NVIDIA Morpheus (25.02.01)

Program Listing for File inference_client_stage.cpp

Return to documentation for file (python/morpheus/morpheus/_lib/src/stages/inference_client_stage.cpp)

Copy
Copied!
            

/* * SPDX-FileCopyrightText: Copyright (c) 2024-2025, NVIDIA CORPORATION & AFFILIATES. * All rights reserved. SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "morpheus/stages/inference_client_stage.hpp" #include "morpheus/messages/control.hpp" // for ControlMessage #include "morpheus/messages/memory/tensor_memory.hpp" // for TensorMemory #include "morpheus/messages/meta.hpp" // for MessageMeta #include "morpheus/objects/data_table.hpp" // for morpheus #include "morpheus/objects/dev_mem_info.hpp" // for DevMemInfo #include "morpheus/objects/dtype.hpp" // for DType #include "morpheus/objects/tensor.hpp" // for Tensor #include "morpheus/objects/tensor_object.hpp" // for TensorObject #include "morpheus/stages/triton_inference.hpp" // for HttpTritonClient, TritonInferenceClient #include "morpheus/utilities/matx_util.hpp" // for MatxUtil #include <boost/fiber/policy.hpp> // for launch #include <cuda_runtime.h> // for cudaMemcpy2D, cudaMemcpyKind #include <glog/logging.h> // for COMPACT_GOOGLE_LOG_WARNING, LOG, LogMessage #include <mrc/cuda/common.hpp> // for MRC_CHECK_CUDA #include <pybind11/pybind11.h> // for object_api::operator() #include <rxcpp/rx.hpp> // for decay_t, trace_activity #include <chrono> // for milliseconds, operator""ms, operator<=>, chrono_lite... #include <compare> // for operator>, strong_ordering #include <coroutine> // for coroutine_handle, suspend_always #include <memory> // for shared_ptr, __shared_ptr_access, dynamic_pointer_cast #include <mutex> // for unique_lock #include <ostream> // for operator<<, basic_ostream #include <ratio> // for ratio #include <stdexcept> // for runtime_error, invalid_argument #include <utility> // for move, pair namespace { using namespace morpheus; static ShapeType get_seq_ids(const std::shared_ptr<ControlMessage>& message) { // Take a copy of the sequence Ids allowing us to map rows in the response to // rows in the dataframe The output tensors we store in `reponse_memory` will // all be of the same length as the the dataframe. seq_ids has three columns, // but we are only interested in the first column. auto seq_ids = message->tensors()->get_tensor("seq_ids"); const auto item_size = seq_ids.dtype().item_size(); ShapeType host_seq_ids(message->tensor_count()); MRC_CHECK_CUDA(cudaMemcpy2D(host_seq_ids.data(), item_size, seq_ids.data(), seq_ids.stride(0) * item_size, item_size, host_seq_ids.size(), cudaMemcpyDeviceToHost)); return host_seq_ids; } static bool has_tensor(std::shared_ptr<ControlMessage> message, std::string const& tensor_name) { return message->tensors()->has_tensor(tensor_name); } static TensorObject get_tensor(std::shared_ptr<ControlMessage> message, std::string const& tensor_name) { return message->tensors()->get_tensor(tensor_name); } static void reduce_outputs(std::shared_ptr<ControlMessage> const& message, TensorMap& output_tensors) { if (message->payload()->count() == message->tensor_count()) { return; } // When our tensor lengths are longer than our dataframe we will need to use // the seq_ids array to lookup how the values should map back into the // dataframe. auto host_seq_ids = get_seq_ids(message); for (auto& mapping : output_tensors) { auto& output_tensor = mapping.second; ShapeType shape = output_tensor.get_shape(); ShapeType stride = output_tensor.get_stride(); ShapeType reduced_shape{shape}; reduced_shape[0] = message->payload()->count(); auto reduced_buffer = MatxUtil::reduce_max( DevMemInfo{output_tensor.data(), output_tensor.dtype(), output_tensor.get_memory(), shape, stride}, host_seq_ids, 0, reduced_shape); output_tensor.swap(Tensor::create(std::move(reduced_buffer), output_tensor.dtype(), reduced_shape, stride, 0)); } } static void apply_logits(TensorMap& output_tensors) { for (auto& mapping : output_tensors) { auto& output_tensor = mapping.second; auto shape = output_tensor.get_shape(); auto stride = output_tensor.get_stride(); auto output_buffer = morpheus::MatxUtil::logits(morpheus::DevMemInfo{ output_tensor.data(), output_tensor.dtype(), output_tensor.get_memory(), shape, stride}); // For logits the input and output shapes will be the same output_tensor.swap(morpheus::Tensor::create(std::move(output_buffer), output_tensor.dtype(), shape, stride, 0)); } } } // namespace namespace morpheus { InferenceClientStage::InferenceClientStage(std::unique_ptr<IInferenceClient>&& client, std::string model_name, bool needs_logits, std::vector<TensorModelMapping> input_mapping, std::vector<TensorModelMapping> output_mapping) : m_model_name(std::move(model_name)), m_client(std::move(client)), m_needs_logits(needs_logits), m_input_mapping(std::move(input_mapping)), m_output_mapping(std::move(output_mapping)) {} struct ExponentialBackoff { std::shared_ptr<mrc::coroutines::Scheduler> m_on; std::chrono::milliseconds m_delay; std::chrono::milliseconds m_delay_max; ExponentialBackoff(std::shared_ptr<mrc::coroutines::Scheduler> on, std::chrono::milliseconds delay_initial, std::chrono::milliseconds delay_max) : m_on(std::move(on)), m_delay(delay_initial), m_delay_max(delay_max) {} mrc::coroutines::Task<> yield() { if (m_delay > m_delay_max) { m_delay = m_delay_max; } co_await m_on->yield_for(m_delay); m_delay *= 2; } }; static std::shared_ptr<ControlMessage> make_response(std::shared_ptr<ControlMessage> message, TensorMap&& output_tensor_map) { message->tensors(std::make_shared<TensorMemory>(message->payload()->count(), std::move(output_tensor_map))); return message; } mrc::coroutines::AsyncGenerator<std::shared_ptr<ControlMessage>> InferenceClientStage::on_data( std::shared_ptr<ControlMessage>&& message, std::shared_ptr<mrc::coroutines::Scheduler> on) { int32_t retry_count = 0; using namespace std::chrono_literals; auto backoff = ExponentialBackoff(on, 100ms, 4000ms); while (true) { auto message_session = m_session; try { // Using the `count` which is the number of rows in the inference tensors. // We will check later if this doesn't match the number of rows in the // dataframe (`mess_count`). This happens when the size of the input is // too large and needs to be broken up in chunks in the pre-process stage. // When this is the case we will reduce the rows in the response outputs // such that we have a single response for each row int he dataframe. // TensorMap output_tensors; // buffer_map_t output_buffers; if (message_session == nullptr) { auto lock = std::unique_lock(m_session_mutex); if (m_session == nullptr) { m_session = m_client->create_session(); } message_session = m_session; } // We want to prevent entering this section of code if the session is // being reset, but we also want this section of code to be entered // simultanously by multiple coroutines. To accomplish this, we use a // shared lock instead of a unique lock. TensorMap model_input_tensors; for (auto mapping : message_session->get_input_mappings(m_input_mapping)) { if (has_tensor(message, mapping.tensor_field_name)) { model_input_tensors[mapping.model_field_name].swap(get_tensor(message, mapping.tensor_field_name)); } } auto model_output_tensors = co_await message_session->infer(std::move(model_input_tensors)); co_await on->yield(); reduce_outputs(message, model_output_tensors); // If we need to do logits, do that here if (m_needs_logits) { apply_logits(model_output_tensors); } TensorMap output_tensor_map; for (auto mapping : message_session->get_output_mappings(m_output_mapping)) { auto pos = model_output_tensors.find(mapping.model_field_name); if (pos != model_output_tensors.end()) { output_tensor_map[mapping.tensor_field_name].swap( std::move(model_output_tensors[mapping.model_field_name])); model_output_tensors.erase(pos); } } auto result = make_response(message, std::move(output_tensor_map)); co_yield result; co_return; } catch (std::invalid_argument ex) { // invalid_argument is terminal, don't attempt to retry throw; } catch (std::runtime_error ex) { auto lock = std::unique_lock(m_session_mutex); if (m_session == message_session) { m_session.reset(); } if (m_retry_max >= 0 and ++retry_count > m_retry_max) { throw; } LOG(WARNING) << "Exception while processing message for " "InferenceClientStage, attempting retry. ex.what(): " << ex.what(); } catch (...) { auto lock = std::unique_lock(m_session_mutex); if (m_session == message_session) { m_session.reset(); } if (m_retry_max >= 0 and ++retry_count > m_retry_max) { throw; } LOG(WARNING) << "Exception while processing message for " "InferenceClientStage, attempting retry."; } co_await backoff.yield(); } } // ************ InferenceClientStageInterfaceProxy********* // std::shared_ptr<mrc::segment::Object<InferenceClientStage>> InferenceClientStageInterfaceProxy::init( mrc::segment::Builder& builder, const std::string& name, std::string server_url, std::string model_name, bool needs_logits, bool force_convert_inputs, std::map<std::string, std::string> input_mappings, std::map<std::string, std::string> output_mappings) { std::vector<TensorModelMapping> input_mappings_{}; std::vector<TensorModelMapping> output_mappings_{}; for (auto& mapping : input_mappings) { input_mappings_.emplace_back(TensorModelMapping{mapping.first, mapping.second}); } for (auto& mapping : output_mappings) { output_mappings_.emplace_back(TensorModelMapping{mapping.first, mapping.second}); } auto triton_client = std::make_unique<HttpTritonClient>(server_url); auto triton_inference_client = std::make_unique<TritonInferenceClient>(std::move(triton_client), model_name, force_convert_inputs); auto stage = builder.construct_object<InferenceClientStage>( name, std::move(triton_inference_client), model_name, needs_logits, input_mappings_, output_mappings_); return stage; } } // namespace morpheus

© Copyright 2024, NVIDIA. Last updated on Mar 3, 2025.