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How to Use the Custom YOLO Model 

The objectDetector_Yolo sample application provides a working example of the open 
source YOLO models: YOLOv2, YOLOv3, tiny YOLOv2, and tiny YOLOv3. You can find more 
information about the models at https://pjreddie.com/darknet/yolo/. The sample also 
illustrates NVIDIA® TensorRT™ INT8 calibration (yolov3-calibration.table.trt5.1). 

To set up the sample 
Compile the open source model and run the DeepStream app as explained by the README in 
objectDetector_Yolo. This is a sanity check that you are able to run the open source YOLO 
model with the sample app. 

To use the custom YOLOv3 and tiny YOLOv3 models 
1. Open nvdsinfer_custom_impl_Yolo/nvdsparsebbox_Yolo.cpp. 

2. Change the value of the NUM_CLASSES_YOLO constant to reflect the number of classes in 
your model. For example, if your model uses 80 classes: 

 
static const int NUM_CLASSES_YOLO = 80; 
 

The default values in the file are from: 

https://pjreddie.com/media/files/papers/YOLOv3.pdf 
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg 
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg 

3. Replace the model parameters with your new model parameters in 
NvDsInferParseCustomYoloV3() (if you are using the YOLOv3) or 
NvDsInferParseCustomYoloV3Tiny() (if you are using tiny YOLOv3). Taking YOLOv3 as 
an example: 

 
extern "C" bool NvDsInferParseCustomYoloV3( 
        std::vector<NvDsInferLayerInfo> const& outputLayersInfo, 
        NvDsInferNetworkInfo const& networkInfo, 
        NvDsInferParseDetectionParams const& detectionParams, 
        std::vector<NvDsInferParseObjectInfo>& objectList) 
{ 
  . . . 

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg
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    ## 9 clusters from COCO dataset 
    const std::vector<float> kANCHORS = 
            {10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 
            45.0, 59.0, 119.0, 116.0, 90.0, 156.0, 198.0, 373.0, 326.0}; 
 
    ## Specifies which of the 9 anchors above to use 
    static const std::vector<std::vector<int>> kMASKS = { 
            {6, 7, 8}, 
            {3, 4, 5}, 
            {0, 1, 2}}; 
} 
 

4. Replace the model parameters in NvDsInferParseYoloV3() with your new model 
parameters. These model parameters are shared between YOLOv3 and tiny YOLOv3. 

 
static bool NvDsInferParseYoloV3() 
{ 
    ## Bounding box overlap Threshold 
    const float kNMS_THRESH = 0.5f; 
    const float kPROB_THRESH = 0.7f; 
 
    ## Predicted boxes 
    const uint kNUM_BBOXES = 3; 
} 
 

To use custom models of YOLOv2 and YOLOv2-tiny 
1. Open nvdsinfer_custom_impl_Yolo/nvdsparsebbox_Yolo.cpp. 

2. Change the value of the NUM_CLASSES_YOLO constant to reflect the number of classes in 
your model. For example, if your model uses 80 classes: 

 
static const int NUM_CLASSES_YOLO = 80; 
 

The default values in the file are from: 

https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg 
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg 

3. Change the model parameters for NvDsInferParseCustomYoloV2() (if you are using 
YOLOv2) or NvDsInferParseCustomYoloV2Tiny() (if you are using tiny YOLOv2). Taking 
YOLOv2 as an example: 

 
# specify NMS and confidence threshold 
static const float kNMS_THRESH = 0.3f; 
static const float kPROB_THRESH = 0.6f; 
 

https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg
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# specify anchors and in NvDsInferParseYoloV2, kANCHORS = {[anchors] in 
yolov2.cfg} * stride 
static const std::vector<float> kANCHORS = { 
     18.3273602, 21.6763191, 59.9827194, 66.0009613, 
     106.829758, 175.178879, 252.250244, 112.888962, 
     312.656647, 293.384949 }; 
# Predicted boxes in NvDsInferParseYoloV2 
const uint kNUM_BBOXES = 5; 
 

 

 

Note: The built-in example ships with the TensorRT INT8 calibration file yolov3-
calibration.table.trt5.1. The example runs at INT8 precision for best 
performance. To compare the performance to the built-in example, generate a new 
INT8 calibration file for your model. 

You can run the sample with another type of precision but it will be slower. If you run 
with FP16 or FP32 precision, change the network-mode parameter in the 
configuration file (config_infer_primary_yolo*.txt. 

## 0=FP32, 1=INT8, 2=FP16 mode 
network-mode=1 <== Change to 0 or 2 
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