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1.0 ABOUT THIS RELEASE 

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA® 
Ampere®, NVIDIA® Hopper®, NVIDIA® Ada Lovelace®. NVIDIA® Jetson AGX Xavier™, 
NVIDIA® Jetson NX, NVIDIA® Jetson AGX Orin™, NVIDIA® Jetson Orin™ NX, and NVIDIA® 
Jetson Orin™ Nano. 

1.1 WHAT’S NEW 

The following new features are supported in this DeepStream SDK release: 

 DS 6.3 
 Supports Triton 22.03 for x86/dGPU, Triton 23.01 for Jetson and Rivermax v1.20. 
 Jetson package based on JP 5.1.2 GA (r35.4.1 BSP). 
 Enable Pre-Processing plugin support for nvinferserver plugin. 
 Multi-Arch dockers for Jetson and x86. 
 REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 and Jetson). 
 10, 12 bit yuv420 decoding support for decoder on Jetson and x86. 8 bit yuv444 

decoding support for decoder on Jetson and x86 and 10,12 bit YUV444 decoding 
support for decoder on x86. 

 10 bit YUV 420 and YUV444 H.265 encoding support on x86. 
 Optical flow support on Jetson AGX Orin. 
 Nvinferserver (Triton) support to most of DS sample apps. 
 Support Google protobuf encoding and decoding message to message brokers (only 

Kafka). 
 Support NVIDIA TAO and ONNX models in Tracker. 
 Improving ReID Accuracy in Tracker.  
 Support ReID feature output from Tracker for downstream access. 
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 Support dynamic creation/destruction of NMOS Senders and Receivers for deepstream-
nmos app. 

 Support AMWA BCP-002-02 spec (https://specs.amwa.tv/bcp-002-02/) for deepstream-
nmos app. 

 CUDA accelerated support for jpeg encoder for x86. 
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled by 

exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.3 Release.  

 Performance optimizations. 
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models 

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch: 
release/tao4.0_ds6.3ga) integrated into SDK. 

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion 
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao4.0_ds6.3ga). 

 nvdsudpsrc plugin optimizations for supporting Mellanox NIC for Receiver. 
 SMPTE 2110 compliance related changes for nvdsudpsink. 
 Improved stability. 
 New sample applications: 

● Triton Ensemble: Demonstrates use of Triton ensemble models with gst-
nvinferserver plugin and how to implement custom Triton C++ backend to access 
DeespStream metadata like stream ID using multi-input tensors. 

● Deepstream-multigpu-nvlink-test: Application demonstrating usage of NVLink 
across multiple GPUs. 

 Python bindings and samples updates: 

● New Jupyter notebook for Launchpad lab based on deepstream-test3 app.  
● Updated deepstream-rtsp-in-rtsp-out sample to demonstrate usage of new binding: 

configure_source_for_ntp_sync(). 

 Opensource plugins: 

● Analytics plugin Gst-nvdsanalytics 
● Tracker plugin Gst-nvtracker 
● New muxer Gst-nvstreammux and demuxer Gst-nvstreamdemux 

 DS 6.2 (Previous release) 
 Supports Triton 22.09 for x86/dGPU, Triton 23.01 for Jetson and Rivermax v1.20. 
 Jetson package based on JP 5.1 GA (r35.2.1 BSP). 
 DeepSORT tracker support. 
 REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 only). 
 LIDAR support (Alpha). 
 ASR and TTS support on Jetson. 

https://specs.amwa.tv/bcp-002-02/
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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 Enable Pre-Processing plugin with SGIE. 
 Dewarper enhancements to support additional projections. 
 Support Google protobuf encoding and decoding message to message brokers (only 

Kafka). 
 Nvdsxfer plugin implementation (NVLink based, x86 only). 
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled by 

exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.2 Release.  

 Performance optimizations. 
 Improved NVDCF tracker. 
 GPU based drawing for text, line, circles, arrow using OSD plugin (alpha). 
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models 

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch: 
release/tao4.0_ds6.2ga) integrated into SDK. 

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion 
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao4.0_ds6.2ga). 

Added support for ReIdentificationNet Model and Retail Object 
Recognition Model. 

New deepstream-mdx-perception-app application for embedding vector from re-
identification network, to identify objects captured in different scenes. 

 nvdsudpsink plugin optimizations for supporting Mellanox NIC for transmission. 
 Improved stability. 
 deepstream-dewarper-app now supports following new projections: Fisheye to 

Perspective, Fisheye to Fisheye, Fisheye to Cylindrical, Fisheye to Equirectangular, 
Fisheye to Panini, Perspective to Equirectangular, Perspective to Panini, 
Equirectangular to Cylindrical, Equirectangular to Equirectangular, Equirectangular to 
Fisheye, Equirectangular to Panini, Equirectangular to Perspective, Equirectangular to 
PushBroom, Equirectangular to Stereographic, Equirectangular to Vertical Radial 
Cylindrical. 

 New plugins/bins: 

● Gst-nvdsxfer plugin transfers data over nvlink across multiple GPU under 
single process. 

● gst-nvmultiurisrcbin: The bin to integrate nvurisrcbin, and nvstreammux 
into a single GstBin. The bin can be configured to act as REST API server. 

 New sample applications: 

● DeepStream Server Application: Demonstrates REST API support to control 
DeepStream pipeline on-the-fly. 

● DeepStream Lidar Inference App:  Demonstrates how to set up lidar data reader, 
lidar data triton inference and lidar data 3D rendering and file dump pipelines over 

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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DS3D interfaces and custom libs of ds3d::dataloader, ds3d::datafilter 
and ds3d::datarender. See more details in the DeepStream Lidar Inference App 
section in the NVIDIA DeepStream SDK Developer Guide 6.2 Release. 

● DeepStream Can Orientation Sample App: Demonstrates can orientation detection 
with CV-based VPI template matching algorithm. VPI template matching is 
implemented with DeepStream video template plugin.  

● Sample app to demonstrate loading CUDA memory from appsrc in the pipeline. 

 Python bindings and samples updates: 

● New samples: 

1. Deepstream-segmask: demonstrating usage of NvOSD_MaskParams for 
segmentation. 

2. Deepstream-imagedata-multistream-cupy: demonstrating GPU buffer access for 
decoded images via CuPy. 

3. Deepstream-custom-binding-test: demonstrating use of custom user metadata. 
This is a sample for the new custom user metadata bindings guide. 

4. Updated Deepstream-rtsp-in-rtsp-out: added usage of binding for 
configure_source_for_ntp_sync() function. 

● New guides for adding custom bindings including custom user metadata. 

 Opensource plugins: 

● Triton plugin Gst-nvinferserver. 
● Dewarper plugin Gst-nvdewarper. 

 
DeepStream 6.2 Applications can be migrated to DeepStream 6.3. Refer to the “Application 
Migration to DeepStream 6.3 from DeepStream 6.2” section in the NVIDIA DeepStream SDK 
Developer Guide 6.3 Release. 

 Graph Composer 3.0 
 Graph Execution Engine  

● Graph runtime to execute graphs implemented based on Graph Specification.  
● Supported on Ubuntu 20.04 x86_64 and NVIDIA Jetson.  
● Version updated to 3.0.0.  
● Improvement in multi-thread scheduler to enable strict thread pinning & deadlock 

timeouts.  
● Improvement in TCP server and client using async scheduling term. 
● Optimization in greedy scheduler to reduce CPU utilization. 
● New policies added to periodic scheduling term to support different scheduling 

behaviors. 
● Bayer raw16, 3D formats i.e., RGBD, single-plane depth formats added to video 

buffer types. 
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● MemoryAvailable scheduling term added to check for mem availability in 
allocators. 

● New UCX GXF extension to support distributed applications.  
● Improved python APIs to compose & run graphs. 
● Improved Python codelets using CuPy, JAX, PyTorch.  
● Improved NVTX Profiling hooks for scheduler.  

 Graph Composer    

● Version updated to 3.0.0. 
● Composer with new UI.  
● x86 only - Ubuntu 20.04 and Windows 10.  
● Improved composer tools with GXF tools decoupled using grpc APIs. 
● A new gxf server tool to handle async grpc requests from multiple clients and tools.  
● Improved support for subgraph with global handles & pre-requisites.  

 Container Builder  

● Version updated to 1.1.0.  
●  Updated container builder cli tool utilizing grpc APIs.  
● New command line arguments in container builder cli for build/tag/push 

operations.  

 Registry  

● Version updated to 1.1.0.  
● Improvements in registry sync performance. 

1.2 CONTENTS OF THIS RELEASE 

This release includes the following: 

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK Developer Guide 6.3 Release for 
a detailed description of the contents of the DeepStream release package. The 
Developer Guide also contains other information to help you get started with 
DeepStream, including information about system software and hardware requirements 
and external software dependencies that you must install before you use the SDK. 

● For detailed information about GStreamer plugins and metadata usage, see the 
“DeepStream Plugin Guide” section in the NVIDIA DeepStream SDK Developer Guide 
6.3 Release. 

● For detailed troubleshooting information and frequently asked questions, see the 
“DeepStream Troubleshooting and FAQ Guide” section in the NVIDIA DeepStream 
SDK Developer Guide 6.3 Release. 

 Graph Composer 3.0 and DeepStream reference graphs for dGPU and Jetson.  
 DeepStream SDK for dGPU and Jetson Software License Agreement (SLA). 
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 LICENSE.txt contains the license terms of third-party libraries used. 

1.3 DOCUMENTATION IN THIS RELEASE 

This release contains the following documentation. 

 NVIDIA DeepStream SDK Developer Guide 6.3 Release 
 NVIDIA DeepStream SDK API Reference 
 NVIDIA DeepStream Python API Reference 

1.4 BREAKING CHANGES W.R.T DEEPSTREAM 6.2 

Starting from DS 6.3 support for base, iot, Triton and devel versions of docker removed. 
Instead, we have added Multi-Arch Triton docker. This is a superset of earlier dockers. 

1.5 DIFFERENCES WITH DEEPSTREAM 6.1 
gstreamer1.0-libav, libav, OSS encoder,decoder plugins (x264/x265) 
and audioparsers packages are removed in DeepStream dockers. You may install these 
packages based on your requirement (gstreamer1.0-plugins-good/ 
gstreamer1.0-plugins-bad/ gstreamer1.0-plugins-ugly). While running 
DeepStream applications inside dockers, you may see the following warnings: 

WARNING from src_elem: No decoder available for type 'audio/mpeg, 
mpegversion=(int)4, framed=(boolean)true, stream-format=(string)raw, 
level=(string)2, base-profile=(string)lc, profile=(string)lc, 
codec_data=(buffer)119056e500, rate=(int)48000, channels=(int)2'. 

 

Debug info: gsturidecodebin.c(920): unknown_type_cb (): 

To avoid such warnings, install gstreamer1.0-libav and gstreamer1.0-plugins-
good inside docker. 

Specifically, for deepstream-nmos, deepstream-avsync-app and python based deepstream-
imagedata-multistream app you would need to install gstreamer1.0-libav and 
gstreamer1.0-plugins-good. 

Gst-nveglglessink plugin is deprecated. Use Gst-nv3dsink plugin for Jetson 
instead. 
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2.0 LIMITATIONS 

This section provides details about issues discovered during development and QA but not 
resolved in this release. 

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The 
maximum number of instances can be increased by making changes in open-source 
code. 

 detected-min-w and detected-min-h must be set to values larger than 32 in the primary 
inference configuration file (config_infer_primary.txt) for gst-dsexample on Jetson. 

 The Kafka protocol adapter sometimes does not automatically reconnect when the 
Kafka Broker to which it is connected goes down and comes back up. This requires the 
application to restart. 

 If the nvds log file ds.log has been deleted, to restart logging you must delete the file 
/run/rsyslogd.pid within the container before reenabling logging by running the 
setup_nvds_logger.sh script. This is described in the “nvds_logger: Logging 
Framework” sub-section in the “Gst-nvmsgbroker” section in the NVIDIA DeepStream 
Developer Guide 6.3 Release. 

 Running a DeepStream application over SSH (via putty) with X11 forwarding does not 
work. 

 DeepStream currently expects model network width to be a multiple of 4 and network 
height to be a multiple of 2. 

 Triton Inference Server implementation in DeepStream currently supports a single 
GPU. The models need to be configured to use a single GPU. 

 For some models output in DeepStream is not exactly same as observed in TAO 
Toolkit. This is due to input scaling algorithm differences. 

 Dynamic resolution change support is Alpha quality. 
 On the fly Model update only supports the same type of Model with same Network 

parameters. 



DeepStream SDK 6.3 for NVIDIA dGPU/X86 and Jetson RN-09353-003  |  10 

 DeepStream cannot be installed on the current 16 GB Xavier NX production modules 
since Jetpack software takes the entire 16 GB emmc memory space. We recommend 
using Xavier NX developer kits with 32 GB SD card. 

 Rivermax SDK is not part of DeepStream. So, the following warning is observed (gst-
plugin-scanner:33257):  

GStreamer-WARNING **: 11:38:46.882: Failed to load plugin '/usr/lib/x86_64-
linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0: 
cannot open shared object file: No such file or directory  

You can ignore this warning safely. 

 When using Composer WebSocket streaming, sometimes errors like "Error while 
sending buffer: invalid state" is seen, or the window becomes unresponsive. 
Refreshing the browser page might fix it. 

 Composer WebRTC Streaming is supported only on RTX GPUs. 
 Application run logs not available for Composer UI. 
 On jetson, when the screen is idle, fps is lowered for DeepStream applications. This 

behavior is by design to save power. However, if user does not want screen idle then 
refer to the FAQ for WAR. 

 RDMA functionality is only supported on x86 and only in x86 devel docker for now. 
 You cannot build the DeepStream out of the box on Jetson dockers except its Triton 

variant. 
 There can be performance drop from TensorRT to Triton for some models (5 to 15%). 
 To generate the YOLOV3, YOLOV4 and YOLOV4-tiny model engines, the precision of 

some layers should be specified as FP32 for TensorRT limitations. The solution is 
updated in https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps. 

 NVRM: XID errors seen sometimes when running 275+ streams on Ampere, Hopper 
and ADA. 

 NVRM: XID errors seen on some setups with gst-dsexample and transfer learning 
sample apps. 

 Sometimes during deepstream-testsr app execution, assertion " GStreamer-
CRITICAL **: 12:55:35.006: gst_pad_link_full: assertion 
'GST_IS_PAD sinkpad)' failed" is seen which can be safely ignored. 

 Gst-nvdsasr plugin and deepstream-avsync-app is not supported on Hopper 
GPU. 

 Multifilesrc plugin with jpeg files fails inconsistently with nv3dsink. To address 
this issue, need to add nvvideoconvert element before nv3dsink. 

 For some of the models during engine file generation, error “[TRT]: 3: 
[builder.cpp::~Builder::307] Error Code 3: API Usage Error “ 
observed from TensorRT, but has no impact on functionality and can be safely ignored.  

 While running deepstream-image-decode-app assertion is seen which can be 
safely ignored. 

 ASR and TTS plugins are not supported on NVIDIA Hopper. 
 deepstream-server app is not supported with new nvstreammux plugin. 
 TAO point-pillar model works only in FP32 mode. 

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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 REST API support for few components (decoder, preprocessor, nvinfer along with 
stream addition deletion support) with limited configuration options. However, you 
can extend the functionality with the steps mentioned in SDK documentation. 

 Critical error (masked_scan_uint32_peek: assertion '(guint64) offset + 
size <= reader->size - reader->byte' failed) observed while running 
python segmentation application but it can be ignored safely. 

 While running two instances of nveglglessink component on Jetson you would see 
error like “NvVicCompose Failed”. If that happens, you can use nv3dsink 
component instead nveglglessink. 

 On Jetson dockers while running DeepStream applications the error “modprobe: 
FATAL: Module nvidia not found…” is seen but can be safely ignored. 

 With Basler camera, on Jetson, only images with width of multiple of 4 supported. 
 DLA inference performance drop is observed for Peoplenet, TrafficCamNet, 

DashCamNet, FRCNN, RetinaNet, Bodypose3D, Action recognition 2D & 3D models. 
 Action recognition sample deepstream-3d-action -recognition supports max batch size 

as 4 
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3.0 NOTES 

 Optical flow is supported only on dGPUs having Turing architecture (onwards) and 
on NVIDIA® Jetson Xavier™ and NVIDIA® Jetson Orin™ family. 

 REST API commands only work after the video shows up on the host screen. 
 The REST API server application deepstream-server-app should be used with 

dsserver_config.yml config file. dsserver_pgie_config.yml” should not be 
used as this is inference config file. 

 NVIDIA® DeepStream SDK 6.3 supports TAO 4.0 models 
(https://developer.nvidia.com/tao-toolkit). For more details, see 
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps. 

 On vGPU, only cuda device memory NVBUF_MEM_CUDA_DEVICE supported. 
 Jetson AGX Orin would be useful compared to Jetson AGX Xavier for the cases 

where DeepStream performance on Jetson AGX Xavier is GPU bound. 

Note: • OpenCV is deprecated by default. But you can enable OpenCV in 
plugins such as nvinfer (nvdsinfer) and dsexample (gst-
dsexample) by setting WITH_OPENCV=1 in the Makefile of these 
components. Refer to the component README for more instructions. 

• When using docker make sure libopencv-dev package is installed 
inside docker if the Application requires it. 

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER 
CONTAINER 

Applications built with DeepStream can be deployed using a Docker container, available 
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account and look 
for DeepStream containers to get started. 

https://developer.nvidia.com/tao-toolkit
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://ngc.nvidia.com/
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After you sign into your NGC account, navigate to Dashboard → Setup → Get 
API key to get your nvcr.io authentication details. 

As an example, you can use DeepStream 6.3. docker containers on NGC and run the 
deepstream-test4-app sample application as an Azure edge runtime module on 
your edge device. 

The following procedure deploys deepstream-test4-app: 

 Using a sample video stream (sample_720p.h264) 
 Sending messages with minimal schema 
 Running with display disabled 
 Using message topic mytopic (message topic may not be empty) 

Set up and install Azure IoT Edge on your system with the instructions provided in the 
Azure module client README file in the deepstream-6.3 package: 
 
<deepstream-
6.3_package>/sources/libs/azure_protocol_adaptor/module_client/README  
 

 

Note: For the Jetson platform, omit installation of the Moby packages. Moby is 
currently incompatible with NVIDIA Container Runtime. 

See the Azure documentation for information about prerequisites for creating an Azure 
edge device on the Azure portal: 

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites 

To deploy deepstream-test4-app as an Azure IoT edge runtime module 

1. On the Azure portal, click the IoT edge device you have created and click Set 
Modules. 

2. Enter these settings: 

Container Registry Settings: 
 Name: NGC 
 Address: nvcr.io 
 User name: $oauthtoken 
 Password: use the password or API key from your NGC account 

Deployment modules: 
 Add a new module with the name ds. 

Image URI: 

● For x86 dockers: 

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
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docker pull nvcr.io/nvidia/deepstream:6.3-samples 
docker pull nvcr.io/nvidia/deepstream:6.3-gc-triton-devel 
                                                   

● For Jetson dockers: 
 
docker pull nvcr.io/nvidia/deepstream-l4t:6.3-samples 
 

Multi-Arch dockers for x86 and Jetson: 

● For x86 : 
 
docker pull --platform linux/amd64 nvcr.io/nvidia/deepstream:6.3-
triton-multiarch 
 

● For Jetson : 
 
docker pull --platform linux/arm64 nvcr.io/nvidia/deepstream:6.3-
triton-multiarch 
 

 

Container Create options: 

● For Jetson: 
 
{ 
    "HostConfig": { 
            "Runtime": "nvidia" 
    }, 
    "WorkingDir": " 
/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream
-test4", 
    "ENTRYPOINT": [ 
        "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app", 
        "-i", "/opt/nvidia/deepstream/deepstream/ 
samples/streams/sample_720p.h264", 
        "-p", 
"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so", 
        "--no-display", 
        "-s", 
        "1", 
        "--topic", 
        "mytopic" 
    ] 
} 
 

● For X86: 
 
{ 
    "HostConfig": { 
        "Runtime": "nvidia" 
    }, 
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    "WorkingDir": 
"/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstrea
m-test4", 
    "ENTRYPOINT": [ 
        "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app", 
        "-i", 
"/opt/nvidia/deepstream/deepstream/samples/streams/sample_720p.h264", 
        "-p", 
        
"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so", 
        "--no-display", 
        "-s", 
        "1", 
        "--topic", 
        "mytopic" 
    ]} 
 

3. Specify route options for the module: 

● Option 1: Use a default route where every message from every module is sent 
upstream. 
     
{ 
      "routes": { 
        "route": "FROM /messages/* INTO $upstream" 
      } 
    } 
 

● Option 2: Specific routes where messages sent upstream can be filtered based on 
topic name. For example, in the sample test programs, topic name mytopic is 
used for the module name ds: 
     
{ 
        "routes": { 
            "route": "FROM /messages/modules/ds/outputs/mytopic INTO 
$upstream" 
        } 
    } 
 

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER 
ENVIRONMENT CANNOT SUPPORT DISPLAY 

If the Docker environment cannot support display, the sample applications 
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected. 

Workaround: 
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To correct this problem, you must recompile the test applications after replacing 
nveglglessink on x86 and nv3dsink on Jetson with fakesink. With deepstream-
test4, you also have the option to specify fakesink by adding the --no-display 
command line switch. 

Alternatively virtual display can be used. For more information refer to “How to 
visualize the output if the display is not attached to the system” section in “Quick Start 
Guide” section of NVIDIA DeepStream Developer Guide 6.3 Release. 

3.3 INSTALLING DEEPSTREAM ON JETSON 

1. Download the NVIDIA SDK Manager to install JetPack 5.1.2 GA. 
2. Select all the JetPack 5.1.2 components except DeepStreamSDK from the 

“Additional SDKs” section.  

Refer to the “Quick Start Guide” section in NVIDIA DeepStream Developer Guide 6.3 
Release to update additional BSP libraries if available. Continue with the 
DeepStream installation instructions after the BSP update. 

Note: NVIDIA Container Runtime package shall be installed using JetPack 5.1.2 GA 
and is a pre-requisite for all DeepStream L4T docker containers. 

3.4 TRITON INFERENCE SERVER IN DEEPSTREAM 

Triton inference server (version 23.03) on dGPU is supported only via docker 
deepstream:6.3-triton-multiarch for x86. On Jetson we support that with or 
without docker. 

Refer to the NVIDIA DeepStream Development Guide 6.3 Release for more details about 
Triton inference server. 

Triton inference server Supports following frameworks: 

Framework Tesla Jetson Notes / Limitations 
TensorRT Yes Yes Supports TensorRT plan or engine file 

(.plan) 

TensorFlow Yes Yes Supports TensorRT optimization 

Supported model formats: GraphDef or 
SavedModel 

Other TF formats such as checkpoint 
variables or estimators not directly 
supported 

Supports both Tensorflow 1.x and 
Tensorflow 2.x. Triton defaults to use 
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Tensorflow 1.x. If users need to run 
Tensorlfow 2.x models, need to update 
plugin config with: 

infer_config{ backend { 
trt_is { model_repo{ 
        backend_configs { 
            backend: 
"tensorflow" 
              setting: 
"version" 
              value: "2" 
} } } } 

ONNX Yes Yes Supports TensorRT optimization 

PyTorch Yes No PyTorch model must be traced with an 
example input and saved as a 
TorchScript Module (.pt) 

For more information refer to the following links: 

 Triton inference server model repository: 
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/model_repository.html  

Also contains more information on the supported frameworks. 

 TensorRT optimization in Triton inference server for ONNX and TensorFlow: 
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-
guide/docs/optimization.html#framework-specific-optimization  

 TensorFlow with TensorRT:  
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html  

 TensorFlow saved model: 
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk  

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/model_repository.html
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-guide/docs/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk
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