

RN-09353-003 | December 15, 2022
Advance Information | Subject to Change

6.2 Release Notes

DEEPSTREAM SDK 6.2 FOR
NVIDIA DGPU/X86 (NVAIE)

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | ii

RN-09353-003

TABLE OF CONTENTS

1.0 ABOUT THIS RELEASE ... 3
1.1 What’s New ... 3

 DS 6.2 .. 3
1.2 Contents of this Release ... 5
1.3 Documentation in this Release ... 5
1.4 DIFFERENCES WITH DEEPSTREAM 6.1 .. 5

2.0 LIMITATIONS .. 7

3.0 NOTES.. 9
3.1 Applications May Be Deployed in a Docker Container ... 9
3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display 11
3.3 Triton Inference Server In Deepstream.. 12

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 3

1.0 ABOUT THIS RELEASE

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA®
Ampere®, NVIDIA® Hopper®.

1.1 WHAT’S NEW

The following new features are supported in this DeepStream SDK release:

 DS 6.2
 Supports Triton 22.09 and Rivermax v1.11.5. Current release is part of NVAIE

(https://www.nvidia.com/en-us/data-center/products/ai-enterprise/) and supports only
x86/dGPU platforms. Release is through Triton docker:
nvcr.io/nvaie/deepstream-3-0:6.2.0-triton.

 DeepSORT tracker support.
 REST API support to control DeepStream pipeline on-the-fly (Alpha).
 LIDAR support (Alpha).
 Enable Pre-Processing plugin with SGIE.
 Dewarper enhancements to support additional projections.
 Support Google protobuf encoding and decoding message to message brokers (only

Kafka).
 Nvdsxfer plugin implementation (NVLink based).
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled by

exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.2 Release.

 Performance optimizations.
 Improved NVDCF tracker.
 GPU based drawing for text, line, circles, arrow using osd plugin (alpha).

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 4

 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models
from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch:
release/tao3.0_ds6.2ga) integrated into SDK.

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao3.0_ds6.2ga).

 nvdsudpsink plugin optimizations for supporting Mellanox NIC for transmission.
 Improved stability.
 deepstream-dewarper-app now supports following new projections: Fisheye to

Perspective, Fisheye to Fisheye, Fisheye to Cylindrical, Fisheye to Equirectangular,
Fisheye to Panini, Perspective to Equirectangular, Perspective to Panini,
Equirectangular to Cylindrical, Equirectangular to Equirectangular, Equirectangular to
Fisheye, Equirectangular to Panini, Equirectangular to Perspective, Equirectangular to
PushBroom, Equirectangular to Stereographic, Equirectangular to Vertical Radial
Cylindrical.

 New plugins/bins:

● Gst-nvdsxfer plugin transfers data over nvlink across multiple GPU under single
process.

● gst-nvmultiurisrcbin : The bin to integrate nvurisrcbin, and
nvstreammux into a single GstBin. The bin can be configured to act as REST API
server.

 New sample applications:

● DeepStream Server Application: Demonstrates REST API support to control
DeepStream pipeline on-the-fly.

● DeepStream Lidar Inference App: Demonstrates how to setup lidar data reader,
lidar data triton inference and lidar data 3D rendering and file dump pipelines over
DS3D interfaces and custom libs of ds3d::dataloader, ds3d::datafilter
and ds3d::datarender. See more details in the DeepStream Lidar Inference App
section in the NVIDIA DeepStream SDK Developer Guide 6.2 Release.

● DeepStream Can Orientation Sample App: Demonstrates can orientation detection
with CV-based VPI template matching algorithm. VPI template matching is
implemented with DeepStream video template plugin.

● Sample app to demonstrate loading CUDA memory from appsrc in the pipeline.

 Python bindings and samples updates:

● New samples:

1. Deepstream-segmask: demonstrating usage of NvOSD_MaskParams for
segmentation.

2. Deepstream-imagedata-multistream-cupy: demonstrating GPU buffer
access for decoded images via CuPy.

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 5

3. Deepstream-custom-binding-test: demonstrating use of custom user
metadata. This is a sample for the new custom user metadata bindings guide.

● New guides for adding custom bindings including custom user metadata.

 Opensource:

● Triton plugin Gst-nvinferserver
● Dewarper plugin Gst-nvdewarper

1.2 CONTENTS OF THIS RELEASE

This release includes the following:

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK Developer Guide 6.2 Release for
a detailed description of the contents of the DeepStream release package. The Developer
Guide also contains other information to help you get started with DeepStream,
including information about system software and hardware requirements and external
software dependencies that you must install before you use the SDK.

● For detailed information about GStreamer plugins, metadata usage, see the
“DeepStream Plugin Guide” section in the NVIDIA DeepStream SDK Developer Guide
6.2 Release.

● For detailed troubleshooting information and frequently asked questions, see the
“DeepStream Troubleshooting and FAQ Guide” section in the NVIDIA DeepStream
SDK Developer Guide 6.2 Release.

 DeepStream SDK for dGPU Software License Agreement (SLA).
 LICENSE.txt contains the license terms of third-party libraries used.

1.3 DOCUMENTATION IN THIS RELEASE

This release contains the following documentation.

 NVIDIA DeepStream SDK Developer Guide 6.2 Release
 NVIDIA DeepStream SDK API Reference
 NVIDIA DeepStream Python API Reference

1.4 DIFFERENCES WITH DEEPSTREAM 6.1

gstreamer1.0-libav, libav and audioparsers packages are removed in DeepStream
dockers. You may install these packages based on your requirement. While running
DeepStream applications inside dockers, you may see the following warnings:

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 6

WARNING from src_elem: No decoder available for type 'audio/mpeg,
mpegversion=(int)4, framed=(boolean)true, stream-format=(string)raw,
level=(string)2, base-profile=(string)lc, profile=(string)lc,
codec_data=(buffer)119056e500, rate=(int)48000, channels=(int)2'.

Debug info: gsturidecodebin.c(920): unknown_type_cb ():

To avoid such warnings, install gstreamer1.0-libav and gstreamer1.0-plugins-
good inside docker.

Specifically for deepstream-nmos , deepstream-avsync-app and python based
deepstream-imagedata-multistream app you would need to install gstreamer1.0-
libav and gstreamer1.0-plugins-good.

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 7

2.0 LIMITATIONS

This section provides details about issues discovered during development and QA but not
resolved in this release.

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The
maximum number of instances can be increased by doing changes in open-source code.

 The Kafka protocol adapter sometimes does not automatically reconnect when the
Kafka Broker to which it is connected goes down and comes back up. This requires the
application to restart.

 If the nvds log file ds.log has been deleted, to restart logging you must delete the file
/run/rsyslogd.pid within the container before reenabling logging by running the
setup_nvds_logger.sh script. This is described in the “nvds_logger: Logging
Framework” sub-section in the “Gst-nvmsgbroker” section in the NVIDIA DeepStream
Developer Guide 6.2 Release.

 Running a DeepStream application over SSH (via putty) with X11 forwarding does not
work.

 DeepStream currently expects model network width to be a multiple of 4 and network
height to be a multiple of 2.

 Triton Inference Server implementation in DeepStream currently supports a single
GPU. The models need to be configured to use a single GPU.

 For some models output in DeepStream is not exactly same as observed in TAO
Toolkit. This is due to input scaling algorithm differences.

 Dynamic resolution change support is Alpha quality.
 On the fly Model update only supports same type of Model with same Network

parameters.
 Rivermax SDK is not part of DeepStream. So, the following warning is observed (gst-

plugin-scanner:33257):

GStreamer-WARNING **: 11:38:46.882: Failed to load plugin
'/usr/lib/x86_64-linux-gnu/gstreamer-

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 8

1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0: cannot open
shared object file: No such file or directory

You can ignore this warning safely.

 RDMA functionality only supported on x86 and only available on the docker.
 There can be performance drop from TensorRT to Triton for some models (5 to 15%).
 To generate the YOLOV3, YOLOV4 and YOLOV4-tiny model engines, the precision of

some layers should be specified as FP32 for TensorRT 8.5.X.X limitations. The solution
is updated in https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps.

 NVRM: XID errors seen sometimes when running 150+ streams on Ampere and
Hopper.

 NVRM: XID errors seen on some setups with gst-dsexample and transfer learning
sample apps.

 Sometimes during deepstream-testsr app execution, assertion " GStreamer-
CRITICAL **: 12:55:35.006: gst_pad_link_full: assertion
'GST_IS_PAD sinkpad)' failed" is seen which can be safely ignored.

 Gst-nvdsasr plugin and deepstream-avsync-app is not supported on Hopper
GPU.

 While running deepstream-image-decode-app assertion being seen which can be
safely ignored.

 ASR and TTS plugins are not supported on NVIDIA Hopper since RIVA container for
the same not available.

 deepstream-server app is not supported with new nvstreammux plugin.
 gst-nvtracker plugin utilizes gpu0 even when run on other gpu.
 On T4, in vGPU mode, corrupted output is seen visually because of an issue in gst-

nveglglessink RGBA display path. As a work around, use nvvideoconvert
plugin with capabilities set to NV12 before nveglglessink. If using deepstream-
app use nvdsosd plugin in GPU mode.

 TAO point-pillar model works only in FP32 mode.
 REST API support for few components (decoder, preprocessor, nvinfer along with

stream addition deletion support) with limited configuration options. However, user
can extend the functionality with steps mentioned in SDK documentation.

 When running OSD in GPU mode this warning seen: “[cuOSD Warning] at
cuosd.cpp:392 : Cannot find any fonts to match Serif, fallback
to DejaVuSansMono.ttf”. This can be safely ignored.

 Cross-Branch driver support is not available on vGPU/NVAIE for DeepStream. Both
guest & host driver needs to be at 525.60.13.

 Graph Composer not supported for this release.
 Critical error (masked_scan_uint32_peek: assertion '(guint64) offset +

size <= reader->size - reader->byte' failed) observed while running
python segmentation application but it can be ignored safely.

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 9

3.0 NOTES

 Optical flow is supported only on dGPUs having Turing architecture (onwards)
 NVIDIA® DeepStream SDK 6.2 supports TAO 3.0 models

(https://developer.nvidia.com/tao-toolkit). For more details, see
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps.

 On vGPU, only cuda device memory NVBUF_MEM_CUDA_DEVICE supported.

Note: • OpenCV is deprecated by default. But you can enable OpenCV in
plugins such as nvinfer (nvdsinfer) and dsexample (gst-
dsexample) by setting WITH_OPENCV=1 in the Makefile of these
components. Refer to the component README for more instructions.

• When using docker make sure libopencv-dev package is installed
inside docker if the Application requires it.

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER
CONTAINER

Applications built with DeepStream can be deployed using a Docker container, available
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account. The
nvcr.io/nvaie/deepstream-3-0:6.2.0-triton container will be part of NVAIE
3.0.

After you sign into your NGC account, navigate to Dashboard → Setup → Get
API key to get your nvcr.io authentication details.

As an example, you can use the DeepStream 6.2. docker containers on NGC and run the
deepstream-test4-app sample application as an Azure edge runtime module on
your edge device.

https://developer.nvidia.com/tao-toolkit
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://ngc.nvidia.com/

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 10

The following procedure deploys deepstream-test4-app:

 Using a sample video stream (sample_720p.h264)
 Sending messages with minimal schema
 Running with display disabled
 Using message topic mytopic (message topic may not be empty)

Set up and install Azure IoT Edge on your system with the instructions provided in the
Azure module client README file in the deepstream-6.2 package:

<deepstream-
6.2_package>/sources/libs/azure_protocol_adaptor/module_client/README

See the Azure documentation for information about prerequisites for creating an Azure
edge device on the Azure portal:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites

To deploy deepstream-test4-app as an Azure IoT edge runtime module

1. On the Azure portal, click the IoT edge device you have created and click Set
Modules.

2. Enter these settings:

Container Registry Settings:
 Name: NGC
 Address: nvcr.io
 User name: $oauthtoken
 Password: use the password or API key from your NGC account

Deployment modules:
 Add a new module with the name ds.

Image URI:

● For x86 dockers:

docker pull nvcr.io/nvaie/deepstream-3-0:6.2.0-triton

● For X86:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "/opt/nvidia/deepstream/deepstream-
6.2/sources/apps/sample_apps/deepstream-test4",
 "ENTRYPOINT": [

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 11

 "/opt/nvidia/deepstream/deepstream-6.2/bin/deepstream-test4-
app",
 "-i", "/opt/nvidia/deepstream/deepstream-
6.2/samples/streams/sample_720p.h264",
 "-p",
 "/opt/nvidia/deepstream/deepstream-
6.2/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]}

3. Specify route options for the module:

● Option 1: Use a default route where every message from every module is sent
upstream.

 {
 "routes": {
 "route": "FROM /messages/* INTO $upstream"
 }
 }

● Option 2: Specific routes where messages sent upstream can be filtered based on
topic name. For example, in the sample test programs, topic name mytopic is
used for the module name ds:

 {
 "routes": {
 "route": "FROM /messages/modules/ds/outputs/mytopic INTO
$upstream"
 }
 }

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER
ENVIRONMENT CANNOT SUPPORT DISPLAY

If the Docker environment cannot support display, the sample applications
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected.

Workaround:

To correct this problem, you must recompile the test applications after replacing
nveglglessink with fakesink. With deepstream-test4, you also have the option
to specify fakesink by adding the --no-display command line switch.

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 12

3.3 TRITON INFERENCE SERVER IN DEEPSTREAM

Triton inference server (version 22.09) on dGPU is supported only via docker for x86.

Refer to the NVIDIA DeepStream Development Guide 6.2 Release for more details about
Triton inference server.

Triton inference server Supports following frameworks:

Framework Tesla Notes / Limitations
TensorRT Yes Supports TensorRT plan or engine file

(.plan)

TensorFlow Yes Supports TensorRT optimization

Supported model formats: GraphDef or
SavedModel

Other TF formats such as checkpoint
variables or estimators not directly
supported

Supports both Tensorflow 1.x and
Tensorflow 2.x. Triton defaults to use
Tensorflow 1.x. If users need to run
Tensorlfow 2.x models, need to update
plugin config with:

infer_config{ backend {
trt_is { model_repo{
 backend_configs {
 backend:
"tensorflow"
 setting:
"version"
 value: "2"
} } } }

ONNX Yes Supports TensorRT optimization

PyTorch Yes PyTorch model must be traced with an
example input and saved as a
TorchScript Module (.pt)

For more information refer to the following links:

 Triton inference server model repository:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/model_repository.html

Also contains more information on the supported frameworks.

 TensorRT optimization in Triton inference server for ONNX and TensorFlow:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/optimization.html#framework-specific-optimization

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization

DeepStream SDK 6.2 for NVIDIA dGPU/X86 (NVAIE) RN-09353-003 | 13

 TensorFlow with TensorRT:
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

 TensorFlow saved model:
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

www.nvidia.com

Notice
THE INFORMATION IN THIS DOCUMENT AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS DOCUMENT IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this document shall
be limited in accordance with the NVIDIA terms and conditions of sale for the product. THE NVIDIA PRODUCT
DESCRIBED IN THIS DOCUMENT IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED
FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY
SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE
SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN
CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA
EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL
NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES
ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this document will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this document. NVIDIA does not accept any liability related to any default, damage,
costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner
that is contrary to this document, or (ii) customer product designs.

Other than the right for customer to use the information in this document with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this document. Reproduction of information in
this document is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, TensorRT, NVIDIA Ampere, NVIDIA Hopper and NVIDIA Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright © 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

	1.0 About this Release
	1.1 What’s New
	1.1.1 DS 6.2

	1.2 Contents of this Release
	1.3 Documentation in this Release
	1.4 DIFFERENCES WITH DEEPSTREAM 6.1

	2.0 Limitations
	3.0 Notes
	3.1 Applications May Be Deployed in a Docker Container
	To deploy deepstream-test4-app as an Azure IoT edge runtime module

	3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display
	3.3 Triton Inference Server In Deepstream

