NVTX AP EVENES. ... cviieiieeiseitieisetssteie sttt sttt s st 47

LI O Y I 1 =4 (=Y TS TTR 47
5.2.2. NVTX RANGE STAM/SIOP......cveiiiviiciciesicte sttt sttt bbbt 48
5.2.3. NVTX RANGE PUSH/POD. ..ottt bbbttt 48
5.2.4. Event AtDUIES SIUCIUTE.........couiiieiie st 49
5.2.5. NVTX Synchronization MarKErS............creieiriniiiniineineisei et 50
5.3, NVTX DOMAINS. ...cutvuiirirriisersieseriieeriee ettt bbb 51
5.4, NVTX RESOUICE NAMING......cvuivireiieiieieiisei ittt 51

Chapter 6.MPI Profiling With PGPROF ..o sssssens 53

Chapter 7.Dependency ANQIYSIS.........corurisrusissrisssssissss s s s s 55
7.0, BACKGIOUNG. ..ottt bbb 55
7.2, IMBHTICS. ..ttt s s E £ R AR Rttt 56
7.3 SUPPOM. ..ottt ettt h £ b2 £ £ E £ bR R R R b E bbbt 57
T4, LIMIALIONS. ...ttt bbb bbb £ bbbt bbb 57

Chapter 8.Metrics REFEIENCE. ...ttt e 59
8.1, Metrics fOr Capabilify 2.X........cciviueicreieicieie ettt b bbb bbbt a b tns 59
8.2. Metrics for Capability 3.X......c..curueereeriieicireieeirie ettt 63
8.3, MetriCs fOr Capabilify 5.X.......icviveieiiereiseciriie sttt b bbb bbbt a st ns 68
8.4, Metrics for CapabIlity B.X.........c.rueererriieereiriieieirtie ettt bbbt 73

Chapter 9.Warp State........coovrirrimnnrrines iR e 80

Chapter 10.Profiler KNOWN ISSUES.........cccuimieeerescsesssssssssss s ssssssssessssssssssssssssssesssessssssssssssssssssssssssssssssssssssnsnens 83

Profiler User's Guide i

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

LIST OF TABLES

CPU SamPIING OPLONS ...couvverieirierieireiieseseis e s 39
OPENACC OPLONS ..ottt ee s s bbbttt 41
CapADIlity 2.X MEICS ...v.vveiveiictcisecte ettt bbb bbbt b ettt 59
CapADbIlity 3.X MEICS ...v.vvvivevictc ettt bbbt bbb s bbbt bbb 63
Cap@DIlIEY 5.X MEITICSvvreieireisiiriscsses ettt 68
Capa@bIlIEY B.X MEITICSvvvivieireiieeicisiecs ettt 73

Profiler User's Guide iii

PROFILING OVERVIEW

This document describes PGI profiling tools and APIs that enable you to understand and optimize
the performance of your CUDA or OpenACC applications. PGPROF's visual mode displays a
timeline of your application's CPU and GPU activity, and includes an automated analysis engine
to identify optimization opportunities. PGPROF is availablein both visual mode (GUI) and
command-line mode. Issuing the command pgprof without arguments launches the PGPROF
visually. Otherwise PGPROF operates in command-line mode.

What's New

The profiling tools contain a number of changes and new features as part of thisrelease.

» visual modein PGPROF supports NV Link analysis for devices with compute capability 6.0.
See NVLink view for more information.

» visual mode in PGPROF supports dependency analysis which enables optimization of the
program runtime and concurrency of applications utilizing multiple CPU threads and CUDA
streams. It allows computing the critical path of a specific execution, detect waiting time
and inspect dependencies between functions executing in different threads or streams. See
Dependency Analysis for more information.

» visua mode in PGPROF supports OpenACC profiling. See OpenACC for more information.

» visua mode in PGPROF now supports CPU profiling. Refer CPU Details View and CPU
Source View for more information.

» Unified Memory profiling now provides GPU page fault information on devices with
compute capability 6.0 and 64 bit Linux platforms.

» Unified Memory profiling now provides CPU page fault information on 64 bit Linux
platforms.

» Unified Memory profiling support is extended to the Mac platform.

» Thevisual mode in PGPROF source-disassembly view has several enhancements. There
isnow asingleintegrated view for the different source level analysis results collected for
akernel instance. Results of different analysis steps can be viewed together. See Source-
Disassembly View for more information.

» The PC sampling feature is enhanced to point out the true latency issues for devices with
compute capability 6.0 and higher.

» Support for 16-bit floating point (FP16) data format profiling.

Profiler User's Guide iv

Profiling Overview

» If thenew NVIDIA Tools Extension API(NVTX) feature of domainsis used then visua
mode in PGPROF supports will show the NVTX markers and ranges grouped by domain.

» Thevisua modein PGPROF now adds a default file extension . nvvp if an extension is not
specified when saving or opening a session file.

» Thevisual mode in PGPROF now supports timeline filtering options in create new session
and import dialogs. Refer "Timeline Options' section under Creating a Session for more
details.

Terminology

An event is a countable activity, action, or occurrence on adevice. It correspondsto asingle
hardware counter value which is collected during kernel execution. To see alist of al available
events on aparticular NVIDIA GPU, type pgprof --query-events.

A metricisacharacteristic of an application that is calculated from one or more event values.
To seealist of all available metrics on aparticular NVIDIA GPU, type pgprof --query-
metrics. You can aso refer to the metrics reference .

Profiler User's Guide

Profiling Overview

Profiler User's Guide Vi

Chapter 1.
PREPARING AN APPLICATION FOR PROFILING

PGPROF does not require any application changes to enable profiling; however, by making
some simple modifications and additions, you can greatly increase the usability and effectiveness
profiling. This section describes these modifications and how they can improve your profiling
results.

1.1. Focused Profiling

By default, PGPPROF collects profile data over the entire run of your application. But, as
explained below, you typically only want to profile the region(s) of your application containing
some or al of the performance-critical code. Limiting profiling to performance-critical regions
reduces the amount of profile data that both you and the tool must process, and focuses attention
on the code where optimization will result in the greatest performance gains.

There are several common situations where profiling a region of the application is helpful.

1. Theapplication isatest harness that contains a CUDA implementation of all or part of your
algorithm. The test harness initializes the data, invokes the CUDA functions to perform the
algorithm, and then checks the results for correctness. Using a test harness is a common and
productive way to quickly iterate and test algorithm changes. When profiling, you want to
collect profile data for the CUDA functions implementing the algorithm, but not for the test
harness code that initializes the data or checks the results.

2. The application operates in phases, where a different set of algorithmsisactivein
each phase. When the performance of each phase of the application can be optimized
independently of the others, you want to profile each phase separately to focus your
optimization efforts.

3. The application contains algorithms that operate over alarge number of iterations, but the
performance of the algorithm does not vary significantly across those iterations. In this case
you can collect profile data from a subset of the iterations.

To limit profiling to aregion of your application, CUDA provides functions to start and

stop profile data collection. cudaProfilerStart () isused to start profiling and
cudaProfilerStop () isused to stop profiling (using the CUDA driver API, you get the same
functionality with cuProfilerStart () and cuProfilerStop ()). To use these functions
you must include cuda_profiler api.h (Or cudaProfiler.h for thedriver API).

Profiler User's Guide 1

Preparing An Application For Profiling

When using the start and stop functions, you aso need to instruct the profiling tool to disable
profiling at the start of the application. For pgprof you do thiswiththe --profile-from-
start off flag. For PGPROF in visual mode you use the Start execution with profiling
enabled checkbox in the Settings View.

1.2. Marking Regions of CPU Activity

The Visual Profiler can collect atrace of the CUDA function calls made by your application.
The Visual Profiler showsthese callsin the Timeline View, alowing you to see where each CPU
thread in the application isinvoking CUDA functions. To understand what the application's CPU
threads are doing outside of CUDA function calls, you can use the NVIDIA Tools Extension
APl (NVTX). When you add NVTX markers and ranges to your application, the Timeline View
shows when your CPU threads are executing within those regions.

PGPROF also supports NVTX markers and ranges. Markers and ranges are shown in the API trace
output in the timeline. In summary mode, each range is shown with CUDA activities associated
with that range.

1.3. Naming CPU and CUDA Resources

The Visual Profiler Timeline View shows default naming for CPU thread and GPU devices,
context and streams. Using custom names for these resources can improve understanding of the
application behavior, especially for CUDA applications that have many host threads, devices,
contexts, or streams. Y ou can use the NVIDIA Tools Extension APl to assign custom names for
your CPU and GPU resources. Y our custom names will then be displayed in the Timeline View.

PGPROF also supports NVTX naming. Names of CUDA devices, contexts and streams are
displayed in summary and trace mode. Thread names are displayed in summary mode.

1.4. Flush Profile Data

To reduce profiling overhead, the profiling tools collect and record profile information into
internal buffers. These buffers are then flushed asynchronoudly to disk with low priority to avoid
perturbing application behavior. To avoid losing profile information that has not yet been flushed,
the application being profiled should make sure, before exiting, that all GPU work is done (using
CUDA synchronization cals), and then call cudaProfilerStop () Of cuProfilerStop ().
Doing so forces buffered profile information on corresponding context(s) to be flushed.

If your CUDA application includes graphics that operate using a display or main loop, care must
betakento cal cudaProfilerStop () Of cuProfilerStop () beforethe thread executing
that loop callsexit (). Failureto call one of these APIs may result in the loss of some or all of
the collected profile data.

For some graphics applications like the ones use OpenGL, the application exits when the escape
key is pressed. In those cases where calling the above functions before exit is not feasible, use
PGPROF option --timeout or set the "Execution timeout” in the visual mode in PGPROF. The
profiler will force a data flush just before the timeout.

Profiler User's Guide 2

Preparing An Application For Profiling

1.5. Profiling CUDA Fortran Applications

CUDA Fortran applications compiled with the PGI CUDA Fortran compiler can be profiled

by PGPROF. In cases where the profiler needs source file and line information (kernel profile
analysis, global memory access pattern analysis, divergent execution analysis, €tc.), usethe -
Mcuda=lineinfa" option when compiling. This option is supported on Linux 64-bit targets in PGI

2014 version 14.9 or later.

Profiler User's Guide

Chapter 2.
VISUAL PROFILING

The visual mode in PGPROF allows you to visualize and optimize the performance of your
application. The visual mode in PGPROF displays atimeline of your application's activity on
both the CPU and GPU so that you can identify opportunities for performance improvement.
In addition, the Visual Profiler will analyze your application to detect potential performance
bottlenecks and direct you on how to take action to eliminate or reduce those bottlenecks.

2.1. Getting Started

This section describes steps you might take as you begin profiling.

2.1.1. Modify Your Application For Profiling

The visual mode in PGPROF does not require any application changes; however, by making
some simple modifications and additions, you can greatly increase its usability and effectiveness.
Section Preparing An Application For Profiling describes how you can focus your profiling
efforts and add extra annotations to your application that will greatly improve your profiling
experience.

2.1.2. Creating a Session

Thefirst step in using the visual mode in PGPROF to profile your application isto create a
new profiling session. A session contains the settings, data, and results associated with your
application. The Sessions section gives more information on working with sessions.

Y ou can create a new session by selecting the Profile An Application link on the Welcome
page, or by selecting New Session from the File menu. In the Create New Session dialog enter
the executable for your application. Optionally, you can also specify the working directory,
arguments, multi-process profiling option and environment.

The muti-process profiling options are:

» Profile child processes - If selected, profile all processes launched by the specified
application.

» Profileall processes - If selected, profile every CUDA process launched on the same system
by the same user who launched pgprof. In this mode the visual mode in PGPROF will launch

Profiler User's Guide 4

>

Visual Profiling

PGPROF and user needs to run his application in another terminal outside the visual mode in
PGPROF. User can exit this mode by pressing "Cancel" button on progress dialog in Visual
Profiler to load the profile data

Profile current process only - If selected, only profile specified application.

Press Next to choose some additional profiling options.

CUDA options:

>

Start execution with profiling enabled - If selected profile datais collected from

the start of application execution. If not selected profile datais not collected until
cudaProfilerStart () iscalledin the application. See Focused Profiling for more
information about cudaProfilerStart ().

Enable concurrent kernel profiling - This option should be selected for an application that
uses CUDA streams to launch kernels that can execute concurrently. If the application uses
only asingle stream (and therefore cannot have concurrent kernel execution), deselecting this
option may decrease profiling overhead.

Enable CUDA API tracing in thetimeline - If selected, the CUDA driver and runtime API
call traceis collected and displayed on timeline.

Enable power, clock, and thermal profiling - If selected, power, clock, and thermal
conditions on the GPUs will be sampled and displayed on the timeline. Collection of this
datais not supported on all GPUs. See the description of the Device timelinein Timeline
View for more information.

Enable unified memory profiling - If selected for the GPU that supports Unified Memory,
the Unified Memory related memory traffic to and from each GPU is collected on your
system and displayed on timeline.

Replay application to collect events and metrics - If selected, the whole applicationis re-
run instead of replaying each kernel, in order to collect al events/metrics.

Run guided analysis - If selected, the guided analysisis run immediately after the creation
of anew session. Uncheck this option to disable this behavior.

CPU (host) options:

>

Profile execution on the CPU - If selected the CPU threads are sampled and data collected
about the CPU performance is shown in the CPU Details View.

Enable OpenACC profiling - If selected and an OpenACC application is profiled,
OpenACC activities will be recorded and displayed on a new OpenACC timeline. Collection
of this datais only supported on Linux and PGI 15.7+. See the description of the OpenACC
timelinein Timeline View for more information.

Enable CPU thread tracing - If enabled, selected CPU thread API callswill be recorded
and displayed on a new thread API timeline. This currently includes the Pthread API,
mutexes and condition variables. For performance reasons, only those API calls that
influence concurrent execution are recorded and collection of this datais not supported on
Windows. See the description of the thread timeline in Timeline View for more information.
This option should be selected for dependency analysis of applications with multiple CPU
threads using CUDA.

Timeline Options:

>

Load datafor timerange - If selected the start and end time stamps for the range of datato
be loaded can be specified. This option is useful to select a subset of alarge data.

Profiler User's Guide 5

Visual Profiling

» Enabletimelinesin the session - By default al timelines are enabled. If atimelineis un-
checked, the data associated with that timeline will not be loaded and it will not be displayed.

If some timelines are disabled by un-checking the option the analyses results which use this timeline data
will be incorrect.

Press Finish.

2.1.3. Analyzing Your Application

If the Don't run guided analysis option was not selected when you created your session, the
visual mode in PGPROF will immediately run your application to collect the data needed for the
first stage of guided analysis. As described in the Analysis View section, you can use the guided
analysis system to get recommendations on performance limiting behavior in your application.

2.1.4. Exploring the Timeline

In addition to the guided analysis results, you will see atimeline for your application showing
the CPU and GPU activity that occurred as your application executed. Read Timeline View and
Properties View to learn how to explore the profiling information that is available in the timeline.
Navigating the Timeline describes how you can zoom and scroll the timeline to focus on specific
areas of your application.

2.1.5. Looking at the Details

In addition to the results provided in the Analysis View, you can also look at the specific metric
and event values collected as part of the analysis. Metric and event values are displayed in the
GPU Details View. You can collect specific metric and event values that reveal how the kernels
in your application are behaving. Y ou collect metrics and events as described in the GPU Details
View section.

2.1.6. Improve Loading of Large Profiles

Some applications launch many tiny kernels, making them prone to very large (100s of
megabytes or larger) output, even for application runs of only afew seconds. The visual mode

in PGPROF needs roughly the same amount of memory as the size of the profileit is opening/
importing. The Java virtual machine may use afraction of the main memory if no "max heap
size" setting is specified. So depending on the size of main memory, the visual mode in PGPROF
may fail to load some largefiles.

If the visual mode in PGPROF failsto load alarge profile, try setting the max heap size that VM
is alowed to use according to main memory size. Y ou can modify the config filein 1ibnvvp/
nvvp.ini inthetoolkit installation directory. The nvvp. ini configuration file looks like this:

-startup

plugins/org.eclipse.equinox.launcher 1.3.0.v20140415-2008.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.gtk.linux.x86 64 1.1.200.v20140603-1326
—-data

@user.home/nvvp_workspace

-vm

../Jjre/bin/java

-vmargs

-Dorg.eclipse.swt.browser.DefaultType=mozilla

Profiler User's Guide 6

Visual Profiling

To forcethe VM to use 3 gigabytes of memory, for example, add a new line with #xmx 3G after
#vmargs. The -Xmx setting should be tailored to the available system memory and input size.
For example, if your system has 24GB of system memory, and you happen to know that you
won't need to run any other memory-intensive applications at the same time as the visual mode
in PGPROF, soit's okay for the profiler to take up the vast mgjority of that space. So you might
pick, say, 22GB as the maximum heap size, leaving afew gigabytes for the OS, GUI, and any
other programs that might be running.

Some other nvvp. ini configuration settings can also be modified:

» Increase the default heap size (the one Java automatically starts up with) to, say, 2GB. (-
Xms)

» Tell Javato run in 64-bit mode instead of the default 32-bit mode (only works on 64-bit
systems); thisisrequired if you want heap sizes >4GB. (-d64)

» Enable Javas parallel garbage collection system, which helps both to decrease the required
memory space for agiven input size as well as to catch out of memory errors more
gracefully. (-xXX: +UseConcMarkSweepGC -XX:+CMSIncrementalMode)

Note: most installations require administrator/root-level accessto modify thisfile.
The modified nvvp. ini file as per examples given above is as follows:

—-data
@user.home/nvvp_workspace
=vm

../jre/bin/java

-d64

-vmargs

-Xms2g

-Xmx22g
—-XX:+UseConcMarkSweepGC
-XX:+CMSIncrementalMode
-Dorg.eclipse.swt.browser.DefaultType=Mozilla

For more details on JVM settings, consult the Java virtual machine manual.

In addition to this you can use timeline options L oad data for time range and Enable timelines
in the session mentioned in the Creating a Session section to limit the data which is loaded and

displayed.

2.2. Sessions

A session contains the settings, data, and profiling results associated with your application. Each
session is saved in a separate file; so you can delete, move, copy, or share a session by simply
deleting, moving, copying, or sharing the session file.

There are two types of sessions: an executable session that is associated with an application that
is executed and profiled from within the visual mode in PGPROF, and an import session that is
created by importing data generated by Command-line Profiling.

2.2.1. Executable Session

Y ou can create a new executable session for your application by selecting the Profile An
Application link on the Welcome page, or by selecting New Session from the File menu. Once a
session is created, you can edit the session's settings as described in the Settings View.

Y ou can open and save existing sessions using the open and save options in the File menu.

Profiler User's Guide 7

Visual Profiling

To analyze your application and to collect metric and event values, the visual mode in PGPROF
will execute your application multiple times. To get accurate profiling results, it isimportant that
your application conform to the requirements detailed in Application Requirements.

2.2.2. Import Session

Y ou create an import session from the output of the command-line mode in PGPROF by using
the Import... option in the File menu. Selecting this option opens the import dialog which guides
you through the import process.

Because an executable application is not associated with an import session, the visual modein
PGPROF cannot execute the application to collect additional profile data. As aresult, analysis
can only be performed with the data that isimported. Also, the GPU Details View will show any
imported event and metrics values but new metrics and events cannot be selected and collected
for the import session.

2.2.2.1. Import Single-Process PGPROF Session

Using the import dialog you can select one or more PGPROF datafiles for import into the new
session.

Y ou must have one PGPROF datafile that contains the timeline information for the session. This
data file should be collected by running pgprof with the --export-profile option. You

can optionally enable other options such as --system-profiling on, but you should not
collect any events or metrics as that will distort the timeline so that it is not representative of the
applications true behavior.

Y ou may optionally specify one or more event/metric datafiles that contain event and metric
values for the application. These data files should be collected by running pgprof with one or both
of the -—events and --metrics options. To collect all the events and metrics that are needed
for the analysis system, you can simply usethe --analysis-metrics option aong with the
--kernels option to select the kernel (s) to collect events and metrics for. See Remote Profiling
for more information.

If you are importing multiple PGPROF output files into the session, it isimportant that your
application conform to the requirements detailed in Application Requirements.

2.2.2.2. Import Multi-Process PGPROF Session

Using the import wizard you can select multiple pGPROF datafiles for import into the new multi-
process session.

Each pGPROF datafile must contain the timeline information for one of the processes. This
data file should be collected by running pgprof with the --export-profile option. You

can optionally enable other options such as --system-profiling on, but you should not
collect any events or metrics as that will distort the timeline so that it is not representative of the
applications true behavior.

Select the M ultiple Processes option in the Import PGPROF Data dialog as shown in the figure
below.

Profiler User's Guide 8

Visual Profiling

When importing timeline data from multiple processes you may not specify any event/metric data
files for those processes. Multi-processes profiling is only supported for timeline data.

2.3. Application Requirements

To collect performance data about your application, the visual mode in PGPROF must be able
to execute your application repeatedly in a deterministic manner. Due to software and hardware
limitations, it is not possible to collect all the necessary profile datain a single execution of your
application. Each time your application is run, it must operate on the same data and perform the
same kernel and memory copy invocations in the same order. Specifically,

» For adevice, the order of context creation must be the same each time the application
executes. For amulti-threaded application where each thread creates its own context(s), care
must be taken to ensure that the order of those context creationsis consistent across multiple
runs. For example, it may be necessary to create the contexts on a single thread and then pass
the contexts to the other threads. Alternatively, the NVIDIA Tools Extension API can be
used to provide a custom name for each context. Aslong as the same custom name is applied
to the same context on each execution of the application, the visual mode in PGPROF will be
ableto correctly associate those contexts across multiple runs.

» For acontext, the order of stream creation must be the same each time the application
executes. Alternatively, the NVIDIA Tools Extension API can be used to provide a custom
name for each stream. Aslong as the same custom name is applied to the same stream on
each execution of the application, the visual mode in PGPROF will be able to correctly
associ ate those streams across multiple runs.

» Within astream, the order of kernel and memcpy invocations must be the same each time the
application executes.

2.4. PGPROF Views

The visual mode in PGPROF is organized into views. Together, the views allow you to analyze
and visualize the performance of your application. This section describes each view and how you
use it while profiling your application.

2.4.1. Timeline View

The Timeline View shows CPU and GPU activity that occurred while your application was being
profiled. Multiple timelines can be opened in the visual mode in PGPROF at the sametimein
different tabs. The following figure shows a Timeline View for a CUDA application.

Profiler User's Guide 9

Visual Profiling

1S 0.325 s 0.33s 0.335s 0.34s 0.345s 0.35s
n " . . . A
=| Process "diverge” (14385)
—| Thread 29824768

Runtme Ae o aemapasne
Driver API |
Profiling Overhead
= [0] Tesla k20c .

=| Context 1 (CUDA)
¥ MemCpy (HtoD) |
¥ MemCpy (DtoH)

=l compure | vecl.. Vecl.. | Veclof.. Vecl.|vec5.. Vecl.. Veclofaas(int*, int*, int* int) |
T 58.0% Veclof32x({int*, int*, int¥, int) | Vecl.. | | Vecl.. | | Veclof... | | Veclof32x(int*, int*, int*¥, int)
T 12.6% VecThen(int*, int*, int*, int) | | [
T 11.5% VecSO(int*, int*, int¥, int) | | [}
T 11.3% Veclof32(int*, int*, int*, int)] |]
T 6.7% Vec320f32(int*, int*, int*, int) | | | []
< 0.0% VecEmpty(void) | ‘ ‘ ‘

=l Streams
Default [“vecl.. ‘vecl.. | Weclof. Vecl..]vecs.. Vecl..' Veclofaax{int*, int*, int*, int) |

Along the top of the view isahorizontal ruler that shows elapsed time from the start of
application profiling. Along the |eft of the view isavertical ruler that describes what is being
shown for each horizontal row of the timeline, and that contains various controls for the timeline.
These controls are described in Timeline Controls

Thetimeline view is composed of timeline rows. Each row shows intervals that represent the
start and end times of the activities that correspond to the type of the row. For example, timeline
rows representing kernels have intervals representing the start and end times of executions of that
kernel. In some cases (as noted below) atimeline row can display multiple sub-rows of activity.
Sub-rows are used when there is overlapping activity. These sub-rows are created dynamically

as necessary depending on how much activity overlap thereis. The placement of intervals within
certain sub-rows does not convey any particular meaning. Intervals are just packed into sub-rows
using a heuristic that attempts to minimize the number of needed sub-rows. The height of the sub-
rowsis scaled to keep vertical space reasonable.

The types of timeline rows that are displayed in the Timeline View are:

Process
A timeline will contain a Process row for each application profiled. The process identifier
represents the pid of the process. The timeline row for a process does not contain any intervals
of activity. Threads within the process are shown as children of the process.

Thread
A timeline will contain a Thread row for each CPU thread in the profiled application that
performed either a CUDA driver or CUDA runtime API call. The thread identifier is aunique
id for that CPU thread. The timeline row for athread is does not contain any intervals of
activity.

Runtime API
A timeline will contain a Runtime API row for each CPU thread that performs a CUDA
Runtime API call. Each interval in the row represents the duration of the call on the
corresponding thread.

Driver API
A timeline will contain a Driver API row for each CPU thread that performs a CUDA Driver
API call. Each interval in the row represents the duration of the call on the corresponding
thread.

OpenACC
A timeline will contain one or multiple OpenACC rows for each CPU thread that calls
OpenACC directives. Each interval in the row represents the duration of the call on the

Profiler User's Guide 10

Visual Profiling

corresponding thread. Each OpenACC timeline may consist of multiple rows. Within one
timeline, OpenA CC activities on rows further down are called from within activities on the
rows above.

Pthread
A timeline will contain one Pthread row for each CPU thread that performs Pthread API
calls, given that host thread API calls have been recorded during measurement. Each interval
in the row represents the duration of the call. Note that for performance reasons, only selected
Pthread API calls may have been recorded.

Markersand Ranges
A timeline will contain asingle Markers and Ranges row for each CPU thread that uses the
NVIDIA Tools Extension API to annotate a time range or marker. Each interval in the row
represents the duration of atime range, or the instantaneous point of a marker. This row will
have sub-rows if there are overlapping ranges.

Profiling Overhead
A timeline will contain a single Profiling Over head row for each process. Each interval in
the row represents the duration of execution of some activity required for profiling. These
intervals represent activity that does not occur when the application is not being profiled.

Device
A timeline will contain a Device row for each GPU device utilized by the application being
profiled. The name of the timeline row indicates the device ID in square brackets followed by
the name of the device. After running the Compute Utilization analysis, the row will contain
an estimate of the compute utilization of the device over time. If power, clock, and thermal
profiling are enabled, the row will aso contain points representing those readings.

Unified Memory
A timeline will contain a Unified Memory row for each CPU thread and device that uses
unified memory. The Unified memory may contain CPU Page Faults, GPU Page Faults, Data
Migration (DtoH) and Data Migration (HtoD) rows. When creating a session user can select
segment mode or non-segment mode for Unified Memory timelines. In the segment mode
the timeline is split into equal width segments and only aggregated data values for each time
segment are shown. The humber of segments can be changed. In non-segment mode each
interval on the timeline will represent the actual data collected and the properties for each
interval can be viewed. The segments are colored using a heat-map color scheme. Under
properties for the timeline the property which is used for selecting the color isgiven and aso a
legend displays the mapping of colorsto different range of property values.

CPU Page Faults
Thiswill contain a CPU Page Faults row for each CPU thread. In the non-segment mode
each interval on the timeline corresponds to one CPU page fault.

Data Migration (DtoH)
A timeline will contain Data Migration (DtoH) row for each device. In the non-segment
mode each interval on the timeline corresponds to one data migration from device to host.

GPU Page Faults
A timeline will contain GPU Page Faults . row for each CPU thread. In the non-segment
mode each interval on the timeline corresponds to one GPU page fault group.

Data Migration (DtoH)
A timeline will contain Data Migration (HtoD) row for each device. In the non-segment
mode each interval on the timeline corresponds to one data migration from host to device.

Context
A timeline will contains a Context row for each CUDA context on a GPU device. The name
of the timeline row indicates the context 1D or the custom context name if the NVIDIA Tools

Profiler User's Guide 11

Visual Profiling

Extension APl was used to name the context. The row for a context does not contain any
intervals of activity.

Memcpy
A timeline will contain memory copy row(s) for each context that performs memcpys. A
context may contain up to four memcpy rows for device-to-host, host-to-device, device-to-
device, and peer-to-peer memory copies. Each interval in arow represents the duration of a
memcpy executing on the GPU.

Compute
A timeline will contain a Compute row for each context that performs computation on the
GPU. Each interval in arow represents the duration of akernel on the GPU device. The
Compute row indicates al the compute activity for the context. Sub-rows are used when
concurrent kernels are executed on the context. All kernel activity, including kernels launched
using CUDA Dynamic Parallelism, is shown on the Compute row. The Kernel rows following
the Compute row show activity of each individual application kernel.

Kerne
A timeline will contain aKernel row for each kernel executed by the application. Each
interval in arow represents the duration of execution of an instance of that kernel in the
containing context. Each row islabeled with a percentage that indicates the total execution
time of all instances of that kernel compared to the total execution time of all kernels. For each
context, the kernels are ordered top to bottom by this execution time percentage. Sub-rows
are used to show concurrent kernel execution. For CUDA Dynamic Parallelism applications,
the kernels are organized in a hierarchy that represents the parent/child relationship between
the kernels. Host-launched kernels are shown as direct children of the Context row. Kernels
that use CUDA Dynamic Parallelism to launch other kernels can be expanded using the '+
icon to show the kernel rows representing those child kernels. For kernels that don't launch
child kernels, the kernel execution is represented by a solid interval, showing the time that
that instance of the kernel was executing on the GPU. For kernels that launch child kernels,
the interval can also include a hollow part at the end. The hollow part represents the time after
the kernel has finished executing whereit iswaiting for child kernels to finish executing.
The CUDA Dynamic Parallelism execution model requires that a parent kernel not complete
until all child kernels complete and thisiswhat the hollow part is showing. The Focus control
described in Timeline Controls can be used to control display of the parent/child timelines.

Stream
A timeline will contain a Stream row for each stream used by the application (including
both the default stream and any application created streams). Each interval in a Stream row
represents the duration of amemcpy or kernel execution performed on that stream.

2.4.1.1. Timeline Controls

The Timeline View has several controls that you use to control how the timelineis displayed.
Some of these controls also influence the presentation of datain the GPU Details View and the
AnalysisView.

Resizing the Vertical Timeline Ruler

The width of the vertical ruler can be adjusted by placing the mouse pointer over the right edge
of the ruler. When the double arrow pointer appears, click and hold the left mouse button while
dragging. The vertical ruler width is saved with your session.

Profiler User's Guide 12

Visual Profiling

Reordering Timelines

The Kernel and Stream timeline rows can be reordered. Y ou may want to reorder these rowsto
aid in visualizing related kernels and streams, or to move unimportant kernels and streams to the
bottom of the timeline. To reorder arow, left-click and hold onto the row label. When the double
arrow pointer appears, drag up or down to position the row. The timeline ordering is saved with
your session.

Filtering Timelines

Memcpy and Kernel rows can be filtered to exclude their activities from presentation in the GPU
Details View and the Analysis View. To filter out arow, left-click on the filter icon just to the | eft
of therow label. Tofilter all Kernel or Memcpy rows, Shift-left-click one of the rows. When a
row isfiltered, any intervals on that row are dimmed to indicate their filtered status.

Expanding and Collapsing Timelines

Groups of timeline rows can be expanded and collapsed using the [+] and [-] controls just to the
|eft of the row labels. There are three expand/collapse states:
Collapsed
No timeline rows contained in the collapsed row are shown.
Expanded
All non-filtered timeline rows are shown.
All-Expanded
All timeline rows, filtered and non-filtered, are shown.

Intervals associated with collapsed rows may not be shown in the GPU Details View and the
Analysis View, depending on the filtering mode set for those views (see view documentation for
more information). For example, if you collapse a device row, then all memcpys, memsets, and
kernels associated with that device are excluded from the results shown in those views.

Coloring Timelines

There are three modes for timeline coloring. The coloring mode can be selected in the View
menu, in the timeline context menu (accessed by right-clicking in the timeline view), and on the
profiler toolbar. In kernel coloring mode, each type of kernel is assigned a unique color (that

is, al activity intervalsin akernel row have the same color). In stream coloring mode, each
stream is assigned a unique color (that is, all memcpy and kernel activity occurring on a stream
are assigned the same color). In process coloring mode, each process is assigned a unique color
(that is, all memcpy and kernel activity occurring in a process are assigned the same color).

Focusing Kernel Timelines

For applications using CUDA Dynamic Parallelism, the Timeline View displays a hierarchy of
kernel activity that shows the parent/child relationship between kernels. By default all parent/
child relationships are shown simultaneously. The focus timeline control can be used to focus the
displayed parent/child relationships to a specific, limited set of "family trees’. The focustimeline

Profiler User's Guide 13

Visual Profiling

mode can be selected and deselected in the timeline context menu (accessed by right-clicking in
the timeline view), and on the profiler toolbar.

To see the "family tree" of a particular kernel, select akernel and then enable Focus mode. All
kernels except those that are ancestors or descendants of the selected kernel will be hidden. Ctrl-
select can be used to select multiple kernels before enabling Focus mode. Use the "Don't Focus'
option to disable focus mode and restore al kernels to the Timeline view.

Dependency Analysis Controls

There are two modes for visualizing dependency analysis resultsin the timeline: Focus Critical
Path and Highlight Execution Dependencies. These modes can be selected in the View menu,
in the timeline context menu (accessed by right-clicking in the timeline view), and on the Visual
Profiler toolbar.

These options become available after the Dependency Analysis application analysis stage has
been run (see Unguided Application Analysis). A detailed explanation of these modesis given in
Dependency Analysis Controls

2.4.1.2. Navigating the Timeline

Thetimeline can be scrolled, zoomed, and focused in several ways to help you better understand
and visualize your application's performance.

Zooming

The zoom controls are available in the View menu, in the timeline context menu (accessed by
right-clicking in the timeline view), and on the profiler toolbar. Zoom-in reduces the timespan
displayed in the view, zoom-out increases the timespan displayed in the view, and zoom-to-fit
scales the view so that the entire timelineisvisible.

Y ou can also zoom-in and zoom-out with the mouse wheel while holding the Ctrl key (for
MacOSX use the Command key).

Another useful zoom mode is zoom-to-region. Select aregion of the timeline by holding Ctrl (for
MacOSX use the Command key) while left-clicking and dragging the mouse. The highlighted
region will be expanded to occupy the entire view when the mouse button is released.

Scrolling

The timeline can be scrolled vertically with the scrollbar of the mouse wheel. The timeline can be
scrolled horizontally with the scrollbar or by using the mouse wheel while holding the Shift key.

Highlighting/Correlation

When you move the mouse pointer over an activity interval on the timeline, that interval is
highlighted in all places where the corresponding activity is shown. For example, if you move
the mouse pointer over an interval representing akernel execution, that kernel execution is
also highlighted in the Stream and in the Compute timeline row. When akernel or memcpy

Profiler User's Guide 14

Visual Profiling

interval is highlighted, the corresponding driver or runtime API interval will also highlight.
This alows you to see the correlation between the invocation of adriver or runtime API or
OpenACC directive on the CPU and the corresponding activity on the GPU. Information about
the highlighted interval is shown in the Properties View.

Selecting

Y ou can left-click on atimeline interval or row to select it. Multi-select is done using Ctr-left-
click. To unselect an interval or row simply Ctrl-left-click on it again. When a single interval or
row is selected, the information about that interval or row is pinned in the Properties View. In the
GPU Details View, the detailed information for the selected interval is shown in the table.

Measuring Time Deltas

Measurement rulers can be created by left-click dragging in the horizontal ruler at the top of the
timeline. Once aruler is created it can be activated and deactivated by left-clicking. Multiple
rulers can be activated by Ctrl-left-click. Any number of rulers can be created. Activerulers are
deleted with the Delete or Backspace keys. After aruler is created, it can be resized by dragging
the vertical guide linesthat appear over the timeline. If the mouse is dragged over atimeline
interval, the guideline will snap to the nearest edge of that interval.

2.4.1.3. Timeline Refreshing

The profiler loads the timeline gradually asit reads the data. Thisis more apparent if the datafile
being loaded is big, or the application has generated alot of data. In such cases, the timeline may
be partialy rendered. At the same time, a spinning circle replaces the icon of the current session
tab, indicating the timeline is not fully loaded. Loading is finished when the icon changes back.

To reduce its memory footprint, the profiler may skip loading some timeline contents if they
are not visible at the current zoom level. These contents will be automatically loaded when they
become visible on a new zoom level.

2.4.1.4. Dependency Analysis Controls

The profiler alows the visualization of dependency analysis results in the timeline once the
respective analysis stage has been run. For a detailed description on how dependency analysis
works, see Dependency Analysis.

Focus Critical Path visualizes the critical path through the application by focusing on all
intervals on the critical path and fading others. When the mode is enabled and any timeline
interval is selected (by left-clicking it), the selected interval will have focus. However, the critical
path will still be visible as hollow intervals. This alows you to "follow" the critical path through
the execution and to inspect individual intervals.

Highlight Execution Dependencies allows you to analyze the execution dependencies
for each interval (Note that for certain intervals, no dependency information is
collected). When this mode is enabled, the highlighting color changes from yellow
(representing correlated intervals) to red (representing dependencies). Both the

Profiler User's Guide 15

Visual Profiling

selected interval aswell as all incoming and outgoing dependencies are highlighted.

% dep_highlights.nvvp 52 = O EProperties & = g
155 2s 255 3s 35s cudaDeviceSynchronize
[=| Process "blocking” (21279) Start {27235 (2,722,829,415ns)
[=I Thread 1303930688 End 3.711s(3,710,998,292 ns)
* Runtime API Duration 988.169 ms (988,168,877 ns)
L Driver APl ¥ Dependency Analysis
" Profiling Overhead [l Time on Critical Path ;ons
=/ [0] GeForce GTX 980 Waiting Time 5988.155 ms (988,164,547 ns)

[=] Context 1 (CUDA)
Compute

Streams

]

[Analysis 2 GPU Details E console

E |El & |5 ResetAll [Analyze All
To enable kernel analysis stages selecta
host-launched kernelinstance in the

timeline.

lock_block(long*, long] clock_block(long*, long)

clock_block(long*, long)

Settings EX CPU Details W, = O3

I Results

i Dependency Analysis

The Following table shows metrics collected from a dependency analysis of the program execution. The data is
summarized per Function type. Use the "Dependency Analysis” menu on the main toolbar to visualize analysis results on

the timeline. More...

Application
Function Name « Time on Critical Path (%) Time on Critical Path Waiting time
Data M .. C
ata Movemen... Concurrency hd clock_block(long*, long) 80.00%| 2.9685s | ons
Compute Utilization i <Other> 13.48%. 500.293 m: i 0ns
cudamalloc 6.52% | 241.78ms | ons
Kernel Performance [t} cudaLaunch 0.00 % 36.668 ps 0ns
cudaStreamSynchronize 0.00 % ons 1.485
-
Dependency Analysis & cudaDeviceSynchronize 0.00 % Ons; 988.165ms
NVLink JE

2.4.2. Analysis View

The Analysis View is used to control application analysis and to display the analysis results.
There are two analysis modes: guided and unguided. In guided mode the analysis system will
guide you through multiple analysis stages to help you understand the likely performance limiters
and optimization opportunities in your application. In unguided mode you can manually explore
all the analysisresults collected for your application. The following figure shows the analysis
view in guided analysis mode. The left part of the view provides step-by-step directionsto help
you analyze and optimize your application. The right part of the view shows detailed analysis
results appropriate for each part of the analysis.

Profiler User's Guide 16

Visual Profiling

[0 Analysis 88 . [0 Details & Console| Cin Settings ., — 0O

[=]| =l | Uy Export PDF Report Results -

i Kernel Performance Is Bound By Memory Bandwidth
1. CUDA Application Analysis " " . . - . .
For device "Quadro K6000" the kernel's compute utilization is significantly lower than its memory utilization.

2. Performance-Critical Kernels These utilization levels indicate that the performance of the kernel is most likely being limited by the
memory system. For this kernel the limiting factor in the memory system is the bandwidth of the L2 Cache

3. Compute, Ban...r Latency Bound memory.

The first step in analyzing an individual
kernel is to determine if the
performance of the kernel is bounded

by computation, memory bandwidth, or

instruction/memory latency. The
results at right indicate that the

performance of kernel
"MemoryBoundl2Cache" is most likely
limited by memory bandwidth.

[Memory operations
[Control-flow operations
B Arithmetic operations
I Memory (L2 Cache)

+ Perform Memory Bandwidth Analy:

Utilization

The most likely bottleneck to performance
for this kernelis memory bandwidth so you
should first perform memory bandwidth
analysis to determine how it is limiting
performance

‘ iy, Perform Compute Analysis |

‘ Uiy, Perform Latency Analysis | |

Compute Memory (L2 Cache)

2.4.2.1. Guided Application Analysis

In guided mode, the analysis view will guide you step-by-step through analysis of your entire
application with specific analysis guidance provided for each kernel within your application.
Guided analysis starts with CUDA Application Analysis and from there will guide you to
optimization opportunities within your application.

2.4.2.2. Unguided Application Analysis

In unguided analysis mode each application analysis stage has a Run analysis button that can be
used to generate the analysis results for that stage. When the Run analysis button is selected, the
profiler will execute the application to collect the profiling data needed to perform the analysis.
The green check-mark next to an analysis stage indicates that the analysis results for that stage are
available. Each analysis result contains a brief description of the analysisand aMore... link to
detailed documentation on the analysis. When you select an analysis result, the timeline rows or
intervals associated with that result are highlighted in the Timeline View.

When a single kernel instance is selected in the timeline, additional kernel-specific analysis stages
are available. Each kernel-specific analysis stage has a Run analysis button that operatesin

the same manner as for the application analysis stages. The following figure shows the analysis
results for the Diver gent Execution analysis stage. Some kernel instance analysis results, like
Diver gent Execution, are associated with specific source-lines within the kernel. To see the
source associated with each result, select an entry from the table. The source file associated with
that entry will open.

Profiler User's Guide 17

Visual Profiling

Tl Analysis 22 |l GPU Details | B4 CPU Details | Bl Console | T Settings W = 8

E B © ~|Reset All| [Analyze all Results

% Divergent Branches

Veclof32x(int*, int*, int*, int - . . .
{) Compute resource are used most efficiently when all threads in a warp have the same branching behavior.

Kernel Performance Limiter s when this does not occur the branch is said to be divergent. Divergent branches lower warp execution
efficiency which leads to inefficient use of the GPU's compute resources.
Kernel Latency ay Optimization: Select each entry below to open the source code to a divergent branch within the
kemel. For each branch reduce the amount of intra-warp divergence. More...
Kernel Compute s ¥ Line/File | diverge.cu- /data/test
101 Divergence = 100% [2048 divergent executions out of 2048 total executions]
Kernel Memory s

Global Memory Access Pattern |t

Shared Memory Access Pattern | il

<

Kernel Profile ...ction Execution

Q

Kernel Profile - PC Sampling s
Application

Data Movemen... Concurrency &

2.4.2.3. PC Sampling View

Devices with compute capability 5.2 and 6.x have a feature for PC sampling. In this feature PC
and state of warp are sampled at regular interval for one of the active warps per SM. The warp
state indicatesif that warp issued an instruction in acycle or why it was stalled and could not
issue an instruction. When awarp that is sampled is stalled, there is a possibility that in the same
cycle some other warp isissuing an instruction. Hence the stall for the sampled warp need not
necessarily indicate that thereis ahole in the instruction issue pipeline. Refer to the Warp State
section for a description of different states.

Devices with compute capability 6.x have a new feature that gives latency reasons. The latency
samplesindicate the reasons for holes in the issue pipeline. While collecting these samples, there
isno instruction issued in respective warp scheduler and hence these give the latency reasons.
The latency reasons will be one of the stall reasons in Warp State section except 'not selected'
stall reason.

The profiler collects thisinformation and presentsit in the Kernel Profile - PC Sampling view.
In this view, the sample distribution for al functions and kernelsis givenin atable. A pie chart
shows the distribution of stall reasons collected for each kernel. After clicking on the source file
or device function the Kernel Profile- PC Sampling view is opened. The hotspots shown next
to the vertical scroll bar are determined by the number of samples collected for each source and
assembly line. The distribution of the stall reasons is shown as a stacked bar for each source and
assembly line. This helpsin pinpointing the latency reasons at the source code level.

For devices with compute capability 6., visual mode in PGPROF show two views: 'K ernel
Profile - PC Sampling' which givesthe warp state view and 'Kernel Profile - PC Sampling -
L atency' which givesthe latency reasons. Hotspots can be seleted to point to hotspot of 'Warp
State' or 'Latency Reasons. The tables in result section give percentage distribution for total
latency samples, issue pipeline busy samples and instruction issued samples.

Profiler User's Guide 18

Visual Profiling

§ *NewSession1 | Veclof32x & = a
Line Warp State File - /data/test/diverge.cu Warp State Disassembly v
102 | MOV R10, c[6x0][Ox158];
103 cli] = c[i] + Ali] + B[i]; ISETP.LT.AND P, PT, R1@, ex1, PT;
104 } @PO SYNC;
105 else { 1{ XMAD R9, R10.reuse, 8xa, RZ;
106 for (n=0; n < N; n+) LDG.E R8, [R21;
107 Cli] = C[i] + Ali] - B[il; MOV RO, RZ;
108 } = XMAD.PSL R9, R16.H1, @xa, R9;
109 MoV R16, cl[ex2][exe];
110 Cli] *= 2; VABSDIFF.ACC RZ.CC, RO, R9, R10; L
o) BRA CC.LE, "(.L_7); B
112 .L 8:
113 _ global__ void IADD32I RO, RO, 0x4;
114 Vec32of32(int* A, Int* B, int* C, int N) LDG.E R1@, [R4];
115 { MOV R14, c[0x2][x6];
-~ ine £ a1, a
& Analysis 52 | B8 GPU Details B CPU Details| & Console | C& Settings E = |
E (5]) Reset All| [Analyze All Results
. . N . & Kernel Profile - PC Sampling
Vec1of32x(int*, int*, int*, int) P - . T . . N .
Optimization: Select a kernel or source file listed below to view the PC sampling information. Examine portions of the kernel that have high number of
Kernel Performance Limiter e samples to know where the maximum time was spent and observe the latency reasons for those samples to identify optimization opportunities. More.
) Cuda Functions Sample Count % of Kernel Samples
Kel Lat: alt N . - .
el Latency J VecTof32x(int*, ink*, int*, int)| 650370 100.00%
Kernel Compute i
Source File Sample Count % of Samples inFile
Kernel Memory iy /data/test/diverge.cu; 650370 100.00 %
Global M Al Patt: b i .
obal Memory Access Pattern 2 sample distribution
Shared Memory Access Pattern oy,
Divergent Execution by,
g teture
Kernel Profile - Instruction Execution |y 1.19 %
other
v O oe6%
ipe bus)
Application [} 8_‘51% v
memory dependency pipe busy memory dependency
Data Movement And Concurrency @ 86.69 % — Qtal % O ge.60%
other
—-— t selected
Compute Utilization o, \?:LZ O SDD;E%EE <
Kernel Performance L L19% = gztgu;tmn e
= instruction fetch e
1.76 % [censtant
Dependency Analysis g execution dependency 0.01%
8.33% memory throttle
] ry
NVLink iy memory throttle 0.00 %
0.00 % D execution dependency
constant 8.33 %
0.01 % instruction fetch
B 16w

2.4.2.4. NVLink view

NVIDIA NVLink is ahigh-bandwidth, energy-efficient interconnect that enables fast

instruction issued
0.99 %

not selected

0.07 %

communication between the CPU and GPU, and between GPUSs.

Visual Profiler collects NVLink topology and NV Link transmit/receive throughput metrics and
maps the metrics on to the topology. The topology is collected by default along with the timeline.

Throughput/ utilization metrics are generated only when NVLink option is chosen.

NVLink information is presented in the Results section of Examine GPU Usage in CUDA
Application Analysisin Guided Analysis. NVLink Analysis shows topology that shows the
logical NVLink connections between different devices. A logical link comprises of 1to 4
physical NV Links of same properties connected between two devices. Visual profiler lists
the properties and achieved utilization for logical NVLinksin ‘Logical NVLink Properties
table. It also lists the transmit and receive throughputs for logical NVLink in ‘Logical NVLink

Throughput' table.

Profiler User's Guide

19

[Gi Analysis 53
ki3

GPU Details CPU Del

ol Reset All [Analyze all | ResUlts

i

E col

nsole

Settings

i NvLink Analysis

To enable kernel analysis stages select a
hostlaunched kernelinstance in the
timeline.

Application

Data Movemen... Concurrency

]

Compute Utilization) 18.37 MBIs l 19.1 MBrs 19.00 MBIs 18.39 MBIs
UL GPU3 GPUS
Kernel Performance iy Graphics Device ‘Graphics Device ics Device
18,
Dependency Analysis IT
P <y Analy = 1850 MBJs 1007MBls 10.13MBIs | 1008MB/s 1820 MBis | 1897 MBis
Unified Memory iy 18.50 MBIs 1007MBIs 1013MBis | 1879pdE/s 19%g MB/s | 18.94 MBI
GPU 0 18.84 MBis _GPU 2 > 18 MB 4
Graphics Device ‘Graphics Device Graphics Device Graphics Device
1863 VB 187 MBls

18.67 MBIS I

18.7 MBIs 18.7 MBIs

T 18.67 MBIs

2.4.2.5. Unified Memory Analysis

For devices that support unified memory, Visual Profiler outputs a summary table based on

virtual address which contains information about the data migrations, cpu and gpu page faults for
that address in the whole application. Visual Profiler also outputs atable that shows the summary
of all the data migrations, cpu and gpu page faults for the whole application.

Logical NVLink Properties

Logical NVLink :;::swidth
GPU0O<—>GPU1 40 GBfs
GPUO<->GPU2 | 40 GB/s
GPUO<->GPU3 40 GBfs
GPU0O<—>GPU4 40 GB/fs
GPU1<->GPU2 | 40 GBfs
GPU1<->GPU3 40 GBfs
GPU1<->GPUS 40 GBfs
GPU2<->GPU3 | 40 GB/s
GPU2<->GPU6 40 GBfs
GPU3<->GPU7 40 GB/s
GPU4<->GPU5 | 40 GB/s
GPU4<->GPU6 40 GBfs
GPU4<->GPUT7 40 GBfs
GPUS<->GPUG| 40 GB/s
GPUS5<->GPUT 40 GBfs
GPU6<—->GPUT 40 GB/s

Logical NvLink Throughput

Physical
NVLinks

1

Visual Profiling

The following NVLink topology diagram shows logical NVLink connections between GPUs and CPUs. A logical NVLink can contain one or more physical links. When two devices
connected by an NVLink, the receive throughput of device A is same as the transmit throughput of device B. The tables on right hand side show the properties for each logical |

* NvLink utilization may vary in accuracy, because any activity within the sampling period is treated as active, even though most of that period could beidle.

Peer System Peer
Access Access Atomic
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes
Yes No Yes

Logical NVLink Avg Throughput Max Throughput Min Throughy

GPUO-=GPU1
GPUO<-GPU1

18.591 MB/s
18.593 MB/s

15.392 GB/s
15.367 GB/s

531
531 -

Unified memory analysis is presented in the Results section of Examine GPU Usagein CUDA
Application Analysisin Guided Analysis.

(=] DSy @@ N
© *Newsession1 52 =g
os 0255 0ss 0755 1s 1255 155 1755 25 22
= Process "conjugateGradientu..
=) Thread 3125110656
Runtime API e ________________________| ________________cdree [/}l
 Driver API | |
- Profiling Overhead (N N [R LR AT T T T I T Y 1 AT T
] Unified Memory
7 cPU Page Faults (T 1] |
= [o] Graphics Device
= Unified Memory
7 Data Migration (DtoH)
7 GPU Page Faults
7 Data Migration (HtoD)
/=] Context 1 (CUDA)
7 MemCpy (HtoD)
¥ MemCpy (DtoH) |
= compute o
- 77.1% void cstMu_.. 1]
L 14.3%void axpy_k... I
-7 5.1%void copy_ke. |
¥ 2.1%void dot_ker..]
£ 7 0.9% void scal_ker.. 1
- 0.6%void reduce_...]
£ streams -
Analysis R GPU Det s & console [Settings . =8
¢ “l Reset All [Analyze All Results
Kernelanalysi stages select a hostlaunched kernel ||| . \ieied Memory Analysis
r;f::fe'fnfg;;";me 9 The following p have maximum data
Application Virtual address HtoD migrationsize DtoHmigrationsize CPU page faults GPU page faults Migration throughput Average faults per second
Data Movement And Concurrency @ 0x900703000 | 20.48k8 | Loizve o |2 | 67736 M5 37145.6631
0x900b08000 | 1.016 MB 4.096kB 2 0 96.593 MB/s 0.00
Compute utilization Y 0900108000 | 1.016 M8 | 4.096 k8 2 K | 78.726 MB/s | 121805725
0x900907000 1.02MB o8 o 6 81.543MB/s 568367.9704
Kernel Performance Y 0x900309000 ‘msska ‘LNZMB o ‘o 177.101 MB/s 0.00
Dependency Analysis & 0x902109000 | 4.096 kB | 1.012m8 lo |a | 215.42m8/5 | 69839.1378
0x901909000 | 0B 1.012M8 4 26 5.444GB/s 2428540509
0x900909000 | 0B |1.012m8 lo lo | 525108/ 0.00
0x901b09000 | 0B | 1.012mB o |18 | 5.456 GB/s | 6829736
0x900b09000 | 0B | 1.012mB o o | 5.109GB/s | 0.00
The following d page faults for the application
Total HtoD migration size Total DtoH migrationsize Total CPU Page faults Total GPU Page faults Total different pages The virtual address range
37.753M8 | 33.550MB 614 20868 1797 0x902c1d000-0x900887000

Profiler User's Guide

20

Visual Profiling

2.4.3. Source-Disassembly View

The Source-Disassembly View is used to display the analysisresults for akernel at the source
and assembly instruction level. To be able to view the kernel source you need to compile the code
using the -Mcuda=1ineinfo option. If thiscompiler option is not used, only the disassembly
view will be shown.

Thisview is displayed for the following types of anaysis:

» Global Memory Access Pattern Analysis

» Shared Memory Access Pattern Analysis

» Divergent Execution Analysis

» Kernel Profile - Instruction Execution Analysis
» Kernd Profile - PC Sampling Analysis

As part of the Guided Analysis or Unguided Analysis for akernel the analysis results are
displayed under the Analysis view. After clicking on the source file or device function the
Source-Disassembly view is opened. If the sourcefile is not found adialog is opened to select
and point to the new location of the source file. This can happen for example when the profiling
is done on a different system.

The Source-Disassembly view contains:

» Highlevel source

» Assembly instructions

» Hotspots at the source level

» Hotspots at the assembly instruction level

» Columnsfor profiling data aggregated to the source level

» Columnsfor profiling data collected at the assembly instruction level

Profiler User's Guide 21

File View Window Help

=4

‘ “session3 . nvp [T combinedKernel

View -

Hot Spot - Warp State ~

Pd

Visual Profiling

Line Execution Count Warp State File - /C:/demo/session3/estimate_combined3 Execution Count Warp State Disassembly > il a
86 int wid = tid { warpSize - | { ISETP.GT AND P2 FT. R reuse, 0x?, PT: -
87 val = warpReduce(val); S8Y (L3
88 if{lane == 0} 140032 FE, R4, Ox11

89
%
0
92
02 |
4
95
9%
97
%8

shared[wid] = val;

oo

_ syncthreads();

val = (ﬁd < CTA_SIZE { warpSize) ? shared[
ifiwid == 0}

1

val = warpReducefval);

return val;

ISETP.GT.U3ZAND F1.FT, BA. kde, PT.
SHLFE, B8, 0x2:

MOV R, RZ;

@IP2 LDS .32 B8, [F5];

@PT SYNC,

SHFLDOWN PT, RE, R, 0x10, 0«1,
FADDFTZ RE, B8, RE;

SHFLDOWN PT, A7, BB, 0x6, 0x11;
FADDFTZ RE, BE, R7,

SHFLDOWN PT, A7, BB, B, 011,

00000000000 0000000000000M000 0 000 @

] i3 FADDFTZ RE. RE. R7:
100 SHFLDOWN PT. B7. RE. 0x2, Ox1t
101 Mat33 Reurr. FADD.FTZ RE. RE. R7;
102 float3 tcurr, SHFLDOWN PT. B7. RE. 0x1. Ox1t
103 { FADD.FTZ R RE R7:
104 PtrStep<float> vmap_curr, SYNCS 1
105 PtrStep<float> nmap_curr; L3

106 {
107 Mat33 Rprev_inv: - SEY LA

m b Q m »

ISETP.NEAND P3, PT. Bd RZ PT:

-

[Analysis 52

= (E o

4| Reset All sl Analyze All Results

- & Kernel Profile - PC Sampling

Kernel Memory < Optimization: Select o kernel or source file listed below to view the PC sampling information. Examine portions of the keme! that have high
E number of samples to know where the maximum time was spent and observe the latency reasons for those samples to identify optimization
Global Memory Access Pattern] gpportunities. Bore.
Cuda Functions Sample Count % of Kernel Samples
Shared Memor...cess Pattern /] combinedKernel{Combined) 19482 100.00 % i

The information shown in the Source-Disassembly view can be customized by the following
toolbar options:

» View menu - Select one or more out of the available profiler data columnsto display. Thisis
chosen by default based on the analysistype.

» Hot Spot menu - Select which profiler data to use for hot spots. Thisis chosen by default
based on the analysis type.

» Show the source and disassembly views side by side.

» Show the source and disassembly views top to bottom.

» Maximize the source view

» Maximize the disassembly view

Hotspots are colored based on level of importance - low, medium or high. Hovering the mouse
over the hotspot displays the value of the profiler data, the level of importance and the source or
disassembly line. You can click on a hotspot at the source level or assembly instruction level to
view the source or disassembly line corresponding to the hotspot.

In the disassembly view the assembly instructions corresponding to the selected source line
are highlighted. Y ou can click on the up and down arrow buttons displayed at the right of the
disassembly column header to navigate to the next or previous instruction block.

2.4.4. GPU Details View

The GPU Details View displays atable of information for each memory copy and kernel
execution in the profiled application. The following figure shows the table containing several
memcpy and kernel executions. Each row of the table contains general information for akernel
execution or memory copy. For kernels, the table will also contain a column for each metric or
event value collected for that kernel. In the figure, the Achieved Occupancy column shows the
value of that metric for each of the kernel executions.

Profiler User's Guide 22

Visual Profiling

[Details 2 s, oz Ay T0
Name Start Time Duration Grid Size Block Size Regs Static SMem Dynamic SMem Size Throughput Achieved Occupancy (
Memcpy HtoD [async] 518.069 ms 46.528 |is 256 KB; 5.25GB/s
Memcpy HtoD [async] 518.205 ms 46.367 ps 256 KB 5.27 GB/s
VecEmpty(void) 518.704 ms 32ps [1,1,1] [1,1,1] 6 0 0 0.016
VecThen(int*, int*, int*, int) 518.75msi{ 219.295 s [1,1,1] [1,1,1] 12 0 0 0.016
Vec50(int*, int*, int*, int) 518.971ms: 108.319 us [1,1,1] [1,11] 12 0 0 0.016
Veclof32(int*, int*, int*, int) 519.081 ms; 108.095 s [1,1,1] [1,1,1] 12 0 0 0.016
Veclof32x(int*, int*, int*, int)| 519.191 ms 1.049ms! [1,1,1] [111]) 12 0 0 0.016
Vec32of32(int*, int*, int*, int), 520.242 ms| 108.287 us [1,1,1] [1,11] 12 0 0 0.016 .

Y ou can sort the data by column by left clicking on the column header, and you can rearrange the
columns by left clicking on a column header and dragging it to its new location. If you select a
row in the table, the corresponding interval will be selected in the Timeline View. Similarly, if
you select akernel or memcpy interval in the Timeline View the table will be scrolled to show the
corresponding data.

If you hover the mouse over a column header, atooltip will display the data shown in that
column. For a column containing event or metric data, the tooltip will describe the corresponding
event or metric. The Metrics Reference section contains more detailed information about each
metric.

The information shown in the GPU Details View can be filtered in various ways using the menu
access ble from the Details View toolbar. The following modes are available:

» Filter By Selection - If selected, the GPU Details View shows data only for the selected
kernel and memcpy intervals.

» Show Hidden Timeline Data - If not selected, datais shown only for kernels and memcpys
that are visible in the timeline. Kernels and memcpys that are not visible because they are
inside collapsed parts of the timeline are not shown.

» Show Filtered Timeline Data - If not selected, data is shown only for kernels and memcpys
that are in timeline rows that are not filtered.
Collecting Events and Metrics

Specific event and metric values can be collected for each kernel and displayed in the details
table. Use the toolbar icon in the upper right corner of the view to configure the events and
metrics to collect for each device, and to run the application to collect those events and metrics.

Show Summary Data

By default the table shows one row for each memcpy and kernel invocation. Alternatively, the
table can show summary results for each kernel function. Use the toolbar icon in the upper right
corner of the view to select or deselect summary format.

Formatting Table Contents

The numbersin the table can be displayed either with or without grouping separators. Use the
toolbar icon in the upper right corner of the view to select or deselect grouping separators.

Profiler User's Guide 23

Visual Profiling

Exporting Details

The contents of the table can be exported in CSV format using the toolbar icon in the upper right
corner of the view.

2.4.5. CPU Details View

CPU Tree view

Analysis GPU Details El CPU Details 2 Console Settings 18 = = 0
TOTAL v
Event % Time
- bench_staggeredleapfrog2_ 95.833% 689.695 ms

v CCTKi_BindingsFortranWrapperBenchADM 95.833% | 689.695 ms

b CCTK_CallFunction 195.833% 689.695 ms

b _open_nocancel 11.389% 9.996 ms
b InitialFlat 11.389% 9.996 ms
b __c_mcopy8 $1.389% 1 9.996 ms

The CPU Details View displays atree representing the application's execution on the CPU. Each
node in the tree can represent a function called by the application. It shows the amount of time
spent by the profiled application in the given function. The tree is organized to show the calling
hierarchy among functions. The following modes are available:

» Top-down (callersfirst) call treeview - The CPU detailstreeis organized asacal tree
with each function shown as a child of its caller. In this mode you can see the callstack
starting at the 'main’ function.

» Bottom-up (calleesfirst) call tree view - The CPU details tree is organized in such away
that each function is shown as a child of any functionsit calls. In this mode you can quickly
identify the call path that contributes the most time to the application’'s execution.

» Codestructure (file and line) tree view - The tree shows which functions belong to each
file and library as well as how much of the application's execution is attributed to agiven line
of code.

In every mode the time listed for each function is'inclusive’ and includes time spent both in this
function and any functionsthat it calls. For the code structure view the region of codeisinclusive
(i.e. thefile entry lists the time spent in every function contained within afile).

CPU Threads

Each application thread is profiled but either the sum of the time spent in all the threadsis shown
(default) or only asingle thread profile is shown. To select another thread use the thread drop-
down box.

Profiler User's Guide 24

Visual Profiling

CPU Source Code

Y ou can open the CPU Source View for any function by double-clicking oniit in the tree. To be
displayed the source files must be on the local file system. By default the directory containing
the executable or profile file is searched. If the source file cannot be found a prompt will appear
asking for its location. Sometimes afile within a specific directory is being sought, in this case
you should give the path to where this directory resides.

Tip The CPU profile is gathered by periodically sampling the state of the running application. For this
reason a function will only appear in this view if it was sampled during execution. Short-running or very
infrequently called functions are less likely to be sampled. If a function was not sampled the time it was
running is accounted to the function that called it. In order to gather a CPU profile that is representative
of the application's performance the code of interest must execute for enough to gather enough samples.
Usually a minute of runtime is sufficient.

Tip The file and line information is gathered from the application's debug information obtained by the
compiler. To ensure that this information is available it is recommended that you compile with '-g' or a
similar option.

2.4.6. Properties View

The Properties View shows information about the row or interval highlighted or selected in the
Timeline View. If arow or interval is not selected, the displayed information tracks the motion of
the mouse pointer. If arow or interval is selected, the displayed information is pinned to that row
or interval.

When an OpenACC interval with an associated source fileis selected, this filenameis shown in
the Sour ce File table entry. Double-clicking on the filename opens the respective source fileif it
isavailable on the file-system.

2.4.7. Console View

The Console View shows stdout and stderr output of the application each time it executes. If you
need to provide stdin input to your application, do so by typing into the console view.

2.4.8. Settings View

The Settings View allows you to specify execution settings for the application being profiled. As
shown in the following figure, the Executable settings tab allows you to specify the executable
file, the working directory, the command-line arguments, and the environment for the application.
Only the executable file is required, all other fields are optional.

Profiler User's Guide 25

Visual Profiling

T Settings &2 = &

Executable conpection: Local * | | Manage connections...
Toolkit: CUDA Toolkit 8.0 (fusr/local/cuda-8.0/bin/)
File: l/tmp/alignedType\ Browse...
working directory: Browse...
Arguments:

Profile child processes -

Environment: Name Value Add

Delete

Execution timeout: seconds
(& start execution with profiling enabled

& Enable concurrent kernel profiling

& Enable CUDA API tracing in the timeline

] Enable power, clock, and thermal profiling

[Enable unified memory profiling

] Profile execution on the CPU
& Enable OpenACC profiling

] Enable CPU thread tracing

Device Buffer Size (in MB) 8

CDP Device Buffer Size (in MB) |8

Exection Timeout

The Executable settings tab also allows you to specify an optional execution timeout. If the
execution timeout is specified, the application execution will be terminated after that number
of seconds. If the execution timeout is not specified, the application will be allowed to continue
execution until it terminates normally.

The timer starts counting from the moment the CUDA driver is initialized. If the application doesn't call any
CUDA APIs, a timeout won't be triggered.

Start execution with profiling enabled

The Start execution with profiling enabled checkbox is set by default to indicate

that application profiling begins at the start of application execution. If you are using
cudaProfilerStart () and cudaProfilerStop () tocontrol profiling within your
application as described in Focused Profiling, then you should uncheck this box.

Enable concurrent kernel profiling

The Enable concurrent kernel profiling checkbox is set by default to enable profiling of
applications that exploit concurrent kernel execution. If this checkbox is unset, the profiler will
disable concurrent kernel execution. Disabling concurrent kernel execution can reduce profiling

Profiler User's Guide 26

Visual Profiling

overhead in some cases and so may be appropriate for applications that do not exploit concurrent
kernels.

Enable power, clock, and thermal profiling

The Enable power, clock, and thermal profiling checkbox can be set to enable low frequency
sampling of the power, clock, and thermal behavior of each GPU used by the application.

2.4.9. CPU Source View

& % *swim-omp.prof ¢ swim-omp.f 22 = A
136 FSDX = 4.D0/DX -l
137 FSDY = 4.D0/DY

#1358 1$0MP PARALLEL DO

139 DO 180 J=1,N

%140 |Multiple markers at this line %
141 - Generated 6 prefetch instructions for the loop
142 - Generated vector sse code for the loop JE
143 - Generated 5 alternate versions of the loop -
H“f - 2 loop-carried redundant expressions removed with 2 operations and 4 arrays g
145 - Intensity = 1.93 El
146 T TSIV OIS T VT T

147 100 CONTINUE E
148
149
150 C
151 € PERIODIC CONTINUATION -
152 C
153 g

W15 =
. FATE R T P E|

[[+]

The CPU source code view allows you to inspect the files that comprise the profiled application's
CPU source. Thisview can be opened in the CPU Details View by double-clicking on a function
in the tree—the source file that corresponds to this function is then opened. Line numbers can be
enabled by right-clicking left side ruler.

When compiling using the PGI® compilers annotations can be added to this view (see Common
Compiler Feedback Format for more information). These annotation are notes about how a
given line of code is compiled. PGI compilers save information about how your program was
optimized, or why a particular optimization was not made. This can be combined with the CPU
Details View to help identify why certain lines of code performed the way they did. For example,
the message may tell you about the following:

» vector instructions generated by the compiler.
» compute-intensity of aloop, aratio computation to memory operations-higher numbers
mean that there is more computation than memory loads and stores.

» information about parallelization, with a hint for how it might be possible to make the loop
run in parallel if the compiler could not auto-parallelize it.

2.5. Customizing the Profiler

When you first start the visual mode in PGPROF you will be presented with a default placement
of the views. By moving and resizing the views, you can customize the profiler to meet your
development needs. Any changes you make are restored the next time you start the profiler.

Profiler User's Guide 27

http://www.pgroup.com/resources/ccff.htm
http://www.pgroup.com/resources/ccff.htm

Visual Profiling

2.5.1. Resizing a View

Toresizeaview, simply left click and drag on the dividing area between the views. All views
stacked together in one area are resized at the same time.

2.5.2. Reordering a View

To reorder aview in a stacked set of views, left click and drag the view tab to the new location
within the view stack.

2.5.3. Moving a View

to move aview, left click the view tab and drag it to its new location. As you drag the view, an
outline will show the target location for the view. Y ou can place the view in anew location, or
stack it in the same location as other views.

2.9.4. Undocking a View

Y ou can undock aview from the profiler window so that the view occupiesits own stand-alone
window. Y ou may want to do this to take advantage of multiple monitors or to maximum the size
of anindividua view. To undock aview, left click the view tab and drag it outside of the profiler
window. To dock aview, left click the view tab (not the window decoration) and drag it into the
profiler window.

2.5.5. Opening and Closing a View

Use the X icon on aview tab to close aview. To open aview, use the View menu.

Profiler User's Guide 28

Chapter 3.
COMMAND-LINE PROFILING

PGPROF enables you to collect and view profiling data from the command-line. PGPROF enables
the collection of atimeline of CUDA-related activities on both CPU and GPU, including kernel
execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA
kernels. Profiling options are provided to PGPROF through command-line options. Profiling
results are displayed in the console after the profiling datais collected, and may also be saved for
laterviewing.

The textual output of the profiler is redirected to stderr by default. Use --1og-fi 1e to redirect the
output to another file. See Redirecting Output.

To profile an application from the command-line:

poprof [options] [application]
[application-arguments]

To view the full help page, type pgprof --help.

3.1. Profiling Modes

PGPROF operatesin one of the modes listed below.

3.1.1. Summary Mode

Summary mode is the default operating mode for PGPROF. In thismode, PGPROF outputs a
single result line for each kernel function and each type of CUDA memory copy/set performed
by the application. For each kernel, PGPROF outputs the total time of all instances of the kernel
or type of memory copy aswell as the average, minimum, and maximum time. The time for a
kernel isthe kernel execution time on the device. By default, PGPROF also prints a summary of
al the CUDA runtime/driver API calls. Output of PGPROF (except for tables) are prefixed with
==<pid>==, <pid> being the process ID of the application being profiled.

If the application is accelerated on a GPU via OpenACC the view will also contain OpenACC
events and the file and line number where the OpenACC region is defined. CPU profiling show

Profiler User's Guide 29

Command-line Profiling

acaltree for the application sorted by the function that take the most time afollowing up the

calltree.

Here is an example benchmark code that shows the summary view in PGPROF:

$ pgprof swin.exe
Time (%) Time
38.27% 1.43796s
30.92% 1.16180s
23.48% 882.34ms
5.11% 191.83ms
1.49% 55.888ms
======== API calls:
Time (%) Time
93.77% 3.54263s
3.03% 114.57ms

Profiling result:

cuDevicePrimaryCtxRetain

1.46% 54.986ms

cuDevicePrimaryCtxRelease

Time (%) Time
36.60% 1.43871s

data.f:223
29.59% 1.16319s

data.f:302

22.47% 883.33ms

data.f:169

Time (%) Time
34.91% 3.54691s
34.91% 3.54691s
34.91% 3.54691s
14.20% 1.44281s
14.20% 1.44281s
14.20% 1.44281s
14.20% 1.44281s
11.44% 1.16226s
11.44% 1.16226s
11.44% 1.16226s
11.44% 1.16226s
8.68% 881.72ms
8.68% 881.72ms
8.68% 881.72ms
8.68% 881.72ms
0.59% 60.117ms
0.59% 60.117ms
0.59% 60.117ms
0.59% 60.117ms

CPU profiling result

OpenACC (excl):

Calls Avg Min
20 71.898ms 71.878ms

18 64.544ms 64.511lms

20 44.117ms 44.085ms
141 1.3605ms 1.2480us

1 55.888ms 55.888ms
Calls Avg Min
62 57.139ms 2.2060us

1 114.57ms 114.57ms

1 54.986ms 54.986ms
Calls Avg Min

20 71.935ms 71.912ms
18 64.622ms 64.588ms

20 44.167ms 44.127ms

(bottom up) :
Name
cuStreamSynchronize

| _ pgi uacc_cuda wait
| __pgi uacc_ computedone
| swim mod calc2
| | MAIN

| | main

| | 2?7

| swim mod calc3
| | MAIN

| | main

| | 2?7

| swim mod calcl
| | MAIN

| | main

| | 2?7

| swim mod calc3z
| MAIN

| main

| 227

Max
71.913ms
64.569ms
44 .133ms
1.6069ms
55.888ms

Max
71.949ms
114.57ms

54.986ms

Max
71.951ms

64.648ms

44.182ms

Name
calc2 198 gpu
calc3 273 gpu
calcl 142 gpu
[CUDA memcpy HtoD]
calc3z_ 245 gpu

Name
cuStreamSynchronize

Name
acc_wait@swim-acc—

acc_wait@swim-acc-—

acc_wait@swim-acc—

APl trace can be turned off, if not needed, by using --profile-api-trace none. This reduces
some of the profiling overhead, especially when the kernels are short.

If multiple CUDA capable devices are profiled, pgprof --print-summary-per-gpu canbe
used to print one summary per GPU.

Profiler User's Guide

30

Command-line Profiling

PGPROF supports CUDA Dynamic Paralelism in summary mode. If your application uses
Dynamic Parallelism, the output will contain one column for the number of host-launched kernels
and one for the number of device-launched kernels. Here's an example of running PGPROF on the
CUDA Dynamic Parallelism sample cdpSimpleQuicksort:

$ pgprof cdpSimpleQuicksort
==27325== PGPROF is profiling process 27325, command: cdpSimpleQuicksort

Running on GPU 0 (Tesla K20c)

Initializing data:

Running quicksort on 128 elements

Launching kernel on the GPU

Validating results: OK

==27325== Profiling application: cdpSimpleQuicksort
==27325== Profiling result:

Time (%) Time Calls (host) Calls (device) Avg Min Max Name
99.71% 1.2114ms 1 14 80.76lus 5.1200us 145.66us cdp_simple quicksort (unsigned
int*, int, int, int)
0.18% 2.2080us 1 - 2.2080us 2.2080us 2.2080us [CUDA memcpy DtoH]
0.11% 1.2800us 1 - 1.2800us 1.2800us 1.2800us [CUDA memcpy HtoD]

3.1.2. GPU-Trace and API-Trace Modes

GPU-Trace and API-Trace modes can be enabled individually or together. GPU-Trace mode
provides atimeline of all activities taking place on the GPU in chronological order. Each kernel
execution and memory copy/set instance is shown in the output. For each kernel or memory
copy, detailed information such as kernel parameters, shared memory usage and memory transfer
throughput are shown. The number shown in the square brackets after the kernel name correlates
to the CUDA API that launched that kernel.

Here's an example:

$ pgprof --print-gpu-trace matrixMul
==27706== PGPROF is profiling process 27706, command: matrixMul

==27706== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA (320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 35.36 GFlop/s, Time= 3.707 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27706== Profiling result:

Start Duration Grid Size Block Size Regs* SSMem* DSMem* Size Throughput
Device Context Stream Name

133.81ms 135.78us = = = = - 409.60KB 3.0167GB/s
GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.62ms 270.66us = = = = - 819.20KB 3.0267GB/s
GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.90ms 3.7037ms (20 10 1) (32 32 1) 29 8.1920KB 0B = =
GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [94]
138.71ms 3.7011lms (20 10 1) (32 32 1) 29 8.1920KB 0B = =
GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [105
<...more output...>
1.24341s 3.7011lms (20 10 1) (32 32 1) 29 8.1920KB 0B = =
GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [2191]
1.24711s 3.7046ms (20 10 1) (32 32 1) 29 8.1920KB 0B = =
GeForce GT 640M 1 2 void matrixMulCUDA<int=32>(float*, float*, float*, int, int) [2198
1.25089s 248.13us = = = = - 819.20KB 3.3015GB/s
GeForce GT 640M 1 2 [CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread. This number includes registers used internally by the CUDA
driver and/or tools and can be more than what the compiler shows.

SSMem: Static shared memory allocated per CUDA block.

DSMem: Dynamic shared memory allocated per CUDA block.

PGPROF supports CUDA Dynamic Parallelism in GPU-Trace mode. For host kernel launch, the
kernel ID will be shown. For device kernel launch, the kernel 1D, parent kernel 1D and parent
block will be shown. Here's an example:

$pgprof --print-gpu-trace cdpSimpleQuicksort
==28128== PGPROF is profiling process 28128, command: cdpSimpleQuicksort

Running on GPU 0 (Tesla K20c)
Initializing data:

Profiler User's Guide 31

Command-line Profiling

Running quicksort on 128 elements

Launching kernel on the GPU
Validating results: OK

==28128== Profiling application: cdpSimpleQuicksort

==28128== Profiling result:

Start Duration Grid Size Block Size Regs* SSMem* DSMem* Size Throughput

Context Stream D
192.76ms 1.2800us

1 2
193.31ms 146.02us

1 2 2
193.41ms 110.53us

1 2 =5
193.45ms 125.57us

1 2 =@
193.48ms 9.2480us

1 2 =7
193.52ms 107.23us

1 2 -8
193.53ms 93.824us

1 2 =9
193.57ms 117.47us

1 2 -10
193.58ms 5.0560us

1 2 -11
193.62ms 108.06us

1 2 =iz
193.65ms 113.34us

1 2 =i3
193.68ms 29.536us

1 2 -14
193.69ms 22.848us

1 2 =5
193.71ms 130.85us

1 2 -16
193.73ms 62.432us

1 2 -17
193.76ms 41.024us

1 2 =i§

193.92ms 2.1760us
1 2 =

Regs: Number of registers used per CUDA thread. This number

Parent ID Parent Block Name
= = = = = 512B 400.00MB/s
- - [CUDA memcpy HtoD]

32 0B

Device

Tesla K20c

(11 1) (11 1) 0B = = Tesla K20c
- - cdp_simple quicksort(unsigned int*, int, int, int) [171]
(1 11) (1 11) 32 OB 256B - - Tesla K20c
2 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 256B - - Tesla K20c
2 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int
(111) (111) 32 256B = = Tesla K20c
=5 (0 0 0) cdp_simple gquicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 0B 256B = = Tesla K20c
=5 (0 0 0) cdp_simple quicksort (unsigned int*, int, int, int
(111) (111) 32 0B 256B = = Tesla K20c
-6 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 OB 256B - - Tesla K20c
-6 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 256B - - Tesla K20c
-8 (0 0 0) cdp_simple quicksort (unsigned int*, int, int, int
(1 11) (1 11) 32 256B - - Tesla K20c
-8 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 0B 256B = = Tesla K20c
-10 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int
(111) (111) 32 0B 256B = = Tesla K20c
-12 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 OB 256B - - Tesla K20c
-10 (0 0 0) cdp_simple_quicksort (unsigned int*, int, int, int
(111) (111) 32 256B = = Tesla K20c
=13 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 OB 256B - - Tesla K20c
-12 (0 0 0) cdp_simple quicksort(unsigned int*, int, int, int)
(1 11) (1 11) 32 0B 256B - - Tesla K20c

-13 (0 0 0) cdp_simple quicksort (unsigned int*, int, int, int

512B 235.29MB/s
= - [CUDA memcpy DtoH]

can be more than what the compiler shows.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

API-trace mode shows the timeline of all CUDA runtime and driver API callsinvoked on the
host in chronological order. Here's an example:

Spgprof --print-api-trace matrixMul

==27722== PGPROF is

==27722== Profiling

profiling process 27722, command: matrixMul

application: matrixMul

[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA (320,320), MatrixB(640,320)
Computing result using CUDA Kernel...

done

Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops,

1024 threads/block

Checking computed result for correctness: OK

Note: For peak performance,

==27722== Profiling
Start Duration
108.38ms 6.2130us
108.42ms 840ns
108.42ms 22.459us
108.45ms 11.782us
108.46ms 945ns
149.37ms 23.737us
float*, int, int)
149.39ms 6.6290us
149.40ms 1.10156s

<...more output...>
1.25096s 21.543us
1.25103s 1.5462ms
1.25467s 153.93us
1.25483s 75.373us
1.25491s 75.564us

Profiler User's Guide

result:

Name
cuDeviceGetCount
cuDeviceGet
cuDeviceGetName
cuDeviceTotalMem
cuDeviceGetAttribute
cudalLaunch (void matrixMulCUDA<int=32>(float*,
[2198])
cudaEventRecord
cudaEventSynchronize

cudaEventElapsedTime
cudaMemcpy

cudaFree

cudaFree

cudaFree

Tesla K20c

includes registers used internally by the CUDA driver and/or

please refer to the matrixMulCUBLAS example.

float¥,

(0)

tools and

WorkgroupSize=

32

Command-line Profiling

1.25693s 10.901ms cudaDeviceReset

n Due to the way the profiler is setup, the first "culnit()" driver API call is never traced.

3.1.3. Event/metric Summary Mode

Toseealist of all available events on aparticular NVIDIA GPU, usethe --query-events
option. To see alist of al available metrics on a particular NVIDIA GPU, usethe --query-
metrics option. PGPROF isable to collect multiple events/metrics at the same time. Here's an

$ pgprof --events warps_launched,local load --metrics ipc matrixMul
[Matrix Multiply Using CUDA] - Starting...

==6461== PGPROF is profiling process 6461, command: matrixMul
GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA (320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

==6461== Warning: Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.
done

Performance= 6.39 GFlop/s, Time= 20.511 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

==6461== Profiling application: matrixMul

==6461== Profiling result:

==6461== Event result:

Invocations Event Name Min Max Avg

Device "GeForce GTX TITAN (0)"

Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int

301 warps_launched 6400 6400 6400
301 local_load 0 0

==6461== Metric result:
Invocations Metric Name Metric Description Min Max
Avg
Device "GeForce GTX TITAN (0)"
Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int
301 ipc Executed IPC 1.282576 1.299736
1.291500

If the specified events/metrics can't be profiled in asingle run of the application, PGPROF by
default replays each kernel multiple times until al the events/metrics are collected.

The --replay-mode <mode> option can be used to change the replay mode. In "application
replay” mode, PGPROF re-runs the whole application instead of replaying each kernel, in order

to collect al events/metrics. In some cases this mode can be faster than kernel replay mode if the

application allocates large amount of device memory. Replay can also be turned off entirely, in
which case the profiler will not collect some events/metrics.

To collect al events available on each device, use the option --events all.

To collect all metrics available on each device, use the option --metrics all.

If a large number of events or metrics are requested, no matter which replay mode is chosen, the overall
application execution time may increase significantly.

3.1.4. Event/metric Trace Mode

In event/metric trace mode, event and metric values are shown for each kernel execution.
By default, event and metric values are aggregated across al unitsin the GPU. For example,
multiprocessor specific events are aggregated across al multiprocessors on the GPU. If --
aggregate-mode off isspecified, values of each unit are shown. For example, in the
following example, the "branch" event value is shown for each multiprocessor on the GPU:

$ pgprof --aggregate-mode off --events local_ load --print-gpu-trace matrixMul
[Matrix Multiply Using CUDA] - Starting...
==6740== PGPROF is profiling process 6740, command: matrixMul

Profiler User's Guide

33

Command-line Profiling

GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA (320,320), MatrixB (640,320

Computing result using CUDA Kernel...

done

Performance= 16.76 GFlop/s, Time= 7.822 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is
enabled.

==6740== Profiling application: matrixMul

==6740== Profiling result:

Device Context Stream Kernel 1local load (0) local load (1)
GeForce GTX TIT 1 7 void matrixMulCUDA<i B N
GeForce GTX TIT 1 7 void matrixMulCUDA<i 0 0
<...more output...>

Although --aggregate-mode applies to metrics, some metrics are only available in aggregate mode
and some are only available in non-aggregate mode.

3.2. Profiling Controls
3.2.1. Timeout

A timeout (in seconds) can be provided to PGPROF. The CUDA application being profiled will be
killed by PGPROF after the timeout. Profiling result collected before the timeout will be shown.

Timeout starts counting from the moment the CUDA driver is initialized. If the application doesn't call any
CUDA APIs, timeout won't be triggered.

3.2.2. Concurrent Kernels

Concurrent-kernel profiling is supported, and is turned on by default. To turn the feature off,
usetheoption --concurrent-kernels off. Thisforces concurrent kernel executionsto be
serialized when a CUDA application is run with PGPROF.

3.2.3. Profiling Scope

When collecting eventsmetrics, PGPROF profiles all kernels launched on all visible CUDA
devices by default. This profiling scope can be limited by the following options.

--devices <device IDs> appliesto --events, --metrics, -—query-events and --
query-metrics optionsthat followsit. It limits these options to collect events/metrics only on
the devices specified by <device 1IDs>, whichcanbealist of device ID numbers separated by
comma.

--kernels <kernel filter> appliesto--events and --metrics optionsthat follows
it. It limits these options to collect events/metrics only on the kernels specified by <kernel
filter>, which hasthe following syntax:

<kernel name>

or

<context id/name>:<stream id/name>:<kernel
name>:<invocation>

Profiler User's Guide 34

Command-line Profiling

Each string in the angle brackets can be a standard Perl regular expression. Empty string matches
any number or character combination.

Invocation number n indicates the nth invocation of the kernel. If invocation is a positive number,
it's strictly matched against the invocation of the kernel. Otherwise it's treated as aregular
expression. Invocation number is counted separately for each kernel. So for instance : : : 3 will
match the 3rd invocation of every kernel.

If the context/stream string is a positive number, it's strictly matched against the cuda context/
stream ID. Otherwise it's treated as aregular expression and matched against the context/stream
name provided by the NVIDIA Tools Extension.

Both --devices and --kernels can be specified multiple times, with distinct events/metrics
associated.

--events, -—-metrics, --query-events and --query-metrics are controlled by the
nearest scope options before them.

As an example, the following command,

pgprof --devices 0 --metrics ipc

-—kernels "l:foo:bar:2" --events local load a.out
collects metric ipc on al kernels launched on device 0. It also collectsevent Local load for
any kernel whose name containsbar and is the 2nd instance launched on context 1 and on stream
named foo on device 0.

3.2.4. Multiprocess Profiling

By default, PGPROF only profiles the application specified by the command-line argument. It
doesn't trace child processes launched by that process. To profile al processes launched by an
application, usethe --profile-child-process option.

n PGPROF cannot profile processes that fork () but do not then exec ().

PGPROF aso hasa"profileal processes’ mode, in which it profiles every CUDA process
launched on the same system by the same user who launched pGPROF. Exit this mode by typing
"Ctrl-c".

CPU profiling is not supported in multi-process mode. use the option: --cpu-profiling
off to turn off CPU profiling.

3.2.5. System Profiling

For devices that support system profiling, PGPROF can enable low frequency sampling of the
power, clock, and thermal behavior of each GPU used by the application. This feature is turned
off by default. To turn on thisfeature, use --system-profiling on. TO seethedetail of each
sample point, combine the above option with --print-gpu-trace.

Profiler User's Guide 35

Command-line Profiling

3.2.6. Unified Memory Profiling

For GPUs that support Unified Memory, PGPROF collects the Unified Memory related memory
traffic to and from each GPU on your system. This feature is turned on by default. To turn off
thisfeature, use --unified-memory-profiling off. To seethedetail of each memory
transfer, CPU fault and GPU fault, combine the above option with --print-gpu-trace.

On multi-GPU configurations without P2P support between any pair of devices that support
Unified Memory, managed memory allocations are placed in zero-copy memory. In this

case Unified Memory profiling is not supported. In certain cases, the environment variable

CUDA MANAGED FORCE DEVICE ALLOC can be set to force managed allocations to

be in device memory and to enable migration on these hardware configurations. In this

case Unified Memory profiling is supported. Normally, using the environment variable

CUDA VISIBLE DEVICES isrecommended to restrict CUDA to only usethose GPUs that have
P2P support. Please refer to the environment variables section in the CUDA C Programming
Guide for further details.

3.2.7. CPU Thread Tracing

In order to allow acorrect Dependency Analysis, PGPROF can collect information about CPU-
side threading APIs. This can be enabled by specifying --cpu-thread-tracing on during
measurement. Recording thisinformation is necessary if

» the application uses multiple CPU threads and
» atleast two of these threads call the CUDA API.

Currently, only POSIX threads (Pthreads) are supported. For performance reasons, only selected
Pthread API calls may be recorded. PGPROF triesto detect which calls are necessary to model
the execution behavior and filters others. Filtered callsinclude pthread mutex lock and
pthread mutex unlock when those do not cause any concurrent thread to block.

n CPU thread tracing is not available on Windows.

CPU thread tracing starts after the first CUDA API call, from the thread issuing this call. Therefore, the
application must call e.g. cuInit from its main thread before spawning any other user threads that call
the CUDA API.

3.3. Output
3.3.1. Adjust Units

By default, PGPROF adjusts the time units automatically to get the most precise time values. The
--normalized-time-unit options can be used to get fixed time units throughout the results.

Profiler User's Guide 36

Command-line Profiling

3.3.2.CSV

For each profiling mode, option —--csv can be used to generate output in comma-separated
values (CSV) format. The result can be directly imported to spreadsheet software such as Excel.

3.3.3. Export/Import

For each profiling mode, option --export-profile can be used to generate aresult file. This
fileis not human-readable, but can be imported back to PGPROF using the option --import-
profile, or into the visual mode in PGPROF.

The profilers use SQLite as the format of the export profiles. Writing files in such format may require more
disk operations than writing a plain file. Thus, exporting profiles to slower devices such as a network drive
may slow down the execution of the application.

3.3.4. Demangling

By default, PGPROF demangles C++ function names. Use option --demangling off toturn
this feature off.

3.3.5. Redirecting Output

By default, PGPROF sends most of its output to stderr. To redirect the output, use --1og-
file.--log-file %1 tells PGPROF to redirect al output to stdout. --log-file
<filename> redirects output to afile. Use $p in the filename to be replaced by the process 1D
of PGPROF, %h by the hostname, $q{ENV} by the value of environment variable ENv, and %% by

o

O

3.3.6. Dependency Analysis

PGPROF can run a Dependency Analysis after the application has been profiled, using the --
dependency-analysis option. Thisanalysis can also be applied to imported profiles. It
requires to collect the full CUDA API and GPU activity trace during measurement. Thisisthe
default for PGPROF if not disabled using --profile-api-trace none.

For applications using CUDA from multiple CPU threads, CPU Thread Tracing should be
enabled, too. The option --print-dependency-analysis-trace can be specified to
change from a summary output to a trace output, showing computed metrics such as time on the
critical path per function instance rather than per function type.

An example for dependency analysis summary output with all computed metrics aggregated per
function type is shown below. The table is sorted first by time on the critical path and second by
waiting time. The summary contains an entry named Other, referring to all CPU activity that is
not tracked by PGPROF (e.g. the application'smain function).

==20704== Dependency Analysis:
==20704== Analysis progress: 100%

Critical path(%) Critical path Waiting time Name
% s s
92.06 4.061817 0.000000 clock block(long*, long)
4.54 0.200511 0.000000 cudaMalloc
3,25 0.143326 0.000000 cudaDeviceReset

Profiler User's Guide 37

Command-line Profiling

0.13 5.7273280e-03 0.000000 <Other>

0.01 2.7200900e-04 0.000000 cudaFree

0.00 0.000000 4.062506 pthread join

0.00 0.000000 4.061790 cudaStreamSynchronize
0.00 0.000000 1.015485 pthread mutex_lock
0.00 0.000000 1.013711 pthread_cond_wait
0.00 0.000000 0.000000 pthread mutex_ unlock
0.00 0.000000 0.000000 pthread exit

0.00 0.000000 0.000000 pthread enter

0.00 0.000000 0.000000 pthread create

0.00 0.000000 0.000000 pthread cond signal
0.00 0.000000 0.000000 cudaLaunch

3.4. CPU Sampling

Sometimesit's useful to profile the CPU portion of your application, in order to better understand
the bottlenecks and identify potential hotspots for the entire CUDA application. For the CPU
portion of the application, PGPROF is able to sample the program counter and call stacks at a
certain frequency. The datais then used to construct a graph, with nodes being framesin each
call stack. Function and library symbols are also extracted if available. A sample graph is shown
below:

45.45% culnit
| 45.45% cudart::globalState::loadDriverInternal (void)

| 45.45% cudart::_ loadDriverInternalUtil (void)
45.45% pthread once
45.45% cudart::cuosOnce (int*, void (*) (void))

|
|
| 45.45% cudart::globalState::loadDriver (void)
| 45.45% cudart::globalState::initializeDriver (void)
| 45.45% cudaMalloc
| 45.45% main
33.33% cuDevicePrimaryCtxRetain
| 33.33% cudart::contextStateManager::initPrimaryContext (cudart::device¥*)
| 33.33% cudart::contextStateManager::tryInitPrimaryContext (cudart::device¥*)
| 33.33% cudart::contextStateManager::initDriverContext (void)
| 33.33% cudart::contextStateManager: :getRuntimeContextState (cudart: :contextState**, bool)
| 33.33% cudart::getLazyInitContextState (cudart::contextState**)
| 33.33% cudart::doLazyInitContextState (void)
| 33.33% cudart::cudaApiMalloc (void**, unsigned long)
| 33.33% cudaMalloc
| 33.33% main
18.18% cuDevicePrimaryCtxReset
| 18.18% cudart::device::resetPrimaryContext (void)
| 18.18% cudart::cudaBApiThreadExit (void)
18.18% cudaThreadExit
18.18% main
.03% cudbgGetAPIVersion
.03% start_thread
3.03% clone

The graph can be presented in different "views' (top-down, bottom-up or £lat), alowing
the user to analyze the sampling data from different perspectives. For instance, the bot tom-up
view (shown above) can be useful in identifying the "hot" functionsin which the application is
spending most of itstime. The top-down view gives a break-down of the application execution
time, starting from the ma in function, allowing you to find "call paths' which are executed
frequently.

Profiler User's Guide 38

Command-line Profiling

CPU sampling is supported on Linux, Mac OS and Windows for Intel x86/x86_64 architecture,
and IBM Power 8 architecture.

When using the CPU profiling feature on POSIX systems, the profiler samples the application by sending
periodic signals. Applications should therefore ensure that system calls are handled appropriately when
interrupted.

On Windows, PGPROF requires Visual Studio installation (2010 or later) and compiler-generated .PDB
(program database) files to resolve symbol information. When building your application, ensure that .PDB
files are created and placed next to the profiled executable and libraries.

3.4.1. CPU Sampling Options

Table 1 contains CPU sampling related command-line options of PGPROF, along with a
description of what each option does. Most of the generic options (e.g. export/import) work with
CPU sampling as well.

Table 1 CPU Sampling Options

Option Description

--cpu-profiling <on|off> Turn on CPU profiling. Note: CPU profiling is not supported in multi-process
mode.

--cpu-profiling-frequency Set the CPU profiling frequency, in samples per second. The maximum value

<frequency> is 500, default is 100.

--cpu-profiling-scope <scope> Choose the profiling scope. Allowed values: "function” - Each level in the stack
trace represents a distinct function (default). "instruction” - Each level in the
stack trace represents a distinct instruction address. Default is function.

—--cpu-profiling-max-depth Set the maximum depth of each call stack. Zero means no limit. Default is
<depth> Zero.
—--cpu-profiling-mode <mode> Set the output mode of CPU profiling. Allowed values: "top-down" - Show

parent functions at the top. "bottom-up" - Show parent functions at the bottom
(default). "flat" - Show flat profile.

--cpu-profiling-percentage- Filter out the entries that are below the set percentage threshold. The limit
threshold <threshold> should be an integer between 0 and 100, inclusive. Zero means no limit.
Default is zero.

—--cpu-profiling-show-ccff <on| | Printsthe Common Compiler Feedback Format (CCFF) messages embedded
of f> in the binary. Note: this option implies "--cpu-profiling-scope instruction”. Note:
only messages that are occur on the same line of code as a line that was
sampled are shown. Default is off.

--cpu-profiling-thread-mode Set the thread mode of CPU profiling. Allowed values: "separated” - Show
<mode> separate profile for each thread. "aggregated" - Aggregate data from all
threads. Default is aggregated.

3.4.2. CPU Sampling Limitations

The following are known issues with the current release.

Profiler User's Guide 39

Command-line Profiling

» CPU sampling is currently not supported in multi-process profiling mode.

» Theresult stack traces might not be complete under some compiler optimizations, notably
frame pointer omission and function inlining.

» The CPU sampling result doesn't support CSV mode.

» OnMac OSX, the profiler may hang in arare case.

3.5. OpenACC

On 64bit Linux platforms, PGPROF supports recording OpenACC activities using the CUPTI
Activity API. This alows to investigate the performance on the level of OpenACC constructsin
addition to the underlying, compiler-generated CUDA API calls.

OpenACC profiling in PGPROF requires the targeted application to use PGl OpenACC runtime
15.7 or later.

Even though recording OpenACC activitiesis only supported on x86_64 and Power8 Linux
systems, importing and viewing previously generated profile datais available on al platforms
supported by PGPROF.

An example for OpenACC summary output is shown below. The CUPTI OpenACC activities
are mapped to the original OpenA CC constructs using their source file and line information.

For acc_enqueue launch activities, it will furthermore show the launched CUDA kernel
name which is generated by the OpenACC compiler. By default, PGPROF will demangle kernel
names generated by the OpenACC compiler. You can pass --demangling off to disablethis
behavior.

==20854== PGPROF is profiling process 20854, command: ./acc_saxpy

==20854== Profiling application: ./acc_saxpy
==20854== Profiling result:
==20854== OpenACC (excl)

Time (%) Time Calls Avg Min Max Name

33.16% 1.27944s 200 6.3972ms 24.946us 12.770ms acc_implicit_waitQacc_saxpy.cpp:42
33.12% 1.27825s 100 12.783ms 12.693ms 12.787ms acc_wait@acc_saxpy.cpp:54
33.12% 1.27816s 100 12.782ms 12.720ms 12.786ms acc_wait@acc_saxpy.cpp:61

0.14% 5.4550ms 100 54.549us 51.858us 71.46lus acc_enqueue download@acc_saxpy.cpp:43

0.07% 2.5190ms 100 25.189%us 23.877us 60.269us acc_enqueue_launch@acc_saxpy.cpp:50 (kernel2 (int,
float, float*, float*)_50_gpu)

0.06% 2.4988ms 100 24.987us 24.16lus 29.453us acc_enqueue_launch@acc_saxpy.cpp:60 (kernel3 (int,
float, float*, float*)_ 60_gpu)

0.06% 2.2799%ms 100 22.798us 21.654us 56.674us acc_enqueue_ launch@acc_saxpy.cpp:42 (kernell (int,
float, float*, float*) 42 gpu)

0.05% 2.1068ms 100 21.068us 20.444us 33.159us acc_enqueue_download@acc_saxpy.cpp:51

0.05% 2.0854ms 100 20.853us 19.453us 23.697us acc_enqueue_download@acc_saxpy.cpp:61l

0.04% 1.6265ms 100 16.265us 15.284us 49.632us acc_enqueue_upload@acc_saxpy.cpp:50

0.04% 1.5963ms 100 15.962us 15.052us 19.749us acc_enqueue_upload@acc_saxpy.cpp: 60

0.04% 1.5393ms 100 15.393us 14.592us 56.414us acc_enqueue_upload@acc_saxpy.cpp:42

0.01% 558.54us 100 5.5850us 5.3700us 6.2090us acc_implicit wait@acc_saxpy.cpp:43

0.01% 266.13us 100 2.6610us 2.4630us 4.7590us acc_compute constructfacc saxpy.cpp:42

0.01% 211.77us 100 2.1170us 1.9980us 4.1770us acc_compute construct@acc_saxpy.cpp:50

0.01% 209.14us 100 2.0910us 1.9880us 2.2500us acc_compute_construct@acc_saxpy.cpp:60

0.00% 55.066us 1 55.066us 55.066us 55.066us acc_enqueue_launch@acc_saxpy.cpp:70 (initVec (int,
float, float*)_70_gpu)

0.00% 13.209us 1 13.209us 13.209us 13.209us acc_compute_ construct@acc_saxpy.cpp:70

0.00% 10.901us 1 10.90lus 10.90lus 10.90lus acc_implicit wait@acc_saxpy.cpp:70

0.00% Ons 200 Ons Ons Ons acc_delete@acc_saxpy.cpp:61

0. Ons 200 Ons Ons Ons acc_deletelacc_saxpy.cpp:43

0. Ons 200 Ons Ons Ons acc_create@acc_saxpy.cpp: 60

0. Ons 200 Ons Ons Ons acc_createlacc_saxpy.cpp:42

0. Ons 200 Ons Ons Ons acc_delete@acc_saxpy.cpp:51

0. Ons 200 Ons Ons Ons acc_create@acc_saxpy.cpp:50

0. Ons 2 Ons Ons Ons acc_allocfacc_saxpy.cpp:42

Profiler User's Guide 40

Command-line Profiling

3.5.1. OpenACC Options

Table 2 contains OpenACC profiling related command-line options of PGPROF.

Table 2 OpenACC Options

Option Description

--openacc-profiling <on|off> Turn on/off OpenACC profiling. Note: OpenACC profiling is only supported on
x86_64 and Power8 Linux. Default is on.

—--print-openacc-summary Print a summary of all recorded OpenACC activities.

--print-openacc-trace Print a detailed trace of all recorded OpenACC activities, including each
activity's timestamp and duration.

--print-openacc-constructs Include the name of the OpenACC parent construct that caused an OpenACC
activity to be emitted. Note that for applications using PGl OpenACC runtime
before 16.1, this value will always be unknown.

--openacc-summary-mode Specify how activity durations are presented in the OpenACC summary.
<exclusive|inclusive> Allowed values: "exclusive" - exclusive durations (default). "inclusive" -
inclusive durations. See OpenACC Summary Modes for more information.

3.5.2. OpenACC Summary Modes

PGPROF supports two modes for presenting OpenACC activity durations in the OpenACC
summary mode (enabled with --print-openacc-summary): "exclusive' and "inclusive".

» Inclusive: In thismode, al durations represent the actual runtime of an activity. Thisincludes
the time spent in this activity aswell asin all its children (callees).

» Exclusive: In thismode, all durations represent the time spent solely in this activity. This
includes the time spent in this activity but excludes the runtime of all of its children (callees).

As an example, consider the OpenACC acc compute construct whichitself calls
acc_enqueue launch tolaunch akernel tothedeviceand acc implicit wait,

which waits on the completion of this kernel. In "inclusive" mode, the duration for
acc_compute construct Will include thetime spentin acc_enqueue launch and
acc_implicit wait.In"exclusive" mode, those two durations are subtracted. In the
summary profile, thisis helpful to identify if along acc compute construct representsa
high launch overhead or rather along wait (synchronization) time.

Profiler User's Guide 41

Chapter 4.
REMOTE PROFILING

Remote profiling is the process of collecting profile datafrom aremote system that is different
than the host system at which that profile datawill be viewed and analyzed. There are two ways
to perform remote profiling. Y ou can profile your remote application directly from the visual
mode in PGPROF. Or you can use the command-line mode in PGPROF to collection the profile
data on the remote system and then use the visual mode in PGPROF on the host system to view
and analyze the data.

4.1. Remote Profiling in Visual Mode

This section describes how to perform remote profiling by using the remote capabilities of the
visual mode in PGPROF.

Thevisual mode in PGPROF also enablesremote profiling. As shown in the following
figure, when creating a new session or editing an existing session you can specify that the
application being profiled resides on aremote system. Once you have configured your session
to use aremote application, you can perform all profiler functions in the same way as you would
with alocal application, including timeline generation, guided analysis, and event and metric
collection.

To use the visual mode in PGPROF remote profiling you must install the same version of the
PGI Workstation on both the host and remote systems. It is not necessary for the host system

to have an NVIDIA GPU. The host and remote systems may run different operating systems or
have different CPU architectures. Only a remote system running Linux is supported. The remote
system must be accessible via SSH.

Profiler User's Guide 42

Remote Profiling

- Create New Session

Executable Properties

Set executable properties

Connection: remote 2 | | Manage connections...
Toolkit: Jusrflocal/cuda-8.0/bin Manage...
File: [,f’tmpfalignedTypel Browse...
working directory: Browse...
Arguments:

-

Profile child processes =

Environment: Name Walue Add

Delete

Connect to a remote syskem

| Next> Cancel

4.2. Remote Profiling in Command-Line Mode

This section describes how to perform remote profiling by running PGPROF manually on
the remote system and then importing the collected profile datainto the visual mode in
PGPROF.

4.2.1. Collect Data On Remote System

There are three common remote profiling use cases that can be addressed by using PGPROF and
the visual mode in PGPROF.

Timeline

Thefirst use case isto collect atimeline of the application executing on the remote system. The
timeline should be collected in away that most accurately reflects the behavior of the application.
To collect the timeline execute the following on the remote system. See Command-line Profiling
for more information on PGPROF options.

S pgprof --export-profile timeline.prof <app> <app args>

The profile datawill be collected in timeline.prof. You should copy thisfile back to the
host system and then import it into the visual mode in PGPROF as described in the next section.

Profiler User's Guide 43

Remote Profiling

Metrics And Events

The second use case isto collect events or metrics for al kernelsin an application for which you
have already collected atimeline. Collecting events or metrics for all kernelswill significantly
change the overall performance characteristics of the application because all kernel executions
will be serialized on the GPU. Even though overall application performance is changed, the
event or metric values for individual kernelswill be correct and so you can merge the collected
event and metric values onto a previously collected timeline to get an accurate picture of the
applications behavior. To collect events or metrics you usethe --events or --metrics flag.
The following shows an example using just the --metrics flag to collect two metrics.

$ pgprof --metrics achieved occupancy,executed ipc -o metrics.prof <app> <app
args>

Y ou can collect any number of events and metrics for each PGPROF invocation, and you can
invoke PGPROF multiple timesto collect multiplemetrics.prof files. To get accurate
profiling results, it isimportant that your application conform to the requirements detailed in
Application Requirements.

The profile datawill be collected inthemetrics.prof file(s). You should copy these files
back to the host system and then import it into the visual mode in PGPROF as described in the
next section.

Analysis For Individual Kernel

The third common remote profiling use case is to collect the metrics needed by the analysis
system for an individual kernel. When imported into the visual mode in PGPROF this data will
enable the analysis system to analyze the kernel and report optimization opportunities for that
kernel. To collect the analysis data execute the following on the remote system. It isimportant
that the --kernels option appear beforethe --analysis-metrics option so that metrics are
collected only for the kernel(s) specified by kernel specifier. SeeProfiling Scope for more
information on the --kernels option.

$ pgprof --kernels <kernel specifier> --analysis-metrics -o analysis.prof <app>
<app args>

The profile datawill be collected in analysis.prof. You should copy thisfile back to the
host system and then import it into the visual mode in PGPROF as described in the next section.

4.2.2. View And Analyze Data

The collected profile data is viewed and analyzed by importing it into the visual mode in
PGPROF on the host system. See Import Session for more information about importing.
Timeline, Metrics And Events

To view collected timeline data, the t imeline.prof file can beimported into the visual mode
in PGPROF as described in Import Single-Process PGPROF Session. If metric or event data was
also collected for the application, the corresponding metrics.prof file(s) can beimported

Profiler User's Guide 44

Remote Profiling

into the visual mode in PGPROF along with the timeline so that the events and metrics collected
for each kernel are associated with the corresponding kernel in the timeline.

Guided Analysis For Individual Kernel

To view collected analysis datafor an individual kernel, theanalysis.prof file can be
imported into the visual mode in PGPROF asdescribed in Import Single-Process PGPROF
Session. Theanalysis.prof must beimported by itself. The timeline will show just the
individual kernel that we specified during data collection. After importing, the guided analysis
system can be used to explore the optimization opportunities for the kernel.

Profiler User's Guide

45

Chapter 5.
NVIDIA TOOLS EXTENSION

NVIDIA Tools Extension (NVTX) is a C-based Application Programming Interface (API) for
annotating events, code ranges, and resources in your applications. Applications which integrate
NVTX can use the visual mode in PGPROF to capture and visualize these events and ranges. The
NVTX API provides two core services:

1. Tracing of CPU events and time ranges.
2. Naming of OS and CUDA resources.

NVTX can be quickly integrated into an application. The sample program below shows the use of
marker events, range events, and resource naming.

void Wait (int waitMilliseconds) {
nvtxNameOsThread ("MAIN”) ;
nvtxRangePush (FUNCTION);
nvtxMark ("Waiting...");
Sleep (waitMilliseconds) ;
nvtxRangePop () ;

}

int main (void) {
nvtxNameOsThread ("MAIN") ;
nvtxRangePush (FUNCTION);
Wait () ;
nvtxRangePop () ;

5.1. NVTX API Overview

Files

The core NVTX API isdefined in file nvToolsExt.h, whereas CUDA -specific extensions to
the NVTX interface are defined in nvTool sExtCuda.h and nvTool sExtCudaRt.h. On Linux the
NVTX shared library iscalled 1ibnvToolsExt . so and on Mac OSX the shared library is
called 1ibnvToolsExt.dylib. On Windowsthe library (.lib) and runtime components (.dil)
arenamed nvToolsExt [bitness=32|64] [version].{dll|lib}.

Profiler User's Guide 46

NVIDIA Tools Extension

Function Calls

All NVTX API functions start with an nvtx name prefix and may end with one of the three
suffixes: A, W, or Ex. NVTX functions with these suffixes exist in multiple variants, performing
the same core functionality with different parameter encodings. Depending on the version of

the NVTX library, available encodings may include ASCII (A), Unicode (W), or event structure
(E).

The CUDA implementation of NVTX only implements the ASCII (A) and event structure (Ex)
variants of the API, the Unicode (W) versions are not supported and have no effect when called.

Return Values

Some of the NVTX functions are defined to have return values. For example, the
nvtxRangeStart () function returns a unique range identifier and nvtxRangePush ()
function outputs the current stack level. It is recommended not to use the returned values as

part of conditional code in the instrumented application. The returned values can differ between
various implementations of the NVTX library and, consequently, having added dependencies on
the return values might work with one tool, but may fail with another.

5.2. NVTX API Events

Markers are used to describe events that occur at a specific time during the execution of an
application, while ranges detail the time span in which they occur. Thisinformation is presented
alongside all of the other captured data, which makes it easier to understand the collected
information. All markers and ranges are identified by a message string. The Ex version of the
marker and range APIs also allows category, color, and payload attributes to be associated with
the event using the event attributes structure.

5.2.1. NVTX Markers

A marker is used to describe an instantaneous event. A marker can contain a text message or
specify additional information using the event attributes structure. Use nvtxMarkA to create
amarker containing an ASCII message. Use nvtxMarkEx () to create amarker containing
additional attributes specified by the event attribute structure. The nvtxMarkw () function isnot
supported in the CUDA implementation of NV TX and has no effect if called.

Code Example

nvtxMarkA ("My mark") ;

nvtxEventAttributes t eventAttrib = {0};
eventAttrib.version = NVTX VERSION;

eventAttrib.size = NVTX EVENT ATTRIB STRUCT SIZE;
eventAttrib.colorType = NVTX COLOR ARGB;
eventAttrib.color = COLOR RED;

eventAttrib.messageType = NVTX MESSAGE TYPE ASCII;
eventAttrib.message.ascii = "my mark with attributes";
nvtxMarkEx (&eventAttrib) ;

Profiler User's Guide 47

NVIDIA Tools Extension

5.2.2. NVTX Range Start/Stop

A start/end range is used to denote an arbitrary, potentially non-nested, time span. The

start of arange can occur on a different thread than the end of the range. A range can
contain atext message or specify additional information using the event attributes structure.
UsenvtxRangeStartA () to create amarker containing an ASCII message. Use
nvtxRangeStartEx () to create arange containing additional attributes specified by

the event attribute structure. The nvtxRangeStartW () function is not supported in the
CUDA implementation of NVTX and has no effect if called. For the correlation of a start/
end pair, aunique correlation ID is created that isreturned from nvtxRangeStartA () Of
nvtxRangeStartEx (), andisthen passed into nvtxRangeEnd ().

Code Example

// non-overlapping range
nvtxRangeId t idl = nvtxRangeStartA("My range");
nvtxRangeEnd (idl) ;

nvtxEventAttributes t eventAttrib = {0};
eventAttrib.version = NVTX VERSION;
eventAttrib.size = NVTX EVENT ATTRIB STRUCT SIZE;
eventAttrib.colorType = NVTX COLOR ARGB;
eventAttrib.color = COLOR BLUE;
eventAttrib.messageType = NVTX MESSAGE TYPE ASCII;
eventAttrib.message.ascii = "my start/stop range";
nvtxRangelId t i1id2 = nvtxRangeStartEx (&eventAttrib);
nvtxRangeEnd (id2) ;

// overlapping ranges

nvtxRangeId t rl = nvtxRangeStartA("My range 0");
nvtxRangeId t r2 nvtxRangeStartA ("My range 1");
nvtxRangeEnd (rl) ;

nvtxRangeEnd (r2) ;

5.2.3. NVTX Range Push/Pop

A push/pop range is used to denote nested time span. The start of arange must occur on the

same thread as the end of the range. A range can contain atext message or specify additional
information using the event attributes structure. Use nvtxRangePushA () to create a marker
containing an ASCII message. Use nvtxRangePushEx () 10 create arange containing
additional attributes specified by the event attribute structure. The nvtxRangePushW ()

function is not supported in the CUDA implementation of NVTX and has no effect if called. Each
push function returns the zero-based depth of the range being started. The nvtxRangePop ()
function is used to end the most recently pushed range for the thread. nvtxRangePop () returns
the zero-based depth of the range being ended. If the pop does not have a matching push, a
negative value is returned to indicate an error.

Code Example

nvtxRangePushA ("outer") ;
nvtxRangePushA ("inner") ;
nvtxRangePop(); // end "inner" range
nvtxRangePop(); // end "outer" range

Profiler User's Guide 48

NVIDIA Tools Extension

nvtxEventAttributes t eventAttrib = {0};
eventAttrib.version = NVTX VERSION;
eventAttrib.size = NVTX EVENT ATTRIB STRUCT SIZE;
eventAttrib.colorType = NVTX COLOR ARGB;
eventAttrib.color = COLOR GREEN;
eventAttrib.messageType = NVTX MESSAGE TYPE ASCII;
eventAttrib.message.ascii = "my push/pop range";
nvtxRangePushEx (&eventAttrib) ;

nvtxRangePop () ;

5.2.4. Event Attributes Structure

The events attributes structure, nvtxEventAttributes_t, iSused to describe the attributes
of an event. The layout of the structure is defined by a specific version of NVTX and can change
between different versions of the Tools Extension library.

Attributes

Markers and ranges can use attributes to provide additional information for an event or to guide

the tool's visualization of the data. Each of the attributes is optional and if left unspecified, the

attributes fall back to a default value.

M essage
The message field can be used to specify an optional string. The caller must set both the
messageType and message fields. The default value iSNVTX MESSAGE UNKNOWN. The
CUDA implementation of NVTX only supports ASCII type messages.

Category
The category attribute is a user-controlled ID that can be used to group events. The tool may
use category IDs to improve filtering, or for grouping events. The default valueis 0.

Color
The color attribute is used to help visually identify eventsin the tool. The caller must set both
the colorType and color fields.

Payload
The payload attribute can be used to provide additional data for markers and ranges. Range
events can only specify values at the beginning of arange. The caller must specify valid
values for both the payloadType and payload fields.

Initialization

The caller should always perform the following three tasks when using attributes:

» Zerothe structure
» Settheversion field
» Setthesizefield

Zeroing the structure sets all the event attributes types and values to the default value. The
version and size field are used by NV TX to handle multiple versions of the attributes structure.

Profiler User's Guide 49

NVIDIA Tools Extension

It is recommended that the caller use the following method to initialize the event attributes
structure.

nvtxEventAttributes t eventAttrib = {0};
eventAttrib.version = NVTX VERSION;
eventAttrib.size = NVTX EVENT ATTRIB STRUCT SIZE;
eventAttrib.colorType = NVTX COLOR ARGB;
eventAttrib.color = ::COLOR YELLOW;
eventAttrib.messageType = NVITX MESSAGE TYPE ASCII;
eventAttrib.message.ascii = "My event";

nvtxMarkEx (&eventAttrib) ;

5.2.5. NVTX Synchronization Markers

The NVTX synchronization module provides functions to support tracking additional
synchronization details of the target application. Naming OS synchronization primitives may
allow usersto better understand the data collected by traced synchronization APIs. Additionaly,
annotating a user-defined synchronization object can alow the user to tell the tools when the user
is building their own synchronization system that does not rely on the OS to provide behaviors,
and instead uses techniques like atomic operations and spinlocks.

n Synchronization marker support is not available on Windows.

Code Example

class MyMutex

{
volatile long bLocked;
nvtxSyncUser t hSync;

public:
MyMutex (const char* name, nvtxDomainHandle t d) {

bLocked = 0;
nvtxSyncUserAttributes t attribs = { 0 };
attribs.version = NVTX VERSION;
attribs.size = NVTX SYNCUSER ATTRIB STRUCT SIZE;
attribs.messageType = NVTX MESSAGE TYPE ASCII;
attribs.message.ascii = name;
hSync = nvtxDomainSyncUserCreate(d, &attribs);

}

~MyMutex () |
nvtxDomainSyncUserDestroy (hSync) ;

}

bool Lock () {
nvtxDomainSyncUserAcquireStart (hSync) ;

//atomic compiler intrinsic
bool acquired = sync bool compare and swap (&bLocked, 0, 1);

if (acquired) {
nvtxDomainSyncUserAcquireSuccess (hSync) ;

}

else {
nvtxDomainSyncUserAcquireFailed (hSync) ;

}

return acquired;

Profiler User's Guide 50

NVIDIA Tools Extension

}

void Unlock () {
nvtxDomainSyncUserReleasing (hSync) ;
bLocked = false;

5.3. NVTX Domains

Domains enable devel opers to scope annotations. By default all events and annotations are in the
default domain. Additional domains can be registered. This allows devel opers to scope markers
and ranges to avoid conflicts.

The function nvtxDomainCreateA () Ofr nvtxDomainCreateW () isused to create a named
domain.

Each domain maintainsits own

» categories
» thread range stacks
> registered strings

The function nvtxDomainDestroy () marksthe end of the domain. Destroying a domain
unregisters and destroys all objects associated with it such as registered strings, resource objects,
named categories, and started ranges.

n Domain support is not available on Windows.

Code Example

nvtxDomainHandle t domain = nvtxDomainCreateA ("Domain A");

nvtxMarkA ("Mark A");
nvtxEventAttributes t attrib
attrib.version

attrib.size
attrib.message.ascii
nvtxDomainMarkEx (NULL, &attri

{0};

NVTX VERSION;

NVTX EVENT ATTRIB STRUCT SIZE;
"Mark A Message";

)

o o

nvtxDomainDestroy (domain) ;

5.4. NVTX Resource Naming

NVTX resource naming allows custom names to be associated with host OS threads and CUDA
resources such as devices, contexts, and streams. The names assigned using NV TX are displayed
by the visual mode in PGPROF.

Profiler User's Guide 51

NVIDIA Tools Extension

OS Thread

The nvtxNameOsThreadAa () function isused to name ahost OS thread. The
nvtxNameOsThreadw () function isnot supported in the CUDA implementation of NVTX
and has no effect if called. The following example shows how the current host OS thread can be
named.

// Windows
nvtxNameOsThread (GetCurrentThreadId (), "MAIN THREAD") ;

// Linux/Mac
nvtxNameOsThread (pthread self (), "MAIN THREAD");

CUDA Runtime Resources

The nvtxNameCudaDeviceA () and nvtxNameCudaStreama () functions are used to

name CUDA device and stream objects, respectively. The nvtxNameCudaDeviceW ()

and nvtxNameCudaStreamW () functions are not supported in the CUDA

implementation of NVTX and have no effect if called. The nvtxNameCudaEventA () and
nvtxNameCudaEventW () functionsare also not supported. The following example shows how
a CUDA device and stream can be named.

nvtxNameCudaDeviceA (0, "my cuda device 0");

cudaStream t cudastream;
cudaStreamCreate (&cudastream) ;
nvtxNameCudaStreamA (cudastream, "my cuda stream");

CUDA Driver Resources

The nvtxNameCuDeviceA (), nvtxNameCuContextA () and nvtxNameCuStreamA ()
functions are used to name CUDA driver device, context and stream objects, respectively.

The nvtxNameCuDeviceW (), nvtxNameCuContextW () and nvtxNameCuStreamW ()
functions are not supported in the CUDA implementation of NVTX and have no effect if called.
The nvtxNameCuEventA () and nvtxNameCuEventW () functions are also not supported.
The following example shows how a CUDA device, context and stream can be named.

CUdevice device;
cuDeviceGet (&device, 0);
nvtxNameCuDeviceA (device, "my device 0");

CUcontext context;
cuCtxCreate (&context, 0, device);
nvtxNameCuContextA (context, "my context");

cuStream stream;

cuStreamCreate (&stream, 0);
nvtxNameCuStreamA (stream, "my stream");

Profiler User's Guide 52

Chapter 6.
MPI PROFILING WITH PGPROF

To use Command-line Profiling to collect the profiles of the individual MPI processes, you

must tell PGPROF to send its output to unique files. In CUDA 5.0 and earlier versions, it was
recommended to use a script for this. However, you can now easily do it utilizing the sh , $p and
$q{ENV} features of the --export-profile argument to the PGPROF command. Below is
example run using Open MPI.

$ mpirun -np 2 -host c0-0,c0-1 pgprof -o output.%h.%p.%q{OMPI COMM WORLD RANK}
a.out

Alternatively, one can make use of the new feature to turn on profiling on the nodes of interest
usingthe --profile-all-processes argument to PGPROF. To do this, you first log into the
node you want to profile and start up PGPROF there.

$ pgprof --profile-all-processes -o output.%h.%p.%gq{OMPI COMM WORLD RANK}

Then you can just run the MPI job as your normally would.

$ mpirun -np 2 -host c0-0,c0-1 a.out

Any processes that run on the node wherethe --profile-all-processes isrunning will
automatically get profiled. The profiling data will be written to the output files.

With CUDA 7.5 you can name threads and CUDA contexts just as you hame output files

with the options --process-name and --context-name, by passing a string like "MPI Rank

%q{ OMPI_COMM_WORLD_RANK]}" as aparameter. This feature is useful to spot resources
associated with a specific rank when user imports multiple files into the same time-line in the
visual mode in PGPROF.

$ pgprof --profile-all-processes —-process-name "MPI Rank
%$q{OMPI COMM WORLD RANK}" --context-name "MPI Rank %g{OMPI_ COMM WORLD RANK}" -o
output.%h.%p.%q{OMPI COMM WORLD RANK}

Details about what types of additional argumentsto use with PGPROF can be found in the
Multiprocess Profiling and Redirecting Output section. Additional information about how to view

Profiler User's Guide 53

MP! Profiling With PGPROF

the data with the visual mode in PGPROF can be found in the Import Single-Process PGPROF
Session and Import Multi-Process PGPROF Session sections.

Profiler User's Guide 54

Chapter 7.
DEPENDENCY ANALYSIS

The dependency analysis feature enabl es optimization of the program runtime and concurrency of
applications utilizing multiple CPU threads and CUDA streams. It allows to compute the critical
path of a specific execution, detect waiting time and inspect dependencies between functions
executing in different threads or streams.

7.1. Background

The dependency analysisin PGPROF andthe visual mode in PGPROF isbased on execution
traces of applications. A trace captures all relevant activities such as API function calls or CUDA
kernels along with their timestamps and durations. Given this execution trace and a model of the
dependencies between those activities on different threads/streams, a dependency graph can be
constructed. Typical dependencies modelled in this graph would be that a CUDA kernel can not
start before its respective launch API call or that a blocking CUDA stream synchronization call
can not return before all previously enqueued work in this stream has been completed. These
dependencies are defined by the CUDA API contract.

From this dependency graph and the APl model(s), wait states can be computed. A wait stateis
the duration for which an activity such as an API function call is blocked waiting on an event in
another thread or stream. Given the previous stream synchronization example, the synchronizing
API call is blocked for the timeit hasto wait on any GPU activity in the respective CUDA
stream. Knowledge about where wait states occur and how long functions are blocked is helpful
to identify optimization opportunities for more high-level concurrency in the application.

In addition to individual wait states, the critical path through the captured event graph enables

to pinpoint those function calls, kernel and memory copies that are responsible for the total
application runtime. The critical path isthe longest path through an event graph that does not
contain wait states, i.e. optimizing activities on this path can directly improve the execution time.

Profiler User's Guide 55

Dependency Analysis

7.2. Metrics

Waiting Time

A wait state is the duration for which an activity such asan API function call is blocked waiting
on an event in another thread or stream. Waiting timeis an inidicator for load-imbalances
between execution streams. In the example below, the blocking CUDA synchronization API

calls are waiting on their respective kernelsto finish executing on the GPU. Instead of waiting
immediately, one should attempt to overlap the kernel executions with concurrent CPU work with
asimilar runtime, thereby reducing the time that any computing device (CPU or GPU) is blocked.

% *jacobi_orig.nvwp 52 = g

s 2282s 2283s 2.284s 2.285s 2286s 2287s 2288s 2.289s
= Process "jacobi_cuda 4096 4...
=] Thread 2932680640

Runtime AP1 [cudaDevi_] [cudabevicesynchronize |
Driver AP
% Markers and Ranges | NN ________________covepu | ——

+ Thread 2802824960
Profiling Overhead
=! [0] GeForce GTX 980
=l Context 1 (CUDA)
7 MemCpy (HtoD) |
¥ MemCpy (DtoH) | |

=l compute acobi_kernel(floatco. |
il Analysis 52 %, = O
=] Bl ¢ h Reset All [Analyze All Results
= i Dependency Analysis
Louigzzéekk:[;n:lLi22?’;#(': ?;?E:i;_ﬁﬁi(;: host- The following table shows metrics collected from a dependency analysis of the program execution. The data is summarized per
ool = function type. Use the "Dependency Analysis” menu on the main toolbar to visualize analysis results on the timeline. More...
pplication
Function Name Time on Critical Path (%) Time on Critical Path = waiting time
Data Movement...d Concurrency /]
Compute utilization s cudaMemcpy 0.34% 49.837 ms 12.886 ms
cuDeviceGetCount 0.00 % 1.683 ps ons
Kernel Performance aly cuDeviceGet 0.00 % 780 ns ons
cuDeviceGetAttribute 0.00 % 339.779ps 0ns
& cuDeviceGetName 0.00 % 24.354 s ons
cuDeviceTotalMem_v2 0.00% 29.745 s ons
NVLink Y, . .
cudaGetDeviceProperties 0.00 % 317.818 ps ons

Time on Critical Path

The critical path isthe longest path through an event graph that does not contain wait states, i.e.
optimizing activities on this path can directly improve the execution time. Activities with ahigh
time on the critical path have a high direct impact on the application runtime. In the example
pictured below, copy kernel ison the critical path since the CPU is blocked waiting for it to
finishin cudeDeviceSynchronize. Reducing the kernel runtime allows the CPU to return
earlier from the API call and continue program execution. On the other hand, jacobi kernel
isfully overlapped with CPU work, i.e. the synchronizing API call istriggered after the kernel
is aready finished. Since no execution stream is waiting on this kernel to finish, reducing its
duration will likely not improve the overall application runtime.

Profiler User's Guide 56

Dependency Analysis

% *jacobi_async_compute.nvwvp 2 = g
255445 25455 25465 25475 25485 25495 2555 25515
[= Thread 1609856960
* Runtime API || cudaDevice... | []
- Driver APl
Markers and Ranges | —
Thread 1409283840
[=1 [0] GeForce GTX 980
[=| Context 1 (CUDA)
5 MemCpy (HtoD) | |
L SF MemCpy (DtoH) II
=l compute
5 67.2% jacobi_kernel(float const ..
= T 32.8% copy_kernel(float*, float ...
@ Analysis &2 GPU Details & Console T Settings Ei CPU Details n = B8
B B ¢ [A] Reset All [y Analyze All Results
o = Function Name Time onCritical Path (%) = Time on Critical Path Waiting time
nows o)
Application copy_kernel(Float*, Float const *, int, int) 5.40% 697.508 ms. ons
cudaMalloc 0.61% 78.486 ms ons
Data Movement And Concurrency (]
cudaMemcpy 0.39% 50.968 ms 12.888 ms
Compute Utilization ._,,a cudaLaunch 0.18% 23.543ms ons
[CUDA memcpy DtoH] 0.10% 12.888 ms ons
Kernel Performance [[cupA memcpy HtoD] 0.02% 2.598 ms ons
= cudaSetupArgument 0.01% 1.93ms ons
Dependency Analysis @ cudaConfigureCall 0.01% 1.671ms ons
cudaFree 0.00 % 225.755us ons
NVLink [sh) . }
cuDeviceGetAttribute 0.00 % 157.602 ps ons
cudaGetDeviceProperties 0.00% 137.831ps Ons
cuDeviceGetName 0.00 % 25.524 ps ons
cuDeviceTotalMem_v2 0.00 % 20.012 ps Ons
cudasSetDevice 0.00% 19.16 ps ons
cudaDeviceSynchronize 0.00 % 5.508 ps 697.235ms
cuDeviceGetCount 0.00 % 2.089 s ons
cuDeviceGet 0.00% 1.092 ps ons

Jjacobi_kernel(Float const *, float*, int, int, Float*)

7.3. Support

The following programming APIs are currently supported for dependency analysis

» CUDA runtime and driver API
» POSIX threads (Pthreads), POSIX mutexes and condition variables

Dependency analysisis available in visual mode in PGPROF and PGPROF. A Dependency
Analysis stage can be selected in the Unguided Application Analysis and new Dependency
Analysis Controls are available for the timeline. See section Dependency Analysis on how to use
this feature in command-line mode.

7.4. Limitations

The dependency and wait time analysis between different threads and CUDA streams only takes
into account execution dependencies stated in the respective supported API contracts. This
especially does not include synchronization as a result of resource contention. For example,
asynchronous memory copies enqueued into independent CUDA streams will not be marked
dependent even if the concrete GPU has only a single copy engine. Furthermore, the analysis
does not account for synchronization using a hot-supported API. For example, a CPU thread
actively polling for avalue at some memory location (busy-waiting) will not be considered
blocked on another concurrent activity.

The dependency analysis has only limited support for applications using CUDA Dynamic
Parallelism (CDP). CDP kernels can use CUDA API calls from the GPU which are not tracked

Profiler User's Guide 57

Dependency Analysis

viathe CUPTI Activity API. Therefore, the analysis cannot determine the full dependencies and
waiting time for CDP kernels. However, it utilizes the parent-child launch dependencies between

CDP kernels. Asaresult the critical path will always include the last CDP kernel of each host-
launched kernel.

The POSIX semaphores API is currently not supported.

Analysis of value-based CUDA stream synchronization, which includes usage of
cuStreamWaitValue32 and related API functions, is not supported.

Profiler User's Guide 58

Chapter 8.
METRICS REFERENCE

This section contains detailed descriptions of the metrics that can be collected by PGPROF and the
Visual Profiler. A scope value of single-context indicates that the metric can only be accurately
collected when a single context (CUDA or graphic) is executing on the GPU. A scope value

of multi-context indicates that the metric can be accurately collected when multiple contexts

are executing on the GPU. A scope value of device indicates that the metric will be collected at
devicelevd, that isit will include values for all the contexts executing on the GPU. Note that,
NVLink metricscollected for kernel mode, exhibit the behavior of single-context.

8.1. Metrics for Capability 2.x

Devices with compute capability between 2.0, inclusive, and 3.0 implement the metrics shown in
the following table.

Table 3 Capability 2.x Metrics

Metric Name Description Scope
sm_efficiency The percentage of time at least one warp is active on a Single-context
multiprocessor averaged over all multiprocessors on the
GPU
sm_efficiency_instance The percentage of time at least one warp is active on a Single-context
specific multiprocessor
achieved_occupancy Ratio of the average active warps per active cycle Multi-context
to the maximum number of warps supported on a
multiprocessor
issue_slot_utilization Percentage of issue slots that issued at least one Multi-context
instruction, averaged across all cycles
inst_executed The number of instructions executed Multi-context
inst_issued The number of instructions issued Multi-context
issue_slots The number of issue slots used Multi-context
executed_ipc Instructions executed per cycle Multi-context
issued_ipc Instructions issued per cycle Multi-context

Profiler User's Guide 59

Metric Name

ipc_instance

Description

Instructions executed per cycle for a single
multiprocessor

Metrics Reference

Scope

Multi-context

inst_per_warp

Average number of instructions executed by each warp

Multi-context

cf_issued

Number of issued control-flow instructions

Multi-context

cf_executed

Number of executed control-flow instructions

Multi-context

Idst_issued

Number of issued load and store instructions

Multi-context

|dst_executed

Number of executed load and store instructions

Multi-context

branch_efficiency

Ratio of non-divergent branches to total branches
expressed as percentage

Multi-context

warp_execution_efficiency

Ratio of the average active threads per warp to the
maximum number of threads per warp supported on a
multiprocessor expressed as percentage

Multi-context

inst_replay_overhead

Average number of replays for each instruction executed

Multi-context

shared_replay_overhead

Average number of replays due to shared memory
conflicts for each instruction executed

Single-context

global_cache_replay_overhead

Average number of replays due to global memory cache
misses for each instruction executed

Single-context

local_replay_overhead

Average number of replays due to local memory
accesses for each instruction executed

Single-context

gld_efficiency

Ratio of requested global memory load throughput to
required global memory load throughput expressed as
percentage

Single-context

gst_efficiency

Ratio of requested global memory store throughput to
required global memory store throughput expressed as
percentage

Single-context

gld_transactions

Number of global memory load transactions

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gld_transactions_per_request

Average number of global memory load transactions
performed for each global memory load

Single-context

gst_transactions_per_request

Average number of global memory store transactions
performed for each global memory store

Single-context

gld_throughput

Global memory load throughput

Single-context

gst_throughput

Global memory store throughput

Single-context

gld_requested_throughput

Requested global memory load throughput

Multi-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

local_load_transactions

Number of local memory load transactions

Single-context

local_store_transactions

Number of local memory store transactions

Single-context

local_load_transactions_per_ request

Average number of local memory load transactions
performed for each local memory load

Single-context

local_store_transactions_per_ request

Average number of local memory store transactions
performed for each local memory store

Single-context

Profiler User's Guide

60

Metric Name

local_load_throughput

Description

Local memory load throughput

Metrics Reference

Scope

Single-context

local_store_throughput

Local memory store throughput

Single-context

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_load_transactions_per_ request

Average number of shared memory load transactions
performed for each shared memory load

Single-context

shared_store_transactions_per_ request

Average number of shared memory store transactions
performed for each shared memory store

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_efficiency

Ratio of requested shared memory throughput to required
shared memory throughput expressed as percentage

Single-context

dram_read_transactions

Device memory read transactions

Single-context

dram_write_transactions

Device memory write transactions

Single-context

dram_read_throughput

Device memory read throughput

Single-context

dram_write_throughput

Device memory write throughput

Single-context

sysmem_read_transactions

System memory read transactions

Single-context

sysmem_write_transactions

System memory write transactions

Single-context

sysmem_read_throughput

System memory read throughput

Single-context

sysmem_write_throughput

System memory write throughput

Single-context

[1_cache_global_hit_rate

Hit rate in L1 cache for global loads

Single-context

[1_cache_local_hit_rate

Hit rate in L1 cache for local loads and stores

Single-context

tex_cache_hit_rate

Texture cache hit rate

Single-context

tex_cache_transactions

Texture cache read transactions

Single-context

tex_cache_throughput

Texture cache throughput

Single-context

|2_read_transactions

Memory read transactions seen at L2 cache for all read
requests

Single-context

[2_write_transactions

Memory write transactions seen at L2 cache for all write
requests

Single-context

[2_read_throughput

Memory read throughput seen at L2 cache for all read
requests

Single-context

[2_write_throughput

Memory write throughput seen at L2 cache for all write
requests

Single-context

12_I1_read_hit_rate

Hit rate at L2 cache for all read requests from L1 cache

Sinlge-context

12_11_read_throughput

Memory read throughput seen at L2 cache for read
requests from L1 cache

Single-context

[2_texture_read_hit_rate

Hit rate at L2 cache for all read requests from texture
cache

Single-context

Profiler User's Guide

61

Metric Name

[2_texure_read_throughput

Description

Memory read throughput seen at L2 cache for read
requests from the texture cache

Metrics Reference

Scope

Sinlge-context

local_memory_overhead

Ratio of local memory traffic to total memory traffic
between the L1 and L2 caches expressed as percentage

Single-context

[1_shared_utilization

The utilization level of the L1/shared memory relative to
peak utilization on a scale of 0 to 10

Single-context

12_utilization

The utilization level of the L2 cache relative to the peak
utilization on a scale of 0 to 10

Single-context

tex_utilization

The utilization level of the texture cache relative to the
peak utilization on a scale of 0 to 10

Single-context

dram_utilization

The utilization level of the device memory relative to the
peak utilization on a scale of 0 to 10

Single-context

sysmem_utilization

The utilization level of the system memory relative to the
peak utilization on a scale of 0 to 10

Single-context

Idst_fu_utilization

The utilization level of the multiprocessor function units
that execute global, local and shared memory instructions
on a scale of 0 to 10

Multi-context

cf_fu_utilization

The utilization level of the multiprocessor function units
that execute control-flow instructions on a scale of 0 to 10

Multi-context

tex_fu_utilization

The utilization level of the multiprocessor function units
that execute texture instructions on a scale of 0 to 10

Multi-context

alu_fu_utilization

The utilization level of the multiprocessor function
units that execute integer and floating-point arithmetic
instructions on a scale of 0 to 10

Multi-context

inst_fp_32

Number of single-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by non-
predicated threads

Multi-context

inst_bit_convert

Number of bit-conversion instructions executed by non-
predicated threads

Multi-context

inst_control

Number of control-flow instructions executed by non-
predicated threads (jump, branch, etc.)

Multi-context

inst_compute_Id_st

Number of compute load/store instructions executed by
non-predicated threads

Multi-context

inst_inter_thread_communication

Number of inter-thread communication instructions
executed by non-predicated threads

Multi-context

inst_misc Number of miscellaneous instructions executed by non- | Multi-context
predicated threads

flops_sp Single-precision floating point operations executed Multi-context

flops_sp_add Single-precision floating point add operations executed Multi-context

Profiler User's Guide

62

Metrics Reference

Metric Name Description Scope

flops_sp_mul Single-precision floating point multiply operations Multi-context
executed

flops_sp_fma Single-precision floating point multiply-accumulate Multi-context
operations executed

flops_dp Double-precision floating point operations executed Multi-context

flops_dp_add Double-precision floating point add operations executed | Multi-context

flops_dp_mul Double-precision floating point multiply operations Multi-context
executed

flops_dp_fma Double-precision floating point multiply-accumulate Multi-context
operations executed

flops_sp_special Single-precision floating point special operations Multi-context
executed

stall_inst_fetch Percentage of stalls occurring because the next Multi-context

assembly instruction has not yet been fetched

stall_exec_dependency Percentage of stalls occurring because an input required | Multi-context
by the instruction is not yet available

stall_data_request Percentage of stalls occurring because a memory Multi-context
operation cannot be performed due to the required
resources not being available or fully utilized, or because
too many requests of a given type are outstanding

stall_sync Percentage of stalls occurring because the warp is Multi-context
blocked at a __syncthreads() call

stall_texture Percentage of stalls occurring because the texture sub- | Multi-context
system is fully utilized or has too many outstanding
requests

stall_other Percentage of stalls occurring due to miscellaneous Multi-context
reasons

8.2. Metrics for Capability 3.x

Devices with compute capability between 3.0, inclusive, and 4.0 implement the metrics shown

in the following table. Note that for some metrics the multi-context scope is supported only for
specific devices. Such metrics are marked with "Multi-context ™ under the " Scope" column. Refer
the note at the bottom of the table.

Table 4 Capability 3.x Metrics

Metric Name Description Scope

sm_efficiency The percentage of time at least one warp is active on a Single-context
multiprocessor averaged over all multiprocessors on the
GPU

sm_efficiency_instance The percentage of time at least one warp is active on a Single-context
specific multiprocessor

Profiler User's Guide 63

Metric Name

achieved_occupancy

Description

Ratio of the average active warps per active cycle
to the maximum number of warps supported on a
multiprocessor

Metrics Reference

Scope

Multi-context

issue_slot_utilization

Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_issued The number of instructions issued Multi-context
issue_slots The number of issue slots used Multi-context
ipc Instructions executed per cycle Multi-context
issued_ipc Instructions issued per cycle Multi-context
ipc_instance Instructions executed per cycle for a single Multi-context

multiprocessor

inst_per_warp

Average number of instructions executed by each warp

Multi-context

cf_issued

Number of issued control-flow instructions

Multi-context

cf_executed

Number of executed control-flow instructions

Multi-context

|dst_issued

Number of issued load and store instructions

Multi-context

Idst_executed

Number of executed load and store instructions

Multi-context

branch_efficiency

Ratio of non-divergent branches to total branches
expressed as percentage. This is available for compute
capability 3.0.

Multi-context

warp_execution_efficiency

Ratio of the average active threads per warp to the
maximum number of threads per warp supported on a
multiprocessor expressed as percentage

Multi-context

warp_nonpred_execution_efficiency

Ratio of the average active threads per warp executing
non-predicated instructions to the maximum number
of threads per warp supported on a multiprocessor
expressed as percentage

Multi-context

inst_replay_overhead

Average number of replays for each instruction executed

Multi-context

shared_replay_overhead

Average number of replays due to shared memory
conflicts for each instruction executed

Multi-context

global_replay_overhead

Average number of replays due to global memory cache
misses

Multi-context

global_cache_replay_overhead

Average number of replays due to global memory cache
misses for each instruction executed

Multi-context

local_replay_overhead

Average number of replays due to local memory
accesses for each instruction executed

Multi-context

gld_efficiency

Ratio of requested global memory load throughput to
required global memory load throughput expressed as
percentage

Single-context

gst_efficiency

Ratio of requested global memory store throughput to
required global memory store throughput expressed as
percentage

Single-context

Profiler User's Guide

64

Metric Name

gld_transactions

Description

Number of global memory load transactions expressed
as percentage

Metrics Reference

Scope

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gld_transactions_per_request

Average number of global memory load transactions
performed for each global memory load

Single-context

gst_transactions_per_request

Average number of global memory store transactions
performed for each global memory store

Single-context

gld_throughput

Global memory load throughput

Single-context

gst_throughput

Global memory store throughput

Single-context

gld_requested_throughput

Requested global memory load throughput

Multi-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

nc_I2_read_throughput

Memory read throughput for non coherent global read
requests seen at L2 cache

Single-context

nc_l2_read_transactions

Memory read transactions seen at L2 cache for non
coherent global read requests

Single-context

nc_cache_global_hit_rate

Hit rate in non coherent cache for global loads

Single-context

nc_gld_throughput

Non coherent global memory load throughput

Single-context

nc_gld_requested_throughput

Requested throughput for global memory loaded via non-
coherent cache

Multi-context

nc_gld_efficiency

Ratio of requested non coherent global memory load
throughput to required non coherent global memory load
throughput expressed as percentage

Single-context

local_load_transactions

Number of local memory load transactions

Single-context

local_store_transactions

Number of local memory store transactions

Single-context

local_load_transactions_per_request

Average number of local memory load transactions
performed for each local memory load

Single-context

local_store_transactions_per_request

Average number of local memory store transactions
performed for each local memory store

Single-context

local_load_throughput

Local memory load throughput

Single-context

local_store_throughput

Local memory store throughput

Single-context

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_load_transactions_per_request

Average number of shared memory load transactions
performed for each shared memory load

Single-context

shared_store_transactions_per_request

Average number of shared memory store transactions
performed for each shared memory store

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_efficiency

Ratio of requested shared memory throughput to required
shared memory throughput expressed as percentage

Single-context

Profiler User's Guide

65

Metric Name

dram_read_transactions

Description

Device memory read transactions

Metrics Reference

Scope

Single-context

dram_write_transactions

Device memory write transactions

Single-context

dram_read_throughput

Device memory read throughput

Single-context

dram_write_throughput

Device memory write throughput

Single-context

sysmem_read_transactions

System memory read transactions. This is available for
compute capability 3.0 and 3.5.

Single-context

sysmem_write_transactions

System memory write transactions. This is available for
compute capability 3.0 and 3.5.

Single-context

sysmem_read_throughput

System memory read throughput. This is available for
compute capability 3.0 and 3.5.

Single-context

sysmem_write_throughput

System memory write throughput. This is available for
compute capability 3.0 and 3.5.

Single-context

[1_cache_global_hit_rate

Hit rate in L1 cache for global loads

Single-context

[1_cache_local_hit_rate

Hit rate in L1 cache for local loads and stores

Single-context

tex_cache_hit_rate

Texture cache hit rate

Single-context

tex_cache_transactions

Texture cache read transactions

Single-context

tex_cache_throughput

Texture cache throughput

Single-context

12_read_transactions

Memory read transactions seen at L2 cache for all read
requests

Single-context

12_write_transactions

Memory write transactions seen at L2 cache for all write
requests

Single-context

12_read_throughput

Memory read throughput seen at L2 cache for all read
requests

Single-context

[2_write_throughput

Memory write throughput seen at L2 cache for all write
requests

Single-context

[2_11_read_hit_rate

Hit rate at L2 cache for all read requests from L1 cache.
This is available for compute capability 3.0 and 3.5.

Sinlge-context

[2_11_read_throughput

Memory read throughput seen at L2 cache for read
requests from L1 cache. This is available for compute
capability 3.0 and 3.5.

Single-context

12_texture_read_hit_rate

Hit rate at L2 cache for all read requests from texture
cache

Single-context

12_texure_read_throughput

Memory read throughput seen at L2 cache for read
requests from the texture cache

Sinlge-context

12_atomic_throughput

Memory read throughput seen at L2 cache for atomic and
reduction requests

Sinlge-context

local_memory_overhead

Ratio of local memory traffic to total memory traffic
between the L1 and L2 caches expressed as percentage.
This is available for compute capability 3.0 and 3.5.

Single-context

[1_shared_utilization

The utilization level of the L1/shared memory relative to
peak utilization on a scale of 0 to 10. This is available for
compute capability 3.0 and 3.5.

Single-context

Profiler User's Guide

66

Metric Name

12_utilization

Description

The utilization level of the L2 cache relative to the peak
utilization on a scale of 0 to 10

Metrics Reference

Scope

Single-context

tex_utilization

The utilization level of the texture cache relative to the
peak utilization on a scale of 0 to 10

Single-context

dram_utilization

The utilization level of the device memory relative to the
peak utilization on a scale of 0 to 10

Single-context

sysmem_utilization

The utilization level of the system memory relative to the
peak utilization on a scale of 0 to 10. This is available for
compute capability 3.0 and 3.5.

Single-context

[dst_fu_utilization

The utilization level of the multiprocessor function units
that execute global, local and shared memory instructions
on a scale of 0 to 10

Multi-context

cf_fu_utilization

The utilization level of the multiprocessor function units
that execute control-flow instructions on a scale of 0 to 10

Multi-context

tex_fu_utilization

The utilization level of the multiprocessor function units
that execute texture instructions on a scale of 0 to 10

Multi-context

alu_fu_utilization

The utilization level of the multiprocessor function
units that execute integer and floating-point arithmetic
instructions on a scale of 0 to 10

Multi-context

inst_fp_32

Number of single-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by non-
predicated threads

Multi-context

inst_bit_convert

Number of bit-conversion instructions executed by non-
predicated threads

Multi-context

inst_control

Number of control-flow instructions executed by non-
predicated threads (jump, branch, etc.)

Multi-context

inst_compute_Id_st

Number of compute load/store instructions executed by
non-predicated threads

Multi-context

inst_inter_thread_communication

Number of inter-thread communication instructions
executed by non-predicated threads

Multi-context

inst_misc Number of miscellaneous instructions executed by non- | Multi-context
predicated threads

flops_sp Single-precision floating point operations executed Multi-context

flops_sp_add Single-precision floating point add operations executed Multi-context

flops_sp_mul Single-precision floating point multiply operations Multi-context
executed

flops_sp_fma Single-precision floating point multiply-accumulate Multi-context
operations executed

flops_dp Double-precision floating point operations executed Multi-context

Profiler User's Guide

67

Metrics Reference

Metric Name Description Scope

flops_dp_add Double-precision floating point add operations executed | Multi-context

flops_dp_mul Double-precision floating point multiply operations Multi-context
executed

flops_dp_fma Double-precision floating point multiply-accumulate Multi-context

operations executed

flops_sp_special

Single-precision floating point special operations
executed

Multi-context

stall_inst_fetch

Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_exec_dependency

Percentage of stalls occurring because an input required
by the instruction is not yet available

Multi-context

stall_data_request

Percentage of stalls occurring because a memory
operation cannot be performed due to the required
resources not being available or fully utilized, or because
too many requests of a given type are outstanding

Multi-context

stall_sync

Percentage of stalls occurring because the warp is
blocked ata __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the texture sub-
system is fully utilized or has too many outstanding
requests

Multi-context

stall_other

Percentage of stalls occurring due to miscellaneous
reasons

Multi-context

atomic_replay_overhead

Average number of replays due to atomic and reduction
bank conflicts for each instruction executed

Multi-context

atomic_transactions

Global memory atomic and reduction transactions

Multi-context

atomic_transactions_per_request

Average number of global memory atomic and reduction
transactions performed for each atomic and reduction
instruction

Multi-context

* The multi-context scopeis supported for devices with compute capability 3.0, 3.5and 3.7.

8.3. Metrics for Capability 5.x

Devices with compute capability greater than or equal to 5.0 implement the metrics shown in the
following table. Note that for some metrics the multi-context scope is supported only for specific
devices. Such metrics are marked with "Multi-context " under the "Scope" column. Refer the

note at the bottom of the table.

Table 5 Capability 5.x Metrics

Metric Name

Description

sm_efficiency

The percentage of time at least one warp is active on a
multiprocessor

Single-context

Profiler User's Guide

68

Metric Name

achieved_occupancy

Description

Ratio of the average active warps per active cycle
to the maximum number of warps supported on a
multiprocessor

Metrics Reference

Scope

Multi-context

issue_slot_utilization

Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_issued

The number of instructions issued

Multi-context

issue_slots

The number of issue slots used

Multi-context

executed_ipc

Instructions executed per cycle

Multi-context

issued_ipc

Instructions issued per cycle

Multi-context

ipc_instance

Instructions executed per cycle for a single
multiprocessor

Multi-context

inst_per_warp

Average number of instructions executed by each warp

Multi-context

cf_issued

Number of issued control-flow instructions

Multi-context

cf_executed

Number of executed control-flow instructions

Multi-context

|dst_issued

Number of issued load and store instructions

Multi-context

Idst_executed

Number of executed load and store instructions

Multi-context

branch_efficiency

Ratio of non-divergent branches to total branches
expressed as percentage

Multi-context

warp_execution_efficiency

Ratio of the average active threads per warp to the
maximum number of threads per warp supported on a
multiprocessor expressed as percentage

Multi-context

inst_replay_overhead

Average number of replays for each instruction executed

Multi-context

gld_efficiency

Ratio of requested global memory load throughput to
required global memory load throughput expressed as
percentage

Single-context

gst_efficiency

Ratio of requested global memory store throughput to
required global memory store throughput expressed as
percentage

Single-context

gld_transactions

Number of global memory load transactions

Single-context

gst_transactions

Number of global memory store transactions

Single-context

gld_transactions_per_request

Average number of global memory load transactions
performed for each global memory load

Single-context

gst_transactions_per_request

Average number of global memory store transactions
performed for each global memory store

Single-context

gld_throughput

Global memory load throughput

Single-context

gst_throughput

Global memory store throughput

Single-context

gld_requested_throughput

Requested global memory load throughput

Multi-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

local_load_transactions

Number of local memory load transactions

Single-context

Profiler User's Guide

69

Metric Name

local_store_transactions

Description

Number of local memory store transactions

Metrics Reference

Scope

Single-context

local_load_transactions_per_ request

Average number of local memory load transactions
performed for each local memory load

Single-context

local_store_transactions_per_ request

Average number of local memory store transactions
performed for each local memory store

Single-context

local_load_throughput

Local memory load throughput

Single-context

local_store_throughput

Local memory store throughput

Single-context

shared_load_transactions

Number of shared memory load transactions

Single-context

shared_store_transactions

Number of shared memory store transactions

Single-context

shared_load_transactions_per_ request

Average number of shared memory load transactions
performed for each shared memory load

Single-context

shared_store_transactions_per_ request

Average number of shared memory store transactions
performed for each shared memory store

Single-context

shared_load_throughput

Shared memory load throughput

Single-context

shared_store_throughput

Shared memory store throughput

Single-context

shared_efficiency

Ratio of requested shared memory throughput to required
shared memory throughput expressed as percentage

Single-context

dram_read_transactions

Device memory read transactions

Single-context

dram_write_transactions

Device memory write transactions

Single-context

dram_read_throughput

Device memory read throughput

Single-context

dram_write_throughput

Device memory write throughput

Single-context

sysmem_read_transactions

System memory read transactions

Single-context

sysmem_write_transactions

System memory write transactions

Single-context

sysmem_read_throughput

System memory read throughput

Single-context

sysmem_write_throughput

System memory write throughput

Single-context

global_hit_rate

Hit rate for global loads

Single-context

local_hit_rate

Hit rate for local loads and stores

Single-context

tex_cache_hit_rate

Texture cache hit rate

Single-context

tex_cache_transactions

Texture cache read transactions

Single-context

tex_cache_throughput

Texture cache throughput

Single-context

12_read_transactions

Memory read transactions seen at L2 cache for all read
requests

Single-context

12_write_transactions

Memory write transactions seen at L2 cache for all write
requests

Single-context

12_read_throughput

Memory read throughput seen at L2 cache for all read
requests

Single-context

[2_write_throughput

Memory write throughput seen at L2 cache for all write
requests

Single-context

Profiler User's Guide

70

Metric Name

12_tex_read_hit_rate

Description

Hit rate at L2 cache for all read requests from texture
cache

Metrics Reference

Scope

Single-context

12_tex_write_hit_rate

Hit Rate at L2 cache for all write requests from texture
cache

Single-context

[2_tex_read_throughput

Memory read throughput seen at L2 cache for read
requests from the texture cache

Sinlge-context

12_tex_write_throughput

Memory write throughput seen at L2 cache for write
requests from the texture cache

Sinlge-context

local_memory_overhead

Ratio of local memory traffic to total memory traffic
between the L1 and L2 caches expressed as percentage

Single-context

shared_utilization

The utilization level of the shared memory relative to
peak utilization on a scale of 0 to 10

Single-context

12_utilization

The utilization level of the L2 cache relative to the peak
utilization on a scale of 0 to 10

Single-context

tex_utilization

The utilization level of the texture cache relative to the
peak utilization on a scale of 0 to 10

Single-context

dram_utilization

The utilization level of the device memory relative to the
peak utilization on a scale of 0 to 10

Single-context

sysmem_utilization

The utilization level of the system memory relative to the
peak utilization on a scale of 0 to 10

Single-context

[dst_fu_utilization

The utilization level of the multiprocessor function units
that execute global, local and shared memory instructions
on a scale of 0 to 10

Multi-context

cf_fu_utilization

The utilization level of the multiprocessor function units
that execute control-flow instructions on a scale of 0 to 10

Multi-context

tex_fu_utilization

The utilization level of the multiprocessor function units
that execute texture instructions on a scale of 0 to 10

Multi-context

special_fu_utilization

The utilization level of the multiprocessor function
units that execute sin, cos, ex2, popc, flo, and similar
instructions on a scale of 0 to 10

Multi-context

single_precision_fu_utilization

The utilization level of the multiprocessor function units
that execute single-precision floating-point instructions
and integer instructions on a scale of 0 to 10

Multi-context

double_precision_fu_utilization

The utilization level of the multiprocessor function units
that execute double-precision floating-point instructions
and integer instructions on a scale of 0 to 10

Multi-context

inst_fp_32

Number of single-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point instructions
executed by non-predicated threads (arithmetric,
compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by non-
predicated threads

Multi-context

Profiler User's Guide

71

Metric Name

inst_bit_convert

Description

Number of bit-conversion instructions executed by non-
predicated threads

Metrics Reference

Scope

Multi-context

inst_control

Number of control-flow instructions executed by non-
predicated threads (jump, branch, etc.)

Multi-context

inst_compute_Id_st

Number of compute load/store instructions executed by
non-predicated threads

Multi-context

inst_inter_thread_communication

Number of inter-thread communication instructions
executed by non-predicated threads

Multi-context

inst_misc Number of miscellaneous instructions executed by non- Multi-context
predicated threads

flops_sp Single-precision floating point operations executed Multi-context

flops_sp_add Single-precision floating point add operations executed Multi-context

flops_sp_mul Single-precision floating point multiply operations Multi-context
executed

flops_sp_fma Single-precision floating point multiply-accumulate Multi-context
operations executed

flops_dp Double-precision floating point operations executed Multi-context

flops_dp_add Double-precision floating point add operations executed | Multi-context

flops_dp_mul Double-precision floating point multiply operations Multi-context
executed

flops_dp_fma Double-precision floating point multiply-accumulate Multi-context

operations executed

flops_sp_special

Single-precision floating point special operations
executed

Multi-context

stall_inst_fetch

Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_exec_dependency

Percentage of stalls occurring because an input required
by the instruction is not yet available

Multi-context

stall_data_request

Percentage of stalls occurring because a memory
operation cannot be performed due to the required
resources not being available or fully utilized, or because
too many requests of a given type are outstanding

Multi-context

stall_sync

Percentage of stalls occurring because the warp is
blocked at a __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the texture sub-
system is fully utilized or has too many outstanding
requests

Multi-context

stall_imc

Percentage of stalls occurring because of immediate
constant cache miss

Multi-context

Profiler User's Guide

72

Metrics Reference

Metric Name Description Scope

stall_compute Percentage of stalls occurring because a compute Multi-context
operation cannot be performed due to the required
resources not being available

stall_other Percentage of stalls occurring due to miscellaneous Multi-context
reasons

* The Multi-context scope for thismetric is supported only for deviceswith compute
capability 5.0 and 5.2.

8.4. Metrics for Capability 6.x

Devices with compute capability greater than or equal to 6.0 implement the metrics shown in the
following table.

Table 6 Capability 6.x Metrics

Metric Name Description Scope
achieved_occupancy Ratio of the average active warps per active cycle Multi-context
to the maximum number of warps supported on a
multiprocessor
atomic_transactions Global memory atomic and reduction transactions Multi-context
atomic_transactions_per_request Average number of global memory atomic and reduction | Multi-context
transactions performed for each atomic and reduction
instruction
branch_efficiency Ratio of non-divergent branches to total branches Multi-context
expressed as percentage
cf_executed Number of executed control-flow instructions Multi-context
cf_fu_utilization The utilization level of the multiprocessor function units Multi-context
that execute control-flow instructions on a scale of 0 to 10
cf_issued Number of issued control-flow instructions Multi-context
double_precision_fu_utilization The utilization level of the multiprocessor function units Multi-context

that execute double-precision floating-point instructions
and integer instructions on a scale of 0 to 10

dram_read_throughput Device memory read throughput Multi-context

dram_read_transactions Device memory read transactions Multi-context

dram_utilization The utilization level of the device memory relative to the Multi-context
peak utilization on a scale of 0 to 10

dram_write_throughput Device memory write throughput Multi-context

dram_write_transactions Device memory write transactions Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to issue per Multi-context
active cycle

executed_ipc Instructions executed per cycle Multi-context

Profiler User's Guide 73

Metric Name

flop_count_dp

Description

Number of double-precision floating-point operations
executed by non-predicated threads (add, multiply,
multiply-accumulate and special). Each multiply-
accumulate operation contributes 2 to the count.

Metrics Reference

Scope

Multi-context

flop_count_dp_add

Number of double-precision floating-point add operations
executed by non-predicated threads

Multi-context

flop_count_dp_fma

Number of double-precision floating-point multiply-
accumulate operations executed by non-predicated
threads. Each multiply-accumulate operation contributes
1 to the count.

Multi-context

flop_count_dp_mul

Number of double-precision floating-point multiply
operations executed by non-predicated threads

Multi-context

flop_count_hp

Number of half-precision floating-point operations
executed by non-predicated threads (add, multiply,
multiply-accumulate and special). Each multiply-
accumulate operation contributes 2 to the count.

Multi-context

flop_count_hp_add

Number of half-precision floating-point add operations
executed by non-predicated threads

Multi-context

flop_count_hp_fma

Number of half-precision floating-point multiply-
accumulate operations executed by non-predicated
threads. Each multiply-accumulate operation contributes
1 to the count.

Multi-context

flop_count_hp_mul

Number of half-precision floating-point multiply operations
executed by non-predicated threads

Multi-context

flop_count_sp

Number of single-precision floating-point operations
executed by non-predicated threads (add, multiply,
multiply-accumulate and special). Each multiply-
accumulate operation contributes 2 to the count.

Multi-context

flop_count_sp_add

Number of single-precision floating-point add operations
executed by non-predicated threads

Multi-context

flop_count_sp_fma

Number of single-precision floating-point multiply-
accumulate operations executed by non-predicated
threads. Each multiply-accumulate operation contributes
1 to the count.

Multi-context

flop_count_sp_mul

Number of single-precision floating-point multiply
operations executed by non-predicated threads

Multi-context

flop_count_sp_special

Number of single-precision floating-point special
operations executed by non-predicated threads

Multi-context

flop_dp_efficiency

Ratio of achieved to peak double-precision floating-point
operations

Multi-context

flop_hp_efficiency

Ratio of achieved to peak half-precision floating-point
operations

Multi-context

flop_sp_efficiency

Ratio of achieved to peak single-precision floating-point
operations

Multi-context

gld_efficiency

Ratio of requested global memory load throughput to
required global memory load throughput expressed as
percentage

Multi-context

Profiler User's Guide

74

Metric Name

gld_requested_throughput

Description

Requested global memory load throughput

Metrics Reference

Scope

Multi-context

gld_throughput

Global memory load throughput

Multi-context

gld_transactions

Number of global memory load transactions

Multi-context*

gld_transactions_per_request

Average number of global memory load transactions
performed for each global memory load

Multi-context

global_hit_rate

Hit rate for global loads

Multi-context

gst_efficiency

Ratio of requested global memory store throughput to
required global memory store throughput expressed as
percentage

Multi-context

gst_requested_throughput

Requested global memory store throughput

Multi-context

gst_throughput

Global memory store throughput

Multi-context

gst_transactions

Number of global memory store transactions

Multi-context*

gst_transactions_per_request

Average number of global memory store transactions
performed for each global memory store

Multi-context

half_precision_fu_utilization

The utilization level of the multiprocessor function units
that execute 16 bit floating-point instructions and integer
instructions

Multi-context

inst_bit_convert

Number of bit-conversion instructions executed by non-
predicated threads

Multi-context

inst_compute_ld_st

Number of compute load/store instructions executed by
non-predicated threads

Multi-context

inst_control

Number of control-flow instructions executed by non-
predicated threads (jump, branch, etc.)

Multi-context

inst_executed

The number of instructions executed

Multi-context

inst_fp_16

Number of half-precision floating-point instructions
executed by non-predicated threads (arithmetic,
compare, etc.)

Multi-context

inst_fp_32

Number of single-precision floating-point instructions
executed by non-predicated threads (arithmetic,
compare, etc.)

Multi-context

inst_fp_64

Number of double-precision floating-point instructions
executed by non-predicated threads (arithmetic,
compare, etc.)

Multi-context

inst_integer

Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication

Number of inter-thread communication instructions
executed by non-predicated threads

Multi-context

inst_issued

The number of instructions issued

Multi-context

inst_misc

Number of miscellaneous instructions executed by non-
predicated threads

Multi-context

inst_per_warp

Average number of instructions executed by each warp

Multi-context

inst_replay_overhead

Average number of replays for each instruction executed

Multi-context

Profiler User's Guide

75

Metric Name

issue_slot_utilization

Description

Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Metrics Reference

Scope

Multi-context

issue_slots

The number of issue slots used

Multi-context

issued_ipc

Instructions issued per cycle

Multi-context

12_atomic_throughput

Memory read throughput seen at L2 cache for atomic and
reduction requests

Multi-context

|2_atomic_transactions

Memory read transactions seen at L2 cache for atomic
and reduction requests

Multi-context

[2_read_throughput

Memory read throughput seen at L2 cache for all read
requests

Multi-context

I2_read_transactions

Memory read transactions seen at L2 cache for all read
requests

Multi-context*

12_tex_read_hit_rate

Hit rate at L2 cache for all read requests from texture
cache

Multi-context

[2_tex_read_throughput

Memory read throughput seen at L2 cache for read
requests from the texture cache

Multi-context*

12_tex_read_transactions

Memory read transactions seen at L2 cache for read
requests from the texture cache

Multi-context

[2_tex_write_hit_rate

Hit Rate at L2 cache for all write requests from texture
cache

Multi-context

[2_tex_write_throughput

Memory write throughput seen at L2 cache for write
requests from the texture cache

Multi-context

12_tex_write_transactions

Memory write transactions seen at L2 cache for write
requests from the texture cache

Multi-context*

[2_utilization

The utilization level of the L2 cache relative to the peak
utilization on a scale of 0 to 10

Multi-context

[2_write_throughput

Memory write throughput seen at L2 cache for all write
requests

Multi-context*

I2_write_transactions

Memory write transactions seen at L2 cache for all write
requests

Multi-context

|dst_executed

Number of executed load and store instructions

Multi-context

[dst_fu_utilization

The utilization level of the multiprocessor function units
that execute global, local and shared memory instructions
on ascale of 0 to 10

Multi-context

ldst_issued

Number of issued load and store instructions

Multi-context

local_hit_rate

Hit rate for local loads and stores

Multi-context

local_load_throughput

Local memory load throughput

Multi-context*

local_load_transactions

Number of local memory load transactions

Multi-context

local_load_transactions_per_request

Average number of local memory load transactions
performed for each local memory load

Multi-context

local_memory_overhead

Ratio of local memory traffic to total memory traffic
between the L1 and L2 caches expressed as percentage

Multi-context

Profiler User's Guide

76

Metric Name

local_store_throughput

Description

Local memory store throughput

Metrics Reference

Scope

Multi-context*

local_store_transactions

Number of local memory store transactions

Multi-context

local_store_transactions_per_request

Average number of local memory store transactions
performed for each local memory store

Multi-context*

nvlink_overhead_data_received

Overhead data bytes received through nvlinks

Single-context

nvlink_overhead_data_transmitted

Overhead data bytes transmitted through nvlinks

Single-context

nvlink_receive_throughput

Number of bytes received per second through nvlinks

Single-context

nvlink_receive_utilization

The utilization level of nvlink data reception relative to
peak nvlink data reception utilization

Single-context

nvlink_total_data_received

Total data bytes received through nvlinks including
headers

Single-context

nvlink_total_data_transmitted

Total data bytes transmitted through nvlinks including
headers

Single-context

nvlink_total_nratom_data_received

Total non-reduction atomic data bytes Received through
nvlink

Single-context

nvlink_total_nratom_data_transmitted

Total non-reduction atomic data bytes transmitted through
nvlinks

Single-context

nvlink_total_ratom_data_received

Total reduction atomic data bytes Received through
nvlink

Single-context

nvlink_total_ratom_data_transmitted

Total reduction atomic data bytes transmitted through
nvlinks

Single-context

nvlink_total_write_data_received

Total write data bytes received through nvlinks

Single-context

nvlink_total_write_data_transmitted

Total write data bytes transmitted through nvlinks

Single-context

nvlink_transmit_throughput

Number of Bytes Transmitted per second through nvlinks

Single-context

nvlink_transmit_utilization

The Utilization Level of Nvlink Data Transmission
Relative to Peak Nvlink Data Transmission Utilization

Single-context

nvlink_user_data_received

User data bytes received through nvlinks, doesn't include
headers

Single-context

nvlink_user_data_transmitted

User data bytes transmitted through nvlinks, doesn't
include headers

Single-context

nvlink_user_nratom_data_received

Total non-reduction atomic user data bytes Received
through nvlink

Single-context

nvlink_user_nratom_data_transmitted

Total non-reduction atomic user data bytes transmitted
through nvlinks

Single-context

nvlink_user_ratom_data_received

Total reduction atomic user data bytes Received through
nvlinks

Single-context

nvlink_user_ratom_data_transmitted

Total reduction atomic user data bytes transmitted
through nvlinks

Single-context

nvlink_user_write_data_received

User write data bytes received through nvlinks

Single-context

nvlink_user_write_data_transmitted

User write data bytes transmitted through nvlinks

Single-context

Profiler User's Guide

77

Metric Name

shared_efficiency

Description

Ratio of requested shared memory throughput to required
shared memory throughput expressed as percentage

Metrics Reference

Scope

Multi-context*

shared_load_throughput

Shared memory load throughput

Multi-context

shared_load_transactions

Number of shared memory load transactions

Multi-context*

shared_load_transactions_per_request

Average number of shared memory load transactions
performed for each shared memory load

Multi-context

shared_store_throughput

Shared memory store throughput

Multi-context

shared_store_transactions

Number of shared memory store transactions

Multi-context

shared_store_transactions_per_request

Average number of shared memory store transactions
performed for each shared memory store

Multi-context*

shared_utilization

The utilization level of the shared memory relative to
peak utilization on a scale of 0 to 10

Multi-context

single_precision_fu_utilization

The utilization level of the multiprocessor function units
that execute single-precision floating-point instructions
and integer instructions on a scale of 0 to 10

Multi-context

sm_activity

The percentage of time at least one warp is active on a
multiprocessor

Multi-context

special_fu_utilization

The utilization level of the multiprocessor function
units that execute sin, cos, ex2, popc, flo, and similar
instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency

Percentage of stalls occurring because of immediate
constant cache miss

Multi-context

stall_exec_dependency

Percentage of stalls occurring because an input required
by the instruction is not yet available

Multi-context

stall_inst_fetch

Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency

Percentage of stalls occurring because a memory
operation cannot be performed due to the required
resources not being available or fully utilized, or because
too many requests of a given type are outstanding

Multi-context

stall_memory_throttle

Percentage of stalls occurring because of memory
throttle

Multi-context

stall_not_selected

Percentage of stalls occurring because warp was not
selected

Multi-context

stall_other

Percentage of stalls occurring due to miscellaneous
reasons

Multi-context

stall_pipe_busy

Percentage of stalls occurring because a compute
operation cannot be performed due to the required
resources not being available

Multi-context

stall_sync

Percentage of stalls occurring because the warp is
blocked ata __syncthreads() call

Multi-context

stall_texture

Percentage of stalls occurring because the texture sub-
system is fully utilized or has too many outstanding
requests

Multi-context

Profiler User's Guide

78

Metric Name

sysmem_read_throughput

Description

System memory read throughput

Metrics Reference

Scope

Multi-context*

sysmem_read_transactions

System memory read transactions

Multi-context

sysmem_utilization

The utilization level of the system memory relative to the
peak utilization on a scale of 0 to 10

Multi-context*

sysmem_write_throughput

System memory write throughput

Multi-context

sysmem_write_transactions

System memory write transactions

Multi-context

tex_cache_hit_rate

Texture cache hit rate

Multi-context

tex_cache_throughput

Texture cache throughput

Multi-context*

tex_cache_transactions

Texture cache read transactions

Multi-context

tex_fu_utilization

The utilization level of the multiprocessor function units
that execute texture instructions on a scale of 0 to 10

Multi-context

tex_utilization

The utilization level of the texture cache relative to the
peak utilization on a scale of 0 to 10

Multi-context

warp_execution_efficiency

Ratio of the average active threads per warp to the
maximum number of threads per warp supported on a
multiprocessor expressed as percentage

Multi-context

warp_nonpred_execution_efficiency

Ratio of the average active threads per warp executing
non-predicated instructions to the maximum number of
threads per warp supported on a multiprocessor

Multi-context

Profiler User's Guide

79

Chapter 9.
WARP STATE

This section contains a description of each warp state. The warp can have following states:

» Instruction issued - Aninstruction or apair of independent instructions was issued from a
warp.

» Stalled - Warp can be stalled for one of the following reasons. The stall reason distribution
can be seen at source level in PC Sampling View or at kernel level in Latency analysis using
'Examine Stall Reasons

» Stalled for instruction fetch - The next instruction was not yet available.
To reduce instruction fetch stalls:

» If large loop have been unrolled in kernel, try reducing them.

» If thekernel contains many callsto small function, try inlining more of them with
the__inline__or _ forceinline__ qudifiers. Conversely, if inlining many functions
or large functions, try __noinline__to disable inlining of those functions.

» For very short kernels, consider fusing into asingle kernels.

» If blocks with fewer threads are used, consider using fewer blocks of more threads.
Occasional callsto synchthreads() will then keep the warpsin synch which may
improve instruction cache hit rate.

» Stalled for execution dependency - The next instruction iswaiting for one or more of
itsinputs to be computed by earlier instruction(s).

To reduce execution dependency stalls, try to increase instruction-level paralelism
(ILP). This can be done by, for example, increasing loop unrolling or processing several
elements per thread. This prevents the thread from idling through the full latency of each
instruction.

» Stalled for memory dependency - The next instruction iswaiting for a previous
memory accesses to complete.

To reduce the memory dependency stalls

Profiler User's Guide 80

Warp State

Try to improve memory coal escing and/or efficiency of bytes fetched (alignment,
etc.). Look at the source level analysis'Global Memory Access Pattern' and/or the
metrics gld_efficiency and gst_efficiency.

Try to increase memory-level paralelism (MLP): the number of independent
memory operations in flight per thread. Loop unrolling, loading vector types such
as float4, and processing multiple elements per thread are all waysto increase
memory-level parallelism.

Consider moving frequently-accessed data closer to SM, such as by use of shared
memory or read-only data cache.

Consider re-computing data where possible instead of loading it from device
memory.

If local memory accesses are high, consider increasing register count per thread to
reduce spilling, even at the expense of occupancy since local memory accesses are
cached only in L2 for GPUs with compute capability major = 5.

» Stalled for memory throttle - A large number of outstanding memory requests
prevents forward progress. On GPUs with compute capability major = 3, memory
throttle indicates high number of memory replays.

To reduce memory throttle stalls:

»

Try to find ways to combine several memory transactionsinto one (e.g., use 64-bit
memory requests instead of two 32-bit requests).

Check for un-coalesced memory accesses using the source level analysis

'‘Global Memory Access Pattern' and/or the profiler metrics gld_efficiency and
gst_efficiency; minimize them wherever possible.

On GPUs with compute capability major >= 3, consider using read-only data cache
using LDG for un-coalesced global reads

» Stalled for texture - Thetexture sub-system isfully utilized or has too many
outstanding requests.

To reduce texture stalls:

»

Profiler User's Guide

Consider combining severa texture fetch operations into one (e.g., packing datain
texture and unpacking in SM or using vector |oads).

Consider moving frequently-accessed data closer to SM by use of shared memory.
Consider re-computing data where possible instead of fetching it from memory.
On GPUs with compute capability major < 5: Consider changing some texture
accesses into regular global |oads to reduce pressure on the texture unit, especialy
if you do not use texture-specific features such as interpolation.

On GPUs with compute capability major = 3: If global loads through the read-
only data cache (LDG) are the source of texture accesses for this kernel, consider
changing some of them back to regular global loads. Notethat if LDG is being
generated due to use of the __Idg() intrinsic, this simply means changing back to
anormal pointer dereference, but if LDG is being generated automatically by the
compiler due to the use of the const and __restrict__ qualifiers, this may be more
difficult.

81

Warp State

» Stalled for sync - Thewarp iswaiting for all threads to synchronize after a barrier
instruction.

To reduce sync stalls:

» Try toimproveload balancing i.e. try to increase work done between
synchronization points, consider reducing thread block size.

» Minimize use of threadfence *().

» On GPUs with compute capability major >= 3: If __syncthreads() is being used
because of data exchange through shared memory within a threadblock, consider
whether warp shuffle operations can be used in place of some of these exchange/
synchronize sequences.

» Stalled for constant memory dependency - The warp isstalled on amissin the cache
for __constant__memory and immediate.

This may be high the first time each constant is accessed (e.g., at the beginning of a
kernel). To reduce these stalls,

» Consider reducing use of __constant__ or increase kernel runtime by increasing
block count

» Consider increasing number of items processed per thread

» Consider merging severa kernels that use the same __constant__ data to amortize
the cost of missesin the constant cache.

» Try using regular global memory accesses instead of constant memory accesses.

» Stalled for pipebusy - Thewarp is stalled because the functional unit required to
execute the next instruction is busy.

To reduce stalls due to pipe busy:

» Prefer high-throughput operations over low-throughput operations. If precision
doesn't matter, use float instead of double precision arithmetic.

» Look for arithmetic improvements (e.g., order-of-operations changes) that may be
mathematically valid but unsafe for the compiler to do automatically. Dueto e.g.
floating-point non-associativity.

» Stalled for not selected - Warp was ready but did not get a chance to issue as some
other warp was selected for issue. This reason generally indicates that kernel is possibly
optimized well but in some cases, you may be able to decrease occupancy without
impacting latency hiding, and doing so may help improve cache hit rates.

» Stalled for other - Warp is blocked for an uncommon reason like compiler or hardware
reasons. Developers do not have control over these stalls.

Profiler User's Guide 82

Chapter 10.
PROFILER KNOWN ISSUES

The following are known issues with the current release.

>

To ensure that all profile dataiis collected and flushed to afile, cudaDeviceSynchronize()
followed by either cudaProfilerStop() or cuProfilerStop() should be called before the
application exits. Refer the section Flush Profile Data.

Concurrent kernel mode can add significant overhead if used on kernels that execute alarge
number of blocks and that have short execution durations.

If the kernel launch rate is very high, the device memory used to collect profiling data can
run out. In such a case some profiling data might be dropped. Thiswill be indicated by a
warning.

When profiling an application that uses Dynamic Parallelism there are several limitations to
the profiling tools.

» Thevisual mode in PGPROF timeline does not display CUDA API callsinvoked from
within device-launched kernels.

» Thevisual mode in PGPROF does not display detailed event, metric, and source-level
results for device-launched kernels. Event, metric, and source-level results collected for
CPU-launched kernels will include event, metric, and source-level results for the entire
call-tree of kernels launched from within that kernel.

» The PGPROF event/metric output does not include results for device-launched kernels.
Events/metrics collected for CPU-launched kernels will include events/metrics for the
entire call-tree of kernelslaunched from within that kernel.

Profiling APK binariesis not supported.

visual mode in PGPROF is not supported on the ARM architecture. Y ou can use Remote

Profiling. Refer the Remote Profiling section for more information.

Unified memory profiling is not supported on the ARM architecture.

When profiling an application in which a device kernel was stopped due to an assertion

the profiling datawill be incomplete and awarning or error message is displayed. But the

message IS not precise as the exact cause of the failure is not detected.

For dependency analysis, in cases where activity timestamps in the trace are dlightly distorted

such that they violate the programming model constraints, no dependencies or waiting times

can be analyzed.

Profiler User's Guide 83

Profiler Known Issues

» Deviceswith compute capability 6.x introduces a new feature, compute preemption, to give
fair chance for all compute contexts while running long tasks. With compute preemption
feature-

» If multiple contexts are running in parallel it is possible that long kernels will get
preempted.
» Some kernels may get preempted occasionally due to timeslice expiry for the context.

If kernel has been preempted, the time the kernel spends preempted is still counted towards
kernel duration. This can affect the kernel optimization priorities given by visual mode

in PGPROF as there is randomness introduced due to preemption. To avoid compute
preemption affecting profiler resultstry to isolate the context being profiled:

» Run the application on secondary GPU where display is hot connected.

» OnLinux if the application is running on the primary GPU where the display driver is
connected then unload the display driver.

» Run only one process that uses GPU at one time.

» Devices with compute capability 6.x support demand paging. When the kernel is scheduled
for the first time, al the pages allocated using cudaMallocM anaged and that are required for
execution of the kernel are fetched in the global memory when GPU faults are generated.
Profiler requires multiple passes to collect al the metrics required for kernel analysis. The
kernel state needs to be saved and restored for each kernel replay pass. For devices with
compute capability 6.x and platforms supporting Unified memory, in the first kernel iteration
the GPU faults will be generated and all pages will be fetched in the global memory. Second
iteration onwards GPU page faults will not occur. Thiswill significantly affect the memory
related events and timing. The time taken from trace will include the time required to fetch
the pages but most of the metrics profiled in multiple iterations will not include time/cycles
required to fetch the pages. This causes inconsistency in the profiler results.

» CUDA device enumeration and order, typically controlled through environment variables
CUDA VISIBLE DEVICES and CUDA DEVICE ORDER, should remain the same for the
profiler and the application.

» Thefollowing are known issues related to visual mode in PGPROF:

» Some analysis results require metrics that are not available on all devices. When these
analyses are attempted on a device where the metric is not available the analysis results
will show that the required datais "not available".

» Notethat "Examine stall reasons" analysis does not work for compute capability 3.0. But
in this case no results or message is displayed and so it can be confusing.

» Using the mouse whedl button to scroll does not work within the visual modein
PGPROF on Windows.

» Thevisua mode in PGPROF cannot correctly import profiler data generated by
PGPROF when theoption --kernels kernel-filter isused. visua modein
PGPROF reports awarning, "Some collected events or source-level results could not be
associated with the session timeline." One workaround is to use the PGPROF option --
kernels :::1 toprofilethefirstinvocation for all kernels.

» visua mode in PGPROF cannot |load profiler datalarger than the memory size limited
by VM or available memory on the system. Refer Improve Loading of Large Profiles
for more information.

Profiler User's Guide 84

Profiler Known Issues

visual mode in PGPROF requires Javaversion 6 or later to be installed on the system.
On some platforms the required Java version isinstalled as part of the CUDA Toolkit
installation. But in some cases you may need to install Javaversion 6 or later separately.
visual mode in PGPROF events and metrics do not work correctly on OS X 10.8.5.
Please upgrade to OS X 10.9.2 to use visual mode in PGPROF events and metrics.
visual mode in PGPROF global menus do not show properly or are empty

on some versions of Ubuntu. One workaround is to set environment variable
"UBUNTU_MENUPROXY =0" before running visual mode in PGPROF

In the visual mode in PGPROF the NVLink Analysis diagram can be incorrect after
scrolling the diagram. This can be corrected by horizontally resizing the diagram panel.

» Thefollowing are known issues related to PGPROF:

PGPROF cannot profile processesthat fork () but do not then exec ().

PGPROF assumes it has access to the temporary directory on the system, which it uses
to store temporary profiling data. On Linux/Mac the default is / tmp. On Windowsiit's
specified by the system environment variables. To specify a custom location, change
S$TMPDIR on Linux/Mac or $TMP% on Windows.

To profile application on Android sTMPDIR environment variable has to be defined and
point to a user-writable folder.

Profiling results might be inconsistent when auto boost is enabled. PGPROF triesto
disable auto boost by default, it might fail to do so in some conditions, but profiling will
continue. PGPROF Will report awarning when auto boost cannot be disabled. Note that
auto boost is supported only on certain Tesla devices from the Kepler+ family.

Profiling a C++ application which overloads the new operator at the global scope and
uses any CUDA APIslike cudaMalloc () or cudaMallocManaged () insidethe
overloaded new operator will result in a hang.

» Thefollowing are known issues related to Events and Metrics:

»

In event or metric profiling, kernel launches are blocking. Thus kernels waiting

on host updates may hang. This includes synchronization between the host and

the device build upon value-based CUDA stream synchronization APIs such as
cuStreamWaitValue32 () and cuStreamWriteValue32 ().

For some metrics, the required events can only be collected for asingle CUDA context.
For an application that uses multiple CUDA contexts, these metrics will only be
collected for one of the contexts. The metrics that can be collected only for asingle
CUDA context areindicated in the metric reference tables.

Some metric values are calculated assuming a kernel is large enough to occupy all
device multiprocessors with approximately the same amount of work. If akernel launch
does not have this characteristic, then those metric values may not be accurate.

Some metrics are not available on all devices. To see alist of al available metricson a
particular NVIDIA GPU, typepgprof --query-metrics.You can aso refer to the
metric reference tables.

For compute capability 2.x devices, the achieved_occupancy metric can report
inaccurate values that are greater than the actual achieved occupancy. In rare cases this
can cause the achieved occupancy value to exceed the theoretical occupancy value for
the kernel.

Profiler User's Guide 85

Profiler Known Issues

» Theprofilers may fail to collect events or metrics when "application replay” modeis
turned on. Thisis most likely to happen if the application is multi-threaded and non-
deterministic. Instead use "kernel replay” mode in this case.

» Hereare acouple of reasons why visual mode in PGPROF may fail to gather metric or
event information.

» Morethan onetool istrying to access the GPU. To fix thisissue please make
sure only one tool is using the GPU at any given point. Tools include the CUDA
command line profiler, Parallel NSight Analysis Tools and Graphics Tools, and
applications that use either CUPTI or PerfKit APl (NVPM) to read event values.

» Morethan one application is using the GPU at the same time visual mode in
PGPROF is profiling a CUDA application. To fix thisissue please close all
applications and just run the one with visual mode in PGPROF-. Interacting with
the active desktop should be avoided while the application is generating event
information. Please note that for some types of event visual mode in PGPROF
gathers events for only one context if the application is using multiple contexts
within the same application.

» When collecting events or metricswith the -—-events, --metrics, Of ——analysis-
metrics options, PGPROF Will use kernel replay to execute each kernel multiple times
as needed to collect al the requested data. If alarge number of events or metrics are
requested then alarge number of replays may be required, resulting in a significant
increase in application execution time.

» Profiler events and metrics do not work correctly on OS X 10.8.5 and OS X 10.9.3. OS
X 10.9.2 or OS X 10.9.4 or later can be used.

» Some events are not available on al devices. To seealist of all available eventson a
particular device, type pgprof --query-events.

» Enabling certain events can cause GPU kernels to run longer than the driver's watchdog
time-out limit. In these cases the driver will terminate the GPU kernel resulting in
an application error and profiling data will not be available. Please disable the driver
watchdog time out before profiling such long running CUDA kernels.

» OnLinux, setting the X Config option Interactive to false is recommended.
» For Windows, detailed information on disabling the Windows TDR is available at
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2

» Nvprof can give out of memory error for event and metrics profiling, it could be due to
large number of instruction in the kernel.

Profiler User's Guide 86

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2007-2017 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Profiling Overview
	What's New
	Terminology

	Preparing An Application For Profiling
	1.1. Focused Profiling
	1.2. Marking Regions of CPU Activity
	1.3. Naming CPU and CUDA Resources
	1.4. Flush Profile Data
	1.5. Profiling CUDA Fortran Applications

	Visual Profiling
	2.1. Getting Started
	2.1.1. Modify Your Application For Profiling
	2.1.2. Creating a Session
	2.1.3. Analyzing Your Application
	2.1.4. Exploring the Timeline
	2.1.5. Looking at the Details
	2.1.6. Improve Loading of Large Profiles

	2.2. Sessions
	2.2.1. Executable Session
	2.2.2. Import Session
	2.2.2.1. Import Single-Process PGPROF Session
	2.2.2.2. Import Multi-Process PGPROF Session

	2.3. Application Requirements
	2.4. PGPROF Views
	2.4.1. Timeline View
	2.4.1.1. Timeline Controls
	2.4.1.2. Navigating the Timeline
	2.4.1.3. Timeline Refreshing
	2.4.1.4. Dependency Analysis Controls

	2.4.2. Analysis View
	2.4.2.1. Guided Application Analysis
	2.4.2.2. Unguided Application Analysis
	2.4.2.3. PC Sampling View
	2.4.2.4. NVLink view
	2.4.2.5. Unified Memory Analysis

	2.4.3. Source-Disassembly View
	2.4.4. GPU Details View
	2.4.5. CPU Details View
	2.4.6. Properties View
	2.4.7. Console View
	2.4.8. Settings View
	2.4.9. CPU Source View

	2.5. Customizing the Profiler
	2.5.1. Resizing a View
	2.5.2. Reordering a View
	2.5.3. Moving a View
	2.5.4. Undocking a View
	2.5.5. Opening and Closing a View

	Command-line Profiling
	3.1. Profiling Modes
	3.1.1. Summary Mode
	3.1.2. GPU-Trace and API-Trace Modes
	3.1.3. Event/metric Summary Mode
	3.1.4. Event/metric Trace Mode

	3.2. Profiling Controls
	3.2.1. Timeout
	3.2.2. Concurrent Kernels
	3.2.3. Profiling Scope
	3.2.4. Multiprocess Profiling
	3.2.5. System Profiling
	3.2.6. Unified Memory Profiling
	3.2.7. CPU Thread Tracing

	3.3. Output
	3.3.1. Adjust Units
	3.3.2. CSV
	3.3.3. Export/Import
	3.3.4. Demangling
	3.3.5. Redirecting Output
	3.3.6. Dependency Analysis

	3.4. CPU Sampling
	3.4.1. CPU Sampling Options
	3.4.2. CPU Sampling Limitations

	3.5. OpenACC
	3.5.1. OpenACC Options
	3.5.2. OpenACC Summary Modes

	Remote Profiling
	4.1. Remote Profiling in Visual Mode
	4.2. Remote Profiling in Command-Line Mode
	4.2.1. Collect Data On Remote System
	4.2.2. View And Analyze Data

	NVIDIA Tools Extension
	5.1. NVTX API Overview
	5.2. NVTX API Events
	5.2.1. NVTX Markers
	5.2.2. NVTX Range Start/Stop
	5.2.3. NVTX Range Push/Pop
	5.2.4. Event Attributes Structure
	5.2.5. NVTX Synchronization Markers

	5.3. NVTX Domains
	5.4. NVTX Resource Naming

	MPI Profiling With PGPROF
	Dependency Analysis
	7.1. Background
	7.2. Metrics
	7.3. Support
	7.4. Limitations

	Metrics Reference
	8.1. Metrics for Capability 2.x
	8.2. Metrics for Capability 3.x
	8.3. Metrics for Capability 5.x
	8.4. Metrics for Capability 6.x

	Warp State
	Profiler Known Issues

