

SWE-SWDOCDPSTR-002-PGRF | August 6, 2019
Advance Information | Subject to Change

Application Note

DEEPSTREAM 4.0 PLUGIN
MANUAL

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | ii

DOCUMENT CHANGE HISTORY

Date Author Revision History

Nov. 19, 2018 Bhushan Rupde,
Jonathan Sachs

Release 3.0 (Initial release)

Aug. 6, 2019 Bhushan Rupde,
Jonathan Sachs

Release 4.0 (Unified release)

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | iii

TABLE OF CONTENTS

1.0 Introduction ... 8
2.0 GStreamer Plugin Details ... 9

2.1 Gst-nvinfer .. 9
2.1.1 Inputs and Outputs ... 11
2.1.2 Features ... 12
2.1.3 Gst-nvinfer File Configuration Specifications ... 14
2.1.4 Gst Properties .. 20
2.1.5 Tensor Metadata ... 21
2.1.6 Segmentation Metadata ... 22

2.2 Gst-nvtracker.. 22
2.2.1 Inputs and Outputs ... 24
2.2.2 Features ... 25
2.2.3 Gst Properties .. 25
2.2.4 Custom Low-Level Library .. 26
2.2.5 Low-Level Tracker Library Comparisons and Tradeoffs 29
2.2.6 NvDCF Low-Level Tracker .. 30

2.3 Gst-nvstreammux ... 32
2.3.1 Inputs and Outputs ... 34
2.3.2 Features ... 34
2.3.3 Gst Properties .. 35

2.4 Gst-nvstreamdemux .. 36
2.4.1 Inputs and Outputs ... 37

2.5 Gst-nvmultistreamtiler .. 38
2.5.1 Inputs and Outputs ... 38
2.5.2 Features ... 39
2.5.3 Gst Properties .. 39

2.6 Gst-nvdsosd .. 40
2.6.1 Inputs and Outputs ... 41
2.6.2 Features ... 42
2.6.3 Gst Properties .. 42

2.7 Gst-nvvideoconvert .. 43
2.7.1 Inputs and Outputs ... 43
2.7.2 Features ... 44
2.7.3 Gst Properties .. 44

2.8 Gst-nvdewarper ... 45
2.8.1 Inputs and Outputs ... 46
2.8.2 Features ... 46
2.8.3 Configuration File Parameters ... 47
2.8.4 Gst Properties .. 49

2.9 Gst-nvof .. 50
2.9.1 Inputs and Outputs ... 51
2.9.2 Features ... 51
2.9.3 Gst Properties .. 52

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | iv

2.10 Gst-nvofvisual ... 53
2.10.1 Inputs and Outputs ... 53
2.10.2 Features ... 54
2.10.3 Gst Properties .. 54

2.11 Gst-nvsegvisual ... 54
2.11.1 Inputs and Outputs ... 55
2.11.2 Gst Properties .. 56

2.12 Gst-nvvideo4linux2 ... 56
2.12.1 Decoder .. 57

2.12.1.1 Inputs and Outputs... 57
2.12.1.2 Features ... 58
2.12.1.3 Configuration Parameters .. 58

2.12.2 Encoder .. 59
2.12.2.1 Inputs and Outputs... 59
2.12.2.2 Features ... 59
2.12.2.3 Configuration Parameters .. 59

2.13 Gst-nvjpegdec .. 60
2.13.1 Inputs and Outputs ... 60
2.13.2 Features ... 61
2.13.3 Configuration Parameters .. 61

2.14 Gst-nvmsgconv .. 61
2.14.1 Inputs and Outputs ... 62
2.14.2 Features ... 62
2.14.3 Gst Properties .. 63
2.14.4 Schema Customization .. 64
2.14.5 Payload with Custom Objects .. 64

2.15 Gst-nvmsgbroker ... 64
2.15.1 Inputs and Outputs ... 65
2.15.2 Features ... 65
2.15.3 Gst Properties .. 66
2.15.4 nvds_msgapi: Protocol Adapter Interface ... 66

2.15.4.1 nvds_msgapi_connect(): Create a Connection 67
2.15.4.2 nvds_msgapi_send() and nvds_msgapi_send_async(): Send an event 68
2.15.4.3 nvds_msgapi_do_work(): Incremental Execution of Adapter Logic 69
2.15.4.4 nvds_msgapi_disconnect(): Terminate a Connection 70
2.15.4.5 nvds_msgapi_getversion(): Get Version Number 70

2.15.5 nvds_kafka_proto: Kafka Protocol Adapter.. 70
2.15.5.1 Installing Dependencies ... 70
2.15.5.2 Using the Adapter .. 71
2.15.5.3 Configuring Protocol Settings .. 71
2.15.5.4 Programmatic Integration .. 72
2.15.5.5 Monitor Adapter Execution ... 72

2.15.6 Azure MQTT Protocol Adapter Libraries .. 73
2.15.6.1 Installing Dependencies ... 73
2.15.6.2 Setting Up Azure IoT... 74
2.15.6.3 Configuring Adapter Settings .. 74
2.15.6.4 Using the Adapter .. 75

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | v

2.15.6.5 Monitor Adapter Execution ... 76
2.15.6.6 Message Topics and Routes ... 77

2.15.7 AMQP Protocol Adapter ... 77
2.15.7.1 Installing Dependencies ... 77
2.15.7.2 Configure Adapter Settings ... 79
2.15.7.3 Using the adapter .. 79
2.15.7.4 Programmatic Integration .. 80
2.15.7.5 Monitor Adapter Execution ... 81

2.15.8 nvds_logger: Logging Framework.. 81
2.15.8.1 Enabling Logging ... 81
2.15.8.2 Filtering Logs ... 82
2.15.8.3 Retiring and Managing Logs .. 82
2.15.8.4 Generating Logs .. 82

3.0 MetaData in the DeepStream SDK ... 84
3.1 NvDsBatchMeta: Basic Metadata Structure .. 84
3.2 User/Custom Metadata Addition inside NvDsBatchMeta 85
3.3 Adding Custom Meta in Gst Plugins Upstream from Gst-nvstreammux 86

4.0 IPlugin Interface .. 87
4.1 How to Use IPluginCreator .. 87
4.2 How to Use IPluginFactory .. 88

5.0 Docker Containers .. 90
5.1 A Docker Container for dGPU .. 90
5.2 A Docker Container for Jetson ... 91

6.0 Troubleshooting .. 92

LIST OF FIGURES

Figure 1. Gst-nvinfer inputs and outputs .. 11

Figure 2. Gst-nvtracker inputs and outputs ... 24

Figure 3. The Gst-nvstreammux plugin .. 34

Figure 4. The Gst-nvstreamdemux plugin ... 37

Figure 5. The Gst-nvmultistreamtiler plugin ... 38

Figure 6. The Gst-nvdsosd plugin ... 41

Figure 7. The Gst-nvvideoconvert plugin .. 43

Figure 8. The Gst-nvdewarper plugin .. 46

Figure 9. The Gst-nvof plugin ... 51

Figure 10. The Gst-nvofvisual plugin .. 53

Figure 11. The Gst-nvsegvisual plugin ... 55

Figure 12. The Gst-nvvideo4linux2 decoder plugin .. 57

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | vi

Figure 13. The Gst-nvmsgconv plugin .. 62

Figure 14. The Gst-nvmsgbroker plugin ... 65

Figure 15. The Gst-nvmsgbroker plugin calling the nvds_msgapi interface 67

Figure 16. DeepStream metadata hierarchy .. 85

LIST OF TABLES

Table 1. Features of the Gst-nvinfer plugin .. 12

Table 2. Gst-nvinfer plugin, [property] group, supported keys 15

Table 3. Gst-nvinfer plugin, [class-attrs-...] groups, supported keys 19

Table 4. Gst-nvinfer plugin, Gst properties ... 21

Table 5. Features of the Gst-nvtracker plugin ... 25

Table 6. Gst-nvtracker plugin, Gst Properties .. 25

Table 7. Tracker library comparison ... 29

Table 8. NvDCF low-level tracker, configuration properties 31

Table 9. Features of the Gst-nvstreammux plugin ... 35

Table 10. Gst-nvstreammux plugin, Gst properties ... 35

Table 11. Features of the Gst-nvmultistreamtiler plugin 39

Table 12. Gst-nvmultistreamtiler plugin, Gst properties 39

Table 13. Features of the Gst-nvdsosd plugin .. 42

Table 14. Gst-nvdsosd plugin, Gst Properties .. 42

Table 15. Gst-nvvideoconvert plugin, Gst Properties 44

Table 16. Features of the Gst-nvdewarper plugin ... 46

Table 17. Gst-nvdewarper plugin, configuration file, [surface<n>] parameters 47

Table 18. Gst-nvdewarper plugin, Gst properties ... 49

Table 19. Features of the Gst-nvof plugin .. 52

Table 20. Gst-nvof plugin, Gst properties .. 52

Table 21. Features of the Gst-nvofvisual plugin ... 54

Table 22. Gst-nvofvisual plugin, Gst Properties .. 54

Table 23. Features of the Gst-nvsegvisual plugin .. 55

Table 24. Gst-nvsegvisual plugin, Gst Properties .. 56

Table 25. Features of the Gst-nvmsgconv plugin .. 63

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | vii

Table 26. Gst-nvmsgconv plugin, Gst properties ... 63

Table 27. Features of the Gst-nvmsgbroker plugin .. 66

Table 28. Gst-nvmsgbroker plugin, Gst Properties .. 66

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 8

1.0 INTRODUCTION

DeepStream SDK is based on the GStreamer framework. This manual describes the
DeepStream GStreamer plugins and the DeepStream input, outputs, and control
parameters.

DeepStream SDK is supported on systems that contain an NVIDIA® Jetson™ module or
an NVIDIA dGPU adapter.1

The manual is intended for engineers who want to develop DeepStream applications or
additional plugins using the DeepStream SDK. It also contains information about
metadata used in the SDK. Developers can add custom metadata as well.

The manual describes the methods defined in the SDK for implementing custom
inferencing layers using the IPlugin interface of TensorRT™.

You can refer the sample examples shipped with the SDK as you use this manual to
familiarize yourself with DeepStream application and plugin development.

1 This manual uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such

as NVIDIA® Tesla® T4 and P4, NVIDIA® GeForce® GTX 1080, and NVIDIA® GeForce® RTX 2080. This
version of DeepStream SDK runs on specific dGPU products on x86_64 platforms supported by NVIDIA
driver 418+ and NVIDIA® TensorRT™ 5.1 and later versions.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 9

2.0 GSTREAMER PLUGIN DETAILS

2.1 GST-NVINFER
The Gst-nvinfer plugin does inferencing on input data using NVIDIA® TensorRT™.

The plugin accepts batched NV12/RGBA buffers from upstream. The NvDsBatchMeta
structure must already be attached to the Gst Buffers.

The low-level library (libnvds_infer) operates on any of INT8 RGB, BGR, or GRAY
data with dimension of Network Height and Network Width.

The Gst-nvinfer plugin performs transforms (format conversion and scaling), on the
input frame based on network requirements, and passes the transformed data to the
low-level library.

The low-level library preprocesses the transformed frames (performs normalization and
mean subtraction) and produces final float RGB/BGR/GRAY planar data which is passed
to the TensorRT engine for inferencing. The output type generated by the low-level
library depends on the network type.

The pre-processing function is:

𝑦𝑦 = 𝑛𝑛𝑛𝑛𝑛𝑛-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ (𝑥𝑥 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

Where:

 x is the input pixel value. It is an int8 with range [0,255].
 mean is the corresponding mean value, read either from the mean file or as

offsets[c], where c is the channel to which the input pixel belongs, and offsets
is the array specified in the configuration file. It is a float.

 net-scale-factor is the pixel scaling factor specified in the configuration file. It is a float.
 y is the corresponding output pixel value. It is a float.

nvinfer currently works on the following type of networks:

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 10

• Multi-class object detection

• Multi-label classification

• Segmentation

The Gst-nvinfer plugin can work in two modes:

• Primary mode: Operates on full frames

• Secondary mode: Operates on objects added in the meta by upstream
components

When the plugin is operating as a secondary classifier along with the tracker, it tries to
improve performance by avoiding re-inferencing on the same objects in every frame. It
does this by caching the classification output in a map with the object’s unique ID as the
key. The object is inferred upon only when it is first seen in a frame (based on its object
ID) or when the size (bounding box area) of the object increases by 20% or more. This
optimization is possible only when the tracker is added as an upstream element.

Detailed documentation of the TensorRT interface is available at:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-
guide/index.html

The plugin supports the IPlugin interface for custom layers. Refer to section IPlugin
Interface for details.

The plugin also supports the interface for custom functions for parsing outputs of object
detectors and initialization of non-image input layers in cases where there are more than
one input layer.

Refer to sources/includes/nvdsinfer_custom_impl.h for the custom method
implementations for custom models.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 11

Figure 1. Gst-nvinfer inputs and outputs

Downstream components receive a Gst Buffer with unmodified contents plus the
metadata created from the inference output of the Gst-nvinfer plugin.

The plugin can be used for cascaded inferencing. That is, it can perform primary
inferencing directly on input data, then perform secondary inferencing on the results of
primary inferencing, and so on. See the sample application deepstream-test2 for
more details.

2.1.1 Inputs and Outputs
This section summarizes the inputs, outputs, and communication facilities of the Gst-
nvinfer plugin.

 Inputs

● Gst Buffer
● NvDsBatchMeta (attaching NvDsFrameMeta)
● Caffe Model and Caffe Prototxt
● ONNX
● UFF file
● TLT Encoded Model and Key
● Offline: Supports engine files generated by Transfer Learning Toolkit SDK Model

converters

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 12

Layers: Supports all layers supported by TensorRT, see:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-
guide/index.html

 Control parameters: Gst-nvinfer gets control parameters from a configuration
file. You can specify this by setting the property config-file-path. For details,
see Gst-nvinfer File Configuration Specifications. Other control parameters that can
be set through GObject properties are:

● Batch size
● Inference interval
● Attach inference tensor outputs as buffer metadata

 The parameters set through the GObject properties override the parameters in the
Gst-nvinfer configuration file.

 Outputs

● Gst Buffer
● Depending on network type and configured parameters, one or more of:

― NvDsObjectMeta
― NvDsClassifierMeta
― NvDsInferSegmentationMeta
― NvDsInferTensorMeta

2.1.2 Features
Table 1 summarizes the features of the plugin.

Table 1. Features of the Gst-nvinfer plugin

Feature Description Release

Transfer-Learning-Toolkit encoded model
support

— DS 4.0

Gray input model support
Support for models with single channel
gray input

DS 4.0

Tensor output as meta
Raw tensor output is attached as meta data
to Gst Buffers and flowed through the
pipeline

DS 4.0

Segmentation model Supports segmentation model DS 4.0

Maintain input aspect ratio
Configurable support for maintaining
aspect ratio when scaling input frame to
network resolution

DS 4.0

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 13

Feature Description Release

Custom cuda engine creation interface
Interface for generating CUDA engines from
TensorRT INetworkDefinition and
IBuilder APIs instead of model files

DS 4.0

Caffe Model support — DS 2.0

UFF Model support — DS 3.0

ONNX Model support — DS 3.0

Multiple modes of operation Support for cascaded inferencing DS 2.0

Asynchronous mode of operation for
secondary inferencing

Infer asynchronously for secondary
classifiers

DS 2.0

Grouping using CV::Group rectangles For detector bounding box clustering DS 2.0

Configurable batch-size processing
User can configure batch size for
processing

DS 2.0

No Restriction on number of output blobs Supports any number of output blobs DS 3.0

Configurable number of detected classes
(detectors)

Supports configurable number of detected
classes

DS 3.0

Support for Classes: configurable (> 32) Support any number of classes DS 3.0

Application access to raw inference output Application can access inference output
buffers for user specified layer

DS 3.0

Support for single shot detector (SSD) — DS 3.0

Secondary GPU Inference Engines (GIEs)
operate as detector on primary bounding
box

Support secondary inferencing as detector DS 2.0

Multiclass secondary support Support multiple classifier network outputs DS 2.0

Grouping using DBSCAN For detector bounding box clustering DS 3.0

Loading an external lib containing IPlugin
implementation for custom layers
(IPluginCreator & IPluginFactory)

Supports loading (dlopen()) a library
containing IPlugin implementation for
custom layers

DS 3.0

Multi GPU Select GPU on which we want to run
inference

DS 2.0

Detection width height configuration Filter out detected objects based on
min/max object size threshold

DS 2.0

Allow user to register custom parser Supports final output layer bounding box
parsing for custom detector network

DS 2.0

Bounding box filtering based on
configurable object size

Supports inferencing in secondary mode
objects meeting min/max size threshold

DS 2.0

Configurable operation interval Interval for inferencing (number of batched
buffers skipped)

DS 2.0

Select Top and bottom regions of interest
(RoIs)

Removes detected objects in top and
bottom areas

DS 2.0

Operate on Specific object type (Secondary
mode)

Process only objects of define classes for
secondary inferencing

DS 2.0

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 14

Feature Description Release

Configurable blob names for parsing
bounding box (detector)

Support configurable names for output
blobs for detectors

DS 2.0

Allow configuration file input Support configuration file as input
(mandatory in DS 3.0)

DS 2.0

Allow selection of class id for operation Supports secondary inferencing based on
class ID

DS 2.0

Support for Full Frame Inference: Primary
as a classifier

Can work as classifier as well in primary
mode

DS 2.0

Multiclass secondary support Support multiple classifier network outputs DS 2.0

Secondary GIEs operate as detector on
primary bounding box

Support secondary inferencing as detector

— DS 2.0

Supports FP16, FP32 and INT8 models

FP16 and INT8 are platform dependent

— DS 2.0

Supports TensorRT Engine file as input

— DS 2.0

Inference input layer initialization

Initializing non-video input layers in case of
more than one input layers

— DS 3.0

Support for FasterRCNN — DS 3.0

Support for Yolo detector (YoloV3/V3-
tiny/V2/V2-tiny)

— DS 4.0

2.1.3 Gst-nvinfer File Configuration Specifications
The Gst-nvinfer configuration file uses a “Key File” format described in:

https://specifications.freedesktop.org/desktop-entry-spec/latest

The [property] group configures the general behavior of the plugin. It is the only
mandatory group.

The [class-attrs-all] group configures detection parameters for all classes.

The [class-attrs-<class-id>] group configures detection parameters for a class
specified by <class-id>. For example, the [class-attrs-23] group configures
detection parameters for class ID 23. This type of group has the same keys as [class-
attrs-all].

Table 2 and Table 3, respectively describe the keys supported for [property] groups
and [class-attrs-…] groups.

https://specifications.freedesktop.org/desktop-entry-spec/latest

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 15

Table 2. Gst-nvinfer plugin, [property] group, supported keys

Network Types / Applicable to GIEs (Primary/Seconday)

Property Meaning
Type and

Range
Example
Notes

num-detected-
classes

Number of classes
detected by the network

Integer, >0
num-detected-
classes=91

Detector

Both

net-scale-factor Pixel normalization factor Float, >0.0
net-scale-factor=-
0.031

All

Both

model-file

Pathname of the
caffemodel file. Not
required if model-
engine-file is used

String
model-file=/home/-
ubuntu/-
model.caffemodel

All

Both

proto-file

Pathname of the prototxt
file. Not required if
model-engine-file is
used

String
proto-file=/home/-
ubuntu/-
model.prototxt

All

Both

int8-calib-file

Pathname of the INT8
calibration file for
dynamic range adjustment
with an FP32 model

String
int8-calib-file=-
/home/ubuntu/-
int8_calib

All

Both

batch-size
Number of frames or
objects to be inferred
together in a batch

Integer, >0 batch-size=30
All

Both

model-engine-file
Pathname of the
serialized model engine
file

String
model-engine-file=-
/home/ubuntu/-
model.engine

All

Both

uff-file
Pathname of the UFF
model file

String
uff-file=/home/-
ubuntu/model.uff

All

Both

onnx-file
Pathname of the ONNX
model file

String
onnx-file=/home/-
ubuntu/model.onnx

All

Both

enable-dbscan

Indicates whether to use
DBSCAN or the OpenCV
groupRectangles()
function for grouping
detected objects

Boolean enable-dbscan=1
Detector

Both

labelfile-path
Pathname of a text file
containing the labels for
the model

String
labelfile-path=-
/home/ubuntu/-
model_labels.txt

Detector &
classifier

Both

mean-file
Pathname of mean data
file (PPM format)

String

mean-file=/home/-
ubuntu/-
model_meanfile.pp
m

All

Both

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 16

Network Types / Applicable to GIEs (Primary/Seconday)

Property Meaning
Type and

Range
Example
Notes

gie-unique-id

Unique ID to be assigned
to the GIE to enable the
application and other
elements to identify
detected bounding boxes
and labels

Integer, >0

gie-unique-id=2

All

Both

operate-on-gie-id

Unique ID of the GIE on
whose metadata
(bounding boxes) this GIE
is to operate on

Integer, >0 operate-on-gie-id=1
All

Both

operate-on-class-
ids

Class IDs of the parent GIE
on which this GIE is to
operate on

Semicolon
delimited
integer
array

operate-on-class-
ids=1;2

Operates on objects
with class IDs 1, 2
generated by parent
GIE

All

Both

interval
Specifies the number of
consecutive batches to be
skipped for inference

Integer, >0 interval=1
All

Primary

input-object-min-
width

Secondary GIE infers only
on objects with this
minimum width

Integer, ≥0
input-object-min-
width=40

All

Secondary

input-object-min-
height

Secondary GIE infers only
on objects with this
minimum height

Integer, ≥0
input-object-min-
height=40

All

Secondary

input-object-max-
width

Secondary GIE infers only
on objects with this
maximum width

Integer, ≥0

input-object-max-
width=256

0 disables the
threshold

All

Secondary

input-object-max-
height

Secondary GIE infers only
on objects with this
maximum height

Integer, ≥0

input-object-max-
height=256

0 disables the
threshold

All

Secondary

uff-input-dims
Dimensions of the UFF
model

channel;
height;
width;
input-order

All integers,
≥0

input-
dims=3;224;224;0

Possible values for
input-order are:

0: NCHW
1: NHWC

All

Both

network-mode
Data format to be used by
inference

Integer

0: FP32

1: INT8

2: FP16

network-mode=0
All

Both

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 17

Network Types / Applicable to GIEs (Primary/Seconday)

Property Meaning
Type and

Range
Example
Notes

offsets

Array of mean values of
color components to be
subtracted from each
pixel. Array length must
equal the number of color
components in the frame.
The plugin multiplies
mean values by net-
scale-factor.

Semicolon
delimited
float array,

all values ≥0

offsets=77.5;21.2;11
.8

All

Both

output-blob-names
Array of output layer
names

Semicolon
delimited
string array

For detector:
output-blob-
names=coverage;bb
ox

For multi-label
classifiers:
output-blob-
names=coverage_att
rib1;coverage_attrib
2

All

Both

parse-bbox-func-
name

Name of the custom
bounding box parsing
function. If not specified,
Gst-nvinfer uses the
internal function for the
resnet model provided by
the SDK.

String
parse-bbox-func-
name=-
parse_bbox_resnet

Detector

Both

custom-lib-path

Absolute pathname of a
library containing custom
method implementations
for custom models

String

custom-lib-path=-
/home/ubuntu/-
libresnet_custom_im
pl.so

All

Both

model-color-
format

Color format required by
the model.

Integer

0: RGB

1: BGR

model-color-
format=0

All

Both

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 18

Network Types / Applicable to GIEs (Primary/Seconday)

Property Meaning
Type and

Range
Example
Notes

classifier-async-
mode

Enables inference on
detected objects and
asynchronous metadata
attachments. Works only
when tracker-ids are
attached. Pushes buffer
downstream without
waiting for inference
results. Attaches
metadata after the
inference results are
available to next Gst
Buffer in its internal
queue.

Boolean
classifier-async-
mode=1

Classifier

Secondary

process-mode
Mode (primary or
secondary) in which the
element is to operate on

Integer

1=Primary

2=Secondary

gie-mode=1
All

Both

classifier-threshold

Minimum threshold label
probability. The GIE
outputs the label having
the highest probability if
it is greater than this
threshold

Float, ≥0
classifier-
threshold=0.4

Classifier

Both

uff-input-blob-
name

Name of the input blob in
the UFF file

String
uff-input-blob-
name=Input_1

All

Both

secondary-reinfer-
interval

Reinference interval for
objects, in frames

Integer, ≥0
secondary-reinfer-
interval=15

Classifier

Secondary

output-tensor-
meta

Gst-nvinfer attaches raw
tensor output as Gst
Buffer metadata.

Boolean
output-tensor-
meta=1

All

Both

enable-dla

Indicates whether to use
the DLA engine for
inferencing.

Note: DLA is supported
only on Jetson AGX
Xavier™. Currently work in
progress.

Boolean enable-dla=1
All

Both

use-dla-core

DLA core to be used.

Note: Supported only on
Jetson AGX Xavier™.
Currently work in
progress.

Integer, ≥0 use-dla-core=0
All

Both

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 19

Network Types / Applicable to GIEs (Primary/Seconday)

Property Meaning
Type and

Range
Example
Notes

network-type Type of network

Integer

0: Detector

1: Classifier

2:
Segmentatio
n

network-type=1
All

Both

maintain-aspect-
ratio

Indicates whether to
maintain aspect ratio
while scaling input.

Boolean
maintain-aspect-
ratio=1

All

Both

parse-classifier-
func-name

Name of the custom
classifier output parsing
function. If not specified,
Gst-nvinfer uses the
internal parsing function
for softmax layers.

String
parse-classifier-
func-name=-
parse_bbox_softmax

Classifier

Both

custom-network-
config

Pathname of the
configuration file for
custom networks available
in the custom interface
for creating CUDA
engines.

String

custom-network-
config=/home/-
ubuntu/-
network.config

All

Both

tlt-encoded-model
Pathname of the Transfer
Learning Toolkit (TLT)
encoded model.

String
tlt-encoded-model=-
/home/ubuntu/-
model.etlt

All

Both

tlt-model-key
Key for the TLT encoded
model.

String tlt-model-key=abc
All

Both

segmentation-
threshold

Confidence threshold for
the segmentation model
to output a valid class for
a pixel. If confidence is
less than this threshold,
class output for that pixel
is −1.

Float, ≥0.0
segmentation-
threshold=0.3

Segmentation

Both

Table 3. Gst-nvinfer plugin, [class-attrs-...] groups, supported keys

Detector or Classifier / Applicable to GIEs (Primary/Seconday)

Name Description
Type and

Range
Example
Notes

threshold Detection threshold Float, >=0 threshold=0.5
Object detector

Both

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 20

Detector or Classifier / Applicable to GIEs (Primary/Seconday)

Name Description
Type and

Range
Example
Notes

eps

Epsilon values for OpenCV
grouprectangles()
function and DBSCAN
algorithm

Float, >=0 eps=0.2
Object detector

Both

group-
threshold

Threshold value for
rectangle merging for
OpenCV
grouprectangles()
function

Integer, >=0

group-threshold=1

0 disables the
clustering
functionality

Object detector

Both

minBoxes

Minimum number of points
required to form a dense
region for DBSCAN
algorithm

Integer, ≥0

minBoxes=1

0 disables the
clustering
functionality

Object detector

Both

roi-top-offset

Offset of the RoI from the
top of the frame. Only
objects within the RoI are
output.

Integer, ≥0 roi-top-offset=200
Object detector

Both

roi-bottom-
offset

Offset of the RoI from the
bottom of the frame. Only
objects within the RoI are
output.

Integer, ≥0
roi-bottom-
offset=200

Object detector

Both

detected-min-
w

Minimum width in pixels
of detected objects to be
output by the GIE

Integer, ≥0 detected-min-w=64
Object detector

Both

detected-min-
h

Minimum height in pixels
of detected objects to be
output by the GIE

Integer, ≥0 detected-min-h=64
Object detector

Both

detected-max-
w

Maximum width in pixels
of detected objects to be
output by the GIE

Integer, ≥0

detected-max-
w=200

0 disables the
property

Object detector

Both

detected-max-
h

Maximum height in pixels
of detected objects to be
output by the GIE

Integer, ≥0
detected-max-h=200

0 disables the
property

Object detector

Both

2.1.4 Gst Properties
The values set through Gst properties override the values of properties in the
configuration file. The application does this for certain properties that it needs to set
programmatically.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 21

Table 4 describes the Gst-nvinfer plugin’s Gst properties.

Table 4. Gst-nvinfer plugin, Gst properties

Property Meaning Type and Range
Example

Notes

config-file-path
Absolute pathname of
configuration file for the Gst-
nvinfer element

String
config-file-path=-
config_infer_primary.txt

process-mode
Infer Processing Mode

1=Primary Mode
2=Secondary Mode

Integer, 1 or 2 process-mode=1

unique-id
Unique ID identifying metadata
generated by this GIE

Integer,
0 to 4,294,967,295

unique-id=1

infer-on-gie-id
See operate-on-gie-id in the
configuration file table

Integer,
0 to 4,294,967,295

infer-on-gie-id=1

infer-on-class-ids
See operate-on-class-ids in the
configuration file table

An array of colon-
separated integers
(class-ids)

infer-on-class-ids=1:2:4

model-engine-file
Absolute pathname of the pre-
generated serialized engine
file for the mode

String
model-engine-file=-
model_b1_fp32.engine

batch-size
Number of frames/objects to
be inferred together in a batch

Integer,
1 – 4,294,967,295

batch-size=4

Interval
Number of consecutive batches
to be skipped for inference

Integer, 0 to 32 interval=0

gpu-id
Device ID of GPU to use for
pre-processing/inference
(dGPU only)

Integer,
0-4,294,967,295

gpu-id=1

raw-output-file-
write

Pathname of raw inference
output file

Boolean raw-output-file-write=1

raw-output-
generated-
callback

Pointer to the raw output
generated callback function

Pointer
Cannot be set through gst-
launch

raw-output-
generated-
userdata

Pointer to user data to be
supplied with raw-output-
generated-callback

Pointer
Cannot be set through gst-
launch

output-tensor-
meta

Indicates whether to attach
tensor outputs as meta on
GstBuffer.

Boolean output-tensor-meta=0

2.1.5 Tensor Metadata
The Gst-nvinfer plugin can attach raw output tensor data generated by a TensorRT
inference engine as metadata. It is added as an NvDsInferTensorMeta in the

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 22

frame_user_meta_list member of NvDsFrameMeta for primary (full-frame) mode, or in
the obj_user_meta_list member of NvDsObjectMeta for secondary (object) mode.

To read or parse inference raw tensor data of output layers

1. Enable property output-tensor-meta, or enable the same-named attribute in the
configuration file for the Gst-nvinfer plugin.

2. When operating as primary GIE, NvDsInferTensorMeta is attached to each
frame’s (each NvDsFrameMeta object’s) frame_user_meta_list. When operating as
secondary GIE, NvDsInferTensorMeta is attached to each each NvDsObjectMeta
object’s obj_user_meta_list.

Metadata attached by Gst-nvinfer can be accessed in a GStreamer pad probe
attached downstream from the Gst-nvinfer instance.

3. The NvDsInferTensorMeta object’s metadata type is set to
NVDSINFER_TENSOR_OUTPUT_META. To get this metadata you must iterate over
the NvDsUserMeta user metadata objects in the list referenced by
frame_user_meta_list or obj_user_meta_list.

For more information about Gst-infer tensor metadata usage, see the source code in
sources/apps/sample_apps/deepstream_infer_tensor_meta-test.cpp,
provided in the DeepStream SDK samples.

2.1.6 Segmentation Metadata
The Gst-nvinfer plugin attaches the output of the segmentation model as user meta in an
instance of NvDsInferSegmentationMeta with meta_type set to
NVDSINFER_SEGMENTATION_META. The user meta is added to the
frame_user_meta_list member of NvDsFrameMeta for primary (full-frame) mode,
or the obj_user_meta_list member of NvDsObjectMeta for secondary (object)
mode.

For guidance on how to access user metadata, see User/Custom Metadata Addition
inside NvDsBatchMeta, and Tensor Metadata, above.

2.2 GST-NVTRACKER
This plugin tracks detected objects and gives each new object a unique ID.

The plugin adapts a low-level tracker library to the pipeline. It supports any low-level
library that implements the low-level API, including the three reference
implementations, the NvDCF, KLT, and IOU trackers.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 23

As part of this API, the plugin queries the low-level library for capabilities and
requirements concerning input format and memory type. It then converts input buffers
into the format requested by the low-level library. For example, the KLT tracker uses
Luma-only format; NvDCF uses NV12 or RGBA; and IOU requires no buffer at all.

The low-level capabilities also include support for batch processing across multiple
input streams. Batch processing is typically more efficient than processing each stream
independently. If a low-level library supports batch processing, that is the preferred
mode of operation. However, this preference can be overridden with the enable-
batch-process configuration option if the low-level library supports both batch and
per-stream modes.

The plugin accepts NV12/RGBA data from the upstream component and scales
(converts) the input buffer to a buffer in the format required by the low-level library,
with tracker width and height. (Tracker width and height must be specified in the
configuration file’s [tracker] section.)

The low -level tracker library is selected via the ll-lib-file configuration option in
the tracker configuration section. The selected low-level library may also require its own
configuration file, wich can be specified via the ll-config-file option.

The three reference low level libraries support different algorithms:

 The KLT tracker uses a CPU-based implementation of the Kanade Lucas Tomasi
(KLT) tracker algorithm. This library requires no configuration file.

 The Intersection of Union (IOU) tracker uses the intersection of the detector’s
bounding boxes across frames to determine the object’s unique ID. This library takes
an optional configuration file.

 The Nv-adapted Discriminative Correlation Filter (NvDCF) tracker uses a correlation
filter-based online discriminative learning algorithm, coupled with a Hungarian

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 24

algorithm for data association in multi-object tracking. This library accepts an
optional configuration file.

`

Figure 2. Gst-nvtracker inputs and outputs

2.2.1 Inputs and Outputs
This section summarizes the inputs, outputs, and communication facilities of the Gst-
nvtracker plugin.

 Inputs

● Gst Buffer (batched)
● NvDsBatchMeta

Formats supported are NV12 and RGBA.

 Control parameters
● tracker-width
● tracker-height
● gpu-id (for dGPU only)
● ll-lib-file
● ll-config-file
● enable-batch-process

 Output

● Gst Buffer (provided as an input)
● NvDsBatchMeta (Updated by Gst-nvtrackerwith tracked object coordinates

and object IDs)

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 25

2.2.2 Features
Table 5 summarizes the features of the plugin.

Table 5. Features of the Gst-nvtracker plugin

Feature Description Release

Configurable tracker width/height Frames are internally scaled to specified
resolution for tracking

DS2.0

Multi-stream CPU/GPU tracker Supports tracking on batched buffers
consisting of frames from different sources

DS2.0

NV12 Input — DS2.0

RGBA Input — DS 3.0

Allows low FPS tracking IOU tracker DS 3.0

Configurable GPU device User can select GPU for internal
scaling/color format conversions and
tracking

DS2.0

Dynamic addition/deletion of sources at
runtime

Supports tracking on new sources added at
runtime and cleanup of resources when
sources are removed

DS 3.0

Support for user’s choice of low-level
library

Dynamically loads user selected low-level
library

DS 4.0

Support for batch processing Supports sending frames from multiple
input streams to the low-level library as a
batch if the low-level library advertises
capability to handle that

DS 4.0

Support for multiple buffer formats as
input to low-level library

Converts input buffer to formats requested
by the low-level library, for up to 4 formats
per frame

DS 4.0

2.2.3 Gst Properties
Table 6 describes the Gst properties of the Gst-nvtracker plugin.

Table 6. Gst-nvtracker plugin, Gst Properties

Property Meaning Type and Range
Example
Notes

tracker-width
Frame width at which the
tracker is to operate, in pixels.

Integer,
0 to 4,294,967,295

tracker-width=640

tracker-height
Frame height at which the
tracker is to operate, in pixels.

Integer,
0 to 4,294,967,295

tracker-height=368

ll-lib-file
Pathname of the low-level
tracker library to be loaded by
Gst-nvtracker.

String
ll-lib-file=/opt/nvidia/-
deepstream/-
libnvds_nvdcf.so

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 26

Property Meaning Type and Range
Example
Notes

ll-config-file
Configuration file for the low-
level library if needed.

Path to
configuration file

ll-config-file=/opt/-
nvidia/deepstream/-
tracker_config.yml

gpu-id

ID of the GPU on which
device/unified memory is to be
allocated, and with which
buffer copy/scaling is to be
done. (dGPU only.)

Integer,
0 to 4,294,967,295

gpu-id=1

enable-batch-
process

Enables/disables batch
processing mode. Only
effective if the low-level
library supports both batch and
per-stream processing.
(Optional.)

Boolean enable-batch-process=1

2.2.4 Custom Low-Level Library
To write a custom low-level tracker library, implement the API defined in
sources/includes/nvdstracker.h. Parts of the API refer to
sources/includes/nvbufsurface.h.

The names of API functions and data structures are prefixed with NvMOT, which stands
for NVIDIA Multi-Object Tracker.

This is the general flow of the API from a low-level library perspective:

1. The first required function is:

NvMOTStatus NvMOT_Query(
 uint16_t customConfigFilePathSize,
 char* pCustomConfigFilePath,
 NvMOTQuery *pQuery
);

The plugin uses this function to query the low-level library’s capabilities and
requirements before it starts any processing sessions (contexts) with the library.
Queried properties include the input frame memory format (e.g., RGBA or NV12),
memory type (e.g., NVIDIA® CUDA® device or CPU mapped NVMM), and support
for batch processing.

The plugin performs this query once, and its results apply to all contexts established
with the low-level library. If a low-level library configuration file is specified, it is
provided in the query for the library to consult.

The query reply structure NvMOTQuery contains the following fields:

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 27

● NvMOTCompute computeConfig: Reports compute targets supported by the
library. The plugin currently only echoes the reported value when initiating a
context.

● uint8_t numTransforms: The number of color formats required by the low-
level library. The valid range for this field is 0 to NVMOT_MAX_TRANSFORMS. Set
this to 0 if the library does not require any visual data. Note that 0 does not mean
that untransformed data will be passed to the library.

● NvBufSurfaceColorFormat colorFormats[NVMOT_MAX_TRANSFORMS]:
The list of color formats required by the low-level library. Only the first
numTransforms entries are valid.

● NvBufSurfaceMemType memType: Memory type for the transform buffers.
The plugin allocates buffers of this type to store color and scale-converted
frames, and the buffers are passed to the low-level library for each frame. Note
that support is currently limited to the following types:

dGPU: NVBUF_MEM_CUDA_PINNED
NVBUF_MEM_CUDA_UNIFIED

Jetson: NVBUF_MEM_SURFACE_ARRAY

● bool supportBatchProcessing: True if the low-library support batch
processing across multiple streams; otherwise false.

2. After the query, and before any frames arrive, the plugin must initialize a context
with the low-level library by calling:

NvMOTStatus NvMOT_Init(
 NvMOTConfig *pConfigIn,
 NvMOTContextHandle *pContextHandle,
 NvMOTConfigResponse *pConfigResponse
);

The context handle is opaque outside the low-level library. In batch processing
mode, the plugin requests a single context for all input streams. In per-stream
processing mode, the plugin makes this call for each input stream so that each
stream has its own context.

This call includes a configuration request for the context. The low-level library has
an opportunity to:

● Review the configuration, and create a context only if the request is accepted. If
any part of the configuration request is rejected, no context is created, and the
return status must be set to NvMOTStatus_Error. The pConfigResponse
field can optionally contain status for specific configuration items.

● Pre-allocate resources based on the configuration.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 28

Note: • In the NvMOTMiscConfig structure, the logMsg field is currently
unsupported and uninitialized.

• The customConfigFilePath pointer is only valid during the call.

3. Once a context is initialized, the plugin sends frame data along with detected object
bounding boxes to the low-level library each time it receives such data from
upstream. It always presents the data as a batch of frames, although the batch
contains only a single frame in per-stream processing contexts. Each batch is
guaranteed to contain at most one frame from each stream.

The function call for this processing is:

NvMOTStatus NvMOT_Process(NvMOTContextHandle contextHandle,
 NvMOTProcessParams *pParams,
 NvMOTTrackedObjBatch *pTrackedObjectsBatch
);

Where:

● pParams is a pointer to the input batch of frames to process. The structure
contains a list of one or more frames, with at most one frame from each stream.
No two frame entries have the same streamID. Each entry of frame data
contains a list of one or more buffers in the color formats required by the low-
level library, as well as a list of object descriptors for the frame. Most libraries
require at most one color format.

● pTrackedObjectsBatch is a pointer to the output batch of object descriptors.
It is pre-populated with a value for numFilled, the number of frames included
in the input parameters.

If a frame has no output object descriptors, it is still counted in numFilled and
is represented with an empty list entry (NvMOTTrackedObjList). An empty list
entry has the correct streamID set and numFilled set to 0.

Note: The output object descriptor NvMOTTrackedObj contains a pointer to the
associated input object, associatedObjectIn. You must set this to the
associated input object only for the frame where the input object is
passed in. For example:

• Frame 0: NvMOTObjToTrack X is passed in. The tracker assigns it ID 1,
and the output object associatedObjectIn points to X.

• Frame 1: Inference is skipped, so there is no input object. The tracker
finds object 1, and the output object associatedObjectIn points to
NULL.

• Frame 2: NvMOTObjToTrack Y is passed in. The tracker identifies it as
object 1. The output object 1 has associatedObjectIn pointing to Y.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 29

4. When all processing is complete, the plugin calls this function to clean up the
context:

void NvMOT_DeInit(NvMOTContextHandle contextHandle);

2.2.5 Low-Level Tracker Library Comparisons and
Tradeoffs

DeepStream 4.0 provides three low-level tracker libraries which have different resource
requirements and performance characteristics, in terms of accuracy, robustness, and
efficiency, allowing you to choose the best tracker based on you use case. See the
following table for comparison.

Table 7. Tracker library comparison

Tracker

Computational
Load

Pros Cons Best Use Cases GPU CPU

IOU X
Very
Low

Light-weight

No visual features for
matching, so prone to
frequent tracker ID switches
and failures.

Not suitable for fast moving
scene.

Objects are sparsely
located, with distinct
sizes.

Detector is expected to
run every frame or very
frequently (ex. every
alternate frame).

KLT X High
Works reasonably
well for simple
scenes

High CPU utilization.

Susceptible to change in the
visual appearance due to
noise and perturbations,
such as shadow, non-rigid
deformation, out-of-plane
rotation, and partial
occlusion.

Cannot work on objects with
low textures.

Objects with strong
textures and simpler
background.

Ideal for high CPU
resource availability.

NvDCF Medium Low

Highly robust
against partial
occlusions,
shadow, and
other transient
visual changes.

Less frequent ID
switches.

Slower than KLT and IOU due
to increased computational
complexity.

Reduces the total number of
streams processed.

Multi-object, complex
scenes with partial
occlusion.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 30

2.2.6 NvDCF Low-Level Tracker
NvDCF is a reference implementation of the custom low-level tracker library that
supports multi-stream, multi-object tracking in a batch mode using a discriminative
correlation filter (DCF) based approach for visual object tracking and a Hungarian
algorithm for data association.

NvDCF preallocates memory during initialization based on:

 The number of streams to be processed
 The maximum number of objects to be tracked per stream (denoted as

maxTargetsPerStream in a configuration file for the NvDCF low-level library,
tracker_config.yml)

Once the number of objects being tracked reaches the configured maximum value, any
new objects will be discarded until resources for some existing tracked objects are
released. Note that the number of objects being tracked includes objects that are tracked
in Shadow Mode (described below). Therefore, NVIDIA recommends that you make
maxTargetsPerStream large enough to accommodate the maximum number of
objects of interest that may appear in a frame, as well as the past objects that may be
tracked in shadow mode. Also, note that GPU memory usage by NvDCF is linearly
proportional to the total number of objects being tracked, which is (number of video
streams) × (maxTargetsPerStream).

DCF-based trackers typically apply an exponential moving average for temporal
consistency when the optimal correlation filter is created and updated. The learning rate
for this moving average can be configured as filterLr. The standard deviation for
Gaussian for desired response when creating an optimal DCF filter can also be
configured as gaussianSigma.

DCF-based trackers also define a search region around the detected target location large
enough for the same target to be detected in the search region in the next frame. The
SearchRegionPaddingScale property determines the size of the search region as a
multiple of the target’s bounding box size. For example, with
SearchRegionPaddingScale: 3, the size of the search region would be:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖ℎ = 𝑤𝑤 + 3 ∗ (𝑤𝑤 ∗ ℎ)1/2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 = ℎ + 3 ∗ (𝑤𝑤 ∗ ℎ)1/2

Where w and h are the width and height of the target’s bounding box.

Once the search region is defined for each target, the image patches for the search
regions are cropped and scaled to a predefined feature image size, then the visual
features are extracted. The featureImgSizeLevel property defines the size of the
feature image. A lower value of featureImgSizeLevel causes NvDCF to use a
smaller feature size, increasing GPU performance at the cost of accuracy and robustness.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 31

Consider the relationship between featureImgSizeLevel and
SearchRegionPaddingScale when configuring the parameters. If
SearchRegionPaddingScale is increased while featureImgSizeLevel is fixed,
the number of pixels corresponding to the target in the feature images is effectively
decreased.

The minDetectorConfidence property sets confidence level below which object
detection results are filtered out.

To achieve robust tracking, NvDCF employs two approaches to handling false alarms
from PGIE detectors: late activation for handling false positives and shadow tracking
for false negatives. Whenever a new object is detected a new tracker is instantiated in
temporary mode. It must be activated to be considered as a valid target. Before it is
activated it undergoes a probationary period, defined by probationAge, in temporary
mode. If the object is not detected in more than earlyTerminationAge consecutive
frames during the period, the tracker is terminated early.

Once the tracker for an object is activated, it is put into inactive mode only when (1) no
matching detector input is found during the data association, or (2) the tracker
confidence falls below a threshold defined by minTrackerConfidence. The per-object
tracker will be put into active mode again if a matching detector input is found. The
length of period during which a per-object tracker is in inactive mode is called the
shadow tracking age; if it reaches the threshold defined by maxShadowTrackingAge,
the tracker is terminated. If the bounding box of an object being tracked goes partially
out of the image frame and so its visibility falls below a predefined threshold defined by
minVisibiilty4Tracking, the tracker is also terminated.

Note that probationAge is counted against a clock that is incremented at every frame,
while maxShadowTrackingAge and earlyTerminationAge are counted against a
clock incremented only when the shadow tracking age is incremented. When the PGIE
detector runs on every frame (i.e., interval=0 in the [primary-gie] section of the
deepstream-app configuration file), for example, all the ages are incremented based
on the same clock. If the PGIE detector runs on every other frame (i.e., interval is set
to 1 in [primary-gie]) and probationAge: 12, it will yield almost the same results
as interval=0 with probationAge: 24, because shadowTrackingAge would be
incremented at a half speed compared to the case with PGIE interval=0.

Table 8 summaries the configuration parameters for an NvDCF low-level tracker.

Table 8. NvDCF low-level tracker, configuration properties

Property Meaning
Type and

Range
Example
Notes

maxTargetsPerStream
Max number of targets to track per
stream

Integer,
0 to 65535

maxTargetsPerStrea
m: 30

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 32

Property Meaning
Type and

Range
Example
Notes

filterLr
Learning rate for DCF filter in
exponential moving average

Float,
0.0 to 1.0

filterLr: 0.11

gaussianSigma
Standard deviation for Gaussian for
desired response

Float,
>0.0

gaussianSigma: 0.75

minDetectorConfidence
Minimum detector confidence for a
valid object

Float,
-inf to inf

minDetectorConfide
nce: 0.0

minTrackerConfidence
Minimum detector confidence for a
valid target

Float,
0.0 to 1.0

minTrackerConfiden
ce: 0.6

featureImgSizeLevel Size of a feature image
Integer,
1 to 5

featureImgSizeLevel
: 1

SearchRegionPaddingScale Search region size
Integer,
1 to 3

SearchRegionPaddin
gScale: 3

maxShadowTrackingAge Maximum length of shadow tracking Integer, ≥0
maxShadowTracking
Age: 9

probationAge Length of probationary period Integer, ≥0 probationAge: 12

earlyTerminationAge Early termination age Integer, ≥0
earlyTerminationAg
e: 2

minVisibiilty4Tracking
Minimum visibility of target
bounding box to be considered valid

Float,
0.0 to 1.0

minVisibiilty4Tracki
ng: 0.1

2.3 GST-NVSTREAMMUX
The Gst-nvstreammux plugin forms a batch of frames from multiple input sources.
When connecting a source to nvstreammux (the muxer), a new pad must be requested
from the muxer using gst_element_get_request_pad() and the pad template
"sink_%u". For more information, see link_element_to_streammux_sink_pad()
in the DeepStream app source code.

The muxer forms a batched buffer of batch-size frames. (batch-size is specified
using the gst object property.)

If the muxer’s output format and input format are the same, the muxer forwards the
frames from that source as a part of the muxer’s output batched buffer. The frames are
returned to the source when muxer gets back its output buffer. If the resolution is not
the same, the muxer scales frames from the input into the batched buffer and then
returns the input buffers to the upstream component.

The muxer pushes the batch downstream when the batch is filled or the batch formation
timeout batched-pushed-timeout is reached. The timeout starts running when the
first buffer for a new batch is collected.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 33

The muxer uses a round-robin algorithm to collect frames from the sources. It tries to
collect an average of (batch-size/num-source) frames per batch from each source
(if all sources are live and their frame rates are all the same). The number varies for each
source, though, depending on the sources’ frame rates.

The muxer outputs a single resolution (i.e. all frames in the batch have the same
resolution). This resolution can be specified using the width and height properties.
The muxer scales all input frames to this resolution. The enable-padding property
can be set to true to preserve the input aspect ratio while scaling by padding with black
bands.

For DGPU platforms, the GPU to use for scaling and memory allocations can be
specified with the gpu-id property.

For each source that needs scaling to the muxer’s output resolution, the muxer creates a
buffer pool and allocates four buffers each of size:

output-width * output-height * f

Where f is 1.5 for NV12 format, or 4.0 for RGBA. The memory type is determined by the
nvbuf-memory-type property.

Set the live-source property to true to inform the muxer that the sources are live. In
this case the muxer attaches the PTS of the last copied input buffer to the batched Gst
Buffer’s PTS. If the property is set to false, the muxer calculates timestamps based on
the frame rate of the source which first negotiates capabilities with the muxer.

The muxer attaches an NvDsBatchMeta metadata structure to the output batched
buffer. This meta contains information about the frames copied into the batch (e.g.
source ID of the frame, original resolutions of the input frames, original buffer PTS of
the input frames). The source connected to the Sink_N pad will have pad_index N in
NvDsBatchMeta.

The muxer supports addition and deletion of sources at run time. When the muxer
receives a buffer from a new source, it sends a GST_NVEVENT_PAD_ADDED event. When
a muxer sink pad is removed, the muxer sends a GST_NVEVENT_PAD_DELETED event.
Both events contains the source ID of the source being added or removed (see
sources/includes/gst-nvevent.h). Downstream elements can reconfigure when
they receive these events. Additionally, the muxer also sends a
GST_NVEVENT_STREAM_EOS to indicate EOS from the source.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 34

Figure 3. The Gst-nvstreammux plugin

2.3.1 Inputs and Outputs
 Inputs

● NV12/RGBA buffers from an arbitrary number of sources

 Control Parameters
● batch-size
● batched-push-timeout
● width
● height
● enable-padding
● gpu-id (dGPU only)
● live-source
● nvbuf-memory-type

 Output

● NV12/RGBA batched buffer
● GstNvBatchMeta (meta containing information about individual frames in the

batched buffer)

2.3.2 Features
Table 9 summarizes the features of the plugin.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 35

Table 9. Features of the Gst-nvstreammux plugin

Feature Description Release

Configurable batch size — DS 2.0

Configurable batching timeout — DS 2.0

Allows multiple input streams with
different resolutions

—
DS 2.0

Allows multiple input streams with
different frame rates

—
DS 2.0

Scales to user-determined resolution in
muxer

—
DS 2.0

Scales while maintaining aspect ratio with
padding

—
DS 2.0

Multi-GPU support — DS 2.0

Input stream DRC support — DS 3.0

User-configurable CUDA memory type
(Pinned/Device/Unified) for output buffers

—
DS 3.0

Custom message to inform application of
EOS from individual sources

—
DS 3.0

Supports adding and deleting run time
sinkpads (input sources) and sending
custom events to notify downstream
components

—

DS 3.0

Supports RGBA data handling at output — DS 3.0

2.3.3 Gst Properties
Table 10 describes the Gst-nvstreammux plugin’s Gst properties.

Table 10. Gst-nvstreammux plugin, Gst properties

Property Meaning Type and Range
Example
Notes

batch-size
Maximum number of frames in
a batch.

Integer,
0 to 4,294,967,295

batch-size=30

batched-push-
timeout

Timeout in microseconds to
wait after the first buffer is
available to push the batch
even if a complete batch is not
formed.

Signed integer,
-1 to 2,147,483,647

batched-push-timeout=
40000

40 msec

width
If non-zero, muxer scales input
frames to this width.

Integer,
0 to 4,294,967,295

width=1280

height
If non-zero, muxer scales input
frames to this height.

Integer,
0 to 4,294,967,295

height=720

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 36

Property Meaning Type and Range
Example
Notes

enable-padding
Maintains aspect ratio by
padding with black borders
when scaling input frames.

Boolean enable-padding=1

gpu-id

ID of the GPU on which to
allocate device or unified
memory to be used for copying
or scaling buffers. (dGPU only.)

Integer,
0 to 4,294,967,295

gpu-id=1

live-source
Indicates to muxer that sources
are live, e.g. live feeds like an
RTSP or USB camera.

Boolean live-source=1

nvbuf-memory-
type

Type of memory to be
allocated.

For dGPU:
0 (nvbuf-mem-default):

Default memory, cuda-
device

1 (nvbuf-mem-cuda-
pinned): Pinned/Host CUDA
memory

2 (nvbuf-mem-cuda-device)
Device CUDA memory

3 (nvbuf-mem-cuda-
unified): Unified CUDA
memory

For Jetson:
0 (nvbuf-mem-default):

Default memory, surface
array

4 (nvbuf-mem-surface-
array): Surface array
memory

Integer, 0-4 nvbuf-memory-type=1

2.4 GST-NVSTREAMDEMUX
The Gst-nvstreamdemux plugin demuxes batched frames into individual buffers. It
creates a separate Gst Buffer for each frame in the batch. It does not copy the video
frames. Each Gst Buffer contains a pointer to the corresponding frame in the batch.

The plugin pushes the unbatched Gst Buffer objects downstream on the pad
corresponding to each frame’s source. The plugin gets this information through the
NvDsBatchMeta attached by Gst-nvstreammux. The original buffer timestamps
(PTS) of individual frames are also attached back to the Gst Buffer.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 37

Since there is no frame copy, the input Gst Buffer is not returned upstream immediately.
When all of the non-batched Gst Buffer objects demuxed from an input batched Gst
Buffer are returned to the demuxer by the downstream component, the input batched
Gst Buffer is returned upstream.

The demuxer does not scale the buffer back to the source’s original resolution even if
Gst-nvstreammux has scaled the buffers.

Figure 4. The Gst-nvstreamdemux plugin

2.4.1 Inputs and Outputs
 Inputs

● Gst Buffer (batched)
● NvDsBatchMeta
● Other meta

 Control parameters

● None

 Output

● Gst Buffer (non-batched, single source)
● Meta related to each Gst Buffer source

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 38

2.5 GST-NVMULTISTREAMTILER
The Gst-nvmultistreamtiler plugin composites a 2D tile from batched buffers. The
plugin accepts batched NV12/RGBA data from upstream components. The plugin
composites the tile based on stream IDs, obtained from NvDsBatchMeta and
NvDsFrameMeta in row-major order (starting from source 0, left to right across the top
row, then across the next row). Each source frame is scaled to the corresponding location
in the tiled output buffer. The plugin can reconfigure if a new source is added and it
exceeds the space allocated for tiles. It also maintains a cache of old frames to avoid
display flicker if one source has a lower frame rate than other sources.

Figure 5. The Gst-nvmultistreamtiler plugin

2.5.1 Inputs and Outputs
 Inputs

● Gst Buffer batched buffer
● NvDsBatchMeta with Gst Buffer batched (batch is one or more buffers)

Formats supported: NV12/RGBA

 Control Parameters
● rows
● columns
● width
● height
● gpu-id (dGPU only)
● show-source
● nvbuf-memory-type
● custom-tile-config

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 39

 Output

● Gst Buffer (single frame) with composited input frames
● Transformed metadata (NvDsBatchMeta)

Formats supported: NV12/RGBA

2.5.2 Features
Table 11 summarizes the features of the plugin.

Table 11. Features of the Gst-nvmultistreamtiler plugin

Feature Description Release

Composites a 2D tile of input buffers — DS 2.0

Scales bounding box with metadata
coordinates according to scaling and
position in tile

— DS 2.0

Multi-GPU support — DS 2.0

Shows expanded preview for a single source — DS 2.0

User configurable CUDA memory type
(Pinned/Device/Unified) for output buffers

— DS 3.0

Reconfigures 2D tile for new sources added
at runtime

— DS 3.0

2.5.3 Gst Properties
Table 12 describes the Gst-nvmultistreamtiler plugin’s Gst properties.

Table 12. Gst-nvmultistreamtiler plugin, Gst properties

Property Meaning Type and Range
Example
Notes

Rows
Number of rows in 2D tiled
output

Integer,
1 to 4,294,967,295

row=2

Columns
Number of columns in 2D tiled
output

Integer,
1 to 4,294,967,295

columns=2

Width
Width of 2D tiled output in
pixels

Integer, 16 to
4,294,967,295

width=1920

Height
Height of 2D tiled output in
pixels

Integer, 16 to
4,294,967,295

height=1080

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 40

Property Meaning Type and Range
Example
Notes

show-source

Scale and show frames from a
single source.

-1: composite and show all
sources

For values ≥0, frames from
that source are zoomed.

Signed integer, −1
to 2,147,483,647

show-source=2

gpu-id

ID of the GPU on which
device/unified memory is to be
allocated, and in which buffers
are copied or scaled. (dGPU
only.)

Integer,
0 to 4,294,967,295

gpu-id=1

nvbuf-memory-
type

Type of CUDA memory to be
allocated.

 For dGPU:
0 (nvbuf-mem-default):

Default memory, cuda-
device

1 (nvbuf-mem-cuda-
pinned): Pinned/Host CUDA
memory

2 (nvbuf-mem-cuda-device)
Device CUDA memory

3 (nvbuf-mem-cuda-
unified): Unified CUDA
memory

For Jetson:
0 (nvbuf-mem-default):

Default memory, surface
array

4 (nvbuf-mem-surface-
array): Surface array
memory

Integer, 0-4 nvbuf-memory-type=1

custom-tile-config

Custom tile position and
resolution. Can be configured
programmatically for all or
none of the sources.

Values of enum
CustomTileConf
ig

Reserved for future use.

Default: null.

2.6 GST-NVDSOSD
This plugin draws bounding boxes, text, and region of interest (RoI) polygons.
(Polygons are presented as a set of lines.)

The plugin accepts an RGBA buffer with attached metadata from the upstream
component. It draws bounding boxes, which may be shaded depending on the

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 41

configuration (e.g. width, color, and opacity) of a given bounding box. It also draws text
and RoI polygons at specified locations in the frame. Text and polygon parameters are
configurable through metadata.

Figure 6. The Gst-nvdsosd plugin

2.6.1 Inputs and Outputs
 Inputs

● RGBA buffer
● NvDsBatchMeta (holds NvDsFrameMeta consisting of bounding boxes, text

parameters, and lines parameters)
● NvDsLineMeta (RoI polygon)

 Control parameters

● gpu-id (dGPU only)
● display-clock
● clock-font
● clock-font-size
● x-clock-offset
● y-clock-offset
● clock-color

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 42

 Output

● RGBA buffer modified in place to overlay bounding boxes, texts, and polygons
represented in the metadata

2.6.2 Features
Table 13 summarizes the features of the plugin.

Table 13. Features of the Gst-nvdsosd plugin

Feature Description Release

Supports drawing polygon lines — DS 3.0

Supports drawing text using Pango and
Cairo libraries

— DS 2.0

VIC (Jetson only) and GPU support for
drawing bounding boxes

— DS 2.0

2.6.3 Gst Properties
Table 14 describes the Gst properties of the Gst-nvdsosd plugin.

Table 14. Gst-nvdsosd plugin, Gst Properties

Property Meaning Type and Range
Example
Notes

gpu-id
Device ID of the GPU to be used
for operation (dGPU only)

Integer,
0 to 4,294,967,295

gpu-id=0

display-clock
Indicates whether to display
system clock

Boolean display-clock=0

clock-font
Name of Pango font to use for
the clock

String clock-font=Arial

clock-font-size Font size to use for the clock Integer, 0-60 clock-font-size=2

x-clock-offset X offset of the clock
Integer,
0 to 4,294,967,295

x-clock-offset=100

y-clock-offset Y offset of the clock
Integer,
0 to 4,294,967,295

y-clock-offset=50

clock-color
Color of the clock to be set
while display, in the order

0xRGBA

Integer,
0 to 4,294,967,295

clock-color=0xff0000ff

(Clock is red with
alpha=1)

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 43

2.7 GST-NVVIDEOCONVERT
This plugin performs video color format conversion. It accepts NVMM memory as well
as RAW (memory allocated using calloc() or malloc()), and provides NVMM or
RAW memory at the output.

Figure 7. The Gst-nvvideoconvert plugin

2.7.1 Inputs and Outputs
 Inputs

● Gst Buffer batched buffer
● NvDsBatchMeta

Format: NV12, I420, BGRx, RGBA (NVMM/RAW)

 Control parameters

● gpu-id (dGPU only)
● nvbuf-memory-type
● src-crop
● dst-crop
● interpolation-method
● compute-hw

 Output

● Gst Buffer
● NvDsBatchMeta
● Format: NV12, I420, BGRx, RGBA (NVMM/RAW)

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 44

2.7.2 Features
This plugin supports batched scaling and conversion in single call for NVMM to
NVMM, RAW to NVMM, and NVMM to RAW buffer types. It does not support RAW to
RAW conversion. The plugin supports cropping of the input and output frames.

2.7.3 Gst Properties
Table 15 describes the Gst properties of the Gst-nvvideoconvert plugin.

Table 15. Gst-nvvideoconvert plugin, Gst Properties

Property Meaning Type and Range
Example
Notes

nvbuf-memory-
type

Type of memory to be
allocated.

For dGPU:
0 (nvbuf-mem-default):

Default memory, cuda-
device

1 (nvbuf-mem-cuda-pinned):
Pinned/Host CUDA memory

2 (nvbuf-mem-cuda-device)
Device CUDA memory

3 (nvbuf-mem-cuda-
unified): Unified CUDA
memory

For Jetson:
0 (nvbuf-mem-default):

Default memory, surface array
4 (nvbuf-mem-surface-
array): Surface array memory

enum
GstNvVidConvBufM
emoryType

src-crop
Pixel location:
left:top:width:height

String 20; 40; 150; 100

dst-crop
Pixel location:
left:top:width:height

String 20; 40; 150; 100

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 45

Property Meaning Type and Range
Example
Notes

interpolation-
method

Interpolation method.

0: Nearest

1: Bilinear

2: Algo-1 (GPU—Cubic, VIC—
5 Tap)

3: Algo-2 (GPU—Super, VIC—
10 Tap)

4: Algo-3 (GPU—LanzoS, VIC—
Smart)

5: Algo-4 (GPU—Ignored, VIC—
Nicest)

6: Default (GPU—Nearest, VIC—
Nearest)

enum
GstInterpolationMe
thod

interpolation-method=1

Default value is 6.

compute-hw

Type of computing hardware

0: Default (GPU for gDPU, VIC
for Jetson)

1: GPU

2: VIC

enum
GstComputeHW

compute-hw=0

Default value is 0.

gpu-id
Device ID of GPU to use for
format conversion

Integer,
0 to 4,294,967,295

gpu-id=0

output-buffers
Number of Output Buffers for
the buffer pool

Unsigned integer,
1 to 4,294,967,295

output-buffers=4

2.8 GST-NVDEWARPER
This plugin dewarps 360° camera input. It accepts gpu-id and config-file as
properties. Based on the selected configuration of surfaces, it can generate a maximum
of four dewarped surfaces. It currently supports dewarping of two projection types,
NVDS_META_SURFACE_FISH_PUSHBROOM and
NVDS_META_SURFACE_FISH_VERTCYL. Both of these are used in 360-D use case.

The plugin performs its function in these steps:

1. Reads the configuration file and creates a vector of surface configurations. It
supports a maximum of four dewarp surface configurations.

2. Receives the 360-D frame from the decoder; based on the configuration, generates up
to four dewarped surfaces.

3. Scales these surfaces down to network / selected dewarper output resolution using
NPP APIs.

4. Pushes a buffer containing the dewarped surfaces to the downstream component.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 46

Figure 8. The Gst-nvdewarper plugin

2.8.1 Inputs and Outputs
 Inputs

● A buffer containing a 360-D frame in RGBA format

 Control parameters

● gpu-id; selects the GPU ID (dGPU only)
● config-file, containing the pathname of the dewarper configuration file

 Output

● Dewarped RGBA surfaces
● NvDewarperSurfaceMeta with information associated with each surface

(projection_type, surface_index, and source_id), and the number of
valid dewarped surfaces in the buffer (num_filled_surfaces)

2.8.2 Features
Table 16 summarizes the features of the plugin.

Table 16. Features of the Gst-nvdewarper plugin

Feature Description Release

Configure number of dewarped surfaces
Supports a maximum of four dewarper
surfaces.

DS 3.0

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 47

Feature Description Release

Configure per-surface projection type
Currently supports FishPushBroom and
FishVertRadCyd projections. DS 3.0

Configure per-surface index
Surface index to be set in case of multiple
surfaces having same projection type.

DS 3.0

Configure per-surface width and height DS 3.0

Configure per-surface dewarping
parameters

Per-surface configurable yaw, roll, pitch,
top angle, bottom angle, and focal length
dewarping parameters.

DS 3.0

Configurable dewarper output resolution

Creates a batch of up to four surfaces of a
specified output resolution; internally
scales all dewarper surfaces to output
resolution.

DS 3.0

Configurable NVDS CUDA memory type — DS 3.0

Multi-GPU support — DS 3.0

Aisle view CSV calibration file support
If set, properties in the [surface<n>]
group are ignored.

DS 3.0

Spot view CSV calibration file support
If set, properties in the [surface<n>]
group are ignored.

DS 3.0

Configure source id
Sets the source ID information in the
NvDewarperSurfaceMeta. DS 4.0

Configurable number of output buffers
Number of allocated output dewarper
buffers. Each buffer contains four
dewarped output surfaces.

DS 4.0

2.8.3 Configuration File Parameters
The configuration file specifies per-surface configuration parameters in [surface<n>]
groups, where <n> is an integer from 0 to 3, representing dewarped surfaces 0 to 3.

Table 17. Gst-nvdewarper plugin, configuration file, [surface<n>] parameters

Property Meaning Type and Range
Example
Notes

output-width
Scale dewarped surfaces to
specified output width

Integer, >0 output-width=960

output-height
Scale dewarped surfaces to
specified output height

Integer, >0 output-height=752

dewarp-dump-
frames

Number of dewarped frames to
dump.

Integer, >0 dewarp-dump-frames=10

projection-type

Selects projection type.
Supported types are:

1: PushBroom

2: VertRadCyl

Integer, 1 or 2 projection-type=1

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 48

Property Meaning Type and Range
Example
Notes

surface-index
An index that distinguishes
surfaces of the same
projection type.

Integer, ≥0 surface-index=0

width Dewarped surface width. Integer, >0 width=3886

height Dewarped surface height. Integer, >0 height=666

top-angle
Top field of view angle, in
degrees.

Float,
−180.0 to 180.0

top-angle=0

bottom-angle
Bottom field of view angle, in
degrees.

Float,
−180.0 to 180.0

bottom-angle=0

pitch
Viewing parameter pitch in
degrees.

Float,
0.0 to 360.0

pitch=90

yaw
Viewing parameter yaw in
degrees.

Float,
0.0 to 360.0

yaw=0

roll
Viewing parameter roll in
degrees.

Float,
0.0 to 360.0

roll=0

focal-length
Focal length of camera lens, in
pixels per radian.

Float, >0.0 focal-length=437

aisle-calibration-
file

Pathname of the configuration
file for aisle view. Set for the
360-D application only.

If set, properties in the
[surface<n>] group are
ignored.

The configuration file is a CSV
file with columns like
sensorId and cameraId, and
dewarping parameters like
top-angle, bottom-angle,
yaw, roll, pitch, focal-
length, width, and height.

String
aisle-calibration-file=-
csv_files/nvaisle_2M.csv

spot-calibration-
file

Pathname of the configuration
file for spot view. Set for the
360-D application only.

If set, properties in the
[surface<n>] group are
ignored.

The configuration file is a CSV
file with columns like
sensorId and cameraId, and
dewarping parameters like
top-angle, bottom-angle,
yaw, roll, pitch, focal-
length, width, and height.

String

spot-calibration-file=-
csv_files/nvspot_2M.csv

For an example of a spot
view configuration file, see
the file in the example
above.

This plugin can be tested with the one of the following pipelines.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 49

 For dGPU:

gst-launch-1.0 filesrc location=streams/sample_cam6.mp4 ! qtdemux !
h264parse ! nvv4l2decoder ! nvvideoconvert ! nvdewarper config-
file=config_dewarper.txt source-id=6 nvbuf-memory-type=3 ! m.sink_0
nvstreammux name=m width=960 height=752 batch-size=4 num-surfaces-
per-frame=4 ! nvmultistreamtiler ! nveglglessink

 For Jetson:

gst-launch-1.0 filesrc location= streams/sample_cam6.mp4 ! qtdemux !
h264parse ! nvv4l2decoder ! nvvideoconvert ! nvdewarper config-
file=config_dewarper.txt source-id=6 ! m.sink_0 nvstreammux name=m
width=960 height=752 batch-size=4 num-surfaces-per-frame=4 !
nvmultistreamtiler ! nvegltransform ! nveglglessink

The Gst-nvdewarper plugin always outputs a GStreamer buffer which contains the
maximum number of dewarped surfaces (currently four surfaces are supported). These
dewarped surfaces are scaled to the output resolution (output-width × output-
height) set in the configuration file located at configs/deepstream-
app/config_dewarper.txt.

Also, the batch size to be set on Gst-nvstreammux must be a multiple of the maximum
number of dewarped surfaces (currently four).

2.8.4 Gst Properties
Table 18 describes the Gst-nvdewarper plugin’s Gst properties.

Table 18. Gst-nvdewarper plugin, Gst properties

Property Meaning Type and Range
Example and

Notes

config-file
Absolute pathname of configuration
file for the Gst-nvdewarper
element

String
config-file= configs/
deepstream-app/
config_dewarper.txt

gpu-id
Device ID of the GPU to be used
(dGPU only)

Integer,
0 to 4,294,967,295

gpu-id=0

source-id Source ID, e.g. camera ID
Integer,
0 to 4,294,967,295

source-id=6

num-output-
buffers

Number of output buffers to be
allocated

Integer,
0 to 4,294,967,295

num-output-buffers=4

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 50

Property Meaning Type and Range
Example and

Notes

nvbuf-memory-
type

Type of memory to be allocated.

For dGPU:
0 (nvbuf-mem-default): Default

memory, cuda-device

1 (nvbuf-mem-cuda-pinned):
Pinned/Host CUDA memory

2 (nvbuf-mem-cuda-device)
Device CUDA memory

3 (nvbuf-mem-cuda-unified):
Unified CUDA memory

For Jetson:
0 (nvbuf-mem-default): Default

memory, surface array
4 (nvbuf-mem-surface-array):

Surface array memory

Integer, 0 to 4 nvbuf-memory-type=3

2.9 GST-NVOF
NVIDIA GPUs, starting with the dGPU Turing generation and Jetson Xavier generation,
contain a hardware accelerator for computing optical flow. Optical flow vectors are
useful in various use cases such as object detection and tracking, video frame rate up-
conversion, depth estimation, stitching, and so on.

The gst-nvof plugin collects a pair of NV12 images and passes it to the low-level optical
flow library. The low-level library returns a map of flow vectors between the two frames
as its output.

The map of flow vectors is encapsulated in the NvDsOpticalFlowMeta structure and
is added as a user meta with meta_type set to NVDS_OPTICAL_FLOW_META. The user
meta is added to the frame_user_meta_list member of NvDsFrameMeta.

For guidance on how to access user metadata, see User/Custom Metadata Addition
inside NvDsBatchMeta and Tensor Metadata.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 51

Figure 9. The Gst-nvof plugin

2.9.1 Inputs and Outputs
 Inputs

● GStreamer buffer containing NV12 frame(s)

 Control parameters

● gpu-id: selects the GPU ID (valid only for dGPU platforms)
● dump-of-meta: enables dumping of optical flow map vector into a .bin file
● preset-level: sets the preset level
● pool-size: sets the pool size
● grid-size: sets the grid size

 Outputs

● GStreamer buffer containing NV12 frame(s)
● NvDsOpticalFlowMeta metadata

2.9.2 Features
Table 19 summarizes the features of the plugin.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 52

Table 19. Features of the Gst-nvof plugin

Feature Description Release

Configure GPU selection Sets the gpu ID to be used for optical flow operation
(valid only for dGPU platforms)

DS 4.0

Configure dumping of optical
flow metadata

Enables dumping of optical flow output (motion vector
data)

DS 4.0

Configure preset level Sets the desired preset level DS 4.0

Configure grid size Sets the flow vector block size DS 4.0

2.9.3 Gst Properties
Table 20 describes the Gst properties of the Gst-nvof plugin.

Table 20. Gst-nvof plugin, Gst properties

Property Meaning Type and Range
Example

Notes

gpu-id
Device ID of the GPU to be used for
decoding (dGPU only).

Integer,
0 to 4,294,967,295

gpu-id=0

dump-of-meta
Dumps optical flow output into a .bin
file.

Boolean
dump-of-
meta=1

preset-level

Selects a preset level, default preset
level is 0 i.e. NV_OF_PERF_LEVEL_FAST

Possible values are:
0 (NV_OF_PERF_LEVEL_FAST): high

performance, low quality.
1 (NV_OF_PERF_LEVEL_MEDIUM):

intermediate performance and quality.
2 (NV_OF_PERF_LEVEL_SLOW): low

performance, best quality (valid only
for dGPU platforms).

Enum, 0 to 2 preset-level=0

grid-size

Selects the grid size. The hardware
generates flow vectors blockwise, one
vector for each block of 4×4 pixels.
Currently only the 4x4 grid size is
supported.

Enum, 0 grid-size=0

pool-size
Sets the number of internal motion vector
output buffers to be allocated.

Integer,
1 to 4,294,967,295

pool-size=7

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 53

2.10 GST-NVOFVISUAL
The Gst-nvofvisual plugin is useful for visualizing motion vector data. The
visualization method is similar to the OpenCV reference source code in:

https://github.com/opencv/opencv/blob/master/samples/gpu/optical_flow.c
pp

The plugin solves the optical flow problem by computing the magnitude and direction
of optical flow from a two-channel array of flow vectors. It then visualizes the angle
(direction) of flow by hue and the distance (magnitude) of flow by value of Hue
Saturation Value (HSV) color representation. The strength of HSV is always set to a
maximum of 255 for optimal visibility.

Figure 10. The Gst-nvofvisual plugin

2.10.1 Inputs and Outputs
 Inputs

● GStreamer buffer containing NV12/RGBA frame(s)
● NvDsOpticalFlowMeta containing the motion vector (MV) data generated by

the gst-nvof plugin

 Control parameters

● gpu-id, selects the GPU ID

 Output

● GStreamer buffer containing RGBA frame(s)

https://github.com/opencv/opencv/blob/master/samples/gpu/optical_flow.cpp
https://github.com/opencv/opencv/blob/master/samples/gpu/optical_flow.cpp

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 54

● RGBA buffer generated by transforming MV data into color-coded RGBA image
reference

2.10.2 Features
Table 21 summarizes the features of the plugin.

Table 21. Features of the Gst-nvofvisual plugin

Feature Description Release

Configure GPU selection Sets the GPU ID to be used for optical flow visualization
operations (valid only for dGPU platforms)

DS 4.0

2.10.3 Gst Properties
Table 22 describes the Gst properties of the Gst-nvofvisual plugin.

Table 22. Gst-nvofvisual plugin, Gst Properties

Property Meaning Type and Range
Example

Notes

gpu-id
Device ID of the GPU to be used

(dGPU only)
Integer,
0 to 4,294,967,295

gpu-id=0

2.11 GST-NVSEGVISUAL
The Gst-nvsegvisual plugin visualizes segmentation results. Segmentation is based
on image recognition, except that the classifications occur at the pixel level as opposed to
the image level as with image recognition. The segmentation output size is generally
same as the input size.

For more information, see the segmentation training reference at:

https://github.com/qubvel/segmentation_models

https://github.com/qubvel/segmentation_models

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 55

Figure 11. The Gst-nvsegvisual plugin

2.11.1 Inputs and Outputs
 Inputs

● GStreamer buffer containing NV12/RGBA frame(s)
● NvDsInferSegmentationMeta containing class numbers, pixel class map,

width, height, etc. generated by gst-nvinfer.
● gpu-id: selects the GPU ID
● width, set according the segmentation output size
● height, set according the segmentation output size

 Output

This plugin allocates different colors for different classes. For example, the industrial
model’s output has only one representing defective areas. Thus defective areas and
background have different colors. The semantic model outputs four classes with four
different colors: car, pedestrian, bicycle, and background.

This plugin shows only the segmentation output. It does not overlay output on the
original NV12 frame.

Table 23 summarizes the features of the plugin.

Table 23. Features of the Gst-nvsegvisual plugin

Feature Description Release

Configure GPU selection Sets the GPU ID to be used for segmentation
visualization operations (valid only for dGPU
platforms)

DS 4.0

Configure width Sets width according to the segmentation output
size

DS 4.0

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 56

Feature Description Release

Configure height Sets height according to the segmentation output
size

DS 4.0

2.11.2 Gst Properties
Table 24 describes the Gst properties of the Gst-nvsegvisual plugin.

Table 24. Gst-nvsegvisual plugin, Gst Properties

Property Meaning Type and Range
Example and

Notes

gpu-id
Device ID of the GPU to be used
for decoding

Integer,
0 to 4,294,967,295

gpu-id=0

width Segmentation output width
Integer,
0 to 4,294,967,295

width=512

height Segmentation output height
Integer,
0 to 4,294,967,295

height=512

2.12 GST-NVVIDEO4LINUX2
DeepStream extends the open source V4L2 codec plugins (here called Gst-v4l2) to
support hardware-accelerated codecs.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 57

Figure 12. The Gst-nvvideo4linux2 decoder plugin

2.12.1 Decoder
The OSS Gst-nvvideo4linux2 plugin leverages the hardware decoding engines on Jetson
and DGPU platforms by interfacing with libv4l2 plugins on those platforms. It
supports H.264, H.265, JPEG and MJPEG formats.

The plugin accepts an encoded bitstream & NVDEC h/w engine to decoder the
bitstream. The decoded output is in NV12 format.

Note: When you use the v4l2 decoder use for decoding JPEG images, you must use the
open source jpegparse plugin before the decoder to parse encoded JPEG images.

2.12.1.1 Inputs and Outputs
 Inputs

● An encoded bitstream. Supported formats are H.264, H.265, JPEG and MJPEG

 Control Parameters
● gpu-id
● num-extra-surfaces
● skip-frames
● cudadec-memtype

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 58

● drop-frame-interval

 Output

● Gst Buffer with decoded output in NV12 format

2.12.1.2 Features

Feature Description Release

Supports H.264 decode — DS 4.0

Supports H.265 decode — DS 4.0

Supports JPEG/MJPEG decode _ DS 4.0

User-configurable CUDA memory
type (Pinned/Device/Unified)
for output buffers

— DS 4.0

2.12.1.3 Configuration Parameters

Property Meaning Type and Range
Example

Notes Platforms

gpu-id Device ID of GPU to use for
decoding.

Integer,
0 to 4,294,967,295 gpu-id=0 dGPU

num-extra-
surfaces

Number of surfaces in addition
to min decode surfaces given by
the V4L2 driver.

Integer, 1 to 24
num-decode-
surfaces=24
Default: 0

dGPU

Jetson

skip-frames

Type of frames to skip during
decoding. Represented
internally by enum SkipFrame.
0 (decode_all): decode all

frames
1 (decode_non_ref): decode

non-ref frames
2 (decode_key): decode key

frames

Integer,
0, 1, or 2

skip-frames=0

Default: 0

dGPU

Jetson

drop-frame-
interval

Interval to drop the frames, e.g.
a value of 5 means the decoder
receives every fifth frame, and
others are dropped.

Integer,
1 to 30

Default: 0

dGPU

Jetson

cudadec-memtype

Memory type for CUDA decoder
buffers. Represented internally
by enum CudaDecMemType.

0 (memtype_device): Device

1 (memtype_pinned): Host
Pinned

2 (memtype_unified): Unified

Integer,
0, 1, or 2

cuda-memory-
type=1

Default: 2

dGPU

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 59

2.12.2 Encoder
The OSS Gst-nvvideo4linux2 plugin leverages the hardware accelerated encoding
engine available on Jetson and dGPU platforms by interfacing with libv4l2 plugins on
those platforms. The plugin accepts RAW data in I420 format. It uses the NVENC
hardware engine to encode RAW input. Encoded output is elementary bitstream
supported formats.

2.12.2.1 Inputs and Outputs
 Inputs

• RAW input in I420 format

 Control parameters

● gpu-id (dGPU only)
● profile
● bitrate
● control-rate
● iframeinterval

 Output

● Gst Buffer with encoded output in H264, H265, VP8 or VP9 format.

2.12.2.2 Features

Feature Description Release
Supports H.264 encode — DS 4.0

Supports H.265 encode — DS 4.0

2.12.2.3 Configuration Parameters

Property Meaning Type and Range
Example

Notes
Platforms

gpu-id Device ID of GPU to used.
Integer,
0 to 4,294,967,295 gpu-id=0 dGPU

bitrate
Sets bitrate for encoding, in
bits/seconds.

Integer,
0 to 4,294,967,295

Default:4000000
dGPU

Jetson

iframeinterval
Encoding intra-frame occurrence
frequency.

Unsigned integer,
0 to 4,294,967,295

Default: 30
dGPU

Jetson

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 60

Profile

H.264/H.265 encoder profile;
represented internally by enum
GstV4l2VideoEncProfileType.

For H.264:
0 (GST_V4L2_H264_VIDENC_-
BASELINE_PROFILE): Baseline

2 (GST_V4L2_H264_VIDENC_-
MAIN_PROFILE): Main

4 (GST_V4L2_H264_VIDENC_-
HIGH_PROFILE): High

For H.265:
0 (GST_V4L2_H265_VIDENC_-
MAIN_PROFILE): Main

1 (GST_V4L2_H265_VIDENC_-
MAIN10_PROFILE): Main10

Values of enum
GstV4l2VideoEn
cProfileType

Default Baseline

Default: 0

dGPU

Jetson

2.13 GST-NVJPEGDEC
The Gst-nvjpegdec plugin decodes images on both dGPU and Jetson platforms. It is the
preferred method for decoding JPEG images.

On the dGPU platform this plugin is based on the libnvjpeg library, part of the CUDA
toolkit. On Jetson it uses a platform-specific hardware accelerator.

The plugin uses an internal software parser to parse JPEG streams. Thus there is no need
to use a jpegparse open source plugin separately to parse the encoded frame.

The plugin accepts a JPEG encoded bitstream and produces RGBA output on the dGPU
platform, and produces I420 output on the Jetson platform.

2.13.1 Inputs and Outputs
 Inputs

● Elementary JPEG

 Control parameters

● gpu-id (dGPU only)
● DeepStream (Jetson only)

 Output

● Gst Buffer with decoded output in RGBA format

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 61

2.13.2 Features

Feature Description Release
Supports JPEG Decode — DS 4.0

Supports MJPEG Decode — DS 4.0

2.13.3 Configuration Parameters

Property Meaning Type and Range
Example and

Notes
Platforms

gpu-id Device ID of GPU to use for
decoding.

Integer,
0 to 4,294,967,295 gpu-id=0 dGPU

DeepStream

Applicable only for Jetson;
required for outputting buffer with
new NvBufSurface or Legacy
Buffer

Boolean DeepStream=1 Jetson

2.14 GST-NVMSGCONV
The Gst-nvmsgconv plugin parses NVDS_EVENT_MSG_META (NvDsEventMsgMeta)
type metadata attached to the buffer as user metadata of frame meta and generates the
schema payload. For the batched buffer, metadata of all objects of a frame must be under
the corresponding frame meta.

The generated payload (NvDsPayload) is attached back to the input buffer as
NVDS_PAYLOAD_META type user metadata.

DeepStream 4.0 supports two variations of the schema, full and minimal. The Gst-
nvmsgconv plugin can be configured to use either one of the schemas.

By default, the plugin uses the full DeepStream schema to generate the payload in JSON
format. The full schema supports elaborate semantics for object detection, analytics
modules, events, location, and sensor. Each payload has information about a single
object.

You can use the minimal variation of the schema to communicate minimal information
with the back end. This provides a small footprint for the payload to be transmitted from
DeepStream to a message broker. Each payload can have information for multiple
objects in the frame.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 62

Figure 13. The Gst-nvmsgconv plugin

2.14.1 Inputs and Outputs
 Inputs

● Gst Buffer with NvDsEventMsgMeta

 Control parameters
● config
● msg2p-lib
● payload-type
● comp-id

 Output

● Same Gst Buffer with additional NvDsPayload metadata. This metadata
contains information about the payload generated by the plugin.

2.14.2 Features
Table 25 summarizes the features of the plugin.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 63

Table 25. Features of the Gst-nvmsgconv plugin

Feature Description Release

Payload in JSON format Message payload is generated in JSON
format

DS 3.0

Supports DeepStream schema specification DeepStream schema spec implementation
for messages

DS 3.0

Custom schema specification Provision for custom schemas for messages DS 3.0

Key-value file parsing for static properties Read static properties of
sensor/place/module in the form of key-
value pair from a text file

DS 3.0

CSV file parsing for static properties Read static properties of
sensor/place/module from a CSV file

DS 3.0

DeepStream 4.0 minimalistic schema Minimal variation of the DeepStream
message schema

DS 4.0

2.14.3 Gst Properties
Table 26 describes the Gst-nvmsgconv plugin’s Gst properties.

Table 26. Gst-nvmsgconv plugin, Gst properties

Property Meaning Type and Range
Example
Notes Platforms

config

Absolute pathname of a
configuration file that defines
static properties of various
sensors, places, and modules.

String

config=msgconv_-
config.txt

or

config=msgconv_-
config.csv

dGPU

Jetson

msg2p-lib

Absolute pathname of the
library containing a custom
implementation of the
nvds_msg2p_* interface for
custom payload generation.

String
msg2p-lib=libnvds_-
msgconv_custom.so

dGPU

Jetson

payload-type

Type of schema payload to be
generated. Possible values are:
PAYLOAD_DEEPSTREAM:

Payload using DeepStream
schema.

PAYLOAD_DEEPSTREAM_MINI
MAL: Payload using minimal
DeepStream schema.

PAYLOAD_CUSTOM: Payload
using custom schemas.

Integer,
0 to 4,294,967,295

payload-type=0

or

payload-type=257

dGPU

Jetson

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 64

Property Meaning Type and Range
Example
Notes Platforms

comp-id
Component ID of the plugin
from which metadata is to be
processed.

Integer,
0 to 4,294,967,295

comp-id=2

Default is
NvDsEventMsgMeta

dGPU

Jetson

2.14.4 Schema Customization
This plugin can be used to implement a custom schema in two ways:

 By modifying the payload generator library: To perform a simple customization of
DeepStream schema fields, modify the low level payload generation library file
sources/libs/nvmsgconv/nvmsgconv.cpp.

 By implementing the nvds_msg2p interface: If a library that implements the
custom schema needs to be integrated with the DeepStream SDK, wrap the library in
the nvds_msg2p interface and set the plugin’s msg2p-lib property to the library’s
name. Set the payload-type property to PAYLOAD_CUSTOM.

See sources/libs/nvmsgconv/nvmsgconv.cpp for an example implementation of
the nvds_msg2p interface.

2.14.5 Payload with Custom Objects
You can add a group of custom objects to the NvDsEventMsgMeta structure in the
extMsg field and specify their size in the extMsgSize field. The meta copy
(copy_func) and free (release_func) functions must handle the custom fields
accordingly.

The payload generator library handles some standard types of objects (Vehicle, Person,
Face, etc.) and generates the payload according to the schema selected. To handle
custom object types, you must modify the payload generator library nvmsgconv.cpp.

See deepstream-test4 for details about adding custom objects as
NVDS_EVENT_MSG_META user metadata with buffers for generating a custom payload
to send to back end.

2.15 GST-NVMSGBROKER
This plugin sends payload messages to the server using a specified communication
protocol. It accepts any buffer that has NvDsPayload metadata attached, and uses the
nvds_msgapi_* interface to send the messages to the server. You must implement the

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 65

nvds_msgapi_* interface for the protocol to be used and specify the implementing
library in the proto-lib property.

Figure 14. The Gst-nvmsgbroker plugin

2.15.1 Inputs and Outputs
 Inputs

● Gst Buffer with NvDsPayload

 Control parameters
● Config
● conn-str
● proto-lib
● comp-id
● topic

 Output

● None, as this is a sink type component

2.15.2 Features
Table 27 summarizes the features of the Gst-nvmsgbroker plugin.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 66

Table 27. Features of the Gst-nvmsgbroker plugin

Feature Description Release

Payload in JSON format Accepts message payload in JSON format DS 3.0

Kafka protocol support Kafka protocol adapter implementation DS 3.0

Azure IOT support Integration with Azure IOT framework DS 4.0

AMQP support AMQP 0-9-1 protocol adapter
implementation

DS 4.0

Custom protocol support Provision to support custom protocol
through a custom implementation of the
adapter interface

DS 3.0

Configurable parameters Protocol specific options through
configuration file

DS 3.0

2.15.3 Gst Properties
Table 28 describes the Gst properties of the Gst-nvmsgbroker plugin.

Table 28. Gst-nvmsgbroker plugin, Gst Properties

Property Meaning Type and Range
Example
Notes Platforms

config
Absolute pathname of
configuration file required by
nvds_msgapi_* interface

String
config=msgapi_-
config.txt

dGPU

Jetson

conn-str
Connection string as end point
for communication with server

String

Format must be
<name>;<port>;-
<topic-name>

conn-str=foo.bar.com;80

or

conn-str=foo.bar.com; -
80;dsapp1

dGPU

Jetson

proto-lib

Absolute pathname of library
that contains the protocol
adapter as an implementation
of nvds_msgapi_*

String
proto-lib=libnvds_-

kafka_proto.so

dGPU

Jetson

comp-id
ID of component from which
metadata should be processed

Integer,
0 to 4,294,967,295

comp-id=3

Default: plugin
processes metadata
from any component

dGPU

Jetson

topic Message topic name String topic=dsapp1
dGPU

Jetson

2.15.4 nvds_msgapi: Protocol Adapter Interface
You can use the NVIDIA DeepStream messaging interface, nvds_msgapi, to implement
a custom protocol message handler and integrate it with DeepStream applications. Such

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 67

a message handler, known as a protocol adapter, enables you to integrate DeepStream
applications with backend data sources, such as data stored in the cloud.

Figure 15. The Gst-nvmsgbroker plugin calling the nvds_msgapi interface

The Gst-nvmsgbroker plugin calls the functions in your protocol adapter as shown in
Figure 15. These functions support:

 Creating a connection
 Sending messages by synchronous or asynchronous means
 Terminating the connection
 Coordinating the client’s and protocol adapter’s use of CPU resources and threads
 Getting the protocol adapter’s version number

The nvds_msgapi interface is defined in the header file
source/includes/nvds_msgapi.h. This header file defines a set of function
pointers which provide an interface analogous to an interface in C++.

The following sections describe the methods defined by the nvds_msgapi interface.

2.15.4.1 nvds_msgapi_connect(): Create a Connection

NvDsMsgApiHandle nvds_msgapi_connect(char *connection_str,
 nvds_msgapi_connect_cb_t connect_cb, char *config_path
);

The function accepts a connection string and configures a connection. The adapter
implementation can choose whether or not the function actually makes a connection to
accommodate connectionless protocols such as HTTP.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 68

Parameters

 connection_str: A pointer to a string that specifies connection parameters in the
general format "<url>;<port>;<specifier>".

● <url> and <port> specify the network address of the remote entity.
● <specifier> specifies information specific to a protocol. Its content depends

on the protocol’s implementation. It may be a topic for messaging, for example,
or a client identifier for making the connection.

Note that this connection string format is not binding, and a particular adapter may
omit some fields (eg: specifier) from its format, provided the omission is
described in its documentation.

A special case of such connection string adaptation is where the adapter expects all
connection parameters to be specified as fields in the configuration file (see config
path below), in which case the connection string is passed as NULL.

 connect_cb: A callback function for events associated with the connection.
 config_path: The pathname of a configuration file that defines protocol parameters

used by the adapter.

Return Value

A handle for use in subsequent interface calls if successful, or NULL otherwise.

2.15.4.2 nvds_msgapi_send() and nvds_msgapi_send_async():
Send an event

NvDsMsgApiErrorType nvds_msgapi_send(NvDsMsgApiHandle *h_ptr,
 char *topic, uint8_t *payload, size_t nbuf
);

NvDsMsgApiErrorType nvds_msgapi_send_async(NvDsMsgApiHandle h_ptr,
 char *topic, const uint8_t *payload, size_t nbuf,
 nvds_msgapi_send_cb_t send_callback, void *user_ptr
);

Both functions send data to the endpoint of a connection. They accept a message topic
and a message payload.

The nvds_send() function is synchronous. The nvds_msgapi_send_async()
function is asynchronous; it accepts a callback function that is called when the “send”
operation is completed.

Both functions allow the API client to control execution of the adapter logic by calling
nvds_msgapi_do_work(). See the description of the nvds_msgapi_do_work()
function.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 69

Parameters

 h_ptr: A handle for the connection, obtained by a call to nvds_msgapi_connect().
 topic: A pointer to a string that specifies a topic for the message; may be NULL if

topic is not meaningful for the semantics of the protocol adapter.
 payload: A pointer to a byte array that contains the payload for the message.
 nbuf: Number of bytes to be sent.
 send_callback: A pointer to a callback function that the asynchronous function calls

when the “send” operation is complete. The signature of the callback function is of
type nvds_msgapi_send_cb_t, defined as:

typedef void (*nvds_msgapi_send_cb_t)(void *user_ptr,
 NvDsMsgApiErrorType completion_flag
);

Where the callback’s parameters are:

● user_ptr: The user pointer (user_ptr) from the call to nvds_msgapi_send() or
nvds_msgapi_send_async() that initiated the “send” operation. Enables the
callback function to identify the initiating call.

● completion_flag: A code that indicates the completion status of the asynchronous
send operation.

2.15.4.3 nvds_msgapi_do_work(): Incremental Execution of
Adapter Logic

void nvds_msgapi_do_work();

The protocol adapter must periodically surrender control to the client during processing
of nvds_msgapi_send() and nvds_msgapi_send_async() calls. The client must
periodically call nvsd_msgapi_do_work() to let the protocol adapter resume
execution. This ensures that the protocol adapter receives sufficient CPU resources. The
client can use this convention to control the protocol adapter’s use of multi-threading
and thread scheduling. The protocol adapter can use it to support heartbeat
functionality, if the underlying protocol requires that.

The nvds_msgapi_do_work() convention is needed when the protocol adapter
executes in the client thread. Alternatively, the protocol adapter may execute time-
consuming operations in its own thread. In this case the protocol adapter need not
surrender control to the client, the client need not call nvsd_msgapi_do_work(), and
the implementation of nvds_msgapi_do_work() may be a no-op.

The protocol adapter’s documentation must specify whether the client must call
nvds_msgapi_do_work(), and if so, how often.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 70

2.15.4.4 nvds_msgapi_disconnect(): Terminate a Connection

NvDsMsgApiErrorType nvds_msgapi_disconnect(NvDsMsgApiHandle h_ptr);

The function terminates the connection, if the underlying protocol requires it, and frees
resources associated with h_ptr.

Parameters

 h_ptr: A handle for the connection, obtained by a call to nvds_msgapi_connect().

2.15.4.5 nvds_msgapi_getversion(): Get Version Number

char *nvds_msgapi_getversion();

This function returns a string that identifies the nvds_msgapi version supported by
this protocol adapter implementation. The string must use the format
"<major>.<minor>", where <major> is a major version number and <minor> is a
minor version number. A change in the major version number indicates an API change
that may cause incompatibility. When the major version number changes, the minor
version number is reset to 1.

2.15.5 nvds_kafka_proto: Kafka Protocol Adapter
The DeepStream 3.0 release includes a protocol adapter that supports Apache Kafka.
The adapter provides out-of-the-box capability for DeepStream applications to publish
messages to Kafka brokers.

2.15.5.1 Installing Dependencies

The Kafka adapter uses librdkafka for the underlying protocol implementation. This
library must be installed prior to use.

To install librdkakfa, enter these commands:

git clone https://github.com/edenhill/librdkafka.git
cd librdkafka
git reset --hard 7101c2310341ab3f4675fc565f64f0967e135a6a
./configure
make
sudo make install
sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream-
4.0/lib

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 71

Install additional dependencies:

sudo apt-get install libglib2.0 libglib2.0-dev
sudo apt-get install libjansson4 libjansson-dev

2.15.5.2 Using the Adapter

You can use the Kafka adapter in an application by setting the Gst-nvmsgbroker
plugin’s proto-lib property to the pathname of the adapter’s shared library,
libnvds_kafka_proto.so. The plugin’s conn-str property must be set to a string
with format:

<kafka broker address>;<port>;<topic-name>

This instantiates the Gst-nvmsgbroker plugin and makes it use the Kafka protocol
adapter to publish messages that the application sends to the broker at the specified
broker address and topic.

2.15.5.3 Configuring Protocol Settings

You can define configuration setting for the Kafka protocol adapter as described by the
documentation at:

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

You can set these options in the Gst-nvmsgbroker configuration file. Like the rest of
DeepStream, the configuration file use the gkey format. The Kafka settings must be in a
group named [message-broker], and must be specified as part of a key named
proto-cfg. The settings can be a series of key-value pairs separated by semicolons, for
example:

[message-broker]
proto-cfg="message.timeout.ms=2000;retries=5"

The Kafka adapter lets you specify the name of the field in messages that is to be used to
define the partition key. For each message, the specified message field is extracted and
send to the topic partitioner along with the message. The partitioner uses it to identify
the partition in the Kafka cluster that handles the message. The partition key
information must be specified in the Gst-nvmsgbroker configuration file’s [message-
broker] group, using an entry named partition-key.

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 72

Fields embedded in a hierarchy of JSON objects in the message are specified using
dotted notation. For example, for the sample JSON message shown below, the id field
in the sensor object is identified as sensor.id,

{
 "sensor" {
 "id": "cam1"
 }
}

Note: For the DeepStream reference application and the 360-D application, both
distributed with the DeepStream SDK, you can add the proto-cfg setting to the
[message-broker] group of the top level configuration file passed to the
application.

2.15.5.4 Programmatic Integration

You can integrate the Kafka adapter into custom user code by using the nvds_msgapi
interface to call its functions. Note the following points with regard to the functions
defined by the interface:

 The connection string passed to the nvdm_msgapi_connect() has the format
<kafka broker address>;<port>;<topic-name>.

 For both “send” functions, the topic name must match the topic name passed to
nvds_msgapi_connect().

 The application must call nvds_msgapi_do_work() at least once a second, and
preferably more often. The frequency of calls to nvds_msgapi_do_work()
determines the rate at which messages waiting to be sent are processed.

 It is safe for multiple application threads to share connection handles. The library
librdkafka is thread-safe, so Kafka protocol adapter does not need to implement
separate locking mechanisms for functions calling directly to this library.

 The Kafka protocol adapter expects the client to manage usage and retirement of the
connection handle. The client must ensure that once a handle is disconnected, it is
not used for either a “send” call or a call to nvds_msgapi_do_work(). While the
library attempts to ensure graceful failure if the application calls these functions with
retired handles, it does not do so in a thread-safe manner.

2.15.5.5 Monitor Adapter Execution

The Kafka adapter generates log messages based on the nvds_logger framework to
help you monitor execution. The adapter generates separate logs for the INFO, DEBUG,
and ERROR severity levels, as described in nvds_logger: The Logger Framework. You
can limit the log messages generated by setting the level at which log messages are
filtered as part of the logging setup script.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 73

Note: If the severity level is set to DEBUG, the nvds_logger framework logs the entire
contents of each message sent by the Kafka protocol adapter.

2.15.6 Azure MQTT Protocol Adapter Libraries
The DeepStream 4.0 release includes protocol adapters that supports direct messaging
from device to cloud (using the Azure device client adapter) and through Azure IoT
Edge runtime (using the Azure module client adapter). The adapters provide out-of-the-
box capability for DeepStream applications to publish messages to Azure IoT Hub using
the MQTT protocol.

The Azure IoT protocol adapters are encapsulated by their respective shared libraries
found within the deepstream package at the location:

/opt/nvidia/deepstream/deepstream-4.0/lib

The Azure device client adapter library is named libnvds_azure_proto.so.

The Azure module client adapter library is named libnvds_azure_edge_proto.so.

2.15.6.1 Installing Dependencies
Azure adapters use libiothub_client.so from the Azure IoT C SDK (v1.2.8) for the
underlying protocol implementation. After you install the deepstream package you
can find the precompiled library at:

/opt/nvidia/deepstream/deepstream-4.0/lib/libiothub_client.so

You can also compile libiothub_client.so manually by entering these commands:

git clone -b 2018-07-11 --recursive https://github.com/Azure/azure-iot-
sdk-c.git
cd azure-iot-sdk-c
mkdir cmake
cd cmake
cmake ..
cmake --build . # append '-- -j <n>' to run <n> jobs in parallel

To install some other required dependencies, enter one of these commands.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 74

 For an x86 computer using Ubuntu 18.04:

sudo apt-get install -y libcurl3 libssl-dev uuid-dev libglib2.0
libglib2.0-dev

 For other platforms or OSes:

sudo apt-get install -y libcurl4-openssl-dev libssl-dev uuid-dev
libglib2.0 libglib2.0-dev

2.15.6.2 Setting Up Azure IoT

Azure IoT adapter needs a functioning Azure IoT Hub instance to which is can publish
messages. To set up an Azure IoT Hub instance if required, see the instructions at:

https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-connectivity

After you create the Azure IoT instance, create a device entry corresponding to the
device that is running DeepStream.

To set up Azure IoT Edge runtime on the edge device, see the instructions at:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-
edge-linux

2.15.6.3 Configuring Adapter Settings
Place Azure IoT specific information in a custom configuration file named, e.g.,
cfg_azure.txt. The entries in the configuration file vary slightly between the Azure
device client and the module client.

 For an Azure device client:

[message-broker]
connection_str = HostName=<my-hub>.azure-
devices.net;DeviceId=<device_id>;
SharedAccessKey=<my-policy-key>
shared_access_key = <my-policy-key>
custom_msg_properties = <key1>=<value1>; <key2>=<value2>;
<key3>=<value3>;

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 75

 For an Azure module client:

[message-broker]
#custom_msg_properties = <key1>=<value1>; <key2>=<value2>;
<key3>=<value3>;

Here is useful information about some of the configuration file properties:

 connection_str: You can obtain the Azure connection string from the Azure IoT Hub
web interface. A connection string uniquely identifies each device associated with
the IoT Hub instance. It is under the “Primary Connection String” entry in the
“Device detail” section.

 shared_access_key: You can obtain the shared access key from the “Primary key”
entry in the “Device detail” section.

 custom_msg_properties: Use this property to embed custom key/value pairs in the
MQTT messages sent from the device to Azure IoT. You can embed multiple key
values separated by semicolons, as in this example:

custom_msg_properties = ex2: key1=value1;key2=value2;key3=value3;

Note: The connection_str, shared_access_key, and custom_msg_properties
strings are each limited to 512 characters.

2.15.6.4 Using the Adapter
To use the Azure device client adapter in an application, set the Gst-nvmsgbroker
plugin’s proto-lib property to the pathname of the adapter’s shared library -
libnvds_azure_proto.so for the device client case, or
libnvds_azure_edge_proto.so for the module client case.

The next step in using the adapter is to specify the connection details. The procedure for
specifying connection details is different for the Azure device client and module client
cases, as described in the following sections.

Connection Details for the Device Client Adapter

Set the plugin’s conn-str property to the full Azure connection string in the format:

HostName=<my-hub>.azure-
devices.net;DeviceId=<device_id>;SharedAccessKey=<my-policy-key>

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 76

Alternatively, you can specify the connection string details in the Azure configuration
file:

[message-broker]
connection_str = HostName=<my-hub>.azure-
devices.net;DeviceId=<device_id>;SharedAccessKey=<my-policy-key>

Connection Details for the Module Client Adapter

Leave the connection string empty, since the Azure IoT Edge library automatically
fetches the connection string from from the file /etc/iotedge/config.yaml.

Once the connection details have been configured, you can integrate the Azure device
client and module client adapters into custom user code by using the nvds_msgapi
interface to call its functions. Note the following points with regard to the functions
defined by the interface:

 The connection string passed to nvds_msgapi_connect() may be NULL for both
the Azure device client and the module client. For the device client the Azure
configuration file has an option to specify a connection string. For the module client
the connection string is always specified in /etc/iotedge/config.yaml.

 Both “send” functions use the topic name specified in the Gst-nvmsgbroker
plugin’s property “topic.” It may be null.

 The application must call nvds_msgapi_do_work() after each call to
nvds_msgapi_send_async(). The frequency of calls to
nvds_msgapi_do_work() determines the rate at which messages waiting to be
sent are processed.

 It is safe for multiple application threads to share connection handles. The library
libiothubclient is thread-safe, so Azure protocol adapters need not implement
separate locking mechanisms for functions calling this library directly.

 The Azure protocol adapters expects the client to manage usage and retirement of
the connection handle. The client must ensure that once a handle is disconnected, it
is not used for either a “send” call or a call to nvds_msgapi_do_work(). While the
library attempts to ensure graceful failure if the application calls these functions with
retired handles, it does not do so in a thread-safe manner.

2.15.6.5 Monitor Adapter Execution
The Azure device client and module client use different logging mechanisms.

Azure device client library log messages

The Azure device client adapter uses the nvds_logger framework to generate log
messages which can help you monitor execution. The adapter generates separate logs for
the INFO, DEBUG, and ERROR severity levels, as described in nvds_logger: Logging

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 77

Framework. You can limit the generated log messages by setting the level at which log
messages are filtered in the logging setup script.

Note: If the severity level is set to DEBUG, the nvds_logger framework logs the entire
contents of each message sent by the Azure device client protocol adapter.

Azure Module Client Library Log Messages

The log messages from the Azure module client adapter library are emitted to stdout,
and the log output is captured in the docker/iotedge module logs.

2.15.6.6 Message Topics and Routes
You can specify a message topic in a GStreamer property topic. However, the Azure
device client and module client use the topic property in different ways.

The Azure device client does not support topics. Thus the value of the topic property
is ignored, and you cannot use it to filter messages on Azure IoT Hub.

The Azure module client uses the topic property to determine the route of messages,
i.e. how messages are passed within a system. For more information about message
routes, see:

https://docs.microsoft.com/en-us/azure/iot-edge/module-
composition#declare-routes)

2.15.7 AMQP Protocol Adapter
DeepStream release 4.0 includes an AMQP protocol adapter that DeepStream
applications can use out of the box to publish messages using AMQP 0-9-1 message
protocol.

The AMQP protocol adapter shared library is located in the deepstream package at:

/opt/nvidia/deepstream/deepstream-4.0/lib/libnvds_amqp_proto.so

2.15.7.1 Installing Dependencies
AMQP protocol adapter for DeepStream uses the librabbitmq.so library, built from
rabbitmq-c (v0.8.0) for the underlying AMQP protocol implementation. To build the
library, enter these commands:

git clone -b v0.8.0 --recursive https://github.com/alanxz/rabbitmq-
c.git
mkdir build && cd build

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 78

cmake ..
cmake --build .

To copy the built librabbitmq.so library to its final location, enter this command.

 For x86:

sudo cp ./librabbitmq/librabbitmq.so.4 /usr/lib/

 For Jetson:

sudo cp ./librabbitmq/librabbitmq.so.4 /usr/lib/aarch64-linux-gnu/

Install additional dependencies:

sudo apt-get install libglib2.0 libglib2.0-dev

AMQP broker

The AMQP protocol communicates with an AMQP 0-9-1 compliant message broker. If
you do not have a functioning broker already, you can deploy one by installing the
rabbitmq-server package, available at:

https://www.rabbitmq.com/install-debian.html

You can install this package on your local system or on the remote machine where you
want the broker to be installed.

To install the package, enter the command:

sudo apt-get install rabbitmq-server

To determine whether the rabbitmq service is running, enter the command:

sudo service rabbitmq-server status

If rabbitmq is not running, enter this command to start it:

sudo service rabbitmq-server start

https://www.rabbitmq.com/install-debian.html

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 79

2.15.7.2 Configure Adapter Settings
You can place AMQP protocol adapter specific information in a custom configuration
named, for example, cfg_amqp.txt. Here is an example of configuration file entries
for an AMQP broker installed on the local machine:

[message-broker]
hostname = localhost
username = guest
password = guest
port = 5672
exchange = amq.topic
topic = topicname

The properties in the configuration file are:

 hostname: Hostname of the host on which the AMQP broker is installed
 username: Username used to log in to the broker
 password: Password used to log in to the broker
 port: Port used to communicate with the AMQP broker
 exchange: Name of the exchange on which to publish messages
 topic: Message topic

2.15.7.3 Using the adapter
To use the AMQP protocol client adapter in a DeepStream application, set the Gst-
nvmsgbroker plugin’s proto-lib property to the pathname of the adapter’s shared
library, libnvds_amqp_proto.so.

proto-lib = <path to libnvds_amqp_proto.so>

You can specify the AMQP connection details in the AMQP adapter specific
configuration file (e.g., cfg_amqp.txt) as described above. This is the recommended
method. The path to the AMQP configuration file is specified by the Gst property
config:

config = <path to cfg_amqp.txt>

Alternatively, you can specify the AMQP protocol’s hostname, port number, and
username in the Gst plugin’s conn-str property, and specify the password in the
configuration file. In the Gst properties:

conn-str = hostname;5672;username
config = <pathname of AMQP configuration file>

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 80

In the AMPQ configuration file:

[message-broker]
password = <password>

You can set the Gst-nvmsgbroker plugin’s topic property to specify the message
topic.

topic = <topicname>

Alternatively, you can specify a topic in the AMQP configuration file (cfg_amqp.txt). In
the Gst properties, set:

config = <path to cfg_amqp.txt>

In the AMQP configuration file:

[message-broker]
Topic = topicname

2.15.7.4 Programmatic Integration
Once you have configured the connection, you can integrate the AMQP protocol adapter
into your application by using the nvds_msgapi interface to call its functions. Note the
following points about the functions defined by the interface:

 The connection string passed to nvds_msgapi_connect() has the format
Hostname;<port>;username.

 For both “send” functions, the topic name is specified either by the Gst-
nvmsgbroker plugin’s topic property or by the topic parameter in the AMQP
configuration file.

 The application must call nvds_msgapi_do_work() after each call to
nvds_msgapi_send_async(). The frequency of calls to
nvds_msgapi_do_work() determines the rate at which messages waiting to be
sent are processed.

The AMQP protocol adapter expects the client to manage usage and retirement of the
connection handle. The client must ensure that once a handle is disconnected, it is not
used for either a “send” call or a call to nvds_msgapi_do_work(). While the library
attempts to ensure graceful failure, if the application calls these functions with retired
handles, it does not do so in a thread-safe manner.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 81

Note: As stated at https://github.com/alanxz/rabbitmq-c#threading, you cannot
share a socket, an amqp_connection_state_t, or a channel between
threads using the librabbitmq library. This library is designed for use by
event-driven, single-threaded applications, and does not yet meet the
requirements of threaded applications.

To deal with this limitation, your application must open an AMQP connection
(and an associated socket) per thread. If it needs to access a single AMQP
connection or any of its channels from more than one thread,

you must implement an appropriate locking mechanism. It is generally simpler
to have a connection dedicated to each thread.

2.15.7.5 Monitor Adapter Execution
The AMQP protocol adapter uses the nvds_logger framework to generate log
messages which can help you monitor execution. The adapter generates separate logs for
the INFO, DEBUG, and ERROR severity levels, as described in nvds_logger: Logging
Framework. You can limit the log messages being generated by setting the level at
which log messages are filtered in the logging setup script.

Note: If the severity level is set to DEBUG, nvds_logger logs the entire contents of each
message sent by the AMQP protocol adapter.

2.15.8 nvds_logger: Logging Framework
DeepStream provides a logging framework named nvds_logger. The Kafka protocol
adapter uses this framework to generate a run time log. nvds_logger is based on
syslog, and offers many related features, including:

 Choice of priorities (log levels)
 Log filtering and redirection
 Shared logging across different DeepStream instances running concurrently
 Log retirement and management using logrotate
 Cross-platform support

2.15.8.1 Enabling Logging

To enable logging, run the setup_nvds_logger.sh script. Note that this script must
be run with sudo. You may have to modify the permissions associated with this script
to make it executable.

The script accepts an optional parameter specifying the pathname of log file to be
written. By default, the pathname is /tmp/nvds/ds.log.

Once logging is enabled, you can access the generated log messages by reading the log
file.

https://github.com/alanxz/rabbitmq-c#threading

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 82

By default, you must have sudo permissions to read the log file. Standard techniques for
syslog-based logging configuration can eliminate this requirement.

2.15.8.2 Filtering Logs

nvds_logger allows logs to be associate with a severity level similar to that which
syslog offers. You can filter log messages based on severity level by modifying the setup
script. By default, the script enables logging for messages at the INFO level (level 6) and
above. You can modify this as outlined in the comments in the script:

Modify log severity level as required and rerun this script
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages
refer https://tools.ietf.org/html/rfc5424.html for more information

echo "if (\$syslogtag contains 'DSLOG') and (\$syslogseverity <= 6)
then $nvdslogfilepath" >> 11-nvds.conf

2.15.8.3 Retiring and Managing Logs

It is recommended that you limit the size of log files by retiring them periodically.
logrotate is a popular utility for this purpose. You can use it in cron jobs so that the
log files are automatically archived periodically, and are discarded after a desired
interval.

2.15.8.4 Generating Logs

You can implement modules that use the logger by including
sources/includes/nvds_logger.h in the source code and linking to the
libnvds_logger.so library.

Generating logs programmatically involves three steps:

1. Call nvds_log_open() before you write any log messages.

2. Call nvds_log() to write log messages.

3. Call nvds_log_close() upon completion to flush and close the logs.

Note the nvds_logger is a process-based logging mechanism, so the recommended
procedure is to call nvds_log_open() from the main application routine rather than

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 83

the individual plugins. Similarly, call nvds_log_close() from the main application
when it shuts down the application before exit.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 84

3.0 METADATA IN THE DEEPSTREAM SDK

Each Gst Buffer has associated metadata. The DeepStream SDK attaches the DeepStream
metadata object, NvDsBatchMeta, described in the following sections.

3.1 NVDSBATCHMETA: BASIC METADATA
STRUCTURE

DeepStream uses an extensible standard structure for metadata. The basic metadata
structure NvDsBatchMeta starts with batch level metadata, created inside the Gst-
nvstreammux plugin. Subsidiary metadata structures hold frame, object, classifier, and
label data. DeepStream also provides a mechanism for adding user-specific metadata at
the batch, frame, or object level.

DeepStream attaches metadata to a Gst Buffer by attaching an NvDsBatchMeta
structure and setting GstNvDsMetaType.meta_type to NVDS_BATCH_GST_META in
the Gst-nvstreammux plugin. When your application processes the Gst Buffer, it can
iterate over the attached metadata to find NVDS_BATCH_GST_META.

The function gst_buffer_get_nvds_batch_meta() extracts NvDsBatchMeta from
the Gst Buffer. (See the declaration in sources/include/gstnvdsmeta.h.) See the
deepstream-test1 sample application for an example of this function’s usage. For
more details, see NVIDIA DeepStream SDK API Reference.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 85

Figure 16. DeepStream metadata hierarchy

3.2 USER/CUSTOM METADATA ADDITION INSIDE
NVDSBATCHMETA

To attach user-specific metadata at the batch, frame, or object level within
NvDsBatchMeta, you must acquire an instance of NvDsUserMeta from the user meta
pool by calling nvds_acquire_user_meta_from_pool(). (See
sources/includes/nvdsmeta.h for details.) Then you must initialize
NvDsUserMeta. The members you must set are user_meta_data, meta_type,
copy_func, and release_func.
For more details, see the sample application source code in
sources/apps/sample_apps/deepstream-user-metadata-
test/deepstream_user_metadata_app.c.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 86

3.3 ADDING CUSTOM META IN GST PLUGINS
UPSTREAM FROM GST-NVSTREAMMUX

The DeepStream SDK creates batch level metadata in the Gst-nvstreammux plugin. It
holds NvDsBatchMeta metadata in a hierarchy of batches, frames within batches, and
objects within frames.

To add metadata to the plugin before Gst-nvstreammux

This procedure introduces metadata to the DeepStream pipeline at a plugin before Gst-
nvstreammux.

1. Set the plugin’s following members of the plugin’s NvDsUserMeta structure:
● copy_func
● free_func
● meta_type
● gst_to_nvds_meta_transform_func
● gst_to_nvds_meta_release_func

2. Attach the metadata by calling gst_buffer_add_nvds_meta() and set the
meta_type in the NvDsMeta instance returned by
gst_buffer_add_nvds_meta().

3. The Gst-nvstreammux plugin transforms the input gst-meta created in step 2 from
the Gst Buffer into an NvDsUserMeta object associated with the corresponding
NvDsFrameMeta object. It adds this object to the frame_user_data list.

4. Search the frame_user_meta list in the NvDsFrameMeta object for the
meta_type that was set in step 2, and access the attached metadata.

See the sample application source code in
sources/apps/sample_apps/deepstream-gst-metadata-
test/deepstream_gst_metadata.c for more details. If gst meta is not attached
with gst_buffer_add_nvds_meta(),it is not transformed into DeepStream
metadata. It is still be available in the Gst Buffer, though.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 87

4.0 IPLUGIN INTERFACE

DeepStream 4.0 supports TensorRT™ plugins for custom layers. The Gst-nvinfer
plugin now has support for the IPluginV2 and IPluginCreator interface,
introduced in TensorRT 5.0. For caffemodels and for backward compatibility with
existing plugins, it also supports the following interfaces:
 nvinfer1::IPluginFactory
 nvuffparser::IPluginFactory
 nvuffparser::IPluginFactoryExt
 nvcaffeparser1::IPluginFactory
 nvcaffeparser1::IPluginFactoryExt
 nvcaffeparser1::IPluginFactoryV2

See the TensorRT documentation for details on new and deprecated plugin interfaces.

4.1 HOW TO USE IPLUGINCREATOR
To use the new IPluginCreator interface you must implement the interface in an
independent custom library. This library must be passed to the Gst-nvinfer plugin
through its configuration file by specifying the library’s pathname with the custom-
lib-path key.

Gst-nvinfer opens the library with dlopen(), which causes the plugin to be
registered with TensorRT. There is no further direct interaction between the custom
library and Gst-nvinfer. TensorRT calls the custom plugin functions as required.

The SSD sample provided with the SDK provides an example of using the IPluginV2
and IPluginCreator interface. This sample has been adapted from TensorRT.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/index.html

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 88

4.2 HOW TO USE IPLUGINFACTORY
To use the IPluginFactory interface, you must implement the interface in an
independent custom library. Pass this library to the Gst-nvinfer plugin through the
plugin’s configuration file by specifying the library’s pathname in the custom-lib-
path key. The custom library must implement the applicable functions:

 NvDsInferPluginFactoryCaffeGet
 NvDsInferPluginFactoryCaffeDestroy
 NvDsInferPluginFactoryUffGet
 NvDsInferPluginFactoryUffDestroy
 NvDsInferPluginFactoryRuntimeGet
 NvDsInferPluginFactoryRuntimeDestroy

These structures are defined in nvdsinfer_custom_impl.h. The function definitions
must be named as in the header file. Gst-nvinfer opens the custom library with
dlopen() and looks for the names.

For Caffe Files

During parsing and building of a caffe network, Gst-nvinfer looks for
NvDsInferPluginFactoryCaffeGet. If found, it calls the function to get the
IPluginFactory instance. Depending on the type of IPluginFactory returned,
Gst-nvinfer sets the factory using one of the ICaffeParser interface’s methods
setPluginFactory(), setPluginFactoryExt(), or setPluginFactoryV2().

After the network has been built and serialized, Gst-nvinfer looks for
NvDsInferPluginFactoryCaffeDestroy and calls it to destroy the
IPluginFactory instance.

For Uff Files

During parsing and building of a caffe network, Gst-nvinfer looks for
NvDsInferPluginFactoryUffGet. If found, it calls the function to get the
IPluginFactory instance. Depending on the type of IPluginFactory returned,
Gst-nvinfer sets the factory using one of the IUffParser inteface’s methods
setPluginFactory() or setPluginFactoryExt().

After the network has been built and serialized, Gst-nvinfer looks for
NvDsInferPluginFactoryUffDestroy and calls it to destroy the IPluginFactory
instance.

During Deserialization

If deserializing the models requires an instance of NvInfer1::IPluginFactory, the
custom library must also implement NvDsInferPluginFactoryRuntimeGet() and
optionally NvDsInferPluginFactoryRuntimeDestroy(). During deserialization,
Gst-nvinfer calls the library’s NvDsInferPluginFactoryRuntimeGet()

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 89

function to get the IPluginFactory instance, then calls
NvDsInferPluginFactoryRuntimeDestroy to destroy the instance if it finds that
function during Gst-nvinfer deinitialization.

The FasterRCNN sample provided with the SDK provides an example of using the
IPluginV2+nvcaffeparser1::IPluginFactoryV2 interface with DeepStream.
This sample has been adapted from TensorRT. It also provides an example of using the
legacy IPlugin + nvcaffeparser1::IPluginFactory + Gst-nvinfer
1::IPluginFactory interface for backward compatibility.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 90

5.0 DOCKER CONTAINERS

DeepStream 4.0 provides Docker containers for both dGPU and Jetson platforms. These
containers provide a convenient, out-of-the-box way to deploy DeepStream applications
by packaging all associated dependencies within the container. The associated Docker
images are hosted on the NVIDIA container registry in the NGC web portal at
https://ngc.nvidia.com. They leverage the nvidia-docker package, which enables access
to GPU resources from containers, as required by DeepStream applications. The rest of
this section describes the features supported by the DeepStream Docker container for the
dGPU and Jetson platforms.

Note: The DeepStream 4.0 containers for dGPU and Jetson are distinct, so you must
take care to get the right image for your platform.

5.1 A DOCKER CONTAINER FOR DGPU
The Deeptream 4.0 container for dGPU is kept in the “Inference” section of the NGC
web portal. The “Container” page gives instructions for pulling and running the
container, along with a description of its contents.

Unlike the container in DeepStream 3.0, the dGPU DeepStream 4.0 container supports
DeepStream application development within the container. It contains the same build
tools and development libraries as the DeepStream 4.0 SDK.

In a typical scenario, you build, execute and debug a DeepStream application within the
DeepStream container. Once your application is ready, you can create your own Docker
container holding your application files (binaries, libraries, models, configuration file,
etc.), using the DeepStream 4.0 container as a base image and adding your application-

https://ngc.nvidia.com/
https://github.com/NVIDIA/nvidia-docker

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 91

specific files to it. Here is a snippet which shows how a Dockerfile for creating your own
Docker container might look:

FROM docker pull nvcr.io/nvidia/deepstream:4.0-19.07
ADD mydsapp /root/apps/
To get video driver libraries at runtime (libnvidia-
encode.so/libnvcuvid.so)
ENV NVIDIA_DRIVER_CAPABILITIES $NVIDIA_DRIVER_CAPABILITIES,video

This Dockerfile copies your application (from directory mydsapp) into the container
(pathname /root/apps). Note that you must ensure that the DeepStream 4.0 image
location from NGC is accurate.

5.2 A DOCKER CONTAINER FOR JETSON
DeepStream 4.0 supports containers on the Jetson platform. As of JetPack release 4.2.1,
NVIDIA Container Runtime for Jetson has been added, allowing you to run GPU-
enabled containers on Jetson devices. Leveraging this capability, DeepStream 4.0 can be
run inside containers on Jetson devices using Docker images made available on NGC.

A DeepStream 4.0 container for Jetson is present in the “Inference” section of the NGC
container registry. Pull the container and execute it according to the instructions on the
container page on NGC.

The DeepStream container expects CUDA, TensorRT, and VisionWorks to be installed
on the Jetson device, since it is mounted within the container from the host. Make sure
that these utilities are installed using JetPack on your Jetson prior to launching the
DeepStream container.

Note that the Jetson Docker containers are for deployment only. They do not support
DeepStream software development within a container. You can build applications
natively on the Jetson target and create containers for them by adding binaries to your
Docker images. Alternatively, you can generate Jetson containers from your workstation
using instructions in the NVIDIA Container Runtime for Jetson documentation. See the
section “Building Jetson Containers on an x86 Workstation.”

https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson
https://github.com/NVIDIA/nvidia-docker/wiki/NVIDIA-Container-Runtime-on-Jetson

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 92

6.0 TROUBLESHOOTING

If you run into to trouble while using DeepStream, consider the following solutions.

 Problem: You are migrating from DeepStream 3.0 to DeepStream 4.0.

Solution: You must clean up the DeepStream 3.0 libraries and binaries. The one of
these commands to clean up:

● For dGPU: Enter this command:

$ sudo rm -rf /usr/local/deepstream /usr/lib/x86_64-linux-
gnu/gstreamer-1.0/libnvdsgst_* /usr/lib/x86_64-linux-
gnu/gstreamer-1.0/libgstnv* /usr/bin/deepstream* /usr/lib/x86_64-
linux-gnu/libv4l/plugins/libcuvidv4l2_plugin.so

● For Jetson: Flash the target device with the latest release of JetPack.

 Problem: “NvDsBatchMeta not found for input buffer” error while running
DeepStream pipeline.

Solution: The Gst-nvstreammux plugin is not in the pipeline. Starting with
DeepStream 4.0, Gst-nvstreammux is a required plugin.

This is an example pipeline:

Gst-nvv4l2decoder → Gst-nvstreammux → Gst-nvinfer → Gst-nvtracker →
Gst-nvmultistreamtiler → Gst-nvvideoconvert → Gst-nvosd → Gst-nveglglessink

 Problem: The DeepStream reference application fails to launch, or any plugin fails to
load.

Solution: Try clearing the GStreamer cache by running the command:

$ rm -rf ${HOME}/.cache/gstreamer-1.0

Also run this command if there is an issue with loading any of the plugins. Warnings
or errors for failing plugins are displayed on the terminal.

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 93

$ gst-inspect-1.0

Then run this command to find missing dependencies:

$ldd <plugin>.so

Where <plugin> is the name of the plugin that failed to load.

 Problem: Application fails to run when the neural network is changed.

Solution: Be sure that the network parameters are updated for the corresponding
[GIE] group in the configuration file (e.g. source30_720p_dec_infer-
resnet_tiled_display_int8.txt). Also be sure that the Gst-nvinfer
plugin’s configuration file is updated accordingly.

When the model is changed, make sure that the application is not using old engine
files.

 Problem: The DeepStream application is running slowly (Jetson only).

Solution: Ensure that Jetson clocks are set high. Run these commands to set Jetson
clocks high.

$ sudo nvpmodel -m <mode> --for MAX perf and power mode is 0
$ sudo jetson_clocks

 Problem: The DeepStream application is running slowly.

Solution 1: One of the plugins in the pipeline may be running slowly.

You can measure the latency of each plugin in the pipeline to determine whether one
of them is slow.

● To enable frame latency measurement, run this command on the console:

$ export NVDS_ENABLE_LATENCY_MEASUREMENT=1

● To enable latency for all plugins, run this command on the console:

$ export NVDS_ENABLE_COMPONENT_LATENCY_MEASUREMENT=1

Solution 2 (dGPU only): Ensure that your GPU card is in the PCI slot with the
greatest bus width.

Solution 3: In the configuration file’s [streammux] group, set batched-push-
timeout to (1/max_fps).

DeepStream 4.0 Plugin Manual SWE-SWDOCDPSTR-002-PGRF | 94

Solution 4: In the configuration file’s [streammux] group, set width and height
to the stream’s resolution.

Solution 5: For RTSP streaming input, in the configuration file’s [streammux]
group, set live-source=1. Also make sure that all [sink#] groups have the
sync property set to 0.

Solution 6: If secondary inferencing is enabled, try to increase batch-size in the
the configuration file’s [secondary-gie#] group in case the number of objects to
be inferred is greater than the batch-size setting.

Solution 7: On Jetson, use Gst-nvoverlaysink instead of Gst-nveglglessink as
nveglglessink requires GPU utilization.

Solution 8: If the GPU is bottlenecking performance, try increasing the interval at
which th primary detector infers on input frames by modifying the interval
property of [primary-gie] group in the application configuration, or the
interval property of the Gst-nvinfer configuration file

Solution 9: If the elements in the pipeline are getting starved for buffers (you can
check if CPU/GPU utilization is low), try increasing the number of buffers allocated
by the decoder by setting the num-extra-surfaces property of the [source#]
group in the application or the num-extra-surfaces property of Gst-
nvv4l2decoder element.

Solution 10: If you are running the application inside docker/on console and it
delivers low FPS, set qos=0 in the configuration file’s [sink0] group.

The issue is caused by initial load. With qos set to 1, as the property’s default value
in the [sink0] group, decodebin starts dropping frames.

 Problem: On NVIDIA® Jetson Nano™, deepstream-segmentation-test starts
as expected, but crashes after a few minutes. The system reboots.

Solution : NVIDIA recommends that you power the Jetson module through the DC
power connector when running this app. USB adapters may not be able to handle
the transients.

 Problem: Errors occur when deepstream-app is run with a number of streams
greater than 100. For example:

(deepstream-app:15751): GStreamer-CRITICAL **: 19:25:29.810:
gst_poll_write_control: assertion 'set != NULL' failed.

Solution: run this command on the console:

ulimit -Sn 4096

Then run deepstream-app again.

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY
OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks
NVIDIA, the NVIDIA logo, TensorRT, and Jetson are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2018−2019 NVIDIA Corporation. All rights reserved.

	1.0 Introduction
	2.0 GStreamer Plugin Details
	2.1 Gst-nvinfer
	2.1.1 Inputs and Outputs
	2.1.2 Features
	2.1.3 Gst-nvinfer File Configuration Specifications
	2.1.4 Gst Properties
	2.1.5 Tensor Metadata
	To read or parse inference raw tensor data of output layers

	2.1.6 Segmentation Metadata

	2.2 Gst-nvtracker
	2.2.1 Inputs and Outputs
	2.2.2 Features
	2.2.3 Gst Properties
	2.2.4 Custom Low-Level Library
	2.2.5 Low-Level Tracker Library Comparisons and Tradeoffs
	2.2.6 NvDCF Low-Level Tracker

	2.3 Gst-nvstreammux
	2.3.1 Inputs and Outputs
	2.3.2 Features
	2.3.3 Gst Properties

	2.4 Gst-nvstreamdemux
	2.4.1 Inputs and Outputs

	2.5 Gst-nvmultistreamtiler
	2.5.1 Inputs and Outputs
	2.5.2 Features
	2.5.3 Gst Properties

	2.6 Gst-nvdsosd
	2.6.1 Inputs and Outputs
	2.6.2 Features
	2.6.3 Gst Properties

	2.7 Gst-nvvideoconvert
	2.7.1 Inputs and Outputs
	2.7.2 Features
	2.7.3 Gst Properties

	2.8 Gst-nvdewarper
	2.8.1 Inputs and Outputs
	2.8.2 Features
	2.8.3 Configuration File Parameters
	2.8.4 Gst Properties

	2.9 Gst-nvof
	2.9.1 Inputs and Outputs
	2.9.2 Features
	2.9.3 Gst Properties

	2.10 Gst-nvofvisual
	2.10.1 Inputs and Outputs
	2.10.2 Features
	2.10.3 Gst Properties

	2.11 Gst-nvsegvisual
	2.11.1 Inputs and Outputs
	2.11.2 Gst Properties

	2.12 Gst-nvvideo4linux2
	2.12.1 Decoder
	2.12.1.1 Inputs and Outputs
	2.12.1.2 Features
	2.12.1.3 Configuration Parameters

	2.12.2 Encoder
	2.12.2.1 Inputs and Outputs
	2.12.2.2 Features
	2.12.2.3 Configuration Parameters

	2.13 Gst-nvjpegdec
	2.13.1 Inputs and Outputs
	2.13.2 Features
	2.13.3 Configuration Parameters

	2.14 Gst-nvmsgconv
	2.14.1 Inputs and Outputs
	2.14.2 Features
	2.14.3 Gst Properties
	2.14.4 Schema Customization
	2.14.5 Payload with Custom Objects

	2.15 Gst-nvmsgbroker
	2.15.1 Inputs and Outputs
	2.15.2 Features
	2.15.3 Gst Properties
	2.15.4 nvds_msgapi: Protocol Adapter Interface
	2.15.4.1 nvds_msgapi_connect(): Create a Connection
	Parameters
	Return Value

	2.15.4.2 nvds_msgapi_send() and nvds_msgapi_send_async(): Send an event
	Parameters

	2.15.4.3 nvds_msgapi_do_work(): Incremental Execution of Adapter Logic
	2.15.4.4 nvds_msgapi_disconnect(): Terminate a Connection
	Parameters

	2.15.4.5 nvds_msgapi_getversion(): Get Version Number

	2.15.5 nvds_kafka_proto: Kafka Protocol Adapter
	2.15.5.1 Installing Dependencies
	2.15.5.2 Using the Adapter
	2.15.5.3 Configuring Protocol Settings
	2.15.5.4 Programmatic Integration
	2.15.5.5 Monitor Adapter Execution

	2.15.6 Azure MQTT Protocol Adapter Libraries
	2.15.6.1 Installing Dependencies
	2.15.6.2 Setting Up Azure IoT
	2.15.6.3 Configuring Adapter Settings
	2.15.6.4 Using the Adapter
	Connection Details for the Device Client Adapter
	Connection Details for the Module Client Adapter

	2.15.6.5 Monitor Adapter Execution
	Azure device client library log messages
	Azure Module Client Library Log Messages

	2.15.6.6 Message Topics and Routes

	2.15.7 AMQP Protocol Adapter
	2.15.7.1 Installing Dependencies
	AMQP broker

	2.15.7.2 Configure Adapter Settings
	2.15.7.3 Using the adapter
	2.15.7.4 Programmatic Integration
	2.15.7.5 Monitor Adapter Execution

	2.15.8 nvds_logger: Logging Framework
	2.15.8.1 Enabling Logging
	2.15.8.2 Filtering Logs
	2.15.8.3 Retiring and Managing Logs
	2.15.8.4 Generating Logs

	3.0 MetaData in the DeepStream SDK
	3.1 NvDsBatchMeta: Basic Metadata Structure
	3.2 User/Custom Metadata Addition inside NvDsBatchMeta
	3.3 Adding Custom Meta in Gst Plugins Upstream from Gst-nvstreammux
	To add metadata to the plugin before Gst-nvstreammux

	4.0 IPlugin Interface
	4.1 How to Use IPluginCreator
	4.2 How to Use IPluginFactory
	For Caffe Files
	For Uff Files
	During Deserialization

	5.0 Docker Containers
	5.1 A Docker Container for dGPU
	5.2 A Docker Container for Jetson

	6.0 Troubleshooting

