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Chapter 1.
OVERVIEW

“Transfer learning” is the process of transferring learned features from one application
to another. It is a commonly used training technique where you use a model trained on
one task and re-train to use it on a different task. It works surprisingly well since a lot of
the early layers in a neural network are primarily used to identify outlines, curves, and
other features in an image. This can easily be transferred to other domains. An example
would be if you want to identify different breeds of dogs, but you only have few images
per breed. So, what you can do is take a model that was trained on recognizing animals
and apply transfer learning to train the model to recognize breeds of dogs with your
own images of dogs. Features to recognize animals can be transferred over for your use
case.

Transfer learning is very useful when data collection and annotation is difficult or
expensive. With transfer learning, less data is required to train accurately as compared to
if you were to train from scratch. This reduces the overall training time and cost. Because
you are running over a smaller dataset, you can train quicker and minimize the cost of
collecting and annotating data. To learn more about transfer learning, read this blog.

https://blogs.nvidia.com/blog/2019/02/07/what-is-transfer-learning/


Overview

www.nvidia.com
NVIDIA Transfer Learning Toolkit for Intelligent Video
Analytics

DU-09243-003 _v2.0 | 2

NVIDIA Transfer Learning Toolkit

NVIDIA Transfer Learning Toolkit (TLT) is a simple, easy-to-use training toolkit that
requires minimal to zero coding to create vision AI models using the user's own data.
Using TLT users can transfer learning from NVIDIA pre-trained models to your own
model. Users can add new classes to an existing pre-trained model, or they can re-train
the model to adapt to their use case. Users can use model pruning capability to reduce
the overall size of the model.

Getting started with TLT is very easy. Training AI models using TLT does not require
expertise in AI or deep learning. Users with basic knowledge of deep learning, can
get started building their own custom models using a simple spec file and pre-trained
model.

https://developer.nvidia.com/transfer-learning-toolkit
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Transfer Learning Toolkit is a simplified toolkit where users start with our pre-trained
models and their own custom dataset. Transfer learning toolkit is available in a docker
container that can be downloaded from NGC, NVIDIA GPU cloud registry. The
container comes with all the dependencies required to train. For more information about
TLT requirements and installation, see TLT requirements and installation. The pre-
trained models can also be downloaded from NGC. The toolkit consists of a command
line interface (CLI) that can be run from the Jupyter notebooks, which are packaged
inside the docker container. TLT consists of a few simple commands such as data
augmentation, training, pruning and model export. The output of TLT is a trained
model that can be deployed for inference on NVIDIA edge devices usingDeepStream
andTensorRT.

TLT builds on top of CUDA-X stack which contains all the lower level NVIDIA libraries.
These are NVIDIA container RT for GPU acceleration from within the containers,
CUDA and cuDNN for a lot of DL operations and TensorRT for generating TensorRT
compatible models for deployment. TensorRT is NVIDIA’s inference runtime which
optimizes the runtime model based on the targeted hardware. The models that are
generated with TLT are completely accelerated with TensorRT, so users can expect
maximum inference performance without any extra effort.

TLT is designed to run on x86 systems with a NVIDIA GPU such as a GPU-powered
workstation or a DGX system or can be run in any cloud with a NVIDIA GPU. For
inference, models can be deployed on any edge device such as the embedded Jetson
platform or in data center GPUs like T4.

Model pruning is one of the key differentiators for TLT. Pruning means removing nodes
in the neural network which contribute less to the overall accuracy of the model. With
pruning, users can reduce the overall size of the model significantly which results
in much lower memory footprint and higher inference throughput, which are very
important for edge deployment. The graph below shows the performance gain from
going from an unpruned model to a pruned model on NVIDIA T4. TrafficCamNet,

https://ngc.nvidia.com/catalog/containers/nvidia:tlt-streamanalytics
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/tensorrt
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DashCamNet and PeopleNet are 3 of the custom pre-trained models that are available
with NGC. More on these models below.

Pre-trained models

There are 2 types of pre-trained models that users can start with. One is the purpose-
built pre-trained models. These are highly accurate models that are trained on millions
of objects for a specific task. The other type of models are meta-architecture vision
models. The pre-trained weights for these models merely act as a starting point to build
more complex models. These pre-trained weights are trained on Open image dataset
and they provide a much better starting point for training versus starting from scratch
or starting from random weights. With the latter choice, users can choose from 80+
permutations of model architecture and backbone. See the illustration below.

The purpose-built models are built for high accuracy and performance. These models
can be deployed out of the box for applications in smart city or smart places or can also
be used to re-train with user’s own data. All 6 models are trained on millions of objects
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and can achieve more than 80% accuracy on our test data. More information about each
of these models is available inPurpose built models or in the individual model cards.
Typical use cases and some model KPIs are provided in the table below.PeopleNet can
be used for detecting and counting people in smart buildings, retail, hospitals, etc. For
smart traffic applications,TrafficCamNet andDashCamNet can be used to detect and
track vehicles on the road.

Model Name Network
Architecture

Number of classes Accuracy Use Case

TrafficCamNet DetectNet_v2-
ResNet18

4 83.5% Detect and track
cars.

PeopleNet DetectNet_v2-
ResNet18/34

3 84% People counting,
heatmap
generation, social
distancing.

DashCamNet DetectNet_v2-
ResNet18

4 80% Identify objects
from a moving
object.

FaceDetectIR DetectNet_v2-
ResNet18

1 96% Detect face in a
dark environment
with IR camera.

VehicleMakeNet ResNet18 20 91% Classifying car
models.

VehicleTypeNet ResNet18 6 96% Classifying type
of cars as coupe,
sedan, truck, etc.

In the architecture specific models bucket, users can train an image classification model,
an object detection model or an instance segmentation model. For classification, users
can train using one of 13 available architectures such as ResNet, VGG, MobileNet,
GoogLeNet, SqueezeNet or DarkNet architecture. For object detection tasks, users can
choose from wildly popular YOLOV3, FasterRCNN, SSD as well as RetinaNet, DSSD
and NVIDIA’s own DetectNet_v2 architecture. Finally, for instance segmentation, users
can use the MaskRCNN architecture. This gives users the flexibility and control to
build AI models for any number of applications, from smaller light weight models
for edge GPUs to larger models for more complex tasks. For all the permutations and
combinations, see the table below and see Supported model architectures.

https://docs.nvidia.com/metropolis/TLT/tlt-getting-started-guide/index.html#purpose_built_models
https://ngc.nvidia.com/catalog/models/nvidia:tlt_peoplenet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_trafficcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_dashcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_trafficcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_peoplenet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_dashcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_facedetectir
https://ngc.nvidia.com/catalog/models/nvidia:tlt_vehiclemakenet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_vehicletypenet
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TLT workflow

The goal of TLT is to train and fine-tune a model using the user's own dataset. In the
workflow diagram shown below, a user typically starts with a pre-trained model
from NGC; either the highly accurate purpose-built model or just the pre-trained
weights of the architecture of their choice. The other input is the user's own dataset.
The dataset is fed into the data converter, which can augment the data while training
to introduce variations in the dataset. This is very important in training as the data
variation improves the overall quality of the model and prevents overfitting. Users can
also do offline augmentation with TLT, where the dataset is augmented before training.
More information about offline augmentation is provided in Augmenting a dataset.

Once the dataset is prepared and augmented, the next step in the training process is to
start training. The training hyperparameters are chosen through the spec file. To learn
about all the knobs that users can tune, see Creating an experiment spec file. After the
first training phase, users evaluate the model against a test set to see how the model
works on the data it has never seen before. Once the model is deemed accurate, the next
step is model pruning. If accuracy is not as expected, then the user might have to tune
some hyperparameters and re-train. Training is a very iterative process, so you might
have to try a few times before converging on the right model.

In model pruning, TLT will algorithmically remove neurons from the neural network
which does not contribute significantly to the overall accuracy. The model pruning step
will inadvertently reduce the accuracy of the model. So after pruning, the next step is
to re-train the model on the same dataset to recover the lost accuracy. After re-train, the
user will evaluate the model on the same test set. If the accuracy is back to what was
before pruning, then the user can move to the model export step. At this point, the user
feels confident in accuracy of the model as well as inference performance. The exported
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model will be in ‘.etlt’ format which can be deployed directly on any NVIDIA GPU
using DeepStream and TensorRT. In the export step, users can optionally generate an
INT8 calibration cache that quantizes the floating-point weights to integer. Running
inference at INT8 precision can provide more than 2x performance over FP16 or FP32
precision without sacrificing the accuracy of the model. To learn more about model
export and deployment, see Exporting the model and Deploying to DeepStream.

To learn more about how to use TLT, read the technical blogs which provide step-by-
step guide to training with TLT:

‣ Learn toTrain with PeopleNet and other pre-trained model using TLT
‣ Learn how to trainInstance segmentation model using MaskRCNN with TLT
‣ Learn how to improve INT8 accuracy usingQuantization aware training(QAT) with

TLT

Use the Transfer Learning Toolkit to perform these tasks:

‣ Download the model - Download pre-trained models.
‣ Prepare the dataset - Evaluate models for target predictions.
‣ Train the model - Train or re-train data to create and refine models.
‣ Evaluate the model - Evaluate models for target predictions.
‣ Prune the model - Prune models to reduce size.
‣ Export the model - Export models for TensorRT inference.

https://developer.nvidia.com/blog/training-custom-pretrained-models-using-tlt/
https://developer.nvidia.com/blog/training-instance-segmentation-models-using-maskrcnn-on-the-transfer-learning-toolkit/
https://developer.nvidia.com/blog/improving-int8-accuracy-using-quantization-aware-training-and-the-transfer-learning-toolkit/
https://developer.nvidia.com/blog/improving-int8-accuracy-using-quantization-aware-training-and-the-transfer-learning-toolkit/
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Chapter 2.
TRANSFER LEARNING TOOLKIT
REQUIREMENTS AND INSTALLATION

Using the Transfer Learning Toolkit requires the following:

Hardware Requirements

Minimum

‣ 4 GB system RAM
‣ 4 GB of GPU RAM
‣ Single core CPU
‣ 1 NVIDIA GPU
‣ 50 GB of HDD space

Recommended

‣ 32 GB system RAM
‣ 32 GB of GPU RAM
‣ 8 core CPU
‣ 1 NVIDIA V100 GPU
‣ 100 GB of SSD space

Currently TLT is not supported on GA-100 GPU’s.

Software Requirements

‣ Ubuntu 18.04 LTS
‣ NVIDIA GPU Cloud account and API key - https://ngc.nvidia.com/
‣ docker-ce installed, https://docs.docker.com/install/linux/docker-ce/ubuntu/
‣ Nvidia docker installed, instructions at https://github.com/NVIDIA/nvidia-docker

https://ngc.nvidia.com/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://github.com/NVIDIA/nvidia-docker
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‣ NVIDIA GPU driver v410.xx or above

DeepStream 5.0 - NVIDIA SDK for IVA inference https://developer.nvidia.com/
deepstream-sdk is recommended.

Installation Prerequisites

‣ Install Docker. See: https://www.docker.com/.
‣ NVIDIA GPU driver v410.xx or above. Download from https://www.nvidia.com/

Download/index.aspx?lang=en-us.
‣ Install NVIDIA Docker from: https://github.com/NVIDIA/nvidia-docker.

Get an NGC API key

‣ NVIDIA GPU Cloud account and API key - https://ngc.nvidia.com/

 1. Go to NGC and click the Transfer Learning Toolkit container in the Catalog
tab. This message is displayed, Sign in to access the PULL feature of this
repository.

 2. Enter your email address and click Next or click Create an Account.
 3. Choose your organization when prompted for Organization/Team.
 4. Click Sign In.
 5. Select the Containers tab on the left navigation pane and click the Transfer

Learning Toolkit tile.

Download the docker container

‣ Execute docker login nvcr.io from the command line and enter these login
credentials:

‣ Username: $oauthtoken
‣ Password: YOUR_NGC_API_KEY

‣ Execute docker pull nvcr.io/nvidia/tlt-streamanalytics:<version>

2.1. Installation
The Transfer Learning Toolkit (TLT) is available to download from the NGC. You must
have an NGC account and an API key associated with your account. See the Installation
Prerequisites section in Chapter 2 for details on creating an NGC account and obtaining
an API key.

2.1.1. Running the Transfer Learning Toolkit
Use this procedure to run the Transfer Learning Toolkit.

https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://www.docker.com/
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://github.com/NVIDIA/nvidia-docker
https://ngc.nvidia.com/
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‣ Run the toolkit: Run the toolkit using this command. The docker starts in the /
workplace folder by default.
docker run --runtime=nvidia -it nvcr.io/nvidia/tlt-
streamanalytics:<version> /bin/bash

‣ Access local directories: To access local directories from inside the docker you
need to mount them in the docker. Use this option, -v <source_dir>:<mount_dir>, to
mount local directories in the docker. For example the command to run the toolkit
mounting the  /home/<username>/tlt-experiments directory in your disk
to the /workspace/tlt-experiments in docker would be:
docker run --runtime=nvidia -it -v /home/<username>/tlt-experiments:/
workspace/tlt-experiments nvcr.io/nvidia/tlt-streamanalytics:<version> /bin/
bash

It is useful to mount separate volumes for the dataset and the experiment results
so that they persist outside of the docker. In this way the data is preserved after the
docker is closed. Any data that is generated to, or referred from a directory inside
the docker, will be lost if it is not either copied out of the docker, or written to or
read from volumes outside of the docker.

‣ Use the examples: Examples of DetectNet_v2, SSD, DSSD, RetinaNet, YOLOv3
and FasterRCNN with ResNet18 backbone for detecting objects that are available
as Jupyter Notebooks. To run the examples that are available, enable the jupyter
notebook included in the docker to run in your browser:
docker run --runtime=nvidia -it -v /home/<username>/tlt-experiments:/
workspace/tlt-experiments -p 8888:8888 nvcr.io/nvidia/tlt-
streamanalytics:<version>

Go to the examples folder: cd examples/

Execute this command from inside the docker to start the jupyter notebook:
jupyter notebook --ip 0.0.0.0 --allow-root

Copy and paste the link produced from this command into your browser to access
the notebook. The /workspace/examples folder will contain a demo notebook.

For all the detector notebooks, the tlt-train tool does not support training on
images of multiple resolutions, or resizing images during training. All of the images
must be resized offline to the final training size and the corresponding bounding boxes
must be scaled accordingly.

2.1.2. Downloading the models
The Transfer Learning Toolkit docker gives you access to a repository of pretrained
models that can serve as a starting point when training deep neural networks. These
models are hosted on the NGC. The TLT docker interfaces with NGC via the NGC
Catalog CLI. More information about the NGC Catalog CLI is available here: https://
docs.nvidia.com/ngc/ngc-catalog-cli-user-guide/index.html". Please follow the
instructions given here to configure the NGC CLI and download the models.

Configure the NGC API key

http://jupyter.org/
http://jupyter.org/
https://www.google.com/url?q=https://docs.nvidia.com/ngc/ngc-catalog-cli-user-guide/index.html&sa=D&ust=1568867922753000&usg=AFQjCNH4fbpKL8aoiv2Ud6SvSLfTVy18Bw
https://www.google.com/url?q=https://docs.nvidia.com/ngc/ngc-catalog-cli-user-guide/index.html&sa=D&ust=1568867922753000&usg=AFQjCNH4fbpKL8aoiv2Ud6SvSLfTVy18Bw
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Using the NGC API Key obtained in Transfer Learning Toolkit Requirements and
Installation, configure the enclosed ngc cli by executing this command and following the
prompts:

ngc config set

Getting a list of models

Use this command to get a list of models that are hosted in the NGC model registry:
ngc registry model list <model_glob_string>

Here is an example of using this command:
ngc registry model list nvidia/tlt_pretrained_*

All our classification models have names based on this template nvidia/
tlt_pretrained_classification:<template>.

Downloading a model

Use this command to download the model you have chosen from the NGC model
registry:
ngc registry model download-version <ORG/model_name:version> -dest
 <path_to_download_dir>

For example, use this command to download the resnet 18 classification model to the
$USER_EXPERIMENT_DIR directory.
ngc registry model download-version 
nvidia/tlt_pretrained_classification:resnet18 --dest 
$USER_EXPERIMENT_DIR/pretrained_resnet18

Downloaded 82.41 MB in 9s, Download speed: 9.14 MB/s                
----------------------------------------------------
Transfer id: tlt_iva_classification_resnet18_v1 Download status: Completed.
Downloaded local path: /workspace/tlt-experiments/pretrained_resnet18/
tlt_resnet18_classification_v1
Total files downloaded: 2 
Total downloaded size: 82.41 MB
Started at: 2019-07-16 01:29:53.028400
Completed at: 2019-07-16 01:30:02.053016
Duration taken: 9s seconds
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Chapter 3.
SUPPORTED MODEL ARCHITECTURE

Transfer Learning Toolkit supports image classification, 6 object detection architectures,
including: YOLOV3, FasterRCNN, SSD, DSSD, RetinaNet, and DetectNet_v2 and
1 instance segmentation architecture, namely MaskRCNN. In addition, there are 13
classification backbones supported by TLT. For a complete list of all the permutations
that are supported by TLT, please see the matrix below:

Image
Classification

Object Detection Instance
Segmentation

Backbone DetectNet_V2FasterRCNNSSD YOLOV3 RetinaNet DSSD MaskRCNN

ResNet10/18/34/50/101Yes Yes Yes Yes Yes Yes Yes Yes

VGG
16/19

Yes Yes Yes Yes Yes Yes Yes

GoogLeNet Yes Yes Yes Yes Yes Yes Yes

MobileNet
V1/V2

Yes Yes Yes Yes Yes Yes Yes

SqueezeNetYes Yes No Yes Yes Yes Yes

DarkNet
19/53

Yes Yes Yes Yes Yes Yes Yes

Model Requirements

Classification

‣ Input size: 3 * H * W (W, H >= 16)
‣ Input format: JPG, JPEG, PNG

Classification input images do not need to be manually resized. The input dataloader
resizes images as needed.

Object Detection

DetectNet_v2
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‣ Input size: C * W * H (where C = 1 or 3, W > =480, H >=272 and W, H are multiples of
16)

‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

FasterRCNN

‣ Input size: C * W * H (where C = 1 or 3; W > =160; H >=160)
‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

SSD

‣ Input size: C * W * H (where C = 1 or 3, W >= 128, H >= 128, W, H are multiples of 32)
‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

DSSD

‣ Input size: C * W * H (where C = 1 or 3, W >= 128, H >= 128, W, H are multiples of 32)
‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

YOLOv3

‣ Input size: C * W * H (where C = 1 or 3, W >= 128, H >= 128, W, H are multiples of 32)
‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.
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RetinaNet

‣ Input size: C * W * H (where C = 1 or 3, W >= 128, H >= 128, W, H are multiples of 32)
‣ Image format: JPG, JPEG, PNG
‣ Label format: KITTI detection

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

Instance Segmentation

MaskRCNN

‣ Input size: C * W * H (where C = 3, W > =128, H >=128 and W, H are multiples of 32)
‣ Image format: JPG
‣ Label format: COCO detection

Training

The TLT container contains Jupyter notebooks and the necessary spec files to train
any network combination. The pre-trained weight for each backbone is provided on
NGC. The pre-trained model is trained on Open image dataset. The pre-trained weights
provide a great starting point for applying transfer learning on your own dataset.

To get started, first choose the type of model that you want to train, then go to the
appropriate model card on NGC and then choose one of the supported backbones.

Model to train NGC model card Supported Backbone

YOLOv3

SSD

FasterRCNN

RetinaNet

DSSD

TLT object detection resnet10, resnet18, resnet34,
resnet50, resnet101, vgg16,
vgg19, googlenet, mobilenet_v1,
mobilenet_v2, squeezenet,
darknet19, darknet53

DetectNet_v2 TLT DetectNet_v2 detection resnet10, resnet18, resnet34,
resnet50, resnet101, vgg16,
vgg19, googlenet, mobilenet_v1,
mobilenet_v2, squeezenet,
darknet19, darknet53

MaskRCNN TLT instance segmentation resnet10, resnet18, resnet34,
resnet50, resnet101

Image Classification TLT image classification resnet10, resnet18, resnet34,
resnet50, resnet101, vgg16,
vgg19, googlenet, mobilenet_v1,
mobilenet_v2, squeezenet,
darknet19, darknet53

Once you pick the appropriate pre-trained model, follow the TLT workflow to take your
dataset and pre-trained model and export a tuned model that is adapted to your use
case. Chapters 4 to 11 walks through all the steps in training.

https://ngc.nvidia.com/catalog/models/nvidia:tlt_pretrained_object_detection
https://ngc.nvidia.com/catalog/models/nvidia:tlt_pretrained_detectnet_v2
https://ngc.nvidia.com/catalog/models/nvidia:tlt_instance_segmentation
https://ngc.nvidia.com/catalog/models/nvidia:tlt_pretrained_classification
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Deployment

You can deploy your trained model on any edge device using DeepStream and
TensorRT. See Deploying to DeepStream for deployment instructions.

https://docs.google.com/document/d/1xm5bYSQOW8z5ZZGYKAEzQq6vCPl-OQYyGQseC1QN798/edit?ts=5f0cd7c3#heading=h.clqwx3l3t7tj
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Chapter 4.
PURPOSE-BUILT MODELS

The purpose-built AI models are primarily built for applications in smart cities, parking
management, smart buildings and are trained on millions of images. Both unpruned
and pruned versions of these models are available on NGC. The unpruned models are
used with TLT to re-train with your dataset. On the other hand, pruned models are
deployment ready that allows you to directly deploy on your edge device. In addition,
the pruned model also contains a calibration table for INT8 precision. The pruned INT8
model will provide the highest inference throughput.

The table below shows the network architecture and accuracy measured on our dataset.

Model Name Network Architecture Number of classes Accuracy

TrafficCamNet DetectNet_v2-ResNet18 4 83.5%

DetectNet_v2-ResNet34 3 84%PeopleNet

DetectNet_v2-ResNet18 3 80%

DashCamNet DetectNet_v2-ResNet18 4 80%

FaceDetect-IR DetectNet_v2-ResNet18 1 96%

VehicleMakeNet ResNet18 20 91%

VehicleTypeNet ResNet18 6 96%

Training

The PeopleNet, TrafficCamNet, DashCamNet and FaceDetect-IR are detection models
based on DetectNet_v2 and either ResNet18 or ResNet34 backbone. To re-train
these models with your data, use the unpruned model from NGC and follow the
DetectNet_v2 object detection training guidelines from chapters Preparing input data
structure to Exporting the model. The entire training workflow is given in the prior
section.

The VehicleMakeNet and VehicleTypeNet are classification models based on the
ResNet18 backbone. To re-train these models, use the unpruned model from NGC and
follow the Image classification training guideline from chapters Preparing input data
structure to Exporting the model.

Deployment
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You can deploy your own trained or the provided pruned model on any edge device
using DeepStream. The deployment instructions are provided in Deploying to
DeepStream.

TrafficCamNet

TrafficCamNet is a 4-class object detection network built on NVIDIA’s detectnet_v2
architecture with ResNet18 as the backbone feature extractor. It’s trained on 544x960
RGB images to detect cars, persons, road signs and two wheelers. The dataset contains
images from real traffic intersections from cities in the US (at about 20ft vantage point).
This model is trained to overcome the problem of separating a line of cars as they come
to stop at a red traffic light or a stop sign. This model is ideal for smart city applications,
where you want to count the number of cars on the road and understand flow of traffic.

PeopleNet

PeopleNet is a 3-class object detection network built on NVIDIA’s detectnet_v2
architecture with ResNet34 as the backbone feature extractor. It’s trained on 544x960
RGB images to detect person, bag, and face. Several million images of both indoor and
outdoor scenes were labeled in-house to adapt to a variety of use cases, such as airports,
shopping malls and retail stores. This dataset contains images from various vantage
points. PeopleNet can be used for smart places or building applications where you
need to accurately count people in a crowded environment for security or higher level
business insights.

DashCamNet

DashCamNet is a 4-class object detection network built on NVIDIA’s detectnet_v2
architecture with ResNet18 as the backbone feature extractor. It’s trained on 544x960
RGB images to detect cars, pedestrians, traffic signs and two wheelers. The training data
for this network contains real images collected, annotated and curated in-house from
different dashboard cameras in cars at about 4-5ft height in vantage point. Unlike the
other models the camera in this case is moving. The use case for this model is to identify
objects from a moving object, which can be a car or a robot.

FaceDetect-IR

FaceDetect_IR is a single class face detection network built on NVIDIA’s detectnet_v2
architecture with ResNet18 as the backbone feature extractor. The model is trained on
384x240x3 IR (infrared) images augmented with synthetic noises and is trained for use
cases where the person’s face is close to the camera, such as a laptop camera during
video conferencing or a camera placed inside a vehicle to observe a distracted driver.
When infrared illuminators are used this model can continue to work even when visible
light conditions are considered too dark for normal color cameras.

VehicleMakeNet

VehicleMakeNet is a classification network based on ResNet18, which aims to
classify car images of size 224 x 224. This model can identify 20 popular car makes.
VehicleMakeNet is generally cascaded with DashCamNet or TrafficCamNet for smart
city applications. For example, DashCamNet or TrafficCamNet acts as a primary
detector, detecting the objects of interest and for each detected car the VehicleMakeNet
acts as a secondary classifier determining the make of the car. Businesses such as smart

https://ngc.nvidia.com/catalog/models/nvidia:tlt_trafficcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_peoplenet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_dashcamnet
https://ngc.nvidia.com/catalog/models/nvidia:tlt_facedetectir
https://ngc.nvidia.com/catalog/models/nvidia:tlt_vehiclemakenet
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parking or gas stations can use the insights of the make of vehicles to understand their
customers.

VehicleTypeNet

VehicleTypeNet is a classification network based on ResNet18, which aims to classify
cropped vehicle images of size 224 x 224 into 6 classes: Coupe, Large Vehicle, Sedan,
SUV, Truck, and Vans. The typical use case for this model is in smart city applications
such as smart garage or toll booth, where you can charge based on size of the vehicle.

https://ngc.nvidia.com/catalog/models/nvidia:tlt_vehicletypenet
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Chapter 5.
AUGMENTING A DATASET

Training a deep neural network can be a daunting task, and the most important
component of training a model is the data. Acquiring curated and annotated dataset can
be a very tiring and manual process, involving thousands of man hours of painstaking
labelling. In spite of planning and collecting data, it is very difficult to estimate all the
corner cases that a network may go through, and repeating the process of collecting the
missing data and annotating is very expensive and has long turnover times.

Online augmentation in the training data loader is a good way to increase the variation
in the dataset. However, the augmented data is generated randomly based on the
distribution the data loader follows when sampling the data and in order to achieve
good accuracy, the model may need to be trained for a long time. Inorder to circumvent
this and generate a dataset with the required augmentations and give control to the user,
TLT provides an offline augmentation tool called tlt-augment. Offline augmentation
can dramatically increase the size of the dataset when collecting and labeling data
is expensive or not possible. The tlt-augment tools provides several custom GPU
accelerated augmentation routines categorized into:

 1. Spatial augmentation
 2. Color space augmentation
 3. Image Blur

Spatial augmentation comprises routines where data is augmented in space. The
following spatial augmentation operations are supported in TLT.

 1. Rotate
 2. Resize
 3. Translate
 4. Shear
 5. Flip

Color space augmentation comprises routines where the image data is augmented in the
color space. The following color augmentations operators are supported.

 1. Hue Rotation
 2. Brightness offset
 3. Contrast shift
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Along with the above mentioned augmentation operations tlt-augment also enables
use to blur images, using a Gaussian blur operator. More information about the
operation is described in Blur config.

All augmentation routines currently provided with tlt-augment are supported only
for an object detection dataset. The spatial augmentation routines are applied to the
images as well as the labelled data coordinates, while the color augmentation routines
and channel-wise blue operator is applied only to images as the object labels are not
affected. The sample workflow of using tlt-augment is as follows:

The data is expected in KITTI format, as described in Data input for objection
detection. The following sections describe how to use the augmentation tool.

5.1. Configuring the augmentor
The augmentor has several components which the user can configure by using a
simple protobuf based configuration file. The configuration file is divided into 4 major
components.

 1. Spatial augmentation config
 2. Color augmentation config
 3. Blur config
 4. Data dimensions - output image width, output image height, output image channel,

image extension.

This configuration file contains several nested protobuf elements, and global parameters
which are defined below.

Parameter Datatype Description Supported Values

spatial_config Protobuf message This protobuf
message configures
the spatial
augmentation.

Protobuf definition
provided in Spatial
augmentation
config.
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color_config Protobuf message This protobuf
message configures
the color space
augmentation
operator.

Protobuf definition
provided in Color
augmentation
config.

blur_config Protobuf message This protobuf
message configures
the gaussian blue
operator to be
applied on the
image. The blur is
computed channel
wise and then
concatenated based
on the number of
image channels.

Protobuf definition
provided in Blur
config.

dataset_config Protobuf message This protobuf
message configures
the relative paths
of the images and
labels path from
the input dataset
root defined over
the tlt-augment
command line.

Protobuf definition
provided in Dataset
config.

output_image_width int32 This parameter
defines the width of
the output image.

output_image_height int32 This parameter
defines the height of
the output image.

output_image_channelint32 This parameter
defines the number
of channels in the
output image.

1, 3

image_extension string The extension of the
input image. Note
that all the images
in the input dataset
are expected to be of
the same extension.

.png, .jpeg, .jpg
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5.1.1. Spatial augmentation config
Spatial augmentation config contains parameters to configure the spatial augmentation
routines. This is a nested protobuf element called spatial_config containing protobuf
elements for all the spatial augmentation operations.

Parameter Datatype Description Supported Values

rotation_config Protobuf message This protobuf
message configures
the rotate
augmentation
operator. Defining
this activates
rotation.

{

angle: 0.5

units: degrees

}

See Rotation config.

flip_config Protobuf message This protobuf
message
configures the
flip augmentation
operator. Defining
this activates flip
along the horizontal
and/or vertical axes.

{

flip_vertical: true

flip_horizontal: true

}

See Flip config.

translation_config Protobuf message This protobuf
message configures
the translation
augmentation
operator. Defining
this activates
translating the
images across the x
and/or y axes.

{

translate_x: 8

translate_y: 8

}

See Translation
config.

shear_config Protobuf message This protobuf
message configures
the shear
augmentation
operator. Defining
this activates adds a
shear to the images
across the x and/or y
axes.

{

shear_ratio_x: 0.2

shear_ratio_y: 0.2

}

See Shear config.

The augmentation operators may be enabled by simply defining the corresponding
proto associated with it. When defining multiple proto elements, it implies that all the
augmentation operations are cascaded.
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If you don’t wish to introduce any of the supported augmentation operations, simply
omit the field you wish to drop. The configurable parameters for the individual spatial
augmentation operators are mentioned in the table below.

5.1.1.1. Rotation config

The rotation operation rotates the image at an angle. The transformation matrix for shear
operation is computed as:
[x_new, y_new, 1] = [x, y, 1] * [[cos(angle) sin(angle)  zero]
                                 [-sin(angle)         cos(angle)  zero]
                                 [x_t           y_t          one]]
Where x_t, y_t are defined as
x_t = height * sin(angle) / 2.0 - width * cos(angle) / 2.0 + width / 2.0
y_t = -1 * height * cos(angle) / 2.0 + height / 2.0 - width * sin_(angle) / 2.0
Here height = height of the output image, width = width of the output image.

Parameter Datatype Description Supported Values

angle float The angle of the
rotation to be
applied to the image
and the coordinates.

+/- 0 - 360 (degrees)

+/- 0 - 2ℼ (radians)

units string The unit in which
the angle parameter
mentioned below is
mentioned.

“degrees”,
“radians”

5.1.1.2. Shear config

The shear operation introduces a slant to the object along the x or the y dimension. The
transformation matrix for shear operation is computed as:
[x_new, y_new, 1] = [x, y, 1] * [[1.0             shear_ratio_y,    0],
                                    [shear_ratio_x,       1.0,         0],
                                    [x_t,                 y_t,       1.0]]
X_t = -height * shear_ratio_x / 2.
Y_t = -width * shear_ratio_y / 2.
Here height = height of the output image, width = width of the output image.

Parameter Datatype Description Supported Values

shear_ratio_x float32 The amount of
horizontal shift per
y row.

shear_ratio_y float32 The amount of
vertical shift per x
column.

5.1.1.3. Flip config

This element configures the flip operator of tlt-augment. The operator flips an image and
the bounding box coordinates along the horizontal and vertical axis.
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Parameter Datatype Description Supported Values

flip_horizontal bool The flag to enable
flipping an image
horizontally.

true, false

flip_vertical bool The flag to enable
flipping an image
vertically.

true, false

Please note that at least one of the two flags must be set when defining this parameter.

5.1.1.4. Translation config

This protobuf message configures the translation operator for tlt-augment. The operator
translates the image and polygon coordinates along the x and/or y axis.

Parameter Datatype Description Supported Values

translate_x int The number of
pixels to translate
the image along the
x axis.

0 - image_width

translate_y int The number of
pixels to translate
the image along the
y axis.

0 - image_height

5.1.2. Color augmentation config
Color augmentation config contains parameters to configure the color space
augmentation routines. This is a nested protobuf element called color_config
containing protobuf elements for all the color augmentation operations.

Parameter Datatype Description Supported Values

hue_saturation_configProtobuf message This augmentation
operator applies
hue rotation and
color saturation
augmentation.

{

hue_rotation_angle:
30

saturation_shift: 1.0

}

See Hue saturation
config.

contrast_config Protobuf message This augmentation
operator applies
contrast scaling.

{

contrast: 0.0
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center: 127.5

}

See Contrast config.

brightness_config Protobuf message This protobuf
message configures
the translation
augmentation
operator. Defining
this activates
translating the
images across the x
and/or y axes.

{

translate_x: 8

translate_y: 8

}

SeeBrightness config

The augmentation operators may be enabled by simply defining the corresponding
proto associated with it. When defining multiple proto elements, it implies that all the
augmentation operations are cascaded.

If you don’t want to introduce any of the supported augmentation operations, simply
omit the field you wish to drop. The configurable parameters for the individual color
augmentation operators are

mentioned in the table below.

5.1.2.1. Hue saturation config

This augmentation operator applies a color space manipulation by converting the RGB
image to HSV applying hue rotation and saturation shift and then returning with the
corresponding RGB image.

Parameter Datatype Description Supported Values

hue_rotation_angle float32 hue rotation in
degrees (scalar or
vector). A value
of 0.0 (modulo
360) leaves the hue
unchanged.

0 - 360 (the angles
are computed as
angle % 360)

saturation_shift float32 Saturation shift
multiplier. A
value of 1.0 leaves
the saturation
unchanged. A value
of 0 removes all
saturation from the
image and makes
all channels equal in
value.

0.0 - 1.0
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5.1.2.2. Brightness config

This augmentation operator applies a channel-wise brightness shift.

Parameter Datatype Description Supported Values

offset float32 Offset value per
color channel

0 - 255

5.1.2.3. Contrast config

This augmentation operator applies contrast scaling across a center point to an image.

Parameter Datatype Description Supported Values

contrast float32 Contrast scale value.
A value 0 leaves the
contrast unchanged.

0 - 1.0

center float32 Center value for
the image. In our
case, the images
are scaled between
0-255 (8 bit images),
therefore setting a
value of 127.5 is the
common value.

0.0 - 1.0

5.1.3. Dataset config
dataset_config {
  data_sources: {
    tfrecords_path: "/path/to/tfrecords/root/*"
    image_directory_path: "/path/to/dataset/root"
  }
  image_extension: "png"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "pedestrian"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "cyclist"
      value: "cyclist"
  }
  target_class_mapping {
      key: "van"
      value: "car"
  }
  target_class_mapping {
      key: "person_sitting"
      value: "pedestrian"
  }
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  validation_fold: 0
}

See Dataloader for more information.

5.1.4. Blur config
This protobuf element configures the gaussian blur operator to an image. A gaussian
kernel is formulated based on the parameters mentioned below and then a 2D
convolution is performed between this image and kernel per channel.

Parameter Datatype Description Supported Values

size int Size of the kernel to
be convolved.

>0

std float Standard deviation
of the gaussian filter
to blurring.

>0.0

As an example, a configuration file to augment the image by

 1. rotate an image by 5 deg
 2. shear along x axis by a ratio of 0.3
 3. Translate along x axis by 8 pixels
# Spec file for tlt-augment.
spatial_config{
  rotation_config{
    angle: 5.0
    units: "degrees"
  }
  shear_config{
    shear_ratio_x: 0.3
  }
  translation_config{
    translate_x: 8
  }
}
color_config{
  hue_saturation_config{
    hue_rotation_angle: 25.0
    saturation_shift: 1.0
  }
}
# Setting up dataset config.
dataset_config{
  image_path: "image_2"
  label_path: "label_2"
}
output_image_width: 1248
output_image_height: 384
output_image_channel: 3
image_extension: ".png"

https://docs.nvidia.com/metropolis/TLT/tlt-getting-started-guide/index.html#dataloader
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5.2. Running the augmentor tool
The tlt-augment tool has a simple command line interface and its usage may be
defined as follows.

tlt-augment [-h] -d /path/to/the/dataset/root 
                 -a /path/to/augmentation/spec/file
                 -o /path/to/the/augmented/output
                 [-v]

Here are the command line parameters:

‣ -h, --help: show this help message and exit
‣ -d, --dataset-folder: Path to the detection dataset
‣ -a, --augmentation-proto: Path to augmentation spec file.
‣ -o, --output-dataset: Path to the augmented output dataset.
‣ -v, --verbose: Flag to get detailed logs during the augmentation process.

The augmented images and labels are generated in the path mentioned in the output-
dataset parameter under the following directories.

‣ Augmented images: /path/to/augmented/output/images
‣ Augmented labels: /path/to/augmented/output/labels

When running tlt-augment with the verbose flag set, tlt-augment generates
augmented images with the bbox outputs rendered under /path/to/augmented/
output/images/annotated.

The log from a successful run of tlt-augment is mentioned below:
Using TensorFlow backend.
2020-07-10 16:19:18,980 [INFO] iva.augment.spec_handler.spec_loader: Merging
 specification from /path/to/augmentor/spec/file.txt
2020-07-10 16:19:18,992 [INFO] iva.augment.build_augmentor: Input dataset: /
path/to/input/dataset/root
2020-07-10 16:19:18,992 [INFO] iva.augment.build_augmentor: Output dataset: /
path/to/augmented/output
2%|███#                                    | 167/7481 [00:13<10:04, 12.09it/s]

The dataset thus generated may then be used with tlt-dataset-convert tool to be
converted to TFRecords so that it may be ingested by tlt-train. The details about
converting the data to TFRecords are described in Data input for object detection and
training a model with this dataset is described in chapter 6.

The tlt-augment only applies the spatial augmentation operators to the bounding
box coordinates fields in the label files of the input dataset, as only the bbox
coordinates are relevant to us. All the other fields are just propagated as from the
input labels to the output labels.

Sample rendered augmented images are shown below.

https://docs.google.com/document/d/1xm5bYSQOW8z5ZZGYKAEzQq6vCPl-OQYyGQseC1QN798/edit?ts=5f0cd7c3#heading=h.mhqhnihx1www
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Input image rotated by 5 degrees.

Image rotated by 5 degrees, hue rotation by 25 degrees and saturation shift of 0.0.
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Chapter 6.
PREPARING INPUT DATA STRUCTURE

The chapter provides instructions on preparing your data for use by the Transfer
Learning Toolkit (TLT).

6.1. Data input for classification
Classification expects a directory of images with the following structure, where each
class has its own directory with the class name. The naming convention for train/val/
test can be different, because the path of each set is individually specified in the spec
file. See Specification file for classification for more information.

|--dataset_root:
    |--train
        |--audi:
            |--1.jpg
            |--2.jpg
        |--bmw:
            |--01.jpg
            |--02.jpg
    |--val
        |--audi:
            |--3.jpg
            |--4.jpg
        |--bmw:
            |--03.jpg
            |--04.jpg
    |--test
        |--audi:
            |--5.jpg
            |--6.jpg
        |--bmw:
            |--05.jpg
            |--06.jpg

6.2. Data input for object detection
The object detection apps in TLT expect data in KITTI file format for training and
evaluation. For DetectNet_v2, SSD, DSSD, YOLOv3, and FasterRCNN, this data is
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converted to TFRecords for training. TFRecords help iterate faster through the data. The
steps to convert the data for TFRecords are covered in Conversion to TFRecords.

6.2.1. KITTI file format
Using the KITTI format requires data to be organized in this structure:

.
|--dataset root
  |-- images
      |-- 000000.jpg
      |-- 000001.jpg
            .
            .
      |-- xxxxxx.jpg
  |-- labels
      |-- 000000.txt
      |-- 000001.txt
            .
            .
      |-- xxxxxx.txt
  |-- kitti_seq_to_map.json

Here's a description of the structure:

‣ The images directory contains the images to train on.
‣ The labels directory contains the labels to the corresponding images. Details of this

file are included in the Label files section.

The images and labels have the same file id's before the extension. The image to
label correspondence is maintained using this file name.

‣ kitti_seq_to_map.json: This file contains a sequence to frame id mapping for
the frames in the images directory. This is an optional file, and is useful if the data
needs to be split into N folds sequence wise. In case the data is to be split into a
random 80:20 train:val split, then this file may be ignored.

All the images and labels in the training dataset should be of the same resolution. For
DetectNet_v2, SSD, DSSD, YOLOv3 and FasterRCNN notebooks, the tlt-train tool
does not support training on images of multiple resolutions, or resizing images during
training. All of the images must be resized offline to the final training size and the
corresponding bounding boxes must be scaled accordingly.

6.2.2. Label files
A KITTI format label file is a simple text file containing one line per object. Each line has
multiple fields. Here is a description of these fields:

Num
elements

Parameter
name

Description Type Range Example

1 Class names The class
to which

String N/A Person, car,
Road_Sign
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Num
elements

Parameter
name

Description Type Range Example

the object
belongs.

1 Truncation How much
of the object
has left
image
boundaries.

Float 0.0, 0.1 0.0

1 Occlusion Occlusion
state [ 0 =
fully visible,
1 = partly
visible, 2
= largely
occluded, 3 =
unknown].

Integer [0,3] 2

1 Alpha Observation
Angle of
object

Float [-pi, pi] 0.146

4 Bounding
box
coordinates:
[xmin, ymin,
xmax, ymax]

Location of
the object in
the image

Float(0 based
index)

[0 to image
width],[0 to
image_height],
[top_left,
image_width],
[bottom_right,
image_height]

100 120

180 160

3 3-D
dimension

Height,
width,
length of the
object (in
meters)

Float N/A 1.65, 1.67,
3.64

3 Location 3-D object
location x, y,
z in camera
coordinates
(in meters)

Float N/A -0.65,1.71,
46.7

1 Rotation_y Rotation
ry around
the Y-axis
in camera
coordinates

Float [-pi, pi] -1.59
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The sum of the total number of elements per object is 15. Here is a sample text file:

car 0.00 0 -1.58 587.01 173.33 614.12 200.12 1.65 1.67 3.64 -0.65 1.71 46.70
 -1.59
cyclist 0.00 0 -2.46 665.45 160.00 717.93 217.99 1.72 0.47 1.65 2.45 1.35 22.10
 -2.35
pedestrian 0.00 2 0.21 423.17 173.67 433.17 224.03 1.60 0.38 0.30 -5.87 1.63
 23.11 -0.03

This indicates that in the image there are 3 objects with parameters mentioned as above.
Currently, for detection the toolkit only requires the class name and bbox coordinates
fields to be populated. This is because the TLT training pipe supports training only for
class and bbox coordinates. The remaining fields may be set to 0. Here is a sample file
for a custom annotated dataset:

car 0.00 0 0.00 587.01 173.33 614.12 200.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cyclist 0.00 0 0.00 665.45 160.00 717.93 217.99 0.00 0.00 0.00 0.00 0.00 0.00
 0.00
pedestrian 0.00 0 0.00 423.17 173.67 433.17 224.03 0.00 0.00 0.00 0.00 0.00 0.00
 0.00

6.2.3. Sequence mapping file
This is an optional json file that captures the mapping between the frames in images
directory and the names of video sequences from which these frames were extracted.
This information is needed while doing an N-fold split of the dataset. This way frames
from one sequence don't repeat in other folds and one of the folds for could be used for
validation. Here's an example of the json dictionary file.

{
  "video_sequence_name": [list of strings(frame idx)]
}

Here's an example of a kitti_seq_to_frames.json file with a sample dataset with six
sequences.

{
  "2011_09_28_drive_0165_sync": ["003193", "003185", "002857", "001864",
 "003838",
  "007320", "003476", "007308", "000337", "004165", "006573"],
  "2011_09_28_drive_0191_sync": ["005724", "002529", "004136", "005746"],
  "2011_09_28_drive_0179_sync": ["005107", "002485", "006089", "000695"],
  "2011_09_26_drive_0079_sync": ["005421", "000673", "002064", "000783",
 "003068"],
  "2011_09_28_drive_0035_sync": ["005540", "002424", "004949", "004996",
 "003969"],
  "2011_09_28_drive_0117_sync": ["007150", "003797", "002554", "001509"]  
}

6.3. Conversion to TFRecords
The SSD, DSSD, YOLOv3, FasterRCNN, and DetectNet_v2 apps, as mentioned in Data
input for object detection, require KITTI format data to be converted to TFRecords. To
do so, the Transfer Learning Toolkit includes the tlt-dataset-convert tool. This
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tool requires a configuration file as input. Configuration file details and sample usage
examples are included in the following sections.

6.3.1. Configuration file for dataset converter
The dataio conversion tool takes a spec file as input to define the parameters required to
convert a KITTI format data to the TFRecords that the detection models ingest. This is a
prototxt format file with two global parameters:

‣ kitti_config field: This is a nested prototxt configuration with multiple input
parameters.

‣ image_directory_path: Path to the dataset root. This image_dir_name is
appended to this path to get the input images, and must be the same path as
mentioned in the experiment spec file

Here are descriptions of the configurable parameters for the kitti_config field:

Parameter Datatype Default Description Supported
Values

root_directory

_path

string - Path to the
dataset root
directory

-

image_dir_name string - Relative path
to the directory
containing
images from the
path in root_

directory_path

-

label_dir_name string - Relative path
to the directory
containing
labels from the
path in root_

directory_path

-

partition_mode string - The method
employed when
partitioning
the data to
multiple folds.
Two methods
are supported:

‣ Random
partitioning:
Where
the data is
divided in

‣ random
‣ sequence
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Parameter Datatype Default Description Supported
Values

to 2 folds
namely,
train and
val. This
mode
requires
that the
val_split
parameter
be set.

‣ Sequence-
wise
partitioning:
Where
the data
is divided
into n
partitions
(defined by
num

_partitions
parameter)
based
on the
number of
sequences
available.

num_partitions int 2 (if
partition_mode
is random)

Number of
partitions to
split the data (N
folds). This field
is ignored when
the partition
model is set to
random, as by
default only 2
partitions are
generated. Val
and train. In
sequence mode
the data is split
into n-folds.
The number
of partitions is
ideally lesser

‣ n=2 for
random
partition

‣ n<
number of
sequences
in the

kitti_

sequence

_to_frames

_file
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Parameter Datatype Default Description Supported
Values

than the total
number of
sequences
in the
kitti_sequence

_to_frames_file
.

image_extension str ".png" The extension
of the
images in the
image_dir_name
parameter.

‣ .png
‣ .jpg
‣ .jpeg

val_split float 20 Percentage
of data to be
separated for
validation.
This only
works under
“random”
partition mode.
This partition
is available
in fold 0 of
the TFrecords
generated.
Please set the
validation
fold to 0 in the
dataset_config.

0-100

kitti_sequence

_to

_frames_file

str Name of the
kitti sequence to
frame mapping
file. This file
must be present
within the
dataset root
as mentioned
in the
root_directory

_path
.
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Parameter Datatype Default Description Supported
Values

num_shards int 10 Number of
shards per fold.

1-20

A sample configuration file to convert the pascal voc dataset with 80% training data and
20 % validation data is mentioned below. This assumes that the data has been converted
to KITTI format and is available for ingestion in the root directory path.
kitti_config {
  root_directory_path: "/workspace/tlt-experiments/data/VOCtrainval_11-May-2012/
VOCdevkit/VOC2012"
  image_dir_name: "JPEGImages_kitti/test"
  label_dir_name: "Annotations_kitti/test"
  image_extension: ".jpg"
  partition_mode: "random"
  num_partitions: 2
  val_split: 20
  num_shards: 10
}
image_directory_path: "/workspace/tlt-experiments/data/VOCtrainval_11-May-2012/
VOCdevkit/VOC2012"

6.3.2. Sample usage of the dataset converter tool
KITTI is the accepted dataset format for image detection. The KITTI dataset must be
converted to the TFRecord file format before passing to detection training. Use this
command to do the conversion:

tlt-dataset-convert [-h] -d DATASET_EXPORT_SPEC -o OUTPUT_FILENAME
                         [-f VALIDATION_FOLD] 

You can use these optional arguments:

‣ -h, --help: Show this help message and exit
‣ -d, --dataset-export-spec: Path to the detection dataset spec containing config

for exporting .tfrecords.
‣ -o output_filename: Output file name.
‣ -f, –validation-fold: Indicate the validation fold in 0-based indexing. This is

required when modifying the training set but otherwise optional.

Here's an example of using the command with the dataset:

tlt-dataset-convert -d <path_to_tfrecords_conversion_spec> -o
 <path_to_output_tfrecords>

Output log from executing tlt-dataset-convert:

Using TensorFlow backend.
2019-07-16 01:30:59,073 - iva.detectnet_v2.dataio.build_converter - INFO -
 Instantiating a kitti converter
2019-07-16 01:30:59,243 - iva.detectnet_v2.dataio.kitti_converter_lib - INFO -
 Num images in
Train: 10786    Val: 2696
2019-07-16 01:30:59,243 - iva.detectnet_v2.dataio.kitti_converter_lib - INFO -
 Validation data in partition 0. Hence, while choosing the validation set during
 training choose validation_fold 0.
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2019-07-16 01:30:59,251 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Writing partition 0, shard 0
/usr/local/lib/python2.7/dist-packages/iva/detectnet_v2/dataio/
kitti_converter_lib.py:265: VisibleDeprecationWarning: Reading unicode strings
 without specifying the encoding argument is deprecated. Set the encoding, use
 None for the system default.
2019-07-16 01:31:01,226 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Writing partition 0, shard 1
. . 
sheep: 242
bottle: 205
..
boat: 171
car: 418
2019-07-16 01:31:20,772 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Writing partition 1, shard 0
..
2019-07-16 01:32:40,338 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Writing partition 1, shard 9
2019-07-16 01:32:49,063 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
Wrote the following numbers of objects:
sheep: 695
..
car: 1770

2019-07-16 01:32:49,064 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Cumulative object statistics
2019-07-16 01:32:49,064 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
Wrote the following numbers of objects:
sheep: 937
..
car: 2188
2019-07-16 01:32:49,064 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Class map. 
Label in GT: Label in tfrecords file
sheep: sheep
..

boat: boat
For the dataset_config in the experiment_spec, please use labels in the
 tfrecords file, while writing the classmap.

 

2019-07-16 01:32:49,064 - iva.detectnet_v2.dataio.dataset_converter_lib - INFO -
 Tfrecords generation complete.

The tlt-dataset-convert tool updates the class names in the KITTI formatted data
files to lowercase alphabets. Therefore, please do make sure to use the updated
lowercase class names in the dataset_config section under target class mapping, when
configuring a training experiment. Using incorrect class names here, can lead invalid
training experiments with 0 mAP.

When using the tool to create separate tfrecords for evaluation, which may be
defined under the dataset_config using the parameter validation_data_source,
we advise you to set partition_mode to random with 2 partitions, and an arbitrary
val_split (1-100). The dataloader takes care of traversing through all the folds and
generating the mAP accordingly.
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Chapter 7.
CREATING AN EXPERIMENT SPEC FILE

This chapter describes how to create a specification file for model training, inference and
evaluation.

7.1. Specification file for classification
Here is an example of a specification file for model classification.

model_config {

  # Model architecture can be chosen from:
  # ['resnet', 'vgg', 'googlenet', 'alexnet', 'mobilenet_v1', 'mobilenet_v2',
 'squeezenet', 'darknet', 'googlenet']

  arch: "resnet"

  # for resnet --> n_layers can be [10, 18, 34, 50, 101]
  # for vgg --> n_layers can be [16, 19]
  # for darknet --> n_layers can be [19, 53]

  n_layers: 18
  use_bias: True
  use_batch_norm: True
  all_projections: True
  use_pooling: False
  freeze_bn: False
  freeze_blocks: 0
  freeze_blocks: 1

  # image size should be "3, X, Y", where X,Y >= 16
  input_image_size: "3,224,224"
}

eval_config {
  eval_dataset_path: "/path/to/your/eval/data"
  model_path: "/path/to/your/model"
  top_k: 3
  conf_threshold: 0.5
  batch_size: 256
  n_workers: 8

}
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train_config {
  train_dataset_path: "/path/to/your/train/data"
  val_dataset_path: "/path/to/your/val/data"
  pretrained_model_path: "/path/to/your/pretrained/model"
  # optimizer can be chosen from ['adam', 'sgd']

  optimizer: "sgd"
  batch_size_per_gpu: 256
  n_epochs: 80
  n_workers: 16

  # regularizer
  reg_config {
    type: "L2"
    scope: "Conv2D,Dense"
    weight_decay: 0.00005

  }

  # learning_rate

  lr_config {

    # "step" and "soft_anneal" are supported.

    scheduler: "soft_anneal"

    # "soft_anneal" stands for soft annealing learning rate scheduler.
    # the following 4 parameters should be specified if "soft_anneal" is used.
    learning_rate: 0.005
    soft_start: 0.056
    annealing_points: "0.3, 0.6, 0.8"
    annealing_divider: 10
    # "step" stands for step learning rate scheduler.
    # the following 3 parameters should be specified if "step" is used.
    # learning_rate: 0.006
    # step_size: 10
    # gamma: 0.1
    
    # "cosine" stands for soft start cosine learning rate scheduler.
    # the following 2 parameters should be specified if "cosine" is used.
    # learning_rate: 0.05
    # soft_start: 0.01

  }
}

7.2. Specification file for DetectNet_v2
To do training, evaluation and inference for DetectNet_v2, several components need to
be configured, each with their own parameters. The tlt-train and tlt-evaluate
commands for a DetectNet_v2 experiment share the same configuration file. The tlt-
infer command uses a separate configuration file.

The training and inference tools use a specification file for object detection. The
specification file for detection training configures these components of the training pipe:

‣ Model
‣ BBox ground truth generation
‣ Post processing module
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‣ Cost function configuration
‣ Trainer
‣ Augmentation model
‣ Evaluator
‣ Dataloader

7.2.1. Model config
Core object detection can be configured using the model_config option in the spec file.
Here are the parameters:

Parameter Datatype Default Description Supported
Values

all_projections bool False For templates
with shortcut
connections,
this parameter
defines whether
or not all
shortcuts
should be
instantiated
with 1x1
projection
layers
irrespective of
whether there
is a change in
stride across
the input and
output.

True/False
(only to be
used in resnet
templates)

arch string resnet This defines
the architecture
of the back
bone feature
extractor to be
used to train.

‣ resnet
‣ vgg
‣ mobilenet

_v1
‣ mobilenet

_v2
‣ googlenet

num_layers int 18 Depth of
the feature
extractor
for scalable
templates.

‣ resnets: 10,
18, 34, 50,
101

‣ vgg: 16, 19
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Parameter Datatype Default Description Supported
Values

pretrained
model file

string - This parameter
defines the path
to a pretrained
tlt model file. If
the load_graph
flag is set
to False, it
is assumed
that only the
weights of the
pretrained
model file is
to be used. In
this case, TLT
train constructs
the feature
extractor
graph in the
experiment
and loads the
weights from
the pretrained
model file
whose layer
names match.
Thus, transfer
learning across
different
resolutions and
domains are
supported.

For layers
that may be
absent in the
pretrained
model, the tool
initializes them
with random
weights and
skips import for
that layer.

Unix path

use_pooling Boolean False Choose
between
using strided
convolutions

False/True
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Parameter Datatype Default Description Supported
Values

or MaxPooling
while
downsampling.
When true,
MaxPooling
is used to
down sample,
however for the
object detection
network,
NVIDIA
recommends
setting this
to False and
using strided
convolutions.

use_batch_norm Boolean False Boolean
variable to
use batch
normalization
layers or not.

True/False

objective_set Proto
Dictionary

- This defines
what objectives
is this network
being trained
for. For object
detection
networks, set
it to learn cov
and bbox. These
parameters
should not be
altered for the
current training
pipeline.

cov {} bbox
{ scale: 35.0
offset: 0.5

}

dropout_rate Float 0.0 Probability for
drop out

0.0-0.1

training
precision

Proto
Dictionary

- Contains
a nested
parameter
that sets the
precision
of the back-

backend_floatx:
FLOAT32
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Parameter Datatype Default Description Supported
Values

end training
framework.

load_graph Boolean False Flag to define
whether or
not to load the
graph from
the pretrained
model file,
or just the
weights. For a
pruned, please
remember
to set this
parameter as
True. Pruning
modifies the
original graph,
hence the
pruned model
graph and the
weights need to
be imported.

True/False

freeze_blocks float

(repeated)

- This parameter
defines which
blocks may be
frozen from
the instantiated
feature
extractor
template, and
is different for
different feature
extractor
templates.

‣ ResNet
series. For
the ResNet
series, the
block ID's
valid for
freezing is
any subset
of [0, 1, 2, 3]
(inclusive)

‣ VGG
series. For
the VGG
series, the
block ID's
valid for
freezing is
any subset
of [1, 2,
3, 4, 5]
(inclusive)

‣ MobileNet
V1. For the
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Parameter Datatype Default Description Supported
Values

MobileNet
V1, the
block ID's
valid for
freezing is
any subset
of [0, 1, 2,
3, 4, 5, 6, 7,
8, 9, 10, 11]
(inclusive)

‣ MobileNet
V2. For the
MobileNet
V2, the
block ID's
valid for
freezing is
any subset
of [0, 1, 2,
3, 4, 5, 6,
7, 8, 9, 10,
11, 12, 13]
(inclusive)

‣ GoogLeNet.
For the
GoogLeNet,
the block
ID's valid
for freezing
is any
subset of
[0, 1, 2, 3,
4, 5, 6, 7]
(inclusive)

freeze_bn Boolean False You can choose
to freeze the
Batch

Normalization
layers in the
model during
training.

True/False
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Here's a sample model config to instantiate a resnet18 model with pretrained weights
and freeze blocks 0 and 1, with all shortcuts being set to projection layers.

# Sample model config for to instantiate a resnet18 model with pretrained
 weights and freeze blocks 0, 1
# with all shortcuts having projection layers.
model_config {
  arch: "resnet"
  pretrained_model_file: <path_to_model_file>
  freeze_blocks: 0
  freeze_blocks: 1
  all_projections: True
  num_layers: 18
  use_pooling: False
  use_batch_norm: True
  dropout_rate: 0.0
  training_precision: {
    backend_floatx: FLOAT32
  }
  objective_set: {
    cov {}
    bbox {
      scale: 35.0
      offset: 0.5
    }
  }
}

7.2.2. BBox ground truth generator
DetectNet_v2 generates 2 tensors, cov and bbox. The image is divided into 16x16 grid
cells. The cov tensor(short for coverage tensor) defines the number of gridcells that are
covered by an object. The bbox tensor defines the normalized image coordinates of the
object (x1, y1) top_left and (x2, y2) bottom right with respect to the grid cell. For best
results, you can assume the coverage area to be an ellipse within the bbox label, with the
maximum confidence being assigned to the cells in the center and reducing coverage
outwards. Each class has its own coverage and bbox tensor, thus the shape of the tensors
are:

‣ cov: Batch_size, Num_classes, image_height/16, image_width/16
‣ bbox: Batch_size, Num_classes * 4, image_height/16, image_width/16 (where 4 is the

number of coordinates per cell)

The bbox_rasterizer has the following parameters that are configurable.

Parameter Datatype Default Description Supported
Values

deadzone
radius

float 0.67 The area to
be considered
as dormant
(or area of no
bboxes) around
the ellipse of
an object. This
is particularly
useful in cases

0-1.0
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Parameter Datatype Default Description Supported
Values

of overlapping
objects, so that
foreground
objects and
background
objects are not
confused.

target_class

_config

proto dictionary This is a nested
configuration
field that
defines the
coverage region
for an object of
a given class.
For each class,
this field is
repeated. The
configurable
parameters of
the target_class

_config include:

‣ cov_center_x
(float): x-
coordinate
of the
center of
the object.

‣ cov_center_y
(float): y-
coordinate
of the
center of
the object.

‣ cov_radius_x
(float):
x-radius
of the
coverage
ellipse

‣ cov_radius_y
(float):
y-radius
of the

‣ cov_center

_x: 0.0 - 1.0
‣ cov_center

_y: 0.0 - 1.0
‣ cov_radius

_x: 0.0 - 1.0
‣ cov_radius

_y: 0.0 - 1.0
‣ bbox_min

_radius:

0.0 - 1.0
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Parameter Datatype Default Description Supported
Values

coverage
ellipse

‣ bbox_min

_radius
(float):
minimum
radius
of the
coverage
region to be
drawn for
boxes.

Here is a sample rasterizer config for a 3 class detector:
# Sample rasterizer configs to instantiate a 3 class bbox rasterizer
bbox_rasterizer_config {
  target_class_config {
    key: "car"
    value: {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.4
      cov_radius_y: 0.4
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "cyclist"
    value: {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.4
      cov_radius_y: 0.4
      bbox_min_radius: 1.0
    }
  }
  target_class_config {
    key: "pedestrian"
    value: {
      cov_center_x: 0.5
      cov_center_y: 0.5
      cov_radius_x: 0.4
      cov_radius_y: 0.4
      bbox_min_radius: 1.0
    }
  }
  deadzone_radius: 0.67
}

7.2.3. Post processor
The post processor module generates renderable bounding boxes from the raw detection
output. The process includes:
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‣ Filtering out valid detections by thresholding objects using the confidence value in
the coverage tensor

‣ Clustering the raw filtered predictions using DBSCAN to produce the final rendered
bounding boxes

‣ Filtering out weaker clusters based on the final confidence threshold derived from
the candidate boxes that get grouped into a cluster

This section defines parameters that configure the post processor. For each class you can
train for, the postprocessing_config has a target_class_config element, which
defines the clustering parameters for this class. The parameters for each target class
include:

Parameter Datatype Default Description Supported
Values

key string - The names
of the class
for which the
post processor
module is being
configured.

The network
object class
name, which
are mentioned
in the
cost_function_config.

value clustering
_config proto

- The nested
clustering
config proto
parameter that
configures the
postprocessor
module. The
parameters for
this module are
defined in the
next table.

Encapsulated
object with
parameters
defined below.

The clustering_config element configures the clustering block for this class. Here are
the parameters for this element.

Parameter Datatype Default Description Supported
Values

coverate

_threshold

float - The minimum
threshold of the
coverage tensor
output to be
considered as a
valid candidate
box for
clustering. The
4 coordinates
from the bbox
tensor at the

0.0 - 1.0
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Parameter Datatype Default Description Supported
Values

corresponding
indices are
passed for
clustering.

dbscan_eps float - The maximum
distance
between two
samples for
one to be
considered
as in the
neighborhood
of the other.
This is not
a maximum
bound on the
distances of
points within
a cluster. The
greater the eps,
more boxes
are grouped
together.

0.0 - 1.0

dbscan

_min_samples

float - The total
weight in a
neighborhood
for a point to
be considered
as a core point.
This includes
the point itself.

0.0 - 1.0

minimum

_bounding

_box_height

int - Minimum
height in pixels
to consider as a
valid detection
post clustering.

0 - input image
height.

Here is an example of the definition of the postprocessor for a 3 class network learning
for car, cyclist, and pedestrian:

postprocessing_config {
  target_class_config {
    key: "car"
    value: {
      clustering_config {
        coverage_threshold: 0.005
        dbscan_eps: 0.15
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        dbscan_min_samples: 0.05
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "cyclist"
    value: {
      clustering_config {
        coverage_threshold: 0.005
        dbscan_eps: 0.15
        dbscan_min_samples: 0.05
        minimum_bounding_box_height: 20
      }
    }
  }
  target_class_config {
    key: "pedestrian"
    value: {
      clustering_config {
        coverage_threshold: 0.005
        dbscan_eps: 0.15
        dbscan_min_samples: 0.05
        minimum_bounding_box_height: 20
      }
    }
  }
}

7.2.4. Cost function
This section helps you configure the cost function to include the classes that you are
training for. For each class you want to train, add a new entry of the target classes to the
spec file. NVIDIA recommends not changing the parameters within the spec file for best
performance with these classes. The other parameters remain unchanged here.

cost_function_config {
  target_classes {
    name: "car"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  target_classes {
    name: "cyclist"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
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      weight_target: 1.0
    }
  }
  target_classes {
    name: "pedestrian"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 10.0
    }
  }
  enable_autoweighting: True
  max_objective_weight: 0.9999
  min_objective_weight: 0.0001
}

7.2.5. Trainer
Here are the parameters used to configure the trainer:

Parameter Datatype Default/
Suggested value

Description Supported
values

batch_size_per

_gpu

int 32 This parameter
defines the
number of
images per
batch per gpu.

>1

num_epochs int 120 This parameter
defines the
total number of
epochs to run
the experiment.

enable_qat bool False This parameter
enables training
a model using
Quantization
Aware Training
(QAT).
For more
information
about QAT see
Quantization
Aware Training.

True, False

learning rate learning rate
scheduler proto

soft_start

_annealing

This parameter
configures the
learning rate

annealing:
0.0-1.0 and
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Parameter Datatype Default/
Suggested value

Description Supported
values

_schedule schedule for
the trainer.
Currently
detectnet_v2
only supports
softstart
annealing
learning rate
schedule,
and maybe
configured
using the
following
parameters:

‣ soft_start
(float):
Defines
the time to
ramp up
the learning
rate from
minimum
learning
rate to
maximum
learning
rate

‣ annealing
(float):
Defines the
time to cool
down the
learning
rate from
maximum
learning
rate to
minimum
learning
rate

‣ minimum

_learning

_rate

greater than
soft_start

Soft_start: 0.0 -
1.0

A sample lr
plot for a soft
start of 0.3 and
annealing of 0.1
is shown in the
figure below.
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Parameter Datatype Default/
Suggested value

Description Supported
values

(float):
Minimum
learning
rate in the
learning
rate
schedule.

‣ maximum

_learning

_rate
(float):
Maximum
learning
rate in the
learning
rate
schedule.

regularizer regularizer
proto config

This parameter
configures the
type and the
weight of the
regularizer to
be used during
training. The
two parameters
include:

‣ type: The
type of the
regularizer
being used.

‣ weight: The
floating
point
weight
of the
regularizer.

The supported
values for type
are:

‣ NO_REG
‣ L1
‣ L2

optimizer optimizer proto
config

This parameter
defines which
optimizer
to use for
training, and
the parameters
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Parameter Datatype Default/
Suggested value

Description Supported
values

to configure it,
namely:

‣ epsilon
(float): Is a
very small
number to
prevent any
division by
zero in the

implemen
-tation

‣ beta1 (float)
‣ beta2 (float)

cost_scaling costscaling

_config

This parameter
enables cost
scaling during
training. Please
leave this
parameter
untouched
currently
for the
detectnet_v2
training pipe.

cost_scaling
{ enabled: False
initial_exponent:
20.0 increment:
0.005
decrement: 1.0 }

checkpoint
interval

float 0/10 The interval
(in epochs)
at which tlt-
train saves
intermediate
models.

0 to
num_epochs

Detectnet_v2 currently supports the soft-start annealing learning rate schedule. The
learning rate when plotted as a function of the training progress (0.0, 1.0) results in the
following curve.
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In this experiment, the soft start was set as 0.3 and annealing as 0.7, with minimum
learning rate as 5e-6 and a maximum learning rate or base_lr as 5e-4.

NVIDIA suggests using L1 regularizer when training a network before pruning as L1
regularization helps making the network weights more easily pruned. After pruning,
when retraining the networks, NVIDIA recommends turning regularization off by
setting the regularization type to NO_REG.

Here's a sample training_config block to configure a detectnet_v2 trainer:

training_config {
  batch_size_per_gpu: 16
  num_epochs: 80
  learning_rate {
    soft_start_annealing_schedule {
      min_learning_rate: 5e-6
      max_learning_rate: 5e-4
      soft_start: 0.1
      annealing: 0.7
    }
  }
  regularizer {
    type: L1
    weight: 3e-9
  }
  optimizer {
    adam {
      epsilon: 1e-08
      beta1: 0.9
      beta2: 0.999
    }
  }
  cost_scaling {
    enabled: False
    initial_exponent: 20.0
    increment: 0.005
    decrement: 1.0
  }
}
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7.2.6. Augmentation module
The augmentation module provides some basic pre-processing and augmentation when
training. The augmentation_config contains three elements :

‣ preprocessing: This nested field configures the input image and ground truth
label pre-processing module. It sets the shape of the input tensor to the network. The
ground truth labels are pre-processed to meet the dimensions of the input image
tensors.

Parameter Datatype Default/
Suggested
value

Description Supported
Values

output

_image

_width

int -- The width
of the

augmen-

tation
output.
This is the
same as
the width
of the
network
input and
must be a
multiple of
16.

>480

output

_image

_height

int -- The height
of the

augmen-

tation
output.
This is the
same as
the height
of the
network
input and
must be a
multiple of
16.

>272

output

_image

int 1, 3 The
channel

1,3
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

_channel depth of
the

augmen-

tation
output.
This is
the same
as the
channel
depth
of the
network
input.
Currently
1-channel
input
is not
recommended
for
datasets
with jpg
images.
For png
images,
both 3
channel
RGB and
1 channel
monochrome
images are
supported.

Min_bbox

_height

float The
minimum
height of
the object
labels to be
considered
for
training.

0 -
output_image_height

Min_bbox

_width

float The
minimum
width of
the object

0 -
output_image_width
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

labels to be
considered
for
training.

crop_right int The right
boundary
of the
crop to be
extracted
from the
original
image.

0 - input
image
width

crop_left int The left
boundary
of the
crop to be
extracted
from the
original
image.

0 - input
image
width

crop_top int The top
boundary
of the
crop to be
extracted
from the
original
image.

0 - input
image
height

crop_bottom int The
bottom
boundary
of the
crop to be
extracted
from the
original
image.

0 - input
image
height

scale_height float The
floating
point
factor to
scale the
height

> 0.0
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

of the
cropped
images.

scale_width float The
floating
point
factor to
scale the
width
of the
cropped
images.

> 0.0

‣ spatial_augmentation: This module supports basic spatial augmentation such as
flip, zoom and translate which may be configured.

Parameter Datatype Default/
Suggested
value

Description Supported
Values

hflip

_probability

float 0.5 The
probability
to flip
an input
image
horizontally.

0.0-1.0

vflip

_probability

float 0.0 The
probability
to flip
an input
image
vertically.

0.0-1.0

zoom_min float 1.0 The
minimum
zoom
scale of
the input
image.

>0.0

zoom_max float 1.0 The
maximum
zoom
scale of
the input
image.

>0.0
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

translate

_max_x

int 8.0 The
maximum
translation
to be
added
across the
x axis.

0.0 -
output_image_width

translate

_max_y

int 8.0 The
maximum
translation
to be
added
across the
y axis

0.0 -
output_image_height

rotate_rad_max float 0.69 The angle
of rotation
to be
applied to
the images
and the
training
labels. The
range is
defined
between [-
rotate_rad_max,
rotate_rad_max]

> 0.0
(modulo
2*pi

‣ color_augmentation: This module configures the color space transformations,
such as color shift, hue_rotation, saturation shift, and contrast adjustment.

Parameter Datatype Default/
Suggested
value

Description Supported
Values

color_shift

_stddev

float 0.0 The
standard
devidation
value for
the color
shift.

0.0-1.0

hue

_rotation

float 25.0 The
maximum
rotation
angle for

0.0-360.0
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

_max the hue
rotation
matrix.

saturation

_shift_max

float 0.2 The
maximum
shift that
changes
the
saturation.
A value
of 1.0
means no
change in
saturation
shift.

0.0 - 1.0

contrast

_scale_max

float 0.1 The slope
of the
contrast,
as rotated
around the
provided
center.
A value
of 0.0
leaves the
contrast
unchanged.

0.0 - 1.0

contrast

_center

float 0.5 The center
around
which the
contrast
is rotated.
Ideally this
is set to
half of the
maximum
pixel
value.
(Since
our input
images
are scaled
between
0 and 1.0,

0.5
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Parameter Datatype Default/
Suggested
value

Description Supported
Values

you can set
this value
to 0.5).

The dataloader online augmentation pipeline applies spatial and color-space
augmentation transformations in the below mentioned order.

 1. The dataloader first performs the pre-processing operations on the input data
(image and labels) read from the tfrecords files. Here the images and labels cropped
and scaled based on the parameters mentioned in the preprocessing config. The
boundaries of generating the cropped image and labels from the original image is
defined by the crop_left, crop_right, crop_top and crop_bottom parameters.
This cropped data is then scaled by the scale factors defined by scale_height and
scale_width. These transformation matrices for these operations are computed
globally and do not change per image.

 2. The net tensors generated from the pre-processing blocks are then passed through
a pipeline of random augmentations in spatial and color domain. The spatial
augmentations are applied to both images and the label coordinates, while the color
augmentations are applied only to the images. Inorder to apply color augmentations
the output_image_channel parameter must be set to 3. For monochrome tensors
color augmentations are not applied. The spatial and color transformation matrices
are computed per image based on a uniform distribution along the max and min
ranges defined by the spatial_augmentation and color_augmentation config
parameters.

 3. Once the spatial and color augmented net input tensors are generated, the output is
then padded with zeros or clipped along the right and bottom edge of the image to
fit the output dimensions defined in the preprocessing config.

Here is a sample augmentation config element:

# Sample augementation config for 
augmentation_config {
  preprocessing {
    output_image_width: 960
    output_image_height: 544
    output_image_channel: 3
    min_bbox_width: 1.0
    min_bbox_height: 1.0
  }
  spatial_augmentation {

    hflip_probability: 0.5
    vflip_probability: 0.0
    zoom_min: 1.0
    zoom_max: 1.0
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    color_shift_stddev: 0.0
    hue_rotation_max: 25.0
    saturation_shift_max: 0.2
    contrast_scale_max: 0.1
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    contrast_center: 0.5
  }
}

If the output image height and the output image width of the preprocessing block
doesn't match with the dimensions of the input image, the dataloader either pads
with zeros, or crops to fit to the output resolution. It does not resize the input images
and labels to fit.

7.2.7. Configuring the evaluator
The evaluator in the detection training pipe can be configured using the
evaluation_config parameters.

Parameter Datatype Default/
Suggested value

Description Supported
Values

average

_precision

_mode

Sample The mode
in which
the average
precision for
each class is
calculated.

‣ SAMPLE:
This is
the ap
calculation
mode using
11 evenly
spaced
recall
points as
used in the
Pascal VOC
challenge
2007.

‣ INTEGRATE:
This is
the ap
calculation
mode as
used in
the 2011
challenge

validation

_period

_during

_training

int 10 The interval
at which
evaluation is
run during
training. The
evaluation
is run at this
interval starting
from the value
of the first

1 - total number
of epochs
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Parameter Datatype Default/
Suggested value

Description Supported
Values

validation
epoch
parameter as
specified below.

first

_validation

_epoch

int 30 The first epoch
to start running
validation.
Ideally it is
preferred to
wait for atleast
20-30% of the
total number
of epochs
before starting
evaluation,
since the
predictions
in the initial
epochs would
be fairly
inaccurate.
Too many
candidate boxes
may be sent to
clustering and
this can cause
the evaluation
to slow down.

1 - total number
of epochs

minimum

_detection

_ground_truth

_overlap

proto dictionary Minimum
IOU between
ground truth
and predicted
box after
clustering to
call a valid
detection. This
parameter is
a repeatable
dictionary, and
a separate one
must be defined
for every class.
The members
include:
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Parameter Datatype Default/
Suggested value

Description Supported
Values

‣ key (string):
class name

‣ value
(float):
intersection
over union
value

evaluation

_box_config

proto dictionary This nested
configuration
field configures
the min and
max box
dimensions to
be considered
as a valid
ground
truth and
prediction for
AP calculation.

The evaluation_box_config field has these configurable inputs.

Parameter Datatype Default/
Suggested value

Description Supported Value

minimum

_height

float 10 Minimum
height in pixels
for a valid
ground truth
and prediction
bbox.

0. - model
image height

minimum

_width

float 10 Minimum
width in pixels
for a valid
ground truth
and prediction
bbox.

0. - model
image width

maximum

_height

float 9999 Maximum
height in pixels
for a valid
ground truth
and prediction
bbox.

minimum_height
- model image
height
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Parameter Datatype Default/
Suggested value

Description Supported Value

maximum

_width

float 9999 Maximum
width in pixels
for a valid
ground truth
and prediction
bbox.

minimum
_width - model
image width

# Sample evaluation config to run evaluation in integrate mode for the given 3
 class model, 
# at every 10th epoch starting from the epoch 1.
evaluation_config {
  average_precision_mode: INTEGRATE
  validation_period_during_training: 10
  first_validation_epoch: 1
  minimum_detection_ground_truth_overlap {
    key: "car"
    value: 0.7
  }
  minimum_detection_ground_truth_overlap {
    key: "person"
    value: 0.5
  }
  minimum_detection_ground_truth_overlap {
    key: "bicycle"
    value: 0.5
  }
  evaluation_box_config {
    key: "car"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "person"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
  evaluation_box_config {
    key: "bicycle"
    value {
      minimum_height: 4
      maximum_height: 9999
      minimum_width: 4
      maximum_width: 9999
    }
  }
}
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7.2.8. Dataloader
This section defines the parameters to configure the dataloader. Here, you define the
path to the data you want to train on and the class mapping for classes in the dataset
that the network is to be trained for. The parameters in the dataset config are:

‣ data_sources: Captures the path to TFrecords to train on. This field contains 2
parameters:

‣ tfrecords_path: Path to the individual TFrecords files. This path follows the
UNIX style pathname pattern extension, so a common pathname pattern that
captures all the tfrecords files in that directory can be used.

‣ image_directory_path: Path to the training data root from which the tfrecords
was generated.

‣ image_extension: Extension of the images to be used.
‣ target_class_mapping: This parameter maps the class names in the tfrecords to the

target class to be trained in the network. An element is defined for every source
class to target class mapping. This field was included with the intention of grouping
similar class objects under one umbrella. For eg: car, van, heavy_truck etc may
be grouped under automobile. The “key” field is the value of the class name in
the tfrecords file, and “value” field corresponds to the value that the network is
expected to learn.

‣ validation_fold: In case of an n fold tfrecords, you define the index of the fold to use
for validation. For sequence wise validation please choose the validation fold in the
range [0, N-1]. For a random split partitioning, please force the validation fold index
to 0 as the tfrecord is just 2-fold.

The class names key in the target_class_mapping must be identical to the one shown
in the dataset converter log, so that the correct classes are picked up for training.

dataset_config {
  data_sources: {
    tfrecords_path: "<path to the training tfrecords root/tfrecords train
 pattern>"
    image_directory_path: "<path to the training data source>"
  }
  image_extension: "jpg"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "automobile"
      value: "car"
  }
  target_class_mapping {
      key: "heavy_truck"
      value: "car"
  }
  target_class_mapping {
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      key: "person"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "rider"
      value: "cyclist"
  }
  validation_fold: 0
}

In this example the tfrecords is assumed to be multi-fold, and the fold number to
validate on is defined. However, evaluation doesn’t necessarily have to be run on a
split of the training set. Many ML engineers choose to evaluate the model on a well
chosen evaluation dataset that is exclusive of the training dataset. If you prefer to run
evaluation on a different validation dataset as opposed to a split from the training
dataset, then please convert this dataset into tfrecords as well using the tlt-dataset-
convert tool as mentioned in the here, and use the validation_data_source field
in the dataset_config to define this. In this case, please do not forget to remove the
validation_fold field from the spec. When generating the TFRecords for evaluation
by using the validation_data_source field, please review the notes here.

validation_data_source: {
    tfrecords_path: " <path to tfrecords to validate on>/tfrecords validation
 pattern>"
    image_directory_path: " <path to validation data source>"
}

7.2.9. Specification file for inference
This spec file configures the tlt-infer tool of detectnet to generate valid bbox predictions.
The inference tool consists of 2 blocks, namely the inferencer and the bbox handler. The
inferencer instantiates the model object and preprocessing pipe, which the bbox handler
handles the post processing, rendering of bounding boxes and the serialization to KITTI
format output labels.

7.2.9.1. Inferencer

The inferencer instantiates a model object that generates the raw predictions from the
trained model. The model may be defined to run inference in the TLT backend or the
TensorRT backend. The inferencer_config parameters are explained in the table below.

Parameter Datatype Default Description Supported Value

target_classes String
(repeated)

None The names
of the target
classes the
model should
output. For
a multi-class
model this
parameter is
repeated N
times. The

For example,
for the 3 class
kitti model it
will be:

car

cyclist

pedestrian

https://docs.google.com/document/d/1UXhl3UIYYOgSD4U8elPRCxGKaEjyqDRa5Krakg8xrXU/edit#heading=h.q9f1718nbxjr
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Parameter Datatype Default Description Supported Value

number of
classes must
be equal to
the number
of classes and
the order must
be the same as
the classes in
costfunction_config
of the training
config file.

batch_size int 1 The number
of images
per batch of
inference

Max number of
images that can
be fit in 1 GPU

image_height int 384 The height of
the image in
pixels at which
the model will
be inferred.

>16

image_width int 1248 The width of
the image in
pixels at which
the model will
be inferred.

>16

image_channels int 3 The number of
channels per
image.

1,3

gpu_index int 0 The index of
the GPU to
run inference
on. This is
useful only in
TLT inference.
For tensorRT
inference, by
default, the
GPU of choice
in ‘0’.

tensorrt_config TensorRTConfig None Proto config
to instantiate a
TensorRT object
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Parameter Datatype Default Description Supported Value

tlt_config TLTConfig None Proto config
to instantiate
a TLT model
object.

As mentioned earlier, the tlt-infer tool is capable of running inference using the
native TLT backend and the TensorRT backend. They can be configured by using the
tensorrt_config proto element, or the tlt_config proto element respectively. You may use
only one of the two in a single spec file. The definitions of the two model objects are:

Parameter Datatype Default Description Supported Value

parser enum ETLT The tensorrt
parser to be
invoked. Only
ETLT parser is
supported.

ETLT

etlt_model string None Path to the
exported etlt
model file.

Any existing
etlt file path.

backend_data
_type

enum FP32 The data type
of the backend
TensorRT
inference
engine. For
int8 mode,
please be sure
to mention the
calibration_cache.

FP32

FP16

INT8

save_engine bool False Flag to save
a TensorRT
engine from the
input etlt file.
This will save
initialization
time if inference
needs to be run
on the same
etlt file and
there are no
changes needed
to be made to
the inferencer
object.

True, False
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Parameter Datatype Default Description Supported Value

trt_engine string None Path to the
TensorRT
engine file. This
acts asa n I/
O parameter.
If the path
defined here is
not an engine
file, then the
tlt-infer tool
creates a new
TensorRT
engine from
the etlt file. If
there exists an
engine already,
the tool, re-
instantiates
the inferencer
from the engine
defined here.

UNIX path
string

calibration
_config

CalibratorConfig
Proto

None This is a
required
parameter
when running
in the int8
inference mode.
This proto
object contains
parameters
used to define
a calibrator
object. Namely:

calibration_cache:
path to the
calibration
cache file
generated using
tlt-export
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7.2.9.2. TLT_Config

Parameter Datatype Default Description Supported
Values

model string None The path to
the .tlt model
file.

UNIX Path
string

Since detectnet is a full convolutional neural net, the model can be inferred at a
different inference resolution than the resolution at which it was trained. The input
dims of the network will be overridden to run inference at this resolution, if they
are different from the training resolution. There may be some regression in accuracy
when running inference at a different resolution since the convolutional kernels don’t
see the object features at this shape.

A sample inferencer_config element for the inferencer spec is defined here.
inferencer_config{
  # defining target class names for the experiment.
  # Note: This must be mentioned in order of the networks classes.
  target_classes: "car"
  target_classes: "cyclist"
  target_classes: "pedestrian"
  # Inference dimensions.
  image_width: 1248
  image_height: 384
  # Must match what the model was trained for.
  image_channels: 3
  batch_size: 16
  gpu_index: 0
  # model handler config
  tensorrt_config{
    parser:  ETLT
    etlt_model: "/path/to/model.etlt"
    backend_data_type: INT8
    save_engine: true
    trt_engine: "/path/to/trt/engine/file"
    calibrator_config{
        calibration_cache: "/path/to/calibration/cache"
        n_batches: 10
        batch_size: 16
    }
  }
}

7.2.9.3. Bbox handler

The bbox handler takes care of the post processing the raw outputs from the inferencer.
It performs the following steps:

 1. Thresholding the raw outputs to defines grid-cells where the detections may be
present per class.

 2. Reconstructing the image space coordinates from the raw coordinates of the
inferencer.

 3. Clustering the raw thresholded predictions.
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 4. Filtering the clustered predictions per class.
 5. Rendering the final bounding boxes on the image in its input dimensions and

serializing them to KITTI format metadata.

The parameters to configure the bbox handler are defined below.

Parameter Datatype Default Description Supported Value

kitti_dump bool false Flag to enable
saving the
final output
predictions per
image in KITTI
format.

true, false

disable_overlaybool true Flag to disable
bbox rendering
per image.

true, false

overlay
_linewidth

int 1 Thickness
in pixels of
the bbox
boundaries.

>1

classwise_bbox
_handler_config

ClasswiseCluster
Config
(repeated)

None This is a
repeated
class-wise
dictionary of
post-processing
parameters.
DetectNet_v2
uses dbscan
clustering to
group raw
bboxes to final
predictions. For
models with
several output
classes, it may
be cumbersome
to define
a separate
dictionary for
each class. In
such a situation,
a default class
may be used for
all classes in the
network.
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The classwise_bbox_handler_config is a Proto object containing several parameters
to configure the clustering algorithm as well as the bbox renderer.

Parameter Datatype Default Description Supported Value

confidence
_model

string aggregate_cov Algorithm to
compute the
final confidence
of the clustered
bboxes.

In the
aggregate_cov
mode, the final
confidence of
a detection is
the sum of the
confidences
of all the
candidate
bboxes in a
cluster.

In mean_cov
mode, the final
confidence
is the mean
confidence of
all the bboxes in
the cluster.

aggregate_cov,
mean_cov

confidence
_threshold

float 0.9

in
aggregate_cov
mode.

0.1 in
mean_cov_mode.

The threshold
applied to the
final aggregate
confidence
values to render
the bboxes.

In
aggregate_cov:
Maybe tuned to
any float value
> 0.0

In mean_cov:
0.0 - 1.0

bbox_color BBoxColor
Proto Object

None RGB channel
wise color
intensity per
box.

R: 0 - 255

G: 0 - 255

B: 0 - 255

clustering_configClusteringConfig None Proto object
to configure
the DBSCAN
clustering
algorithm.
Contains the

coverage
_threshold:
0.005

dbscan_eps: 0.3
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Parameter Datatype Default Description Supported Value

following sub
parameters.

coverage_threshold:
The threshold
applied to the
raw network
confidence
predictions
as a first
stage filtering
technique.

dbscan_eps:
(float) The
search distance
to group
together boxes
into a single
cluster. The
lesser the
number, the
more boxes are
detected. Eps
of 1.0 groups
all boxes into a
single cluster.

dbscan_min_samples:
(float) The
weight of the
boxes in a
cluster.

min_bbox_height:
(int) The
minimum
height of the
bbox to be
clustered.

dbscan_min
_samples: 0.05

minimum_bounding
_box_height: 4

A sample bbox_handler_config element is defined below.
bbox_handler_config{
  kitti_dump: true
  disable_overlay: false
  overlay_linewidth: 2
  classwise_bbox_handler_config{
    key:"car"
    value: {
      confidence_model: "aggregate_cov"
      output_map: "car"
      confidence_threshold: 0.9
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      bbox_color{
        R: 0
        G: 255
        B: 0
      }
      clustering_config{
        coverage_threshold: 0.00
        dbscan_eps: 0.3
        dbscan_min_samples: 0.05
        minimum_bounding_box_height: 4
      }
    }
  }
  classwise_bbox_handler_config{
    key:"default"
    value: {
      confidence_model: "aggregate_cov"
      confidence_threshold: 0.9
      bbox_color{
        R: 255
        G: 0
        B: 0
      }
      clustering_config{
        coverage_threshold: 0.00
        dbscan_eps: 0.3
        dbscan_min_samples: 0.05
        minimum_bounding_box_height: 4
      }
    }
  }
}

7.3. Specification file for FasterRCNN
Below is a sample of the FasterRCNN spec file. It has two major components:
network_config and training_config, explained below in detail. The format of the
spec file is a protobuf text(prototxt) message and each of its fields can be either a basic
data type or a nested message. The top level structure of the spec file is summarized in
the table below.

Here's a sample of the FasterRCNN spec file:
random_seed: 42
enc_key: 'tlt'
verbose: True
network_config {
  input_image_config {
    image_type: RGB
    image_channel_order: 'bgr'
    size_height_width {
      height: 384
      width: 1248
    }
    image_channel_mean {
      key: 'b'
      value: 103.939
    }
    image_channel_mean {
      key: 'g'
      value: 116.779
    }
    image_channel_mean {
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      key: 'r'
      value: 123.68
    }
    image_scaling_factor: 1.0
    max_objects_num_per_image: 100
  }
  feature_extractor: "resnet:18"
  anchor_box_config {
    scale: 64.0
    scale: 128.0
    scale: 256.0
    ratio: 1.0
    ratio: 0.5
    ratio: 2.0
  }
  freeze_bn: True
  freeze_blocks: 0
  freeze_blocks: 1
  roi_mini_batch: 256
  rpn_stride: 16
  conv_bn_share_bias: False
  roi_pooling_config {
    pool_size: 7
    pool_size_2x: False
  }
  all_projections: True
  use_pooling:False
}
training_config {
  kitti_data_config {
    data_sources: {
      tfrecords_path: "/workspace/tlt-experiments/tfrecords/kitti_trainval/
kitti_trainval*"
      image_directory_path: "/workspace/tlt-experiments/data/training"
    }
    image_extension: 'png'
    target_class_mapping {
      key: 'car'
      value: 'car'
    }
    target_class_mapping {
      key: 'van'
      value: 'car'
    }
    target_class_mapping {
      key: 'pedestrian'
      value: 'person'
    }
    target_class_mapping {
      key: 'person_sitting'
      value: 'person'
    }
    target_class_mapping {
      key: 'cyclist'
      value: 'cyclist'
    }
    validation_fold: 0
  }
  data_augmentation {
    preprocessing {
      output_image_width: 1248
      output_image_height: 384
      output_image_channel: 3
      min_bbox_width: 1.0
      min_bbox_height: 1.0
    }
    spatial_augmentation {
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      hflip_probability: 0.5
      vflip_probability: 0.0
      zoom_min: 1.0
      zoom_max: 1.0
      translate_max_x: 0
      translate_max_y: 0
    }
    color_augmentation {
      hue_rotation_max: 0.0
      saturation_shift_max: 0.0
      contrast_scale_max: 0.0
      contrast_center: 0.5
    }
  }
  enable_augmentation: True
  batch_size_per_gpu: 16
  num_epochs: 12
  pretrained_weights: "/workspace/tlt-experiments/data/faster_rcnn/resnet18.h5"
  #resume_from_model: "/workspace/tlt-experiments/data/faster_rcnn/
resnet18.epoch2.tlt"
  #retrain_pruned_model: "/workspace/tlt-experiments/data/faster_rcnn/
model_1_pruned.tlt"
  output_model: "/workspace/tlt-experiments/data/faster_rcnn/
frcnn_kitti_resnet18.tlt"
  rpn_min_overlap: 0.3
  rpn_max_overlap: 0.7
  classifier_min_overlap: 0.0
  classifier_max_overlap: 0.5
  gt_as_roi: False
  std_scaling: 1.0
  classifier_regr_std {
    key: 'x'
    value: 10.0
  }
  classifier_regr_std {
    key: 'y'
    value: 10.0
  }
  classifier_regr_std {
    key: 'w'
    value: 5.0
  }
  classifier_regr_std {
    key: 'h'
    value: 5.0
  }
  rpn_mini_batch: 256
  rpn_pre_nms_top_N: 12000
  rpn_nms_max_boxes: 2000
  rpn_nms_overlap_threshold: 0.7
  reg_config {
    reg_type: 'L2'
    weight_decay: 1e-4
  }
  optimizer {
    adam {
      lr: 0.00001
      beta_1: 0.9
      beta_2: 0.999
      decay: 0.0
    }
  }
  lr_scheduler {
    step {
      base_lr: 0.00016
      gamma: 1.0
      step_size: 30
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    }
  }
  lambda_rpn_regr: 1.0
  lambda_rpn_class: 1.0
  lambda_cls_regr: 1.0
  lambda_cls_class: 1.0
  inference_config {
    images_dir: '/workspace/tlt-experiments/data/testing/image_2'
    model: '/workspace/tlt-experiments/data/faster_rcnn/
frcnn_kitti_resnet18.epoch12.tlt'
    detection_image_output_dir: '/workspace/tlt-experiments/data/faster_rcnn/
inference_results_imgs'
    labels_dump_dir: '/workspace/tlt-experiments/data/faster_rcnn/
inference_dump_labels'
    rpn_pre_nms_top_N: 6000
    rpn_nms_max_boxes: 300
    rpn_nms_overlap_threshold: 0.7
    bbox_visualize_threshold: 0.6
    classifier_nms_max_boxes: 300
    classifier_nms_overlap_threshold: 0.3
  }
  evaluation_config {
    model: '/workspace/tlt-experiments/data/faster_rcnn/
frcnn_kitti_resnet18.epoch12.tlt'
    labels_dump_dir: '/workspace/tlt-experiments/data/faster_rcnn/
test_dump_labels'
    rpn_pre_nms_top_N: 6000
    rpn_nms_max_boxes: 300
    rpn_nms_overlap_threshold: 0.7
    classifier_nms_max_boxes: 300
    classifier_nms_overlap_threshold: 0.3
    object_confidence_thres: 0.0001
    use_voc07_11point_metric:False
  }
}

Field Description Data Type and
Constraints

Recommended/
Typical Value

random_seed The random seed
for the experiment.

Unsigned int 42

enc_key The encoding and
decoding key for
the TLT models,
can be override
by the command
line arguments of
tlt-train, tlt-
evaluate and
tlt-infer for
FasterRCNN.

Str, should not be
empty

-

verbose Controls the logging
level during the
experiments. Will
print more logs if
True.

Boolean(True or
False)

False
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Field Description Data Type and
Constraints

Recommended/
Typical Value

network_config The architecture of
the model and its
input format.

message -

training_config The configurations
for the training,
evaluation and
inference for this
experiment.

message -

7.3.1. Network config
The network config(network_config) defines the model structure and the its input
format. This model is used for training, evaluation and inference. Detailed description is
summarized in the table below.

Field Description Data Type and
Constraints

Recommended/
Typical Value

input_image
_config

Defines the input
image format,
including the
image channel
number, channel
order, width and
height, and the
preprocessings
(subtract per-
channel mean and
divided by a scaling
factor) for it before
feeding input the
model. See below
for details.

message -

input_image
_config.image_type

The image type, can
be either RGB or
gray-scale image.

enum type. Either
RGB or GRAYSCALE

RGB

input_image
_config.image
_channel_order

The image channel
order.

str type. If
image_type is
RGB, 'rgb' or
'bgr' is valid. If
the image_type is
GRAYSCALE, only
'l' is valid.

'bgr'
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Field Description Data Type and
Constraints

Recommended/
Typical Value

input_image
_config.size
_height_width

The height and
width as the input
dimension of the
model.

message -

input_image
_config.image
_channel_mean

Per-channel mean
value to subtract
by for the image
preprocessing.

map(dict) type from
channel names to
the corresponding
mean values. Each
of the mean values
should be non-
negative

image_channel_mean
 {
       key: 'b'
       value:
 103.939
}
  
 image_channel_mean
 {
       key: 'g'
       value:
 116.779
}
  
 image_channel_mean
 {
       key: 'r'
       value:
 123.68
}

input_image
_config.image
_scaling_factor

Scaling factor
to divide by
for the image
preprocessing.

float type, should be
a positive scalar.

1.0

input_image
_config.max_objects
_num_per_image

The maximum
number of objects
in an image for the
dataset. Usually, the
number of objects
in different images
is different, but
there is a maximum
number. Setting this
field to be no less
than this maximum
number. This field
is used to pad the
objects number
to the same value
so you can make
multi-batch and
multi-gpu training
of FasterRCNN
possible.

unsigned int, should
be positive.

100
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Field Description Data Type and
Constraints

Recommended/
Typical Value

feature_extractor The feature
extractor(backbone)
for the FasterRCNN
model. FasterRCNN
supports 12
backbones.
Note: FasterRCNN
actually supports
another backbone:
vgg. This backbone
is a VGG16
backbone exactly
the same as in Keras
applications. The
layer names matter
when loading a
pretrained weights.
If you want to
load a pretrained
weights that has
the same names
as VGG16 in the
Keras applications,
you should use
this backbone.
Since this is indeed
duplicated with the
vgg:16 backbone,
you might consider
using vgg:16 for
production. The
only use case for
the vgg backbone
is to reproduce
the original Caffe
implementation
of VGG16
FasterRCNN that
uses ImageNet
weights as
pretrained weights.

str type. The
architecture can
be ResNet, VGG ,
GoogLeNet,
MobileNet or
DarkNet. For each
specific architecture,
it can have different
layers or versions.
Details listed below.

ResNet series:
resnet:10,
resnet:18,
resnet:34,
resnet:50,
resnet:101

VGG series: vgg:16,
vgg:19

GoogLeNet:
googlenet

MobileNet series:
mobilenet_v1,
mobilenet_v2

DarkNet:
darknet:19,
darknet:53

Here a notational
convention can
be used, i.e., for
models that can
have different
numbers of layers,
use a colon followed
by the layer number
as the suffix of the
model name. E.g.,
resnet:<layer_number>

-

anchor_box
_config

The anchor box
configuration
defines the set of
anchor box sizes

Message type that
contains two sub-
fields: scale and
ratio. Each of them

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

and aspect ratios
in a FasterRCNN
model.

is a list of floating
point numbers.
The scale field
defines the absolute
anchor sizes in
pixels(at input
image resolution).
The ratio field
defines the aspect
ratios of each
anchor.

freeze_bn whether or not
to freeze all the
BatchNormalization
layers in the model.
You can choose
to freeze the
BatchNormalization
layers in the model
during training.
This is a common
trick when training
a FasterRCNN
model.

Note: Freezing the
BatchNormalization
layer will only
freeze the moving
mean and moving
variance in it, while
the gamma and beta
parameters are still
trainable.

Boolean (True or
False)

If you train with a
small batch size,
usually you need
to set the field to
be True and use
good pretrained
weights to make the
training converge
well. But if you train
with a large batch
size(e.g., >=16),
you can set it to be
False and let the
BatchNormalization
layer to calculate the
moving mean and
moving variance by
itself.

freeze_blocks The list of block
IDs to be frozen
in the model
during training.
You can choose
to freeze some of
the CNN blocks in
the model to make
the training more
stable and/or easier
to converge. The

list(repeated
integers)

ResNet series - For
the ResNet series,
the block IDs valid
for freezing is any
subset of [0, 1,
2, 3](inclusive)

VGG series - For
the VGG series,

Leave it empty([])
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Field Description Data Type and
Constraints

Recommended/
Typical Value

definition of a block
is heuristic for a
specific architecture.
For example, by
stride or by logical
blocks in the model,
etc. However, the
block ID numbers
identify the blocks
in the model in a
sequential order
so you don't have
to know the exact
locations of the
blocks when you do
training. A general
principle to keep in
mind is: the smaller
the block ID, the
closer it is to the
model input; the
larger the block ID,
the closer it is to the
model output.

You can divide
the whole model
into several blocks
and optionally
freeze a subset of
it. Note that for
FasterRCNN you
can only freeze
the blocks that are
before the ROI
pooling layer. Any
layer after the ROI
pooling layer will
not be frozen any
way. For different
backbones, the
number of blocks
and the block ID
for each block are
different. It deserves
some detailed
explanations on

the block IDs valid
for freezing is any
subset of[1, 2, 3,
4, 5](inclusive)

GoogLeNet- For
the GoogLeNet,
the block IDs valid
for freezing is any
subset of[0, 1,
2, 3, 4, 5, 6,
7](inclusive)

MobileNet V1- For
the MobileNet V1,
the block IDs valid
for freezing is any
subset of [0, 1,
2, 3, 4, 5, 6,
7, 8, 9, 10,
11](inclusive)

MobileNet V2- For
the MobileNet V2,
the block IDs valid
for freezing is any
subset of [0, 1,
2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13](inclusive)

DarkNet - For
the DarkNet 19
and DarkNet 53,
the block IDs
valid for freezing
is any subset of
[0, 1, 2, 3,
4,5](inclusive)
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Field Description Data Type and
Constraints

Recommended/
Typical Value

how to specify the
block ID's for each
backbone.

roi_mini_batch The batch size used
to train the RCNN
after ROI pooling.

A positive integer,
usually uses 128,
256, etc.

256

RPN_stride The cumulative
stride from the
model input to the
RPN. This value is
fixed(16) for current
implementation.

positive integer 16

conv_bn_share
_bias

A Boolean value to
indicate whether or
not to share the bias
of the convolution
layer and the
BatchNormalization
(BN) layer
immediately after it.
Usually you share
the bias between
them to reduce the
model size and
avoid redundancy
of parameters.
When using the
pretrained weights,
make sure the value
of this parameter
aligns with the
actual configuration
in the pretrained
weights otherwise
error will be raised
when loading the
pretrained weights.

Boolean (True or
False)

True

roi_pooling
_config

The configuration
for the ROI pooling
layer.

Message type that
contains two sub-
fields: pool_size
and pool_size_2x.
See below for
details.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

roi_pooling
_config.pool
_size

The output spatial
size(height and
width) of ROIs.
Only square spatial
size is supported
currently, i.e.
height=width.

unsigned int, should
be positive.

7

roi_pooling
_config.pool
_size_2x

A Boolean value to
indicate whether to
do the ROI pooling
at 2*pool_size
followed by a
2 x 2 pooling
operation or do ROI
pooling directly at
pool_size without
pooling operation.
E.g. if pool_size
= 7, and
pool_size_2x=True,
it means you do
ROI pooling to get
an output that has
a spatial size of
14 x 14 followed
by a 2 x 2 pooling
operation to get the
final output tensor.

Boolean (True or
False)

-

all_projections This field is only
useful for models
that have shortcuts
in it. These models
include ResNet
series and the
MobileNet V2. If
all_projections
=True, all the pass-
through shortcuts
will be replaced by
a projection layer
that has the same
number of output
channels as it.

Boolean (True or
False)

True
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Field Description Data Type and
Constraints

Recommended/
Typical Value

use_pooling This parameter
is only useful for
VGG series and
ResNet series. When
use_pooling=True,
you can use pooling
in the model
as the original
implementation,
otherwise use
strided convolution
to replace the
pooling operations
in the model. If you
want to improve the
inference FPS(Frame
Per Second)
performance,
you can try to set
use_pooling=False.

Boolean (True or
False)

False

7.3.2. Training Configuration
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/
Typical Value

kitti_data_configThe dataset used for
training, evaluation
and inference.

Message type.
It has the same
structure as the
dataset_config
message in
DetectNet_v2
spec file. Refer to
the DetectNet_v2
dataset_config
documentation for
the details.

-

data_augmentationDefines the data
augmentation
pipeline during
training.

Message type.
It has the same
structure as the
data_augmentation
message in the

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

DetectNet_v2
spec file. Refer to
the DetectNet_v2
data_augmentation
documentation for
the details.

enable
_augmentation

Whether or not
to enable the data
augmentation
during training. If
this parameter is
False, the training
will not have any
data augmentation
operation even if
you have already
defined the data
augmentation
pipeline in the
data_augmentation
field in spec file.
This feature is
mostly used for
debugging of the
data augmentation
pipeline.

Boolean(True or
False)

True

batch_size
_per_gpu

The training batch
size on each GPU
device. The actual
total batch size will
be batch_size
_per_gpu
multiplied by the
number of GPUs in
a multi-gpu training
scenario.

unsigned int,
positive.

Change the
batch_size_per
_gpu to adapt the
capability of your
GPU device.

num_epochs The number of
epochs for the
training.

unsigned int,
positive.

20

pretrained
_weights

Absolute path to the
pretrained weights
file used to initialize
the training model.
The pretrained

Str type. Can
be left empty.
In that case, the
FasterRCNN model
will use random

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

weights file can
be either a Keras
weights file(with
.h5 suffix), a Keras
model file(with
.hdf5 suffix) or a
TLT model(with
.tlt suffix, trained
by TLT). If the file
is a model file(.tlt
or .hdf5), TLT will
extract the weights
from it and then
load the weights
for initialization.
Files with any
other formats are
not supported as
pretrained weights.
Note that the
pretrained weights
file is agnostic to the
input dimensions
of the FasterRCNN
model so the model
you are training can
have different input
dimensions from the
input dimensions
specified in the
pretrained weights.
Normally, the
pretrained weights
file is only useful
during the initial
training phase in a
TLT workflow.

initialization for its
weights. Usually,
FasterRCNN model
needs a pretrained
weights for good
convergence of
training.

resume_from_modelAbsolute path to the
checkpoint .tlt
model that you
want to resume
the training from.
This is useful in
some cases when
the training process
is interrupted for

Str type. Leave it
empty when you are
not resuming the
training, i.e., train
from epoch 0.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

some reason and
you don't want to
redo the training
from epoch 0(or 1 in
1-based indexing).
In that case, you
can use the last
checkpoint as the
model you will
resume from, to
save the training
time.

retrain_pruned
_model

Path to the pruned
model that you
can load and do
the retraining.
This is used in the
retraining phase in
a TLT workflow.
The model is the
output model of the
pruning phase.

Str type. Leave it
empty when you are
not in the retraining
phase.

-

output_model Absolute path to
the output .tlt
model that the
training/retraining
will save. Note
that this path is not
the actual path of
the .tlt models.
For example, if the
output_model
is '/workspace/
tlt_training/
resnet18.tlt',
then the actual
output model
path will be '/
workspace/
tlt_training/
resnet18 .epoch<k>.tlt'where
<k> denotes the
epoch number of
during training.
In this way, you

Str type. Cannot be
empty.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

can distinguish the
output models for
different epochs.
Here, the epoch
number <k> is a 1-
based index.

checkpoint
_interval

The epoch interval
that controls how
frequent TLT will
save the checkpoint
during training.
TLT will save
the checkpoint at
every checkpoint
_interval epoch(1
based index). For
example, if the
num_epochs is 12
and checkpoint
_interval is
3, then TLT will
save checkpoint at
the end of epoch
3, 6, 9, and 12. If
this parameter
is not specified,
then it defaults
to checkpoint
_interval=1.

unsigned int, can be
omitted(defaults to
1).

-

rpn_min_overlap The lower IoU
threshold used to
map the anchor
boxes to ground
truth boxes. If the
IoU of an anchor
box and any ground
truth box is below
this threshold, you
can treat this anchor
box as a negative
anchor box.

Float type, scalar.
Should be in the
interval (0, 1).

0.3

rpn_max_overlap The upper IoU
threshold used to
map the anchor
boxes to ground

Float type, scalar.
Should be in the
interval (0, 1)

0.7
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Field Description Data Type and
Constraints

Recommended/
Typical Value

truth boxes. If the
IoU of an anchor
box and at least
one ground truth
box is above this
threshold, you can
treat this anchor box
as a positive anchor
box.

and greater than
rpn_min_overlap.

classifier
_min_overlap

The lower IoU
threshold to
generate the
proposal target.
If the IoU of an
ROI and a ground
truth box is above
the threshold
and below the
classifier_max
_overlap, then
this ROI is regarded
as a negative
ROI(background)
when training the
RCNN.

floating-point
number, scalar.
Should be in the
interval [0, 1).

0.0

classifier
_max_overlap

Similar to the
classifier_min
_overlap. If the
IoU of a ROI and
a ground truth
box is above this
threshold, then this
ROI is regarded as
a positive ROI and
this ground truth
box is treated as the
target(ground truth)
of this ROI when
training the RCNN.

Float type, scalar.
Should be in the
interval (0, 1)
and greater than
classifier_min
_overlap.

0.5

gt_as_roi A Boolean value to
specify whether or
not to include the
ground truth boxes

Boolean(True or
False)

False
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Field Description Data Type and
Constraints

Recommended/
Typical Value

into the positive ROI
to train the RCNN.

std_scaling The scaling factor to
multiply by for the
RPN regression loss
when training the
RPN.

Float type, should
be positive.

1.0

classifier_regr
_std

The scaling factor
to divide by for the
RCNN regression
loss when training
the RCNN.

map(dict) type.
Map from 'x',
'y', 'w', 'h' to
its corresponding
scaling factor. Each
of the scaling factors
should be a positive
float number.

classifier_regr
_std {

key: 'x'

value: 10.0

}

classifier_regr
_std {

key: 'y'

value: 10.0

}

classifier_regr
_std {

key: 'w'

value: 5.0

}

classifier_regr
_std {

key: 'h'

value: 5.0

}

rpn_mini_batc

h

The anchor batch
size used to train the
RPN.

unsigned int,
positive.

256

rpn_pre_nms
_top_N

The number of
boxes to be retained
before the NMS in
Proposal layer.

unsigned int,
positive.

-

rpn_nms_max_boxesThe number of
boxes to be retained

unsigned int,
positive and

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

after the NMS in
Proposal layer.

should be no
greater than the
rpn_pre_nms_top_N

rpn_nms_overlap
_threshold

The IoU threshold
for the NMS in
Proposal layer.

Float type, should
be in the interval
(0, 1).

0.7

reg_config Regularizer
configuration of
the model weights,
including the
regularizer type and
weight decay.

message that
contains two sub-
fields: reg_type
and weight_decay.
See below for
details.

-

reg_config.reg
_type

The regularizer
type. Can be
either 'L1'(L1
regularizer),
'L2'(L2
regularizer),
or 'none'(No
regularizer).

Str type. Should be
one of the below:
'L1', 'L2', or
'none'.

-

reg_config.weight
_decay

The weight decay
for the regularizer.

Float type, should
be a positive scalar.
Usually this number
should be smaller
than 1.0

-

optimizer The Optimizer used
for the training.
Can be either SGD,
RMSProp or Adam.

oneof message
type that can be one
of sgd message,
rmsprop message or
adam message. See
below for the details
of each message
type.

-

adam Adam optimizer. message type
that contains the
4 sub-fields: lr,
beta_1, beta_2,
and epsilon. See
the Keras 2.2.4
documentation for
the meaning of each
field.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

Noteℼ When
the learning
rate scheduler
is enabled, the
learning rate in
the optimizer is
overridden by
the learning rate
scheduler and the
one specified in the
optimizer(lr) is
irrelevant.

sgd SGD optimizer message type
that contains the
following fields:
lr, momentum,
decayand
nesterov. See
the Keras 2.2.4
documentation for
the meaning of each
field.

Noteℼ When
the learning
rate scheduler
is enabled, the
learning rate in
the optimizer is
overridden by
the learning rate
scheduler and the
one specified in the
optimizer(lr) is
irrelevant.

-

rmsprop RMSProp optimizer message type that
contains only one
field: lr(learning
rate).

Noteℼ When
learning rate
scheduler is
enabled, the
learning rate in
the optimizer is

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

overridden by
the learning rate
scheduler and the
one specified in the
optimizer(lr) is
irrelevant.

lr_scheduler The learning rate
scheduler.

message type that
can be stepor
soft_start.
stepscheduler
is the same as
stepscheduler
in classification,
while soft_startis
the same as
soft_annealin
classification.
Refer to the
classification spec
file documentation
for details.

-

lambda_rpn_regr The loss scaling
factor for RPN
deltas regression
loss.

Float typer. Should
be a positive scalar.

1.0

lambda_rpn_class The loss scaling
factor for RPN
classification loss.

Float type. Should
be a positive scalar.

1.0

lambda_cls_regr The loss scaling
factor for RCNN
deltas regression
loss.

Float type. Should
be a positive scalar.

1.0

lambda_cls_class The loss scaling
factor for RCNN
classification loss.

Float type. Should
be a positive scalar.

1.0

inference_config The inference
configuration for
tlt-infer.

message type. See
below for details.

-

inference_config .images_dirThe absolute path to
the image directory
that tlt-inferwill
do inference on.

Str type. Should be a
valid Unix path.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

inference
_config.model

The absolute path to
the the .tlt model
that tlt-inferwill
do inference for.

Str type. Should be a
valid Unix path.

-

inference
_config.detection
_image_output_dir

The absolute path
to the output image
directory for the
detection result.
If the path doesn't
exist tlt-inferwill
create it. If the
directory already
contains images
tlt-inferwill
overwrite them.

Str type. Should be a
valid Unix path.

-

inference
_config.labels
_dump_dir

The absolute path to
the directory to save
the detected labels
in KITTI format.
tlt-inferwill
create it if it doesn't
exist beforehand. If
it already contains
label files, tlt-
inferwill overwrite
them.

Str type. Should be a
valid Unix path.

-

inference
_config.rpn
_pre_nms_top_N

The number of top
ROI's to be retained
before the NMS in
Proposal layer.

unsigned int,
positive.

-

inference
_config.rpn
_nms_max_boxes

The number of top
ROI's to be retained
after the NMS in
Proposal layer.

unsigned int,
positive.

-

inference_config .rpn_nms
_overlap_threshold

The IoU threshold
for the NMS in
Proposal layer.

Float type, should
be in the interval
(0, 1).

0.7

inference_config .bbox
_visualize
_threshold

The confidence
threshold for the
bounding boxes to
be regarded as valid
detected objects in
the images.

Float type, should
be in the interval
(0, 1).

0.6
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Field Description Data Type and
Constraints

Recommended/
Typical Value

inference_config .classifier
_nms_max_boxes

The number of
bounding boxes to
be retained after the
NMS in RCNN.

unsigned int,
positive.

300

inference_config .classifier
_nms_overlap
_threshold

The IoU threshold
for the NMS in
RCNN.

Float type. Should
be in the interval
(0, 1).

0.3

inference_config.bbox
_caption_on

Whether or not
to show captions
for each bounding
box in the detected
images. The
captions include
the class name
and confidence
probability value for
each detected object.

Boolean(True or
False)

False

inference_config.trt
_inference

The TensorRT
inference
configuration for
tlt-inferin
TensorRT backend
mode.

Message type. This
can be not present,
and in this case,
tlt-inferwill use
TLT as a backend
for inference. See
below for details.

-

inference
_config.trt
_inference.trt
_infer_model

The model
configuration for
the tlt-inferin
TensorRT backend
mode. It is a
oneofwrapper
of the two
possible model
configurations:
trt_engineand
etlt_model. Only
one of them can
be specified if
run tlt-inferin
TensorRT backend.
If trt_engineis
provided, tlt-
inferwill run
TensorRT inference
on the TensorRT

message type,
oneof wrapper of
trt_engineand
etlt_model. See
below for details.

-
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Field Description Data Type and
Constraints

Recommended/
Typical Value

engine file. If .etlt
model is provided,
tlt-inferwill run
TensorRT inference
on the .etlt model.
If in INT8 mode a
calibration cache
file should also be
provided along with
the .etlt model.

inference_config.trt
_inference.trt_engine

The absolute path
to the TensorRT
engine file for tlt-
inferin TensorRT
backend mode. The
engine should be
generated via the
tlt-exportor tlt-
convertercommand
line tools.

Str type. -

inference
_config.trt
_inference .etlt_model

The configuration
for the .etlt model
and the calibration
cache(only needed
in INT8 mode)
for tlt-inferin
TensorRT backend
mode. The .etlt
model(and
calibration cache,
if needed) should
be generated via
the tlt-export
command line tool.

message type
that contains two
string type sub-
fields: model and
calibration_cache.
See below for
details.

-

inference
_config.trt
_inference.etlt
_model.model

The absolute path
to the .etlt model
that tlt-infer will
use to run TensorRT
based inference.

Str type. -

inference
_config.trt
_inference.etlt
_model.calibration
_cache

The path to the
TensorRT INT8
calibration cache
file in the case of
tlt-infer run

Str type. -
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Field Description Data Type and
Constraints

Recommended/
Typical Value

with.etlt model in
INT8 mode.

inference
_config.trt
_inference.trt
_data_type

The TensorRT
inference data type
if tlt-infer runs
with TensorRT
backend. The data
type is only useful
when running on
a .etlt model. In
that case, if the data
type is 'int8', a
calibration cache
file should also
be provided as
mentioned above.
If running on a
TensorRT engine
file directly, this
field will be ignored
since the engine file
already contains
the data type
information.

String type. Valid
values are 'fp32',
'fp16' and'int8'.

'fp32'

evaluation
_config

The configuration
for the tlt-
evaluate in
FasterRCNN.

message type that
contains the below
fields. See below for
details.

-

evaluation
_config.model

The absolute path to
the .tlt model that
tlt-evaluate will
do evaluation for.

Str type. Should be a
valid Unix path.

-

evaluation
_config .labels_dump_dir

The absolute path
to the directory of
detected labels that
tlt-evaluate
will save. If it
doesn't exist, tlt-
evaluate will
create it. If it already
contains label files,
tlt-evaluate will
overwrite them.

Str type. Should be a
valid Unix path.

-



Creating an experiment spec file

www.nvidia.com
NVIDIA Transfer Learning Toolkit for Intelligent Video
Analytics

DU-09243-003 _v2.0 | 103

Field Description Data Type and
Constraints

Recommended/
Typical Value

evaluation
_config .rpn_pre_nms
_top_N

The number of top
ROIs to be retained
before the NMS in
Proposal layer in
tlt-evaluate.

unsigned int,
positive.

-

evaluation
_config .rpn_nms_max
_boxes

The number of top
ROIs to be retained
after the NMS in
Proposal layer in
tlt-evaluate.

unsigned int,
positive. Should be
no greater than the
evaluation_config.rpn
_pre_nms_top_N.

-

evaluation
_config .rpn_nms_iou
_threshold

The IoU threshold
for the NMS in
Proposal layer in
tlt-evaluate.

Float type in the
interval (0, 1).

0.7

evaluation
_config .classifier_nms
_max_boxes

The number of top
bounding boxes to
be retained after the
NMS in RCNN in
tlt-evaluate.

Unsigned int,
positive.

-

evaluation
_config .classifier_nms
_overlap
_threshold

The IoU threshold
for the NMS in
RCNN in tlt-
evaluate.

Float typer in the
interval (0, 1).

0.3

evaluation
_config .object_confidence
_thres

The confidence
threshold above
which a bounding
box can be regarded
as a valid object
detected by
FasterRCNN.
Usually you can use
a small threshold
to improve the
recall and mAP
as in many
object detection
challenges.

Float type in the
interval (0, 1).

0.0001

evaluation
_config.
use_voc07
_11point_metric

Whether to use the
VOC2007 mAP
calculation method
when computing
the mAP of the
FasterRCNN model

Boolean (True or
False)

False
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Field Description Data Type and
Constraints

Recommended/
Typical Value

on a specific dataset.
If this is False, you
can use VOC2012
metric instead.

7.4. Specification file for SSD
Here is a sample of the SSD spec file. It has 6 major components: ssd_config,
training_config, eval_config, nms_config, augmentation_config, and dataset_config.
The format of the spec file is a protobuf text(prototxt) message and each of its fields can
be either a basic data type or a nested message. The top level structure of the spec file is
summarized in the table below.

7.4.1. Training config
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

batch_size_per_gpu The batch size for
each GPU, so the
effective batch size is
batch_size_per_gpu *
num_gpus

Unsigned int, positive -

num_epochs The anchor batch size
used to train the RPN.

Unsigned int, positive. -

enable_qat Whether to use
quantization aware
training

Boolean -

learning_rate Only
soft_start_annealing_schedule
with these nested
parameters is
supported.

1. min_learning_rate:
minimum learning late
to be seen during the
entire experiment.

2. max_learning_rate:
maximum learning rate
to be seen during the
entire experiment

Message type. -
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3. soft_start: Time
to be lapsed before
warm up ( expressed in
percentage of progress
between 0 and 1)

4. annealing: Time
to start annealing the
learning rate

regularizer This parameter
configures the
regularizer to be used
while training and
contains the following
nested parameters.

1. type: The type
or regularizer to
use. NVIDIA supports
NO_REG, L1 or L2

2. weight: The
floating point value for
regularizer weight

Message type. L1 (Note: NVIDIA
suggests using L1
regularizer when
training a network
before pruning as L1
regularization helps
making the network
weights more prunable.)

7.4.2. Evaluation config
The evaluation configuration (eval_config) defines the parameters needed for the
evaluation either during training or standalone. Details are summarized in the table
below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

validation_period_during_trainingThe number of training
epochs per which one
validation should run.

Unsigned int, positive 10

average_precision_modeAverage Precision (AP)
calculation mode can
be either SAMPLE or
INTEGRATE. SAMPLE
is used as VOC metrics
for VOC 2009 or before.
INTEGRATE is used for
VOC 2010 or after that.

ENUM type ( SAMPLE or
INTEGRATE)

SAMPLE

matching_iou_thresholdThe lowest iou of
predicted box and
ground truth box that
can be considered a
match.

Boolean 0.5

7.4.3. NMS config
The NMS configuration (nms_config) defines the parameters needed for the NMS
postprocessing. NMS config applies to the NMS layer of the model in training,
validation, evaluation, inference and export. Details are summarized in the table below.
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Field Description Data Type and
Constraints

Recommended/Typical
Value

confidence_threshold Boxes with a confidence
score less than
confidence_threshold
are discarded before
applying NMS

float 0.01

cluster_iou_thresholdIOU threshold below
which boxes will go
through NMS process

float 0.6

top_k top_k boxes will be
outputted after the
NMS keras layer. If
the number of valid
boxes is less than k,
the returned array will
be padded with boxes
whose confidence score
is 0.

Unsigned int 200

7.4.4. Augmentation config
The augmentation configuration (augmentation_config) defines the parameters
needed for data augmentation. The configuration is shared with DetectNet_v2. See
Augmentation module for more information.

7.4.5. Dataset config
The dataset configuration (dataset_config) defines the parameters needed for the
data loader. The configuration is shared with DetectNet_v2. See Dataloader for more
information.

7.4.6. SSD config
The SSD configuration (ssd_config) defines the parameters needed for building the
SSD model. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

aspect_ratios_global Anchor boxes of aspect
ratios defined in
aspect_ratios_global
will be generated for
each feature layer
used for prediction.
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

string “[1.0, 2.0, 0.5, 3.0,
0.33]”

aspect_ratios The length of the outer
list must be equivalent
to the number of

string “[[1.0,2.0,0.5],
[1.0,2.0,0.5],
[1.0,2.0,0.5],
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feature layers used for
anchor box generation.
And the i-th layer will
have anchor boxes with
aspect ratios defined
in aspect_ratios[i].
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

[1.0,2.0,0.5],
[1.0,2.0,0.5], [1.0, 2.0,
0.5, 3.0, 0.33]]”

two_boxes_for_ar1 This setting is only
relevant for layers
that have 1.0 as
the aspect ratio. If
two_boxes_for_ar1 is
true, two boxes will
be generated with an
aspect ratio of 1. One
whose scale is the scale
for this layer and the
other one whose scale is
the geometric mean of
the scale for this layer
and the scale for the
next layer.

Boolean True

clip_boxes If true, all corner anchor
boxes will be truncated
so they are fully inside
the feature images.

Boolean False

scales scales is a list of
positive floats
containing scaling
factors per
convolutional predictor
layer. This list must
be one element longer
than the number of
predictor layers, so if
two_boxes_for_ar1 is
true, the second aspect
ratio 1.0 box for the last
layer can have a proper
scale. Except for the
last element in this list,
each positive float is
the scaling factor for
boxes in that layer. For
example, if for one layer
the scale is 0.1, then
the generated anchor
box with aspect ratio
1 for that layer (the
first aspect ratio 1 box
if two_boxes_for_ar1
is true) will have its
height and width as
0.1*min(img_h, img_w).

string “[0.05, 0.1, 0.25,
0.4, 0.55, 0.7,
0.85]”
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min_scale and
max_scale are two
positive floats. If both
of them appear in the
config, the program can
automatically generate
the scales by evenly
splitting the space
between min_scale and
max_scale.

min_scale/max_scale If both appear in the
config, scales will be
generated evenly by
splitting the space
between min_scale and
max_scale.

float -

loss_loc_weight This is a positive float
controlling how much
location regression
loss should contribute
to the final loss. The
final loss is calculated
as classification_loss
+ loss_loc_weight *
loc_loss

float 1.0

focal_loss_alpha Alpha is the focal loss
equation.

float 0.25

focal_loss_gamma Gamma is the focal loss
equation.

float 2.0

variances Variances should be
a list of 4 positive
floats. The four floats,
in order, represent
variances for box center
x, box center y, log box
height, log box width.
The box offset for box
center (cx, cy) and
log box size (height/
width) w.r.t. anchor
will be divided by their
respective variance
value. Therefore, larger
variances result in less
significant differences
between two different
boxes on encoded
offsets.

steps An optional list inside
quotation marks whose
length is the number
of feature layers
for prediction. The
elements should be
floats or tuples/lists of
two floats. Steps define

string -
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how many pixels apart
the anchor box center
points should be. If the
element is a float, both
vertical and horizontal
margin is the same.
Otherwise, the first
value is step_vertical
and the second value
is step_horizontal. If
steps are not provided,
anchor boxes will be
distributed uniformly
inside the image.

offsets An optional list of floats
inside quotation marks
whose length is the
number of feature layers
for prediction. The first
anchor box will have
offsets[i]*steps[i] pixels
margin from the left and
top borders. If offsets
are not provided, 0.5
will be used as default
value.

string -

arch Backbone for feature
extraction. Currently,
“resnet”, “vgg”,
“darknet”, “googlenet”,
“mobilenet_v1”,
“mobilenet_v2” and
“squeezenet” are
supported.

string resnet

nlayers Number of conv layers
in specific arch. For
“resnet”, 10, 18, 34, 50
and 101 are supported.
For “vgg”, 16 and 19
are supported. For
“darknet”, 19 and 53
are supported. All other
networks don’t have this
configuration and users
should just delete this
config from the config
file.

Unsigned int -

freeze_bn Whether to freeze all
batch normalization
layers during training.

boolean False

freeze_blocks The list of block IDs to
be frozen in the model
during training. You
can choose to freeze
some of the CNN blocks
in the model to make

list(repeated integers)

• ResNet series. For the
ResNet series, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3] (inclusive)

-
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the training more
stable and/or easier to
converge. The definition
of a block is heuristic for
a specific architecture.
For example, by stride
or by logical blocks
in the model, etc.
However, the block ID
numbers identify the
blocks in the model in
a sequential order so
you don't have to know
the exact locations of
the blocks when you
do training. A general
principle to keep in
mind is: the smaller the
block ID, the closer it is
to the model input; the
larger the block ID, the
closer it is to the model
output.

You can divide the
whole model into
several blocks and
optionally freeze a
subset of it. Note that
for FasterRCNN you
can only freeze the
blocks that are before
the ROI pooling layer.
Any layer after the ROI
pooling layer will not
be frozen any way. For
different backbones, the
number of blocks and
the block ID for each
block are different. It
deserves some detailed
explanations on how to
specify the block ID's for
each backbone.

• VGG series. For the
VGG series, the block
IDs valid for freezing is
any subset of[1, 2, 3,
4, 5] (inclusive)

• GoogLeNet. For the
GoogLeNet, the block
IDs valid for freezing is
any subset of[0, 1,
2, 3, 4, 5, 6, 7]
(inclusive)

• MobileNet V1. For
the MobileNet V1,
the block IDs valid for
freezing is any subset
of [0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10,
11](inclusive)

• MobileNet V2. For the
MobileNet V2, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13](inclusive)

• DarkNet. For the
DarkNet 19 and DarkNet
53, the block IDs valid
for freezing is any
subset of [0, 1, 2, 3,
4, 5](inclusive)

7.5. Specification file for DSSD
Below is a sample for the DSSD spec file. It has 6 major components: dssd_config,
training_config, eval_config, nms_config, augmentation_config and dataset_config.
The format of the spec file is a protobuf text(prototxt) message and each of its fields can
be either a basic data type or a nested message. The top level structure of the spec file is
summarized in the table below.
random_seed: 42
dssd_config {
  aspect_ratios_global: "[1.0, 2.0, 0.5, 3.0, 1.0/3.0]"
  scales: "[0.05, 0.1, 0.25, 0.4, 0.55, 0.7, 0.85]"
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  two_boxes_for_ar1: true
  clip_boxes: false
  loss_loc_weight: 0.8
  focal_loss_alpha: 0.25
  focal_loss_gamma: 2.0
  variances: "[0.1, 0.1, 0.2, 0.2]"
  arch: "resnet"
  nlayers: 18
  pred_num_channels: 512
  freeze_bn: false
  freeze_blocks: 0
}
training_config {
  batch_size_per_gpu: 16
  num_epochs: 80
  enable_qat: false
  learning_rate {
  soft_start_annealing_schedule {
    min_learning_rate: 5e-5
    max_learning_rate: 2e-2
    soft_start: 0.15
    annealing: 0.8
    }
  }
  regularizer {
    type: L1
    weight: 3e-5
  }
}
eval_config {
  validation_period_during_training: 10
  average_precision_mode: SAMPLE
  batch_size: 16
  matching_iou_threshold: 0.5
}
nms_config {
  confidence_threshold: 0.01
  clustering_iou_threshold: 0.6
  top_k: 200
}
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    output_image_channel: 3
    crop_right: 1248
    crop_bottom: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
  }
  spatial_augmentation {
    hflip_probability: 0.5
    vflip_probability: 0.0
    zoom_min: 0.7
    zoom_max: 1.8
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
dataset_config {
  data_sources: {
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    tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/
kitti_trainval*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "png"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "pedestrian"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "cyclist"
      value: "cyclist"
  }
  target_class_mapping {
      key: "van"
      value: "car"
  }
  target_class_mapping {
      key: "person_sitting"
      value: "pedestrian"
  }
validation_fold: 0
}

7.5.1. Training config
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

batch_size_per_gpu The batch size for
each GPU, so the
effective batch size is
batch_size_per_gpu *
num_gpus

Unsigned int, positive -

num_epochs The anchor batch size
used to train the RPN.

Unsigned int, positive. -

enable_qat Whether to use
quantization aware
training

Boolean -

learning_rate Only
soft_start_annealing_schedule
with these nested
parameters is
supported.

1. min_learning_rate:
minimum learning late
to be seen during the
entire experiment.

2. max_learning_rate:
maximum learning rate
to be seen during the
entire experiment

Message type. -
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3. soft_start: Time
to be lapsed before
warm up ( expressed in
percentage of progress
between 0 and 1)

4. annealing: Time
to start annealing the
learning rate

regularizer This parameter
configures the
regularizer to be used
while training and
contains the following
nested parameters.

1. type: The type
or regularizer to
use. NVIDIA supports
NO_REG, L1 or L2

2. weight: The
floating point value for
regularizer weight

Message type. L1 (Note: NVIDIA
suggests using L1
regularizer when
training a network
before pruning as L1
regularization helps
making the network
weights more prunable.)

7.5.2. Evaluation config
The evaluation configuration (eval_config) defines the parameters needed for the
evaluation either during training or standalone. Details are summarized in the table
below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

validation_period_during_trainingThe number of training
epochs per which one
validation should run.

Unsigned int, positive 10

average_precision_modeAverage Precision (AP)
calculation mode can
be either SAMPLE or
INTEGRATE. SAMPLE
is used as VOC metrics
for VOC 2009 or before.
INTEGRATE is used for
VOC 2010 or after that.

ENUM type ( SAMPLE or
INTEGRATE)

SAMPLE

matching_iou_thresholdThe lowest iou of
predicted box and
ground truth box that
can be considered a
match.

Boolean 0.5

7.5.3. NMS config
The NMS configuration (nms_config) defines the parameters needed for the NMS
postprocessing. NMS config applies to the NMS layer of the model in training,
validation, evaluation, inference and export. Details are summarized in the table below.
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Field Description Data Type and
Constraints

Recommended/Typical
Value

confidence_threshold Boxes with a confidence
score less than
confidence_threshold
are discarded before
applying NMS

float 0.01

cluster_iou_thresholdIOU threshold below
which boxes will go
through NMS process

float 0.6

top_k top_k boxes will be
outputted after the
NMS keras layer. If
the number of valid
boxes is less than k,
the returned array will
be padded with boxes
whose confidence score
is 0.

Unsigned int 200

7.5.4. Augmentation config
The augmentation configuration (augmentation_config) defines the parameters
needed for data augmentation. The configuration is shared with DetectNet_v2. See
Augmentation module for more information.

7.5.5. Dataset config
The dataset configuration (dataset_config) defines the parameters needed for the
data loader. The configuration is shared with DetectNet_v2. See Dataloader for more
information.

7.5.6. DSSD config
The DSSD configuration (dssd_config) defines the parameters needed for building the
DSSD model. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

aspect_ratios_global Anchor boxes of aspect
ratios defined in
aspect_ratios_global
will be generated for
each feature layer
used for prediction.
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

string “[1.0, 2.0, 0.5, 3.0,
0.33]”

aspect_ratios The length of the outer
list must be equivalent
to the number of

string “[[1.0,2.0,0.5],
[1.0,2.0,0.5],
[1.0,2.0,0.5],
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feature layers used for
anchor box generation.
And the i-th layer will
have anchor boxes with
aspect ratios defined
in aspect_ratios[i].
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

[1.0,2.0,0.5],
[1.0,2.0,0.5], [1.0, 2.0,
0.5, 3.0, 0.33]]”

two_boxes_for_ar1 This setting is only
relevant for layers
that have 1.0 as
the aspect ratio. If
two_boxes_for_ar1 is
true, two boxes will
be generated with an
aspect ratio of 1. One
whose scale is the scale
for this layer and the
other one whose scale is
the geometric mean of
the scale for this layer
and the scale for the
next layer.

Boolean True

clip_boxes If true, all corner anchor
boxes will be truncated
so they are fully inside
the feature images.

Boolean False

scales scales is a list of
positive floats
containing scaling
factors per
convolutional predictor
layer. This list must
be one element longer
than the number of
predictor layers, so if
two_boxes_for_ar1 is
true, the second aspect
ratio 1.0 box for the last
layer can have a proper
scale. Except for the
last element in this list,
each positive float is
the scaling factor for
boxes in that layer. For
example, if for one layer
the scale is 0.1, then
the generated anchor
box with aspect ratio
1 for that layer (the
first aspect ratio 1 box
if two_boxes_for_ar1
is true) will have its
height and width as
0.1*min(img_h, img_w).

string “[0.05, 0.1, 0.25,
0.4, 0.55, 0.7,
0.85]”
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min_scale and
max_scale are two
positive floats. If both
of them appear in the
config, the program can
automatically generate
the scales by evenly
splitting the space
between min_scale and
max_scale.

min_scale/max_scale If both appear in the
config, scales will be
generated evenly by
splitting the space
between min_scale and
max_scale.

float -

loss_loc_weight This is a positive float
controlling how much
location regression
loss should contribute
to the final loss. The
final loss is calculated
as classification_loss
+ loss_loc_weight *
loc_loss

float 1.0

focal_loss_alpha Alpha is the focal loss
equation.

float 0.25

focal_loss_gamma Gamma is the focal loss
equation.

float 2.0

variances Variances should be
a list of 4 positive
floats. The four floats,
in order, represent
variances for box center
x, box center y, log box
height, log box width.
The box offset for box
center (cx, cy) and
log box size (height/
width) w.r.t. anchor
will be divided by their
respective variance
value. Therefore, larger
variances result in less
significant differences
between two different
boxes on encoded
offsets.

steps An optional list inside
quotation marks whose
length is the number
of feature layers
for prediction. The
elements should be
floats or tuples/lists of
two floats. Steps define

string -
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how many pixels apart
the anchor box center
points should be. If the
element is a float, both
vertical and horizontal
margin is the same.
Otherwise, the first
value is step_vertical
and the second value
is step_horizontal. If
steps are not provided,
anchor boxes will be
distributed uniformly
inside the image.

offsets An optional list of floats
inside quotation marks
whose length is the
number of feature layers
for prediction. The first
anchor box will have
offsets[i]*steps[i] pixels
margin from the left and
top borders. If offsets
are not provided, 0.5
will be used as default
value.

string -

arch Backbone for feature
extraction. Currently,
“resnet”, “vgg”,
“darknet”, “googlenet”,
“mobilenet_v1”,
“mobilenet_v2” and
“squeezenet” are
supported.

string resnet

nlayers Number of conv layers
in specific arch. For
“resnet”, 10, 18, 34, 50
and 101 are supported.
For “vgg”, 16 and 19
are supported. For
“darknet”, 19 and 53
are supported. All other
networks don’t have this
configuration and users
should just delete this
config from the config
file.

Unsigned int -

pred_num_channels This setting controls the
number of channels of
the convolutional layers
in the DSSD prediction
module. Setting this
value to 0 will disable
the DSSD prediction
module. Supported
values for this setting
are 0, 256, 512 and

Unsigned int 512
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1024. A larger value
gives a larger network
and usually means the
network is harder to
train.

freeze_bn Whether to freeze all
batch normalization
layers during training.

boolean False

freeze_blocks The list of block IDs to
be frozen in the model
during training. You
can choose to freeze
some of the CNN blocks
in the model to make
the training more
stable and/or easier to
converge. The definition
of a block is heuristic for
a specific architecture.
For example, by stride
or by logical blocks
in the model, etc.
However, the block ID
numbers identify the
blocks in the model in
a sequential order so
you don't have to know
the exact locations of
the blocks when you
do training. A general
principle to keep in
mind is: the smaller the
block ID, the closer it is
to the model input; the
larger the block ID, the
closer it is to the model
output.

You can divide the
whole model into
several blocks and
optionally freeze a
subset of it. Note that
for FasterRCNN you
can only freeze the
blocks that are before
the ROI pooling layer.
Any layer after the ROI
pooling layer will not
be frozen any way. For
different backbones, the
number of blocks and
the block ID for each
block are different. It
deserves some detailed
explanations on how to

list(repeated integers)

• ResNet series. For the
ResNet series, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3] (inclusive)

• VGG series. For the
VGG series, the block
IDs valid for freezing is
any subset of[1, 2, 3,
4, 5] (inclusive)

• GoogLeNet. For the
GoogLeNet, the block
IDs valid for freezing is
any subset of[0, 1,
2, 3, 4, 5, 6, 7]
(inclusive)

• MobileNet V1. For
the MobileNet V1,
the block IDs valid for
freezing is any subset
of [0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10,
11](inclusive)

• MobileNet V2. For the
MobileNet V2, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13](inclusive)

• DarkNet. For the
DarkNet 19 and DarkNet
53, the block IDs valid
for freezing is any
subset of [0, 1, 2, 3,
4, 5](inclusive)

-
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specify the block ID's for
each backbone.

dssd_config {
  aspect_ratios_global: "[1.0, 2.0, 0.5, 3.0, 0.33]"
  scales: "[0.1, 0.24166667, 0.38333333, 0.525, 0.66666667, 0.80833333, 0.95]"
  two_boxes_for_ar1: true
  clip_boxes: false
  loss_loc_weight: 1.0
  focal_loss_alpha: 0.25
  focal_loss_gamma: 2.0
  variances: "[0.1, 0.1, 0.2, 0.2]"
  pred_num_channels: 0
  arch: "resnet"
  nlayers: 18
  freeze_bn: True
  freeze_blocks: 0
  freeze_blocks: 1}

Using aspect_ratios_global or aspect_ratios

Only one of aspect_ratios_global or aspect_ratios is required.

aspect_ratios_global should be a 1-d array inside quotation marks. Anchor boxes
of aspect ratios defined in aspect_ratios_global will be generated for each feature
layer used for prediction. Example: "[1.0, 2.0, 0.5, 3.0, 0.33]"

aspect_ratios should be a list of lists inside quotation marks. The length of the outer
list must be equivalent to the number of feature layers used for anchor box generation.
And the i-th layer will have anchor boxes with aspect ratios defined in aspect_ratios[i].
Here's an example:
"[[1.0,2.0,0.5], [1.0,2.0,0.5], [1.0,2.0,0.5], [1.0,2.0,0.5], [1.0,2.0,0.5],
 [1.0, 2.0, 0.5, 3.0, 0.33]]"

two_boxes_for_ar1

This setting is only relevant for layers that have 1.0 as the aspect ratio. If
two_boxes_for_ar1 is true, two boxes will be generated with an aspect ratio of 1. One
whose scale is the scale for this layer and the other one whose scale is the geometric
mean of the scale for this layer and the scale for the next layer.

Scales or combination of min_scale and max_scale

Only one of scales and the combination of min_scale and max_scale is required.

Scales should be a 1-d array inside quotation marks. It is a list of positive floats
containing scaling factors per convolutional predictor layer. This list must be one
element longer than the number of predictor layers, so if two_boxes_for_ar1 is true,
the second aspect ratio 1.0 box for the last layer can have a proper scale. Except for the
last element in this list, each positive float is the scaling factor for boxes in that layer.
For example, if for one layer the scale is 0.1, then the generated anchor box with aspect
ratio 1 for that layer (the first aspect ratio 1 box if two_boxes_for_ar1 is true) will have its
height and width as 0.1*min(img_h, img_w).
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min_scale and max_scale are two positive floats. If both of them appear in the config,
the program can automatically generate the scales by evenly splitting the space between
min_scale and max_scale.

clip_boxes

If true, all corner anchor boxes will be truncated so they are fully inside the feature
images.

loss_loc_weight

This is a positive float controlling how much location regression loss should contribute
to the final loss. The final loss is calculated as classification_loss + loss_loc_weight * loc_loss

focal_loss_alpha and focal_loss_gamma

Focal loss is calculated as:

focal_loss_alpha defines α and focal_loss_gamma defines γ in the formula. NVIDIA
recommends α=0.25 and γ=2.0 if you don't know what values to use.

variances

Variances should be a list of 4 positive floats. The four floats, in order, represent
variances for box center x, box center y, log box height, log box width. The box offset for
box center (cx, cy) and log box size (height/width) w.r.t. anchor will be divided by their
respective variance value. Therefore, larger variances result in less significant differences
between two different boxes on encoded offsets. The formula for offset calculation is:

steps

An optional list inside quotation marks whose length is the number of feature layers for
prediction. The elements should be floats or tuples/lists of two floats. Steps define how
many pixels apart the anchor box center points should be. If the element is a float, both
vertical and horizontal margin is the same. Otherwise, the first value is step_vertical
and the second value is step_horizontal. If steps are not provided, anchorboxes will be
distributed uniformly inside the image.

offsets
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An optional list of floats inside quotation marks whose length is the number of feature
layers for prediction. The first anchor box will have offsets[i]*steps[i] pixels margin from
the left and top borders. If offsets are not provided, 0.5 will be used as default value.

arch

A string indicating which feature extraction architecture you want to use. Currently,
“resnet”, “vgg”, “darknet”, “googlenet”, “mobilenet_v1”, “mobilenet_v2” and
“squeezenet” are supported.

nlayers

An integer specifying the number of layers of the selected arch. For “resnet”, 10, 18, 34,
50 and 101 are supported. For “vgg”, 16 and 19 are supported. For “darknet”, 19 and 53
are supported. All other networks don’t have this configuration and users should just
delete this config from the config file.

freeze_bn

Whether to freeze all batch normalization layers during training.

freeze_blocks

Optionally, you can have more than 1 freeze_blocks field. Weights of layers in those
blocks will be freezed during training. See Model config for more information.

7.6. Specification file for RetinaNet
Below is a sample for the RetinaNet spec file. It has 6 major components:
retinanet_config, training_config, eval_config, nms_config, augmentation_config and
dataset_config. The format of the spec file is a protobuf text(prototxt) message and each
of its fields can be either a basic data type or a nested message. The top level structure of
the spec file is summarized in the table below.
random_seed: 42
retinanet_config {
  aspect_ratios_global: "[1.0, 2.0, 0.5]"
  scales: "[0.045, 0.09, 0.2, 0.4, 0.55, 0.7]"
  two_boxes_for_ar1: false
  clip_boxes: false
  loss_loc_weight: 0.8
  focal_loss_alpha: 0.25
  focal_loss_gamma: 2.0
  variances: "[0.1, 0.1, 0.2, 0.2]"
  arch: "resnet"
  nlayers: 18
  n_kernels: 1
  feature_size: 256
  freeze_bn: false
  freeze_blocks: 0
}
training_config {
  enable_qat: False
  batch_size_per_gpu: 24
  num_epochs: 100
  learning_rate {
  soft_start_annealing_schedule {
    min_learning_rate: 4e-5
    max_learning_rate: 1.5e-2
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    soft_start: 0.15
    annealing: 0.5
    }
  }
  regularizer {
    type: L1
    weight: 2e-5
  }
}
eval_config {
  validation_period_during_training: 10
  average_precision_mode: SAMPLE
  batch_size: 32
  matching_iou_threshold: 0.5
}
nms_config {
  confidence_threshold: 0.01
  clustering_iou_threshold: 0.6
  top_k: 200
} 
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    output_image_channel: 3
    crop_right: 1248
    crop_bottom: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
  }
  spatial_augmentation {
    hflip_probability: 0.5
    vflip_probability: 0.0
    zoom_min: 0.7
    zoom_max: 1.8
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.2
    contrast_scale_max: 0.1
    contrast_center: 0.5
  }
}
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/
kitti_trainval*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "png"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "pedestrian"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "cyclist"
      value: "cyclist"
  }
  target_class_mapping {
      key: "van"
      value: "car"
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  }
  target_class_mapping {
      key: "person_sitting"
      value: "pedestrian"
  }
validation_fold: 0
}

7.6.1. Training config
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

batch_size_per_gpu The batch size for
each GPU, so the
effective batch size is
batch_size_per_gpu *
num_gpus

Unsigned int, positive -

num_epochs The anchor batch size
used to train the RPN.

Unsigned int, positive. -

enable_qat Whether to use
quantization aware
training

Boolean -

learning_rate Only
soft_start_annealing_schedule
with these nested
parameters is
supported.

1. min_learning_rate:
minimum learning late
to be seen during the
entire experiment.

2. max_learning_rate:
maximum learning rate
to be seen during the
entire experiment

3. soft_start: Time
to be lapsed before
warm up ( expressed in
percentage of progress
between 0 and 1)

4. annealing: Time
to start annealing the
learning rate

Message type. -

regularizer This parameter
configures the
regularizer to be used
while training and
contains the following
nested parameters.

Message type. L1 (Note: NVIDIA
suggests using L1
regularizer when
training a network
before pruning as L1
regularization helps
making the network
weights more prunable.)
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1. type: The type
or regularizer to
use. NVIDIA supports
NO_REG, L1 or L2

2. weight: The
floating point value for
regularizer weight

7.6.2. Evaluation config
The evaluation configuration (eval_config) defines the parameters needed for the
evaluation either during training or standalone. Details are summarized in the table
below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

validation_period_during_trainingThe number of training
epochs per which one
validation should run.

Unsigned int, positive 10

average_precision_modeAverage Precision (AP)
calculation mode can
be either SAMPLE or
INTEGRATE. SAMPLE
is used as VOC metrics
for VOC 2009 or before.
INTEGRATE is used for
VOC 2010 or after that.

ENUM type ( SAMPLE or
INTEGRATE)

SAMPLE

matching_iou_thresholdThe lowest iou of
predicted box and
ground truth box that
can be considered a
match.

Boolean 0.5

7.6.3. NMS config
The NMS configuration (nms_config) defines the parameters needed for the NMS
postprocessing. NMS config applies to the NMS layer of the model in training,
validation, evaluation, inference and export. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

confidence_threshold Boxes with a confidence
score less than
confidence_threshold
are discarded before
applying NMS

float 0.01

cluster_iou_thresholdIOU threshold below
which boxes will go
through NMS process

float 0.6

top_k top_k boxes will be
outputted after the
NMS keras layer. If

Unsigned int 200
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the number of valid
boxes is less than k,
the returned array will
be padded with boxes
whose confidence score
is 0.

7.6.4. Augmentation config
The augmentation configuration (augmentation_config) defines the parameters
needed for data augmentation. The configuration is shared with DetectNet_v2. See
Augmentation module for more information.

7.6.5. Dataset config
The dataset configuration (dataset_config) defines the parameters needed for the
data loader. The configuration is shared with DetectNet_v2. See Dataloader for more
information.

7.6.6. RetinaNet config
The RetinaNet configuration (retinanet_config) defines the parameters needed for
building the RetinaNet model. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

aspect_ratios_global Anchor boxes of aspect
ratios defined in
aspect_ratios_global
will be generated for
each feature layer
used for prediction.
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

string “[1.0, 2.0, 0.5]”

aspect_ratios The length of the outer
list must be equivalent
to the number of
feature layers used for
anchor box generation.
And the i-th layer will
have anchor boxes with
aspect ratios defined
in aspect_ratios[i].
Note: Only one of
aspect_ratios_global
or aspect_ratios is
required.

string “[[1.0,2.0,0.5],
[1.0,2.0,0.5],
[1.0,2.0,0.5],
[1.0,2.0,0.5],
[1.0,2.0,0.5], [1.0, 2.0,
0.5, 3.0, 0.33]]”

two_boxes_for_ar1 This setting is only
relevant for layers
that have 1.0 as
the aspect ratio. If
two_boxes_for_ar1 is

Boolean True
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true, two boxes will
be generated with an
aspect ratio of 1. One
whose scale is the scale
for this layer and the
other one whose scale is
the geometric mean of
the scale for this layer
and the scale for the
next layer.

clip_boxes If true, all corner anchor
boxes will be truncated
so they are fully inside
the feature images.

Boolean False

scales scales is a list of
positive floats
containing scaling
factors per
convolutional predictor
layer. This list must
be one element longer
than the number of
predictor layers, so if
two_boxes_for_ar1 is
true, the second aspect
ratio 1.0 box for the last
layer can have a proper
scale. Except for the
last element in this list,
each positive float is
the scaling factor for
boxes in that layer. For
example, if for one layer
the scale is 0.1, then
the generated anchor
box with aspect ratio
1 for that layer (the
first aspect ratio 1 box
if two_boxes_for_ar1
is true) will have its
height and width as
0.1*min(img_h, img_w).

min_scale and
max_scale are two
positive floats. If both
of them appear in the
config, the program can
automatically generate
the scales by evenly
splitting the space
between min_scale and
max_scale.

string “[0.05, 0.1, 0.25,
0.4, 0.55, 0.7,
0.85]”

min_scale/max_scale If both appear in the
config, scales will be
generated evenly by
splitting the space

float -
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between min_scale and
max_scale.

loss_loc_weight This is a positive float
controlling how much
location regression
loss should contribute
to the final loss. The
final loss is calculated
as classification_loss
+ loss_loc_weight *
loc_loss

float 1.0

focal_loss_alpha Alpha is the focal loss
equation.

float 0.25

focal_loss_gamma Gamma is the focal loss
equation.

float 2.0

variances Variances should be
a list of 4 positive
floats. The four floats,
in order, represent
variances for box center
x, box center y, log box
height, log box width.
The box offset for box
center (cx, cy) and
log box size (height/
width) w.r.t. anchor
will be divided by their
respective variance
value. Therefore, larger
variances result in less
significant differences
between two different
boxes on encoded
offsets.

steps An optional list inside
quotation marks whose
length is the number
of feature layers
for prediction. The
elements should be
floats or tuples/lists of
two floats. Steps define
how many pixels apart
the anchor box center
points should be. If the
element is a float, both
vertical and horizontal
margin is the same.
Otherwise, the first
value is step_vertical
and the second value
is step_horizontal. If
steps are not provided,
anchor boxes will be
distributed uniformly
inside the image.

string -
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offsets An optional list of floats
inside quotation marks
whose length is the
number of feature layers
for prediction. The first
anchor box will have
offsets[i]*steps[i] pixels
margin from the left and
top borders. If offsets
are not provided, 0.5
will be used as default
value.

string -

arch Backbone for feature
extraction. Currently,
“resnet”, “vgg”,
“darknet”, “googlenet”,
“mobilenet_v1”,
“mobilenet_v2” and
“squeezenet” are
supported.

string resnet

nlayers Number of conv layers
in specific arch. For
“resnet”, 10, 18, 34, 50
and 101 are supported.
For “vgg”, 16 and 19
are supported. For
“darknet”, 19 and 53
are supported. All other
networks don’t have this
configuration and users
should just delete this
config from the config
file.

Unsigned int -

freeze_bn Whether to freeze all
batch normalization
layers during training.

boolean False

freeze_blocks The list of block IDs to
be frozen in the model
during training. You
can choose to freeze
some of the CNN blocks
in the model to make
the training more
stable and/or easier to
converge. The definition
of a block is heuristic for
a specific architecture.
For example, by stride
or by logical blocks
in the model, etc.
However, the block ID
numbers identify the
blocks in the model in
a sequential order so
you don't have to know
the exact locations of
the blocks when you

list(repeated integers)

• ResNet series. For the
ResNet series, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3] (inclusive)

• VGG series. For the
VGG series, the block
IDs valid for freezing is
any subset of[1, 2, 3,
4, 5] (inclusive)

• GoogLeNet. For the
GoogLeNet, the block
IDs valid for freezing is
any subset of[0, 1,
2, 3, 4, 5, 6, 7]
(inclusive)

• MobileNet V1. For
the MobileNet V1,

-
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do training. A general
principle to keep in
mind is: the smaller the
block ID, the closer it is
to the model input; the
larger the block ID, the
closer it is to the model
output.

You can divide the
whole model into
several blocks and
optionally freeze a
subset of it. Note that
for FasterRCNN you
can only freeze the
blocks that are before
the ROI pooling layer.
Any layer after the ROI
pooling layer will not
be frozen any way. For
different backbones, the
number of blocks and
the block ID for each
block are different. It
deserves some detailed
explanations on how to
specify the block ID's for
each backbone.

the block IDs valid for
freezing is any subset
of [0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10,
11](inclusive)

• MobileNet V2. For the
MobileNet V2, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13](inclusive)

• DarkNet. For the
DarkNet 19 and DarkNet
53, the block IDs valid
for freezing is any
subset of [0, 1, 2, 3,
4, 5](inclusive)

n_kernels This setting controls the
number of convolutional
layers in the RetinaNet
subnets for classification
and anchor box
regression. A larger
value generates a larger
network and usually
means the network is
harder to train.

Unsigned int 2

feature_size This setting controls the
number of channels of
the convolutional layers
in the RetinaNet subnets
for classification and
anchor box regression.
A larger value gives
a larger network and
usually means the
network is harder to
train.

Note that RetinaNet
FPN generates 5 feature
maps, thus the scales
field requires a list of
6 scaling factors. The
last number is not used
if two_boxes_for_ar1 is
set to False. There are

Unsigned int 256
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also three underlying
scaling factors at each
feature map level (2^0,
2^⅓, 2^⅓ ).

Focal loss is calculated as:

Variances

7.7. Specification file for YOLOv3
Below is a sample for the YOLOv3 spec file. It has 6 major components: yolo_config,
training_config, eval_config, nms_config, augmentation_config and dataset_config.
The format of the spec file is a protobuf text(prototxt) message and each of its fields can
be either a basic data type or a nested message. The top level structure of the spec file is
summarized in the table below.
random_seed: 42
yolo_config {
  big_anchor_shape: "[(116,90), (156,198), (373,326)]"
  mid_anchor_shape: "[(30,61), (62,45), (59,119)]"
  small_anchor_shape: "[(10,13), (16,30), (33,23)]"
  matching_neutral_box_iou: 0.5
  arch: "darknet"
  nlayers: 53
  arch_conv_blocks: 2
  loss_loc_weight: 5.0
  loss_neg_obj_weights: 50.0
  loss_class_weights: 1.0
  freeze_bn: True
  freeze_blocks: 0
  freeze_blocks: 1}
training_config {
  batch_size_per_gpu: 16
  num_epochs: 80
  enable_qat: false
  learning_rate {
  soft_start_annealing_schedule {
    min_learning_rate: 5e-5
    max_learning_rate: 2e-2
    soft_start: 0.15
    annealing: 0.8
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    }
  }
  regularizer {
    type: L1
    weight: 3e-5
  }
}
eval_config {
  validation_period_during_training: 10
  average_precision_mode: SAMPLE
  batch_size: 16
  matching_iou_threshold: 0.5
}
nms_config {
  confidence_threshold: 0.01
  clustering_iou_threshold: 0.6
  top_k: 200
}
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    output_image_channel: 3
    crop_right: 1248
    crop_bottom: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
  }
  spatial_augmentation {
    hflip_probability: 0.5
    vflip_probability: 0.0
    zoom_min: 0.7
    zoom_max: 1.8
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.20000000298
    contrast_scale_max: 0.10000000149
    contrast_center: 0.5
  }
}
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/
kitti_trainval*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "png"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "pedestrian"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "cyclist"
      value: "cyclist"
  }
  target_class_mapping {
      key: "van"
      value: "car"
  }
  target_class_mapping {
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      key: "person_sitting"
      value: "pedestrian"
  }
validation_fold: 0
}

7.7.1. Training config
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

batch_size_per_gpu The batch size for
each GPU, so the
effective batch size is
batch_size_per_gpu *
num_gpus

Unsigned int, positive -

num_epochs The anchor batch size
used to train the RPN.

Unsigned int, positive. -

enable_qat Whether to use
quantization aware
training

Boolean -

learning_rate Only
soft_start_annealing_schedule
with these nested
parameters is
supported.

1. min_learning_rate:
minimum learning late
to be seen during the
entire experiment.

2. max_learning_rate:
maximum learning rate
to be seen during the
entire experiment

3. soft_start: Time
to be lapsed before
warm up ( expressed in
percentage of progress
between 0 and 1)

4. annealing: Time
to start annealing the
learning rate

Message type. -

regularizer This parameter
configures the
regularizer to be used
while training and
contains the following
nested parameters.

1. type: The type
or regularizer to

Message type. L1 (Note: NVIDIA
suggests using L1
regularizer when
training a network
before pruning as L1
regularization helps
making the network
weights more prunable.)
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use. NVIDIA supports
NO_REG, L1 or L2

2. weight: The
floating point value for
regularizer weight

7.7.2. Evaluation config
The evaluation configuration (eval_config) defines the parameters needed for the
evaluation either during training or standalone. Details are summarized in the table
below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

validation_period_during_trainingThe number of training
epochs per which one
validation should run.

Unsigned int, positive 10

average_precision_modeAverage Precision (AP)
calculation mode can
be either SAMPLE or
INTEGRATE. SAMPLE
is used as VOC metrics
for VOC 2009 or before.
INTEGRATE is used for
VOC 2010 or after that.

ENUM type ( SAMPLE or
INTEGRATE)

SAMPLE

matching_iou_thresholdThe lowest iou of
predicted box and
ground truth box that
can be considered a
match.

Boolean 0.5

7.7.3. NMS config
The NMS configuration (nms_config) defines the parameters needed for the NMS
postprocessing. NMS config applies to the NMS layer of the model in training,
validation, evaluation, inference and export. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

confidence_threshold Boxes with a confidence
score less than
confidence_threshold
are discarded before
applying NMS

float 0.01

cluster_iou_thresholdIOU threshold below
which boxes will go
through NMS process

float 0.6

top_k top_k boxes will be
outputted after the
NMS keras layer. If
the number of valid
boxes is less than k,

Unsigned int 200
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the returned array will
be padded with boxes
whose confidence score
is 0.

7.7.4. Augmentation config
The augmentation configuration (augmentation_config) defines the parameters
needed for data augmentation. The configuration is shared with DetectNet_v2. See
Augmentation module for more information.

7.7.5. Dataset config
The dataset configuration (dataset_config) defines the parameters needed for the
data loader. The configuration is shared with DetectNet_v2. See Dataloader for more
information.

7.7.6. YOLOv3 config
The YOLOv3 configuration (yolo_config) defines the parameters needed for building
the DSSD model. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

big_anchor_shape,
mid_anchor_shape
and
small_anchor_shape

Those settings should
be 1-d arrays inside
quotation marks. The
elements of those arrays
are tuples representing
the pre-defined anchor
shape in the order of
width, height.

The default YOLOv3 has
9 predefined anchor
shapes. They are
divided into 3 groups
corresponding to big,
medium and small
objects. The detection
output corresponding
to different groups
are from different
depths in the network.
Users should run the
kmeans.py file attached
with the example
notebook to determine
the best anchor shapes
for their own dataset
and put those anchor
shapes in the spec file.
It is worth noting that
the number of anchor
shapes for any field is

string Use kmeans.py
attached in examples/
yolo inside docker to
generate those shapes
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not limited to 3. Users
only need to specify at
least 1 anchor shape
in each of those three
fields.

matching_neutral_box_iouThis field should be a
float number between
0 and 1. Any anchor
not matching to ground
truth boxes, but with
IOU higher than this
float value with any
ground truth box,
will not have their
objectiveness loss back-
propagated during
training. This is to
reduce false negatives.

float 0.5

arch_conv_blocks Supported values are
0, 1 and 2. This value
controls how many
convolutional blocks are
present among detection
output layers. Setting
this value to 2 if you
want to reproduce the
meta architecture of the
original YOLOv3 model
coming with DarkNet 53.
Please note this config
setting only controls
the size of the YOLO
meta architecture and
the size of the feature
extractor has nothing to
do with this config field.

0, 1 or 2 2

loss_loc_weight,
loss_neg_obj_weights
and
loss_class_weights

Those loss weights can
be configured as float
numbers.

The YOLOv3 loss
is a summation of
localization loss,
negative objectiveness
loss, positive
objectiveness loss and
classification loss.
The weight of positive
objectiveness loss is set
to 1 while the weights
of other losses are read
from config file.

float loss_loc_weight: 5.0

loss_neg_obj_weights:
50.0

loss_class_weights: 1.0

arch Backbone for feature
extraction. Currently,
“resnet”, “vgg”,
“darknet”, “googlenet”,
“mobilenet_v1”,

string resnet
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“mobilenet_v2” and
“squeezenet” are
supported.

nlayers Number of conv layers
in specific arch. For
“resnet”, 10, 18, 34, 50
and 101 are supported.
For “vgg”, 16 and 19
are supported. For
“darknet”, 19 and 53
are supported. All other
networks don’t have this
configuration and users
should just delete this
config from the config
file.

Unsigned int -

freeze_bn Whether to freeze all
batch normalization
layers during training.

boolean False

freeze_blocks The list of block IDs to
be frozen in the model
during training. You
can choose to freeze
some of the CNN blocks
in the model to make
the training more
stable and/or easier to
converge. The definition
of a block is heuristic for
a specific architecture.
For example, by stride
or by logical blocks
in the model, etc.
However, the block ID
numbers identify the
blocks in the model in
a sequential order so
you don't have to know
the exact locations of
the blocks when you
do training. A general
principle to keep in
mind is: the smaller the
block ID, the closer it is
to the model input; the
larger the block ID, the
closer it is to the model
output.

You can divide the
whole model into
several blocks and
optionally freeze a
subset of it. Note that
for FasterRCNN you
can only freeze the
blocks that are before
the ROI pooling layer.

list(repeated integers)

• ResNet series. For the
ResNet series, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3] (inclusive)

• VGG series. For the
VGG series, the block
IDs valid for freezing is
any subset of[1, 2, 3,
4, 5] (inclusive)

• GoogLeNet. For the
GoogLeNet, the block
IDs valid for freezing is
any subset of[0, 1,
2, 3, 4, 5, 6, 7]
(inclusive)

• MobileNet V1. For
the MobileNet V1,
the block IDs valid for
freezing is any subset
of [0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10,
11](inclusive)

• MobileNet V2. For the
MobileNet V2, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,
13](inclusive)

• DarkNet. For the
DarkNet 19 and DarkNet
53, the block IDs valid
for freezing is any

-
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Any layer after the ROI
pooling layer will not
be frozen any way. For
different backbones, the
number of blocks and
the block ID for each
block are different. It
deserves some detailed
explanations on how to
specify the block ID's for
each backbone.

subset of [0, 1, 2, 3,
4, 5](inclusive)

7.8. Specification file for RetinaNet
Below is a sample for the RetinaNet spec file. It has 6 major components:
retinanet_config, training_config, eval_config, nms_config, augmentation_config and
dataset_config. The format of the spec file is a protobuf text(prototxt) message and each
of its fields can be either a basic data type or a nested message. The top level structure of
the spec file is summarized in the table below.
random_seed: 42
retinanet_config {
  aspect_ratios_global: "[1.0, 2.0, 0.5]"
  scales: "[0.045, 0.09, 0.2, 0.4, 0.55, 0.7]"
  two_boxes_for_ar1: false
  clip_boxes: false
  loss_loc_weight: 0.8
  focal_loss_alpha: 0.25
  focal_loss_gamma: 2.0
  variances: "[0.1, 0.1, 0.2, 0.2]"
  arch: "resnet"
  nlayers: 18
  n_kernels: 1
  feature_size: 256
  freeze_bn: false
  freeze_blocks: 0
}
training_config {
  enable_qat: False
  batch_size_per_gpu: 24
  num_epochs: 100
  learning_rate {
  soft_start_annealing_schedule {
    min_learning_rate: 4e-5
    max_learning_rate: 1.5e-2
    soft_start: 0.15
    annealing: 0.5
    }
  }
  regularizer {
    type: L1
    weight: 2e-5
  }
}
eval_config {
  validation_period_during_training: 10
  average_precision_mode: SAMPLE
  batch_size: 32
  matching_iou_threshold: 0.5
}
nms_config {
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  confidence_threshold: 0.01
  clustering_iou_threshold: 0.6
  top_k: 200
} 
augmentation_config {
  preprocessing {
    output_image_width: 1248
    output_image_height: 384
    output_image_channel: 3
    crop_right: 1248
    crop_bottom: 384
    min_bbox_width: 1.0
    min_bbox_height: 1.0
  }
  spatial_augmentation {
    hflip_probability: 0.5
    vflip_probability: 0.0
    zoom_min: 0.7
    zoom_max: 1.8
    translate_max_x: 8.0
    translate_max_y: 8.0
  }
  color_augmentation {
    hue_rotation_max: 25.0
    saturation_shift_max: 0.2
    contrast_scale_max: 0.1
    contrast_center: 0.5
  }
}
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/data/tfrecords/kitti_trainval/
kitti_trainval*"
    image_directory_path: "/workspace/tlt-experiments/data/training"
  }
  image_extension: "png"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "pedestrian"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "cyclist"
      value: "cyclist"
  }
  target_class_mapping {
      key: "van"
      value: "car"
  }
  target_class_mapping {
      key: "person_sitting"
      value: "pedestrian"
  }
validation_fold: 0
}

7.8.1. Training config
The training configuration(training_config) defines the parameters needed for the
training, evaluation and inference. Details are summarized in the table below.
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Field Description Data Type and
Constraints

Recommended/Typical
Value

batch_size_per_gpu The batch size for
each GPU, so the
effective batch size is
batch_size_per_gpu *
num_gpus

Unsigned int, positive -

num_epochs The anchor batch size
used to train the RPN.

Unsigned int, positive. -

enable_qat Whether to use
quantization aware
training

Boolean -

learning_rate Only
soft_start_annealing_schedule
with these nested
parameters is
supported.

1. min_learning_rate:
minimum learning late
to be seen during the
entire experiment.

2. max_learning_rate:
maximum learning rate
to be seen during the
entire experiment

3. soft_start: Time
to be lapsed before
warm up ( expressed in
percentage of progress
between 0 and 1)

4. annealing: Time
to start annealing the
learning rate

Message type. -

regularizer This parameter
configures the
regularizer to be used
while training and
contains the following
nested parameters.

1. type: The type
or regularizer to
use. NVIDIA supports
NO_REG, L1 or L2

2. weight: The
floating point value for
regularizer weight

Message type. L1 (Note: NVIDIA
suggests using L1
regularizer when
training a network
before pruning as L1
regularization helps
making the network
weights more prunable.)
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7.8.2. Evaluation config
The evaluation configuration (eval_config) defines the parameters needed for the
evaluation either during training or standalone. Details are summarized in the table
below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

validation_period_during_trainingThe number of training
epochs per which one
validation should run.

Unsigned int, positive 10

average_precision_modeAverage Precision (AP)
calculation mode can
be either SAMPLE or
INTEGRATE. SAMPLE
is used as VOC metrics
for VOC 2009 or before.
INTEGRATE is used for
VOC 2010 or after that.

ENUM type ( SAMPLE or
INTEGRATE)

SAMPLE

matching_iou_thresholdThe lowest iou of
predicted box and
ground truth box that
can be considered a
match.

Boolean 0.5

7.8.3. NMS config
The NMS configuration (nms_config) defines the parameters needed for the NMS
postprocessing. NMS config applies to the NMS layer of the model in training,
validation, evaluation, inference and export. Details are summarized in the table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

confidence_threshold Boxes with a confidence
score less than
confidence_threshold
are discarded before
applying NMS

float 0.01

cluster_iou_thresholdIOU threshold below
which boxes will go
through NMS process

float 0.6

top_k top_k boxes will be
outputted after the
NMS keras layer. If
the number of valid
boxes is less than k,
the returned array will
be padded with boxes
whose confidence score
is 0.

Unsigned int 200
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7.8.4. Augmentation config
The augmentation configuration (augmentation_config) defines the parameters
needed for data augmentation. The configuration is shared with DetectNet_v2. See
Augmentation module for more information.

7.8.5. Dataset config
The dataset configuration (dataset_config) defines the parameters needed for the
data loader. The configuration is shared with DetectNet_v2. See Dataloader for more
information.

7.9. Specification file for MaskRCNN
Below is a sample for the MaskRCNN spec file. It has 3 major components: top level
experiment configs , data_config and maskrcnn_config, explained below in detail.
The format of the spec file is a protobuf text(prototxt) message and each of its fields can
be either a basic data type or a nested message. The top level structure of the spec file is
summarized in the table below.

Here's a sample of the MaskRCNN spec file:
seed: 123
use_amp: False
warmup_steps: 0
checkpoint: "/workspace/tlt-experiments/maskrcnn/pretrained_resnet50/
tlt_instance_segmentation_vresnet50/resnet50.hdf5"
learning_rate_steps: "[60000, 80000, 100000]"
learning_rate_decay_levels: "[0.1, 0.02, 0.002]"
total_steps: 120000
train_batch_size: 2
eval_batch_size: 4
num_steps_per_eval: 10000
momentum: 0.9
l2_weight_decay: 0.0001
warmup_learning_rate: 0.0001
init_learning_rate: 0.02
 
data_config{
        image_size: "(832, 1344)"
        augment_input_data: True
        eval_samples: 500
        training_file_pattern: "/workspace/tlt-experiments/data/train*.tfrecord"
        validation_file_pattern: "/workspace/tlt-experiments/data/val*.tfrecord"
        val_json_file: "/workspace/tlt-experiments/data/annotations/
instances_val2017.json"
 
        # dataset specific parameters
        num_classes: 91
        skip_crowd_during_training: True
}
 
maskrcnn_config {
        nlayers: 50
        arch: "resnet"
        freeze_bn: True
        freeze_blocks: "[0,1]"
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        gt_mask_size: 112
        
        # Region Proposal Network
        rpn_positive_overlap: 0.7
        rpn_negative_overlap: 0.3
        rpn_batch_size_per_im: 256
        rpn_fg_fraction: 0.5
        rpn_min_size: 0.
 
        # Proposal layer.
        batch_size_per_im: 512
        fg_fraction: 0.25
        fg_thresh: 0.5
        bg_thresh_hi: 0.5
        bg_thresh_lo: 0.
 
        # Faster-RCNN heads.
        fast_rcnn_mlp_head_dim: 1024
        bbox_reg_weights: "(10., 10., 5., 5.)"
 
        # Mask-RCNN heads.
        include_mask: True
        mrcnn_resolution: 28
 
        # training
        train_rpn_pre_nms_topn: 2000
        train_rpn_post_nms_topn: 1000
        train_rpn_nms_threshold: 0.7
 
        # evaluation
        test_detections_per_image: 100
        test_nms: 0.5
        test_rpn_pre_nms_topn: 1000
        test_rpn_post_nms_topn: 1000
        test_rpn_nms_thresh: 0.7
 
        # model architecture
        min_level: 2
        max_level: 6
        num_scales: 1
        aspect_ratios: "[(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]"
        anchor_scale: 8
 
        # localization loss
        rpn_box_loss_weight: 1.0
        fast_rcnn_box_loss_weight: 1.0
        mrcnn_weight_loss_mask: 1.0
}

Field Description Data Type and
Constraints

Recommended/
Typical Value

seed The random seed
for the experiment.

Unsigned int 123

warmup_steps The steps taken
for learning rate
to ramp up to the
init_learning_rate.

Unsigned int -

warmup_learning_rateThe initial learning
rate during in the
warmup phase.

float -
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Field Description Data Type and
Constraints

Recommended/
Typical Value

learning_rate_stepsList of steps, at
which the learning
rate decays by the
factor specified in
learning_rate_decay_levels.

string -

learning_rate_decay_levelsList of decay factors.
The length should
match the length of
learning_rate_steps.

string -

total_steps Total number of
training iterations.

Unsigned int -

train_batch_size Batch size during
training.

Unsigned int 4

eval_batch_size Batch size during
validation or
evaluation.

Unsigned int 8

num_steps_per_evalSave a checkpoint
and run evaluation
every N steps.

Unsigned int -

momentum Momentum of SGD
optimizer.

float 0.9

l2_weight_decay L2 weight decay float 0.0001

use_amp Whether to use
Automatic Mixed
Precision training.

boolean False

checkpoint Path to a pretrained
model.

string -

maskrcnn_config The architecture of
the model.

message -

data_config Input data
configuration.

message -

skip_checkpoint_variablesIf specified, the
weights of the layers
with matching
regular expressions
will not be loaded.
This is especially
helpful for transfer
learning.

string -
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When using skip_checkpoint_variables, you can first find the model structure
in the training log (Part of MaskRCNN+ResNet50 model structure is shown
below). If, for example, you want to retrain all prediction heads, you can set
skip_checkpoint_variables to “head”. TLT uses Python re library to check whether
“head” matches any layer name or re.search($skip_checkpoint_variables,
$layer_name).

[MaskRCNN] INFO    : ================ TRAINABLE VARIABLES ==================
[MaskRCNN] INFO    : [#0001] conv1/kernel:0                                     
          => (7, 7, 3, 64)
[MaskRCNN] INFO    : [#0002] bn_conv1/gamma:0                                   
          => (64,)
[MaskRCNN] INFO    : [#0003] bn_conv1/beta:0                                    
          => (64,)
[MaskRCNN] INFO    : [#0004] block_1a_conv_1/kernel:0                           
          => (1, 1, 64, 64)
[MaskRCNN] INFO    : [#0005] block_1a_bn_1/gamma:0                              
          => (64,)
[MaskRCNN] INFO    : [#0006] block_1a_bn_1/beta:0                               
          => (64,)
[MaskRCNN] INFO    : [#0007] block_1a_conv_2/kernel:0                           
          => (3, 3, 64, 64)
[MaskRCNN] INFO    : [#0008] block_1a_bn_2/gamma:0                              
          => (64,)
[MaskRCNN] INFO    : [#0009] block_1a_bn_2/beta:0                               
          => (64,)
[MaskRCNN] INFO    : [#0010] block_1a_conv_3/kernel:0                           
          => (1, 1, 64, 256)
[MaskRCNN] INFO    : [#0011] block_1a_bn_3/gamma:0                              
          => (256,)
[MaskRCNN] INFO    : [#0012] block_1a_bn_3/beta:0                               
          => (256,)
[MaskRCNN] INFO    : [#0110] block_3d_bn_3/gamma:0                              
          => (1024,)
[MaskRCNN] INFO    : [#0111] block_3d_bn_3/beta:0                               
          => (1024,)
[MaskRCNN] INFO    : [#0112] block_3e_conv_1/kernel:0                           
          => (1, 1, 1024, [MaskRCNN] INFO    : [#0144] block_4b_bn_1/beta:0     
                                    => (512,)
                                …     …       …    …                            
                                           ...
[MaskRCNN] INFO    : [#0174] fpn/post_hoc_d5/kernel:0                           
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0175] fpn/post_hoc_d5/bias:0                             
          => (256,)
[MaskRCNN] INFO    : [#0176] rpn_head/rpn/kernel:0                              
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0177] rpn_head/rpn/bias:0                                
          => (256,)
[MaskRCNN] INFO    : [#0178] rpn_head/rpn-class/kernel:0                        
          => (1, 1, 256, 3)
[MaskRCNN] INFO    : [#0179] rpn_head/rpn-class/bias:0                          
          => (3,)
[MaskRCNN] INFO    : [#0180] rpn_head/rpn-box/kernel:0                          
          => (1, 1, 256, 12)
[MaskRCNN] INFO    : [#0181] rpn_head/rpn-box/bias:0                            
          => (12,)
[MaskRCNN] INFO    : [#0182] box_head/fc6/kernel:0                              
          => (12544, 1024)
[MaskRCNN] INFO    : [#0183] box_head/fc6/bias:0                                
          => (1024,)
[MaskRCNN] INFO    : [#0184] box_head/fc7/kernel:0                              
          => (1024, 1024)
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[MaskRCNN] INFO    : [#0185] box_head/fc7/bias:0                                
          => (1024,)
[MaskRCNN] INFO    : [#0186] box_head/class-predict/kernel:0                    
          => (1024, 91)
[MaskRCNN] INFO    : [#0187] box_head/class-predict/bias:0                      
          => (91,)
[MaskRCNN] INFO    : [#0188] box_head/box-predict/kernel:0                      
          => (1024, 364)
[MaskRCNN] INFO    : [#0189] box_head/box-predict/bias:0                        
          => (364,)
[MaskRCNN] INFO    : [#0190] mask_head/mask-conv-l0/kernel:0                    
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0191] mask_head/mask-conv-l0/bias:0                      
          => (256,)
[MaskRCNN] INFO    : [#0192] mask_head/mask-conv-l1/kernel:0                    
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0193] mask_head/mask-conv-l1/bias:0                      
          => (256,)
[MaskRCNN] INFO    : [#0194] mask_head/mask-conv-l2/kernel:0                    
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0195] mask_head/mask-conv-l2/bias:0                      
          => (256,)
[MaskRCNN] INFO    : [#0196] mask_head/mask-conv-l3/kernel:0                    
          => (3, 3, 256, 256)
[MaskRCNN] INFO    : [#0197] mask_head/mask-conv-l3/bias:0                      
          => (256,)
[MaskRCNN] INFO    : [#0198] mask_head/conv5-mask/kernel:0                      
          => (2, 2, 256, 256)
[MaskRCNN] INFO    : [#0199] mask_head/conv5-mask/bias:0                        
          => (256,)
[MaskRCNN] INFO    : [#0200] mask_head/mask_fcn_logits/kernel:0                 
          => (1, 1, 256, 91)
[MaskRCNN] INFO    : [#0201] mask_head/mask_fcn_logits/bias:0                   
          => (91,)

maskrcnn config

The maskrcnn configuration (maskrcnn_config) defines the model structure. This model
is used for training, evaluation and inference. Detailed description is summarized in
the table below. Currently, MaskRCNN only supports ResNet10/18/34/50/101 as its
backbone.

Field Description Data Type and
Constraints

Recommended/
Typical Value

nlayers Number of layers in
ResNet arch

message 50

arch The backbone
feature extractor
name
.

string resnet

freeze_bn Whether to freeze
all BatchNorm
layers in the
backbone.

boolean False
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freeze_blocks List of conv blocks
in the backbone to
freeze.

string

ResNet For the
ResNet series, the
block IDs valid
for freezing is any
subset of
[0, 1, 2, 3]

(inclusive)

-

gt_mask_size Groundtruth mask
size.

Unsigned int 112

rpn_positive_overlapLower bound
threshold to assign
positive labels for
anchors.

float 0.7

rpn_positive_overlapUpper bound
threshold to assign
negative labels for
anchors.

float 0.3

rpn_batch_size_per_imThe number of
sampled anchors
per image in RPN.

Unsigned int 256

rpn_fg_fraction Desired fraction of
positive anchors in a
batch.

Unsigned int 0.5

rpn_min_size Minimum proposal
height and width.

0

batch_size_per_imRoI minibatch size
per image.

Unsigned int 512

fg_fraction The target fraction
of RoI minibatch
that is labeled as
foreground.

float 0.25

fast_rcnn_mlp_head_dimfast rcnn
classification head
dimension.

Unsigned int 1024

bbox_reg_weights Bounding box
regularization
weights.

string “(10, 10, 5, 5)”

include_mask Whether to include
mask head.

boolean True
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mrcnn_resolution Mask head
resolution.

Unsigned int 28

train_rpn_pre_nms_topnNumber of top
scoring RPN
proposals to keep
before applying
NMS (per FPN
level).

Unsigned int 2000

train_rpn_post_nms_topnNumber of top
scoring RPN
proposals to keep
after applying
NMS (total number
produced).

Unsigned int 1000

train_rpn_nms_thresholdNMS IOU threshold
in RPN during
training.

float 0.7

test_detections_per_imageNumber of
bounding box
candidates after
NMS.

Unsigned int 100

test_nms NMS IOU threshold
during test.

float 0.5

test_rpn_pre_nms_topnNumber. of top
scoring RPN
proposals to keep
before applying
NMS (per FPN
level) during test.

Unsigned int 1000

test_rpn_post_nms_topnNumber of top
scoring RPN
proposals to keep
after applying
NMS (total number
produced) during
test.

Unsigned int 1000

test_rpn_nms_thresholdNMS IOU threshold
in RPN during test.

float 0.7

min_level Minimum level of
the output feature
pyramid.

Unsigned int 2
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max_level Maximum level of
the output feature
pyramid.

Unsigned int 6

num_scales Number of anchor
octave scales on
each pyramid level
(e.g. if it’s set to 3,
the anchor scales
are [2^0, 2^(1/3),
2^(2/3)])

Unsigned int 1

aspect_ratios List of tuples
representing the
aspect ratios of
anchors on each
pyramid level.

string "[(1.0, 1.0), (1.4, 0.7),
(0.7, 1.4)]"

anchor_scale Scale of base anchor
size to the feature
pyramid stride.

Unsigned int 8

rpn_box_loss_weightWeight for adjusting
RPN box loss in the
total loss.

float 1.0

fast_rcnn_box_loss_weightWeight for adjusting
FastRCNN box
regression loss in
the total loss.

float 1.0

mrcnn_weight_loss_maskWeight for adjusting
mask loss in the
total loss.

float 1.0

The min_level, max_level, num_scales, aspect_ratios and anchor_scale are
used to determine MaskRCNN’s anchor generation. anchor_scale is the base anchor’s
scale. And min_level and max_level sets the range of the scales on different feature
maps. For example, the actual anchor scale for the feature map at min_level will
be anchor_scale * 2^min_level and the actual anchor scale for the feature map
at max_level will be anchor_scale * 2^max_level. And it will generate anchors of
different aspect_ratiosbased on the actual anchor scale.

data config

The data configuration (data_config) specifies the input data source and format. This
model is used for training, evaluation and inference. Detailed description is summarized
in the table below. Currently, MaskRCNN only supports ResNet10/18/34/50/101 as its
backbone.
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Field Description Data Type and
Constraints

Recommended/
Typical Value

image_size Image dimension Unsigned int 123

augment_input_dataWhether to augment
data

boolean True

eval_samples Number of samples
for evaluation.

Unsigned int -

training_file_patternTFRecord path for
training.

string -

validation_file_patternTFRecord path for
validation.

string -

val_json_file The annotation file
path for validation.

string -

num_classes Number of classes. Unsigned int -

skip_crowd_druing_trainingWhether to skip
crowd during
training .

boolean True

7.9.1. MaskRCNN config
The maskrcnn configuration (maskrcnn_config) defines the model structure. This model
is used for training, evaluation and inference. Detailed description is summarized in
the table below. Currently, MaskRCNN only supports ResNet10/18/34/50/101 as its
backbone.

Field Description Data Type and
Constraints

Recommended/Typical
Value

nlayers Number of layers in
ResNet arch

message 50

arch The backbone feature
extractor name

string resnet

freeze_bn Whether to freeze all
BatchNorm layers in the
backbone

boolean False

freeze_blocks List of conv blocks in the
backbone to freeze

string

• ResNet. For the
ResNet series, the block
IDs valid for freezing is
any subset of [0, 1,
2, 3] (inclusive)

-

gt_mask_size Groundtruth mask size Unsigned int 112
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rpn_positive_overlap Lower bound threshold
to assign positive labels
for anchors

float 0.7

rpn_positive_overlap Upper bound threshold
to assign negative labels
for anchors

float 0.3

rpn_batch_size_per_imThe number of sampled
anchors per image in
RPN

Unsigned int 256

rpn_fg_fraction Desired fraction of
positive anchors in a
batch

Unsigned int 0.5

rpn_min_size Minimum proposal
height and width

0

batch_size_per_im RoI minibatch size per
image

Unsigned int 512

fg_fraction The target fraction of
RoI minibatch that is
labeled as foreground

float 0.25

fast_rcnn_mlp_head_dimfast rcnn classification
head dimension

Unsigned int 1024

bbox_reg_weights Bounding box
regularization weights

string “(10, 10, 5, 5)”

include_mask Whether to include mask
head

boolean True (currently only
True is supported)

mrcnn_resolution Mask head resolution Unsigned int 28

train_rpn_pre_nms_topnNumber of top scoring
RPN proposals to keep
before applying NMS
(per FPN level)

Unsigned int 2000

train_rpn_post_nms_topnNumber of top scoring
RPN proposals to keep
after applying NMS
(total number produced)

Unsigned int 1000

train_rpn_nms_thresholdNMS IOU threshold in
RPN during training

float 0.7

test_detections_per_imageNumber of bounding box
candidates after NMS

Unsigned int 100

test_nms NMS IOU threshold
during test

float 0.5

test_rpn_pre_nms_topnNumber of top scoring
RPN proposals to keep
before applying NMS
(per FPN level) during
test

Unsigned int 1000

test_rpn_post_nms_topnNumber of top scoring
RPN proposals to keep
after applying NMS

Unsigned int 1000
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(total number produced)
during test

test_rpn_nms_thresholdNMS IOU threshold in
RPN during test

float 0.7

min_level Minimum level of the
output feature pyramid

Unsigned int 2

max_level Maximum level of the
output feature pyramid

Unsigned int 6

num_scales Number of anchor
octave scales on each
pyramid level (e.g. if
it’s set to 3, the anchor
scales are [2^0, 2^(1/3),
2^(2/3)])

Unsigned int 1

aspect_ratios List of tuples
representing the aspect
ratios of anchors on
each pyramid level

string "[(1.0, 1.0), (1.4, 0.7),
(0.7, 1.4)]"

anchor_scale Scale of base anchor
size to the feature
pyramid stride

Unsigned int 8

rpn_box_loss_weight Weight for adjusting RPN
box loss in the total loss

float 1.0

fast_rcnn_box_loss_weightWeight for adjusting
FastRCNN box regression
loss in the total loss

float 1.0

mrcnn_weight_loss_maskWeight for adjusting
mask loss in the total
loss

float 1.0

The min_level, max_level, num_scales, aspect_ratios and anchor_scale are used
to determine MaskRCNN’s anchor generation. anchor_scale is the base anchor’s
scale. And min_level and max_level sets the range of the scales on different feature
maps. For example, the actual anchor scale for the feature map at min_level will
be anchor_scale * 2^min_level and the actual anchor scale for the feature map
at max_level will be anchor_scale * 2^max_level. And it will generate anchors of
different aspect_ratios based on the actual anchor scale.

7.9.2. Data config
The data configuration (data_config) specifies the input data source and format. This is
used for training, evaluation and inference. Detailed description is summarized in the
table below.

Field Description Data Type and
Constraints

Recommended/Typical
Value

image_size Image dimension as
a tuple within quote
marks. “(height, width)”
indicates the dimension

string “(832, 1344)”
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of the resized and
padded input

augment_input_data Whether to augment
data

boolean True

eval_samples Number of samples for
evaluation

Unsigned int -

training_file_patternTFRecord path for
training

string -

validation_file_patternTFRecord path for
validation

string -

val_json_file The annotation file path
for validation

string -

num_classes Number of classes Unsigned int -

skip_crowd_druing_trainingWhether to skip crowd
during training

boolean True
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Chapter 8.
TRAINING THE MODEL

You can use the tlt-train command to train models with single and multiple
GPUs. The NVIDIA Transfer Learning Toolkit provides a simple command line
interface to train a deep learning model for classification, object detection, and instance
segmentation. It includes the tlt-train command to do this. To speed up the training
process, the tlt-train command supports multiGPU training. You can invoke a multi
GPU training session by using the --gpus N option, where N is the number of GPUs
you want to use. N must be less than the number of GPUs available in the given node for
training.

Currently, only single-node multiGPU is supported.

The other optimizations included with tlt-train are:

‣ Quantization Aware Training (QAT)
‣ Automatic Mixed Precision (AMP)

8.1. Quantization Aware Training
TLT now supports Quantization-Aware-Training (QAT) for its object detection networks
namely, DetectNet_v2, SSD, DSSD, YOLOv3, RetinaNet and FasterRCNN. Quantization
Aware Training emulates the inference time quantization when training a model that
may then be used by downstream inference platforms to generate actual quantized
models. The error from quantizating weights and tensors to INT8 is modeled during
training, allowing the model to adapt and mitigate the error. During QAT, the model
constructed in the training graph is modified to:

 1. Replace existing nodes with nodes that support fake quantization of its weights.
 2. Convert existing activations to ReLU-6 (except the output nodes).
 3. Add Quantize and De-Quantize(QDQ) nodes to compute the dynamic ranges of the

intermediate tensors.
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The dynamic ranges computed during training, are serialized to a cache file using tlt-
export that may then be parsed by TensorRT to create an optimized inference engine.
To enable QAT during training, simply set the enable_qat parameter to be True in the
training_config field of the corresponding spec file of each of the supported apps.
The benefit of QAT training is usually a better accuracy when doing INT8 inference with
TensorRT compared with traditional calibration based INT8 TensorRT inference.

The number of scales present in the cache file is less than that generated by the
Post Training Quantization technique using TensorRT. This is because the QDQ nodes
are added only after operations that are fused by TensorRT (in GPU) eg: operation
sequences such as Conv2d -> Bias -> Relu or Conv2d -> Bias -> BatchNormalization ->
Activation, whereas during PTQ, the scales are applied to all the intermediate tensors
in the model. Also, the final output regression nodes are not quantized in the current
training graphs. So these layers currently run in fp32.

When deploying a model with platforms that have DLA, please note that currently
using Quantization cache files generated by peeling the scales from the model is
not supported, since DLA requires a scale factor for all layers. Inorder to use a QAT
trained model with DLA, we recommend using the post training quantization at export
(see Exporting the Model). The Post Training Quantization method takes the current
QAT trained model and generates scale factors for all intermediate tensors in the
model since the DLA doesn’t fuse operations as done by the GPU.

8.2. Automatic Mixed Precision
TLT now supports Automatic-Mixed-Precision(AMP) training. DNN training has
traditionally relied on training using the IEEE-single precision format for its tensors.
With mixed precision training however, one may use a mixture for FP16 and FP32
operations in the training graph to help speed up training while not compromising
accuracy. There are several benefits to using AMP:

‣ Speed up math-intensive operations, such as linear and convolution layers.
‣ Speed up memory-limited operations by accessing half the bytes compared to

single-precisReduce memory requirements for training models, enabling larger
models or larger minibatches.

In TLT, enabling AMP is as simple as setting the environment variable
TF_ENABLE_AUTO_MIXED_PRECISION=1 when running tlt-train. This will help
speedup the training by using FP16 tensor cores. Note that AMP is only supported on
GPUs with Volta or above architecture.

8.3. Training a classification model
Use the tlt-train command to tune a pre-trained model:
tlt-train [-h] classification --gpus <num GPUs>
           -k <encoding key>
           -r <result directory>
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           -e <spec file>
           

Required arguments:

‣ -r, --results_dir : Path to a folder where the experiment outputs should be
written.

‣ -k, --key : User specific encoding key to save or load a .tlt model.
‣ -e, --experiment_spec_file: Path to the experiment spec file.

Optional arguments:

‣ --gpus : Number of GPUs to use and processes to launch for training. The default
value is 1.

See the Specification file for classification section for more details.

Here's an example of using the tlt-train command:
tlt-train classification -e /workspace/tlt_drive/spec/spec.cfg -r /workspace/
output -k $YOUR_KEY

8.4. Training a DetectNet_v2 model
After following the steps, go here to create TFRecords ingestible by the TLT training, and
setting up a spec file. You are now ready to start training an object detection network.

DetectNet_v2 training command
tlt-train [-h] detectnet_v2 
           -k <key>
           -r <result directory>
           -e <spec_file>
           [--gpus <num GPUs>]
           

Required arguments

‣ -r, --results_dir : Path to a folder where experiment outputs should be
written.

‣ -k, –key : User specific encoding key to save or load a .tlt model.
‣ -e, --experiment_spec_file : Path to spec file. Absolute path or relative to

working directory. (default: spec from spec_loader.py is used).

Optional arguments

‣ --gpus : Number of GPUs to use and processes to launch for training. The default
value is 1.

‣ -h, --help : To print help message

Sample usage

Here is an example of command for a 2 GPU training:
tlt-train detectnet_v2 -e <path_to_spec_file> 
                                 -r <path_to_experiment_output> 
                                 -k <key_to_load_the_model> 
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                                 -n <name_string_for_the_model> 
                                 --gpus 2

The tlt-train tool does not support training on images of multiple resolutions, or
resizing images during training. All of the images must be resized offline to the final
training size and the corresponding bounding boxes must be scaled accordingly.

DetectNet_v2 now supports resuming training from intermediate checkpoints. In
case a previously running training experiment is stopped prematurely, one may
restart the training from the last checkpoint by simply re-running the detectnet_v2
training command with the same command line arguments as before. The trainer for
detectnet_v2 finds the last saved checkpoint in the results directory and resumes the
training from there. The interval at which the checkpoints are saved are defined by
the `checkpoint_interval` parameter under the “training_config” for detectnet_v2.

8.5. Training a FasterRCNN model
Use this command to execute the FasterRCNN training command:
tlt-train [-h] faster_rcnn -e <experiment_spec>
                           [-k <enc_key>]
                           [--gpus <num_gpus>]

Required arguments:

‣ -e, --experiment_spec_file : Experiment specification file to set up the
evaluation experiment. This should be the same as training specification file.

Optional arguments:

‣ -h, --help : Show this help message and exit.
‣ -k, --enc_key: TLT encoding key, can override the one in the spec file.
‣ --gpus: The number of GPUs to be used in the training in a multi-gpu

scenario(default: 1).

Sample usage

Here's an example of using the FasterRCNN training command:
tlt-train faster_rcnn -e <experiment_spec>

Using a Pretrained Weights File

Usually, using a pretrained weights file for the initial training of FasterRCNN helps
get better accuracy. NVIDIA recommends using the pretrained weights provided in
NVIDIA GPU Cloud(NGC). FasterRCNN loads the pretrained weights by name. That is,
layer by layer, if TLT finds a layer whose name and weights(bias) shape in the pretrained
weights file matches a layer in the TLT model, it will load that layer's weights(and bias,
if any) into the model. If some layer in the TLT cannot find a matching layer in the
pretrained weights, then TLT will skip that layer and will use random initialization for
that layer instead. An exception is that if TLT finds a matching layer in the pretrained
weights(and bias, if any) but the shape of the pretrained weights(or bias, if any) in that
layer does not match the shape of weights(bias) for the corresponding layer in TLT
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model, it will also skip that layer. For some layers that have no weights(bias), nothing
will be done for it(hence will be skipped). So, in total, there are three possible statuses
to indicate how a layer's pretrained weights loading is going on. That is,'Yes','No'
and 'None'. 'Yes' means a layer has weights(bias) and is loaded from the pretrained
weights file successfully for initialization. 'No' means a layer has weights(bias) but
due to mismatched weights(bias) shape(or probably something else), the weights(bias)
cannot be loaded successfully and will use random initialization instead. 'None' means
a layer has no weights(bias) at all and will not load any weights. In the FasterRCNN
training log, there is a table that shows the pretrained weights loading status for each
layer in the model.

8.6. Training an SSD model
Train the SSD model using this command:
tlt-train [-h] ssd -e <experiment_spec> 
                   -r <output_dir> 
                   -k <key> 
                   -m <pretrained_model>
                   --gpus <num_gpus>

Required arguments:

‣ -r, --results_dir: Path to the folder where the experiment output is written.
‣ -k, --key: Provide the encryption key to decrypt the model.
‣ -e, --experiment_spec_file: Experiment specification file to set up the

evaluation experiment. This should be the same as the training specification file.

Optional arguments:

‣ --gpus num_gpus: Number of GPUs to use and processes to launch for training.
The default = 1.

‣ -m, --resume_model_weights: Path to a pre-trained model or model to continue
training.

‣ --initial_epoch: Epoch number to resume from.
‣ -h, --help: Show this help message and exit.

Here's an example of using the train command on an SSD model:
tlt-train ssd --gpus 2 -e /path/to/spec.txt -r /path/to/result -k $KEY

8.7. Training a DSSD model
Train the DSSD model using this command:
tlt-train [-h] dssd -e <experiment_spec> 
                    -r <output_dir> 
                    -k <key> 
                    -m <pretrained_model>
                    --gpus <num_gpus>

Required arguments:

‣ -r, --results_dir: Path to the folder where the experiment output is written.
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‣ -k, --key: Provide the encryption key to decrypt the model.
‣ -e, --experiment_spec_file: Experiment specification file to set up the

evaluation experiment. This should be the same as training specification file.

Optional arguments:

‣ --gpus num_gpus: Number of GPUs to use and processes to launch for training.
The default = 1.

‣ -m, --resume_model_weights: Path to a pre-trained model or model to continue
training.

‣ --initial_epoch: Epoch number to resume from.
‣ -h, --help: Show this help message and exit.

Here's an example of using the train command on an DSSD model:
tlt-train dssd --gpus 2 -e /path/to/spec.txt -r /path/to/result -k $KEY

8.8. Training a YOLOv3 model
Train the YOLOv3 model using this command:
tlt-train [-h] yolo -e <experiment_spec> 
                    -r <output_dir> 
                    -k <key> 
                    -m <pretrained_model>
                    --gpus <num_gpus>

Required arguments:

‣ -r, --results_dir: Path to the folder where the experiment output is written.
‣ -k, --key: Provide the encryption key to decrypt the model.
‣ -e, --experiment_spec_file: Experiment specification file to set up the

evaluation experiment. This should be the same as the training specification file.

Optional arguments:

‣ --gpus num_gpus: Number of GPUs to use and processes to launch for training.
The default = 1.

‣ -m, --resume_model_weights: Path to a pre-trained model or model to continue
training.

‣ --initial_epoch: Epoch number to resume from.
‣ -h, --help: Show this help message and exit.

Here's an example of using the train command on a YOLOv3 model:
tlt-train yolo --gpus 2 -e /path/to/spec.txt -r /path/to/result -k $KEY

8.9. Training a RetinaNet model
Train the RetinaNet model using this command:
tlt-train [-h] retinanet -e <experiment_spec> 
                   -r <output_dir> 
                   -k <key> 
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                   -m <pretrained_model>
                   --gpus <num_gpus>

Required arguments:

‣ -r, --results_dir: Path to the folder where the experiment output is written.
‣ -k, --key: Provide the encryption key to decrypt the model.
‣ -e, --experiment_spec_file: Experiment specification file to set up the

evaluation experiment. This should be the same as the training specification file.

Optional arguments:

‣ --gpus num_gpus: Number of GPUs to use and processes to launch for training.
The default = 1.

‣ -m, --resume_model_weights: Path to a pre-trained model or model to continue
training.

‣ --initial_epoch: Epoch number to resume from.
‣ -h, --help: Show this help message and exit.

Here's an example of using the train command on a RetinaNet model:
tlt-train retinanet --gpus 2 -e /path/to/spec.txt -r /path/to/result -k $KEY

8.10. Training a MaskRCNN model
Train the MaskRCNN model using this command:
tlt-train [-h] mask_rcnn -e <experiment_spec> 
                         -d <output_dir> 
                         -k <key>
                         --gpus <num_gpus>

Required arguments:

‣ -d, --model_dir: Path to the folder where the experiment output is written.
‣ -k, --key: Provide the encryption key to decrypt the model.
‣ -e, --experiment_spec_file: Experiment specification file to set up the

evaluation experiment. This should be the same as the training specification file.

Optional arguments:

‣ --gpus num_gpus: Number of GPUs to use and processes to launch for training.
The default = 1.

‣ -h, --help: Show this help message and exit.

Here's an example of using the train command on a MaskRCNN model:
tlt-train mask_rcnn --gpus 2 -e /path/to/spec.txt -d /path/to/result -k $KEY
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Chapter 9.
EVALUATING THE MODEL

Once the model has been trained, using the experiment config file, and by following
the steps to train a model, the next step would be to evaluate this model on a test set
to measure the accuracy of the model. The TLT toolkit includes the tlt-evaluate
command to do this.

The classification app computes evaluation loss, Top-k accuracy, precision and recall as
metrics. Meanwhile, tlt-evaluate for DetectNet_v2, FasterRCNN, Retinanet, DSSD,
YOLOV3, and SSD computes the Average Precision per class and the mean Average
Precision metrics as defined in the Pascal VOC challenge. Both sample and integrate
modes are supported to calculate average precision. The former was used in VOC
challenges before 2010 while the latter was used from 2010 onwards. The SAMPLE mode
uses an 11-point method to compute the AP, while the INTEGRATE mode uses a more
fine-grained integration method and gets a more accurate number of AP. MaskRCNN
reports COCO’s detection evaluation metrics (https://cocodataset.org/ℼdetection-eval).
AP50 in COCO metrics is comparable to mAP in Pascal VOC metrics.

When training is complete, the model is stored in the output directory of your choice in
$OUTPUT_DIR. Evaluate a model using the tlt-evaluate command:
tlt-evaluate {classification,detectnet_v2,faster_rcnn,ssd,dssd,retinanet,yolo,
 mask_rcnn} [-h] [<arguments for classification/detectnet_v2/faster_rcnn/ssd/
dssd/retinanet/yolo, mask_rcnn>]

Required arguments:

‣ {classification, detectnet_v2, faster_rcnn, ssd, dssd, retinanet, yolo,
      mask_rcnn}

Choose whether you are evaluating a classification, detectnet_v2, ssd, dssd,
yolo, retinanet, faster_rcnn or mask_rcnn model.

Optional arguments: These arguments vary depending upon Classification,
DetectNet_v2, SSD, DSSD, RetinaNet, YOLOv3, FasterRCNN and MaskRCNN models.

https://cocodataset.org/#detection-eval
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9.1. Evaluating a classification model
Execute tlt-evaluate on a classification model.
tlt-evaluate classification [-h] -e <experiment_spec_file> -k <key>

Required arguments

‣ -e, --experiment_spec_file: Path to the experiment spec file..
‣ -k, –key : Provide the encryption key to decrypt the model .

Optional arguments

‣ -h, --help : show this help message and exit.

If you followed the example in Training a classification model, you can run the
evaluation:

tlt-evaluate classification -e classification_spec.cfg -k $YOUR_KEY

TLT evaluate for classification produces the following metrics:

‣ Loss
‣ Top-K accuracy
‣ Precision (P): TP / (TP + FP)
‣ Recall (R): TP / (TP + FN)
‣ Confusion Matrix

9.2. Evaluating a DetectNet_v2 model
Execute tlt-evaluate on a DetectNet_v2 model.
tlt-evaluate detectnet_v2 [-h] -e <experiment_spec> 
                               -m <model_file> 
                               -k <key> 
                               [--use_training_set] 

Required arguments:

‣ -e, --experiment_spec_file: Experiment spec file to set up the evaluation
experiment. This should be the same as training spec file.

‣ -m, --model: Path to the model file to use for evaluation. This could be a .tlt
model file or a tensorrt engine generated using the tlt-export tool.

‣ -k, -–key : Provide the encryption key to decrypt the model. This is a required
argument only with a .tlt model file.

Optional arguments

‣ -h, --help : show this help message and exit.
‣ -f, --framework: the framework to use when running evaluation (choices: “tlt”,

“tensorrt”). By default the framework is set to TensorRT.
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‣ --use_training_set: Set this flag to run evaluation on training + validation
dataset.

If you have followed the example in Training a detection model, you may now evaluate
the model using the following command:

tlt-evaluate detectnet_v2 -e <path to training spec file>
                          -m <path to the model> 
                          -k <key to load the model>

This command runs evaluation on the same validation set that was used during
training.

Use these steps to evaluate on a test set with ground truth labeled:

 1. Create tfrecords for this training set by following the steps listed in the data input
section.

 2. Update the dataloader configuration part of the training spec file to include the
newly generated tfrecords. For more information on the dataset config, please refer
to Create an experiment spec file. You may create the tfrecords with any partition
mode (sequence/random). The evaluate tool iterates through all the folds in the
tfrecords patterns mentioned in the validation_data_source.

dataset_config {
  data_sources: {
    tfrecords_path: "<path to training tfrecords root>/<tfrecords_name*>"
    image_directory_path: "<path to training data root>"
  }
  image_extension: "jpg"
  target_class_mapping {
      key: "car"
      value: "car"
  }
  target_class_mapping {
      key: "automobile"
      value: "car"
  }
  ..
  ..
  ..
  target_class_mapping {
      key: "person"
      value: "pedestrian"
  }
  target_class_mapping {
      key: "rider"
      value: "cyclist"
  }
  validation_data_source: {
    tfrecords_path: "<path to testing tfrecords root>/<tfrecords_name*>"
    image_directory_path: "<path to testing data root>"
  }
}

The rest of the experiment spec file remains the same as the training spec file.
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9.3. Evaluating a FasterRCNN model
To run evaluation for a faster_rcnn model use this command:

tlt-evaluate faster_rcnn [-h] -e <experiment_spec> 
                              [-k <enc_key>]

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as a training spec file.

Optional arguments:

‣ -h, --help : show this help message and exit.
‣ -k, --enc_key ℼThe encoding key, can override the one in the spec file.

Evaluation metrics:

For FasterRCNN, the evaluation will print out 4 metrics for the evaluated model:
AP(average precision), precision, recall and RPN_recall for each class in the
evaluation dataset. Finally, it will also print the mAP(mean average precision)
as a single metric number. Two modes are supported for computing the AP, i.e.,
the PASCAL VOC 2007 and 2012 metrics. This can be configured in the spec file's
evaluation_config.use_voc_11_point_metric parameter. If this parameter is
set to True, then AP calculation will use VOC 2007 method, otherwise it will use VOC
2012 method. The RPN_recall metric indicates the recall capability of the RPN of the
FasterRCNN model. The higher the RPN_recall metric, it means RPN can better detect
an object as foreground(but it doesn't say anything on which class this object belongs to
since that is delegated to RCNN). The RPN_recall metric is mainly used for debugging
on the accuracy issue of a FasterRCNN model.

Two modes for tlt-evaluate

The tlt-evaluate command line for FasterRCNN has two modes. It can run with
either TLT backend or TensorRT backend. This behavior is also controlled via the spec
file. The evaluation_config in the spec file can have an optional trt_evaluation
sub-field that specifies which backend the tlt-evaluate will run with. By default(if
the trt_evaluation sub-field is not present in evaluation_config), tlt-evaluate
will use TLT as the backend. If the trt_evaluation sub-field is present, it can specify
tlt-evaluate to run at TensorRT backend. In that case, the model to do inference can
be either the .etlt model from tlt-export or the TensorRT engine file from tlt-
export or tlt-converter.

To use a TensorRT engine file for TensorRT backend based tlt-evaluate, the
trt_evaluation sub-field should look like this:
trt_evaluation {
trt_engine: '/workspace/tlt-experiments/data/faster_rcnn/trt.int8.engine'
max_workspace_size_MB: 2000
}
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To use a .etlt model for TensorRT backend based tlt-evaluate, the
trt_evaluation sub-field should look like this:
trt_evaluation {
etlt_model {
model: '/workspace/tlt-experiments/data/faster_rcnn/resnet18.epoch12.etlt'
calibration_cache: '/workspace/tlt-experiments/data/faster_rcnn/cal.bin'
}
trt_data_type: 'int8'
max_workspace_size_MB: 2000
}

If the TensorRT inference data type is not INT8, the calibration_cache sub-field
that provides the path to the INT8 calibration cache is not needed. In INT8 case, the
calibration cache should be generated via the tlt-export command line in INT8
mode. See also the documentation of FasterRCNN spec file for the details of the
trt_evaluation message structure.

9.4. Evaluating an SSD model
To run evaluation for an SSD model use this command:
tlt-evaluate ssd [-h] -e <experiment_spec_file> -m <model_file> -k <key>

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as the training specification file.

‣ -m, --model : Path to the model file to use for evaluation.
‣ -k, --key : Provide the key to load the model.

Optional arguments:

‣ -h, --help : show this help message and exit.

9.5. Evaluating a DSSD model
To run evaluation for an DSSD model use this command:
tlt-evaluate ssd [-h] -e <experiment_spec_file> -m <model_file> -k <key>

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as training spec file.

‣ -m, --model : Path to the model file to use for evaluation.
‣ -k, --key : Provide the key to load the model.

Optional arguments:

‣ -h, --help : show this help message and exit.
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9.6. Evaluating a YOLOv3 model
To run evaluation for a YOLOv3 model use this command:
tlt-evaluate yolo [-h] -e <experiment_spec_file> -m <model_file> -k <key>

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as the training specification file.

‣ -m, --model : Path to the model file to use for evaluation.
‣ -k, --key : Provide the key to load the model.

Optional arguments:

‣ -h, --help : show this help message and exit.

9.7. Evaluating a RetinaNet model
To run evaluation for a RetinaNet model use this command:
tlt-evaluate retinanet [-h] -e <experiment_spec_file> -m <model_file> -k <key>

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as the training specification file.

‣ -m, --model : Path to the model file to use for evaluation.
‣ -k, --key : Provide the key to load the model.

Optional arguments:

‣ -h, --help : show this help message and exit.

9.8. Evaluating a MaskRCNN model
To run evaluation for a MaskRCNN model use this command:
tlt-evaluate mask_rcnn [-h] -e <experiment_spec_file> -m <model_file> -k <key>

Required arguments:

‣ -e, --experiment_spec_file : Experiment spec file to set up the evaluation
experiment. This should be the same as the training spec file.

‣ -m, --model : Path to the model file to use for evaluation.
‣ -k, --key : Provide the key to load the model. This argument is not required if -m

is followed by a TensorRT engine.

Optional arguments:

‣ -h, --help : show this help message and exit.
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Chapter 10.
USING INFERENCE ON A MODEL

The tlt-infer command runs the inference on a specified set of input images. In the
classification mode, tlt-infer provides class label output over the command line for
a single image or a csv file containing the image path and the corresponding labels for
multiple images. In DetectNet_v2, SSD, RetinaNet, DSSD, YOLOV3, or FasterRCNN
mode, tlt-infer produces output images with bounding boxes rendered on them
after inference. Optionally, you can also serialize the output meta-data in kitti_format. In
MaskRCNN, tlt-infer produces annotated images with bounding boxes and masks
rendered on them after inference. TensorRT python inference can also be enabled.

10.1. Running inference on a classification model
Execute tlt-infer on a classification model trained on the Transfer Learning Toolkit.

tlt-infer classification [-h] 
                          -m <model> 
                          -i <image> 
                          -d <image  dir>
                         [-b <batch size>] 
                          -k <key> 
                          -cm <classmap>

Here are the parameters of the tlt-infer tool:

Required arguments

‣ -m, --model : Path to the pretrained model (TLT model).
‣ -i, --image : A single image file for inference.
‣ -d, --image_dir : The directory of input images for inference.
‣ -k, --key : Key to load model.
‣ -cm, --class_map : The json file that specifies the class index and label mapping.

Optional arguments

‣ --batch_size : Inference batch size, default: 1
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‣ -h, --help : show this help message and exit

The inference tool requires a cluster_params.json file to configure the post
processing block.When executing with -d or directory mode,a result.csv file
will be created and stored in the directory you specify using -d. The result.csv has
the file path in the first column and predicted labels in the second.

In both single image and directory modes, a classmap (-cm) is required, which should
be a byproduct (classmap.json) of your training process.

10.2. Running inference on a DetectNet_v2 model
The tlt-infer tool for object detection networks which may be used to visualize bboxes,
or generate frame by frame kitti format labels on a single image or a directory of images.
An example of the command for this tool is shown here:
tlt-infer detectnet_v2 [-h] -e </path/to/inference/spec/file> \ 
          -i </path/to/inference/input> \
          -o </path/to/inference/output> \
          -k <model key>

Required parameters

‣ -e, --inference_spec: Path to an inference spec file.
‣ -i, --inference_input: The directory of input images or a single image for inference.
‣ -o, --inference_output: The directory to the output images and labels. The

annotated images are in inference_output/images_annotated and labels are in
inference_output/labels

‣ -k, --enc_key: Key to load model

The tool automatically generates bbox rendered images in output_path/
images_annotated. In order to get the bbox labels in KITTI format, please configure
the bbox_handler_config spec file using the kitti_dump parameter as mentioned here.
This will generate the output in output_path/labels.

10.3. Running inference on a FasterRCNN model
The tlt-infer tool for FasterRCNN networks can be used to visualize bboxes, or generate
frame by frame KITTI format labels on a directory of images. You can execute this tool
from the command line as shown here:
tlt-infer faster_rcnn [-h] -e <experiment_spec> [-k <enc_key>]

Required arguments:

‣ -e, --experiment_spec_file: Path to the experiment specification file for
FasterRCNN training.

Optional arguments:

https://docs.google.com/document/d/1eWn-338oJ7bLgP5KHUsgNI5vKDPcoMi4o2GzlqBPsTI/edit#heading=h.k478et8voxb7
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‣ -h, --help: Print help log and exit.
‣ -k, --enc_key: The encoding key, can override the one in the spec file.

Two modes for tlt-infer

The tlt-infer command line for FasterRCNN has two modes. It can run with either
TLT backend or TensorRT backend. This behavior is also controlled via the spec file.
The inference_config in the spec file can have an optional trt_inference sub-
field that specifies which backend the tlt-infer will run with. By default(if the
trt_inference sub-field is not present in inference_config), tlt-infer will use
TLT as the backend. If the trt_inference sub-field is present, it can specify tlt-
infer to run at TensorRT backend. In that case, the model to do inference can be either
the .etlt model from tlt-export or the TensorRT engine file from tlt-export or
tlt-converter.

To use a TensorRT engine file for TensorRT backend based tlt-infer, the
trt_inference sub-field should look like this:
trt_inference {
trt_engine: '/workspace/tlt-experiments/data/faster_rcnn/trt.int8.engine'
}

To use a .etlt model for TensorRT backend based tlt-infer, the trt_inference
sub-field should look like this:
trt_inference {
etlt_model {
model: '/workspace/tlt-experiments/data/faster_rcnn/resnet18.epoch12.etlt'
calibration_cache: '/workspace/tlt-experiments/data/faster_rcnn/cal.bin'
}
trt_data_type: 'int8'
}

If the TensorRT inference data type is not INT8, the calibration_cache sub-field
that provides the path to the INT8 calibration cache is not needed. In INT8 case, the
calibration cache should be generated via the tlt-export command line in INT8
mode. See also the documentation of FasterRCNN spec file for the details of the
trt_inference message structure.

10.4. Running inference on an SSD model
The tlt-infer tool for SSD networks can be used to visualize bboxes, or generate frame by
frame KITTI format labels on a directory of images. Here's an example of using this tool:

tlt-infer ssd  -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -m <model file> 
               [-l <output label directory>]
               [-t <visualization threshold>] 
               -k <key>

Required arguments

‣ -m, --model : Path to the pretrained model (TLT model).
‣ -i, --in_image_dir : The directory of input images for inference.
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‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit
‣ -l, --out_label_dir : The directory to output KITTI labels.

10.5. Running inference on a DSSD model
The tlt-infer tool for DSSD networks can be used to visualize bboxes, or generate frame
by frame KITTI format labels on a directory of images. Here's an example of using this
tool:

tlt-infer dssd  -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -m <model file> 
               [-l <output label directory>]
               [-t <visualization threshold>] 
               -k <key>

Required arguments

‣ -m, --model : Path to the pretrained model (TLT model).
‣ -i, --in_image_dir : The directory of input images for inference.
‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit
‣ -l, --out_label_dir : The directory to output KITTI labels.

10.6. Running inference on a YOLOv3 model
The tlt-infer tool for YOLOv3 networks can be used to visualize bboxes, or generate
frame by frame KITTI format labels on a directory of images. Here's an example of using
this tool:

tlt-infer yolo -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -m <model file> 
               [-l <output label directory>]
               [-t <visualization threshold>] 
               -k <key>
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Required arguments

‣ -m, --model : Path to the pretrained model (TLT model).
‣ -i, --in_image_dir : The directory of input images for inference.
‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit
‣ -l, --out_label_dir : The directory to output KITTI labels.

10.7. Running inference on a RetinaNet model
The tlt-infer tool for RetinaNet networks can be used to visualize bboxes, or generate
frame by frame KITTI format labels on a directory of images. Two modes are supported,
namely TLT model model and TensorRT engine mode. You can execute the TLT model
mode using the following command:
tlt-infer retinanet -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -m <model file> 
               [-l <output label directory>]
               [-t <visualization threshold>] 
               -k <key>

Required arguments

‣ -m, --model : Path to the pretrained model (TLT model).
‣ -i, --in_image_dir : The directory of input images for inference.
‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit
‣ -l, --out_label_dir : The directory to output KITTI labels.

Alternatively, you can execute the TensorRT engine mode as follows:
tlt-infer retinanet -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -p <engine path>
               [-t <visualization threshold>] 
               -k <key>

Required arguments

‣ -p, --engine_path : Path to the TensorRT (TLT exported).
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‣ -i, --in_image_dir : The directory of input images for inference.
‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit
‣ -l, --out_label_dir : The directory to output KITTI labels.

Alternatively, you can execute the TensorRT engine mode as follows:
tlt-infer retinanet -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -p <engine path>
               [-t <visualization threshold>] 
               -k <key>

Required arguments

‣ -p, --engine_path : Path to the TensorRT (TLT exported).
‣ -i, --in_image_dir : The directory of input images for inference.
‣ -o, --out_image_dir : The directory path to output annotated images.
‣ -k, --key : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --draw_conf_thres : Threshold for drawing a bbox. default: 0.3
‣ -h, --help : Show this help message and exit

10.8. Running inference on a MaskRCNN model
The tlt-infer tool for MaskRCNN networks can be used to visualize bboxes, or generate
frame by frame COCO format labels on a directory of images. Here's an example of
using this tool:
tlt-infer mask_rcnn -i <input directory> 
               -o <output annotated image directory> 
               -e <experiment spec file> 
               -m <model file> 
               [-l <label file>]
               [-b <batch size>]
               [-t <visualization threshold>]
               [--include_mask] 
               -k <key>

Required arguments

‣ -m, --model : Path to the trained model (TLT model).
‣ -i, --input_dir : The directory of input images for inference.
‣ -k, --key  : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.
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‣ -o, --out_dir : The directory path to output annotated images.

Optional arguments

‣ -t, --threshold : Threshold for drawing a bbox. default: 0.3.
‣ -h, --help : Show this help message and exit.
‣ -l, --label_file : The label txt file containing groundtruth class labels.
‣ --include_mask : Whether to draw masks on the annotated output.

When calling tlt-infer with --trt, the command expects a TensorRT engine as input:
tlt-infer mask_rcnn --trt
               -i <input image> 
               -o <output annotated image> 
               -e <experiment spec file> 
               -m <TensorRT engine file> 
               [-l <output label file>]
               [-c <class label file>]
               [-t <visualization threshold>]
               [-mt <mask_threshold>]
               [--include_mask]

Required arguments

‣ -m, --model : Path to the trained model (TLT model).
‣ -i, --in_image_path: A directory of input images or a single image file for

inference.
‣ -k, --key  : Key to load model.
‣ -e, --config_path : Path to an experiment spec file for training.

Optional arguments

‣ -t, --threshold : Confidence threshold for drawing a bbox. Default: 0.6.
‣ -mt, --mask_threshold: Confidence threshold for drawing a mask. Default: 0.4.
‣ -o, --out_image_path : The output directory of annotated images or a single

annotated image file.
‣ -c, --class_label : The path to groundtruth label file. If used, the annotated

image will display label names.
‣ -l, --out_label_file : The output directory of predicted labels in json format or a single

json file.
‣ --include_mask : Whether to draw masks on the annotated output.
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Chapter 11.
PRUNING THE MODEL

Pruning removes parameters from the model to reduce the model size without
compromising the integrity of the model itself using the tlt-prune command.
Currently tlt-prune doesn’t support MaskRCNN models.

The tlt-prune command includes these parameters:

tlt-prune [-h] -pm <pretrained_model>
               -o <output_file> -k <key>
               [-n <normalizer>]
               [-eq <equalization_criterion>]
               [-pg <pruning_granularity>]
               [-pth <pruning threshold>]
               [-nf <min_num_filters>]
               [-el [<excluded_list>]
               

Required arguments:

‣ -pm, --pretrained_model : Path to pretrained model.
‣ -o, --output_file : Path to output checkpoints.
‣ -k, --key : Key to load a .tlt model

Optional arguments

‣ -h, --help: Show this help message and exit.
‣ -n, –normalizer : `max` to normalize by dividing each norm by the maximum

norm within a layer; `L2` to normalize by dividing by the L2 norm of the vector
comprising all kernel norms. (default: `max`)

‣ -eq, --equalization_criterion : Criteria to equalize the stats of inputs to an
element wise op layer, or depth-wise convolutional layer. This parameter is useful
for resnets and mobilenets. Options are [arithmetic_mean, geometric_mean, union,
intersection]. (default: `union`)

‣ -pg, -pruning_granularity: Number of filters to remove at a time. (default:8).
‣ -pth : Threshold to compare normalized norm against. (default:0.1)

NVIDIA recommends changing the threshold to keep the number of parameters in
the model to within 10-20% of the original unpruned model.



Pruning the model

www.nvidia.com
NVIDIA Transfer Learning Toolkit for Intelligent Video
Analytics

DU-09243-003 _v2.0 | 174

‣ -nf, --min_num_filters : Minimum number of filters to keep per layer.
(default:16)

‣ -el, --excluded_layers: List of excluded_layers. Examples: -i item1 item2
(default: [])

After pruning, the model needs to be retrained. See Re-training the pruned model.

Using the Prune command

Here's an example of using the tlt-prune command:
tlt-prune -m /workspace/output/weights/resnet_003.tlt \
                     -o /workspace/output/weights/resnet_003_pruned.tlt \
                     -eq union \
                     -pth 0.7 -k $KEY

Re-training the pruned model

Once the model has been pruned, there might be a slight decrease in accuracy. This
happens because some previously useful weights may have been removed. In order
to regain the accuracy, NVIDIA recommends that you retrain this pruned model over
the same dataset. To do this, use the tlt-train command as documented in Training
the model, with an updated spec file that points to the newly pruned model as the
pretrained model file.

Users are advised to turn off the regularizer in the training_config for detectnet to
recover the accuracy when retraining a pruned model. You may do this by setting
the regularizer type to NO_REG as mentioned here. All the other parameters may be
retained in the spec file from the previous training.

For detectnet_v2, it is important to set the load_graph under model_config to true to
import the pruned graph.
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Chapter 12.
EXPORTING THE MODEL

The Transfer Learning Toolkit includes the tlt-export command to export and
prepare TLT models for Deploying to DeepStream. The tlt-export command
optionally generates the calibration cache for TensorRT INT8 engine calibration.

Exporting the model decouples the training process from inference and allows
conversion to TensorRT engines outside the TLT environment. TensorRT engines are
specific to each hardware configuration and should be generated for each unique
inference environment. This may be interchangeably referred to as .trt or .engine file.
The same exported TLT model may be used universally across training and deployment
hardware. This is referred to as the .etlt file or encrypted TLT file. During model export
TLT model is encrypted with a private key. This key is required when you deploy this
model for inference.

INT8 mode overview

TensorRT engines can be generated in INT8 mode to improve performance, but require
a calibration cache at engine creation-time. The calibration cache is generated using a
calibration tensor file, if tlt-export is run with the --data_type flag set to int8. Pre-
generating the calibration information and caching it removes the need for calibrating
the model on the inference machine. Moving the calibration cache is usually much more
convenient than moving the calibration tensorfile, since it is a much smaller file and can
be moved with the exported model. Using the calibration cache also speeds up engine
creation as building the cache can take several minutes to generate depending on the
size of the Tensorfile and the model itself.

The export tool can generate INT8 calibration cache by ingesting training data using
either of these options:

‣ Option 1: Providing a calibration tensorfile generated using the tlt-int8-
tensorfile command. For image classification, and detection using Detectnet_v2,
SSD and DSSD, the recommendation is to use this option, because the tlt-int8-
tensorfile command uses the data generators to produce the training data. This
helps easily generate a representative subsample of the training dataset.

‣ Option 2: Pointing the tool to a directory of images that you want to use to calibrate
the model. For this option, make sure to create a sub-sampled directory of random
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images that best represent your training dataset. For FasterRCNN, YOLOV3 and
RetinaNet detection architecture, only option 2 is supported.

‣ Option 3: Using the training data loader to load the training images for INT8
calibration.This option is supported for DetectNet_v2 and FasterRCNN. This
option is now the recommended approach to support multiple image directories by
leveraging the training dataset loader. This also ensures 2 important aspects of data
during calibration:

‣ Data pre=processing in the INT8 calibration step is the same as in the training
process and

‣ The data batches are sampled randomly across the entire training dataset,
thereby improving the accuracy of the int8 model.

NVIDIA plans to eventually deprecate the Option 1 and only support Option 2 and 3.

FP16/FP32 model

The calibration.bin is only required if you need to run inference at INT8 precision.
For FP16/FP32 based inference, the export step is much simpler. All that is required is to
provide a model from the tlt-train step to tlt-export to convert into an encrypted
tlt model.
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Generating an INT8 tensorfile using the tlt-int8-tensorfile command

The INT8 tensorfile is a binary file that contains the preprocessed training samples,
which maybe used to calibrate the model. In this release, TLT only supports calibration
tensorfile generation for SSD, DSSD, DetectNet_v2 and classification models.

The sample usage for the tlt-int8-tensorfile command to generate a calibration
tensorfile is defined as below:
tlt-int8-tensorfile {classification, detectnet_v2} [-h] 
                       -e <path to training experiment spec file>
                       -o <path to output tensorfile>
                       -m <maximum number of batches to serialize>
                       [--use_validation_set]

Positional arguments:

classification, detectnet_v2, ssd or dssd

Required arguments:

‣ -e, --experiment_spec_file: Path to the experiment spec file. (Only required
for SSD and FasterRCNN.)

‣ -o, --output_path: Path to the output tensorfile that will be created.
‣ -m, --max_batches: Number of batches of input data to be serialized.

Optional argument

‣ --use_validation_set: Flag to use validation dataset instead of training set.

Here's a sample command to invoke the tlt-int8-tensorfile command for a
classification model.
tlt-int8-tensorfile classification -e $SPECS_DIR/classification_retrain_spec.cfg
 \                                
                                   -m 10 \
                                   -o $USER_EXPERIMENT_DIR/export/
calibration.tensor

Exporting the model using tlt-export

Here's an example of the command line arguments of the tlt-export command:
tlt-export [-h] {classification, detectnet_v2, ssd, dssd, faster_rcnn, yolo,
 retinanet}
                -m <path to the .tlt model file generated by tlt train>
                -k <key>
                [-o <path to output file>]
                [--cal_data_file <path to tensor file>]
                [--cal_image_dir <path to the directory images to calibrate the
 model]
                [--cal_cache_file <path to output calibration file>]
                [--data_type <Data type for the TensorRT backend during export>]
                [--batches <Number of batches to calibrate over>]
                [--max_batch_size <maximum trt batch size>]
                [--max_workspace_size <maximum workspace size]
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                [--batch_size <batch size to TensorRT engine>]
                [--experiment_spec <path to experiment spec file>]
                [--engine_file <path to the TensorRT engine file>]
                [--verbose Verbosity of the logger]    
                [--force_ptq Flag to force PTQ]

Required arguments:

‣ export_module: Which model to export, can be classification, detectnet_v2,
faster_rcnn, ssd, dssd, yolo, retinanet. This is a positional argument.

‣ -m, --model: Path to the .tlt model file to be exported using tlt-export.
‣ -k, --key: Key used to save the .tlt model file.

Optional arguments:

‣ -o, --output_file  : Path to save the exported model to. The default is ./
<input_file>.etlt.

‣ --data_type: Desired engine data type, generates calibration cache if in INT8
mode. The options are: {fp32, fp16, int8} The default value is fp32. If using int8,
following INT8 arguments are required.

‣ -s, --strict_type_constraints: A Boolean flag to indicate whether or not to
apply the TensorRT strict_type_constraints when building the TensorRT engine.
Note this is only for applying the strict type of INT8 mode.

INT8 export mode required arguments:

‣ --cal_data_file: tensorfile generated from tlt-int8-tensorfile
for calibrating the engine. This can also be an output file if used with --
cal_image_dir.

‣ --cal_image_dir: Directory of images to use for calibration.

--cal_image_dir parameter for images and applies the necessary preprocessing to
generate a tensorfile at the path mentioned in the --cal_data_file parameter,
which is in turn used for calibration. The number of batches in the tensorfile
generated is obtained from the value set to the --batches parameter, and the
batch_size is obtained from the value set to the --batch_size parameter. Be sure
that the directory mentioned in --cal_image_dir has at least batch_size *
batches number of images in it. The valid image extensions are jpg, jpeg and png. In
this case, the input_dimensions of the calibration tensors are derived from the input
layer of the .tlt model.

INT8 export optional arguments:

‣ --cal_cache_file: Path to save the calibration cache file. The default value is ./
cal.bin.

‣ --batches: Number of batches to use for calibration and inference testing.The
default value is 10.

‣ --batch_size: Batch size to use for calibration. The default value is 8.
‣ --max_batch_size: Maximum batch size of TensorRT engine. The default value is

16.
‣ --max_workspace_size : Maximum workspace size of TensorRT engine. The

default value is: 1073741824 = 1<<30)
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‣ --experiment_spec: The experiment_spec for training/inference/evaluation.
This is used to generate the graphsurgeon config script for FasterRCNN from the
experiment_spec, only useful for FasterRCNN. This when used with DetectNet_v2
and FasterRCNN also sets up the dataloader based calibrator to leverage the
training dataloader to calibrate the model.

‣ --engine_file: Path to the serialized TensorRT engine file. Note that this file
is hardware specific, and cannot be generalized across GPUs. Useful to quickly
test your model accuracy using TensorRT on the host. As TensorRT engine file
is hardware specific, you cannot use this engine file for deployment unless the
deployment GPU is identical to training GPU.

‣ --force_ptq: A boolean flag to force post training quantization on the exported etlt
model.

When exporting a model trained with QAT enabled, the tensor scale factors to
calibrate the activations are peeled out of the model and serialized to a TensorRT
readable cache file defined by the cal_cache_file argument. However, do note
that the current version of QAT doesn’t natively support DLA int8 deployment in the
Jetson. Inorder to deploy this model on a Jetson with DLA int8, please use the --
force_ptq flag to use TensorRT post training quantization to generate the calibration
cache file.

Exporting a model

Here's a sample command to export a DetectNet_v2 model in INT8 mode.
This command shows option 1; uses --cal_data_file option with the
calibration.tensor generated using tlt-int8-tensorfile command.

tlt-export  detectnet_v2 \
            -m $USER_EXPERIMENT_DIR/experiment_dir_retrain/weights/
resnet18_detector_pruned.tlt \
           -o $USER_EXPERIMENT_DIR/experiment_dir_final/resnet18_detector.etlt \
           -k $KEY \
           --cal_data_file $USER_EXPERIMENT_DIR/experiment_dir_final/
calibration.tensor \
           --data_type int8 \
           --batches 10 \
           --cal_cache_file $USER_EXPERIMENT_DIR/experiment_dir_final/
calibration.bin
           --engine_file $USER_EXPERIMENT_DIR/experiment_dir_final/
resnet_18.engine

Here's an example log of a successful export:
Using TensorFlow backend.
2018-11-02 18:59:43,347 [INFO] iva.common.tlt-export: Loading model from
 resnet10_kitti_multiclass_v1.tlt
..
2018-11-02 18:59:47,572 [INFO] tensorflow: Restoring parameters from /tmp/
tmp8crUBp.ckpt
INFO:tensorflow:Froze 82 variables.
2018-11-02 18:59:47,701 [INFO] tensorflow: Froze 82 variables.
Converted 82 variables to const ops.
2018-11-02 18:59:48,123 [INFO] iva.common.tlt-export: Converted model was saved
 into resnet10_kitti_multiclass_v1.etlt
2018-11-02 18:59:48,123 [INFO] iva.common.tlt-export: Input node: input_1
2018-11-02 18:59:48,124 [INFO] iva.common.tlt-export: Output node(s):
 ['output_bbox/BiasAdd', 'output_cov/Sigmoid']
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Here's a sample command using the --cal_image_dir option for a FasterRCNN model
using option 2.
tlt-export faster_rcnn \
          -m $USER_EXPERIMENT_DIR/data/faster_rcnn/
frcnn_kitti_retrain.epoch12.tlt \
          -o $USER_EXPERIMENT_DIR/data/faster_rcnn/frcnn_kitti_retrain.int8.etlt
 \
          -e $SPECS_DIR/frcnn_kitti_retrain_spec.txt \
          --key $KEY \
          --cal_image_dir  $USER_EXPERIMENT_DIR/data/KITTI/val/image_2 \
          --data_type int8 \
          --batch_size 8 \
          --batches 10 \
          --cal_data_file $USER_EXPERIMENT_DIR/data/faster_rcnn/cal.tensorfile \
          --cal_cache_file $USER_EXPERIMENT_DIR/data/faster_rcnn/cal.bin \
          --engine_file $USER_EXPERIMENT_DIR/data/faster_rcnn/detection.trt
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Chapter 13.
DEPLOYING TO DEEPSTREAM

The deep learning and computer vision models that you trained can be deployed
on edge devices, such as a Jetson Xavier, Jetson Nano or a Tesla or in the cloud with
NVIDIA GPUs. TLT has been designed to integrate with DeepStream SDK, so models
trained with TLT will work out of the box with DeepStream SDK.

DeepStream SDK is a streaming analytic toolkit to accelerate building AI-based video
analytic applications. DeepStream supports direct integration of Classification and
DetectNet_v2 exported models into the deepstream sample app. The documentation for
the DeepStream SDK is provided here [https://docs.nvidia.com/metropolis/deepstream/
dev-guide/index.html]. For other models such as YOLOv3, FasterRCNN, SSD, DSSD,
RetinaNet, and MaskRCNN there are few extra steps that are required which are
covered in this chapter.

To deploy a model trained by TLT to DeepStream you can run multiple options:

‣ Option 1: Integrate the model (.etlt) with the encrypted key directly in the
DeepStream app. The model file is generated by tlt-export.

‣ Option 2: Generate a device specific optimized TensorRT engine, using tlt-
converter. The TensorRT engine file can also be ingested by DeepStream.

Machine specific optimizations are done as part of the engine creation process, so a
distinct engine should be generated for each environment and hardware configuration.
If the inference environment's TensorRT or CUDA libraries are updated – including
minor version updates or if a new model is generated– new engines need to be
generated. Running an engine that was generated with a different version of TensorRT
and CUDA is not supported and will cause unknown behavior that affects inference
speed, accuracy, and stability, or it may fail to run altogether.

This image shows DeepStream deployment method for all the models plus the two
deployment options. Option 1 is very straightforward. The .etlt file and calibration cache
are directly used by DeepStream. DeepStream will automatically generate TensorRT
engine file and then run inference. The generation of TensorRT engine can take some
time depending on size of the model and type of Hardware. The generation of TensorRT
engine can be done ahead of time with Option 2. With option 2, use tlt-converter to
convert the .etlt file to TensorRT engine and then provide the engine file directly to
DeepStream.

https://developer.nvidia.com/deepstream-sdk
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
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Running TLT models on DeepStream for DetectNet_v2 based detection and image
classification, shown on the top half of the table is very straightforward. All that
is required is the encrypted tlt model (.etlt), optional INT8 calibration cache and
DeepStream config file. Go to Integrating a DetectNet_v2 model to see the DeepStream
config file.

For other detection models such as FasterRCNN, YOLOv3, RetinaNet, SSD, and DSSD,
and segmentation model such as MaskRCNN there are extra steps that need to be
completed before the models will work with DeepStream. Here are the steps with
detailed instructions in the following sections.

Step 1: Build TensorRT Open source software (OSS). This is required because several
TensorRT plugins that are required by these models are only available in TensorRT
open source repo and not in the general TensorRT release. For more information and
instructions, see the TensorRT Open Source Software section.

Step 2: Build custom parsers for DeepStream. The parsers are required to convert
the raw Tensor data from the inference to (x,y) location of bounding boxes around
the detected object. This post-processing algorithm will vary based on the detection
architecture. For DetectNet_v2, the custom parsers are not required because the parsers
are built-in with DeepStream SDK. For other detectors, DeepStream provides flexibility
to add your own custom bounding box parser and that will be used for these 5 models.

13.1. TensorRT Open Source Software (OSS)
TensorRT OSS build is required for FasterRCNN, SSD, DSSD, YOLOv3, RetinaNet, and
MaskRCNN models. This is required because several TensorRT plugins that are required
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by these models are only available in TensorRT open source repo and not in the general
TensorRT release. The table below shows the plugins that are required by each network.

Network Plugins required

SSD batchTilePlugin and NMSPlugin

FasterRCNN cropAndResizePlugin and proposalPlugin

YOLOV3 batchTilePlugin, resizeNearestPlugin and
batchedNMSPlugin

DSSD batchTilePlugin and NMSPlugin

RetinaNet batchTilePlugin and NMSPlugin

MaskRCNN generateDetectionPlugin, multilevelProposeROI,
multilevelCropAndResizePlugin,
resizeNearestPlugin

If the deployment platform is x86 with NVIDIA GPU, follow instructions for x86 and if
your deployment is on NVIDIA Jetson platform, follow instructions for Jetson.

TensorRT OSS on x86

Building TensorRT OSS on x86:

 1. Install Cmake (>=3.13)

TensorRT OSS requires cmake >= v3.13, so install cmake 3.13 if your cmake
version is lower than 3.13c

sudo apt remove --purge --auto-remove cmake
wget https://github.com/Kitware/CMake/releases/download/v3.13.5/
cmake-3.13.5.tar.gz
tar xvf cmake-3.13.5.tar.gz
cd cmake-3.13.5/
./configure
make -j$(nproc)
sudo make install
sudo ln -s /usr/local/bin/cmake /usr/bin/cmake

 2. Get GPU Arch

GPU_ARCHS value can be retrieved by the deviceQuery CUDA sample
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

If the "/usr/local/cuda/samples" doesn’t exist in your system, you could
download deviceQuery.cpp from this repo. Compile and run deviceQuery.
nvcc deviceQuery.cpp -o deviceQuery
./deviceQuery

This command will output something like this, which indicates the "GPU_ARCHS"
is 75 based on CUDA Capability major/minor version.
Detected 2 CUDA Capable device(s)

Device 0: "Tesla T4"

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
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  CUDA Driver Version / Runtime Version          10.2 / 10.2
  CUDA Capability Major/Minor version number:    7.5

 3. Build TensorRT OSS
git clone -b release/7.0 https://github.com/nvidia/TensorRT
cd TensorRT/
git submodule update --init --recursive
export TRT_SOURCE=`pwd`
cd $TRT_SOURCE
mkdir -p build && cd build

Make sure your GPU_ARCHS from step 2 is in TensorRT OSS CMakeLists.txt. If
GPU_ARCHS is not in TensorRT OSS CMakeLists.txt, add -DGPU_ARCHS=<VER> as
below, where <VER> represents GPU_ARCHS from step 2.

/usr/local/bin/cmake .. -DGPU_ARCHS=xy  -DTRT_LIB_DIR=/usr/lib/aarch64-
linux-gnu/ -DCMAKE_C_COMPILER=/usr/bin/gcc -DTRT_BIN_DIR=`pwd`/out
make nvinfer_plugin -j$(nproc)

After building ends successfully, libnvinfer_plugin.so* will be generated under
`pwd`/out/.

 4. Replace the original "libnvinfer_plugin.so*"
sudo mv /usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.7.x.y ${HOME}/
libnvinfer_plugin.so.7.x.y.bak   // backup original libnvinfer_plugin.so.x.y
sudo cp $TRT_SOURCE/`pwd`/out/libnvinfer_plugin.so.7.m.n  /usr/lib/x86_64-
linux-gnu/libnvinfer_plugin.so.7.x.y
sudo ldconfig

TensorRT OSS on Jetson (ARM64)

 1. Install Cmake (>=3.13)

TensorRT OSS requires cmake >= v3.13, while the default cmake on Jetson/
UBuntu 18.04 is cmake 3.10.2.

Upgrade TensorRT OSS using:
sudo apt remove --purge --auto-remove cmake
wget https://github.com/Kitware/CMake/releases/download/v3.13.5/
cmake-3.13.5.tar.gz
tar xvf cmake-3.13.5.tar.gz
cd cmake-3.13.5/
./configure
make -j$(nproc)
sudo make install
sudo ln -s /usr/local/bin/cmake /usr/bin/cmake

 2. Get GPU Arch based on your platform. The GPU_ARCHS for different Jetson
platform are given in the following table.

Jetson Platform GPU_ARCHS

Nano/Tx1 53

Tx2 62
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AGX Xavier/Xavier NX 72

 3. Build TensorRT OSS
git clone -b release/7.0 https://github.com/nvidia/TensorRT
cd TensorRT/
git submodule update --init --recursive
export TRT_SOURCE=`pwd`
cd $TRT_SOURCE
mkdir -p build && cd build

The -DGPU_ARCHS=72 below is for Xavier or NX, for other Jetson platform,
please change "72" referring to "GPU_ARCH" from step 2.

/usr/local/bin/cmake .. -DGPU_ARCHS=72  -DTRT_LIB_DIR=/usr/lib/aarch64-
linux-gnu/ -DCMAKE_C_COMPILER=/usr/bin/gcc -DTRT_BIN_DIR=`pwd`/out
make nvinfer_plugin -j$(nproc)

After building ends successfully, libnvinfer_plugin.so* will be generated under
‘pwd’/out/.

 4. Replace "libnvinfer_plugin.so*" with the newly generated.
sudo mv /usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.7.x.y ${HOME}/
libnvinfer_plugin.so.7.x.y.bak   // backup original libnvinfer_plugin.so.x.y
sudo cp `pwd`/out/libnvinfer_plugin.so.7.m.n  /usr/lib/aarch64-linux-gnu/
libnvinfer_plugin.so.7.x.y
sudo ldconfig

13.2. Generating an engine using tlt-converter
Setup and Execution

This is part of option 2 from the DeepStream deployment table above. The tlt-
converter is a tool that is provided with the Transfer Learning Toolkit to facilitate the
deployment of TLT trained models on TensorRT and/or Deepstream. For deployment
platforms with an x86 based CPU and discrete GPU's, the tlt-converter is distributed
within the TLT docker. Therefore, it is suggested to use the docker to generate the
engine. However, this requires that the user adhere to the same minor version of
TensorRT as distributed with the docker. The TLT docker includes TensorRT version
5.1 for JetPack 4.2.2 and TensorRT version 6.0.1 for JetPack 4.2.3 / 4.3. In order to use
the engine with a different minor version of TensorRT, copy the converter from /opt/
nvidia/tools/tlt-converter to the target machine and follow the instructions for
x86 to run it and generate a TensorRT engine.

Instructions for x86

 1. Copy /opt/nvidia/tools/tlt-converter to the target machine.
 2. Install TensorRT 7.0+ for the respective target machine from here.
 3. If you are deploying FasterRCNN, SSD, DSSD, YOLOv3, RetinaNet, or MaskRCNN

model, you need to build TensorRT Open source software on the machine. If you are
using DetectNet_v2 or image classification, you can skip this step. Instructions to
build TensorRT OSS on x86 can be found in TensorRT OSS on x86 section above or in
this GitHub repo.

https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
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 4. Run tlt-converter using the sample command below and generate the engine.

Instructions for Jetson

For the Jetson platform, the tlt-converter is available to download in the dev zone
here. Once the tlt-converter is downloaded, please follow the instructions below to
generate a TensorRT engine.

 1. Unzip tlt-converter-trt7.1.zip on the target machine.
 2. Install the open ssl package using the command:

sudo apt-get install libssl-dev
 3. Export the following environment variables:

$ export TRT_LIB_PATH=”/usr/lib/aarch64-linux-gnu”
$ export TRT_INC_PATH=”/usr/include/aarch64-linux-gnu”

 4. For Jetson devices, TensorRT 7.1 comes pre-installed with https://
developer.nvidia.com/embedded/jetpack. If you are using older JetPack, upgrade to
JetPack 4.4.

 5. If you are deploying FasterRCNN, SSD, DSSD, YOLOv3, or RetinaNet model, you
need to build TensorRT Open source software on the machine. If you are using
DetectNet_v2 or image classification, you can skip this step. Instructions to build
TensorRT OSS on Jetson can be found in TensorRT OSS on Jetson (ARM64) section
above or in this GitHub repo.

 6. Run the tlt-converter using the sample command below and generate the
engine.

Make sure to follow the output node names as mentioned in Exporting the model.

Using the tlt-converter

tlt-converter [-h] -k <encryption_key> 
              -d <input_dimensions>
              -o <comma separated output nodes>
              [-c <path to calibration cache file>]
              [-e <path to output engine>]
              [-b <calibration batch size>] 
              [-m <maximum batch size of the TRT engine>]
              [-t <engine datatype>]
              [-w <maximum workspace size of the TRT Engine>] 
              [-i <input dimension ordering>]
              input_file

Required arguments:

‣ input_file: Path to the model exported using tlt-export.
‣ -k: The API key used to configure the ngc cli to download the models.
‣ -d: Comma-separated list of input dimensions that should match the dimensions

used for tlt-export. Unlike tlt-export this cannot be inferred from calibration
data.

‣ -o: Comma-separated list of output blob names that should match the output
configuration used for tlt-export.

‣ For classification use: predictions/Softmax.

https://developer.nvidia.com/tlt-converter-trt71
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
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‣ For DetectNet_v2: output_bbox/BiasAdd,output_cov/Sigmoid
‣ For FasterRCNN: dense_class_td/Softmax,dense_regress_td/BiasAdd, proposal
‣ For SSD, DSSD, RetinaNet: NMS
‣ For YOLOv3: BatchedNMS
‣ For MaskRCNN: generate_detections, mask_head/mask_fcn_logits/BiasAdd

Optional arguments:

‣ -e: Path to save the engine to. (default: ./saved.engine)
‣ -t: Desired engine data type, generates calibration cache if in INT8 mode. The

default value is fp32.The options are {fp32, fp16, int8}
‣ -w: Maximum workspace size for the TensorRT engine. The default value is  1<<30.
‣ -i: Input dimension ordering, all other tlt commands use NCHW. The default value

is nchw. The options are {nchw, nhwc, nc}.

INT8 Mode Arguments:

‣ -c: Path to calibration cache file, only used in INT8 mode. The default value is ./
cal.bin.

‣ -b: Batch size used during the tlt-export step for INT8 calibration cache generation.
(default: 8).

‣ -m: Maximum batch size of TensorRT engine. The default value is 16.

Sample output log

Sample log for exporting a resnet10 detectnet_v2 model.

Here's a sample:

export API_KEY=<NGC API key used to download the original model>
export OUTPUT_NODES=output_bbox/BiasAdd,output_cov/Sigmoid
export INPUT_DIMS=3,384,124
export D_TYPE=fp32
export ENGINE_PATH=resnet10_kitti_multiclass_v1.engine
export MODEL_PATH=resnet10_kitti_multiclass_v1.etlt

tlt-converter -k $API_KEY \
              -o $OUTPUT_NODES \
              -d $INPUT_DIMS \
              -e $ENGINE_PATH \
              $MODEL_PATH
 
[INFO] UFFParser: parsing input_1
[INFO] UFFParser: parsing conv1/kernel
[INFO] UFFParser: parsing conv1/convolution
[INFO] UFFParser: parsing conv1/bias
[INFO] UFFParser: parsing conv1/BiasAdd
[INFO] UFFParser: parsing bn_conv1/moving_variance
..
..
..
[INFO] Tactic 4 scratch requested: 1908801536, available: 16
[INFO] Tactic 5 scratch requested: 55567168, available: 16
[INFO] --------------- Chose 1 (0)
[INFO] Formats and tactics selection completed in 5.0141 seconds.
[INFO] After reformat layers: 16 layers
[INFO] Block size 490733568
[INFO] Block size 122683392
[INFO] Block size 122683392
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[INFO] Block size 30670848
[INFO] Block size 16
[INFO] Total Activation Memory: 766771216
[INFO] Data initialization and engine generation completed in 0.0412826 seconds

13.3. Integrating the model to DeepStream
There are 2 options to integrate models from TLT with DeepStream:

‣ Option 1: Integrate the model (.etlt) with the encrypted key directly in the
DeepStream app. The model file is generated by tlt-export.

‣ Option 2: Generate a device specific optimized TensorRT engine, using  tlt-
converter . The TensorRT engine file can also be ingested by DeepStream.

As shown in the lower half of the table, for models such as YOLOv3, FasterRCNN,
SSD, DSSD, RetinaNet, and MaskRCNN, you will need to build TensorRT Open source
plugins and custom bounding box parsing. The instructions are provided below in the
TensorRT OSS section above and the required code can be found in this GitHub repo.

In order to integrate the models with DeepStream, you need the following:

 1. Download  and install DeepStream SDK. The installation instructions for
DeepStream are provided in  DeepStream development guide .

 2. An exported .etlt model file and optional calibration cache for INT8 precision.
 3. TensorRT 7+ OSS Plugins  (Required for FasterRCNN, SSD, DSSD, YOLOv3,

RetinaNet, MaskRCNN).
 4. A labels.txt file containing the labels for classes in the order in which the

networks produces outputs.

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://developer.nvidia.com/deepstream-download
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
https://github.com/NVIDIA/TensorRT/tree/release/7.0
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 5. A sample config_infer_*.txt file to configure the nvinfer element in
DeepStream. The nvinfer element handles everything related to TensorRT
optimization and engine creation in DeepStream.

DeepStream SDK ships with an end-to-end reference application which is fully
configurable. Users can configure input sources, inference model and output sinks.
The app requires a primary object detection model, followed by an optional secondary
classification model. The reference application is installed as deepstream-app. The
graphic below shows the architecture of the reference application.

There are typically 2 or more configuration files that are used with this app. In the
install directory, the config files are located in ‘samples/configs/deepstream-app’ or
‘sample/configs/tlt_pretrained_models’. The main config file configures all the
high level parameters in the pipeline above. This would set input source and resolution,
number of inferences, tracker and output sinks. The other supporting config files are for
each individual inference engine. The inference specific config files are used to specify
models, inference resolution, batch size, number of classes and other customization.
The main config file will call all the supporting config files. Here are some config files in
‘samples/configs/deepstream-app’ for your reference.

source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt -
Main config file

config_infer_primary.txt - Supporting config file for primary detector in the
pipeline above

config_infer_secondary_*.txt - Supporting config file for secondary classifier in
the pipeline above

The deepstream-app will only work with the main config file. This file will
most likely remain the same for all models and can be used directly from the
DeepStream SDK will little to no change. User will only have to modify or create
config_infer_primary.txt and config_infer_secondary_*.txt

13.3.1. Integrating a Classification model
See Exporting the model for more details on how to export a TLT model. Once the model
has been generated two extra files are required:

 1. Label file
 2. DeepStream configuration file
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Label file

The label file is a text file, containing the names of the classes that the TLT model is
trained to classify against. The order in which the classes are listed must match the
order in which the model predicts the output. This order may be deduced from the
classmap.json file that is generated by TLT. This file is a simple dictionary containing
the 'class_name' to 'index map'. For example, in the sample classification sample
notebook file included with the tlt-docker, the classmap.json file generated for pascal
voc would look like this:
{"sheep": 16,"horse": 12,"bicycle": 1, "aeroplane": 0, "cow": 9,
 "sofa": 17, "bus": 5, "dog": 11, "cat": 7, "person": 14, "train": 18,
 "diningtable": 10, "bottle": 4, "car": 6, "pottedplant": 15,
 "tvmonitor": 19, "chair": 8, "bird": 2, "boat": 3, "motorbike": 13}

The 0th index corresponds to aeroplane, the 1st index corresponds to bicycle,
etc. up to 19 which corresponds to tvmonitor. Here is a sample label.txt file,
classification_labels.txt, arranged in the order of index.

aeroplane
bicycle
bird
boat
bottle
bus
..
..
tvmonitor

DeepStream configuration file

A typical use case for video analytic is first to do an object detection and then crop the
detected object and send it further for classification. This is supported by ‘deepstream-
app’ and the app architecture can be seen above. For example, to classify models of cars
on the road, first you will need to detect all the cars in a frame. Once you do detection,
you do classification on the cropped image of the car. So in the sample DeepStream app,
the classifier is configured as a secondary inference engine after the primary detection. If
configured appropriately, deepstream-app will automatically crop the detected image
and send the frame to the secondary classifier. The config_infer_secondary_*.txt
is used to configure the classification model.

Option 1: Integrate the model (.etlt) directly in the DeepStream app. For this option,
users will need to add the following parameters in the configuration file. The ‘int8-
calib-file’ is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
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int8-calib-file=<Calibration cache file>

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. Detail instructions are provided in
the Generating an engine using tlt-converter section.

Step 2: Once the engine file is generated successfully, modify the following parameters to
use this engine with DeepStream.
model-engine-file=<PATH to generated TensorRT engine>

All other parameters are common between the 2 approaches. Add the label file
generated above using:

labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .
[property]
gpu-id=0
# preprocessing parameters: These are the same for all classification models
 generated by TLT.
net-scale-factor=1.0
offsets=123.67;116.28;103.53
model-color-format=1
batch-size=30
 
# Model specific paths. These need to be updated for every classification model.
int8-calib-file=<Path to optional INT8 calibration cache>
labelfile-path=<Path to classification_labels.txt>
tlt-encoded-model=<Path to Classification TLT model>
tlt-model-key=<Key to decrypt model>
input-dims=c;h;w;0 # where c = number of channels, h = height of the model
 input, w = width of model input, 0: implies CHW format.
uff-input-blob-name=input_1
output-blob-names=predictions/Softmax #output node name for classification

## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# process-mode: 2 - inferences on crops from primary detector, 1 - inferences on
 whole frame
process-mode=2 
interval=0
network-type=1 # defines that the model is a classifier.
gie-unique-id=1
classifier-threshold=0.2

13.3.2. Integrating a DetectNet_v2 model
See Exporting the model for more details on how to export a TLT model. Once the model
has been generated two extra files are required:

 1. Label file
 2. DS configuration file

Label file

The label file is a text file, containing the names of the classes that the DetectNet_v2
model is trained to detect. The order in which the classes are listed here must match
the order in which the model predicts the output. This order is derived from the order

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
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the objects are instantiated in the cost_function_config field of the DetectNet_v2
experiment config file. Here's an example, of the DetectNet_v2 sample notebook file
included with the TLT docker, the cost_function_config parameter looks like this:

cost_function_config {
  target_classes {
    name: "sheep"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "bottle"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  target_classes {
    name: "horse"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  ..
  ..
  target_classes {
    name: "boat"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
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  }
  target_classes {
    name: "car"
    class_weight: 1.0
    coverage_foreground_weight: 0.05
    objectives {
      name: "cov"
      initial_weight: 1.0
      weight_target: 1.0
    }
    objectives {
      name: "bbox"
      initial_weight: 10.0
      weight_target: 1.0
    }
  }
  enable_autoweighting: False
  max_objective_weight: 0.9999
  min_objective_weight: 0.0001
}

Here's an example of the corresponding, detectnet_v2_labels.txt. The order in the
labels.txt should match the order in the cost_function_config:

sheep
bottle
horse
..
..
boat
car

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model.

Option 1: Integrate the model (.etlt) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The ‘tlt-encoded-model’ parameter points to the exported model (.etlt) from TLT.
The tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.
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Step 1: Generate TensorRT engine using tlt-converter. Detail instructions are provided in
the Generating an engine using tlt-converter section above.

Step 2: Once the engine file is generated successfully, modify the following parameters to
use this engine with DeepStream.
model-engine-file=<PATH to generated TensorRT engine>

All other parameters are common between the 2 approaches. Add the label file
generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .

[property]
gpu-id=0
# preprocessing parameters.
net-scale-factor=0.0039215697906911373
model-color-format=0

# model paths.
int8-calib-file=<Path to optional INT8 calibration cache>
labelfile-path=<Path to detectNet_v2_labels.txt>
tlt-encoded-model=<Path to DetectNet_v2 TLT model>
tlt-model-key=<Key to decrypt the model>
input-dims=c;h;w;0 # where c = number of channels, h = height of the model
 input, w = width of model input, 0: implies CHW format.
uff-input-blob-name=input_1
batch-size=4 
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
output-blob-names=output_cov/Sigmoid;output_bbox/BiasAdd
#enable_dbscan=0

[class-attrs-all]
threshold=0.2
group-threshold=1
## Set eps=0.7 and minBoxes for enable-dbscan=1
eps=0.2
#minBoxes=3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

13.3.3.  Integrating an SSD model
To run an SSD model in DeepStream, you need a label file and a DeepStream
configuration file. In addition, you need to compile the TensorRT 7+ Open source
software and SSD bounding box parser for DeepStream.

A DeepStream sample with documentation on how to run inference using the trained
SSD models from TLT is provided on github at: https://github.com/NVIDIA-AI-IOT/
deepstream_tlt_apps.

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
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Prerequisites for SSD model

 1. SSD requires batchTilePlugin. This plugin is available in the TensorRT open source
repo, but not in TensorRT 7.0. Detailed instructions to build TensorRT OSS can be
found in TensorRT Open Source Software (OSS).

 2. SSD requires custom bounding box parsers that are not built-in inside the
DeepStream SDK. The source code to build custom bounding box parsers for SSD
is available in: https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps. The
following instructions can be used to build bounding box parser:

Step1: Install  git-lfs  (git >= 1.8.2)

git-lfs are needed to support downloading model files >5MB.

curl -s https://packagecloud.io/install/repositories/github/git-lfs/
script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

Step 2: Download Source Code with HTTPS
git clone -b release/tlt2.0 
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

Step 3: Build
export DS_SRC_PATH=/opt/nvidia/deepstream/deepstream-5.0    
// or Path for DS installation
export CUDA_VER=10.2         // CUDA version, e.g. 10.2
cd nvdsinfer_customparser_ssd_tlt
make

This generates libnvds_infercustomparser_ssd_tlt.so in the directory.

Label file

The label file is a text file, containing the names of the classes that the SSD model is
trained to detect. The order in which the classes are listed here must match the order in
which the model predicts the output. This order is derived from the order the objects
are instantiated in the dataset_config field of the SSD experiment config file. For
example, if the dataset_config is:
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/tfrecords/pascal_voc/
pascal_voc*"
    image_directory_path: "/workspace/tlt-experiments/data/VOCdevkit/VOC2012"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "bicycle"
    value: "bicycle"
  }
  validation_fold: 0

https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/git-lfs/git-lfs/wiki/Installation
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}

Here's an example of the corresponding classification_lables.txt file:
car
person
bicycle

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model as
well as the custom parser.

Option 1: Integrate the model (.etlt) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The
tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. See the Generating an engine
using tlt-converter for detailed instructions.

Step 2: Once the engine file is generated successfully, modify the following parameters
to use this engine with DeepStream. model-engine-file=<PATH to generated
TensorRT engine>

All other parameters are common between the 2 approaches. Add the label file
generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .
[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
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labelfile-path=<Path to ssd_labels.txt>
tlt-encoded-model=<Path to SSD TLT model>
tlt-model-key=<Key to decrypt model>
uff-input-dims=3;384;1248;0
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomSSDTLT
custom-lib-path=<Path to libnvds_infercustomparser_ssd_tlt.so>

[class-attrs-all]
threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

13.3.4. Integrating a FasterRCNN model
To run a FasterRCNN model in DeepStream, you need a label file and a DeepStream
configuration file. In addition, you need to compile the TensorRT 7+ Open source
software and FasterRCNN bounding box parser for DeepStream.

A DeepStream sample with documentation on how to run inference using the trained
FasterRCNN models from TLT is provided on github at: https://github.com/NVIDIA-AI-
IOT/deepstream_tlt_apps.

Prerequisite for FasterRCNN model

 1. FasterRCNN requires the cropAndResizePlugin and the proposalPlugin. This plugin
is available in the TensorRT open source repo, but not in TensorRT 7.0. Detailed
instructions to build TensorRT OSS can be found in TensorRT Open Source Software
(OSS).

 2. FasterRCNN requires custom bounding box parsers that are not built-in
inside the DeepStream SDK. The source code to build custom bounding box
parsers for FasterRCNN is available in https://github.com/NVIDIA-AI-IOT/
deepstream_tlt_apps. The following instructions can be used to build bounding box
parser:

Step1: Install  git-lfs  (git >= 1.8.2)

curl -s https://packagecloud.io/install/repositories/github/git-lfs/
script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/cropAndResizePlugin
https://github.com/NVIDIA/TensorRT/tree/release/5.1/plugin/proposalPlugin
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/git-lfs/git-lfs/wiki/Installation
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Step 2: Download Source Code with SSH or HTTPS
git clone -b release/tlt2.0 
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

Step 3: Build
export DS_SRC_PATH=/opt/nvidia/deepstream/deepstream-5.0    
// or Path for DS installation
export CUDA_VER=10.2         // CUDA version, e.g. 10.2
cd nvdsinfer_customparser_frcnn_tlt
make

This generates libnvds_infercustomparser_frcnn_tlt.so in the directory.

Label file

The label file is a text file, containing the names of the classes that the FasterRCNN
model is trained to detect. The order in which the classes are listed here must match
the order in which the model predicts the output. This order is derived from the order
the objects are instantiated in the target_class_mapping field of the FasterRCNN
experiment specification file. During the training, TLT FasterRCNN will make all
the class names in lower case and sort them in alphabetical order. For example, if the
target_class_mapping label file is:
target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "bicycle"
    value: "bicycle"
  }

The actual class name list is bicycle, car, person. The example of the
corresponding label_file_frcnn.txt file is:
bicycle
car
person

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model as
well as the custom parser.
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Option 1: Integrate the model (.etlt) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The
tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. See the Generating an engine
using tlt-converter section above for detailed instructions.

Step 2: Once the engine file is generated successfully, modify the following parameters to
use this engine with DeepStream.

model-engine-file=<PATH to generated TensorRT engine>

All other parameters are common between the 2 approaches. To use the custom
bounding box parser instead of the default parsers in DeepStream, modify the following
parameters in [property] section of primary infer configuration file:
parse-bbox-func-name=NvDsInferParseCustomFrcnnUff
custom-lib-path=<PATH to libnvds_infercustomparser_frcnn_tlt.so>

Add the label file generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .

Here's a sample config file, config_infer_primary.txt:

[property]
gpu-id=0
net-scale-factor=1.0
offsets=<image mean values as in the training spec file> # e.g.:
 103.939;116.779;123.68
model-color-format=1
labelfile-path=<Path to frcnn_labels.txt>
tlt-encoded-model=<Path to FasterRCNN model>
tlt-model-key=<Key to decrypt the model>

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
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uff-input-dims=<c;h;w;0> # 3;272;480;0. Where c = number of channels, h = height
 of the model input, w = width of model input, 0: implies CHW format
uff-input-blob-name=<input_blob_name> # e.g.: input_1
batch-size=<batch size> e.g.: 1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=<number of classes to detect(including background)> # 
e.g.: 5
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
output-blob-names=<output_blob_names> e.g.: 
dense_class_td/Softmax,dense_regress_td/BiasAdd, proposal
parse-bbox-func-name=NvDsInferParseCustomFrcnnTLT
custom-lib-path=<PATH to libnvds_infercustomparser_frcnn_tlt.so>

[class-attrs-all]
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

13.3.5. Integrating a YOLOv3 model
To run a YOLOv3 model in DeepStream, you need a label file and a DeepStream
configuration file. In addition, you need to compile the TensorRT 7+ Open source
software and YOLOv3 bounding box parser for DeepStream.

A DeepStream sample with documentation on how to run inference using the trained
YOLOv3 models from TLT is provided on github at: https://github.com/NVIDIA-AI-
IOT/deepstream_tlt_apps.

Prerequisite for YOLOv3 model

 1. YOLOv3 requires batchTilePlugin, resizeNearestPlugin and batchedNMSPlugin.
This plugin is available in the TensorRT open source repo, but not in TensorRT 7.0.
Detailed instructions to build TensorRT OSS can be found in TensorRT Open Source
Software (OSS).

 2. YOLOv3 requires custom bounding box parsers that are not built-in inside the
DeepStream SDK. The source code to build custom bounding box parsers for
YOLOv3 is available in https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps.
The following instructions can be used to build bounding box parser:

Step1: Install  git-lfs  (git >= 1.8.2)

git-lfs are needed to support downloading model files >5MB.

curl -s 
https://packagecloud.io/install/repositories/github/git-lfs/
script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

Step 2: Download Source Code with HTTPS
git clone -b release/tlt2.0 

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/git-lfs/git-lfs/wiki/Installation
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https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

Step 3: Build
export DS_SRC_PATH=/opt/nvidia/deepstream/deepstream-5.0    
// or Path for DS installation
export CUDA_VER=10.2         // CUDA version, e.g. 10.2
cd nvdsinfer_customparser_yolov3_tlt
make 

This will generate libnvds_infercustomparser_yolov3_tlt.so in the
directory.

Label file

The label file is a text file, containing the names of the classes that the YOLOv3 model
is trained to detect. The order in which the classes are listed here must match the order
in which the model predicts the output. This order is derived from the order the objects
are instantiated in the dataset_config field of the YOLOv3 experiment config file. For
example, if the dataset_config is:
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/tfrecords/pascal_voc/
pascal_voc*"
    image_directory_path: "/workspace/tlt-experiments/data/VOCdevkit/VOC2012"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "bicycle"
    value: "bicycle"
  }
  validation_fold: 0
}

Here's an example of the corresponding yolov3_labels.txt file:

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model as
well as the custom parser.
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Option 1: Integrate the model (.etlt) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The
tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. See the Generating an engine
using tlt-converter section above for detailed instructions.

Step 2: Once the engine file is generated successfully, modify the following parameters to
use this engine with DeepStream.

model-engine-file=<PATH to generated TensorRT engine>

All other parameters are common between the 2 approaches. To use the custom
bounding box parser instead of the default parsers in DeepStream, modify the following
parameters in [property] section of primary infer configuration file:
parse-bbox-func-name=NvDsInferParseCustomYOLO3TLT
custom-lib-path=<PATH to libnvds_infercustomparser_yolov3_tlt.so>

Add the label file generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .

Here's a sample config file, pgie_yolov3_config.txt:
[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1
labelfile-path=<Path to yolov3_labels.txt>
tlt-encoded-model=<Path to YOLOV3 etlt model>
tlt-model-key=<Key to decrypt model>
uff-input-dims=3;384;1248;0
uff-input-blob-name=Input
batch-size=1

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#


Deploying to DeepStream

www.nvidia.com
NVIDIA Transfer Learning Toolkit for Intelligent Video
Analytics

DU-09243-003 _v2.0 | 203

## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomYOLOV3TLT
custom-lib-path=<Path to libnvds_infercustomparser_yolov3_tlt.so>

[class-attrs-all]
threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

13.3.6. Integrating a DSSD model
To run a DSSD model in DeepStream, you need a label file and a DeepStream
configuration file. In addition, you need to compile the TensorRT 7+ Open source
software and DSSD bounding box parser for DeepStream.

A DeepStream sample with documentation on how to run inference using the trained
DSSD models from TLT is provided on github at: https://github.com/NVIDIA-AI-IOT/
deepstream_tlt_apps.

Prerequisite for DSSD model

 1. DSSD requires batchTilePlugin and NMS_TRT. This plugin is available in the
TensorRT open source repo, but not in TensorRT 7.0. Detailed instructions to build
TensorRT OSS can be found in TensorRT Open Source Software (OSS).

 2. DSSD requires custom bounding box parsers that are not built-in inside the
DeepStream SDK. The source code to build custom bounding box parsers for
DSSD is available in https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps. The
following instructions can be used to build bounding box parser:

Step1: Install  git-lfs  (git >= 1.8.2)

git-lfs are needed to support downloading model files >5MB.

curl -s 
https://packagecloud.io/install/repositories/github/git-lfs/
script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

Step 2: Download Source Code with HTTPS
git clone -b release/tlt2.0 
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

Step 3: Build
export DS_SRC_PATH=/opt/nvidia/deepstream/deepstream-5.0    
// or Path for DS installation
export CUDA_VER=10.2         // CUDA version, e.g. 10.2

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/git-lfs/git-lfs/wiki/Installation
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cd nvdsinfer_customparser_dssd_tlt
make 

This will generate libnvds_infercustomparser_dssd_tlt.so in the directory.

Label file

The label file is a text file, containing the names of the classes that the DSSD model is
trained to detect. The order in which the classes are listed here must match the order in
which the model predicts the output. This order is derived from the order the objects
are instantiated in the dataset_config field of the DSSD experiment config file. For
example, if the dataset_config is:
dataset_config {
  data_sources: {
    tfrecords_path: "/workspace/tlt-experiments/tfrecords/pascal_voc/
pascal_voc*"
    image_directory_path: "/workspace/tlt-experiments/data/VOCdevkit/VOC2012"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "bicycle"
    value: "bicycle"
  }
  validation_fold: 0
}

Here's an example of the corresponding dssd_labels.txt file:
car
person
bicycle

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model as
well as the custom parser.

Option 1: Integrate the model (.etlt) directly in the DeepStream app.
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For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The
tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. See the Generating an engine
using tlt-converter section above for detailed instructions.

Step 2: Once the engine file is generated successfully, modify the following parameters
to use this engine with DeepStream. model-engine-file=<PATH to generated
TensorRT engine>

All other parameters are common between the 2 approaches. To use the custom
bounding box parser instead of the default parsers in DeepStream, modify the following
parameters in [property] section of primary infer configuration file:
parse-bbox-func-name=NvDsInferParseCustomDSSDTLT
custom-lib-path=<PATH to libnvds_infercustomparser_dssd_tlt.so>

Add the label file generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to  DeepStream Development Guide .
[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1
labelfile-path=<Path to ssd_labels.txt>
tlt-encoded-model=<Path to DSSD TLT model>
tlt-model-key=<Key to decrypt model>
uff-input-dims=3;384;1248;0
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomSSDTLT
custom-lib-path=<Path to libnvds_infercustomparser_dssd_tlt.so>

[class-attrs-all]
threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
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13.3.7. Integrating a RetinaNet model
To run a RetinaNet model in DeepStream, you need a label file and a DeepStream
configuration file. In addition, you need to compile the TensorRT 7+ Open source
software and RetinaNet bounding box parser for DeepStream.

A DeepStream sample with documentation on how to run inference using the trained
DSSD models from TLT is provided on github at: https://github.com/NVIDIA-AI-IOT/
deepstream_tlt_apps.

Prerequisite for RetinaNet model

 1. RetinaNet requires batchTilePlugin and NMS_TRT. This plugin is available in the
TensorRT open source repo, but not in TensorRT 7.0. Detailed instructions to build
TensorRT OSS can be found in TensorRT Open Source Software (OSS).

 2. RetinaNet requires custom bounding box parsers that are not built-in inside the
DeepStream SDK. The source code to build custom bounding box parsers for
DSSD is available in https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps. The
following instructions can be used to build bounding box parser:

Step1: Install git-lfs (git >= 1.8.2)

git-lfs are needed to support downloading model files >5MB.

curl -s 
https://packagecloud.io/install/repositories/github/git-lfs/
script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install

Step 2: Download Source Code with HTTPS
git clone -b release/tlt2.0 
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

Step 3: Build
export DS_SRC_PATH=/opt/nvidia/deepstream/deepstream-5.0    
// or Path for DS installation
export CUDA_VER=10.2         // CUDA version, e.g. 10.2
cd nvdsinfer_customparser_retinanet_tlt
make 

This will generate libnvds_infercustomparser_retinanet_tlt.so in the
directory.

Label file

The label file is a text file, containing the names of the classes that the RetinaNet model is
trained to detect. The order in which the classes are listed here must match the order in
which the model predicts the output. This order is derived from the order the objects are
instantiated in the dataset_config field of the RetinaNet experiment config file. For
example, if the dataset_config is:
dataset_config {
  data_sources: {

https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps
https://github.com/git-lfs/git-lfs/wiki/Installation
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    tfrecords_path: "/workspace/tlt-experiments/tfrecords/pascal_voc/
pascal_voc*"
    image_directory_path: "/workspace/tlt-experiments/data/VOCdevkit/VOC2012"
  }
  image_extension: "jpg"
  target_class_mapping {
    key: "car"
    value: "car"
  }
  target_class_mapping {
    key: "person"
    value: "person"
  }
  target_class_mapping {
    key: "bicycle"
    value: "bicycle"
  }
  validation_fold: 0
}

Here's an example of the corresponding retinanet_labels.txt file:
car
person
bicycle

DeepStream configuration file

The detection model is typically used as a primary inference engine. It can also be used
as a secondary inference engine. To run this model in the sample deepstream-app, you
must modify the existing config_infer_primary.txt file to point to this model as
well as the custom parser.

Option 1: Integrate the model (.etlt) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.
The int8-calib-file is only required for INT8 precision.
tlt-encoded-model=<TLT exported .etlt>
tlt-model-key=<Model export key>
int8-calib-file=<Calibration cache file>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The
tlt-model-key is the encryption key used during model export.

Option 2: Integrate TensorRT engine file with DeepStream app.

Step 1: Generate TensorRT engine using tlt-converter. See the Generating an engine
using tlt-converter section above for detailed instructions.



Deploying to DeepStream

www.nvidia.com
NVIDIA Transfer Learning Toolkit for Intelligent Video
Analytics

DU-09243-003 _v2.0 | 208

Step 2: Once the engine file is generated successfully, modify the following parameters to
use this engine with DeepStream.
model-engine-file=<PATH to generated TensorRT engine>

All other parameters are common between the 2 approaches. To use the custom
bounding box parser instead of the default parsers in DeepStream, modify the following
parameters in [property] section of primary infer configuration file:
parse-bbox-func-name=NvDsInferParseCustomSSDTLT
custom-lib-path=<PATH to libnvds_infercustomparser_retinanet_tlt.so>

Add the label file generated above using:
labelfile-path=<Classification labels>

For all the options, see the configuration file below. To learn about what all the
parameters are used for, refer to DeepStream Development Guide.
[property]
gpu-id=0
net-scale-factor=1.0
offsets=103.939;116.779;123.68
model-color-format=1
labelfile-path=<Path to retinanet_labels.txt>
tlt-encoded-model=<Path to RetinaNet TLT model>
tlt-model-key=<Key to decrypt model>
uff-input-dims=3;384;1248;0
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=3
interval=0
gie-unique-id=1
is-classifier=0
#network-type=0
output-blob-names=BatchedNMS
parse-bbox-func-name=NvDsInferParseCustomYOLOV3Uff
custom-lib-path=<Path to libnvds_infercustomparser_retinanet_tlt.so>

[class-attrs-all]
threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0

13.3.8. Integrating Purpose-built models
Integrating purpose-built models is very straightforward in DeepStream. The
configuration file and label file for these models are provided in the SDK. These files can
be used with the provided pruned model as well as your own trained model. For the
provided pruned models, the config and label file should work out of the box. For your
custom model, minor modification might be required.

https://docs.nvidia.com/metropolis/deepstream/dev-guide/DeepStream%20Development%20Guide/deepstream_app_config.3.1.html#
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Download and install DeepStream SDK. The installation instructions for DeepStream
are provided in DeepStream development guide. The config files for the purpose-built
models are located in:
/opt/nvidia/deepstream/deepstream-5:0/samples/configs/tlt_pretrained_models

‘/opt/nvidia/deepstream’ is the default DeepStream installation directory. This
path will be different if you are installing in a different directory.

There are two sets of config files: main config files and inference config files. Main config
file can call one or multiple inference config files depending on number of inferences.
The table below shows the models being deployed by each config file.

Model(s) Main DeepStream
configuration

Inference
configuration(s)

Label file(s)

TrafficCamNet deepstream
_app _source1
_trafficcamnet.txt

config_infer _primary
_trafficcamnet.txt

labels_trafficnet.txt

PeopleNet deepstream_app
_source1 _peoplenet.txt

config_infer _primaryn
_peoplenet.txt

labels_peoplenet.txt

DashCamNetVehicleMake
NetVechicleTypeNet

deepstream_app_source1
_dashcamnet
_vehiclemakenet
_vehicletypenet.txt

config_infer _primary
_dashcamnet.txt

config_infer _secondary
_vehiclemakenet.txt

config_infer _secondary
_vehicletypenet.txt

labels_dashcamnet.txt

labels_vehiclemakenet.txt

labels_vehicletypenet.txt

FaceDetect-IR deepstream_app
_source1_faceirnet.txt

config_infer _primary
_faceirnet.txt

labels_faceirnet.txt

The main configuration file is to be used with deepstream-app, DeepStream reference
application. In the deepstream-app, the primary detector will detect the objects and
send the cropped frame to secondary classifiers. For more information on DeepStream
reference application, refer to documentation.

The
deepstream_app_source1_dashcamnet_vehiclemakenet_vehicletypenet.txt
configures 3 models: DashCamNet as primary detector, and VehicleMakeNet and
VehicleTypeNet as secondary classifiers. The classifier models are typically used after
initial object detection. The other configuration files use single detection models.

Key Parameters in config_infer_*.txt:
tlt-model-key=<tlt_encode or TLT Key used during model export>
tlt-encoded-model=<Path to TLT model>
labelfile-path=<Path to label file>
int8-calib-file=<Path to optional INT8 calibration cache>
input-dims=<Inference resolution if different than provided>
num-detected-classes=<# of classes if different than default>

Run deepstream-app:
deepstream-app -c <DS config file>

https://developer.nvidia.com/deepstream-download
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html#page/DeepStream%2520Development%2520Guide%2Fdeepstream_app_config.3.1.html%23
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13.3.9. Integrating a MaskRCNN model
Integrating a MaskRCNN model is very straightforward in DeepStream since DS 5.0
can support instance segmentation network type out of the box. The configuration file
and label file for the model are provided in the SDK. These files can be used with the
provided model as well as your own trained model. For the provided MaskRCNN
model, the config and label file should work out of the box. For your custom model,
minor modification might be required.

Download and install DeepStream SDK. The installation instructions for DeepStream
are provided in DeepStream development guide. You need to follow the README
under /opt/nvidia/deepstream/deepstream-5.0/samples/configs/
tlt_pretrained_models to download the model and int8 calibration file. The config
files for the Mask RCNN model are located in:
/opt/nvidia/deepstream/deepstream-5.0/samples/configs/tlt_pretrained_models

/opt/nvidia/deepstreamis the default DeepStream installation directory. This path
will be different if you are installing in a different directory.

deepstream-app config file

deepstream-app config file is used by deepstream-app, see the deepstream-app config
guide for more details, you need to enable the display-mask under osd group to see the
mask visual view:
[osd]
enable=1
gpu-id=0
border-width=3
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
display-mask=1
display-bbox=0
display-text=0

Nvinfer config file

Nvinfer configure file is used in nvinfer plugin, see the Deepstream plugin manual for
more details, following is key parameters to run the MaskRCNN model:
tlt-model-key=<tlt_encode or TLT Key used during model export>
tlt-encoded-model=<Path to TLT model>
parse-bbox-instance-mask-func-name=<post process parser name>
custom-lib-path=<path to post process parser lib>
network-type=3 ## 3 is for instance segmentation network
output-instance-mask=1
labelfile-path=<Path to label file>
int8-calib-file=<Path to optional INT8 calibration cache>
infer-dims=<Inference resolution if different than provided>
num-detected-classes=<# of classes if different than default>

Here's an example:
[property]
gpu-id=0
net-scale-factor=0.017507
offsets=123.675;116.280;103.53
model-color-format=0
tlt-model-key=<tlt_encode or TLT Key used during model export>

https://developer.nvidia.com/deepstream-download
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html#page/DeepStream_Development_Guide/deepstream_app_config.3.1.html%23
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html#page/DeepStream_Development_Guide/deepstream_app_config.3.1.html%23
https://docs.nvidia.com/metropolis/deepstream/dev-guide/index.html
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tlt-encoded-model=<Path to TLT model>
parse-bbox-instance-mask-func-name=<post process parser name>
custom-lib-path=<path to post process parser lib>
network-type=3 ## 3 is for instance segmentation network
labelfile-path=<Path to label file>
int8-calib-file=<Path to optional INT8 calibration cache>
infer-dims=<Inference resolution if different than provided>
num-detected-classes=<# of classes if different than default> 
uff-input-blob-name=Input
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
interval=0
gie-unique-id=1
#no cluster
## 0=Group Rectangles, 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No
 clustering)
## MRCNN supports only cluster-mode=4; Clustering is done by the model itself
cluster-mode=4
output-instance-mask=1

[class-attrs-all]
pre-cluster-threshold=0.8

Label file

If the COCO annotation file has the following in “categories”:
[{'supercategory': 'person', 'id': 1, 'name': 'person'},
 {'supercategory': 'car', 'id': 2, 'name': 'car'}]

Then, the corresponding maskrcnn_labels.txt file is:
BG
person
car

Run deepstream-app:
deepstream-app -c <deepstream-app config file>

Also you can use deepstream-mrcnn-test to run the Mask RCNN model, see the
README under: $DS_TOP/source/apps/sample_apps/deepstream-mrcnn-test/
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