

RN-09353-003 | December 14, 2023
Advance Information | Subject to Change

6.4 Release Notes

DEEPSTREAM SDK 6.4 FOR
NVIDIA DGPU/X86 AND JETSON

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | ii

RN-09353-003

TABLE OF CONTENTS

1.0 ABOUT THIS RELEASE ... 3
1.1 What’s New ... 3

 DS 6.4 .. 3
 DS 6.3 (Previous Release) .. 4
 Graph Composer 3.1.0 ... 6

1.2 Contents of this Release ... 6
1.3 Documentation in this Release ... 7
1.4 BREAKING CHANGES W.R.T DEEPSTREAM 6.3 ... 7
1.5 Differences With Deepstream 6.1 and Above ... 8

2.0 LIMITATIONS .. 9

3.0 NOTES...12
3.1 Applications May Be Deployed in a Docker Container ... 12
3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display 15
3.3 Installing Deepstream On Jetson ... 16
3.4 Triton Inference Server In Deepstream.. 16

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 3

1.0 ABOUT THIS RELEASE

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA®
Ampere®, NVIDIA® Hopper®, NVIDIA® Ada Lovelace®, NVIDIA® Jetson AGX Orin™,
NVIDIA® Jetson Orin™ NX, and NVIDIA® Jetson Orin™ Nano.

1.1 WHAT’S NEW

The following new features are supported in this DeepStream SDK release:

 DS 6.4
 Migration to ubuntu 22.04; Gst version 1.20.3
 Supports Triton 23.08 for x86/dGPU, Triton 23.11 for Jetson and Rivermax v1.40.
 Jetson package based on JP 6.0 DP (r36.2.0 BSP).
 Enhanced REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 and

Jetson).
 NV V4L2 Encoder Plugin Enhancements for additional control.
 Added AV1 encoder support.
 New gstreamer plugins nvimagedec and nvimageenc based on CUDA nvjpeg

APIs.
 Support of Trafficcamnet as Primary detector and 2 new secondary classifier

models (VehicleMakeNet, VehicleTypeNet) with DS reference app.
 Enhance video template plug-in to support audio-in / video-out.
 Single-View 3D Tracking (Alpha).
 NvDCF tracker now supported with PVA backend on Jetson (Alpha).
 REST API Support Enhancements.
 MQTT TLS and keepalive support.
 Improved ReID Accuracy in Tracker.

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 4

 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled
by exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.4 Release.

 Performance optimizations.
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch:
release/tao5.1_ds6.4ga) integrated into SDK.

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao5.1_ds6.4ga).

 Improved stability.
 New Plugins:

● nvimagedec
● nvimageenc

 Python bindings and samples updates:

● Upgrade to Python 3.10 and Ubuntu 22.04; Python 3.8 and DeepStream 6.3 support
is deprecated.

● Deepstream-test2 application: updated to use new names for tracker metadata
types in DeepStream 6.4.

● DeepStream-test4 application: updated to support MQTT adapter.
● DeepStream-test1-rtsp-out: updated to support software encoder option for

Jetson Orin Nano.

Note: Jetson version of DeepStream based on JetPack 6.0 DP (Developer Preview).
It is not for production purpose.

 DS 6.3 (Previous Release)
 Supports Triton 22.03 for x86/dGPU, Triton 23.01 for Jetson and Rivermax v1.20.
 Jetson package based on JP 5.1.2 GA (r35.4.1 BSP).
 Enable Pre-Processing plugin support for nvinferserver plugin.
 Multi-Arch dockers for Jetson and x86.
 REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 and Jetson).
 10, 12-bit yuv420 decoding support for decoder on Jetson and x86. 8-bit yuv444

decoding support for decoder on Jetson and x86 and 10, 12-bit YUV444 decoding
support for decoder on x86.

 10-bit YUV 420 and YUV444 H.265 encoding support on x86.
 Optical flow support on Jetson AGX Orin.
 Nvinferserver (Triton) support to most of DS sample apps.
 Support Google protobuf encoding and decoding message to message brokers (only

Kafka).
 Support NVIDIA TAO and ONNX models in Tracker.

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 5

 Improving ReID Accuracy in Tracker.
 Support ReID feature output from Tracker for downstream access.
 Support dynamic creation/destruction of NMOS Senders and Receivers for

deepstream-nmos app.
 Support AMWA BCP-002-02 spec (https://specs.amwa.tv/bcp-002-02/) for

deepstream-nmos app.
 CUDA accelerated support for jpeg encoder for x86.
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled

by exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.3 Release.

 Performance optimizations.
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch:
release/tao4.0_ds6.3ga) integrated into SDK.

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao4.0_ds6.3ga).

 nvdsudpsrc plugin optimizations for supporting Mellanox NIC for Receiver.
 SMPTE 2110 compliance related changes for nvdsudpsink.
 Improved stability.
 New sample applications:

● Triton Ensemble: Demonstrates use of Triton ensemble models with gst-
nvinferserver plugin and how to implement custom Triton C++ backend to
access DeespStream metadata like stream ID using multi-input tensors.

● Deepstream-multigpu-nvlink-test: Application demonstrating usage of
NVLink across multiple GPUs.

 Python bindings and samples updates:

● New Jupyter notebook for Launchpad lab based on deepstream-test3 app.
● Updated deepstream-rtsp-in-rtsp-out sample to demonstrate usage of new

binding: configure_source_for_ntp_sync().

 Opensource plugins:

● Analytics plugin Gst-nvdsanalytics
● Tracker plugin Gst-nvtracker
● New muxer Gst-nvstreammux and demuxer Gst-nvstreamdemux

DeepStream 6.3 Applications can be migrated to DeepStream 6.4. Refer to the “Application
Migration to DeepStream 6.4 from DeepStream 6.3” section in the NVIDIA DeepStream SDK
Developer Guide 6.4 Release.

https://specs.amwa.tv/bcp-002-02/
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 6

 Graph Composer 3.1.0

Graph Composer 3.1.0 is mostly aimed at compute stack update and support on Ubuntu-
22.04.

 Graph Execution Engine

● Supported on Ubuntu 22.04 x86_64 and NVIDIA Jetson.
● Version updated to 3.1.0.
● Improved python APIs to compose & run graphs.

 Graph Composer

● Version updated to 3.1.0.
● x86 only - Ubuntu 22.04 and Windows 10.

 Container Builder

● No change in version.

 Registry

● No change in version.

 Extensions update

● Minor version of all the extensions is updated.

1.2 CONTENTS OF THIS RELEASE

This release includes the following:

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK Developer Guide 6.4 Release for
a detailed description of the contents of the DeepStream release package. The
Developer Guide also contains other information to help you get started with
DeepStream, including information about system software and hardware requirements
and external software dependencies that you must install before you use the SDK.

● For detailed information about GStreamer plugins and metadata usage, see the
“DeepStream Plugin Guide” section in the NVIDIA DeepStream SDK Developer Guide
6.4 Release.

● For detailed troubleshooting information and frequently asked questions, see the
“DeepStream Troubleshooting and FAQ Guide” section in the NVIDIA DeepStream
SDK Developer Guide 6.4 Release.

 Graph Composer 3.1.0 and DeepStream reference graphs for dGPU and Jetson.
 DeepStream SDK for dGPU and Jetson Software License Agreement (SLA).
 LICENSE.txt contains the license terms of third-party libraries used.

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 7

1.3 DOCUMENTATION IN THIS RELEASE

This release contains the following documentation.

 NVIDIA DeepStream SDK Developer Guide 6.4 Release
 NVIDIA DeepStream SDK API Reference
 NVIDIA DeepStream Python API Reference

1.4 BREAKING CHANGES W.R.T DEEPSTREAM 6.3

 Primary detector (PGIE) resnet10 based model replaced by Trafficcamnet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/trafficcamnet.

 Car color model is removed.
 Car Make model is replaced by VehicleMakeNet:

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehiclemakenet.
 Car type model replaced by VehicleTypeNet:

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehicletypenet.

So, now, the DeepStream reference app will have a new Trafficcamnet as PGIE and
2 new SGIE models (VehicleMakeNet, VehicleTypeNet).

 With DeepStream-6.4, REST API endpoints have been updated to include currently
supported version "/api/v1/".

 When building TensorRT engines for DLA, there is a known issue that entire DLA
subgraphs listed in "Layers Running on DLA" (seen with TensorRT's verbose mode)
cannot be built/eventually fall back to GPU with the message "{ForeignNode[...]}
cannot be compiled by DLA, falling back to GPU". This has been
observed with the two ResNet-based models PeopleNet v2.6 and TrafficCamNet
from TAO.

In both cases, this issue can be fixed by changing TensorRT's default DLA SRAM pool
size of 1 MiB to 0.5 MiB. Using trtexec, this can be achieved by adding the argument
"--memPoolSize=dlaSRAM:0.5" when building the TensorRT engine – for other
TensorRT applications calling TensorRT APIs directly, refer to this code section in
trtexec.

The generated engine from above can be used in DeepStream.

 UCX applications are now unified to one sample app.
 FasterRCNN application removed.
 Need to use /opt/nvidia/deepstream/deepstream/update_rtpmanager.sh

script to apply patch to minimize issue impacting RTSP use cases while EOS.
 While running tritonserver, “--backend-directory” option is not needed.
 API change in Python bindings: alloc_nvds_event_msg_meta() now expects a

NvDsUserMeta pointer which the NvDsEventMsgMeta is associated with. Refer to

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/trafficcamnet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehiclemakenet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehicletypenet
https://github.com/NVIDIA/TensorRT/blob/3aaa97b91ee1dd61ea46f78683d9a3438f26192e/samples/common/sampleEngines.cpp#L673

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 8

the deepstream-test4 sample app and bindschema.cpp in bindings source code for
reference.

1.5 DIFFERENCES WITH DEEPSTREAM 6.1 AND ABOVE
gstreamer1.0-libav, libav, OSS encoder,decoder plugins (x264/x265)
and audioparsers packages are removed in DeepStream dockers from DeepStream 6.1.
You may install these packages based on your requirement (gstreamer1.0-plugins-
good/ gstreamer1.0-plugins-bad/ gstreamer1.0-plugins-ugly). While
running DeepStream applications inside dockers, you may see the following warnings:

WARNING from src_elem: No decoder available for type 'audio/mpeg,
mpegversion=(int)4, framed=(boolean)true, stream-format=(string)raw,
level=(string)2, base-profile=(string)lc, profile=(string)lc,
codec_data=(buffer)119056e500, rate=(int)48000, channels=(int)2'.

Debug info: gsturidecodebin.c(920): unknown_type_cb ():

To avoid such warnings, install gstreamer1.0-libav and gstreamer1.0-plugins-
good inside docker.

Specifically, for deepstream-nmos, deepstream-avsync-app and python based deepstream-
imagedata-multistream app you would need to install gstreamer1.0-libav and
gstreamer1.0-plugins-good.

Gst-nveglglessink plugin is deprecated. Use Gst-nv3dsink plugin for Jetson
instead.

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 9

2.0 LIMITATIONS

This section provides details about issues discovered during development and QA but not
resolved in this release.

 DeepStream on Jetson is based on L4T BSP version r36.2.0. Refer to “Known Issues”
section in Jetson release notes.

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The
maximum number of instances can be increased by making changes in open-source
code.

 detected-min-w and detected-min-h must be set to values larger than 32 in the primary
inference configuration file (config_infer_primary.txt) for gst-dsexample on Jetson.

 The Kafka protocol adapter sometimes does not automatically reconnect when the
Kafka Broker to which it is connected goes down and comes back up. This requires the
application to restart.

 If the nvds log file ds.log has been deleted, to restart logging you must delete the file
/run/rsyslogd.pid within the container before reenabling logging by running the
setup_nvds_logger.sh script. This is described in the “nvds_logger: Logging
Framework” sub-section in the “Gst-nvmsgbroker” section in the NVIDIA DeepStream
Developer Guide 6.4 Release.

 Running a DeepStream application over SSH (via putty) with X11 forwarding does not
work.

 DeepStream currently expects model network width to be a multiple of 4 and network
height to be a multiple of 2.

 Triton Inference Server implementation in DeepStream currently supports a single
GPU. The models need to be configured to use a single GPU.

 For some models output in DeepStream is not exactly same as observed in TAO
Toolkit. This is due to input scaling algorithm differences.

 Dynamic resolution change support is Alpha quality.
 On the fly Model update only supports the same type of Model with same Network

parameters.

https://docs.nvidia.com/jetson/archives/r36.2/ReleaseNotes/Jetson_Linux_Release_Notes_r36.2.pdf

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 10

 Rivermax SDK is not part of DeepStream. So, the following warning is observed (gst-
plugin-scanner:33257):

GStreamer-WARNING **: 11:38:46.882: Failed to load plugin '/usr/lib/x86_64-
linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0:
cannot open shared object file: No such file or directory

You can ignore this warning safely.

 When using Composer WebSocket streaming, sometimes errors like "Error while
sending buffer: invalid state" is seen, or the window becomes unresponsive.
Refreshing the browser page might fix it.

 Composer WebRTC Streaming is supported only on RTX GPUs.
 On jetson, when the screen is idle, fps is lowered for DeepStream applications. This

behavior is by design to save power. However, if user does not want screen idle then
refer to the FAQ for WAR.

 RDMA functionality is only supported on x86 and only in x86 Triton docker for now.
 You cannot build the DeepStream out of the box on Jetson dockers except its Triton

variant.
 There can be performance drop from TensorRT to Triton for some models (5 to 15%).
 To generate the YOLOV3, the precision of some layers should be specified as FP32 for

TensorRT limitations. The solution is updated in https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps.

 NVRM: XID errors seen sometimes when running 275+ streams on Ampere, Hopper
and ADA.

 NVRM: XID errors seen on some setups with gst-dsexample and transfer learning
sample apps.

 Sometimes during deepstream-testsr app execution, assertion " GStreamer-
CRITICAL **: 12:55:35.006: gst_pad_link_full: assertion
'GST_IS_PAD sinkpad)' failed" is seen which can be safely ignored.

 Gst-nvdsasr plugin and deepstream-avsync-app is not supported on Hopper
GPU.

 Multifilesrc plugin with jpeg files fails inconsistently with nv3dsink. To address
this issue, need to add nvvideoconvert element before nv3dsink.

 For some of the models during engine file generation, error “[TRT]: 3:
[builder.cpp::~Builder::307] Error Code 3: API Usage Error“
observed from TensorRT, but has no impact on functionality and can be safely ignored.

 ASR and TTS plugins are not supported on NVIDIA Hopper.
 deepstream-server app is not supported with new nvstreammux plugin.
 TAO point-pillar model works only in FP32 mode.
 REST API support for few components (decoder, preprocessor, nvinfer along

with stream addition deletion support) with limited configuration options. However,
you can extend the functionality with the steps mentioned in SDK documentation.

 Critical error (masked_scan_uint32_peek: assertion '(guint64) offset +
size <= reader->size - reader->byte' failed) observed while running
python segmentation application but it can be ignored safely.

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 11

 On Jetson dockers while running DeepStream applications the error “modprobe:
FATAL: Module nvidia not found…” is seen but can be safely ignored.

 With Basler camera, on Jetson, only images with width of multiple of 4 supported.
 Sometimes, error “GLib (gthread-posix.c): Unexpected error from C

library during 'pthread_setspecific': Invalid argument” is seen
while running DeepStream applications.

The issue is caused because of a bug in glib 2.0-2.72 version which comes with
ubuntu22.04 by default. The issue is addressed in glib2.76 and its installation is
required to fix the issue (https://github.com/GNOME/glib/tree/2.76.6).

 deepstream-lidar-inference-app sample app fails to run on Jetson.
 The issue is caused because of a bug in glib 2.0-2.72 version which comes with

ubuntu22.04 by default. The issue is addressed in glib2.76 and its installation is
required to fix the issue (https://github.com/GNOME/glib/tree/2.76.6).

 TensorRT engine file generation fails for few models (like VehicleMakeNet,
VehicleTypeNet) while running DeepStream application. To avoid this failure run
below commands before running application to boost the clocks:

$ sudo nvpmodel -m 0
$ sudo jetson_clocks

If the issue is still seen, then use trtexec utility in TensorRT to generate engine file
and use the same file in DeepStream.

 Sometimes inference output on Jetson varies run to run.
 On Jetson, nvinferserver support for deepstream-segmentation-app is

broken.
 deepstream-testsr-app on Jetson intermittently may have blurred output if

bounding box enabled.
 In some cases, performance with Python sample apps may be lower than C version.
 while running deepstream-opencv-test app, warning

“gst_caps_features_set_parent_refcount: assertion 'refcount ==
NULL' failed" observed. No impact on functionality & can be safely ignored.

 Observing below errors for Jetson dockers (but no impact on functionality)

a) While decoding: /bin/dash: 1: lsmod: not found and /bin/dash: 1: modprobe: not
found.

b) At start pipeline: Failed to detect NVIDIA driver version.

 On Jetson Orin, software encoder is not supported. Workaround is to use
nvvideoconvert instead nvvidconv before nvv4l2decoder.

 On Jetson, deepstream-dewarper-test app, first-time runs fail with error:
“cuGraphicsEGLRegisterImage failed: 700, cuda process stop”.
However, for subsequent runs the issue is not seen.

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 12

3.0 NOTES

 Optical flow is supported only on dGPUs having Turing architecture (onwards) and
NVIDIA® Jetson Orin™ family.

 REST API commands only work after the video shows up on the host screen.
 The REST API server application deepstream-server-app should be used with

dsserver_config.yml config file. dsserver_pgie_config.yml should not
be used as this is inference config file.

 NVIDIA® DeepStream SDK 6.4 supports TAO 5.1 models
(https://developer.nvidia.com/tao-toolkit). For more details, see
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps.

 On vGPU, only CUDA device memory NVBUF_MEM_CUDA_DEVICE supported.
 From next release, models like SSD – ResNet18, DSSD – ResNet18 and OSS

Yolo (from darknet) will be removed from DeepStream package.

Note: • OpenCV is deprecated by default. But you can enable OpenCV in
plugins such as nvinfer (nvdsinfer) and dsexample (gst-
dsexample) by setting WITH_OPENCV=1 in the Makefile of these
components. Refer to the component README for more instructions.

• When using docker make sure libopencv-dev package is installed
inside docker if the Application requires it.

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER
CONTAINER

Applications built with DeepStream can be deployed using a Docker container, available
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account and look
for DeepStream containers to get started.

https://developer.nvidia.com/tao-toolkit
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://ngc.nvidia.com/

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 13

After you sign into your NGC account, navigate to Dashboard → Setup → Get
API key to get your nvcr.io authentication details.

As an example, you can use DeepStream 6.4. docker containers on NGC and run the
deepstream-test4-app sample application as an Azure edge runtime module on
your edge device.

The following procedure deploys deepstream-test4-app:

 Using a sample video stream (sample_720p.h264)
 Sending messages with minimal schema
 Running with display disabled
 Using message topic mytopic (message topic may not be empty)

Set up and install Azure IoT Edge on your system with the instructions provided in the
Azure module client README file in the deepstream-6.4 package:

<deepstream-
6.4_package>/sources/libs/azure_protocol_adaptor/module_client/README

Note: For the Jetson platform, omit installation of the Moby packages. Moby is
currently incompatible with NVIDIA Container Runtime.

See the Azure documentation for information about prerequisites for creating an Azure
edge device on the Azure portal:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites

To deploy deepstream-test4-app as an Azure IoT edge runtime module

1. On the Azure portal, click the IoT edge device you have created and click Set
Modules.

2. Enter these settings:

Container Registry Settings:
 Name: NGC
 Address: nvcr.io
 User name: $oauthtoken
 Password: use the password or API key from your NGC account

Deployment modules:
 Add a new module with the name ds.

Image URI:

● For x86 dockers:

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 14

docker pull nvcr.io/nvidia/deepstream:6.4-gc-triton-devel

Multi-Arch dockers for x86 and Jetson:

● For x86:

docker pull --platform linux/amd64 nvcr.io/nvidia/deepstream:6.4-
triton-multiarch

● For Jetson:

docker pull --platform linux/arm64 nvcr.io/nvidia/deepstream:6.4-
triton-multiarch
docker pull --platform linux/arm64 nvcr.io/nvidia/deepstream:6.4-
samples-multiarch

Container Create options:

● For Jetson:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir": "
/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream
-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app",
 "-i", "/opt/nvidia/deepstream/deepstream/
samples/streams/sample_720p.h264",
 "-p",
"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]
}

● For X86:

{
 "HostConfig": {
 "Runtime": "nvidia"
 },
 "WorkingDir":
"/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstrea
m-test4",
 "ENTRYPOINT": [
 "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app",
 "-i",
"/opt/nvidia/deepstream/deepstream/samples/streams/sample_720p.h264",

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 15

 "-p",

"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so",
 "--no-display",
 "-s",
 "1",
 "--topic",
 "mytopic"
]}

3. Specify route options for the module:

● Option 1: Use a default route where every message from every module is sent
upstream.

{
 "routes": {
 "route": "FROM /messages/* INTO $upstream"
 }
 }

● Option 2: Specific routes where messages sent upstream can be filtered based on
topic name. For example, in the sample test programs, topic name mytopic is
used for the module name ds:

{
 "routes": {
 "route": "FROM /messages/modules/ds/outputs/mytopic INTO
$upstream"
 }
 }

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER
ENVIRONMENT CANNOT SUPPORT DISPLAY

If the Docker environment cannot support display, the sample applications
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected.

Workaround:

To correct this problem, you must recompile the test applications after replacing
nveglglessink on x86 and nv3dsink on Jetson with fakesink. With deepstream-
test4, you also have the option to specify fakesink by adding the --no-display
command line switch.

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 16

Alternatively virtual display can be used. For more information refer to “How to
visualize the output if the display is not attached to the system” section in “Quick Start
Guide” section of NVIDIA DeepStream Developer Guide 6.4 Release.

3.3 INSTALLING DEEPSTREAM ON JETSON

1. Download the NVIDIA SDK Manager to install JetPack 6.0 DP.
2. Select all the JetPack 6.0 DP components except DeepStreamSDK from the

“Additional SDKs” section.

Refer to the “Quick Start Guide” section in NVIDIA DeepStream Developer Guide 6.4
Release to update additional BSP libraries if available. Continue with the
DeepStream installation instructions after the BSP update.

Note: NVIDIA Container Runtime package shall be installed using JetPack 6.0 DP
and is a pre-requisite for all DeepStream L4T docker containers.

3.4 TRITON INFERENCE SERVER IN DEEPSTREAM

Triton inference server (version 23.08) on dGPU is supported only via docker
deepstream:6.4-triton-multiarch for x86. On Jetson, version 23.11 is supported
with or without docker.

Refer to the NVIDIA DeepStream Development Guide 6.4 Release for more details about
Triton inference server.

Triton inference server Supports following frameworks:

Framework Tesl
a

Jetso
n

Notes / Limitations

TensorRT Yes Yes Supports TensorRT plan or engine file (*.plan, *.engine)

- Triton model config.pbtxt for TensorRT engine file
format

platform: "tensorrt_plan"
default_model_filename: "model.engine"
input [...]
output [...]

Triton-TensorRT backend documentation:
https://github.com/triton-inference-
server/tensorrt_backend

TensorFlow Yes Yes - Supports Tensorflow 2.x (Tensorflow 1.x is deprecated)

- Supports TF-TensorRT optimization

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorrt_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rETzv2ddVmsrDYozEmPk4PcM8GwGlYRKtZsUq%2BM4ZV0%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorrt_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rETzv2ddVmsrDYozEmPk4PcM8GwGlYRKtZsUq%2BM4ZV0%3D&reserved=0

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 17

- Supported model formats: GraphDef or SavedModel

- Other TF formats such as checkpoint variables or
estimators are not directly supported

- Triton model config.pbtxt for Graphdef format

platform: "tensorflow_graphdef"

default_model_filename: "model.graphdef"

- Triton model config.pbtxt for Graphdef format

platform: " tensorflow_savedmodel

"

default_model_filename: "model.savedmodel"

Triton Tensorflow backend documentation:

https://github.com/triton-inference-
server/tensorflow_backend

ONNX Yes Yes - Supports ONNX model

- Supports ONNX TensorRT optimization

Triton model config.pbtxt for ONNX

platform: "onnxruntime_onnx"

default_model_filename: "model.onnx"

[optional: TensorRT optimization, disabled
by default]

optimization { execution_accelerators {
 gpu_execution_accelerator : [{
 name : "tensorrt"
 parameters { key: "precision_mode"
value: "FP16" }
 parameters { key:
"max_workspace_size_bytes" value:
"1073741824" }}
]
}}

Triton ONNXRuntime backend documentation:

https://github.com/triton-inference-
server/onnxruntime_backend

PyTorch(TorchSc
ript)

Yes Yes - Support TorchScript models(file format *.pt), PyTorch
model must be traced and saved as a TorchScript Model
(.pt)

Triton model config.pbtxt for TorchScript format

backend: "pytorch"

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorflow_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7YJqlJfMRfgXm333nM8x38LQ6lsbEu5mQk841gsk1oI%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorflow_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7YJqlJfMRfgXm333nM8x38LQ6lsbEu5mQk841gsk1oI%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fonnxruntime_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4OMxBA7y9HgHYszn1pxo%2BmOjzCjqn%2BRjM0byNL0gDKg%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fonnxruntime_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4OMxBA7y9HgHYszn1pxo%2BmOjzCjqn%2BRjM0byNL0gDKg%3D&reserved=0

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 18

platform: "pytorch_libtorch"

default_model_filename: "model.pt"

input [{ name: "INPUT0" }]

output [{ name: "OUTPUT0" } { name:
"OUTPUT1" }]

Triton Pytorch backend documentation:

https://github.com/triton-inference-
server/pytorch_backend

Python Backend Yes Yes - Support Custom Triton-Python backend

- Support Python Custom conda Execution Environment

Triton model config.pbtxt for Python file format

backend: "python"

default_model_filename: "model.py"

[optional: custom conda env, disabled by
default]
parameters: {
 key: "EXECUTION_ENV_PATH",
 value: {string_value:
"$$TRITON_MODEL_DIRECTORY/python3.6.tar.gz"}
}

Triton Python backend documentation:

https://github.com/triton-inference-
server/python_backend

Ensemble Models Yes Yes - Support Triton Ensemble Models to connect multiple
model inference graph

Triton model config.pbtxt for ensemble model

platform: "ensemble"
input[...]
output[...]
ensemble_scheduling {
step [
 {model_name: “model_A”},
 {model_name: “model_B”},
 {model_name: “model_C”},
]
}

Triton Ensemble Model documentation:

https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/architecture.m
d#ensemble-models

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpytorch_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8UjOBAqJNpUr7ldtQfY6%2BkQilkR0yUthC1tkklCtM60%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpytorch_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8UjOBAqJNpUr7ldtQfY6%2BkQilkR0yUthC1tkklCtM60%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpython_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8RMSpJEu7g7GAhEUYsunWyFw0OzSnhf0a%2FKDmttVgC4%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpython_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8RMSpJEu7g7GAhEUYsunWyFw0OzSnhf0a%2FKDmttVgC4%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0

DeepStream SDK 6.4 for NVIDIA dGPU/X86 and Jetson RN-09353-003 | 19

For more information refer to the following links:

 Triton inference server documentation entry: https://github.com/triton-inference-
server/server

 Triton inference server model repository: https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/model_repository.md

 Triton inference server supported backends and QA: https://github.com/triton-
inference-server/backend

 Triton Model TensorRT optimization for ONNX and TensorFlow:
https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/optimization.md#framework-specific-
optimization

 TensorFlow with TensorRT: https://docs.nvidia.com/deeplearning/frameworks/tf-
trt-user-guide/index.html

 TensorFlow saved model:
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_repository.md
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_repository.md
https://github.com/triton-inference-server/backend
https://github.com/triton-inference-server/backend
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk

www.nvidia.com

Notice
THE INFORMATION IN THIS DOCUMENT AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS DOCUMENT IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this document shall
be limited in accordance with the NVIDIA terms and conditions of sale for the product. THE NVIDIA PRODUCT
DESCRIBED IN THIS DOCUMENT IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED
FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY
SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE
SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN
CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA
EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL
NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES
ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this document will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this document. NVIDIA does not accept any liability related to any default, damage,
costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner
that is contrary to this document, or (ii) customer product designs.

Other than the right for customer to use the information in this document with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this document. Reproduction of information in
this document is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, TensorRT, NVIDIA Ampere, NVIDIA Hopper and NVIDIA Tesla are trademarks and/or
registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright © 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

	1.0 About this Release
	1.1 What’s New
	1.1.1 DS 6.4
	1.1.2 DS 6.3 (Previous Release)
	1.1.3 Graph Composer 3.1.0

	1.2 Contents of this Release
	1.3 Documentation in this Release
	1.4 BREAKING CHANGES W.R.T DEEPSTREAM 6.3
	1.5 Differences With Deepstream 6.1 and Above

	2.0 Limitations
	3.0 Notes
	3.1 Applications May Be Deployed in a Docker Container
	To deploy deepstream-test4-app as an Azure IoT edge runtime module

	3.2 Sample Applications Malfunction if Docker Environment Cannot Support Display
	3.3 Installing Deepstream On Jetson
	3.4 Triton Inference Server In Deepstream

