Performance ============= DeepStream application is benchmarked across various NVIDIA TAO Toolkit and open source models. The measured performance represents end-to-end performance of the entire video analytic application considering video capture and decode, pre-processing, batching, inference, and post-processing to generate metadata. The output rendering is turned off to achieve peak inference performance. For information on disabling the output rendering, see :doc:`DS_ref_app_deepstream` chapter. To Run higher number of streams (200+) on Hopper, Ampere and Ada, follow below instructions: :: $ sudo service display-manager stop #Make sure no process is running on GPU i.e. Xorg or trition server etc $ sudo pkill -9 Xorg #Remove kernel modules $ sudo rmmod nvidia_drm nvidia_modeset nvidia #Load Modules with Regkeys $ sudo modprobe nvidia NVreg_RegistryDwords="RMDebugOverridePerRunlistChannelRam = 1;RMIncreaseRsvdMemorySizeMB = 1024;RMDisableChIdIsolation = 0x1;RmGspFirmwareHeapSizeMB = 256" $ sudo service display-manager start TAO Pre-trained models -------------------------- `TAO toolkit `_ has a set of pretrained models listed in the table below. If the models below satisfy your requirement, you should start with one of them. These could be used for various applications in smart city or smart places. If your application is beyond the scope of these models, you may re-train one of the popular model architecture using TAO toolkit. The table below shows the end-to-end performance on highly accurate pre-trained models from TAO toolkit. All models are available on NGC. These models are natively integrated with DeepStream and the instructions to run these models are in ``/opt/nvidia/deepstream/deepstream-6.3/samples/configs/tao_pretrained_models/``. The following numbers are obtained with ``sample_1080p_h265.mp4``. .. csv-table:: Performance jetson- pretrained models :file: ../text/tables/DS_performance_TLT_pretrained_jetson.csv :widths: 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 :header-rows: 1 All the models in the table above can run solely on DLA. This saves valuable GPU resources to run more complex models. .. note:: * Running inference simultaneously on multiple models is not supported on the DLA. You can only run one model at a time on the DLA. * NA : Not available for Jetson .. csv-table:: Performance dgpu- pretrained models :file: ../text/tables/DS_performance_TLT_pretrained_dgpu.csv :widths: 15, 7, 7, 7, 7, 7, 7, 7, 7 :header-rows: 1 .. csv-table:: Performance dgpu- pretrained models :file: ../text/tables/DS_performance_TLT_pretrained_dgpu_continue.csv :widths: 15, 7, 7, 7, 7, 7, 7, 7 :header-rows: 1 .. note:: * NA : Not available DeepStream reference model and tracker --------------------------------------- DeepStream SDK ships with a reference `DetectNet_v2-ResNet10` model and three `ResNet18` classifier models. The detailed instructions to run these models with DeepStream are provided in the next section. DeepStream provides four reference trackers: `IOU`, `NvSORT`, `NvDeepSORT` and `NvDCF`. For more information about trackers, See the :doc:`DS_plugin_gst-nvtracker` section. Configuration File Settings for Performance Measurement -------------------------------------------------------- To achieve peak performance, make sure the devices are properly cooled. For Turing and Ampere GPUs, make sure you use a server that meets the thermal and airflow requirements. Along with the hardware setup, a few other options in the config file need to be set to achieve the published performance. Make the required changes to one of the config files from DeepStream SDK to replicate the peak performance. **Turn off output rendering, OSD, and tiler** OSD (on-screen display) is used to display bounding box, masks, and labels on the screen. If output rendering is disabled, creating bounding boxes is not required unless the output needs to be streamed over RTSP or saved to disk. Tiler is used to display the output in `NxM` tiled grid. It is not needed if rendering is disabled. Output rendering, OSD and tiler use some percentage of compute resources, so it can reduce the inference performance. To disable OSD, tiled display and output sink, make the following changes in the DeepStream config file. * To disable OSD, change enable to 0 :: [osd] enable=0 * To disable tiling, change enable to 0 :: [tiled-display] enable=0 * To turn-off output rendering, change the sink to fakesink. :: [sink0] enable=1 #Type - 1=FakeSink 2=EglSink 3=File type=1 sync=0 **Use the max_perf setting for tracker** DeepStream SDK 6.2 introduces a new reference low-level tracker library, *NvMultiObjectTracker*, along with a set of configuration files: * ``config_tracker_IOU.yml`` * ``config_tracker_NvDCF_max_perf.yml`` * ``config_tracker_NvDCF_perf.yml`` * ``config_tracker_NvDCF_accuracy.yml`` To achieve the peak performance shown in the table above when using the NvDCF tracker, make sure the max_perf configuration is used with video frame resolution matched to that of the inference module. If the inference module uses 480x272 resolution, for example, it would be recommended to use a reduced resolution (e.g., 480x288) for the tracker module like the following: :: [tracker] enable=1 tracker-width=480 tracker-height=288 ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so #ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_IOU.yml ll-config-file=/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_tracker_NvDCF_max_perf.yml gpu-id=0 enable-batch-process=1 display-tracking-id=1 When the IOU tracker is used, the video frame resolution doesn't matter, and the default ``config_tracker_IOU.yml`` can be used. To use DLA on Jetson AGX Xavier and NX for performance measurement, refer to the :ref:`_DLA_inference` section in the Quickstart Guide. DeepStream reference model ---------------------------- Data center GPU - GA100 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - GA100. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: GA100 System configuration :file: ../text/tables/DS_performance_Ampere_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: GA100 application configuration :file: ../text/tables/DS_performance_Ampere_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 187 6.41% 40.20% H.264 98 2.53% 18.42% ============= ======================== =================== ==================== Data center GPU - T4 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - T4. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: T4 System configuration :file: ../text/tables/DS_performance_Tesla_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: T4 application configuration :file: ../text/tables/DS_performance_Tesla_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 75 3.21% 44.77% H.264 43 1.93% 23.27% ============= ======================== =================== ==================== Data center GPU - A30 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - A30. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: A30 System configuration :file: ../text/tables/DS_performance_A30_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: A30 application configuration :file: ../text/tables/DS_performance_A30_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 190 6.30% 53.86% H.264 71 1.80% 19.31% ============= ======================== =================== ==================== Data center GPU - A2 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - A2. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: A2 System configuration :file: ../text/tables/DS_performance_A2_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: A2 application configuration :file: ../text/tables/DS_performance_A2_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 91 53.48% 99.99% H.264 48 1.64% 47.93% ============= ======================== =================== ==================== Data center GPU - A10 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - A10. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: A10 System configuration :file: ../text/tables/DS_performance_A10_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: A10 application configuration :file: ../text/tables/DS_performance_A10_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 105 2.81% 29.60% H.264 45 1.39% 12.62% ============= ======================== =================== ==================== Data center GPU - H100 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - H100. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: H100 System configuration :file: ../text/tables/DS_performance_H100_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: H100 application configuration :file: ../text/tables/DS_performance_H100_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 274 1.71% 65.36% H.264 153 1.73% 26.41% ============= ======================== =================== ==================== Data center GPU - L40 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - L40. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: L40 System configuration :file: ../text/tables/DS_performance_L40_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: L40 application configuration :file: ../text/tables/DS_performance_L40_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 192 4.93% 33.55% H.264 82 1.92% 13.74% ============= ======================== =================== ==================== Data center GPU - L4 ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - L4. System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: L4 System configuration :file: ../text/tables/DS_performance_L4_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: L4 application configuration :file: ../text/tables/DS_performance_L4_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 181 11.50% 71.68% H.264 91 2.19% 28.96% ============= ======================== =================== ==================== Data center GPU - Quadro (A6000) ~~~~~~~~~~~~~~~~~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Data center GPU - Quadro (A6000). System Configuration ^^^^^^^^^^^^^^^^^^^^^^ The system configuration for the DeepStream SDK is listed below: .. csv-table:: Quadro (A6000) System configuration :file: ../text/tables/DS_performance_Quadro(A6000)_system_configuration.csv :widths: 30, 40 :header-rows: 1 Application Configuration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IoU` tracker. The application configuration for the DeepStream SDK is listed below: .. csv-table:: Quadro (A6000) application configuration :file: ../text/tables/DS_performance_Quadro(A6000)_application_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** The table below shows the achieved performance of the DeepStream SDK under the specified system and application configuration: ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 108 1.40% 26.62% H.264 48 0.61% 11.44% ============= ======================== =================== ==================== Jetson ~~~~~~~ This section describes configuration and settings for the DeepStream SDK on NVIDIA Jetson™ platforms. JetPack 5.1.2 GA is used for software installation. System Configuration ^^^^^^^^^^^^^^^^^^^^^^^ For the performance test: 1. Max power mode is enabled: ``$ sudo nvpmodel -m 0``. For Jetson NX, use ``$ sudo nvpmodel -m 8`` 2. The GPU clocks are stepped to maximum: ``$ sudo jetson_clocks`` For information about supported power modes, see the “Supported Modes and Power Efficiency” section in the power management topics of `NVIDIA Tegra Linux Driver Package Development Guide`, e.g., “Power Management for Jetson AGX Xavier Devices.” Jetson AGX Xavier ^^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IOU` tracker. The following tables describe performance results for the NVIDIA Jetson AGX Xavier™. .. csv-table:: Jetson AGX Xavier Pipeline Configuration (``deepstream-app``) :file: ../text/tables/DS_performance_Jetson_AGX_Xavier_app_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 54 59.07% 84.66% H.264 34 38.89% 56.32% ============= ======================== =================== ==================== Jetson NX ^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IOU` tracker. The following tables describe performance results for the NVIDIA Jetson NX™. .. csv-table:: Jetson NX Pipeline Configuration (``deepstream-app``) :file: ../text/tables/DS_performance_Jetson_NX_app_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 30 71.59% 85.12% H.264 23 56.22% 66.10% ============= ======================== =================== ==================== Jetson AGX Orin ^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IOU` tracker. The following tables describe performance results for the NVIDIA Jetson Orin™. .. csv-table:: Jetson AGX Orin Pipeline Configuration (``deepstream-app``) :file: ../text/tables/DS_performance_Jetson_AGX_Orin_app_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 37 11.06% 23.24% H.264 15 5.10% 10.45% ============= ======================== =================== ==================== Jetson Orin NX ^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IOU` tracker. The following tables describe performance results for the NVIDIA Jetson Orin NX™. .. csv-table:: Jetson Orin NX Pipeline Configuration (``deepstream-app``) :file: ../text/tables/DS_performance_Jetson_Orin_NX_app_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 32 14.97% 44.39% H.264 13 7.22% 18.21% ============= ======================== =================== ==================== Jetson Orin Nano ^^^^^^^^^^^^^^^^^^ **Config file**: ``source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt`` Change the following items in the config file: * The inference resolution of Primary GIE is specified in the ``samples/models/Primary_detector/resnet10.prototxt``. In this file, change the `dim` (i.e. height and width of input tensor) from ``368x640`` to ``272x480``. * Change batch size under ``streammux`` and ``primary-gie`` to match the number of streams. * Disable tiled display and rendering using instructions above. * Enable `IOU` tracker. The following tables describe performance results for the NVIDIA Jetson Orin Nano™. .. csv-table:: Jetson Orin Nano Pipeline Configuration (``deepstream-app``) :file: ../text/tables/DS_performance_Jetson_Orin_Nano_app_configuration.csv :widths: 30, 40 :header-rows: 1 **Achieved Performance** ============= ======================== =================== ==================== Stream type No. of Stream @ 30 FPS CPU Utilization GPU Utilization ============= ======================== =================== ==================== H.265 19 17.12% 43.40% H.264 8 8.17% 21.66% ============= ======================== =================== ====================