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1.0 ABOUT THIS RELEASE 

These release notes are for the NVIDIA® DeepStream SDK for NVIDIA® Tesla®, NVIDIA® 
Ampere®, NVIDIA® Hopper®, NVIDIA® Ada Lovelace®, NVIDIA® Jetson AGX Orin™, 
NVIDIA® Jetson Orin™ NX, and NVIDIA® Jetson Orin™ Nano. 

1.1 WHAT’S NEW 

The following new features are supported in this DeepStream SDK release: 

 DS 6.4 
 Migration to ubuntu 22.04; Gst version 1.20.3 
 Supports Triton 23.08 for x86/dGPU, Triton 23.11 for Jetson and Rivermax v1.40. 
 Jetson package based on JP 6.0 DP (r36.2.0 BSP). 
 Enhanced REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 and 

Jetson). 
 NV V4L2 Encoder Plugin Enhancements for additional control. 
 Added AV1 encoder support. 
 New gstreamer plugins nvimagedec and nvimageenc based on CUDA nvjpeg 

APIs. 
 Support of Trafficcamnet as Primary detector and 2 new secondary classifier 

models (VehicleMakeNet, VehicleTypeNet) with DS reference app.  
 Enhance video template plug-in to support audio-in / video-out. 
 Single-View 3D Tracking (Alpha). 
 NvDCF tracker now supported with PVA backend on Jetson (Alpha). 
 REST API Support Enhancements. 
 MQTT TLS and keepalive support. 
 Improved ReID Accuracy in Tracker. 
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 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled 
by exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.4 Release. 

 Performance optimizations. 
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models 

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch: 
release/tao5.1_ds6.4ga) integrated into SDK. 

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion 
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao5.1_ds6.4ga). 

 Improved stability. 
 New Plugins: 

● nvimagedec    
● nvimageenc    

 Python bindings and samples updates: 

● Upgrade to Python 3.10 and Ubuntu 22.04; Python 3.8 and DeepStream 6.3 support 
is deprecated. 

● Deepstream-test2 application: updated to use new names for tracker metadata 
types in DeepStream 6.4. 

● DeepStream-test4 application: updated to support MQTT adapter. 
● DeepStream-test1-rtsp-out: updated to support software encoder option for 

Jetson Orin Nano. 

Note: Jetson version of DeepStream based on JetPack 6.0 DP (Developer Preview). 
It is not for production purpose. 

 DS 6.3 (Previous Release) 
 Supports Triton 22.03 for x86/dGPU, Triton 23.01 for Jetson and Rivermax v1.20. 
 Jetson package based on JP 5.1.2 GA (r35.4.1 BSP). 
 Enable Pre-Processing plugin support for nvinferserver plugin. 
 Multi-Arch dockers for Jetson and x86. 
 REST API support to control DeepStream pipeline on-the-fly (Alpha, x86 and Jetson). 
 10, 12-bit yuv420 decoding support for decoder on Jetson and x86. 8-bit yuv444 

decoding support for decoder on Jetson and x86 and 10, 12-bit YUV444 decoding 
support for decoder on x86. 

 10-bit YUV 420 and YUV444 H.265 encoding support on x86. 
 Optical flow support on Jetson AGX Orin. 
 Nvinferserver (Triton) support to most of DS sample apps. 
 Support Google protobuf encoding and decoding message to message brokers (only 

Kafka). 
 Support NVIDIA TAO and ONNX models in Tracker. 

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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 Improving ReID Accuracy in Tracker.  
 Support ReID feature output from Tracker for downstream access. 
 Support dynamic creation/destruction of NMOS Senders and Receivers for 

deepstream-nmos app. 
 Support AMWA BCP-002-02 spec (https://specs.amwa.tv/bcp-002-02/) for 

deepstream-nmos app. 
 CUDA accelerated support for jpeg encoder for x86. 
 Enhancements in new Gst-nvstreammux plugin. New nvstreammux can be enabled 

by exporting USE_NEW_NVSTREAMMUX=yes. For more information, see the “Gst-
nvstreammux” section in the NVIDIA DeepStream SDK Developer Guide 6.3 Release.  

 Performance optimizations. 
 NVIDIA TAO toolkit (previously called NVIDIA Transfer Learning Toolkit) Models 

from https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps (branch: 
release/tao4.0_ds6.3ga) integrated into SDK. 

 Continued Support for 2D body pose estimation, facial landmark estimation, Emotion 
recognition, Gaze, Heart Rate, and Gesture. (https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps branch: release/tao4.0_ds6.3ga). 

 nvdsudpsrc plugin optimizations for supporting Mellanox NIC for Receiver. 
 SMPTE 2110 compliance related changes for nvdsudpsink. 
 Improved stability. 
 New sample applications: 

● Triton Ensemble: Demonstrates use of Triton ensemble models with gst-
nvinferserver plugin and how to implement custom Triton C++ backend to 
access DeespStream metadata like stream ID using multi-input tensors. 

● Deepstream-multigpu-nvlink-test: Application demonstrating usage of 
NVLink across multiple GPUs. 

 Python bindings and samples updates: 

● New Jupyter notebook for Launchpad lab based on deepstream-test3 app.  
● Updated deepstream-rtsp-in-rtsp-out sample to demonstrate usage of new 

binding: configure_source_for_ntp_sync(). 

 Opensource plugins: 

● Analytics plugin Gst-nvdsanalytics 
● Tracker plugin Gst-nvtracker 
● New muxer Gst-nvstreammux and demuxer Gst-nvstreamdemux 

DeepStream 6.3 Applications can be migrated to DeepStream 6.4. Refer to the “Application 
Migration to DeepStream 6.4 from DeepStream 6.3” section in the NVIDIA DeepStream SDK 
Developer Guide 6.4 Release. 

https://specs.amwa.tv/bcp-002-02/
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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 Graph Composer 3.1.0 

Graph Composer 3.1.0 is mostly aimed at compute stack update and support on Ubuntu-
22.04. 

 Graph Execution Engine 

● Supported on Ubuntu 22.04 x86_64 and NVIDIA Jetson.  
● Version updated to 3.1.0.  
● Improved python APIs to compose & run graphs.  

 Graph Composer    

● Version updated to 3.1.0. 
● x86 only - Ubuntu 22.04 and Windows 10.  

 Container Builder  

● No change in version. 

 Registry  

● No change in version. 

 Extensions update 

● Minor version of all the extensions is updated. 

1.2 CONTENTS OF THIS RELEASE 

This release includes the following: 

 The DeepStream SDK. Refer to NVIDIA DeepStream SDK Developer Guide 6.4 Release for 
a detailed description of the contents of the DeepStream release package. The 
Developer Guide also contains other information to help you get started with 
DeepStream, including information about system software and hardware requirements 
and external software dependencies that you must install before you use the SDK. 

● For detailed information about GStreamer plugins and metadata usage, see the 
“DeepStream Plugin Guide” section in the NVIDIA DeepStream SDK Developer Guide 
6.4 Release. 

● For detailed troubleshooting information and frequently asked questions, see the 
“DeepStream Troubleshooting and FAQ Guide” section in the NVIDIA DeepStream 
SDK Developer Guide 6.4 Release. 

 Graph Composer 3.1.0 and DeepStream reference graphs for dGPU and Jetson.  
 DeepStream SDK for dGPU and Jetson Software License Agreement (SLA). 
 LICENSE.txt contains the license terms of third-party libraries used. 
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1.3 DOCUMENTATION IN THIS RELEASE 

This release contains the following documentation. 

 NVIDIA DeepStream SDK Developer Guide 6.4 Release 
 NVIDIA DeepStream SDK API Reference 
 NVIDIA DeepStream Python API Reference 

1.4 BREAKING CHANGES W.R.T DEEPSTREAM 6.3 

 Primary detector (PGIE) resnet10 based model replaced by Trafficcamnet  
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/trafficcamnet. 

 Car color model is removed. 
 Car Make model is replaced by VehicleMakeNet: 

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehiclemakenet. 
 Car type model replaced by VehicleTypeNet: 

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehicletypenet.  

So, now, the DeepStream reference app will have a new Trafficcamnet as PGIE and 
2 new SGIE models (VehicleMakeNet, VehicleTypeNet). 

 With DeepStream-6.4, REST API endpoints have been updated to include currently 
supported version "/api/v1/". 

 When building TensorRT engines for DLA, there is a known issue that entire DLA 
subgraphs listed in "Layers Running on DLA" (seen with TensorRT's verbose mode) 
cannot be built/eventually fall back to GPU with the message "{ForeignNode[...]} 
cannot be compiled by DLA, falling back to GPU". This has been 
observed with the two ResNet-based models PeopleNet v2.6 and TrafficCamNet 
from TAO. 

In both cases, this issue can be fixed by changing TensorRT's default DLA SRAM pool 
size of 1 MiB to 0.5 MiB. Using trtexec, this can be achieved by adding the argument 
"--memPoolSize=dlaSRAM:0.5" when building the TensorRT engine – for other 
TensorRT applications calling TensorRT APIs directly, refer to this code section in 
trtexec. 

The generated engine from above can be used in DeepStream. 

 UCX applications are now unified to one sample app. 
 FasterRCNN application removed. 
 Need to use /opt/nvidia/deepstream/deepstream/update_rtpmanager.sh 

script   to apply patch to minimize issue impacting RTSP use cases while EOS. 
 While running tritonserver, “--backend-directory” option is not needed. 
 API change in Python bindings: alloc_nvds_event_msg_meta() now expects a 

NvDsUserMeta pointer which the NvDsEventMsgMeta is associated with. Refer to 

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/trafficcamnet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehiclemakenet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/vehicletypenet
https://github.com/NVIDIA/TensorRT/blob/3aaa97b91ee1dd61ea46f78683d9a3438f26192e/samples/common/sampleEngines.cpp#L673
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the deepstream-test4 sample app and bindschema.cpp in bindings source code for 
reference. 

1.5 DIFFERENCES WITH DEEPSTREAM 6.1 AND ABOVE 
gstreamer1.0-libav, libav, OSS encoder,decoder plugins (x264/x265) 
and audioparsers packages are removed in DeepStream dockers from DeepStream 6.1. 
You may install these packages based on your requirement (gstreamer1.0-plugins-
good/ gstreamer1.0-plugins-bad/ gstreamer1.0-plugins-ugly). While 
running DeepStream applications inside dockers, you may see the following warnings: 

WARNING from src_elem: No decoder available for type 'audio/mpeg, 
mpegversion=(int)4, framed=(boolean)true, stream-format=(string)raw, 
level=(string)2, base-profile=(string)lc, profile=(string)lc, 
codec_data=(buffer)119056e500, rate=(int)48000, channels=(int)2'. 

 

Debug info: gsturidecodebin.c(920): unknown_type_cb (): 

To avoid such warnings, install gstreamer1.0-libav and gstreamer1.0-plugins-
good inside docker. 

Specifically, for deepstream-nmos, deepstream-avsync-app and python based deepstream-
imagedata-multistream app you would need to install gstreamer1.0-libav and 
gstreamer1.0-plugins-good. 

Gst-nveglglessink plugin is deprecated. Use Gst-nv3dsink plugin for Jetson 
instead. 
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2.0 LIMITATIONS 

This section provides details about issues discovered during development and QA but not 
resolved in this release. 

 DeepStream on Jetson is based on L4T BSP version r36.2.0. Refer to “Known Issues” 
section in Jetson release notes. 

 With V4L2 codecs only MAX 1024 (decode + encode) instances are provided. The 
maximum number of instances can be increased by making changes in open-source 
code. 

 detected-min-w and detected-min-h must be set to values larger than 32 in the primary 
inference configuration file (config_infer_primary.txt) for gst-dsexample on Jetson. 

 The Kafka protocol adapter sometimes does not automatically reconnect when the 
Kafka Broker to which it is connected goes down and comes back up. This requires the 
application to restart. 

 If the nvds log file ds.log has been deleted, to restart logging you must delete the file 
/run/rsyslogd.pid within the container before reenabling logging by running the 
setup_nvds_logger.sh script. This is described in the “nvds_logger: Logging 
Framework” sub-section in the “Gst-nvmsgbroker” section in the NVIDIA DeepStream 
Developer Guide 6.4 Release. 

 Running a DeepStream application over SSH (via putty) with X11 forwarding does not 
work. 

 DeepStream currently expects model network width to be a multiple of 4 and network 
height to be a multiple of 2. 

 Triton Inference Server implementation in DeepStream currently supports a single 
GPU. The models need to be configured to use a single GPU. 

 For some models output in DeepStream is not exactly same as observed in TAO 
Toolkit. This is due to input scaling algorithm differences. 

 Dynamic resolution change support is Alpha quality. 
 On the fly Model update only supports the same type of Model with same Network 

parameters. 

https://docs.nvidia.com/jetson/archives/r36.2/ReleaseNotes/Jetson_Linux_Release_Notes_r36.2.pdf
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 Rivermax SDK is not part of DeepStream. So, the following warning is observed (gst-
plugin-scanner:33257):  

GStreamer-WARNING **: 11:38:46.882: Failed to load plugin '/usr/lib/x86_64-
linux-gnu/gstreamer-1.0/deepstream/libnvdsgst_udp.so': librivermax.so.0: 
cannot open shared object file: No such file or directory  

You can ignore this warning safely. 

 When using Composer WebSocket streaming, sometimes errors like "Error while 
sending buffer: invalid state" is seen, or the window becomes unresponsive. 
Refreshing the browser page might fix it. 

 Composer WebRTC Streaming is supported only on RTX GPUs. 
 On jetson, when the screen is idle, fps is lowered for DeepStream applications. This 

behavior is by design to save power. However, if user does not want screen idle then 
refer to the FAQ for WAR. 

 RDMA functionality is only supported on x86 and only in x86 Triton docker for now. 
 You cannot build the DeepStream out of the box on Jetson dockers except its Triton 

variant. 
 There can be performance drop from TensorRT to Triton for some models (5 to 15%). 
 To generate the YOLOV3, the precision of some layers should be specified as FP32 for 

TensorRT limitations. The solution is updated in https://github.com/NVIDIA-AI-
IOT/deepstream_tao_apps. 

 NVRM: XID errors seen sometimes when running 275+ streams on Ampere, Hopper 
and ADA. 

 NVRM: XID errors seen on some setups with gst-dsexample and transfer learning 
sample apps. 

 Sometimes during deepstream-testsr app execution, assertion " GStreamer-
CRITICAL **: 12:55:35.006: gst_pad_link_full: assertion 
'GST_IS_PAD sinkpad)' failed" is seen which can be safely ignored. 

 Gst-nvdsasr plugin and deepstream-avsync-app is not supported on Hopper 
GPU. 

 Multifilesrc plugin with jpeg files fails inconsistently with nv3dsink. To address 
this issue, need to add nvvideoconvert element before nv3dsink. 

 For some of the models during engine file generation, error “[TRT]: 3: 
[builder.cpp::~Builder::307] Error Code 3: API Usage Error“ 
observed from TensorRT, but has no impact on functionality and can be safely ignored.  

 ASR and TTS plugins are not supported on NVIDIA Hopper. 
 deepstream-server app is not supported with new nvstreammux plugin. 
 TAO point-pillar model works only in FP32 mode. 
 REST API support for few components (decoder, preprocessor, nvinfer along 

with stream addition deletion support) with limited configuration options. However, 
you can extend the functionality with the steps mentioned in SDK documentation. 

 Critical error (masked_scan_uint32_peek: assertion '(guint64) offset + 
size <= reader->size - reader->byte' failed) observed while running 
python segmentation application but it can be ignored safely. 

https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
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 On Jetson dockers while running DeepStream applications the error “modprobe: 
FATAL: Module nvidia not found…” is seen but can be safely ignored. 

 With Basler camera, on Jetson, only images with width of multiple of 4 supported. 
 Sometimes, error “GLib (gthread-posix.c): Unexpected error from C 

library during 'pthread_setspecific': Invalid argument” is seen 
while running DeepStream applications. 

The issue is caused because of a bug in glib 2.0-2.72 version which comes with 
ubuntu22.04 by default. The issue is addressed in glib2.76 and its installation is 
required to fix the issue (https://github.com/GNOME/glib/tree/2.76.6). 

 deepstream-lidar-inference-app sample app fails to run on Jetson. 
 The issue is caused because of a bug in glib 2.0-2.72 version which comes with 

ubuntu22.04 by default. The issue is addressed in glib2.76 and its installation is 
required to fix the issue (https://github.com/GNOME/glib/tree/2.76.6). 

 TensorRT engine file generation fails for few models (like VehicleMakeNet, 
VehicleTypeNet) while running DeepStream application. To avoid this failure run 
below commands before running application to boost the clocks: 

$ sudo nvpmodel -m 0 
$ sudo jetson_clocks 

If the issue is still seen, then use trtexec utility in TensorRT to generate engine file 
and use the same file in DeepStream. 

 Sometimes inference output on Jetson varies run to run. 
 On Jetson, nvinferserver support for deepstream-segmentation-app is 

broken. 
 deepstream-testsr-app on Jetson intermittently may have blurred output if 

bounding box enabled. 
 In some cases, performance with Python sample apps may be lower than C version. 
 while running deepstream-opencv-test app, warning 

“gst_caps_features_set_parent_refcount: assertion 'refcount == 
NULL' failed" observed. No impact on functionality & can be safely ignored. 

 Observing below errors for Jetson dockers (but no impact on functionality) 

a) While decoding: /bin/dash: 1: lsmod: not found and /bin/dash: 1: modprobe: not 
found. 

b) At start pipeline: Failed to detect NVIDIA driver version. 

 On Jetson Orin, software encoder is not supported.  Workaround is to use 
nvvideoconvert instead nvvidconv before nvv4l2decoder. 

 On Jetson, deepstream-dewarper-test app, first-time runs fail with error: 
“cuGraphicsEGLRegisterImage failed: 700, cuda process stop”. 
However, for subsequent runs the issue is not seen. 
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3.0 NOTES 

 Optical flow is supported only on dGPUs having Turing architecture (onwards) and 
NVIDIA® Jetson Orin™ family. 

 REST API commands only work after the video shows up on the host screen. 
 The REST API server application deepstream-server-app should be used with 

dsserver_config.yml config file. dsserver_pgie_config.yml should not 
be used as this is inference config file. 

 NVIDIA® DeepStream SDK 6.4 supports TAO 5.1 models 
(https://developer.nvidia.com/tao-toolkit). For more details, see 
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps. 

 On vGPU, only CUDA device memory NVBUF_MEM_CUDA_DEVICE supported. 
 From next release, models like SSD – ResNet18, DSSD – ResNet18 and OSS 

Yolo (from darknet) will be removed from DeepStream package. 

Note: • OpenCV is deprecated by default. But you can enable OpenCV in 
plugins such as nvinfer (nvdsinfer) and dsexample (gst-
dsexample) by setting WITH_OPENCV=1 in the Makefile of these 
components. Refer to the component README for more instructions. 

• When using docker make sure libopencv-dev package is installed 
inside docker if the Application requires it. 

3.1 APPLICATIONS MAY BE DEPLOYED IN A DOCKER 
CONTAINER 

Applications built with DeepStream can be deployed using a Docker container, available 
on NGC (https://ngc.nvidia.com/). Sign up for an NVIDIA GPU Cloud account and look 
for DeepStream containers to get started. 

https://developer.nvidia.com/tao-toolkit
https://github.com/NVIDIA-AI-IOT/deepstream_tao_apps
https://ngc.nvidia.com/
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After you sign into your NGC account, navigate to Dashboard → Setup → Get 
API key to get your nvcr.io authentication details. 

As an example, you can use DeepStream 6.4. docker containers on NGC and run the 
deepstream-test4-app sample application as an Azure edge runtime module on 
your edge device. 

The following procedure deploys deepstream-test4-app: 

 Using a sample video stream (sample_720p.h264) 
 Sending messages with minimal schema 
 Running with display disabled 
 Using message topic mytopic (message topic may not be empty) 

Set up and install Azure IoT Edge on your system with the instructions provided in the 
Azure module client README file in the deepstream-6.4 package: 
 
<deepstream-
6.4_package>/sources/libs/azure_protocol_adaptor/module_client/README  
 

 

Note: For the Jetson platform, omit installation of the Moby packages. Moby is 
currently incompatible with NVIDIA Container Runtime. 

See the Azure documentation for information about prerequisites for creating an Azure 
edge device on the Azure portal: 

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-
portal#prerequisites 

To deploy deepstream-test4-app as an Azure IoT edge runtime module 

1. On the Azure portal, click the IoT edge device you have created and click Set 
Modules. 

2. Enter these settings: 

Container Registry Settings: 
 Name: NGC 
 Address: nvcr.io 
 User name: $oauthtoken 
 Password: use the password or API key from your NGC account 

Deployment modules: 
 Add a new module with the name ds. 

Image URI: 

● For x86 dockers: 

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-portal#prerequisites
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docker pull nvcr.io/nvidia/deepstream:6.4-gc-triton-devel 

Multi-Arch dockers for x86 and Jetson: 

● For x86: 
 
docker pull --platform linux/amd64 nvcr.io/nvidia/deepstream:6.4-
triton-multiarch 
 

● For Jetson: 
 
docker pull --platform linux/arm64 nvcr.io/nvidia/deepstream:6.4-
triton-multiarch 
docker pull --platform linux/arm64 nvcr.io/nvidia/deepstream:6.4-
samples-multiarch 
 

Container Create options: 

● For Jetson: 
 
{ 
    "HostConfig": { 
            "Runtime": "nvidia" 
    }, 
    "WorkingDir": " 
/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstream
-test4", 
    "ENTRYPOINT": [ 
        "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app", 
        "-i", "/opt/nvidia/deepstream/deepstream/ 
samples/streams/sample_720p.h264", 
        "-p", 
"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so", 
        "--no-display", 
        "-s", 
        "1", 
        "--topic", 
        "mytopic" 
    ] 
} 
 

● For X86: 
 
{ 
    "HostConfig": { 
        "Runtime": "nvidia" 
    }, 
    "WorkingDir": 
"/opt/nvidia/deepstream/deepstream/sources/apps/sample_apps/deepstrea
m-test4", 
    "ENTRYPOINT": [ 
        "/opt/nvidia/deepstream/deepstream/bin/deepstream-test4-app", 
        "-i", 
"/opt/nvidia/deepstream/deepstream/samples/streams/sample_720p.h264", 
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        "-p", 
        
"/opt/nvidia/deepstream/deepstream/lib/libnvds_azure_edge_proto.so", 
        "--no-display", 
        "-s", 
        "1", 
        "--topic", 
        "mytopic" 
    ]} 
 

3. Specify route options for the module: 

● Option 1: Use a default route where every message from every module is sent 
upstream. 
     
{ 
      "routes": { 
        "route": "FROM /messages/* INTO $upstream" 
      } 
    } 
 

● Option 2: Specific routes where messages sent upstream can be filtered based on 
topic name. For example, in the sample test programs, topic name mytopic is 
used for the module name ds: 
     
{ 
        "routes": { 
            "route": "FROM /messages/modules/ds/outputs/mytopic INTO 
$upstream" 
        } 
    } 
 

3.2 SAMPLE APPLICATIONS MALFUNCTION IF DOCKER 
ENVIRONMENT CANNOT SUPPORT DISPLAY 

If the Docker environment cannot support display, the sample applications 
deepstream-test1, deepstream-test2, deepstream-test3, and deepstream-
test4 do not work as expected. 

Workaround: 

To correct this problem, you must recompile the test applications after replacing 
nveglglessink on x86 and nv3dsink on Jetson with fakesink. With deepstream-
test4, you also have the option to specify fakesink by adding the --no-display 
command line switch. 
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Alternatively virtual display can be used. For more information refer to “How to 
visualize the output if the display is not attached to the system” section in “Quick Start 
Guide” section of NVIDIA DeepStream Developer Guide 6.4 Release. 

3.3 INSTALLING DEEPSTREAM ON JETSON 

1. Download the NVIDIA SDK Manager to install JetPack 6.0 DP. 
2. Select all the JetPack 6.0 DP components except DeepStreamSDK from the 

“Additional SDKs” section.  

Refer to the “Quick Start Guide” section in NVIDIA DeepStream Developer Guide 6.4 
Release to update additional BSP libraries if available. Continue with the 
DeepStream installation instructions after the BSP update. 

Note: NVIDIA Container Runtime package shall be installed using JetPack 6.0 DP 
and is a pre-requisite for all DeepStream L4T docker containers. 

3.4 TRITON INFERENCE SERVER IN DEEPSTREAM 

Triton inference server (version 23.08) on dGPU is supported only via docker 
deepstream:6.4-triton-multiarch for x86. On Jetson, version 23.11 is supported 
with or without docker. 

Refer to the NVIDIA DeepStream Development Guide 6.4 Release for more details about 
Triton inference server. 

Triton inference server Supports following frameworks: 

Framework Tesl
a 

Jetso
n 

Notes / Limitations 

TensorRT Yes Yes Supports TensorRT plan or engine file (*.plan, *.engine) 

- Triton model config.pbtxt for TensorRT engine file 
format 

platform: "tensorrt_plan" 
default_model_filename: "model.engine" 
input [...] 
output [...] 

 

Triton-TensorRT backend documentation: 
https://github.com/triton-inference-
server/tensorrt_backend 

TensorFlow Yes Yes - Supports Tensorflow 2.x (Tensorflow 1.x is deprecated) 

- Supports TF-TensorRT optimization 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorrt_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rETzv2ddVmsrDYozEmPk4PcM8GwGlYRKtZsUq%2BM4ZV0%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorrt_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rETzv2ddVmsrDYozEmPk4PcM8GwGlYRKtZsUq%2BM4ZV0%3D&reserved=0
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- Supported model formats: GraphDef or SavedModel 

- Other TF formats such as checkpoint variables or 
estimators are not directly supported 

- Triton model config.pbtxt for Graphdef format 

platform: "tensorflow_graphdef" 

default_model_filename: "model.graphdef" 

 

- Triton model config.pbtxt for Graphdef format 

platform: " tensorflow_savedmodel 

" 

default_model_filename: "model.savedmodel" 

 

Triton Tensorflow backend documentation: 

https://github.com/triton-inference-
server/tensorflow_backend 

ONNX Yes Yes - Supports ONNX model 

- Supports ONNX TensorRT optimization 

Triton model config.pbtxt for ONNX 

platform: "onnxruntime_onnx" 

default_model_filename: "model.onnx" 

# [optional: TensorRT optimization, disabled 
by default] 

optimization { execution_accelerators { 
  gpu_execution_accelerator : [ { 
    name : "tensorrt" 
    parameters { key: "precision_mode" 
value: "FP16" } 
    parameters { key: 
"max_workspace_size_bytes" value: 
"1073741824" }} 
  ] 
}} 
 

 

Triton ONNXRuntime backend documentation: 

https://github.com/triton-inference-
server/onnxruntime_backend 

PyTorch(TorchSc
ript) 

Yes Yes - Support TorchScript models(file format *.pt), PyTorch 
model must be traced and saved as a TorchScript Model 
(.pt) 

Triton model config.pbtxt for TorchScript format 

backend: "pytorch" 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorflow_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7YJqlJfMRfgXm333nM8x38LQ6lsbEu5mQk841gsk1oI%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Ftensorflow_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7YJqlJfMRfgXm333nM8x38LQ6lsbEu5mQk841gsk1oI%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fonnxruntime_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4OMxBA7y9HgHYszn1pxo%2BmOjzCjqn%2BRjM0byNL0gDKg%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fonnxruntime_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4OMxBA7y9HgHYszn1pxo%2BmOjzCjqn%2BRjM0byNL0gDKg%3D&reserved=0
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platform: "pytorch_libtorch" 

default_model_filename: "model.pt" 

input [ { name: "INPUT0" }] 

output [ { name: "OUTPUT0" } { name: 
"OUTPUT1" }] 

 

Triton Pytorch backend documentation: 

https://github.com/triton-inference-
server/pytorch_backend 

Python Backend Yes Yes - Support Custom Triton-Python backend 

- Support Python Custom conda Execution Environment 

Triton model config.pbtxt for Python file format 

backend: "python" 

default_model_filename: "model.py" 

# [optional: custom conda env, disabled by 
default] 
parameters: { 
  key: "EXECUTION_ENV_PATH", 
  value: {string_value: 
"$$TRITON_MODEL_DIRECTORY/python3.6.tar.gz"} 
} 
 

Triton Python backend documentation: 

https://github.com/triton-inference-
server/python_backend 

 

Ensemble Models Yes Yes - Support Triton Ensemble Models to connect multiple 
model inference graph 

Triton model config.pbtxt for ensemble model 

platform: "ensemble" 
input[...] 
output[...] 
ensemble_scheduling { 
step [ 
  {model_name: “model_A”}, 
  {model_name: “model_B”}, 
  {model_name: “model_C”}, 
] 
} 

Triton Ensemble Model documentation: 

https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/architecture.m
d#ensemble-models 

 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpytorch_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8UjOBAqJNpUr7ldtQfY6%2BkQilkR0yUthC1tkklCtM60%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpytorch_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8UjOBAqJNpUr7ldtQfY6%2BkQilkR0yUthC1tkklCtM60%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpython_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8RMSpJEu7g7GAhEUYsunWyFw0OzSnhf0a%2FKDmttVgC4%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fpython_backend&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8RMSpJEu7g7GAhEUYsunWyFw0OzSnhf0a%2FKDmttVgC4%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftriton-inference-server%2Fserver%2Fblob%2Fmain%2Fdocs%2Fuser_guide%2Farchitecture.md%23ensemble-models&data=05%7C01%7Cbrupde%40nvidia.com%7Cd0f8bb7b808d4ff59ce508dbf753a17c%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638375710789017121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1PayDgTAboHmISeoYp%2FesolifyN82UW5OakVjQVSgI8%3D&reserved=0
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For more information refer to the following links: 

 Triton inference server documentation entry: https://github.com/triton-inference-
server/server 

 Triton inference server model repository:  https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/model_repository.md 

 Triton inference server supported backends and QA: https://github.com/triton-
inference-server/backend 

 Triton Model TensorRT optimization for ONNX and TensorFlow: 
https://github.com/triton-inference-
server/server/blob/main/docs/user_guide/optimization.md#framework-specific-
optimization 

 TensorFlow with TensorRT: https://docs.nvidia.com/deeplearning/frameworks/tf-
trt-user-guide/index.html 

 TensorFlow saved model: 
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk  

 

https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_repository.md
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_repository.md
https://github.com/triton-inference-server/backend
https://github.com/triton-inference-server/backend
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/optimization.md#framework-specific-optimization
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://www.tensorflow.org/guide/saved_model#the_savedmodel_format_on_disk
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