Important
NeMo 2.0 is an experimental feature and currently released in the dev container only: nvcr.io/nvidia/nemo:dev. Please refer to NeMo 2.0 overview for information on getting started.
Model Evaluation
NVIDIA provides a simple tool to help evaluate trained checkpoints. You can evaluate the capabilities of the Falcon model on the following ZeroShot downstream evaluation tasks:
lambada
,boolq
,race
,piqa
,hellaswag
,winogrande
,wikitext2
,wikitext103
Fine-tuned Falcon models can be evaluated on the following tasks:
squad
Run Evaluation
To run evaluation update conf/config.yaml
:
defaults:
- evaluation: falcon/evaluate_all.yaml
stages:
- evaluation
Execute the launcher pipeline: python3 main.py
.
Configuration
Default configurations for evaluation can be found in conf/evaluation/falcon/evaluate_all.yaml
run:
name: ${.eval_name}_${.model_train_name}
time_limit: "4:00:00"
nodes: ${divide_ceil:${evaluation.model.model_parallel_size}, 8} # 8 gpus per node
ntasks_per_node: ${divide_ceil:${evaluation.model.model_parallel_size}, ${.nodes}}
eval_name: eval_all
model_train_name: falcon_7b
train_dir: ${base_results_dir}/${.model_train_name}
tasks: all_tasks
results_dir: ${base_results_dir}/${.model_train_name}/${.eval_name}
tasks
sets the evaluation task to execute. Supported tasks include: lambada, boolq, race, piqa, hellaswag, winogrande, wikitext2, wikitext103, all_tasks. all_tasks
executes all supported evaluation tasks.
model:
model_type: nemo-falcon
nemo_model: null # specify path to .nemo file, produced when converted interleaved checkpoints
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
model_parallel_size: ${multiply:${.tensor_model_parallel_size}, ${.pipeline_model_parallel_size}}
precision: bf16 # must match training precision - 32, 16 or bf16
eval_batch_size: 4
nemo_model
sets the path to .nemo
checkpoint to run evaluation.
Run Evaluation on PEFT Falcon models
To run evaluation on PEFT Falcon models update conf/config.yaml
:
defaults:
- evaluation: peft_falcon/squad.yaml
stages:
- evaluation
Execute the launcher pipeline: python3 main.py
.
Configuration
Default configurations for PEFT Falcon evaluation can be found in conf/evaluation/peft_falcon/squad.yaml
run:
name: eval_${.task_name}_${.model_train_name}
time_limit: "01:00:00"
dependency: "singleton"
convert_name: convert_nemo
model_train_name: falcon_7b
task_name: "squad" # SQuAD v1.1
convert_dir: ${base_results_dir}/${.model_train_name}/${.convert_name}
fine_tuning_dir: ${base_results_dir}/${.model_train_name}/peft_${.task_name}
results_dir: ${base_results_dir}/${.model_train_name}/peft_${.task_name}_eval
Set PEFT specific configurations:
peft:
peft_scheme: "lora" # can be either lora or ptuning
restore_from_path: ${evaluation.run.fine_tuning_dir}/${.peft_scheme}/megatron_falcon_peft_tuning-${.peft_scheme}/checkpoints/megatron_falcon_peft_tuning-{.peft_scheme}.nemo
peft_scheme
sets the scheme used during fine-tuning.
restore_from_path
sets the path to PEFT checkpoint to run evaluation on.