

RN-09353-003 | April 30, 2020
Advance Information | Subject to Change

5.0 Release Notes

DEEPSTREAM SDK 5.0. FOR
NVIDIA DGPU AND JETSON

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | ii

RN-09353-003

TABLE OF CONTENTS

1.0 ABOUT THIS RELEASE ... 3
1.1 What’s New ... 3
1.2 Contents of this Release ... 4
1.3 Documentation in this Release ... 5
1.4 Differences with Deepstream 4.0 .. 5

2.0 LIMITATIONS .. 6

3.0 NOTES.. 8
3.1 Applications May Be Deployed in a Docker Container ... 8
3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display 11
3.3 Installing DeepStream on Jetson ... 11
3.4 Workaround for Reduced Performance on Nvidia 430+ Driver Version 11
3.5 Triton Inference Server In Deepstream.. 13

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 3

1.0 ABOUT THIS RELEASE

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA®
Jetson AGX Xavier™, NVIDIA® Jetson Xavier™ NX, NVIDIA® Jetson Nano™, and NVIDIA®
Jetson™ TX2 platforms.

1.1 WHAT’S NEW

The following new features are supported in this DeepStream SDK release:

 Support for Triton Inference Server
 On the fly Model updates
 Event based Smart Record
 Cloud to device messaging
 Improved NVDCF tracker
 Facility to attach encoded detected Image objects as meta data.
 Sample application which showcases use of opencv in dsexample plugin
 Python binding enhancements

● Access to frame image data as NumPy array
● Access to inference output tensor data
● Additional sample applications

• Probe for image data, then use OpenCV to annotate and save frames to file
• Probe for inference output tensors to parse in Python
• USB camera input
• RTSP stream output

 Better time-stamp handling for live RTSP cameras
 DRC stream support for Jetson
 10 Bit H264 and H265 stream support
 Misc. bug fixes and Improved stability

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 4

 Support for flowing Metadata attached before Gst-nvv4l2 decoder
 Gst-nvinfer plugin:

● Support for TensorRT 7.0+:
● Explicit Full Dimension Network Support
● Non-maximum Suppression (NMS) for bounding box Clustering
● On-the-fly model update (Engine/Plan file only)
● Support for yolov3-ssp detector

 New plugins:

● Gst-nvdsanalytics plugin for ROI detection, line crossing and direction detection
● Gst-nvinferserver plugin for supporting Triton inference server using C++ client

APIs (https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-
branch-guide/docs/index.html)

 New sample applications:

● Analytics example: Demonstrates batched analytics like ROI filtering, Line crossing,
direction detection and overcrowding

● OpenCV example: Demonstrates the use of OpenCV in dsexample plugin
● Image as Metadata example: Demonstrates how to attach encoded object image as

meta data and save the images in jpeg format
● Appsrc and Appsink example: Demonstrates AppSrc and AppSink usage for

consuming and giving data from non-DS code respectively.

Note: Existing DeepStream 4.0 Application can be used with DeepStream 5.0 Refer
“Application Migration to DeepStream 5.0 from DeepStream 4.X” in DeepStream
5.0 Plugin Manual.

1.2 CONTENTS OF THIS RELEASE

This release includes the following:

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK V5.0 Development Guide for a
detailed description of the contents of the DeepStream release package. The
Development Guide also contains other information to help you get started with
DeepStream, including information about system software and hardware requirements
and external software dependencies that you must install before you use the SDK.

For detailed information about GStreamer plugins, metadata usage, Dockers,
application and plugin migration to DeepStream 5.0, troubleshooting, and a FAQ, see
the DeepStream 5.0 Plugin Manual.

 DeepStream SDK for dGPU and Jetson Software License Agreement (SLA).
 LICENSE.txt contains the license terms of third-party libraries used.

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 5

1.3 DOCUMENTATION IN THIS RELEASE

This release contains the following documentation.

 NVIDIA DeepStream SDK Development Guide
 NVIDIA DeepStream SDK API Reference
 NVIDIA DeepStream SDK Plugin Manual

1.4 DIFFERENCES WITH DEEPSTREAM 4.0

These are the major differences from DeepStream 4.0:

 The 360° camera use case is not supported. Docker container for the same to be updated
later for DeepStream 5.0 specific changes

 Bounding box coordinates are now in float data type.

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 6

2.0 LIMITATIONS

This section provides details about issues discovered during development and QA but not
resolved in this release.

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The
maximum number of instances can be increased by doing changes in open source code.

 detected-min-w and detected-min-h must be set to values larger than 32 in the
primary inference configuration file (config_infer_primary.txt) for gst-
dsexample on Jetson.

 The Kafka protocol adapter sometimes does not automatically reconnect when the
Kafka Broker to which it is connected goes down and comes back up, thereby requiring
application restart.

 If the nvds log file, ds.log, has been deleted, then to restart logging you must delete
the file /run/rsyslogd.pid within the container before reenabling logging by
running the setup_nvds_logger.sh script as described in the nvds_logger section
of the DeepStream Plugin Manual.

 On NVIDIA® Jetson AGX Xavier™, more than 50 instances of certain 1080p H.265
streams are not working due to limited memory for the decoder.

 On Jetson, running a DeepStream application over SSH (via putty) with X11 forwarding
does not work.

 DeepStream currently expects model network width to be a multiple of 4 and network
height to be a multiple of 2.

 Triton Inference Server implementation in DeepStream currently supports a single
GPU. The models need to be configured to use a single GPU.

 For some models sometime output in DeepStream is not exactly same as observed in
Transfer Learning Toolkit. This is due to input scaling algorithm differences.

 DRC support is Alpha quality.
 On the fly Model update only supports same type of Model with same Network

parameters.
 Triton Inference Server is not supported on Jetson Nano, TX1 and TX2 in this release.

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 7

 On T4 servers the performance is degraded when used with Nvidia driver 430+ version.
Refer section 3.4 for workaround.

 On Jetson there is performance degradation when NVDCF based tracker is used. This
will be fixed in GA release.

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 8

3.0 NOTES

 Optical flow is only supported on dGPUs having Turing architecture and on
NVIDIA® Jetson AGX Xavier™.

 NVIDIA® Jetson Nano™ and NVIDIA® Jetson™ TX2 support only FP16 and FP32
network precisions with NVIDIA® TensorRT™.

 Jetson AGX Xavier supports INT8, FP16 and FP32 network precisions with
TensorRT.

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER
CONTAINER

Applications built with DeepStream can be deployed using a Docker container, available
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account and look
for DeepStream containers to get started.

After you sign in to your NGC account, go to Dashboard→ Setup→ Get API key to get
your nvcr.io authentication details.

As an example, you can use the DeepStream 5.0 docker containers on NGC and run the
deepstream-test4-app sample application as an Azure edge runtime module on
your edge device.

The following procedure deploys deepstream-test4-app:

 Using a sample video stream (sample_720p.h264)
 Sending messages with minimal schema
 Running with display disabled
 Using message topic mytopic (message topic may not be empty)

Set up and install Azure IoT Edge on your system with the instructions provided in the
Azure module client README file in the deepstream5.0 package:

https://ngc.nvidia.com/

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 9

<deepstream-
5.0_package>/sources/libs/azure_protocol_adaptor/module_client/README

Note: For the Jetson platform, omit installation of the moby packages. Moby is
currently incompatible with NVIDIA Container Runtime.

See the Azure documentation for information about prerequisites for creating an Azure
edge device on the Azure portal:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites

To deploy deepstream-test4-app as an Azure IoT edge runtime module

1. On the Azure portal, click the IoT edge device you have created and click Set
Modules.

2. Enter these settings:

Container Registry Settings:
 Name: NGC
 Address: nvcr.io
 User name: $oauthtoken
 Password: use the password or API key from your NGC account

Deployment modules:
 Add a new module with the name ds

Image URI:

For x86 dockers:
docker pull nvcr.io/nvidia/deepstream:5.0-dp-20.04-devel
docker pull nvcr.io/nvidia/deepstream:5.0-dp-20.04-samples
docker pull nvcr.io/nvidia/deepstream:5.0-dp-20.04-iot
docker pull nvcr.io/nvidia/deepstream:5.0-dp-20.04-base
docker pull nvcr.io/nvidia/deepstream:5.0-dp-20.04-triton

For Jetson dockers:
docker pull nvcr.io/nvidia/deepstream-l4t:5.0-dp-20.04-samples
docker pull nvcr.io/nvidia/deepstream-l4t:5.0-dp-20.04-iot
docker pull nvcr.io/nvidia/deepstream-l4t:5.0-dp-20.04-base

Container Create options:

● For Jetson:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 10

/opt/nvidia/deepstream/deepstream-
5.0/sources/apps/sample_apps/deepstream-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream-5.0/bin/deepstream-test4-
app",
 "-i", "/opt/nvidia/deepstream/deepstream-5.0/
samples/streams/sample_720p.h264",
 "-p",
"/opt/nvidia/deepstream/deepstream-
5.0/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]
}

● For X86:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "/opt/nvidia/deepstream/deepstream-
5.0/sources/apps/sample_apps/deepstream-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream-5.0/bin/deepstream-test4-
app",
 "-i", "/opt/nvidia/deepstream/deepstream-
5.0/samples/streams/sample_720p.h264",
 "-p",
 "/opt/nvidia/deepstream/deepstream-
5.0/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]}

3. Specify route options for the module:

● Option 1: Use a default route where every message from every module is sent
upstream.

 {
 "routes": {
 "route": "FROM /messages/* INTO $upstream"
 }
 }

● Option 2: Specific routes where messages sent upstream can be filtered based on
topic name. For example, in the sample test programs, topic name mytopic is
used for the module name ds5:

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 11

 {
 "routes": {
 "route": "FROM /messages/modules/ds5/outputs/mytopic INTO
$upstream"
 }
 }

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER
ENVIRONMENT CANNOT SUPPORT DISPLAY

If the Docker environment cannot support display, the sample applications
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected.

To correct this problem, you must recompile the test applications after replacing
nveglglessink with fakesink. With deepstream-test4, you also have the option
to specify fakesink by adding the --no-display command line switch.

3.3 INSTALLING DEEPSTREAM ON JETSON

1. Download the NVIDIA SDK Manager to install JetPack 4.4 Developer Preview
(DP) and DeepStream SDK.

2. Select all the JetPack 4.4 components and DeepStreamSDK from the “Additional
SDKs” section.

Refer to the DeepStream Quick Start Guide for installation of updated NVIDIA
V4L2 Gstreamer plugin.

Note: • NVIDIA Container Runtime" package shall be installed using JetPack 4.4
DP and is a pre-requisite for all DeepStream L4T docker containers.

• It is recommended to use SD card images for Jetson Nano instead of
flashing through SDK Manager. The minimum recommended size for
SD cards is 32 GB

3.4 WORKAROUND FOR REDUCED PERFORMANCE ON NVIDIA
430+ DRIVER VERSION

To solve the T4 performance issue you will need to install 418 driver for nvcuvid
decoder. CUDA 10.2 and CUDA 10.1 must coexist.

Steps to install Nvidia 418 driver on Ubuntu 18.04 machine:

https://developer.nvidia.com/embedded/jetpack

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 12

1. Disable persistent mode
$sudo nvidia-smi -pm 0

2. kill X from different TTY (e.g., use Ctrl + Alt + F1) or remote shell (ssh)
$sudo service gdm (or gdm3 or lightdm)stop

3. Uninstall current driver using purge command
$sudo apt-get --purge remove "*nvidia*"

4. Install CUDA 10.1 and CUDA 10.2:

Download CUDA 10.1 .deb or .run file from

https://developer.nvidia.com/cuda-10.1-download-archive-
update2?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_versi
on=1804

Download CUDA 10.2 .deb or .run file from

 https://developer.nvidia.com/cuda-
downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_ve
rsion=1804

CUDA 10.1 would be used by nvcuvid decoder.

5. Install 418 driver

Download from the following location:
https://www.nvidia.in/Download/driverResults.aspx/158107/en-in

$sudo ./NVIDIA-Linux-x86_64-418.126.02.run

6. Install TensorRT 7.0+ Debian package. Download the package from
https://developer.nvidia.com/nvidia-tensorrt-7x-download

7. Install following packages for CUDA 10.2

$sudo apt install cuda-samples-10-2 cuda-nvrtc-10-2 cuda-
compat-10-2

8. Append path /usr/local/cuda-10.2/compat/ in
/etc/ld.so.conf.d/cuda-10-2.conf file

9. Run $sudo ldconfig
10. Run following commands to check CUDA 10.2 installation on 418 driver:

cd /usr/local/cuda-10.2/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

deviceQuery must run successfully.

11. Install DeepStream 5.0 Package.

https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804
https://www.nvidia.in/Download/driverResults.aspx/158107/en-in
https://developer.nvidia.com/nvidia-tensorrt-7x-download

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 13

12. Run the DeepStream Application and observe improved performance.
deepstream-app -c /opt/nvidia/deepstream/deepstream-
5.0/samples/configs/deepstream-app/source30_1080p_dec_infer-
resnet_tiled_display_int8.txt

Note: The steps above are required before you use the DeepStream 5.0 dockers.

3.5 TRITON INFERENCE SERVER IN DEEPSTREAM

Triton inference server on dGPU is supported only via docker container deepstream:
5.0-dp-20.04-triton for x86.

Refer to the DeepStream 5.0 Plugin Manual for more details about Triton inference server.

Triton Inference Sever Supports following frameworks:

Framework Tesla Jetson Notes / Limitations
TensorRT Yes Yes Supports TensorRT plan or engine file

(.plan)

TensorFlow Yes Yes Supports TensorRT optimization

Supported model formats: GraphDef or
SavedModel

Other TF formats such as checkpoint
variables or estimators not directly
supported

ONNX Yes No Supports TensorRT optimization

PyTorch Yes No PyTorch model must be traced with an
example input and saved as a
TorchScript Module (.pt)

Caffe2 No No Caffe2 Netdef models not supported
with DeepStream - Triton

For more information refer to the following links:

 Triton Inference Server Model Repository:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/model_repository.html

Also contains more information on the supported frameworks.

 TensorRT Optimization in Triton Inference Server for ONNX and Tensorflow:
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/optimization.html#framework-specific-optimization

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization

DeepStream SDK 5.0. for NVIDIA dGPU and Jetson RN-09353-003 | 14

 TensorFlow with TensorRT:
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

 Tensorflow Saved Model:
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

www.nvidia.com

Notice
THE INFORMATION IN THIS DOCUMENT AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS DOCUMENT IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this document shall
be limited in accordance with the NVIDIA terms and conditions of sale for the product. THE NVIDIA PRODUCT
DESCRIBED IN THIS DOCUMENT IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED
FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY
SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE
SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN
CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA
EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL
NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES
ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this document will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this document. NVIDIA does not accept any liability related to any default, damage,
costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner
that is contrary to this document, or (ii) customer product designs.

Other than the right for customer to use the information in this document with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this document. Reproduction of information in
this document is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, TensorRT, Jetson Nano, Jetson AGX Xavier, Jetson Xavier NX, and NVIDIA Tesla are
trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other
company and product names may be trademarks of the respective companies with which they are associated.

Copyright © 2020 NVIDIA Corporation. All rights reserved.

	1.0 About this Release
	1.1 What’s New
	1.2 Contents of this Release
	1.3 Documentation in this Release
	1.4 Differences with Deepstream 4.0

	2.0 Limitations
	3.0 Notes
	3.1 Applications May Be Deployed in a Docker Container
	To deploy deepstream-test4-app as an Azure IoT edge runtime module

	3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display
	3.3 Installing DeepStream on Jetson
	3.4 Workaround for Reduced Performance on Nvidia 430+ Driver Version
	3.5 Triton Inference Server In Deepstream

